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Abstract. Both threshold and blind signatures have, individually, received a considerable amount of
attention. However little is known about their combination, i.e., a threshold signature which is also
blind, in that no coalition of signers learns anything about the message being signed or the signature
being produced. Several applications of blind signatures (e.g., anonymous tokens) would benefit from
distributed signing as a means to increase trust in the service and hence reduce the risks of key
compromise. This paper builds the first blind threshold signatures in pairing-free groups. Our main
contribution is a construction that transforms an underlying blind non-threshold signature scheme with
a suitable structure into a threshold scheme, preserving its blindness. The resulting signing protocol
proceeds in three rounds, and produces signatures consisting of one group element and two scalars. The
underlying non-threshold blind signature schemes are of independent interest, and improve upon the
current state of the art (Tessaro and Zhu, EUROCRYPT ’22) with shorter signatures (three elements,
instead of four) and simpler proofs of security. All of our schemes are proved secure in the Random
Oracle and Algebraic Group Models, assuming the hardness of the discrete logarithm problem.

1 Introduction

Blind signatures [11] allow a user to interact with a signer to obtain a valid signature on a chosen message.
The signer learns nothing about the message being signed, and cannot link any signature back to the
interaction that produced it. Blind signatures are a key ingredient in e-cash systems [11, 12], and play a
major role in a number of recent applications and products in industry, such as privacy-preserving ad-click
measurement [30], Apple’s iCloud Private Relay [22], Google One’s VPN Service [45], and various forms of
anonymous tokens [21, 43]. Variants of RSA blind signatures [27] are also covered by an RFC draft [14].

The main aim of this paper is to mitigate the risk of signer’s compromise in blind signatures by following
the popular approach of distributing the signer’s operation across a number of issuers, each holding a share
of the secret key, as in threshold signatures [15, 16]. This raises the natural question of how easy it is to
implement threshold blind signatures, a blind analogue of the classical notion of threshold signatures, which
has received significantly less attention. Crucially, unlike standard threshold signatures, the signers learn
nothing about the message being signed. Moreover, resulting signatures need to remain unlinkable.

It is possible to combine ideas from [9] to obtain a threshold-blind version of BLS [10], as done explicitly
in [44]. BLS signatures are non-interactive and therefore, by default, secure against a concurrent adversary,
who may open many signing sessions in parallel. Other works also give pairing-based schemes [25]. Here,
in contrast, we focus on designs based on standard, pairing-free, elliptic curves. These are appealing, as
highly-verified standard cryptographic libraries (such as NSS and BoringSSL) do not provide support for
pairing-friendly curves. RSA signatures [35] are pairing free and non-interactive; however, signature sizes are
much larger than those defined over elliptic curves. For example, RSA signatures are 6 times larger than
Schnorr signatures at the same security level. Our schemes add only one field element to Schnorr signatures,
making them an attractive alternative. Designing pairing-free schemes comes with a number of technical
challenges to achieve concurrent security and prevent so-called ROS attacks [8], which have affected both
threshold and blind signatures alike.
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Our contributions.We develop Snowblind, a construction of threshold blind signatures which compiles
a suitable underlying (non-threshold) blind signature scheme into a (blind) threshold signing protocol. The
resulting signing protocol proceeds in three rounds between the coordinator and the servers. Our instantia-
tions of Snowblind produce signatures that consist of one group element and two scalars, and the underlying
signature scheme is marginally more complex than standard Schnorr signatures. The unforgeability of these
instantiations is proved in the Algebraic Group Model (AGM) [17], assuming the hardness of the discrete
logarithm problem. We also assume random oracles.

These schemes satisfy a strong notion of (statistical) blindness that holds even if all servers collude. We
also present formal security definitions, generalizing the notions of one-more unforgeability and blindness to
the threshold setting.

An important remark here is that while the AGM is undoubtedly undesirable, it has been necessary in
all recent constructions of pairing-free blind signatures based on the hardness of DL-related problems [18,
23, 42]. Avoiding its use in the concurrent setting is a well-known and very challenging theoretical question.

Improving blind signatures. Snowblind relies on new, non-threshold, three-move blind signature schemes
of independent interest. The technical challenges to build such schemes are captured already by a non-blind
interactive signing protocol for Schnorr signatures. Here, the signer initially sends A← ga to the user, where
a←$ Zp. Subsequently, the user responds with a challenge c← Hsig(m,A), and the signer sends z = a+ c · sk,
where sk ∈ Zp is the secret key. The corresponding public key is pk = gsk, and (A, z) is a valid Schnorr
signature for m.

Benhamouda et al. [8] show that this protocol is completely insecure against a malicious user that
interacts concurrently with the signer: After obtaining ℓ ≥ log p initial values A1, . . . , Aℓ, one can efficiently
compute suitable challenges c1, . . . , cℓ such that their responses yield ℓ+ 1 valid signatures, hence violating
one-more unforgeability. The attacker achieves this by solving the related ROS problem, for which [8] gives
a polynomial-time algorithm.

Tessaro and Zhu [42] recently proposed an approach to mitigate the above attack by having the signer
initially send a pair

A = ga , B ← gbhy ,

where a, b, y←$ Zp. Then, upon receiving the challenge c← Hsig(m,A,B), the signer responds with

z ← a+ c · y · sk , b , y .

The final signature is (A, z, b, y).
This protocol can easily be made blind. In [42], the user masks the values (A,B, c, z, b, y) using randomness

r1, r2, α, β as follows:

Ā = gr1Aα/β , B̄ = gr2Bα , b̄ = r2 + αb ,

c̄ = c/β , ȳ = αy , z̄ = r1 + (α/β)z .

The final blinded signature is (Ā, z̄, b̄, ȳ), which is perfectly blinded by the randomness r1, r2, α, β.
The crucial point here is that B is a perfectly hiding Pedersen commitment to y, and therefore y can

be thought as randomly sampled after the challenge c is returned to the signer. The format of the final
response z, thanks to this “fresh-looking” random y, compromises the linear structure of interactive Schnorr
signing which enables ROS attacks. In [42], this scheme is proved one-more unforgeable in the AGM+ROM
assuming the hardness of the discrete logarithm problem, along with the hardness of a variant of the ROS
problem, called WFROS. However, in contrast to ROS, the WFROS problem is shown unconditionally to be
exponentially hard.

In this paper, we improve upon [42] along two orthogonal axes:

– We show that the above signing protocol can produce signatures for a different base scheme which consists
of three elements (one group element, and two scalars), instead of four. Note that [42] also proposes a
variant of their scheme with shorter signatures, relying however on the stronger generic group model [39,
28].
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PK size Sig size Communication Assumption

Blind Schnorr [18] 1 G 1 G + 1 Zp 1 G + 2 Zp OMDL+ROS
Clause Blind Schnorr [18] 1 G 1 G + 1 Zp 2 G + 4 Zp OMDL+mROS

Abe [1, 23] 3 G 2 G + 6 Zp 3 G + 6 Zp + κ DL
Tessaro-Zhu [42] 1 G 1 G + 3 Zp 2 G + 4 Zp DL

This work 1 G 1 G + 2 Zp 2 G + 4 Zp DL

Table 1. Pairing-free blind signatures with concurrent security. All schemes are proved one-more unforgeable
in the AGM+ROM, under the given assumption(s). G denotes a group element, Zp denotes a scalar. κ indicates a
κ-bit string, where κ is the security parameter. The ROS assumption is subject to a polynomial-time attack for
more than log p concurrent sessions. The mROS assumption is subject to (lightly) sub-exponential attacks [18]. All
schemes, except Abe’s, have perfect blindness.

– We also propose an alternative approach to incorporating the value y in the signing process, where the
signer final response uses z = a+(c+yk) · sk, where k ≥ 2 such that the map y 7→ yk is a permutation in
Zp. (This happens exactly when gcd(p− 1, k) = 1.) An important feature of this approach is that it also
offers a significantly simpler proof than that of [42], which in particular merely relies on the hardness of
the ROS problem for dimension one, which is known to be exponentially hard.

The resulting schemes are the state-of-the-art with respect to schemes with security based solely on discrete-
log related assumptions in pairing-free groups. We discuss related work more in depth in Section 1.1 below,
and give an efficiency comparison in Table 1.

A threshold version.Our main technical contribution is a threshold signing protocol for the above blind
signature schemes. We assume that there are multiple issuers who each possess secret shares and a single user.
Our threshold protocol requires three rounds of interaction. The signing is asynchronous and all interactions
are initiated by the user. In particular, issuers do not speak directly to each other. If the user goes offline,
then no signature is produced, but there are no other negative consequences. In particular, we require that
signatures are unforgeable unless the user has queried at least one honest party in the third and final round
of interaction.

The Snowblind signature scheme is relatively simple. The final signature is identical to the base signature
(1 group element and 2 field elements). The basic idea (which will require some adjustments) is as follows.
First, each issuer in a quorum sends a pair

Ai = gai , Bi ← gbihyi ,

where ai, bi, yi←$ Zp. Then, these first-round messages are aggregated by the user into the product A =
∏

iAi

and B =
∏

iBi. Then, upon receiving the challenge c← Hsig(m,A,B), the issuers would like to directly send

zi ← ai + f(c, y) · ski , bi , yi ,

where f(c, y) = c · y or f(c, y) = c + yk, depending on which base scheme is chosen. However, they do not
yet know b =

∑
i bi or y =

∑
i yi. Thus, they instead reveal all bi, yi to the user first, who then sends b, y

back. In the third and final round, the issuers return the zi’s. This protocol can also easily be made blind
by masking the values (A,B, c, z, b, y) in the same way as the base blind scheme.

A few more (minor) adjustments need to be made for the scheme to be proved secure. A first one is
concerned with the Pedersen commitments not being online extractable – we will resolve this by including
an additional extractable commitment cmi to yi, along with Bi. The second is that we will need the involved
issuers to agree on the set of involved issuers, their commitments cmi, and the challenge c, before they reveal
their own zi. This will require using an additional (non-threshold, non-blind) signature scheme.

Proving security of Snowblind.Our key technical challenge is now in proving the one-more unforge-
ability (OMUF) of the above scheme. In particular, the base blind signature schemes discussed above do not
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have simple security reductions, and we were reluctant to add additional complexity to these arguments. A
better approach is to attempt to reduce the OMUF of the (three-round) threshold blind signature to the
OMUF of the (two-round) blind signature. Unfortunately, this modular approach does not quite work. In
particular, the reduction has to query its final-round OMUF oracle in the second round of signing in order to
simulate responses. Thus, when an adversary responds with ℓ+1 signatures having made fewer than ℓ queries
(over unique sessions) to the final round, the reduction could have made ℓ+1 queries to its final-round oracle
and thus would not output a valid forgery. Preventing the adversary from forging signatures when it only
queries the preliminary rounds (i.e., the rounds before the final round) is important in our asynchronous and
concurrent model, where we can make no termination guarantees.

