
Waks-On/Waks-Off: Fast Oblivious Offline/Online
Shuffling and Sorting with Waksman Networks∗

Sajin Sasy
University of Waterloo
Waterloo, ON, Canada
ssasy@uwaterloo.ca

Aaron Johnson
U.S. Naval Research Laboratory

Washington, D.C., U.S.A.
aaron.m.johnson@nrl.navy.mil

Ian Goldberg
University of Waterloo
Waterloo, ON, Canada
iang@uwaterloo.ca

ABSTRACT

As more privacy-preserving solutions leverage trusted execution
environments (TEEs) like Intel SGX, it becomes pertinent that these
solutions can by design thwart TEE side-channel attacks that re-
search has brought to light. In particular, such solutions need to be
fully oblivious to circumvent leaking private information through
memory or timing side channels.

In this work, we present fast fully oblivious algorithms for shuf-
fling and sorting data. Oblivious shuffling and sorting are two fun-
damental primitives that are frequently used for permuting data in
privacy-preserving solutions. We present novel oblivious shuffling
and sorting algorithms in the offline/online model such that the
bulk of the computation can be done in an offline phase that is
independent of the data to be permuted. The resulting online phase
provides performance improvements over state-of-the-art oblivious
shuffling and sorting algorithms both asymptotically (O(βn logn)
vs. O(βn log2 n)) and concretely (> 5× and > 3× speedups), when
permuting n items each of size β .

Our work revisits Waksman networks, and it uses the key ob-
servation that setting the control bits of a Waksman network for a
uniformly random shuffle is independent of the data to be shuffled.
However, setting the control bits of a Waksman network efficiently
and fully obliviously poses a challenge, and we provide a novel
algorithm to this end. The total costs (inclusive of offline computa-
tion) of our WaksShuffle shuffling algorithm and our WaksSort
sorting algorithm are lower than all other fully oblivious shuffling
and sorting algorithms when the items are at least moderately sized
(i.e., β > 1400 B), and the performance gap only widens as the item
sizes increase. Furthermore, WaksShuffle improves the online cost
of oblivious shuffling by > 5× for shuffling 220 items of any size;
similarly WaksShuffle+QS, our other sorting algorithm, provides
> 2.7× speedups in the online cost of oblivious sorting.

1 INTRODUCTION

Over the last few yearswe havewitnessedmyriad privacy-preserving
solutions propose Trusted Execution Environments (TEEs) to re-
alize hitherto impractical systems. These proposals span several
application domains: healthcare and genomic data analytics [9],
contact discovery [30, 46], telemetry [8], collaborative machine
learning [34], privacy-preserving statistics [44], file systems [14],
database queries [23], and video analytics [36], to highlight a few.
The advantage of TEEs is that they enable collaborative solutions
between mutually untrusting parties, without having to i) rely on
trusted third parties, ii) rely on non-collusion of servers, or iii) incur
the prohibitive overheads of fully homomorphic encryption.

∗This is an extended version of our CCS 2023 paper. [43]

In theory, TEEs enable parties to execute computations over
their private data on an untrusted remote server within an enclave

(secure container). All parties can verify the integrity of this compu-
tation via an attestation process [2], as well as send their encrypted
private data directly to this enclave, such that each party’s private
data is only ever decrypted and used for the agreed-upon computa-
tion. TEEs guarantee to each participant that the computation is
correctly and privately (i.e., without leaking any information about
the private inputs) executed within the enclave.

Unfortunately, research has shown that TEEs are susceptible to
several side-channel attacks limiting privacy in practice. Some side
channels violate the SGX security model, including those based
on speculative execution [10, 47] and voltage variations [29, 31],
and Intel has issued patches to mitigate them [20–22]. In contrast,
memory and control-flow side-channel attacks [24, 27, 49] are out
of scope of the SGX security model.

However, some defenses have been developed against such side
channels [39, 40]. Sasy et al. [41] suggest using fully oblivious algo-
rithms to circumvent all currently known software (memory and
code-branching based) side-channel attacks. (We provide a more
detailed background on full obliviousness in Section 2.) They pro-
vide fully oblivious algorithms for compaction and shuffling. The
shuffling algorithms they present are ORShuffle and BORPStream,
where the former consistently outperforms BitonicShuffle1 (the
prior state-of-the-art method for oblivious shuffling), and the latter
reduces the online cost of shuffling items by partially shuffling them
as they arrive in a “streaming” setting.

In the previously mentioned applications of TEEs, shuffling or
sorting of data is a recurring primitive. Such data permutation
steps must be fully oblivious lest they leak information about the
private inputs or permutations. Furthermore, in these systems, the
permutation operations reside on the critical path of execution, and
so their execution speed is critical for system performance.

All the TEE systems we have cited may obtain a performance
improvement from algorithms designed for the offline/online model,
in which an offline computation phase is performed before the
data is available, followed by an online phase that uses the input
data. In general, the offline/online model can be useful to reduce
query latency for a system that answers queries on existing data [14,
44]. It can also be used to reduce analysis time for systems that
otherwise idly wait while collecting (a predetermined amount of)
data from users [8]. For systems with repeated batch processing, it
can also enable parallelism, as an offline phase can be performed
concurrently with the current online phase.

1BitonicShuffle shuffles items by attaching random labels to the items and sorting
them with the Bitonic sorting network [4].

1

Sajin Sasy, Aaron Johnson, and Ian Goldberg

Therefore, in this work we present novel fully oblivious shuffling
and sorting algorithms in the offline/online setting. Full oblivious-
ness ensures that their inputs and outputs are kept private when
they are executed entirely within a TEE enclave. Our algorithms
move the bulk of the work for oblivious shuffling and sorting into
an offline precomputation that is independent of the data to be per-
muted, resulting in better asymptotic and concrete online costs than
prior work. For instance, shuffling 220 items, each of 256 bytes, takes
0.50 s of online computation, a ≈5× speedup over ORShuffle and
≈2.7× speedup over BORPStream’s online cost. Similarly, sorting
the same set takes 1.13 s of online computation, a 3.1× speedup over
Bitonic sort and 2.1× speedup over the online cost of a BORPStream-
based sort. We note that these comparisons are generous towards
BORPStream, in that they assume its streaming model in which
each data item can be partially processed in sequence before the
last item arrives. The performance of BORPStream is otherwise
worse than ORShuffle, and our shuffling algorithm provides a >11×
speedup over it.

Furthermore, even if one also takes into consideration the offline
costs of our algorithms, our total cost for shuffling and sorting still
outperforms all the aforementioned algorithms when the items
are at least moderately sized (i.e., larger than about 1400 bytes).
Applications permuting items of this size include ML training [34],
where the items to shuffle may be images, and database queries [23],
where the items to sort may be entire rows of database tables.
Therefore, even without the offline/online split, our algorithms are
useful for several applications, and the total costs are modest even
for compute-limited servers.

We achieve these performance improvements using Waksman
networks [48]. A Waksman network can apply any permutation to
a set of items by sending them through a fixed-topology network
of switches. Each switch has two inputs, two outputs, and a control
bit; the outputs are the inputs in swapped order if the control bit
is one and in the same order otherwise. For a set of n input items,
there are approximately n log2(n) −n + 1 switches (and exactly this
number when n is a power of two). Obliviously setting the control
bits to implement a given permutation poses a challenge, but this
process is agnostic to the size of items to permute.

The key observation we make is that to uniformly randomly
shuffle items, one can generate the control bits for the Waksman
networks independently of the items to shuffle. We hence reduce the
online cost of shuffling to theO(βn logn) cost of permuting n items
each of size β with a Waksman network. Further, the parallel step
complexity is onlyO(logn). In contrast, existing oblivious shuffling
algorithms like BitonicShuffle, ORShuffle, and BORPStream incur a
O(βn log2 n) online complexity, with a parallel step complexity of
O(log2 n). We provide detailed background on Waksman networks
in Section 2. Finally, while we focus on shuffling and sorting, by def-
inition Waksman networks can be used to apply any permutation,
and in scenarios where several sets of data need to be permuted
in the same order the cost of setting control bits can be amortized
over these sets.

For sorting data, the control bits for a Waksman network would
depend on the items to be sorted; i.e., one needs to generate the
permutation that results in a sorted output, and then set the control
bits accordingly. However, by using the “Scramble-then-Compute”

paradigm [13, 18], one can reduce the online cost of sorting data
as well. A Waksman network can be used to perform an oblivious
shuffle, and then this shuffled data can be sorted using a fast non-
oblivious sort such as quicksort. This algorithm has an online cost of
O(βn logn) and outperforms bitonic sorting networks, which have
a O(βn log2 n) online cost, and it similarly outperforms ORShuffle
or BORPStream (both having a O(βn log2 n) complexity) followed
by a non-oblivious sort. We summarize our contributions as follows:

(1) We provide a novel algorithm to set the control bits of a
Waksman network to implement a given permutation, de-
signed to be fully oblivious for TEEs. Our algorithm is the
first fully oblivious control bit setting algorithm for Waks-
man networks generalized to work for any n; i.e., even when
n is not a power of two.

(2) We provide aWaksman network topology that improves per-
formance by exploiting memory locality. Our experimental
results show up to 5.3× speedups over the standard Waks-
man layout [48].

(3) The total costs (inclusive of offline computation) of our al-
gorithms are lower than the state of the art when the items
are at least moderately sized (i.e., item size β > 1400 B). Fur-
thermore, the performance improvements of our algorithms
continue to increase as the size of each item increases. For
instance, our algorithms yield >2.2× improvements in total
cost when shuffling or sorting 4 KiB sized items.

(4) Finally, in the offline/online model, we significantly reduce
the online costs of shuffling and sorting below those of the
state of the art (achieving speedups of >5× and >2.7×, re-
spectively). These reductions are obtained for any item size,
improving the performance of a wide variety of TEE appli-
cations.

2 BACKGROUND

Waksmannetworks.AWaksman network [48] is an arrangement
of binary switches. Each switch has two inputs and two outputs, and
its behavior is governed by a control bit. If the control bit is set (i.e.,
equal to one), then the switch swaps its inputs. If the bit is unset (i.e.,
equal to zero), then the switch outputs its inputs in their original
order. AWaksman network can apply any permutation to its inputs
by setting its control bits appropriately. Setting aWaksman network
to a uniformly random permutation is not as simple as setting its
control bits independently and uniformly at random because the
number of such settings is a power of two and thus is not evenly
divided by the number of permutations when the number of inputs
is more than two.

The Waksman network construction [5] is illustrated recursively
in Figure 1. The construction is slightly different for even n (Fig-
ure 1a) and odd n (Figure 1b). In both cases, a layer of input switches
is first applied, the results are used as inputs to top and bottom

Waksman subnetworks, and then a layer of output switches are ap-
plied to the outputs of those subnetworks. The switches in a given
layer take disjoint inputs, and so they can be applied in parallel.
When n = 2, the network is a single switch, and when n = 1 there
are no switches. Waksman networks are designed to minimize the
number of switches while still being able to apply any permutation.
The number of switches is exactly n log2(n) − n + 1 for n a power

2

Waks-On/Waks-Off: Fast Oblivious Offline/Online Shuffling and Sorting with Waksman Networks

D[n − 1]
D[n − 2]
D[n − 3]
D[n − 4]

D[3]
D[2]
D[1]
D[0]

...

...

...
n/2

n/2

...

...

...

(a) Even n

D[n − 1]
D[n − 2]
D[n − 3]
D[n − 4]
D[n − 5]

D[3]
D[2]
D[1]
D[0]

...

...

...
⌊n/2⌋

⌈n/2⌉

...

...

...

(b) Odd n

Figure 1: Existing recursive construction for Waksman net-

work ofn inputs [5]. Crossbars denote switches. Switches are

applied left to right on input array D. Dashed rectangles are

Waksman subnetworks with the given numbers of inputs.

Note that inputs to subnetworks are not contiguous in D.

of two and at most n log2(n) − 0.91n + 1 for any n [5]. Observe
that the topology of the Waksman network is fixed; that is, which
switches are applied to which values in what order depends only
on n. This property makes Waksman networks useful for oblivious
computation.

Waksman [48] describes aO(n logn) algorithm to set the control
bits to implement a given permutation. In this “looping” algorithm,
the input and output switches are alternately set, as setting one
determines the required setting for a following one, and then the
algorithm is recursively called on the subnetworks. Nassimi and
Sahni [32] give a more parallelizable algorithm to set control bits. It
has runtimeO(n log2(n)) but parallel step complexity ofO(log2(n)),
improving on the O(n) parallel step complexity of the Waksman
algorithm. Bernstein [6] describes how to perform the Nassimi-
Sahni algorithm obliviously. Using an oblivious sort with runtime
O(n log2(n)), which is the fastest in practice [15], the Bernstein
algorithm has runtime O(n log4(n)).

Lee [25, 26] presents a different approach to setting theWaksman
control bits. In the Lee algorithm, the input switches are set first,
then the subnetwork switches, and finally the output switches. The
algorithm is not oblivious and has the same O(n logn) runtime as
the looping algorithm. However, an advantage of the Lee algorithm
in the context of oblivious computation is that setting the output
switches is trivially and efficiently oblivious. We therefore use the
Lee algorithm as our starting point in designing a fully oblivious
control bit setting algorithm.