Instead, we consider a less round-efficient base blind signature scheme that mimics the structure of our
threshold scheme. In this alternative scheme, rather than sending (z, b, y) in the second round, the issuer
sends (b, y), but withholds z. It then reveals z in a third round. We prove the OMUF of this scheme in the
Algebraic Group Model under the discrete logarithm assumption. Security of the base two-round scheme is
implied by the security of this three-round scheme because the user sends no additional information between
the second and third rounds. More importantly, we can prove the security of our threshold scheme based
on the security of this three-round scheme. In particular, the reduction only queries its final-round OMUF
oracle when the adversary queries its OMUF oracle in the final round on at least one honest party.

1.1 Related Work

Blind signatures in pairing-free groups. There are very efficient blind signature schemes based on
pairings (starting from the work of [9], which in turn is based on [10]) and RSA [11, 6] which fall outside the
scope of this paper.

The space of blind signatures in pairing-free groups is more complex, especially when focusing on schemes
that achieve concurrent OMUF security in the context of one-more unforgeability. As explained above, at first
glance, Schnorr signatures [36] appear simple to translate into a blind setting. However, a recent algorithm [8]
for solving the ROS problem [37] results in a complete break of security for a sufficient number of concurrent
sessions (at least log p, where p is the group order), whereas one can expect only sub-exponential security
for a smaller number of concurrent sessions. (This has been proved in the AGM [18], where the security of
blind Schnorr signatures is reduced to the hardness of ROS, which is sub-exponential for the case necessary
to support fewer than log p sessions.)

Blind Schnorr signatures are also proved to be sequentially OMUF secure in the AGM [23], although
sequential security is too weak to support most applications of blind signatures without introducing significant
performance bottlenecks. The situation is similar for a larger class of signatures based on identification
schemes, which includes, in particular, Okamoto-Schnorr blind signatures [29]. For these, however, OMUF
security for a bounded number of concurrent sessions (fewer than log p) can be proved without the AGM,
although with very poor concrete guarantees, via a complex rewinding argument [20]. Their sequential
security follows instead from a simpler use of the Forking Lemma [33]. We note that the AGM is necessary
for Schnorr signatures, as opposed to Okamoto-Schnorr, due to the lower bound of [3].

Table 1 discusses the more limited set of works achieving concurrent OMUF security in the pairing-free
setting. All of these works rely on security proofs in the AGM+ROM. The first concurrently OMUF secure
scheme is due to Abe [1]. Its original proof, which did not rely on the AGM, was found to be incorrect, and a
proof in the AGM+ROM was only recently given in [23]. This scheme is rather inefficient, and only achieves
computational blindness (under the Decisional Diffie-Hellman assumption).5 The “Clause Blind Schnorr”
signing protocol [18] results in a signature that is compatible with plain Schnorr verification. However, the
security proof relies on the hardness of a variant of ROS (called mROS) for which sub-exponential attacks
exist – instantiating this scheme on a 256-bit curve would only achieve (roughly) 80 bits of security. Finally,
Tessaro and Zhu [42] recently proposed the only scheme which achieves concurrent security and perfect

5 One motivation for statistical and/or perfect blindness is the looming threat of quantum attacks. Such attacks
would affect the blindness of current schemes more than they would affect one-more unforgeability, for which the
use of quantum-safe assumptions, while important, still remains less critical.
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blindness, while producing signatures smaller than those of Abe’s scheme. They do so by relying on a variant
of the ROS problem, called WFROS, for which they prove an unconditional lower bound.

The OMUF security reduction for the Abe-Okamoto partially blind signature scheme [2] was recently
corrected in [23]. However, their techniques do not extend to the concurrent setting.

Concurrently to this work, [19] present a blind signature scheme that outputs a signature which can be
verified with the Schnorr verification algorithm. However, their constructions require zero-knowledge proofs
that the challenge – that is itself the output from a hash function – is derived correctly, which requires
significant performance overhead and additional complexity. Also concurrently to this work, [4] present blind
signatures that are concurrently secure in the Random Oracle Model; however, they rely on a non-black-box
adversary and do not consider the threshold setting.

Threshold signatures.Most relevant to us, there has been significant work on obtaining efficient threshold
signature schemes for Schnorr signatures. For example, FROST [24, 5] is a two-round threshold signature
scheme that is concurrently secure. Other concurrently-secure Schnorr threshold signatures exist that trade off
efficiency for robustness [41] or a direct reduction to standard assumptions in the Random Oracle Model [13,
26]. However, a naive approach to blinding these schemes can open the door to ROS attacks [8].

Threshold credential issuance. Coconut [40] is a Threshold Issuance Anonymous Credential (TIAC)
system that enables a set of certification authorities to jointly and blindly issue credentials. While the
construction is practical, it was presented without a formal security analysis. A modified scheme was proved
secure in the UC setting in [34]. Both schemes are built upon a threshold variant of Pointcheval-Sanders
(PS) signatures [32], which rely on pairings. Other pairing-based threshold blind signatures include [25].

2 Preliminaries

Notation. Let κ ∈ N denote the security parameter and 1κ its unary representation. A function ν : N→ R
is called negligible if for all c ∈ R, c > 0, there exists k0 ∈ N such that |ν(k)| < 1

kc for all k ∈ N, k ≥ k0. For a
non-empty set S, let x←$ S denote sampling an element of S uniformly at random and assigning it to x. We
use [n] to represent the set {1, . . . , n} and represent vectors as a⃗ = (a1, . . . , an). We denote Z∗

p = Zp \ {0}.
Let PPT denote probabilistic polynomial time. Algorithms are randomized unless explicitly noted oth-

erwise. Let y ← A(x;ω) denote running algorithm A on input x and randomness ω and assigning its output
to y. Let y←$A(x) denote y ← A(x;ω) for a uniformly random ω.

Code-based games are used in security definitions [7]. A game GamesecA (κ), played with respect to a
security notion sec and adversary A, has a main procedure whose output is the output of the game.

Group generators and discrete logs. A group (parameter) generator GrGen is a polynomial-time
algorithm that takes as input a security parameter 1κ and outputs a group description G = (G, p, g) consisting
of a group G of order p, where p is a κ-bit prime, and a generator g of G.

Definition 1 (Discrete Logarithm Assumption (DL)). The discrete logarithm assumption holds with

respect to GrGen if for all PPT adversaries A, the advantage AdvdlogA,GrGen(κ) = Pr[G ←$ GrGen(1κ); x←$ Zp;
x←$A(G, gx)] is negligible.

The Algebraic Group Model.We will make use of the Algebraic Group Model (AGM) [17] throughout
this paper, which captures the behavior of an algebraic adversary. Somewhat informally, we say that an
adversary is algebraic if for every group element Z ∈ G = ⟨g⟩ that it outputs, it is required to output a
representation a⃗ = (a0, a1, a2, . . . ) such that Z = ga0

∏
Yi

ai , where Y1, Y2, · · · ∈ G are group elements that
the adversary has seen thus far.

Polynomial Interpolation.Let F be a field of size at least t, and let S ⊆ F be such that |S| ≥ t. Then, any
set of at least t evaluations (i, P (i))i∈S for a polynomial P (z) = a0+a1z+a2z

2+ . . .+at−1z
t−1 of degree t−1

over F can be interpolated to evaluate the polynomial on any other point z0 ∈ F as P (z0) =
∑

i∈S P (k)·Li(z0),
where Li(z) is the Lagrange coefficient of form

Li(z) =
∏

j∈S;j ̸=i

z − j
i− j

. (1)
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Shamir Secret Sharing. We will employ Shamir’s secret sharing scheme [38] in our threshold blind
signature construction.

– Share(x, n, t) → {(1, x1), . . . , (n, xn)}: Define a polynomial P (z) = x + a1z + a2z
2 + · · · + at−1z

t−1 by
sampling t− 1 random coefficients a1, . . . , at−1←$ Zp. Output the set of participant shares {(i, xi)}i∈[n],
where each xi, i ∈ [n], is the evaluation of P (i): xi ← x+

∑
j∈[t−1] aji

j .

– Recover(t, {(i, xi)}i∈S) → x: The recover algorithm takes as input at least t shares and returns the
original secret. Recover x as x ←

∑
i∈S λ

S
i xi, where the Lagrange coefficient for party i in the set S is

defined by λSi = Li(0) =
∏

j∈S,j ̸=i
j

j−i .

3 Definitions

3.1 Blind Signatures

A blind signature scheme allows a user to interact with an issuer to obtain a valid signature on a message m
unknown to the issuer. Importantly, even if later presented with this signature, the issuer cannot link it to
any particular signing execution. A blind signature scheme BS is parameterized by the number of rounds r
required to perform signing. The public parameters par are generated by a trusted party and given as input to
all other algorithms. A public/secret key pair for the issuer is generated by running (pk, sk)←$ BS.KeyGen().
To collectively produce a signature, the issuer and user engage in an interactive signing protocol as defined
in Equation 2, wherein the issuer takes as input the secret key sk, but not the message, and the user takes as
input the public key pk and the message m. At the end of the protocol, the user outputs the blind signature
σ, which is valid if the verification algorithm accepts: BS.Verify(pk, σ,m) = 1.

Definition 2. A blind signature scheme BS parameterized by the number of signing rounds r is a tuple
of polynomial-time algorithms BS = (BS.Setup,BS.KeyGen, {BS.ISignj}rj=1, {BS.USignj}rj=1,BS.Verify), as
follows.

BS.Setup(1κ)→ par: Accepts as input a security parameter κ and outputs public parameters par, which are
then implicitly provided as input to all other algorithms.

BS.KeyGen() → (pk, sk): A probabilistic algorithm that generates and outputs a key pair (pk, sk) for the
issuer, where pk is the public key and sk is the secret key.

The interaction between the user and the issuer to sign a message m ∈ {0, 1}∗ with respect to pk is defined
by the following experiment:

(stI , pmI
1)← BS.ISign1(sk) , (stU , pmU

1 )← BS.USign1(pk,m, pm
I
1)

(stI , pmI
j )← BS.ISignj(st

I , pmU
j−1) , (stU , pmU

j )← BS.USignj(st
U , pmI

j−1)

pmI
r ← BS.ISignr(st

I , pmU
r−1) , ⊥/σ ← BS.USignr(st

U , pmI
r) (2)

In the above experiment, stI is the internal state of the issuer, stU is the internal state of the user. pmI

is a protocol message sent by the issuer, and pmU is a protocol message sent by the user.

BS.Verify(pk, σ,m)→ {0, 1}: A deterministic algorithm that outputs a bit indicating if the signature is valid
with respect to the message and public key.

A blind signature scheme is correct if for everym ∈ {0, 1}∗ and for (pk, sk)←$ BS.KeyGen(), the experiment in
(2) returns σ such that BS.Verify(pk, σ,m) = 1. For security, a blind signature scheme must satisfy one-more
unforgeability and blindness.
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One-More Unforgeability.The standard notion of security for non-blind signature schemes, existential
unforgeability against chosen message attack (EUF-CMA), cannot be applied to the blind setting, as the
reduction cannot detect if the message-signature pair output by the adversary is a forgery or a previously
issued signature. The standard notion of unforgeability for blind signatures is one-more unforgeability. Intu-
itively, one-more unforgeability requires an adversary that is allowed to query the signing oracle ℓ times to
produce ℓ + 1 valid signatures, guaranteeing that at least one is forged. We consider the setting where ℓ is
determined dynamically, as opposed to being fixed a priori. The one-more unforgeability game Gameomuf

A,BS(κ)
is defined formally in Appendix A.