Full obliviousness. Oblivious algorithms are needed for secure
computation on existing TEEs, which have side channels that can
leak properties of an execution. Shared memory resources such
as caches can reveal which memory locations have been accessed,
and execution time can reveal information about which execution
paths were followed. A goal of TEEs is to provide confidentiality for
inputs and outputs, but obliviousness is needed to protect against
an adversary exploiting these side channels.

Among the variety of notions of obliviousness [23, 41, 46], we
adopt full obliviousness [41] as our security goal. Full obliviousness
requires both the memory accesses (i.e., the location and read/write
operation of each access) and the executed sequence of instruc-
tions to be independent of the secret inputs. Consequently, our
algorithms will not require any “private” memory, where accesses
are hidden from the adversary. Weaker obliviousness notions omit
the instructions or only require memory obliviousness at a coarser
granularity, such as page-level obliviousness. However, those no-
tions are vulnerable to side channels of the instructions sequence
or operating at a finer granularity, such as cache-line-level attacks.
Such side channels do already exist [24], and, given that they are
tolerated by the hardware designers, future hardware designs may
further create new ones.

By using full obliviousness, we prevent entire classes of side-
channel vulnerabilities. We note, however, this security notion does
not entirely rule out timing side channels because some proces-
sor instructions may be variable time. In our implementation, we
do choose instructions that we expect to be constant time, but
this property is not always explicitly promised by the hardware
provider. Moreover, existing compilers do not guarantee to pre-
serve obliviousness, although for our implementation, we check
the compiled binary for obliviousness violations using the FOAV
tool (see Section 6).

We follow the definition of full obliviousness given by Sasy et
al. [41]. Let an algorithmA be a sequence of instructions with direct
or indirect memory arguments. Let E(A,x1, . . . ,xk) denote the ex-
ecution of A on inputs (x1, . . . ,xk), which consists of the sequence
of executed instructions and the memory contents at every step. A
is assumed to have access to a sequence of uniformly random bytes,
and therefore E is a random function. Let E = E(A,x1, . . . ,xk) be
a random execution. We denote its output as O(E). We denote its
instruction trace as I(E), which consists of the sequence of indices
intoA indicating the order instructionswere executed (some instruc-
tions may change the execution flow and make it non-sequential).
We denote the memory trace of E asM(E), which consists of a
sequence of pairs (b, ℓ), one for each executed instruction, with
b ∈ {0, 1} indicating a read or write and ℓ indicating the memory
location. We say that an algorithm is efficient if it runs in proba-
bilistic polynomial time, and we say that two random variables are
indistinguishable if no efficient algorithm can distinguish them with
non-negligible probability.

Full obliviousness is defined as follows [41], with [k] = {1, . . . ,k}:

Definition 1. Let E = E (A,x1, . . . ,xk). For any I ⊆ [k], A is fully
oblivious with respect to {xi }i ∈I if there exists an efficient simula-
tor S such that, for all inputs (x1, . . . ,xk), (O(E), (M(E),I(E))) is
indistinguishable from

(
O(E),S

(
(xi)i ∈[k]\I , (|xi |)i ∈I

))
.

3

Sajin Sasy, Aaron Johnson, and Ian Goldberg

The inputs indicated by I in Definition 1 are secret, and the others
are non-secret. Observe that the definition does not require the size
of any input to be hidden. Also note that the definition requires
indistinguishability of the joint distribution over outputs and traces,
even though the simulator is not given the output. Therefore, no
information is revealed about either the secret inputs or the output
beyond what is implied by the non-secret inputs.

3 OBLIVIOUS ALGORITHMS FORWAKSMAN

NETWORKS

3.1 Preliminaries

When describing algorithms, we use A[i] to indicate the element
of array A at index i , with A[0] as the first element. We use A[i ..j]
to indicate the subarray (A[i],A[i + 1], . . .A[j]), and we use |A| to
denote the number of items in A. We denote bitwise AND with
&, bitwise OR with |, and the left (right) shift of x by y bits with
x ≪ y (x ≫ y). We assume a global security parameter λ that is
available to all algorithms, and we do not require that any algorithm
is oblivious to it.

We alsomake use of several fully oblivious primitives.We assume
that random bits can be generated fully obliviously. We assume that
arithmetic and bitwise operators are oblivious to their inputs. We
denote the oblivious computation of the comparison c as a boolean
value with JcK (e.g., Jx < yK has value 1 if x < y and 0 other-
wise). We use an oblivious select function, OSelect(x ,y,b), which
returns y if b = 1 and returns x otherwise. OSelect is assumed
to be oblivious to its input values. We also use an oblivious swap
function, OSwap(A, i, j,b), which swaps the values of A[i] and A[j]
if b = 1 and does nothing otherwise. OSwap(A, i, j,b) is assumed
to be oblivious to A and b (though not to i and j) and, for items of
size β , is assumed to have runtime O(β). These primitives can be
implemented efficiently and obliviously using boolean arithmetic
or conditional instructions such as CMOVZ.

Some additional functionalities we use require other approaches
to provide the necessary obliviousness. We use ORand(x) to select
a uniformly random integer in [0,x − 1], which we assume is fully
oblivious with respect to its input. One efficient oblivious imple-
mentation with statistical distance x2−σ from uniform is to select
σ random bits ρ and compute xρ ≫ σ . We also require a pseudo-
random permutation, PRP(x ,k), that applies a PRP to x using key
k and is fully oblivious to its inputs. A securely implemented PRP
(e.g., AES) must have a constant-time implementation and would
thereby provide the required obliviousness. We additionally use a
hash map data structure with O(1) amortized insertion and lookup.
Given hash map H , HashMapInsert(H ,k,v) inserts value v with
key k , and HashMapGet(H ,k) returns the value inserted for key
k . We require that, for any sequence of insertions and lookups, the
resulting memory and instruction traces can be simulated without
knowing the values v (but knowing the keys k). The standard hash
map algorithms are already oblivious in this way.

Although a goal of our algorithms is to provide oblivious shuf-
fling and sorting, we do rely on existing fully oblivious shuffling
and sorting algorithms. Our algorithms will provide efficiency im-
provements over applying those algorithms directly to the data.
OShuffle(A) is assumed to put the items in array A in a uniformly
random order. OSort(A,B) is assumed to sort array A in place in

D[n − 1]
D[n − 2]

D[n2 + 1]
D[n2]

D[n2 − 1]
D[n2 − 2]

D[1]
D[0]

...
...

...
...

n/2

n/2 ...

...

...

...

(a) Even n

D[n − 1]
D[n − 2]

D[⌈n2 ⌉ + 1]
D[⌈n2 ⌉]
D[⌊ n2 ⌋]

D[⌊ n2 ⌋ − 1]
D[⌊ n2 ⌋ − 2]

D[1]
D[0]

...
...

...
... ⌈n/2⌉

⌊n/2⌋ ...

...

...

...

(b) Odd n

Figure 2: Our recursive construction forWaksman networks

of n inputs. Crossbars denote switches. Switches are applied

left to right on input array D. Dashed rectangles are Waks-

man subnetworks for the givennumbers of inputs. Note that

inputs to the subnetworks are contiguous in D.

nondecreasing order and also put B in the same final order as A
(e.g., OSort could be used to sort data items in B using keys in A).
Both OShuffle and OSort are assumed to be fully oblivious to all
of their inputs.

3.2 Our Waksman Topology

Our algorithmsmake use of a modifiedWaksman topology, which is
shown in Figure 2 for a network with n inputs. As with the standard
topology (Figure 1), we use a recursive construction with slight
differences for even n (Figure 2a) and odd n (Figure 2b). The base
cases remain the same: the network is a single switch for n = 2,
and there are no switches for n = 1. In our topology, however, the
input switches take inputs separated by ⌈n/2⌉ rather than by 1, and
output switches yield outputs separated by ⌈n/2⌉ rather than by 1.
The advantage of this topology in our setting is that, after applying
the input switches, the inputs to each subnetwork are contiguous in
memory rather than fragmented, whereas in the standard topology
there is fragmentation that increases with each subnetwork. This
design improves the memory locality and thus performance for
both setting control bits and applying them to a data array. This
topology uses the same number of switches as the standard one.
See Section 3.4 for a complete example in the n = 9 case.

4

Waks-On/Waks-Off: Fast Oblivious Offline/Online Shuffling and Sorting with Waksman Networks

Figure 3: ControlBits(P ,d): Compute Waksman control

bits for permutation P at recursion level d . i maps to a value

encoded in P[i]. Initially call with d = 0. Modifies P . Oblivi-
ous to values in P but not to |P | or d .

1: n ← |P |
2: k ← ⌈n/2⌉
3: if n < 2 then
4: return ∅

5: ▷ Compute control bits for input-layer switches

6: Cin ← InBits(P ,d)
7: ▷ Apply input-layer switches to P
8: if n > 2 then
9: for i ← 0, . . . ,k − 2 do
10: OSwap(P , i,k + i,Cin[i])
11: ▷ Reduce P values modulo k , storing bits to undo later
12: for i ← 0, . . . ,n − 1 do
13: b ← J(P[i] ≫ d) ≥ kK
14: P[i] ← ((P[i] − (OSelect(0,k,b) ≪ d)) ≪ 1) | b
15: ▷ Compute control bits for top and bottom subnetworks

16: if n > 2 then
17: Ctop ← ControlBits(P[0..k − 1],d + 1)
18: Cbot ← ControlBits(P[k ..n − 1],d + 1)
19: ▷ Compute control bits for output-layer switches

20: Create array Cout of length n − k .
21: for i ← 0, . . . ,n − k − 1 do
22: Cout[i] ← P[i] & 1 ▷Control bit is the last bit of P[i]

23: ▷ Apply output-layer switches to P
24: for i ← 0, . . . ,n − k − 1 do
25: OSwap(P , i,k + i,Cout[i])
26: ▷ Undo reduction of P values modulo k
27: for i ← 0, . . . ,n − 1 do
28: b ← P[i] & 1
29: P[i] ← (P[i] ≫ 1) + (OSelect(0,k,b) ≪ d)

30: return (Cin,Ctop,Cbot,Cout)

3.3 Setting Control Bits

Our fully oblivious algorithmControlBits(P ,d) sets theWaksman
control bits to implement a permutation, and it is shown in Figure 3.
For n = |P |, P must be an arrangement of {0, . . . ,n − 1}, with
P[i] = j meaning that i is mapped to j. The initial call should be
with a recursion depth of d = 0. ControlBits is fully oblivious to
P but not n or d . ControlBits is similar to the Lee algorithm [26]
for setting control bits. The main differences are (1) the switches
follow our modified topology, (2) the algorithm explicitly handles
array sizes that are not a power of two, and (3) crucially, setting
input switches is modified to make the process oblivious (setting
output switches is already oblivious).

The Lee algorithm is described for permutation sizes that are
powers of two. First, input switches are set and are applied to
their input permutation values, then the subnetwork switches are
set recursively, and finally the output switches are set and are
applied to their permutation inputs. In the ith subnetwork level
(starting at i = 0 and incrementing with each subnetwork), the

input switches are set so that applying them to the input subarray
of P yields as input to each subnetwork a Complete Residue System

modulo n/2i+1, which is a set containing one representative from
each residue class modulo n/2i+1. That is, if P̂ is the subarray of P
used as input to a subnetwork, the input switches are set to make
{x mod n/2i+1}x ∈P̂ = {0, . . . ,n/2

i+1−1}. After recursively setting
the subnetwork switches (which also applies them to elements of P),
each output switch is set to the (log2 n− i − 1)st bit of its input from
the top subnetwork, where the zeroth bit is the least-significant
bit. As the network topology is fixed, setting the output switches
is trivially oblivious. The output switches are then applied to their
inputs in P .

ControlBits(P ,d) follows a similar process. We first observe
that it uses our modified topology. The input switches are applied to
items k = ⌈n/2⌉ apart (Line 10) rather than one apart. Consequently,
the subnetwork inputs are contiguous (Lines 17 and 18), which
improves memory locality during the recursive calls.

The algorithm is also defined for all n, not just powers of two.
To achieve this generalization, we modify the process of modular
reduction while setting input switches and of extracting the control
bits while setting the output switches. In Lines 12–14, each per-
mutation value is reduced modulo k (accomplished via a shift and
a subtraction), and a bit indicating if the value changed is stored
at the end (accomplished via a shift and an OR). The result is that
at the dth recursive call, each element of P stores a bit array in
the d least-significant bits and its reduced values in the remaining
(most-significant) bits. After setting the output switches as the least
significant bits (Lines 20–22), this reduction process is undone by
reversing it (Lines 27–29).

The biggest change to the Lee algorithm comes in setting the
input switches (Line 6). In both Lee’s algorithm and our oblivious
algorithm, each input has a partner with which it shares an input
switch (in our topology, i and i ±k are partners). Each permutation
value v ← P[i] ≫ d also has an associate with which it shares
the same residue class modulo k (in our topology, v and v ± k
are associates). A “back-and-forth” process is repeatedly performed
between the permutation inputs and outputs. It starts with the input
index f that is sent directly to the top subnetwork without entering
an input switch (index ⌈n/2⌉ − 1 in our topology). In each iteration,
(1) д is set to the f th input value; (2) r is set to the associate of д;
(3) s is set to the index of the input that contains r ; (4) the switch
that s is an input to is set to put r on the output leading to the
bottom subnetwork; (5) f is updated to the partner of s; and (6) if
f then has the same value it had in the first iteration (yielding a
cycle during this process), f is set to an arbitrary input index that
has not yet had its input switch set, starting a new cycle. Setting
the input switch as in Step 4 ensures that the two values with the
same residue class are sent to different subnetworks, ultimately
producing the desired Complete Residue Systems as inputs to each
subnetwork.

We set the input switches obliviously with InBits (Figure 4). The
challenging steps to make oblivious are the forward map under
the given permutation P (Step 1), the reverse map under P (Step
3), and starting a new cycle (Step 6). For the forward map, we use
CreateForwardLookup (Figure 5) to create a lookup table F that
contains the n permutation mappings of P . Each mapping is labeled

5

Sajin Sasy, Aaron Johnson, and Ian Goldberg

Figure 4: InBits(P ,d): ComputeWaksman control bits for in-

put layer of switches for permutation P at recursion level d .

1: n ← |P |
2: k ← ⌈n/2⌉
3: Create array C of length k − 1. ▷Control bits

4: if n ≤ 2 then
5: return C
6: Create array S of length k − 1. ▷Switch numbers of control bits

7: Generate λ random bits κ1. ▷PRP key for forward lookup

8: Generate λ random bits κ2. ▷PRP key for reverse lookup

9: F ← CreateForwardLookup(P ,d,κ1)
10: R ← CreateReverseLookup(F ,κ2)
11: U ← CreateUnselectedCounts(n, ∅)
12: ▷ Perform initial back-and-forth with fixed input k − 1
13: f ,д, ℓ ← ForwardOrRand(F ,U ,k − 1, 0,κ1) ▷Map k − 1
14: DecUnselectedCounts(U , ℓ) ▷Mark k − 1→ д as selected

15: c ← f ▷Cycle start is f (which contains k − 1)
16: r ← д + OSelect(−k,k, Jд < kK) ▷r is the associate of д
17: s, ℓ ← HashMapGet(R, PRP(r ,κ2)) ▷Reverse map of r
18: DecUnselectedCounts(U , ℓ) ▷Mark s → r map as selected

19: f ← s + OSelect(−k,k, Js < kK) ▷f is the partner of s
20: ▷ Repeat the back-and-forth process to compute the control bits

21: for i ← 0, . . . ,k − 2 do
22: b ← Jf = cK ▷Indicate if current cycle has ended

23: ▷ If b, choose random unselected f → д map, else map f
24: f ,д, ℓ ← ForwardOrRand(F ,U , f ,b,κ1)
25: DecUnselectedCounts(U , ℓ) ▷Mark f → д as selected

26: c ← OSelect(c, f ,b) ▷If new cycle begun, update cycle start

27: r ← д + OSelect(−k,k, Jд < kK) ▷r is the associate of д
28: s, ℓ ← HashMapGet(R, PRP(r ,κ2)) ▷Reverse map of r
29: DecUnselectedCounts(U , ℓ) ▷Mark s → r as selected
30: C[i] ← Jf ≥ kK ▷Control bit to put f in top subnetwork

31: S[i] ← f − OSelect(0,k, Jf ≥ kK) ▷Switch number of f
32: f ← s + OSelect(−k,k, Js < kK) ▷f is the partner of s

33: OSort(S,C) ▷Order control bits by increasing switch number

34: return C

Figure 5: CreateForwardLookup(P ,d,κ): Create data struc-
ture for forward map under permutation in P at recursion

depth d using key κ.

1: n ← |P |
2: k ← ⌈n/2⌉
3: m ← 2k
4: Create array L of lengthm. ▷Random labels for mappings

5: for i ← 0, . . . ,m − 1 do
6: L[i] ← PRP(i,κ)
7: Create array Q of lengthm. ▷Permutation mappings

8: for i ← 0, . . . ,n − 1 do
9: Q[i] ← (i, P[i] ≫ d)

10: if n ,m then ▷Add dummy mapping to make total size even

11: Q[n] ← (n,n)

12: OSort(L,Q) ▷Randomize order of mappings inQ by sorting on L
13: return (L,Q)

Figure 6: ForwardOrRand(F ,U , f ,b,κ): If b = 0, look up for-

ward map from f under permutation encoded in F under

key κ. Else (i.e., if b = 1), look up a uniformly random map-

ping in F from among those thatU indicates are unselected.

Returns mapping input f , output д, and index ℓ.

1: L,Q ← F
2: n ← |L|
3: h ← PRP(f ,κ) ▷Label to search for in L
4: i ← 0 ▷Start index of range in L andU to search

5: j ← n − 1 ▷End index of range in L andU to search

6: u ← U [n − 1] ▷Number of unselected items in search range

7: ρ ← ORand(u) ▷Random unselected mapping

8: while true do ▷Binary search for label h or unselected-item ρ
9: ℓ ← ⌊(i + j)/2⌋
10: if i = j then
11: break

12: z ← OSelect(JL[ℓ] < hK, JU [ℓ] ≤ ρK,b) ▷Search direction

13: if z = 0 then ▷Continue search in first half of range

14: j ← ℓ
15: u ← U [ℓ]
16: else ▷Continue search in last half of range

17: i ← ℓ + 1
18: u ← u −U [ℓ]
19: ρ ← ρ −U [ℓ]

20: f ,д← Q[ℓ]
21: return (f ,д, ℓ)

Figure 7: CreateReverseLookup(F ,κ): Create hash map

containing reverse map of permutation in forward-lookup

structure F using key κ.

1: L,Q ← F
2: n ← |Q |
3: Create empty hash map R sized to contain n items.
4: for i ← 0, . . . ,n − 1 do
5: x ,y ← Q[i] ▷ Q[i] contains forward map x → y
6: z ← PRP(y,κ) ▷Create lookup key z as PRP of y
7: HashMapInsert(R, z, (x , i)) ▷Insert value (x , i) under key z
8: return R

by a PRP applied to its input, and F is (obliviously) sorted by those
labels. This structure allows each mapping to be looked up via a bi-
nary search on the labels, which is performed by ForwardOrRand
(Figure 6). For the reverse map, we simply store the n inverse per-
mutation mappings of P in a hash map R with a PRP applied to the
input value as the lookup key, produced by CreateReverseLookup
(Figure 7). Because each permutation mapping is looked up at most
once and in either the forward or the reverse direction (but not
both), the lookup pattern appears random, which is how it achieves
obliviousness. We must use different keys for the PRPs used in F
and R because, while each mapping will be looked up in at most
one direction, a given integer might be looked up twice (i.e., an f
in some iteration might equal an s in some iteration). Also note

6

Waks-On/Waks-Off: Fast Oblivious Offline/Online Shuffling and Sorting with Waksman Networks

Figure 8: CreateUnselectedCounts(n,U): Create data

structure recursively storing the total unselected count and

the unselected count in the first half. Call initially with

U = ∅.

1: if U = ∅ then
2: Create a new arrayU of length n.
3: U [n − 1] ← n ▷Last item contains total unselected count

4: if n < 2 then
5: returnU
6: k ← ⌈n/2⌉
7: U [k − 1] ← k ▷Midpoint contains unselected count in first half

8: ▷ Recursively add counts to each half

9: CreateUnselectedCounts(k,U [0..(k − 1)])
10: CreateUnselectedCounts(n − k,U [k ..(n − 1)])
11: returnU

Figure 9: DecUnselectedCounts(U , ℓ): Decrement counts

in U to indicate that position ℓ has been selected. Modifies

U .

1: n ← |U |
2: k ← ⌈n/2⌉
3: if ℓ < k then ▷Selected item is in first half

4: U [n − 1] ← U [n − 1] − 1
5: if n > 1 then
6: DecUnselectedCounts(U [0..(k − 1)], ℓ)
7: else ▷Selected item is in last half

8: DecUnselectedCounts(U [k ..(n − 1)], ℓ − k)

that we store the input switch settings in the order they are deter-
mined along with their switch numbers (Lines 30–31), and then we
obliviously sort them by switch number to put them in the required
order (Line 33).

We could have used a hash map for the forward direction except
for a complication that arises when a back-and-forth cycle ends.
After a cycle ends, the next lookup (if any) is in the forward di-
rection, and we need to look up a mapping that has not yet been
queried in either direction. To accomplish this, CreateUnselect-
edCounts (Figure 8) creates a data structure U to track which
mappings have been queried in either direction and to enable the
uniformly random selection of an unqueried one.U is an array con-
taining in its middle element the number of unselected mappings in
the first half of the forward-lookup table F , and then its two halves
contains the same values recursively for the correspending halves
of F . Therefore, ForwardOrRand can also look up a uniformly
random unselected mapping while still performing a binary search,
making its execution indistinguishable from querying a specific
mapping. Maintaining U requires decrementing its counts with
each lookup in either direction, which is accomplished by DecUn-
selectedCounts (Figure 9). Note that DecUnselectedCounts
reveals which counts are decremented but maintains obliviousness
because doing so reveals no more than which location was queried
in F or R, which is both pseudorandom and already apparent in

prior memory accesses. We next present an example of running
ControlBits.

3.4 Worked Example of ControlBits

Figure 10 illustrates an example of running our ControlBits algo-
rithm to set the switches of aWaksman network using our topology.
The examples is on a network with n = 9 inputs. In the figure, the
switches are shown as crossbars connecting two inputs, and they
are applied to values from left to right. Subnetworks are indicated
by a dashed rectangle and labeled by a letter in the upper left. For
example, the whole (i.e., n = 9) network contains a top subnetwork
A with 5 inputs and a bottom subnetwork E with 4 inputs, while
subnetwork A itself contains a top subnetwork B with 3 inputs and
a bottom subnetwork D with 2 inputs.

The control bits of the network in Figure 10 are set to implement
the permutation shown: P = (6, 2, 3, 7, 5, 1, 8, 0, 4). A dashed red
crossbar indicates a switch that at the end of the algorithm is unset
(i.e., a switch with a control bit of zero), and a solid green crossbar
indicates a switch that ends up set (i.e., a switch with a control
bit of one). The numeric values that appear throughout are the
values of P as they are propagated through the network during
ControlBits. The notation x : y ▷k w : yz indicates that x gets
reduced modulo k tow , y is the sequence of bits recording if prior
modulo reductions changed the value or not, and z is 1 if x changed
under this modulo reduction (i.e., z = 1 if w = x − k , and z = 0
if w = x). The bold values emphasize which components of a
given entry in P are potentially changed at this step. Similarly,
the notation w : yz ◁k x : y indicates the reversal of the modulo
reduction of x by k that yielded w , where y records the action of
modulo reduction before the one being reversed and z indicated if
x changed under this reduction.

We follow Figure 10 from left to right to observe the actions of
ControlBits. It initially uses InBits to compute control bits for
the first set of input switches. The modulus it uses is k = ⌈9/2⌉ = 5.
Starting with input f = 4, which is the input that leads to no switch
at this level of recursion, it is mapped to д = P[4] = 5, the associate
is then s = 5 − k = 0, its inverse map is r = 7 because P[7] = 0, and
then f is updated to its partner f = 7 − k = 2. This back-and-forth
process continues and sets control bits as follows:

(1) Set д = 3, r = 8, s = 6. Set the control bit of the switch
containing input f = 2 (and input 7) to Jf ≥ kK = J2 ≥ 5K =
0, ensuring that the associate values 5 and 0 (i.e., the prior
values of д and s) will be inputs to different subnetworks. Set
f = s − k = 1

(2) Set д = 2, r = 7, and s = 3. Then set the control bit of the
switch containing input f = 1 to J1 ≥ 5K = 0. Set f = 8.

(3) Set д = 4, r = 9, and s = 9. Then set the control bit of the
switch containing input f = 8 to J8 ≥ 5K = 1. Set f = 4.

(4) The cycle has ended because f = 4 was the initial value.
The remaining mappings are 0 → 6 and 5 → 1, and For-
wardOrRand randomly selects 0→ 6 and sets f = 0. Set
д = 6, r = 1, and s = 5. Then set the control bit of the switch
containing input f = 0 to J0 ≥ 5K = 0.

The control bits for the first set of input switches are thus set.
The switches are applied to the values in P , and those values are
reduced modulo k = 5 with bits appended recording any reduction

7

Sajin Sasy, Aaron Johnson, and Ian Goldberg

6

2

3

7

5

1

8

0

4

C

D

F

G

B
A

E

6 ▷5 1:1

2 ▷5 2:0

3 ▷5 3:0

4 ▷5 4:0

5 ▷5 0:1

1 ▷5 1:0

8 ▷5 3:1

0 ▷5 0:0

7 ▷5 2:1

1:1 ▷3 1:10

2:0 ▷3 2:00

3:0 ▷3 0:01

4:0 ▷3 1:01

0:1 ▷3 0:10

1:10 ▷2 1:100

2:00 ▷2 0:001

0:01 ▷2 0:010

0:001

1:100

0:010 ◁2 0:01

1:100 ◁2 1:10

0:001 ◁2 2:00

0:10

1:01

0:10 ◁3 0:1

1:10 ◁3 1:1

2:00 ◁3 2:0

0:01 ◁3 3:0

1:01 ◁3 4:0

0:0 ▷2 0:00

3:1 ▷2 1:11

1:0 ▷2 1:00

2:1 ▷2 0:11

0:00

1:11

0:11

1:00

0:00 ◁2 0:0

1:00 ◁2 1:0

0:11 ◁2 2:1

1:11 ◁2 3:1

0:0 ◁5 0

1:0 ◁5 1

2:0 ◁5 2

3:0 ◁5 3

4:0 ◁5 4

0:1 ◁5 5

1:1 ◁5 6

2:1 ◁5 7

3:1 ◁5 8

Figure 10: A Waksman network in our topology for n = 9 with control bits implementing permutation P = (6, 2, 3, 7, 5, 1, 8, 0, 4).
A dashed red crossbar indicates switch with a control bit of zero, and a solid green crossbar indicates a switch with a control bit

of one. The numeric values are the values of P as they are propagated through the network andmodified during ControlBits.

are stored. This process is shown in Figure 10 by the values after the
initial input switches. Observe that the reduced values provided to
the top subnetwork (i.e., network A) is a Complete Residue System
(CRS) modulo 5, and the reduced values for the bottom subnetwork
(i.e., network E) are a CRS modulo 4; that is, those sets of values
are {0, 1, 2, 3, 4} and {0, 1, 2, 3}, respectively.