Definition 3 (One More Unforgeability). Let the advantage of an adversary A against the one-more
unforgeability game Gameomuf

A,BS(κ) be as follows:

Advomuf
A,BS(κ) = Pr[Gameomuf

A,BS(κ) = 1]

A blind signature scheme BS is one-more unforgeable if for all PPT adversaries A, there exists a negligible
function ν such that Advomuf

A,BS(κ) < ν(k).

Blindness.We employ a similar notion of blindness as in prior literature [18, 42], and rely on a right-or-left
indistinguishability-based definition. Intuitively, a signature scheme achieves blindness if an adversary has
negligible chance of distinguishing two signatures with respect to two messages of its choosing. Our schemes
satisfy the stronger notion of perfect blindness, where the adversary’s advantage is zero. The blindness game
GameblindA,BS(κ) is defined formally in Appendix A.

Definition 4 (Perfect Blindness). Let the advantage of an adversary A against the blindness game
GameblindA,BS(κ) be as follows:

AdvblindA,BS(κ) = |Pr[GameblindA,BS(κ) = 1]− 1/2|

A blind signature scheme BS satisfies perfect blindness if for all PPT adversaries A, AdvblindA,BS(κ) = 0.

3.2 Threshold Blind Signatures

A threshold blind signature scheme is an interactive signing protocol between a single user and multiple
issuers, each in possession of a share of the secret signing key. Similar to blind signatures, a threshold
blind signature scheme should satisfy correctness, one-more unforgeability, and blindness. We present formal
security definitions, generalizing the notions of one-more unforgeability and blindness from the single-party
setting to the threshold setting. Game-based notions of security for threshold blind signatures have been
given in prior literature [25]; however, our notions explicitly model important details such as concurrency
and session management.

A threshold blind signature scheme TB is parameterized by the number of signing rounds r. The public
parameters par are generated by a trusted party and given as input to all other algorithms. Key generation is
described in a centralized manner with respect to the number of issuers n and threshold t, where public/secret
key pairs are generated for all n issuers, as well as the joint public key representing all n issuers. To collectively
produce a signature, a quorum S of issuers interact with the user in an interactive signing protocol as defined
in Equation 3, wherein each issuer takes as input its secret key ski, but not the message, and the user takes
as input the public key pk, the message m, and the signing set S. For a valid signature to be issued, it must
be the case that S ⊆ [n] and t ≤ |S| ≤ n. At the end of the protocol, the user outputs the threshold blind
signature σ and each issuer learns the set S of issuers that are involved in the signing protocol. The signature
σ on m is valid if TB.Verify(pk,m, σ) = 1.

Definition 5. A threshold blind signature scheme TB parameterized by the number of signing rounds
r is a tuple of polynomial-time algorithms TB = (TB.Setup,TB.KeyGen, {TB.ISignj}rj=1, {TB.USignj}rj=1,
TB.Verify), as follows.
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TB.Setup(1κ)→ par: Accepts as input a security parameter κ and outputs public parameters par, which are
then implicitly provided as input to all other algorithms.

TB.KeyGen(n, t) → (pk, {pk1, . . . , pkn}, {sk1, . . . , skn}, aux): A probabilistic algorithm that accepts as input
the number of signers n and the threshold t and outputs the public key pk representing the set of all
signers, the set {pk1, . . . , pkn} of public keys representing each issuer, the set {sk1, . . . , skn} of secret
keys for each issuer, and additional auxiliary information aux.

The interaction between the user and a set of issuers S ⊆ [n], t ≤ |S| ≤ n, to sign a message m ∈ {0, 1}∗
with respect to pk is defined by the following experiment:

(stIi , pm
I
1,i)← TB.ISign1(i, ski, aux) , (stU , pmU

1 )← TB.USign1(pk, aux,m,S, {pmI
1,i}i∈S)

(stIi , pm
I
j,i)← TB.ISignj(i, st

I
i , pm

U
j−1) , (stU , pmU

j )← TB.USignj(st
U , {pmI

j−1,i}i∈S)

(pmI
r,i,S)← TB.ISignr(i, st

I
i , pm

U
r−1) , ⊥/σ ← TB.USignr(st

U , {pmI
r,i}i∈S) (3)

Note that in the last round, TB.ISignr also outputs S indicating that issuer i learns the set of issuers involved
in the signing protocol.

TB.Verify(pk, σ,m)→ {0, 1}: A deterministic algorithm that outputs a bit indicating if the signature is valid
with respect to the message and public key.

A threshold blind signature scheme is correct if for all allowable 1 ≤ t ≤ n, for all S ⊆ [n] such that
t ≤ |S| ≤ n, all messages m ∈ {0, 1}∗, and for (pk, {pk1, . . . , pkn}, {sk1, . . . , skn}, aux)←$ TB.KeyGen(n, t),
the experiment in (3) returns σ such that TB.Verify(pk, σ,m) = 1.

Distributed key generation.Our definition considers a centralized key generation algorithm TB.KeyGen
to generate the public key pk and set of shares {pki, ski}i∈[n]. However, our scheme and proofs can be adapted
to use a fully decentralized distributed key generation protocol, such as the Pedersen DKG [31].

One-More Unforgeability.We present a formal definition of unforgeability for threshold blind signatures
in Figure 1. Compared to the single-signer notion of unforgeability, the adversary is allowed to participate in
the signing protocol in the role of both user and issuer. The adversary is allowed to choose the parameters n
and t, as well as the set of corrupt issuers corrupt, not to exceed t−1. Key generation is then carried out in a
centralized manner with respect to these parameters. The adversary is given as input the public parameters
par, the joint public key pk representing the n issuers, the set of public key shares for each issuer {pki}i∈[n],
and the set of secret key shares for the corrupted issuers {ski}i∈corrupt. Additionally, the adversary is given
an auxiliary string aux. When playing the role of the user, the adversary can query the signing oracle OISignk

for each round k in the protocol, for any issuer i ∈ honest, session identifier sid, and protocol message pmU

of its choosing.

The adversary wins the one-more unforgeability game if it outputs a set of ℓ + 1 valid signatures with
respect to the joint public key pk, for messages of its choosing, where ℓ denotes the number of signatures
that are legitimately obtained by the adversary. For a particular signing set S and a session identifier sid,
there is at most one signature issued, contingent on the adversary completing the signing session with at
least one of the honest issuers.

Definition 6 (One-More Unforgeability). Let the advantage of an adversary A against the one-more
unforgeability game Gameomuf-t

A,TB (κ), as defined in Figure 1, be as follows:

Advomuf-t
A,TB (κ) = |Pr[Gameomuf-t

A,TB (κ) = 1]|

A threshold blind signature scheme TB satisfies one-more unforgeability if for all PPT adversaries A,
Advomuf-t

A,TB (κ) is negligible.

8



main Gameomuf-t
A,TB (κ)

par← TB.Setup(1κ)

ℓ← 0 // count total # of signing queries

S1, . . . , Sr ← ∅ // opened signing sessions

Sfin ← ∅ // finished signing sessions

(n, t, corrupt, stA)←$A(par)
return ⊥ if n < t or |corrupt| ≥ t

honest← [n] \ corrupt
(pk, {pki, ski}

n
1 , aux)←$ TB.KeyGen(n, t)

θ ← (pk, {pki}
n
1 , {ski}i∈corrupt, aux)

{(m∗
k, σ

∗
k)}k∈[ℓ+1]←$AOISign1,..,ISignr

(stA, θ)

// A must output ℓ + 1

// message/signature pairs

for all k ∈ [ℓ+ 1], i ∈ [ℓ+ 1], k ̸= i

return 0 if (m∗
k, σ

∗
k) = (m∗

i , σ
∗
i )

// ensure no duplicates

for all k ∈ [ℓ+ 1]

return 0 if TB.Verify(pk,m∗
k, σ

∗
k) ̸= 1

return 1

OISign1(i, sid)

return ⊥ if (i, sid) ∈ S1

S1 ← S1 ∪ {(i, sid)}

(stIi,sid, pm
I
1,i,sid)← TB.ISign1(ski, aux)

return pmI
1,i,sid

OISignj (i, sid, pmU
sid) // j ∈ {2, . . . , r}

return ⊥ if (i, sid) ̸∈ S1, . . . , Sj−1

// ensure prior rounds have been queried

return ⊥ if (i, sid) ∈ Sj

// ensure this round has not yet been queried

Sj ← Sj ∪ {(i, sid)}

// for signing round j < r

(stIi,sid, pm
I
j,i,sid)← TB.ISignj(st

I
i,sid, pm

U
sid)

// for the last signing round j = r

(pmI
r,i,sid,S)← TB.ISignr(st

I
i,sid, pm

U
sid)

// in the final round, issuers additionally

// output the signing set S
if (sid,S) ̸∈ Sfin then

Sfin ← Sfin ∪ {(sid,S)}
ℓ← ℓ+ 1

return pmI
j,i,sid

Fig. 1. The one-more unforgeability game for a threshold blind signature scheme. The dashed box appears only for
signing rounds 2 ≤ j < r, and the solid box appears only for signing round r. The public parameters par are implicitly
given as input to all algorithms.

Blindness.We now extend the definition of blindness (Fig. 9) to the threshold setting. The key difference
in the threshold blindness experiment is that the user interacts with multiple issuers, as opposed to a single
issuer. Hence, the adversary queries the oracle OUSign1 with a public key and two messages of its choosing.
Additionally, the adversary is allowed to choose disjoint signing sets S0,S1 ⊆ [n] and two sets of protocol
messages. Hence, the adversary could corrupt all issuers, not just a threshold number of them, and the
scheme should still preserve blindness. The blindness game for threshold blind signatures is specified in
Figure 2. Our scheme satisfies the stronger notion of perfect blindness, where the adversary’s advantage in
winning the blindness game is zero.

Definition 7 (Perfect Blindness). Let the advantage of an adversary A against the threshold blindness
game Gameblind-tA,TB (κ), as defined in Figure 2, be as follows:

Advblind-tA,TB (κ) = |Pr[Gameblind-tA,TB (κ) = 1]− 1/2|

A threshold blind signature scheme TB satisfies perfect blindness if for all PPT adversaries A, Advblind-tA,TB (κ) =
0.
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main Gameblind-tA,TB (κ)

par← TB.Setup(1κ)

S1, . . . , Sr ← ∅ // opened signing sessions

b←$ {0, 1}

b′←$AOUSign1,..,USignr
(par)

return 0 if b′ ̸= b

return 1

OUSign1(sid, pksid, auxsid,m0,sid,m1,sid,S0,sid,S1,sid, {pmI
0,i,sid}i∈S0,sid

, {pmI
1,i,sid}i∈S1,sid

)

// Si,sid ⊆ [n] is the set of signers chosen by A for signing session i ∈ {0, 1}.

return ⊥ if sid ∈ S1

S1 ← S1 ∪ {sid}

(stU0,sid, pm
U
0,1,sid)← TB.USign

(1)
1 (pksid, auxsid,mb,sid,S0,sid, {pmI

0,i,sid}i∈S0,sid)

(stU1,sid, pm
U
1,1,sid)← TB.USign

(2)
1 (pksid, auxsid,m1−b,sid,S1,sid, {pmI

1,i,sid}i∈S1,sid)

return (pmU
0,1,sid, pm

U
1,1,sid)

OUSignj (sid, {pmI
0,i,sid}i∈S0,sid

, {pmI
1,i,sid}i∈S1,sid

) // j ∈ {2, . . . , r}

return ⊥ if sid ̸∈ S1, . . . , Sj−1 // ensure prior rounds have been queried

return ⊥ if sid ∈ Sj // ensure this round has not yet been queried

Sj ← Sj ∪ {sid}

σb,sid (stU0,sid, pm
U
0,j,sid) ← TB.USign

(1)
j (stU0,sid, {pmI

0,i,sid}i∈S0,sid)

σ1−b,sid (stU1,sid, pm
U
1,j,sid) ← TB.USign

(2)
j (stU1,sid, {pmI

1,i,sid}i∈S1,sid)

return (⊥,⊥) if σ0,sid = ⊥ or σ1,sid = ⊥

return (σ0,sid, σ1,sid) (pmU
0,j,sid, pm

U
1,j,sid)

Fig. 2. The blindness game for a threshold blind signature scheme. The dashed boxes appear only for signing rounds
2 ≤ j < r, and the solid boxes appear only for signing round r. The public parameters par are implicitly given as
input to all algorithms.
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Setup(1κ)

(G, p, g)←$ GrGen(1λ)

h←$ G
Select Hsig : {0, 1}∗ → Zp

par← ((G, p, g, h),Hsig)

return par

KeyGen()

sk←$ Zp; pk← gsk

return (pk, sk)

Sign(sk,m)

r, y←$ Z∗
p; R← grhy

c← Hsig(pk,m,R)

z ← r + f(c, y) · sk
σ ← (R, z, y)

return σ

Verify(pk,m, σ)

parse (R, z, y)← σ

return 0 if y = 0

c← Hsig(pk,m,R)

return 0 if R · pkf(c,y) ̸= gzhy

return 1

Fig. 3. Our base (non-blind) signature scheme. We can instantiate it with any bivariate function f such that f(X, y)
is invertible for all y ∈ Z∗

p. The public parameters par are implicitly given as input to all algorithms.

4 Blind Signature Scheme BS

In this section, we present our construction of a blind signature scheme BS. We begin by constructing a
base (non-blind) scheme (Fig. 3), from which our blind signature scheme is derived. The base scheme can
be instantiated in two different ways, which are parameterized by a non-linear function f : Zp × Zp → Zp.
Explicitly, we consider two possibilities: f1(c, y) = c + y5 and f2(c, y) = cy. A signature is then given by
σ = (R, z, y), where

R = grhy and z = r + f(c, y) · sk

for c = Hsig(pk,m,R). We prove the EUF-CMA security in Appendix B. We then blind the base scheme by
replacing the Sign algorithm with an interactive protocol between an issuer running ISign and a user running
USign, wherein the issuer does not learn the message m. The signature size with either function f is one
group element plus two scalars, which is only one more scalar than a Schnorr signature [36].

Our blind signature scheme BS is specified in Figure 4. Of technical interest is the fact the security
reductions for the two parametrization options f1 and f2 use very different techniques, and yet achieve
identical efficiency and security assumptions.

The issuer in the blind protocol behaves identically for either function f . Initially, the issuer sends some
ga and gbhy for random a, b, y. The user returns a blinded challenge c. In the second round, the issuer returns
the opening (b, y) in the clear, and the response z = a+ f(c, y) · sk. This is described formally in Fig. 4.

The user in the blind protocol behaves slightly differently for f1 and f2. In Fig. 4, we show the corre-
sponding algorithms USign1 and USign2 for each function f . Let us informally describe the user for f1. In
USign1, the user computes a nonce and challenge as

R̄ = gr+α5a+α5βsk+αbhαy and c̄ = Hsig(pk,m, R̄)

blinded by the random values r, α, β. Note that, up to this point, the random value y is completely hidden
from the user. Thus, a malicious user is unable to include factors of gy

5

in the nonce R̄, preventing potential
ROS attacks. Now, the user returns c = c̄α−5 + β to the issuer, which is randomized by α and β. Then, in
USign2, upon receiving (z, b, y) the user sets

z̄ ← r + α5z + αb and ȳ = αy

11



where ȳ is randomized by α. Now z̄ is the unique value that satisfies the verifier’s equation given R̄, z̄. Thus,
the final signature σ = (R̄, z̄, ȳ) reveals no information about the session.

If instead f2 is used, in USign1 the user computes a nonce and challenge as

R̄ = gr+αβ−1a+αbhαy and c̄ = Hsig(pk,m, R̄)

blinded by the random values r, α, β. The user returns c = βc̄ to the issuer, which is randomized by β. Then,
in USign2, upon receiving (z, b, y) the user sets

z̄ ← r + αβ−1z + αb and ȳ = αy

where ȳ is randomized by α. Now z̄ is the unique value that satisfies the verifier’s equation given R̄, z̄. Thus,
the final signature (R̄, z̄, ȳ) reveals no information about the session. When we instantiate our blind signature
with f2, the scheme draws many parallels with [42]; however, the resulting signature is more efficient. We
show the correctness for both instantiations in Appendix C.

We prove that BS is perfectly blind and one-more unforgeable under the discrete logarithm assumption
in the AGM and the ROM. When f(c, y) = c + y5, correct simulation computes 5th roots, so these roots
must exist and be unique. We chose the power 5 in our construction for ease of exposition and because they
often exist in practice; however, our proofs hold for any prime p and power q < poly(κ) for which unique
roots exist (i.e., when gcd(q, p− 1) = 1).

Single use and secure state keeping.Our schemes require choosing values uniformly at random, and
require that these values be used strictly once; otherwise, all security is lost. Like many multi-round protocols,
this assumption requires secure state keeping. Our definitions model this state keeping via session identifiers,
and implementations of our schemes will similarly need to ensure secure state keeping, to prevent nonce
misuse.

4.1 One-More Unforgeability

To demonstrate the one-more unforgeability of BS, we introduce a three-round variant BSr3 (Fig. 5).
BS.Setup, BS.KeyGen and BS.Verify are identical in both schemes, but the signing protocols differ in two
ways. First, the user can additionally pick a scalar s that varies y generated by the signer. Second, z is sent
to the user in an additional round. We show that the unforgeability of BSr3 implies the unforgeability of
BS in Lemma 1. Indeed, the signing oracles in the one-more unforgeability game of BS can be simulated by
the signing oracles in the one-more unforgeability game of BSr3. We introduce BSr3 as an intermediate step
towards proving security for our threshold blind signature scheme Snowblind, presented in the next section.
The relationships between our blind and threshold blind constructions and the assumptions on which they
rely are outlined in Fig. 6.

Lemma 1. Let GrGen be a group generator. For any f ∈ {f1, f2}, and nay adversary A for the game
Gameomuf

A,BS[GrGen,f ] there exists an adversary B for the game Gameomuf
B,BSr3[GrGen,f ] making the same number of

oracle queries as A running in a similar running time as A such that

Advomuf
A,BS[GrGen,f ](κ) = Advomuf

B,BSr3[GrGen,f ](κ)

Proof. Let A be an adversary against the one-more unforgeability of the two-round protocol in Fig. 4. We
construct an adversary B against the one-more unforgeability of the three-round protocol in Fig. 5 as follows.
B has access to its own signing oracles, denoted by ÔISign1,ISign2,ISign3 . Upon receiving a challenge public

key pk, B runs AOISign1,ISign2
(pk). When A queries OISign1 , B queries ÔISign1 and receives (A,B), which it returns

to A. When A queries OSign2 on c, B queries its ÔISign2 oracle on (c, 0) to get (b, y). Next, B queries ÔSign3

and receives z. B returns (b, y, z) to A. When A returns a forgery {(mk, σk)}ℓ+1
k=1, B outputs the same forgery.

If A succeeds, then both A and B have made fewer than ℓ final-round queries, and B’s forgery also verifies.
Thus, Advomuf

A,BS[GrGen,f ](κ) = Advomuf
B,BSr3[GrGen,f ](κ). ⊓⊔
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BS.Setup(1κ)

(G, p, g)←$ GrGen(1κ); h←$ G
Select Hsig : {0, 1}∗ → Z∗

p

par← ((G, p, g, h),Hsig

return par

BS.KeyGen()

sk←$ Zp; pk← gsk

return (sk, pk)

BS.Verify(pk,m, σ)

parse (R̄, z̄, ȳ)← σ

c̄← Hsig(pk,m, R̄)

if ȳ = 0 or R̄ · pkf(c̄,ȳ) ̸= gz̄hȳ

return 0

return 1

BS.ISign(sk) BS.USign(pk,m)
a, b, ←$ Zp; y←$ Z∗

p

A← ga; B ← gbhy −−−−−−−−→
A,B

(stU , c)←$ USign1(pk,m,A,B)

z ← a+ f(c, y) · sk ←−−−−−−−−
c

−−−−−−−−→
z,b,y

return USign2(st
U , z, b, y)

f1(c, y)

return c+ y5

BS[f1].USign1(pk,m,A,B)

α←$ Z∗
p; r, β←$ Zp

R̄← grAα5

pkα
5βBα

c̄← Hsig(pk,m, R̄)

c← c̄α−5 + β

stU ← (R̄, r, α, β)

return (stU , c)

BS[f1].USign2(st
U , z, b, y)

return ⊥ if B ̸= gbhy

return ⊥ if gz ̸= Apkc+y5

stU ← (R̄, r, α, β)

z̄ ← r + α5z + αb; ȳ ← αy

σ ← (R̄, z̄, ȳ)

return ⊥ if BS.Verify(pk,m, σ) = 0

return σ

f2(c, y)

return c · y

BS[f2].USign1(pk,m,A,B)

α, β←$ Z∗
p; r←$ Zp

R̄← grAαβ−1

Bα

c̄← Hsig(pk,m, R̄)

c← βc̄

stU ← (R̄, r, α, β)

return (stU , c)

BS[f2].USign2(st
U , z, b, y)

return ⊥ if B ̸= gbhy

return ⊥ if gz ̸= Apkc·y

stU ← (R̄, r, α, β)

z̄ ← r + αβ−1z + αb; ȳ ← αy

σ ← (R̄, z̄, ȳ)

return ⊥ if BS2.Verify(pk,m, σ) = 0

return σ

Fig. 4. Top: The two-round blind signature scheme BS[GrGen, f ]. Bottom: Two ways of instantiating f and the
corresponding USign1,USign2. The power 5 may be replaced with any power q < poly(κ) for which gcd(q, p− 1) = 1.
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BSr3.ISign(sk) BSr3.USign(pk,m)
a, b, y←$ Zp

A← ga; B ← gbhy −−−−−−−−→
A,B

pick s ∈ Zp arbitrarily

←−−−−−−−−
c,s

(stU , c)←$ BS[f ].USign1(pk,m,A, h
sB)

−−−−−−−−→
b,y

←−−−−−−−−
⊥

z ← a+ f(c, y + s) · sk −−−−−−−−→
z

return BS[f ].USign2(st
U , z, b, y+ s)

Fig. 5. The signing protocol of blind signature scheme BSr3[f ], which is a three-round version of BS[f ]. Two instan-
tiations of f , BS[f ].USign1 and BS[f ].USign2 are shown in Fig. 4.