Control bits are then set and applied recursively in the top and
bottom subnetworks—networks A and E, respectively. Network A
takes 5 inputs, and network E takes 4 inputs. They each contain
subnetworks themselves, with the recursion endingwhen a network
has 1 or 2 inputs. A one-input network is null (i.e., has no switches).
A two-input network (e.g., network C) consists of a single output
switch, which has its control bit effectively set to the value of its
first input (by first appending that value to its attached bit array).

After the subnetworks are set and applied, control bits are com-
puted for the last set of output switches. For each pair of inputs to
a switch, the control bit is taken to be the last element of the bit
array for the first input. Therefore, we see that the output switch
containing input 0 is set to 1, the switch for input 1 is set to 1,
the switch for input 2 is set to 0, and the switch for input 3 is set
to 0. These switches are applied to the input values, and then the
reduction modulo 5 is undone, yielding the original set of values
{0, 1, . . . , 8} in sorted order. Note that, because each subnetwork
also outputs in sorted order the set of values in its input CRS, the
two inputs to a given output switch have the same values modulo
5, and therefore setting the control bit based on the reduction bit of
the first input puts those two values in the correct order (and the
correct positions) once the reduction modulo 5 is undone.

Figure 11: ApplyPerm(C,D): Apply permutation encoded in

Waksman controls bits C to array D. Modifies D. Oblivious
to values in C and D but not to |C | or |D |.

1: n ← |D |
2: if n < 2 then
3: return

4: Cin,Ctop,Cbot,Cout ← C
5: k ← ⌈n/2⌉
6: if n > 2 then
7: for i ← 0, . . . ,k − 2 do ▷Apply input-layer switches

8: OSwap(D, i,k + i,Cin[i])
9: ▷ Recursively apply switches in top and bottom subnetworks

10: ApplyPerm(Ctop,D[0..k − 1])
11: ApplyPerm(Cbot,D[k ..n − 1])
12: for i ← 0, . . . ,n − k − 1 do ▷Apply output-layer switches

13: OSwap(D, i,k + i,Cout[i])

3.5 Applying Permutations

Once the control bits are set, it is straightforward to obliviously
apply the permutation that they encode. Figure 11 shows the algo-
rithm ApplyPerm, which does so under our Waksman topology. It
first applies the input switches, then recursively applies the two
subnetworks, and finally applies the output switches. The inverse
permutation can also easily be applied, as ApplyInvPerm shows
(Figure 12), by applying the output switches first and the input
switches last. Because the Waksman networks have a fixed topol-
ogy for a given n, these algorithms are fully oblivious.

8

Waks-On/Waks-Off: Fast Oblivious Offline/Online Shuffling and Sorting with Waksman Networks

Figure 12: ApplyInvPerm(C,D): Apply inverse of permuta-

tion encoded in Waksman controls bits C to array D. Modi-

fies D. Oblivious to values in C and D but not to |C | or |D |

1: n ← |D |
2: if n < 2 then
3: return

4: Cin,Ctop,Cbot,Cout ← C
5: k ← ⌈n/2⌉
6: for i ← 0, . . . ,n − k − 1 do ▷Apply output-layer switches

7: OSwap(D, i,k + i,Cout[i])
8: if n > 2 then
9: ▷ Recursively apply switches in top and bottom subnetworks

10: ApplyInvPerm(Ctop,D[0..k − 1])
11: ApplyInvPerm(Cbot,D[k ..n − 1])
12: for i ← 0, . . . ,k − 2 do ▷Apply input-layer switches

13: OSwap(D, i,k + i,Cin[i])

Figure 13: WaksShuffle(D): Put items in D in a uniformly

random order. Divided into an offline phase (where only |D |
is needed) and an online phase.

1: ▷ Begin offline phase

2: n ← |D |
3: Create array P of length n.
4: for i ← 0, . . . ,n − 1 do
5: P[i] ← i

6: OShuffle(P) ▷Make permutation uniformly random

7: C ← ControlBits(P , 0)
8: ▷ Begin online phase

9: ApplyPerm(C,D)

4 OBLIVIOUS SHUFFLING AND SORTING

While our oblivious Waksman algorithms may be useful in many
settings, we focus on how they can be used for shuffling and sorting.
Waksman networks might achieve faster shuffling and sorting be-
cause they perform fewer pairwise swaps of data items than other
oblivious algorithms. They do, however, carry the additional cost of
setting the control bits. Doing so operates only on the permutation

and, if the permutation does not depend on the data, not the data
items. Therefore, Waksman networks can admit an offline computa-
tion phase before the data items are available, in which the control
bits are set at a cost independent of the data-item size, and an online

phase once the data items are available, in which the permutation
is applied with relatively few swaps of the data items themselves.

4.1 Shuffling

The goal of shuffling is to put an array of data items in a uniformly
random order. Shuffling obliviously can hide the resulting order
as well as the data contents. Let D be an array of data items, with
|D | = n. The fully obliviousWaksShuffle(D) algorithm (Figure 13)
chooses a random permutation by applying an existing oblivious
shuffle, OShuffle, to the array (0, . . . ,n − 1). This permutation
is used to set the Waksman control bits. The resulting network is
applied to D, accomplishing the shuffle. Despite using an existing

Figure 14: WaksSort(K ,D): Sort D in increasing order ac-

cording to the corresponding keys in K . Also sort K .

1: n ← |D |
2: Create array P of length n.
3: for i ← 0, . . . ,n − 1 do
4: P[i] ← i

5: OSort(K , P) ▷Make P the inverse of the permutation that sorts

K
6: C ← ControlBits(P , 0)
7: ApplyInvPerm(C,D) ▷Put D in same order as now-sorted K

oblivious shuffle as a subroutine, this algorithm can improve effi-
ciency if the data items are large because that shuffle is only applied
to integers less than n. Moreover, setting the control bits occurs
during an offline phase because the permutation does not depend
on the data, though the number of items n must be known.

4.2 Sorting

The fully oblivious WaksSort(K ,D) algorithm (Figure 14) takes an
array of keys K and an array of data items D. Its goal is to sort the
items in D by increasing value of their corresponding keys, where
item D[i] corresponds to key K[i]. It uses an existing oblivious
sorting algorithm, OSort, to put the keys in increasing order and
simultaneously rearrange the array P = (0, . . . ,n − 1) in the same
way (i.e., if the ith element of K is moved to position j, the same
happens to P). The result is that P contains the inverse permutation
needed to sort the items of D by their (original) keys. P is used to
set the Waksman control bits, and then the inverse permutation is
applied to D with ApplyInvPerm. In a setting where the data items
are large compared to the keys, WaksSort can yield a faster sort
because the existing oblivious sort is only applied to the keys.

Faster online oblivious sorting can be achieved by executing
WaksShuffle(D) and then following it with the non-oblivious
quicksort. In this sorting algorithm (WaksShuffle+QS), the control
bits are set to encode a uniformly random permutation during the
offline phase. Then, for the online phase, the Waksman network
is applied to D, and quicksort is run on the result. Performing a
non-oblivious comparison sort after an oblivious shuffle (assuming
keys are distinct) does not violate obliviousness [13]. Also, even
with the added cost of non-oblivious sorting, the online phase may
be faster than existing oblivious sorting algorithms because both
ApplyPerm and quicksort haveO(βn logn) runtime (where β is the
size of each data item) with small constants.

5 ANALYSIS

We show that WaksShuffle and WaksSort are correct and fully
oblivious. By way of doing that, we demonstrate these properties
for ControlBits, ApplyPerm, and ApplyInvPerm. These algo-
rithms can be used for applications of Waksman networks outside
of shuffling and sorting. We also analyze the efficiency of all of our
algorithms. The proofs for all theorems appear in Appendix A.

9

Sajin Sasy, Aaron Johnson, and Ian Goldberg

5.1 Correctness

We first show the correctness of our Waksman-network algorithms.
Although these algorithms are similar to prior work, we have made
non-trivial modifications for both obliviousness and efficiency.

Theorem 1 shows that ControlBits(P , 0) produces control bits
C such that ApplyPerm(C,D) applies P toD, andApplyInvPerm(C,D)
applies the inverse of P . Note the permutation representation that
P maps i to P[i].

Theorem 1. Let P be an array, with |P | = n, containing the values
{0, . . . ,n − 1} in some order. Let Q = (0, . . . ,n − 1). Let P ′ be a copy
of P (as P ′ will get modified), and let C = ControlBits(P ′, 0). Then,
if we run ApplyPerm(C, P), then P = Q afterwards, and if instead we

run ApplyInvPerm(C,Q), then again P = Q afterwards.

Theorem 2 shows that WaksShuffle(D) shuffles the items of D.
Similarly, Theorem 3 shows that WaksSort(K ,D) sorts the keys
in K in nondecreasing order and puts the data items in the same
order.

Theorem 2. WaksShuffle(D) puts the items in D in a uniformly

random order.

Theorem 3. WaksSort(K ,D) sorts the items in K in increasing

order and also applies that permutation to D.

5.2 Obliviousness

We next show that our algorithms are fully oblivious with respect
to their secret inputs.

Theorem 4 shows that ControlBits(P ,d) is fully oblivious with
respect to the input permutation P . Therefore, its operation does
not reveal any information about the permutation for which control
bits are being computed. Note that this obliviousness holds despite
the facts that i) the binary search of ForwardOrRand reveals
that location of the item being looked up, and ii) the entries in the
reverse-lookup hash map R are inserted in the order they appear in
the forward-lookup table F and are thus observably linked to them.
These properties do not violate obliviousness because the mappings
in F are obliviously shuffled, the keys in R are pseudorandom, and
a mapping is looked up exactly once and in only one direction
(forward or reverse).

Theorem 4. ControlBits(P ,d) is fully oblivious with respect to P .

Theorem 5 shows that ApplyPerm(C,D) andApplyInvPerm(C,D)
are fully oblivious with respect to both the input control bitsC and
the input data D. This property guarantees that the memory and
instruction traces hide all information about what permutation is
being applied.

Theorem 5. ApplyPerm(C,D) and ApplyInvPerm(C,D) are fully
oblivious with respect to C and D.

Theorems 6 and 7 show that WaksShuffle and WaksSort are
fully oblivious with respect to their inputs. They thus hide the
values of the data items and the permutation that is applied.

Theorem 6. WaksShuffle(D) is fully oblivious with respect to D.

Theorem 7. WaksSort(K ,D) is fully oblivious with respect to K
and D.

5.3 Efficiency

Our algorithms are designed to be practically efficient rather than
asymptotically optimal. For an input of n data items each of size β
(or for sorting, where a key and data item have total size β), it is pos-
sible to perform oblivious shuffling and sorting in O(βn logn) time
with a sorting network [1], but the oblivious shuffling algorithm
(ORShuffle [41]) and sorting algorithm (bitonic sort [4, 15]) that
are fastest in practice have a O(βn log2 n) runtime. We use these as
our OShuffle and OSort subroutines for practicality, but we note
that using aO(βn logn) choice here would improve the asymptotic
runtime of our algorithms. Our analysis also assumes that the com-
putation can apply instructions on machine words of size O(logn)
in constant time. For obliviously setting Waksman control bits, the
fastest existing algorithm currently is from Nassimi-Sahni [32], as
made oblivious by Bernstein [6], which has a runtime ofO(n log4 n).

Theorem 8 shows that the runtime of ControlBits isO(n log3 n).

Theorem 8. Let |P | = n. The runtime of ControlBits(P , 0) is
O(n log3 n).

The oblivious sorts in ControlBits are major costs in theory
and in practice. Let k = ⌈n/2⌉. There are ⌈log2 n⌉ levels of recursion
in ControlBits, and in each recursive call an OSort is performed
on 2k (fixed-size, independent of the item size β) elements to cre-
ate the forward lookup table, and another OSort is performed
on k − 1 elements to sort the input control bits. These sorts take
time O(n log2 n). All other operations in a given recursive call take
O(n logn) time, dominated by the k calls to ForwardOrRand and
2k calls to DecUnselectedCounts, where each of those calls per-
forms aO(logn) binary search. If OSort were implemented with a
O(n logn) algorithm, then ControlBits would have a O(n log2 n)
runtime.

Theorem 9 shows that, for data items of size β each, the runtimes
of ApplyPerm and ApplyInvPerm are both O(βn logn).

Theorem 9. Let |D | = n, and let each item inD be of size β . The run-
time of ApplyPerm(C,D) and ApplyInvPerm(C,D) is O(βn logn).

The expensive operations in both algorithms are applying the
switches to the data items, and each resulting OSwap takes time
O(β), while there are at most n log2 n switches total.

Theorem 10 shows that the offline runtime of WaksShuffle is
O(n log3 n), while the online runtime for items of size β isO(βn logn).

Theorem 10. Let |D | = n, and let each item in D be of size β . The
offline runtime of WaksShuffle(D) is O(n log3 n), and the online

runtime of WaksShuffle(D) is O(βn logn).

The main cost during the offline phase is ControlBits, which
Theorem 8 shows has aO(n log3 n) runtime, and the runtime would
become O(n log2 n) if a O(n logn) OSort were used. The online
phase is simply ApplyPerm. The β factor only appears in the on-
line phase, and so if β is large relative to n (i.e., β = ω(logn)), the
total runtime of WaksShuffle can be faster than directly apply-
ing the existing oblivious shuffle OShuffle. We can estimate the
potential speedup in the online phase compared to the practically
fastest ORShuffle [41] (which has no offline phase) by comparing
the number of OSwap operations performed on the data items. In
both algorithms, the only operations on the data items are OSwaps,

10

Waks-On/Waks-Off: Fast Oblivious Offline/Online Shuffling and Sorting with Waksman Networks

and these operations dominate the runtime of the (online) compu-
tation. ORShuffle performs approximately (n/4)((log2 n) + 1) log2 n
OSwaps, and the online phase of WaksShuffle performs approxi-
mately n log2 n − n + 1, where in both cases these counts are exact
when n is a power of two. Therefore, the WaksShuffle online
phase performs a little over ((log2 n) + 1)/4 times fewer OSwaps
than ORShuffle. For n = 220 items, for example, the online speedup
would be about 5.3×.

Theorem 11 shows that, when data keys are of size α and data
items are of size β , the total runtime of WaksSort is O(n log3 n +
αn log2 n + βn logn).
Theorem 11. Let |K | = n, |D | = n, each item in K be of size α , and
each item in D be of size β . The (online) runtime of WaksSort(K ,D)
is O(n log3 n + αn log2 n + βn logn).

All of WaksSort is online because the keys are needed to deter-
mine the permutation used to set the Waksman control bits. The
O(n log3 n) term comes from the call to ControlBits, and it would
beO(n log2 n) if OSort were insteadO(n logn). The αn log2 n term
is from applying OSort to the keys K , and it would similarly re-
duce to O(αn logn) with a O(n logn) OSort. The βn logn term is
from ApplyInvPerm. Note that if the keys are small relative to the
items (i.e., α = O(β/logn)), and the items are large relative to n
(i.e., β = ω(logn)), then the overall runtime is O(βn logn), which
compares favorably to the O(βn log2 n) runtime of the practically
efficient bitonic sort. Bitonic sort also only operates on data items
through OSwaps, and it uses the same number of them as ORShuf-
fle. Therefore, for large items we again expect to see a speedup
factor in practice of a little over ((log2 n)+ 1)/4 for WaksSort over
bitonic sort. On the other hand, when the keys are relatively large,
for example when they are simply the data items themselves, we
expect no runtime improvement, as a large fraction of the runtime
would be consumed by simply running OSort on the keys to de-
termine the permutation P . WaksShuffle+QS, however, can yield
a faster online sort for any size of keys. It has a O(n log3 n) offline
runtime, and its online runtime isO((α + β)n logn), better than the
O((α + β)n log2 n) online runtime for bitonic sort.

We also observe that ApplyPerm and the online phase of WaksShuf-
fle have relatively low parallel step complexity. In ApplyPerm, ap-
plying an input or output layer of switches to items of any size can
be performed in a single step, and so ApplyPerm can be executed
in 2⌈log2 n⌉ − 1 parallel steps. The online phase of WaksShuffle
has the same step complexity. Thus WaksShuffle improves on the
(⌈log2 n⌉ + 1)⌈log2 n⌉/2 step complexity of ORShuffle by a factor of
a little more than (⌈log2 n⌉ + 1)/4. For n = 220 items, for example,
the speedup in online step complexity would be about 5.3×.

6 IMPLEMENTATION

We compare WaksShuffle and WaksSort against four different
algorithms for shuffling and sorting. The first and obvious candidate
is (i) a bitonic sorting network [4] for sorting (frequently used in the
TEE literature [14, 23, 30, 34]) and bitonic shuffle for shuffling. Our
implementation builds on top of the software artifact of Sasy et al.
for oblivious shuffling algorithms in TEEs [41, 42], which presents
two fully oblivious shuffle algorithms, namely (ii) ORShuffle and
(iii) BORPStream. Their work demonstrates that ORShuffle always
outperforms the then-state-of-the-art bitonic shuffle. On the other

hand, BORPStream can be optimized to either minimize the total
time to shuffle (V1) or minimize the time to complete a shuffle once
all items are available (V2); BORPStream-V2 yields faster shuffling
than ORShuffle when items to shuffle arrive in a streaming fashion,
which is similar to the offline/online setting but requires processing
time between inputs rather than before them.

Finally, we also compare our oblivious control bit setting algo-
rithm for Waksman networks against (iv) Nassimi-Sahni’s control
bit setting algorithm [32]. In recent work, Bernstein presented an
oblivious version of the Nassimi-Sahni control bit setting algorithm,
making it a suitable candidate for fully oblivious shuffling and sort-
ing within TEEs. We implement this algorithm ([6, §7, Fig 7.1]) and
evaluate its performance againstWaksShuffle andWaksSort. The
underlying Waksman network of our Nassimi-Sahni implementa-
tion intentionally uses the standard Waksman network layout [48],
so that we can contrast the performance improvements obtained
by our locality-optimized Waksman network layout. We detail the
results of this comparison at the end of Section 7.1.

Since we use the definition of full obliviousness of Sasy et al. [41],
to ensure that our implementation is fully oblivious, we use the
Fully Oblivious Assembly Verifier (FOAV) tool they provide. Using
this tool we flag variables containing public (non-secret) values as
“safe” within our WaksSort and WaksShuffle implementation.
FOAV verified 598 out of 688 of the conditional branches generated
in the final binary to be safe. Similar to prior work, we manually
inspect the remainder to ensure that these are safe as well. The
bulk of the conditional branches that FOAV could not mark as safe
arise from branches within the C++ implementation of vectors and
hash tables. However, since non-repeating inputs fed into the hash
table operations are the outputs of the PRP there is no secret data
dependence underlying any usage of the hash tables themselves.
Similarly for vectors, the conditional branches are associated to the
size of vectors which are publicly known and not hidden.

We provide additional details on our implementation-level opti-
mizations in Appendix B. Our implementation is open-source and
publicly available at https://crysp.uwaterloo.ca/software/obliv/.

7 EXPERIMENTS

All our experiments use a single core of a 2.3 GHz Intel 8380. Our
machine runs Intel SGX2 and has 16 GB of Processor Reserved
Memory. All our reported experiments and benchmarks are on
a single-threaded implementation, but, as we note in Section 5.3,
our algorithms can easily be parallelized to further reduce latency.
In the experiments reported below we fix the number of items n
to 220 and vary the size of each item β to explore performance
across different item sizes. We performed these experiments for
a variety of n between 215 and 220, and results for other n appear
in Appendix C. Those results are qualitatively identical to those
presented in this section.

For shuffling, we run experiments to contrast the performance
of the four shuffling algorithms listed in Section 6. For sorting,
WaksSort and Nassimi-Sahni generate control bits to permute the
data to its sorted state. Neither of these can provide a meaningful
offline phase, as the permutation to sort is dependent on the data.
WaksShuffle+QS, on the other hand, can set the control bits for
WaksShuffle in an offline phase, then apply theWaksman network

11

https://crysp.uwaterloo.ca/software/obliv/

Sajin Sasy, Aaron Johnson, and Ian Goldberg

Figure 15: Comparing time taken for shuffling against item

size with n = 220 items. Both axes are log scale; error bars are

too small to see. Dashed lines are the online timing compo-

nent for algorithms that benefit from offline/online split.

(to shuffle) and perform a non-oblivious quicksort in an online
phase. ORShuffle and BORPStream can similarly be converted into
offline/online sorting algorithms by using this oblivious-shuffle-
then-sort paradigm.

7.1 Comparing Shuffling Algorithms

BORPStream’s main advantage is its ability to split the computation
into two phases: i) a first phase partially shuffles items as they be-
come available by routing those items through a well-parameterized
butterfly routing network to random destination buckets, and ii) a
second “online” phase compacts (i.e., discards dummy items from)
each bucket and individually shuffles each resulting bucket. This
two-phase division significantly reduces the time to complete a shuf-
fle in settings where the items to shuffle stream in over a long period
of time. If all the data to shuffle is available up front, BORPStream of-
fers little advantage as the total work done by BORPStream is more
than that of ORShuffle. However, Sasy et al. note that BORPStream
V1 (tuned to minimize total time) does outperform ORShuffle for
large enough item sizes due to its memory locality advantage, as
the second phase shuffles small subsets of items at a time.

In comparing our work with BORPStream, we give BORPStream
every advantage we can. In particular, recall that WaksShuffle
works in an offline/online model, implying that it can always reap
the low online cost to shuffle, independent of how the data be-
comes available. Nonetheless, we compare our online time with
BORPStream’s online time assuming items are made available in a
streaming fashion, and ignoring the cost of its first phase.

Figure 15 presents the results of comparing shuffling algorithms,
and it demonstrates that WaksShuffle requires the least online
time. In comparison with BORPStream (V2)’s online time, at the

Figure 16: Comparing time taken for sorting against item

size with n = 220 items. Both axes are log scale; error bars

are too small to see. Dashed lines are the online timing com-

ponent for algorithms that benefit from offline/online split.

smallest and largest item sizes of 64 B and 4KiB that our experi-
ments cover, WaksShuffle’s online time provides a 3.5× and 2.2×
speedup respectively. However, note that BORPStream can only
support this online cost in the streaming setting. In numerous ap-
plication scenarios, all the data is available simultaneously (like
oblivious database joins [23] or oblivious file systems [14]), and in
such cases BORPStream’s cost falls back to its V1 variant’s total
time. In comparison with BORPStream V1, our online time provides
speedups of 11.5× and 12× respectively for 64 B and 4 KiB item sizes.
Similarly, WaksShuffle demonstrates a 4.6–5.6× online speedup
over ORShuffle. Our improvements arise from the fact that applying
the Waksman network (once the control bits are generated) is a
O(βn logn) process in comparison to the online (and total) costs of
all the other algorithms which require O(βn log2 n) operations.

The oblivious Nassimi-Sahni control bit setting algorithm in-
curs a O(n log4 n) cost and has higher hidden constants than the
ControlBits of WaksShuffle, due to the larger number of oblivi-
ous sort invocations it requires. The cost of setting control bits is
agnostic of the underlying item size, though, shown by the total
runtimes that are nearly constant as the item sizes increase for
both WaksShuffle and Nassimi-Sahni in Figure 15. However, from
Figure 15 we also observe that ControlBits of WaksShuffle is
one to two orders of magnitude faster than that of Nassimi-Sahni.

Indeed, for large enough item sizes, the entirety of WaksShuffle
is faster than all the other existing shuffling algorithms evenwithout
leveraging the offline/online split, a feat that remained out of reach
for the Nassimi-Sahni algorithm across all our experiments. To
determine this crossover point we test additional points close to
this crossover, and we observe that the crossover point occurs at

12

Waks-On/Waks-Off: Fast Oblivious Offline/Online Shuffling and Sorting with Waksman Networks

(a) Sorting with a small item size (256 bytes) with n = 220 (b) Sorting with a large item size (4096 bytes) with n = 220

Figure 17: Scatter plots comparing online and total times (in s) for sorting algorithms with n = 220. WaksShuffle+QS consis-

tently incurs the least online time irrespective of item size. For large enough items (β > 1400B), the total times of WaksSort

and WaksShuffle+QS are lower than all other fully oblivious sorting algorithms.

1400 B, a modest size of practical relevance for several applications.
We also experimentally observe that this crossover point varies only
slightly when n is varied between 215 and 220 (see Appendix C).

In terms of the online cost, we intentionally set up the Nassimi-
Sahni implementation with the standard Waksman network topol-
ogy to demonstrate the performance benefits of our topology.2 We
observe that the performance improvements from our topology are
larger for smaller items, yielding up to a 5.3× improvement for 64 B
items and tapering down to a 1.3× speedup at 4 KiB.

7.2 Comparing Sorting Algorithms

We present the results of our sorting experiments in Figure 16. As
mentioned earlier, while we can generate control bits to use the
Waksman network to sort a set of items, doing so makes the control
bit setting algorithm a part of the online phase, as the permutation
that sorts the items depends on the keys of the items. However,
for large enough problem sizes, as with shuffling above, eventually
the total time for WaksSort (which is almost coincident to that
of WaksShuffle+QS) is lower than all currently known oblivious
sorting algorithms. Furthermore, the shuffle-then-sort paradigm
enables us to generate control bits (the expensive component) of
the Waksman network in an offline phase, leaving just applying
the Waksman permutation network followed by a non-oblivious
sort in the online phase to sort the data. We evaluate ORShuffle and
BORPStream for sorting in the same manner.