DL BS

Snowblind

BSr3
Thm. 1,2 (AGM+ROM) Lem. 1

Thm. 5 (ROM)

Fig. 6. Underlying assumptions for our blind and threshold blind signature constructions. DL denotes the Discrete
Logarithm problem, AGM denotes the Algebraic Group Model, and ROM denotes the Random Oracle Model.

We prove that BSr3 is one-more unforgeable under the discrete logarithm assumption in the Algebraic
Group Model (AGM) and Random Oracle Model (ROM) for both instantiations of f and provide proof
outlines here. The game models the hash function Hsig as a random oracle, which on each different input
outputs an uniformly random value over Z∗

p, and to which the adversary is given oracle access. The full
proofs can be found in Appendices D and E.

Theorem 1. Let GrGen be a group generator. For any algebraic adversary A for the game Gameomuf
A,BSr3[GrGen,f1]

making at most qS signing queries and qH queries to the random oracle, there exists adversaries B0,B1,B2
for the discrete logarithm problem running in a similar running time as A such that

Advomuf
A,BSr3[GrGen,f1](κ) ≤ qSAdv

dlog
B0,GrGen

(κ) + AdvdlogB1,GrGen
(κ)AdvdlogB2,GrGen

(κ) +
qS + 2 + 4qH + qSq

2
H

p

where p denotes the group size.

Proof Outline. Suppose the session id is from 1 to qS . For session id i ∈ [qS ], denote the output of OISign1

as (Ai, Bi), the input of OISign2 as (ci, si), the output of OISign2 as (bi, yi), and the output of OISign3 as zi.
An adversary A wins the one-more unforgeability game if it returns distinct forged signatures {(m∗

k, σ
∗
k =

(R̄∗
k, z̄

∗
k, ȳ

∗
k)}k∈[ℓ+1] satisfying the verification equation:

R̄∗
k = gz̄

∗
khȳ

∗
kpk−(c̄∗k+(ȳ∗

k)
5)

where c̄∗k = Hsig(pk,m
∗
k, R̄

∗
k). An algebraic adversary must also output a representation of each R̄∗

k:

R̄∗
k = gς

∗
khη

∗
kpkχ

∗
k

∏
i∈[qS ]

A
ρ∗
k,i

i B
τ∗
k,i

i .

To prove the theorem, we define a series of games, beginning with the one-more unforgeability game
Gameomuf

A,BSr3 and concluding with a game Game2 in which A wins if the following conditions hold: (1) ρ∗k,i = 0
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for each (Ai, Bi) queried in the first round with no corresponding (i, ci) query in the second round, and (2)
ȳ∗k satisfies the following equation:

ȳ∗k = η∗k +
∑

i∈[qS ]

yiτ
∗
k,i .

Intuitively, these conditions say that each R̄∗
k must have a representation over completed signing sessions

only and that R̄∗
k must commit to ȳ∗k. We show that if A wins Game2, its responses must satisfy a polynomial

expression in the secret key sk, and a reduction B2 can use this expression to compute sk with overwhelming
probability.

We first jump to a hybrid game Game1 in which condition (1) holds but not (2). To do this we design a
reduction B0 that randomly selects a signing query i′ ∈ [qS ] for which the condition fails, and can compute
the discrete logarithm of Ai′ with overwhelming probability. To jump from Game1 to Game2, we show that
if A wins Game1, its responses must satisfy a polynomial expression in the discrete logarithm ω of h, which
a reduction B1 can use to compute ω with overwhelming probability.

The most technical aspect of our proof is constructing the reduction B2. Indeed, we demonstrate that
whenever A wins Game2, then either B2 returns the secret key as

sk =
−ς∗k −

∑
i∈S3

(ziρ
∗
k,i + biτ

∗
k,i) + z̄∗k

χ∗
k + c̄∗k + (η∗k +

∑
i∈[qS ] yiτ

∗
k,i)

5 −
∑

i∈S3
(ci + (yi + si)5)ρ∗k,i

,

where S3 is defined in the game denoting the set of completed signing sessions, or the denominator is zero:

χ∗
k + c̄∗k + (η∗k +

∑
i∈[qS ]

yiτ
∗
k,i)

5 −
∑
i∈S3

(ci + (yi + si)
5)ρ∗k,i = 0 . (4)

We then proceed with a timing argument that shows Eq. (4) holds with probability less than the probability
that the one-dimensional ROS problem has a solution. The one-dimensional ROS problem is proven to be
statistically hard in [18, Lemma 2]. ⊓⊔

Theorem 2. Let GrGen be a group generator. For any algebraic adversary A for the game Gameomuf
A,BSr3[GrGen,f2]

making at most qS signing queries and qH queries to the random oracle, there exists adversaries B0,B1,B2
for the discrete logarithm problem running in a similar running time as A such that

Advomuf
A,BSr3[GrGen,f2](κ) ≤ qS · AdvdlogB0,GrGen

(κ) + AdvdlogB1,GrGen
(κ) + AdvdlogB2,GrGen

(κ) +
(qS + 1)(qH + qS + 1)2

p− 1

where p denotes the group size.

Proof Outline. We follow the same technique as f1 to construct B0,B1,B2 and switch to Game2 in which: (1)
ρ∗k,i = 0 for each (Ai, Bi) queried in the first round with no corresponding query for i in the third round,
and (2) ȳ∗k satisfies ȳ∗k = η∗k +

∑
i∈[qS ] yiτ

∗
k,i. In Game2 we can similarly show that either the reduction B2

returns the secret key sk, or

χ∗
k + c̄∗k(η

∗
k +

∑
i∈[qS ]

yiτ
∗
k,i)−

∑
i∈S3

ci(yi + si)ρ
∗
k,i = 0 . (5)

Our proof that Eq. (5) holds with negligible probability differs substantially from our proof for f1. Here,
we reduce it to a modified version of the WFROS problem [42] (Fig. 11) which is shown to be information-
theoretically hard in Lemma 2. The reduction and the hardness proof of the modified WFROS problem
follow from similar ideas from [42]. ⊓⊔

Remark 1. The main difference between the modified WFROS problem and the original WFROS game is
that the adversary is allowed to send an additional offset si in each query to OS (defined in Fig. 11), which
leads to an additional loss factor of qS in the advantage bound. However, this is because we are proving the
OMUF of the more complex three-round scheme BSr3 which is stronger than the OMUF of BS. In fact, we
can remove the qS factor and get the same bound as [42] for the OMUF advantage of BS[GrGen, f2].
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4.2 Blindness

The following two theorems establish the perfect blindness of BS[GrGen, f1] and BS[GrGen, f2]. (The proofs
are very similar.)

Theorem 3. Let GrGen be a group generator. Then, the blind signature scheme BS[GrGen, f1] is perfectly
blind.

Proof. Let A be an adversary playing GameblindA,BS[f1](κ) against the blind signature scheme as described in
Figure 4. Without loss of generality, we assume the randomness of A is fixed. As we prove perfect blindness,
we can focus on adversaries that only run one signing session, i.e., they use a single sid, as security for a more
general adversary follows by a standard hybrid argument. Further, we also assume that A always finishes
both signing sessions and receives valid signatures (σ0, σ1) from OUSign2 . (Otherwise, the output of OUSign1

are two blinded challenges which are both uniformly random over Zp, and blindness trivially holds.)
Let VA denote the set of all possible views of A that can occur after one single interaction with

OUSign1 ,OUSign2 . In particular, any such view ∆ ∈ VA takes form ∆ = (pk,m0,m1, T0, T1, σ0, σ1). Here,
σi = (R̄i, c̄i, z̄i, ȳi), where c̄i = Hsig(pk,mi, R̄i). (Note that c̄i is redundant here, and does not need to be
included, but it will make the argument easier.) Moreover, T0 and T1 are the signing protocol transcripts for
the left and right interactions, respectively, and take form Ti = (Ai, Bi, ci, zi, bi, yi). We need to show that
the distribution of the actual adversarial view, which we denote as vA, is the same when b = 0 and b = 1.
Because we assume the randomness of A is fixed, the distribution of vA only depends on the randomness
η = (r0, α0, β0, r1, α1, β1) required to respond to OUSign1 and OUSign2 queries, and we write vA(η) to make
this fact explicit.

Concretely, fix some ∆ ∈ VA. We now show that there exists a unique η that makes it occur, i.e,
vA(η) = ∆, regardless of whether we are in the b = 0 or in the b = 1 case. In particular, we claim that, in
both cases b = 0, b = 1, vA(η) = ∆ if and only if for i ∈ {0, 1}, η satisfies

ri = z̄ωi − ziα5
i − αibi

αi = ȳωi/yi

βi = ci − c̄ωi
α−5
i ,

(6)

where ω0 = b and ω1 = 1− b.
In the “only if” direction, from Figure 4, it is clear that when vA(η) = ∆, then η satisfies all constraints

in Equation 6.
To prove the “if” direction, assume that η satisfies all constraints in Equation 6. We need to show that

vA(η) = ∆. This means in particular verifying that the challenges output by OUSign1 are indeed (c0, c1) and
the signatures output by OUSign2 are indeed (σ0, σ1).

Note that because we only consider ∆’s that result in OUSign2 not producing output (⊥,⊥), for i ∈ {0, 1},
we have ȳi ̸= 0, as well as,

gzi = Aipk
ci+y5

i , Bi = gbihyi , R̄ωi = gz̄ωihȳωipk−c̄ωi
−ȳ5

ωi .

Therefore, using Equation 6,

R̄ωi = gri+ziα
5
i+αibihαiyipkα

5
i (βi−ci−y5

i )

= Bαi
i gri+ziα

5
i pkα

5
i (βi−ci−y5

i )

= griA
α5

i
i Bαi

i pkα
5
iβi .