While we present BORPStream’s online cost in Figure 16, re-
call from Section 7.1 that this offline/online split for BORPStream
only applies in settings where items to shuffle arrive intermit-
tently and is not a generic offline/online split like that supported by
WaksShuffle+QS. Assuming that the application setting is compat-
ible for BORPStream, the online time taken by WaksShuffle+QS
still demonstrates a 1.8–2.2× speedup over BORPStream’s online
time to sort. If all the items to sort are available simultaneously, then
the best competing algorithm is in fact Bitonic Sort, over which the
online time of WaksShuffle+QS provides a 2.7–3.5× speedup as
the item size increases from 64 B to 4 KiB.

2Instantiating Nassimi-Sahni with our topology would result in an online time match-
ing our algorithm and a negligible change in its total time.

7.3 Summarizing the State of Affairs

To provide a revised and concrete view of the state of affairs for fully
oblivious sorting algorithms within TEEs, we present scatter plots
detailing the online and total time tradeoffs in Figure 17. The corre-
sponding figures for shuffling algorithms are qualitatively identical
and are shown in Appendix C. As seen in Figures 17a and 17b,
the online time to sort for WaksShuffle+QS is consistently and
significantly lower than that of all other existing sorting algorithms.
Furthermore, as the item sizes get larger, eventually (β >1400 B)
WaksSort even has the lowest total times, with WaksShuffle+QS
close behind. The algorithms’ online times translate to query la-
tency, and the total times translate to server CPU costs, which can
determine the monetary cost of deploying these algorithms.

8 RELATEDWORK

8.1 Oblivious Shuffling Algorithms

While oblivious shuffling algorithms specifically designed for TEEs
have been proposed [8, 33], these algorithms are not fully oblivious
as they assume portions of the enclave memory as private and un-
observable to the adversary, which we now know to be untrue [24].
We refer the interested reader to Sasy et al. [41, §7.2], which pro-
vides comprehensive details on these algorithms and explains why
attempting to fix these vulnerabilities leads to solutions no better
than bitonic shuffle.

8.2 Oblivious Sorting Algorithms

Ebbesen’s thesis [15] experimentally compares the performance
of data-oblivious sorting algorithms and demonstrates bitonic sort
to be the best deterministic oblivious sorting technique. In the
TEE setting, bitonic sorting networks have become the standard
approach for oblivious sorting [14, 23, 30, 34, 36, 51]. Recently, data-
oblivious sorting algorithms have received renewed interest [3, 28,
38]. These works, however, are theoretical in nature, and while
they demonstrate O(n logn) oblivious sorting algorithms, under
the hood they leverage either the AKS network [1] or expander
graphs [35], both of which have large constants hidden in the
asymptotics that make them impractical.

13

Sajin Sasy, Aaron Johnson, and Ian Goldberg

8.3 Waksman Networks

Beauquier and Darrot [5] show that Waksman networks can be
extended to work for numbers of items n that are not powers of
two. Their work gives Waksman network constructions for such
non-power-of-two cases, and it compares the number of required
switches to simply using the original Waksman networks for n′,
where n′ is the next power of two greater than n.

Recently, Holland et al. [19] use Waksman networks for efficient
permutation of data in the client-server model. Their work is in the
setting where a client outsources their data to a cloud server and
wishes to permute the data obliviously. To this end, they propose
using Waksman networks and provide a control bit setting algo-
rithm to do so with minimal I/O overheads. The control bit setting
algorithm is the same as Waksman’s “looping” algorithm, but, in
order to minimize I/O and client storage overheads, they observe
that the client can both configure the Waksman network and route
items through it layer by layer. Their insight is that to do so the
client need only store at most 2n switch settings locally (instead
of n log2 n). They observe that each recursive Waksman subnet-
work requires only its ancestors for correct switch setting, thus one
only needs to store switch settings along one recursive path of the
Waksman network at a time; i.e., once the algorithm recurses into
a bottom subnetwork, the control bits of its top subnetwork can
be released. As for the exterior (outer) switches, they pack them
along with the items in the first half of the Waksman network, thus
not requiring to store these switch settings either, nor to perform
any switch configuration operations while routing items through
the latter half of the Waksman network. Their algorithm to set
control bits has a O(n log2 n) complexity, but their model requires
private unobservable memory (O(n)) at the client side, which by
the definition of fully oblivious is not permissible in our setting,
requiring us to design a novel algorithm.

The existence of unobservable memory makes the general mul-
tiparty computation (MPC) setting easier as well. In MPC, we can
assume that some parties are honest and thus have local compu-
tation (including memory accesses and instructions) that is unob-
servable to the adversary. In the TEE setting, as we have argued,
that assumption is not valid. Therefore, MPC protocols exist that
take time linear in the number of items [16, 37], whereas the best
fully oblivious shuffling algorithms take superlinear time.

Some applications of Waksman networks in the MPC setting
have been proposed. Zahur et al. [50] revisit the original square-root
ORAM by Goldreich and Ostrovsky [17] and leverage Waksman
networks to replace the oblivious sorting primitive for efficiency im-
provements within the ORAM. Smart and Alaoui [45] demonstrate
how to convert traditional single-party protocols into secret-shared
counterparts, and as an application present an MPC protocol to
shuffle data by setting and applying the control bits of a Waksman
permutation network. In their setting, the control bits are generated
for a secret-shared permutation produced by the parties partici-
pating in the MPC protocol. Both instances of these MPC-based
Waksman networks use the original looping algorithm to set control
bits [48], modified to work over secret-shared permutations.

Waksman networks have also been used by code-based cryp-
tosystems [7, 11]. They are used to obliviously apply a secret per-
mutation during decryption. The Waksman control bits are gen-
erated during key generation and are also generated obliviously
(e.g., with Nassimi-Sahni) to prevent key leakage. Our Control-
Bits algorithm may speed up this key-generation process in these
cryptosystems.

9 CONCLUSION

In this work we revisit Waksman networks and design novel fully
oblivious algorithms to set their control bits and permute data
items with them. We use these algorithms to create fully oblivi-
ous algorithms for shuffling and sorting data, two frequently used
primitives in privacy-preserving systems using TEEs. The total
overheads of our algorithms are lower than the current state-of-
the-art algorithms for oblivious shuffling and sorting of moderately
sized items (item size exceeding 1400 B). Furthermore, in the of-
fline/online model, our algorithms provide a O(logn) asymptotic
factor speedup, and they yield > 5× and > 2.7× concrete speedups
in the online costs of shuffling and sorting, respectively, for any
item size.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research. We
thank the Ontario Graduate Scholarships program, NSERC (CRDPJ-
534381), and the Royal Bank of Canada for supporting this work.
This research was undertaken, in part, thanks to funding from the
Canada Research Chairs program. This work benefited from the
use of the CrySP RIPPLE Facility at the University of Waterloo.

REFERENCES

[1] M. Ajtai, J. Komlós, and E. Szemerédi. 1983. An O (n logn) Sorting Network.
In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing

(STOC).
[2] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata.

2013. Innovative Technology for CPU Based Attestation and Sealing.
https://software.intel.com/content/www/us/en/develop/articles/innovative-
technology-for-cpu-based-attestation-and-sealing.html. Accessed May 2023.

[3] Gilad Asharov, Wei-Kai Lin, and Elaine Shi. 2022. Sorting Short Keys in Circuits
of Size o(n logn). SIAM J. Comput. (2022).

[4] Kenneth E Batcher. 1968. Sorting networks and their applications. In Proceedings

of American Federation of Information Processing Societies (AFIPS).
[5] Bruno Beauquier and Eric Darrot. 2002. On Arbitrary Size Waksman Networks

and Their Vulnerability. Parallel Processing Letters (2002).
[6] Daniel J. Bernstein. 2020. Verified fast formulas for control bits for permutation

networks. Cryptology ePrint Archive, Paper 2020/1493. https://eprint.iacr.org/
2020/1493

[7] Daniel J Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Misoczki,
Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nico-
las Sendrier, et al. 2017. Classic McEliece: conservative code-based cryptography.
NIST submissions 1, 1 (2017).

[8] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-
nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard
Seefeld. 2017. Prochlo: Strong Privacy for Analytics in the Crowd. In Symposium

on Operating Systems Principles (SOSP).
[9] Feng Chen, Shuang Wang, Xiaoqian Jiang, Sijie Ding, Yao Lu, Jihoon Kim, S Cenk

Sahinalp, Chisato Shimizu, Jane C Burns, Victoria J Wright, Eileen Png, Martin L
Hibberd, David D Lloyd, Hai Yang, Amalio Telenti, Cinnamon S Bloss, Dov Fox,
Kristin Lauter, and Lucila Ohno-Machado. 2016. PRINCESS: Privacy-protecting
Rare disease International Network Collaboration via Encryption through Soft-
ware guard extensionS. Bioinformatics (2016).

[10] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Specu-
lative Execution. In IEEE European Symposium on Security and Privacy (EuroS&P).

[11] Tung Chou. 2017. McBits revisited. In International Conference on Cryptographic

Hardware and Embedded Systems.
14

https://software.intel.com/content/www/us/en/develop/articles/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://software.intel.com/content/www/us/en/develop/articles/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://eprint.iacr.org/2020/1493
https://eprint.iacr.org/2020/1493

Waks-On/Waks-Off: Fast Oblivious Offline/Online Shuffling and Sorting with Waksman Networks

[12] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Technical Report.
[13] Hung Dang, Tien Tuan Anh Dinh, Ee-Chien Chang, and Beng Chin Ooi. 2017.

Privacy-Preserving Computation with Trusted Computing via Scramble-then-
Compute. Proceedings on Privacy Enhancing Technologies (PoPETs) (2017).

[14] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha Crooks, and
Raluca Ada Popa. 2021. Snoopy: Surpassing the scalability bottleneck of oblivious
storage. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems

Principles (SOSP).
[15] Kris Vestergaard Ebbesen. 2015. On the Practicality of Data-oblivious Sorting.

Master’s thesis. Aarhus Universitet, Datalogisk Institut.
[16] Saba Eskandarian and Dan Boneh. 2022. Clarion: Anonymous Communication

from Multiparty Shuffling Protocols. In Network and Distributed System Security

Symposium, (NDSS).
[17] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation

on Oblivious RAMs. Journal of the ACM (JACM) (1996).
[18] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi.

2012. Practically Efficient Multi-Party Sorting Protocols from Comparison Sort
Algorithms. In Proceedings of the 15th International Conference on Information

Security and Cryptology (ICISC).
[19] William Holland, Olga Ohrimenko, and Anthony Wirth. 2022. Efficient Oblivious

Permutation via the Waksman Network. In Proceedings of the 2022 ACM Asia

Conference on Computer and Communications Security (AsiaCCS).
[20] Intel. 2018. Q3 2018 Speculative Execution Side Channel Update. https://www.

intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html. Ac-
cessed August 2023.

[21] Intel. 2019. Intel Processors Voltage Settings Modification Advisory. https://www.
intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html. Ac-
cessed August 2023.

[22] Intel. 2020. 2020.2 IPU - Intel RAPL Interface Advisory. https://www.intel.com/
content/www/us/en/security-center/advisory/intel-sa-00389.html. Accessed
August 2023.

[23] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. 2020. Efficient
Oblivious Database Joins. Proceedings of the VLDB Endowment (2020).

[24] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-Che Tsai, and Raluca Ada Popa.
2020. An Off-Chip Attack on Hardware Enclaves via the Memory Bus. In USENIX

Security Symposium.
[25] Kyungsook Yoon Lee. 1985. On the Rearrangeability of 2(log2 N) − 1 Stage

Permutation Networks. IEEE Trans. Comput. (1985).
[26] Kyungsook Yoon Lee. 1987. A New Benes Network Control Algorithm. IEEE

Trans. Comput. (1987).
[27] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus

Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In USENIX Security Symposium.

[28] Wei-Kai Lin and Elaine Shi. 2022. Optimal Sorting Circuits for Short Keys. In
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA).
[29] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,

Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based power
side-channel attacks on x86. In 2021 IEEE Symposium on Security and Privacy

(S&P).
[30] PratyushMishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada

Popa. 2018. Oblix: An Efficient Oblivious Search Index. In IEEE Symposium on

Security and Privacy (S&P).
[31] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and

Frank Piessens. 2020. Plundervolt: Software-based fault injection attacks against
Intel SGX. In IEEE Symposium on Security and Privacy (S&P).

[32] David Nassimi and Sartaj Sahni. 1982. Parallel Algorithms to Set Up the Benes
Permutation Network. IEEE Trans. Comput. (1982).

[33] Olga Ohrimenko, Michael T Goodrich, Roberto Tamassia, and Eli Upfal. 2014.
The Melbourne shuffle: Improving oblivious storage in the cloud. In International

Colloquium on Automata, Languages, and Programming (ICALP).
[34] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian

Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious multi-party machine
learning on trusted processors. In USENIX Security Symposium.

[35] Nicholas Pippenger. 1993. Self-Routing Superconcentrators. In Proceedings of the

Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC).
[36] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath Setty, Stavros Volos, and

Raluca Ada Popa. 2020. Visor: Privacy-Preserving Video Analytics as a Cloud
Service. In USENIX Security Symposium.

[37] A Pranav Shriram, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj
Gopal, and Somya Sangal. 2023. Ruffle: Rapid 3-party shuffle protocols. Proceed-
ings on Privacy Enhancing Technologies (PoPETs) 3 (2023).

[38] Vijaya Ramachandran and Elaine Shi. 2021. Data Oblivious Algorithms for Mul-
ticores. In Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA).
[39] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital

Side-Channels through Obfuscated Execution. In USENIX Security Symposium.

[40] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. 2018. ZeroTrace:
Oblivious Memory Primitives from Intel SGX. In Network and Distributed System

Security Symposium (NDSS).
[41] Sajin Sasy, Aaron Johnson, and Ian Goldberg. 2022. Fast Fully Oblivious Com-

paction and Shuffling. In Proceedings of the 2022 ACM SIGSAC Conference on

Computer and Communications Security (CCS).
[42] Sajin Sasy, Aaron Johnson, and Ian Goldberg. 2022. Fast Fully Oblivious Com-

paction and Shuffling. https://crysp.uwaterloo.ca/software/obliv/. Software
artifact.

[43] Sajin Sasy, Aaron Johnson, and Ian Goldberg. 2023. Waks-On/Waks-Off: Fast
Oblivious Offline/Online Shuffling and Sorting with Waksman Networks. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications

Security (CCS).
[44] Sajin Sasy and Olga Ohrimenko. 2019. Oblivious Sampling Algorithms for Private

Data Analysis. In Advances in Neural Information Processing Systems (NeurIPS).
[45] Nigel P Smart and Younes Talibi Alaoui. 2019. Distributing any Elliptic Curve

Based Protocol. In Proceedings of the 17th IMA International Conference on Cryp-

tography and Coding (IMACC).
[46] Afonso Tinoco, Sixiang Gao, and Elaine Shi. 2023. EnigMap: External-Memory

Oblivious Map for Secure Enclaves. In USENIX Security Symposium.
[47] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In USENIX Security Symposium.

[48] Abraham Waksman. 1968. A Permutation Network. Journal of the ACM (JACM)

(1968).
[49] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel

Attacks: Deterministic Side Channels for Untrusted Operating Systems. In IEEE

Symposium on Security and Privacy (S&P).
[50] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack Doerner, David

Evans, and Jonathan Katz. 2016. Revisiting Square-Root ORAM: Efficient Random
access in Multi-Party Computation. In 2016 IEEE Symposium on Security and

Privacy (S&P).
[51] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E

Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform. In USENIX Symposium on Networked Systems Design and

Implementation (NSDI).

A PROOFS

A.1 Correctness

The following are proofs of the theorems from Section 5.1.

Theorem 1. Let P be an array, with |P | = n, containing the values
{0, . . . ,n − 1} in some order. Let Q = (0, . . . ,n − 1). Let P ′ be a copy
of P (as P ′ will get modified), and let C = ControlBits(P ′, 0). Then,
if we run ApplyPerm(C, P), then P = Q afterwards, and if instead we

run ApplyInvPerm(C,Q), then again P = Q afterwards.

Proof. We first show that the inputs to each Waksman sub-
network, shifted right by d , contain a Complete Residue System
(CRS). That is, for each call ControlBits(P ,d), when either of
the two calls ControlBits(P̂ ,d + 1) are made, where P̂ is a sub-
array of P and |P̂ | = n′, the values {x ≫ d + 1|x ∈ P̂}, taken
as integers, form the set {0, . . . ,n′ − 1}. We recursively assume
it is true for the ControlBits(P ,d) call, and the base case (i.e.,
ControlBits(P , 0)) holds by the requirement that P is initially a
permutation on {0, . . . ,n − 1}.

In the InBits(P ,d) call, CreateForwardLookup(P ,d) inserts
the values (i, P[i] ≫ d) into the forward lookup table F , with (n,n)
added if n is odd, where n = |P |. Let k = ⌈n/2⌉. Then starting
from element f = k − 1, which is necessarily in input to the top
subnetwork, the sequence is calculated that f → д in F (i.e., (f ,д) ∈
F), values д and r are associates (i.e., have the same value modulo
k), s → r under F , and f is updated to the partner of s . In each
iteration, the switch that the initial f is an input to (if any) is already
set to make P[f] (i.e., g) an input to the top subnetwork. Therefore,
to make a CRS to both subnetworks, the associate of P[f] (i.e., r),

15

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://crysp.uwaterloo.ca/software/obliv/

Sajin Sasy, Aaron Johnson, and Ian Goldberg

which has the same value modulo k , must be sent to the bottom
subnetwork. f is updated to be the input that shares a switch with r ,
and then that switch is set to send P[f] to the top subnetwork and
r to the bottom subnetwork, as required. If a cycle is encountered
during this process, a new f can be arbitrarily chosen to be sent to
the top subnetwork, and the process continues.

At the end, each pair of associates in P are sent to opposite
subnetworks. In the case that n is odd, the element (n,n) in F can
only be queried in the reverse direction with r = n because the
partner of n is k − 1, which is the initial selection for f . Therefore,
this element will always end a cycle, and the value modulo k of k−1
will always be sent to the top subnetwork. The top subnetwork
thus obtains {0, . . . ,k − 1} as inputs modulo k , and the bottom
subnetwork obtains {0, . . . , (n − k) − 1} as inputs modulo k , giving
each a CRS.

We next show that the outputs from each Waksman subnetwork,
shifted right by d , are the sorted values (0, . . . ,n − 1) (i.e., a sorted
CRS). We recursively assume this claim is true for the outputs of
the two calls ControlBits(P̂ ,d + 1), where P̂ is a subarray of P .

When n = 1, we have already shown that the shifted input is
0, and there is no output switch applied, and so the claim holds
in this case. When n = 2, we have already shown that the shifted
inputs are {0, 1}, and in ControlBits the process of shifting left
and applying an OR simply moves those values to the last bits. Then
the first of these two values is used to set the control bit for the
only output switch, which only flips the values if they appear in the
order (1, 0). Then bits are then moved back to the most significant
position via a right shift and an addition, yielding the desired sorted
output.

For n > 2, we use the recursive assumption that the output of
each recursive ControlBits call is a sorted CRS. We have shown
that the input to the current ControlBits call was a CRS, and
therefore the least-significant bits of the outputs of the recursive
ControlBits calls indicate if the value changed when reduced
modulo k . Each output switch takes as inputs the outputs in the
same position from the subnetworks, and because those are sorted
they must have been partners modulo k . Therefore, one of their
least-significant bits is a zero and the other is a one. The values
are flipped only if the first input to the output switch has a least-
significant bit of one. Thus, after applying all output switches, the
first k outputs contain a CRS (ignoring the final d + 1 bits) in sorted
order with least-significant bits of zero, and the remaining n − k
outputs contain a CRS (ignoring the final d + 1 bits) in sorted order
with least-significant bits of one. The final right shifts and additions
turns these values into a sorted CRS (ignoring the final d bits), as
desired.

Thus, the control bits are set such that applying the resulting
network to P sorts it. That is, with Q = (0, . . . ,n − 1), after run-
ning ApplyPerm(C, P), P = Q . Because ApplyInvPerm simply
applies the switches in the reverse order that ApplyPerm does,
it applies the inverse permutation, and so, after instead running
ApplyInvPerm(C,Q), Q = P . □

Theorem 2. WaksShuffle(D) puts the items in D in a uniformly

random order.

Proof. WaksShuffle first creates the array P = (0, . . . ,n −
1). Then, by assumption, the OShuffle(P) call puts P in a uni-
formly random order, which makes P a uniformly random permu-
tation. By Theorem 2, the call to ControlBits(P , 0) followed by
ApplyPerm(C,D) permutes the items in D according to P . There-
fore, WaksShuffle puts D in a uniformly random order. □

Theorem 3. WaksSort(K ,D) sorts the items in K in increasing

order and also applies that permutation to D.

Proof. WaksSort first creates the array P = (0, . . . ,n−1). Then,
by assumption, the OSort(K , P) call sorts K and P such that the
items in K are nondecreasing and the same permutation is applied
to P . If, by sorting K , the key in position i in K is moved to po-
sition j in K , then the item in position i in P , which has value i ,
is moved to position j in P . That is, P now is such that P[j] → j
is the permutation used to sort K , or, put another way, P , inter-
preted as the permutation i → P[i] contains the inverse of the
permutation used to sort K . Therefore, by Theorem 2, the call to
ControlBits(P , 0) followed by ApplyInvPerm(C,D) permutes the
items in D according to P . □

A.2 Obliviousness

The following are proofs of the theorems from Section 5.2.

Theorem 4. ControlBits(P ,d) is fully oblivious with respect to

P .

Proof. Let n = |P | and k = ⌈n/2⌉. We will construct a simulator
S that, for all P and d , and conditional on an actual outputC (which
S does not get), produces indistinguishable memory and execution
traces given only n and d . Such simulators exist by assumption
for the oblivious primitives we use, such as for OSelect, OSwap,
OShuffle, andOSort.We recursively assume that such a simulator
can be produced for smaller d . For d ≤ 2, the required traces for
ControlBits(P ,d) can easily be produced because a deterministic
sequence of operations is performed that depends only on n and d
(note that InBits returns early in this case).

For n > 2, we can use our recursive assumption to simulate the
traces for the recursive calls to ControlBits. Other than those
calls and the call to InBits, the memory accesses and instructions
executed by ControlBits depend only on n and d . Therefore we
can focus on InBits(P ,d), and we claim that it is fully oblivious
with respect to P (but not d).

The obliviousness of InBits relies on the pseudorandomness
of the PRP. We (conceptually) replace the calls to PRP with key
κ1 (i.e., those appearing in CreateForwardLookup and Forwar-
dOrRand) with queries to a genuinely random permutation Π1 on
(0, . . . , 2k − 1) (or on any larger set containing {0, . . . , 2k − 1}).
The resulting executions are computationally indistinguishable by
reduction to the pseudorandomness assumption. That is, otherwise
an adversary could win the game defining pseudorandomness by
simulating the execution while forwarding the PRP calls to the
challenger, as the resulting executions would be distinguishable.
Similarly, we replace the calls to PRP under κ2 (i.e., those in Cre-
ateReverseLookup and sent to HashMapGet) with a genuinely
random permutation Π2 on (0, . . . , 2k − 1) (or on any larger set
containing {0, . . . , 2k − 1}).

16

Waks-On/Waks-Off: Fast Oblivious Offline/Online Shuffling and Sorting with Waksman Networks

In InBits, P is first used in CreateForwardLookup(P ,d,κ). We
claim that CreateForwardLookup is fully oblivious with respect
to P and κ. Fix some output F = (L,Q). The traces from creating and
initially populating the arrays L and Q can be produced using the
PRP simulator, which are indistinguishable even conditional on the
values L[i] that are fixed given F . The traces from the OSort(L,Q)
call can be produced using its simulator, again even conditional
on the values of L and Q , which are fixed given F . This proves the
obliviousness claim for CreateForwardLookup.

We now consider CreateReverseLookup(F ,κ), which is the
next operation in InBits. We would not be able to say that Cre-
ateReverseLookup is fully oblivious to F and κ because its hash
map insertions depend on them. However, S can nonetheless simu-
late the traces that result from the call to CreateReverseLookup,
conditional on C , by choosing a random permutation (which is not
necessarily the same as Π2) and using its values on (0, . . . ,n−1) (in
order) as the values z used as keys in HashMapInsert(R, z, (x , i)).
HashMapInsert is by assumption oblivious with respect to the
value inserted (here, (x , i)), and so its simulator can be used to pro-
duce its traces. S also actually runs HashMapInsert, starting with
an empty R and using the z values it has chosen, an arbitrary value
for each x , and the i taking values (0, . . . ,n − 1) in order. Let zi be
the ith z value, which will be needed to produce traces for the hash
map queries.

The next call in InBits is to CreateUnselectedCounts(n, ∅).
This function is deterministic and is only given n, and so its traces
can easily be produced by S.

InBits continues with a sequence of back-and-forth iterations.
In each iteration, the traces from assignments, arithmetic computa-
tions, and OSelect calls are easily produced. The more involved
arguments are for the calls to ForwardOrRand, HashMapGet,
and DecUnselectedCounts. These arguments will use the follow-
ing fact about the back-and-forth sequence: each of the n mappings
under P (and also the dummy (n,n) mapping for odd n) is looked
up only once and in either the forward or reverse direction (but
not both). This fact would actually hold whenever partners and
associates are defined to each produce a matching of the values
{0, . . . ,k − 1}.

Consider each call to ForwardOrRand(F ,U , f ,b,κ1). Regard-
less of the permutation P , the control bits for P that we have sam-
pled, and the previous traces that have been produced, each call
looks like a random lookup of an unselected element. That is, given
the items that have been looked up in the previous or forward and
reverse lookups, a subsequent forward lookup looks like a binary
search for a uniformly random unselected item in F . Note that this
is true in part because F and R use different random permutations
on the lookup values, Π1 and Π2, respectively. Therefore, because
each ForwardOrRand call is performed on a different value f ,
its location in F is uncorrelated to a lookup of the same value in
R, which is possible. However, it is not possible to do a forward
lookup of a mapping (ignoring its direction) that has been looked
up already in either the forward or reverse direction. Moreover,
if ForwardOrRand is called with b = 1, then U ensures that a
uniformly random is genuinely looked up. This fact holds even
given P andC has been fixed, because although P determines when
cycles end andC which mappings begin a new cycle, the location of
the mappings is uniformly random at each step. Thus, the traces of

each forward lookup can be generated by S as a uniformly random
unselected item.