Consequently, for i ∈ {0, 1}, OUSign1 outputs the challenge

α−5
i Hsig(pk,mωi

, griAα5
i pkα

5βiBαi) + βi = α−5
i Hsig(pk,mωi

, R̄ωi
) + βi = ci ,
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i.e., the two challenges are consistent with the view ∆. Furthermore, for i ∈ {0, 1}, the signatures (σ̃1, σ̃2)
output by OUSign2 are such that

σ̃ωi
= (griA

α5
i

i Bαi
i pkα

5
iβi , ri + α5

i zi + αibi, αiyi) = (R̄ωi
, z̄ωi

, ȳωi
) = σωi

,

i,.e., these are exactly the signatures from ∆. ⊓⊔

Theorem 4. Let GrGen be a group generator. Then, the blind signature scheme BS[GrGen, f2] is perfectly
blind.

The proof is very similar to that of Theorem 3, and we defer it to Appendix F.

5 Threshold Blind Signature Scheme Snowblind

Here we present Snowblind, an efficient threshold blind signature scheme (Fig. 7). Snowblind extends single-
party blind signing to the multi-issuer setting. In this setting, the user determines the signing set S, such
that t ≤ |S| ≤ n. The user plays the role of the coordinator of the protocol; each issuer interacts directly with
the user, and the user relays protocol messages between issuers for each round, for a total of three signing
rounds. At the end of the protocol, the user aggregates the signature shares received from each issuer and
publishes the resulting signature.

We provide a modular approach to proving the one-more unforgeability (OMUF) of Snowblind (Fig. 1).
Indeed, we are able to reduce the OMUF of Snowblind to the OMUF of our three-round blind signature
scheme BSr3 in Section 4, which more closely resembles the structure of Snowblind. We cannot directly
reduce to the OMUF of our more efficient two-round scheme BS because in the simulation, the BS adversary
might make more queries to its final-round signing oracle than the Snowblind adversary does, resulting in an
invalid forgery. Preventing the adversary from forging signatures when it only queries the preliminary rounds
is important in our asynchronous and concurrent model, where we can make no termination guarantees.

Concretely, we employ a centralized key generation mechanism, but, alternatively, a distributed key
generation protocol (DKG) could be used. The public parameters par generated during setup are provided
as input to all other algorithms and protocols. We assume some external mechanism to choose the set of
signers S ⊆ {1, . . . , n}, where t ≤ |S| ≤ n and S is ordered to ensure consistency. Snowblind additionally
makes use of a standard EUF-CMA-secure single-party signature scheme DS, used to authenticate messages
sent in the signing rounds.

Parameter Generation. On input the security parameter 1κ, the setup algorithm runs (G, p, g)←$ GrGen(1κ)
and selects a random group element h←$ G as well as two hash functions Hcm,Hsig : {0, 1}∗ → Zp. It
also runs the setup algorithm for a signature scheme parsig ← DS.Setup(1κ) used for authentication in
Signing Rounds 1 and 2. It outputs public parameters par← ((G, p, g, h),Hcm,Hsig, parsig).

Key Generation. On input the number of signers n and the threshold t, this algorithm first generates
the secret key sk←$ Zp and joint public key pk ← gsk. It then performs Shamir secret sharing of sk:
{(i, ski)}i∈[n]←$ Share(sk, n, t). It computes the corresponding public key for each participant as pki ←
gski . It then runs the key generation algorithm (p̂ki, ŝki) ← DS.KeyGen(). It sets aux ← {p̂ki}i∈[n]. To
guarantee identification of misbehaving issuers by verifying each issuer’s signature share (i.e., identifiable
abort), aux may additionally include the set of public key shares {pk1, . . . , pkn}. Finally, it outputs

(pk, {pki}i∈[n]{ski, ŝki}i∈[n], aux).

Signing Round 1. In the first round, the issuers compute a shared nonce A = ga and B = gbhy. On input a
signing set S determined by the user, each issuer i ∈ S, chooses random values ai, bi←$ Zp, yi←$ Z∗

p, com-

putes a commitment cmi ← Hcm(sid, i, yi) and two nonces Ai ← gai , Bi ← gbihyi , and outputs (Ai, Bi, cmi).
The user receives the set of all {(Aj , Bj , cmj)}j∈S , from which it computes the aggregate nonces A ←∏

j∈S Aj , B ←
∏

j∈S Bj . The user then computes the blinded challenge c←$ BS[f ].USign1(pk,m,A,B)
on the message m and outputs it together with the set of commitments {cmj}j∈S . Here BS[f ].USign1 is
the same algorithm as described for the non-threshold blind signature in Fig. 4.
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Snowblind.Setup(1κ)

(G, p, g)←$ GrGen(1κ); h←$ G
select two hash functions Hcm,Hsig : {0, 1}∗ → Z∗

p

parsig ← DS.Setup(1κ)

return par← ((G, p, g, h),Hcm,Hsig, parsig)

Snowblind.KeyGen(n, t)

sk←$ Zp; pk← gsk

{(i, ski)}i∈[n]←$ Share(sk, n, t)

// Shamir secret sharing of sk

for i ∈ [n] do

pki ← gski ; (p̂ki, ŝki)← DS.KeyGen()

aux← {p̂ki}i∈[n]

return (pk, {pki}i∈[n]{ski, ŝki}i∈[n], aux)

Snowblind.Verify(pk,m, σ)

parse (R̄, z̄, ȳ)← σ

c̄← Hsig(pk,m, R̄)

if ȳ = 0 or R̄ · pkf(c̄,ȳ) ̸= gz̄hȳ

return 0

return 1

Snowblind.ISign(i, ski, aux) Snowblind.USign(pk, aux,m,S)
parse {p̂ki}i∈[n] ← aux parse {p̂ki}i∈[n] ← aux
abort if i ̸∈ S ←−−−−−−−−

S
ai, bi←$ Zp; yi←$ Z∗

p

cmi ← Hcm(sid, i, yi)
Ai ← gai ; Bi ← gbihyi −−−−−−−−→

Ai,Bi,cmi

A←
∏

j∈S Aj , B ←
∏

j∈S Bj

msg← (sid,S, c, {cmj}j∈S) ←−−−−−−−−
c,{cmj}j∈S

(stU , c)←$ BS[f ].USign1(pk,m,A,B)

σi ← DS.Sign(ŝki,msg) −−−−−−−−→
bi,yi,σi

abort if ∃ j such that ←−−−−−−−−
{σj ,yj}j∈S

cmj ̸= Hcm(sid, j, yj) or

DS.Verify(p̂kj ,msg, σj) ̸= 1
y ←

∑
j∈S yj y ←

∑
j∈S yj

zi ← ai + f(c, y) · (λSi ski) −−−−−−−−→
zi

z =
∑

j∈S zj ; b←
∑

j∈S bj

(R̄, z̄, ȳ)← BS[f ].USign2(st
U , z, b, y)

return σ ← (R̄, z̄, ȳ)

Fig. 7. The signing protocol of the threshold blind signature scheme Snowblind[GrGen,DS, f ] derived from our blind
signature scheme BSr3[f ] (Fig. 5), where DS is an arbitrary EUF-CMA-secure digital signature scheme. sid denotes
the id of the signing session. Snowblind assumes an external mechanism to choose the set S ⊆ {1, . . . , n} of signers,
where t ≤ |S| ≤ n. S is required to be ordered to ensure consistency. Each issuer must respond to each round in
a session no more than once or else all security is lost. Implementations of our scheme should ensure secure state
keeping as described in our definitions.
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Signing Round 2. In the second round, the issuers jointly reveal b and y such that B = gbhy. On in-
put the set of commitments {cmj}j∈S and challenge c, each issuer i ∈ S forms the message msg =

(sid,S, c, {cmj}j∈S) and runs the signing algorithm σi ← DS.Sign(ŝki,msg), used to authenticate the
messages sent in Signing Rounds 1 and 2. Each issuer then outputs their committed values bi, yi and
signature σi.
The user receives the set of all {bj , yj , σj}j∈S and echoes {yj , σj}j∈S back to all parties in the signing
set.

Signing Round 3. In the third and final round, the issuers jointly compute z ← a+ f(c, y) · sk. On input
{(σj , yj)}j∈S , each issuer i first checks that the commitments received in the first round are valid, i.e.,
cmj = Hcm(sid, j, yj) for all j ∈ S and aborts if for some j, cmj ̸= Hcm(sid, j, yj). This ensures that no
malicious issuer can cancel out the honest contributions to y.
It then checks that all signatures σj verify: DS.Verify(p̂kj ,msg, σj) = 1 and aborts if not. The signature
ensures that the honest signing parties all agree on the shared y.
Otherwise, issuer i computes the aggregate y-value y ←

∑
j∈S yj . It then computes the value f(c, y)

according to the chosen base blind signature scheme (Fig. 4) and zi ← ai + f(c, y) · (λSi ski), where λSi
is the ith Lagrange coefficient corresponding to S. The Lagrange coefficients are computed as shown in
Eq. (1). Finally, the issuer outputs zi.
The user receives the set of all {zj}j∈S , from which it computes the aggregate z-value z ←

∑
j∈S zj and

y ←
∑

j∈S yj . The user then computes and outputs the blind signature σ ← BS[f ].USign2(z, b, y).

Verification. On input the joint public key pk, a message m, and a signature σ = (R̄, z̄, ȳ), the verifier

computes c← Hsig(pk,m, R̄) and accepts if R̄ · pkf(c̄,ȳ) = gz̄hȳ and ȳ ̸= 0.

Note that verification of the threshold signature σ is identical to verification of the single-party signatures
with respect to the aggregate nonce R̄ and joint public key pk.

Complexity Analysis.For a signing session between the user and a set of issuers S, each issuer sends two
group elements and one scalar in the first round, two scalars and one signature in the second round, and one
scalar in the third round. Therefore, the total communication complexity of each issuer is 2G + 4Zp + sig,
where G denotes a group element, Zp denotes a scalar, and sig denotes a signature of DS. The user sends the
set S in the first round, (1 + |S|) scalars in the second round, and |S| signatures and |S| scalars in the third
round. Therefore, the total communication complexity of the user is (2|S|+1)Zp+ |S|sig plus |S| log(n) bits.

For computation, the total computation complexity of each issuer is 3GExp + GMul + 3SMul plus one
signing operation and |S| verifications of DS, where GExp denotes one group exponentiation, GMul denotes
one group multiplication, and SMul denotes one scalar multiplication. The total computation complexity of
the user is 6GExp+ (2n+ 4)GMul+ 6SMul.

One-More Unforgeability.We reduce the OMUF of Snowblind to the OMUF of our three-round blind
signature defined in Fig. 5 and EUF-CMA security of the underlying signature scheme DS, which is formally
stated in the following theorem. The OMUF game models the hash functions Hcm and Hsig as random oracles,
to which the adversary is given oracle access.

Theorem 5. Let GrGen be a group generator and DS be a digital signature scheme. For any adversary A
for the game Gameomuf-t

Snowblind[GrGen,f,DS] making at most qS queries to OISign1 and qH queries to the random

oracles, there exists an adversary B for the game Gameomuf
BSr3[GrGen,f ] making at most qS queries to OISign1 and

qH queries to the random oracle running in a similar running time as A and an adversary C for the game
Gameeuf-cma

DS (Fig. 10) making at most qS queries to OSign running in a similar running time as A such that

Advomuf-t
A,Snowblind[GrGen,f,DS](κ) ≤ Advomuf

B,BSr3[GrGen,f ](κ) + Adveuf-cma
C,DS (κ) +

(2qS + qH + 1)(nqS + qH)

p− 1

where n denotes the number of signers and p denotes the group size.

Let us give some intuition behind the security reduction of Theorem 5. We design a reduction B that
takes as input a public key pk for the 3-round blind signature. B simulates the key generation process such
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that the threshold public key is equal to pk. The secret shares of the corrupt parties are chosen by B. The
secret keys of the honest parties are unknown by B, but B internally computes γk and δk so that pkk = pkγkgδk

for all k ∈ honest, where honest denotes the set of honest signers.
We then specify how B simulates the signature oracles in a manner which is statistically indistinguishable

from the real oracles. For simplicity of the explanation here, let us consider a signing session for S that
consists of only honest signers. In the first signing round, B embeds exactly one ÔISign1 response (Â, B̂) into

the messages from honest signers. For each i ∈ S, B sets Ai = Âγiλ
S
i gãi and Bi = B̂

1
|S| gb̃ihỹi , where ãi, b̃i, ỹi

are sampled randomly.
In the second signing round, B sets ŝ =

∑
i∈S ỹi, queries ÔISign2 on (c, ŝ), and receives b̂, ŷ. Then B sets

bi =
b̂
|S| + b̃i, yi =

ŷ
|S| + ỹi. It is easy to see that Bi = gbihyi .

In the third signing round B gets ẑ by querying ÔISign3 . Then B sets zi = λSi γiẑ + ãi + f(c, y)λSi δi, where
y =

∑
i∈S yi = ŷ + ŝ. It is not hard to see that zi is correct since ẑ = â+ f(c, ŷ + ŝ)sk and thus

gzi = g[λ
S
i γiâ+ãi]+[λS

i f(c,y)(γisk+δi)] = Ai · (pki)λ
S
i f(c,y) .

Proof (of Theorem 5). For A described in the theorem, we construct an adversary B for Gameomuf
BSr3 as follows.

B is responsible for simulating oracle responses for the three rounds of signing, and queries to Hcm and Hsig.

B may program Hcm and Hsig. B has access to its own random oracle, denoted by Ĥsig, and signing oracles,

denoted by ÔISign1 , ÔISign2 , and ÔISign3 , from Gameomuf
BSr3 . B cannot program Ĥsig because it is part of B’s

challenge. Let Qcm be the set of Hcm queries and their responses.
To start with, B receives as input group parameters G = (G, p, g) and a challenge public key pk issued by

the BSr3 OMUF game. B randomly samples h←$ G. Then, B initializes Qcm and SignQuery to empty sets
and also initializes S1, S2, S3 and ℓ as in Gameomuf-t

Snowblind.

Key Generation. After receiving (n, t, corrupt, stA) from A, assuming without loss of generality that
|corrupt| = t − 1, B simulates the key generation algorithm as follows. First, B sets the joint public key
pk← pk. B then simulates a Shamir secret sharing of the discrete logarithm of pk by performing the follow-
ing steps.

1. For all j ∈ corrupt, B samples a random value xj←$ Zp and defines the secret key as skj ← xj and
corresponding public key as pkj ← gxj .

2. To generate the public keys of the honest parties k ∈ honest = [n] \ corrupt, B proceeds as follows:
(a) For all i ∈ S̃ := corrupt ∪ {0}, it computes the Lagrange polynomials evaluated at point k: λ̃ki =

LS̃
i (k) =

∏
j∈S̃,j ̸=i

(j−k)
(j−i) .

(b) It takes the public keys of the corrupted parties
{
pkj
}
j∈corrupt

and the joint public key pk and com-

putes: pkk = pkλ̃k0
∏

j∈corrupt pk
λ̃kj

j . B internally sets γk ← λ̃k0 and δk ←
∑

j∈corrupt xjλ̃kj so that

pkk = pkγkgδk for all k ∈ honest.

3. For all i ∈ [n], B runs (p̂ki, ŝki)←$ DS.KeyGen().

B runs AOISign1,ISign2,ISign3 ,Hcm,Hsig(stA, pk, {pki}i∈[n], {skj, ŝkj}j∈corrupt, aux) where aux← {p̂ki}i∈[n]. B simulates
the oracles as follows. In the following, we use the same notations as the Snowblind protocol to denote
variables from the game Gameomuf-t

Snowblind. We use Â, B̂, b̂, ŷ, ẑ, ŝ to denote variables from the game Gameomuf
BSr3

and (̃·) to denote variables generated by B itself during the simulation.

Hash Queries. When A queries Hcm on (sid, i, y), B checks whether ((sid, i, y), cm) ∈ Qcm for some cm and,
if so, returns cm. Else, B samples cm←$ Zp, appends ((sid, i, y), cm) to Qcm, and returns cm.

When A queries Hsig on (pk,m,R), B returns c← Ĥsig(pk,m,R).

Signing Round 1 (OISign1 Queries). When A queries OISign1 on (i, sid,S), B returns ⊥ if (i, sid) ∈ S1 or
i ̸∈ S. If (sid,S) ∈ SignQuery, which means A has made a query (k, sid,S) for an honest party k ∈ honest∩S
for the same sid and S before, then B looks up the previously computed values (Ã

(sid,S)
i , B̃

(sid,S)
i , c̃m

(sid,S)
i ).
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Otherwise, B sets SignQuery ← SignQuery ∪ {(sid,S)}, creates a session id for the game Gameomuf
BSr3 as

sid
(sid,S)
BSr3 ← (i, sid), and queries ÔISign1 on sid

(sid,S)
BSr3 and receives a nonce pair (Â, B̂). Then, for each k ∈ honS ,

B samples ã
(sid,S)
k , b̃

(sid,S)
k ←$ Zp, ỹ

(sid,S)
k , c̃m

(sid,S)
k ←$ Z∗

p and computes

Ã
(sid,S)
k ← Âγkλ

S
k gã

(sid,S)
k , B̃

(sid,S)
k ← B̂

1
|honS| gb̃

(sid,S)
k hỹ

(sid,S)
k , s̃(sid,S) ←

∑
k∈honS

ỹ
(sid,S)
k

Finally, B sets Si,sid ← S, S1 ← S1 ∪ {(i, sid)}, and returns (Ai ← Ã
(sid,S)
i , Bi ← B̃

(sid,S)
i , cmi ← c̃m

(sid,S)
i ) to

A.

Signing Round 2 (OISign2 queries). When A queries OISign2 on (i, sid, c, {cmj}j∈S) where S = Si,sid, B
checks if (i, sid) ∈ S1, (i, sid) ̸∈ S2, and cmi = c̃m

(sid,S)
i and returns ⊥ if not. If B has not queried ÔISign2

for session id sid
(sid,S)
BSr3 , then, for each j ∈ S ∩ corrupt, B finds yj such that ((sid, j, yj), cmj) ∈ Qcm and sets

ŝ = s̃(sid,S) +
∑

j∈S∩corrupt yj . If there exists more than one such yj for some j, B aborts and we denote this
abort event as HashColl. If such yj does not exists for some j, B sets ŝ = 0 and we denote this event as

BadCm(sid,S). Then, B queries ÔISign2 on (sid
(sid,S)
BSr3 , (c, ŝ)) and receives b̂, ŷ. If B has queried ÔISign2 for session

id sid
(sid,S)
BSr3 , B retrieves b̂, ŷ from the previous query.

Then, B sets bi =
b̂

|honS | + b̃
(sid,S)
i , yi =

ŷ
|honS | + ỹ

(sid,S)
i and appends ((sid, i, yi), c̃m

(sid,S)
i ) to Qcm. If there

exists ((sid, i, yi), cm) ∈ Qcm such that cm ̸= c̃m
(sid,S)
i , B aborts and we denote the abort event as YColl.

If yi = 0, B aborts and we denote the abort event as YZero. Then, B sets msgi,sid ← (sid,S, c, {cmj}j∈S),

computes σi ← DS.Sign(p̂ki,msgi,sid), S2 ← S2 ∪ {(i, sid)}, and returns (bi, yi, σi).

Signing Round 3 (OISign3 queries). When A queries OISign3 on (i, sid, {σj , yj}j∈S) where S = Si,sid, B
retrieves (sid,S, c, {cmj}j∈S)← msgi,sid, checks

1. if (i, sid) ∈ S2 and (i, sid) ̸∈ S3 # Round 2 has completed but Round 3 has not completed yet.
2. if cmj = Hcm(sid, j, yj) for all j ∈ S # In Round 2, for all corrupt j the record ((sid, j, yj), cmj) does

exists.
3. if DS.Verify(pkj ,msgi,sid, σj) for all j ∈ S # All honest parties in S received the same (S, c, {cmj}j∈S)

for sid.

and returns ⊥ if not. If all the checks pass but BadCm(sid,S) occurs, B aborts and we denote this abort event
as ForgeCm. If all the checks pass but there exists k ∈ honS such that msgk,sid = ⊥ or msgk,sid ̸= msgi,sid, B
aborts and we denote this abort event as ForgeSig.

Otherwise, B gets ẑ by querying ÔISign3 on sid
(sid,S)
BSr3 if it has not done the query before. Else B recalls ẑ

from the previous query. Finally B returns zi ← λSi γiẑ + ã
(sid,S)
i + f(c, y)λSi δi, where y =

∑
i∈S yi.

Output. When A returns {(m∗
k, σ

∗
k)}k∈[ℓ+1], B then outputs {(m∗

k, σ
∗
k)}k∈[ℓ+1].

Analysis of B.To complete the proof, we show that (1) whenever A wins the game simulated by B, B also
wins; (2) if none of the abort events occurs, B simulates the game Gameomuf-t

Snowblind[GrGen,f,DS] perfectly; (3) B
only aborts with negligible probability.

(1) From the simulation, B makes at most one query to ÔISignI when A makes one query to OISignI

for I = 1, 2. Also, for each (sid,S), B makes at most one query to ÔISign3 if A make queries to OISign3

corresponding to (sid,S). Therefore, B at most makes qS queries to ÔISign1 and at most ℓ queries to ÔISign3 .
Also, it is clear B at most makes qH queries to Ĥsig.

Since B sets pk = pk and all random oracle queries to Hsig are forwarded to Ĥsig, each valid message-

signature pair for pk is also valid for pk in the game Gameomuf
BSr3[GrGen,f ]. Therefore, if A wins, B wins the

game Gameomuf
BSr3[GrGen,f ]. Denote Win as the event A wins Gameomuf-t

A,Snowblind(κ) simulated by B and Abort :=

YZero ∨ YColl ∨ HashColl ∨ ForgeCm ∨ ForgeSig, and we have Pr[Win ∧ (¬Abort)] ≤ Advomuf
B,BSr3[GrGen,f ] .