Now consider each HashMapGet(R, PRP(r ,κ2)) call. It will yield
a value s such that s → r under the forwardmapping. That mapping
appears at some random unselected location i in F , and during the
creation of R the reverse mapping was the ith insertion into R
using a key zi . We have already simulated that R and the zi values,
and so we can simulate the traces for HashMapGet given zi . We
can simulate choosing the correct zi value simply by choosing a
uniformly random index from among those containing unselected
mappings. This simulation is accurate because, given P and C and
the simulation so far, the next mapping is unselected and therefore
appears in a uniformly random unselected item in F (or, put another
way, Π1 seen as an oracle is at that point forced to choose a value
for an unqueried value). Then, once the simulator selects where
it appears in F , the previous choices force the key zi to use as
HashMapGet(R, zi). Now given both arguments, the traces from
HashMapGet can be simulated by executing that function.

For the calls in InBits to DecUnselectedCounts(U , ℓ), we ob-
serve that the location ℓ can be computed from the traces (simulated
or not) of the lookups preceding the DecUnselectedCounts call
(forward or reverse). In the forward direction, ℓ is the final element
accessed during the binary search, and, in the reverse direction, ℓ
corresponds to the zℓ value that has been used to call HashMapGet.
The creation ofU has been simulated, andU is only modified by De-
cUnselectedCounts. Therefore, S can simulate the traces of each
DecUnselectedCounts(U , ℓ) call by executing DecUnselected-
Counts on the values for U and ℓ that S has effectively already
chosen.

Finally, InBits calls OSort(S,C). The traces of this call, condi-
tioned on C , can be sampled knowing only |S | and |C | using the
OSort simulator. This finishes the trace simulation for InBits(P ,d),
proving the desired claim that it is fully oblivious with respect to
P . □

Theorem 5. ApplyPerm(C,D) and ApplyInvPerm(C,D) are fully
oblivious with respect to C and D.

Proof. ApplyPerm and ApplyInvPerm each perform a deter-
ministic sequence of OSwap calls that only depend on n = |D |.
Therefore, the simulator can produce the traces for these calls know-
ing only n, making use of the OSwap simulator, which is assumed
to be oblivious to the values of its data and swap-bit inputs. □

Theorem 6. WaksShuffle(D) is fully oblivious with respect to

D.

Proof. Let D ′ be the shuffled output of WaksShuffle, which
does depend on some unknown random bits. D ′ is unknown to
the simulator S. S can produce the traces to create the initial P ,
and then for the OShuffle(P) call it uses an assumed simulator
to produce its traces without knowing P or what order P must
end up in, given D ′. By Theorem 4, there exists a simulator that
S can use to produce the traces for the ControlBits(P , 0) call,
not knowing the control bits C that must be produced, given D ′.
Finally, by Theorem 5, there exists a simulator that S can use to
produce the traces for the ApplyPerm(C,D) call, knowing only |C |
and |D |. □

17

Sajin Sasy, Aaron Johnson, and Ian Goldberg

Theorem 7. WaksSort(K ,D) is fully oblivious with respect to K
and D.

Proof. Let K ′ and D ′ be the sorted outputs of WaksSort(K ,D).
K ′ andD ′ are unknown to the simulatorS.S can produce the traces
to create the initial P , and then for the OSort(K , P) call it uses an
assumed simulator to produce its traces without knowing K or P
or what order K (and P) must end up in, given K ′. By Theorem 4,
there exists a simulator that S can use to produce the traces for the
ControlBits(P , 0) call, not knowing the control bitsC that must be
produced, given K ′. Finally, by Theorem 5, there exists a simulator
that S can use to produce the traces for the ApplyInvPerm(C,D)
call, knowing only |C | and |D |. □

A.3 Efficiency

The following are proofs of the theorems from Section 5.3.

Theorem 8. Let |P | = n. The runtime of ControlBits(P , 0) is
O(n log3 n).

Proof. Let k = ⌈n/2⌉. Let the runtime of ControlBits(P , 0) be
T (n).

We first consider the runtime of the call to InBits(P ,d). Its call
to CreateForwardLookup(P ,d,κ1) takes time O(n log2 n) by as-
sumption on the runtime of OSort. The CreateReverseLookup
call takes time O(n) by assumption on the O(n) time to create an
empty hash map on n items and the O(1) amortized time for each
HashMapInsert call. The CreateUnselectedCounts call takes
O(n) time by a straightforward inductive argument. Each Forwar-
dOrRand call and DecUnselectedCounts call performs a binary
search and thus takes O(logn) time, and each HashMapGet call
takes O(1) amortized time, and therefore the k back-and-forth iter-
ations take O(n logn) total time. The final OSort(S,C) takes time
O(n log2 n) time by assumption on the runtime of OSort and be-
cause |S | = |C | = k − 1. Therefore the InBits call takes O(n log2 n)
time.

Subsequently, ControlBits applies input thek−1 input switches
and reduces the n values in P modulo k , which together take O(n)
total time. The recursive calls to ControlBits takeT (k) andT (n−k)
time. Then, extracting the n − k control bits takes O(n) total time.
Finally, applying the n−k output switches and undoing the modulo
reduction of P takes O(n) total time.

Therefore,
T (n) = O(n log2 n) +T (⌈n/2⌉) +T (⌊n/2⌋).

For n a power of 2, we have that

T (n) = O(n log2 n) + 2T (n/2)

so by the Master theorem, T (n) = O(n log3 n). If n is not a power
of 2, let N > n be the smallest power of 2 greater than n (so that
N < 2n). Then by monoticity, T (n) ≤ T (N) = O(N log3 N) =
O(2n log3(2n)) = O(n log3 n). □

Theorem 9. Let |D | = n, and let each item in D be of size β . The
runtime of ApplyPerm(C,D) andApplyInvPerm(C,D) isO(βn logn).

Proof. Letk = ⌈n/2⌉, and letT (n) be the runtime of ApplyPerm(C,D).
ApplyPerm first executes k − 1 OSwap calls, which by assumption
each take O(β) time. Then it calls ApplyPerm on k items and on

n − k items. Finally, it executes n − k OSwap calls, each of which
take O(β) time. Therefore,

T (n) = O(βn) +T (⌈n/2⌉) +T (⌊n/2⌋).

The same reasoning as in the proof of Theorem 8 above yields
that T (n) = O(βn logn), as required. The same argument applies to
ApplyInvPerm. □

Theorem 10. Let |D | = n, and let each item in D be of size β . The
offline runtime of WaksShuffle(D) is O(n log3 n), and the online

runtime of WaksShuffle(D) is O(βn logn).

Proof. In the offline phase of WaksShuffle, O(n) time is re-
quired to create P , and by Theorem 8, O(n log3 n) time is used
by ControlBits. Therefore, the offline runtime is O(n log3 n). In
the online phase, by Theorem 9, O(βn logn) time is used by Ap-
plyPerm. □

Theorem 11. Let |K | = n, |D | = n, each item inK be of size α , and
each item in D be of size β . The (online) runtime of WaksSort(K ,D)
is O(n log3 n + αn log2 n + βn logn).

Proof. WaksSort is entirely online. O(n) time is required to
create P , O(αn log2 n) time is assumed to be used by OSort(K , P),
ControlBits uses O(n log3 n) time by Theorem 8, and ApplyIn-
vPerm uses O(βn logn) time by Theorem 9. Therefore the (online)
runtime of WaksSort is O(n log3 n + αn log2 n + βn logn). □

B IMPLEMENTATION OPTIMIZATIONS

We refine our implementation of WaksShuffle and WaksSort
with several optimizations. To ensure fair comparisons we apply
matching optimizations (whenever applicable as detailed below)
for our Nassimi-Sahni implementation. First, in the SGX context
performing memory allocations are expensive since they require
an Asynchronous Enclave eXit (AEX) operation [12]. Hence we
perform a one-time memory allocation procedure that allocates
memory for all the Waksman subnetworks upfront with one AEX,
rather than n logn recursive memory allocations. We implement
this optimization for ControlBits of our Waksman algorithms
and for Nassimi-Sahni as well.

For ControlBits, we instantiate both the forward and reverse
lookup tables with standard C++ hash maps, and the PRP function
with AES-ECB. Since the PRP has to generate unique random labels
for the repeated switch number inputs it receives from different
Waksman subnetworks, in our implementation every Waksman
subnetwork is assigned a unique id. This subnetwork id serves as
the high 64 bits of the input to our PRP, and the switch number
occupies the low 64 bits, ensuring unique random labels for the
repeated inputs from different Waksman subnetworks.

Since our PRP relies on AES-ECB and uses the same key for all
PRP operations, we optimize our PRP usage by maintaining the
AES expanded key state and using it to perform PRPs as inputs to
permute are available, instead of repeating the key expansion step
for each PRP operation individually. Note that this optimization
does not extend to the Nassimi-Sahni algorithm as it does not make
use of a PRP. Finally to pick a random integer from a range, needed
for ForwardOrRand in InBits, we use the simple technique we
detailed in Section 3.1.

18

Waks-On/Waks-Off: Fast Oblivious Offline/Online Shuffling and Sorting with Waksman Networks

Figure 18: Comparing time taken for shuffling against item

size with n = 215 items. Both axes are log scale; error bars are

too small to see. Dashed lines are the online timing compo-

nent for algorithms that benefit from offline/online split.

Figure 19: Comparing time taken for sorting against item

size with n = 215 items. Both axes are log scale; error bars

are too small to see. Dashed lines are the online timing com-

ponent for algorithms that benefit from offline/online split.

Figure 20: Comparing time taken for shuffling against num-

ber of items with an item size of β = 212 bytes. Both axes are

log scale; error bars are too small to see. Dashed lines are the

online timing component for algorithms that benefit from

offline/online split.

Figure 21: Comparing time taken for sorting against number

of items with an item size of β = 212 bytes. Both axes are log

scale; error bars are too small to see. Dashed lines are the

online timing component for algorithms that benefit from

offline/online split.

19

Sajin Sasy, Aaron Johnson, and Ian Goldberg

(a) Shuffling with a small item size (256 bytes). (b) Shuffling with a large item size (4096 bytes).

Figure 22: Scatter plots comparing online and total time taken (in s) for shuffling algorithms with n = 220. WaksShuffle

consistently incurs the least online time irrespective of item size. For large enough item size (β > 1400B), the total time of

WaksShuffle is lower than all other fully oblivious shuffling algorithms.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 Varying the Item Size

Figures 18 and 19 show shuffle and sort times for varying item
sizes and n = 215 items. We observe qualitatively similar results to
those for n = 220 items. In particular, we see the crossover points,
at which the total times for WaksShuffle and WaksSort become
the lowest, are still at an item size of about β = 1400 bytes. We also
see that the online times for WaksShuffle and WaksShuffle+QS
remain the lowest.

C.2 Varying the Number of Items

Figures 20 and 21 show the shuffle and sort times for varying
numbers of items and an item size of β = 212 bytes. For all n
tested, WaksShuffle and WaksSort have the lowest total times

for shuffling and sorting, respectively. Similarly, WaksShuffle and
WaksShuffle+QS always have the lowest online times for shuffling
and sorting, respectively.

C.3 Scatter Plots for Oblivious Shuffling

In Section 7.3, we presented plots showing the online and total
times of oblivious sorting algorithms within TEEs. Here, we do the
same for oblivious shuffling algorithms, and see an analogous result.
Figure 22a shows shuffling algorithms with items of size 256 B, and
Figure 22b shows 4 KiB items. Notably, WaksShuffle always incurs
the least online overhead for shuffling items irrespective of the item
size β ; for large enough problem sizes (β > 1400 B) the total cost of
WaksShuffle is lower than that of all other comparable shuffling
algorithms.

20

	Abstract
	1 Introduction
	2 Background
	3 Oblivious Algorithms for Waksman Networks
	3.1 Preliminaries
	3.2 Our Waksman Topology
	3.3 Setting Control Bits
	3.4 Worked Example of ControlBits
	3.5 Applying Permutations

	4 Oblivious Shuffling and Sorting
	4.1 Shuffling
	4.2 Sorting

	5 Analysis
	5.1 Correctness
	5.2 Obliviousness
	5.3 Efficiency

	6 Implementation
	7 Experiments
	7.1 Comparing Shuffling Algorithms
	7.2 Comparing Sorting Algorithms
	7.3 Summarizing the State of Affairs

	8 Related Work
	8.1 Oblivious Shuffling Algorithms
	8.2 Oblivious Sorting Algorithms
	8.3 Waksman Networks

	9 Conclusion
	Acknowledgments
	References
	A Proofs
	A.1 Correctness
	A.2 Obliviousness
	A.3 Efficiency

	B Implementation Optimizations
	C Additional Experimental Results
	C.1 Varying the Item Size
	C.2 Varying the Number of Items
	C.3 Scatter Plots for Oblivious Shuffling