(2) It is clear that the key generation and signing round 1 are simulated perfectly. For signing round 2,

on a query for (i, sid,S), if B does not abort, we know yi and bi are computed correctly since Bi = B̃
(sid,S)
i =
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B̂
1

|honS| gb̃ihỹ
(sid,S)
i = g

b̂
|honS|+b̃ih

ŷ
|honS|+ỹ

(sid,S)
i = gbihyi . Also, since ỹi is randomly sampled from Zp and YZero

does not occur, we know yi is uniformly distributed in Z∗
p, which implies the simulation of signing round 2

is perfect. Also, given HashColl does not occur, the simulation of Hcm is perfect.

For signing round 3, on a query for (i, sid,S), we only need to show that if none of the abort events

occurs, then gzi = Aipk
f(c,y)λS

i

i . Since ForgeCm does not occur, we know for each j ∈ S ∩ corrupt, yj received
in round 3 is exactly the same as the one B finds in round 2. Since ForgeSig does not occur, we know for
each k ∈ honS , yk received in round 3 is exactly the one B computes in round 2. Therefore, we have

y =
∑

j∈S∩corrupt

yj +
∑

k∈honS

yk =
∑

j∈S∩corrupt

yj +
∑

k∈honS

(
ŷ

|honS |
+ ỹ

(sid,S)
k )

= ŷ +

s̃(sid,S) +
∑

j∈S∩corrupt

yj

 = ŷ + ŝ .

Since gẑ = Âpkf(c,ŷ+ŝ) and Ai = Ã
(i,sid)
i = ÂλS

i γigãi , we have

gzi = gλ
S
i γiẑ+ãi+f(c,y)λS

i δi = ÂλS
i γigãi+f(c,y)λS

i δipkf(c,ŷ+ŝ)λS
i γi

= ÂλS
i γigãi(pkγigδi)f(c,y)λ

S
i = Aipk

f(c,y)λS
i

i .

Therefore, B simulates the game Gameomuf
BSr3[GrGen,f ] perfectly if B does not abort, which implies

Advomuf-t
A,Snowblind[GrGen,f,DS](κ) ≤ Pr[Win ∧ (¬Abort)] + Pr[Abort]

(3) For YZero, since ỹi is randomly sampled from Zp indepedent of ŷ and the number ofOISign2 valid queries
is bounded by qS , we have Pr[YZero] ≤ qS

p . For YColl, since when yi is computed, given the view of A, ỹi is
uniformly distributed over Zp, which implies yi is uniformly distributed over Zp. Since |Qcm| ≤ nqS+qH , 6 the

probability that YColl occurs in one query is bounded by nqS+qH
p . Therefore, we have Pr[YColl] ≤ qS(nqS+qH)

p .

HashColl corresponds to the event that there exists sid, j, y, y′, cm such that j ∈ corrupt, ((sid, j, y), cm) ∈
Qcm, ((sid, j, y

′), cm) ∈ Qcm, and y ̸= y′. For each query (sid, j, y) to Hcm where j ∈ corrupt, since the number
of entries Qcm that corresponds to (sid, j) is bounded by qH , the probability that Hcm(sid, j, y) collides with
an existing entry in Qcm corresponds to (sid, j) is bounded by qH

p−1 . Since the number of such query is bounded

by qH , we have Pr[HashColl] ≤ q2H
p−1 .

If ForgeCm occurs, we know BadCm(sid,S) occurs for some (sid,S). Given the event BadCm(sid,S) occurs,
ForgeCm occurs during the OISign3 query corresponding to (sid,S) only if A makes a new query (sid, j, y) to

Hcm and gets back with cm where j and cm are fixed after BadCm(sid,S) occurs, the probability of which,
thus, is bounded by qH

p−1 . Therefore, Pr[ForgeCm] ≤ qSqH
p−1 .

Finally, the event that ForgeSig occurs implies A breaks EUF-CMA security of DS for some public key
p̂kk. Therefore, we can construct an adversary C for the game Gameeuf-cma

DS as follows. To start with, C
receives a public key p̂k

∗
from Gameeuf-cma

DS and runs A by simulating the game Gameeuf-cma
DS faithfully except

C randomly samples k∗←$ [n] \ corrupt and sets p̂kk∗ = p̂k
∗
. Whenever C need to generate a signature for

public key p̂kk∗ , C makes a query to OSign. C also maintains msgi,sid, which is defined in the construction of
B. Then, if ForgeSig occurs, there exists k ∈ [n] \ corrupt and sid such that A sends a signature for mk,sid

and public key p̂kk but never receives a signature for mk,sid before. Therefore, if k = k∗, C can win the game

Gameeuf-cma
DS . It is easy to see that C makes at most qS query to OSign. Since the probability that k = k∗ is

at least 1/n, we have Pr[ForgeSig] ≤ nAdveuf-cma
C,DS , which concludes the theorem. ⊓⊔

6 For each OISign2 query at most n entries are added, and for each Hcm query at most one entry is added.
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Blindness. The following theorem implies that our threshold scheme satisfies perfect blindness as long as
the underlying base scheme is perfectly blind. The proof proceeds by a straighforward simulation argument.

Theorem 6. For any GrGen, f , and DS, the scheme Snowblind[GrGen, f,DS] is perfectly blind if BS[GrGen, f ]
is perfectly blind.

Proof. The main idea is to show that for any adversary A playing against the threshold blindness game
as shown in Figure 2 instantiated with Snowblind, there exists an adversary B playing aginst the single-
party blindness game as shown in Figure 9 instantiated with BS such that Advblind-tA,Snowblind[GrGen,f,DS](κ) =

AdvblindB,BS[GrGen,f ](κ).
It is not hard to see, by a standard hybrid argument, that it suffices to look at adversaries A that only

query a single sid in Gameblind-tA,Snowblind(κ), i.e., they only attack a single session.

We construct B which has access to oracles ÔUSign1,USign2 and internally runs A by simulating the oracles
OUSign1,...,USign4 as follows. SupposeA starts a signing session by queryingOUSign1 on input (sid, pk, aux,m0,m1,
S0,S1). Since USign1 takes no issuer’s message as input and returns the signer set S, B simulates OUSign1 the
same as Gameblind-tSnowblind. For a query to OUSign2 on input (sid, {(A0,i, B0,i, cm0,i)}i∈S0 , {(A1,i, B1,i, cm1,i)}i∈S1),

B computes AI =
∏

i∈SI
AI,i and BI =

∏
i∈SI

BI,i for I ∈ {0, 1}, queries (c0, c1) ← ÔUSign1(sid, pk,m0,

m1, (A0, B0), (A1, B1)), and finally returns ((c0, {cm0,i}i∈S0
), (c1, {cm1,i}i∈S1

)). For a query to OUSign3 on in-
put (sid, {(b0,i, y0,i, σ0,i)}i∈S0

, {(b1,i, y1,i, σ1,i)}i∈S1
), B returns ({(σ0,i, y0,i)}i∈S0

, {(σ1,i, y1,i)}i∈S1
). For a query

to OUSign4 on input (sid, {z0,i}i∈S0 , {z1,i}i∈S1), B computes bI =
∑

i∈SI
bI,i, yI =

∑
i∈SI

yI,i, zI =
∑

i∈SI
zI,i

for I ∈ {0, 1} and returns ÔUSign2(sid, (z0, b0, y0), (z1, b1, y1)).
Finally, after A returns b′, B returns b′. It is clear that if b = I for I ∈ {0, 1} in the game GameblindBS , B

simulates the game Gameblind-tSnowblind for b = I perfectly. Therefore, B has the same advantage as A. ⊓⊔
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A Security Games of Blind Signatures

In Section 3.1, we give a high-level overview of the security properties required for a blind signature, namely
one-more unforgeability and blindness. Here, we give the exact experiments for these notions. We present
the one-more unforgeability experiment in Figure 8, and the blindness experiment in Figure 9.
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main Gameomuf
A,BS(κ)

par← BS.Setup(1κ)

ℓ← 0 // count # of signing queries

S1, . . . , Sr ← ∅ // opened signing sessions

(pk, sk)←$ BS.KeyGen()

{(m∗
k, σ

∗
k)}k∈[ℓ′]←$AOISign1,..,ISignr

(par, pk)

return 0 if ℓ′ < ℓ+ 1

// A must output at least ℓ + 1

// message/signature pairs

for all k ∈ [ℓ+ 1], i ∈ [ℓ+ 1], k ̸= i

return 0 if (m∗
k, σ

∗
k) = (m∗

i , σ
∗
i )

// ensure no duplicates

for all k ∈ [ℓ+ 1]

return 0 if BS.Verify(pk,m∗
k, σ

∗
k) ̸= 1

return 1

OISign1(sid)

return ⊥ if sid ∈ S1

S1 ← S1 ∪ {sid}

(stIsid, pm
I
1,sid)← BS.ISign1(sk)

return pmI
1,sid

OISignj (sid, pmU
sid) // j ∈ {2, . . . , r}

return ⊥ if sid ̸∈ S1, . . . , Sj−1

// ensure prior rounds have been queried

return ⊥ if sid ∈ Sj

// ensure this round has not yet been queried

Sj ← Sj ∪ {sid}

( stIsid , pmI
j,sid)← BS.ISignj(st

I
sid, pm

U
sid)

// stIsid not updated in Round r

ℓ← ℓ+ 1 // only in Round r

return pmI
j,sid

Fig. 8. The one-more unforgeability game for a blind signature scheme. The public parameters par are implicitly
given as input to all algorithms. Dashed boxes denote Rounds 2 to r − 1, and solid boxes denote Round r only.

B Security of Base (Non-Blind) Signature Scheme

In this section, we prove the security of our base non-blind signature scheme (Fig. 3). For completeness, we
first recall the standard definition of a digital signature scheme.

B.1 Definition of a Signature Scheme

Definition 8 (Digital Signature). A digital signature scheme over message space M is a tuple of the
following polynomial-time algorithms:

- par←$ Setup(κ): Setup is a probabilistic algorithm which takes as input the security parameter κ and
outputs the set of public parameters par (which are implicitly given as input to all other algorithms).

- (sk, pk)←$ KeyGen(): Key generation is a probabilistic algorithm which outputs a pair of signing/verification
keys (sk, pk).

- σ ← Sign(sk,m): The signing algorithm takes as input a secret signing key sk and a message m ∈ M
and outputs a signature σ.

- 0/1← Verify(pk,m, σ): Verification is a deterministic algorithm which takes as input a public verification
key pk, a message m ∈M, and a purported signature σ, and outputs either 0 (reject) or 1 (accept).

The main security requirements for a digital signature scheme is existential unforgeability against chosen
message attack (EUF-CMA), as shown in Figure Fig. 10.

Definition 9 (EUF-CMA). Let the advantage of an adversary A against the unforgeability game Gameeuf-cma
A,S (κ),

as defined in Figure 10, be as follows:

Adveuf-cma
A,S (κ) = Pr[Gameeuf-cma

A,S (κ) = 1]

A signature scheme S is unforgeable if for all PPT adversaries A, there exists a negligible function ν such
that Adveuf-cma

A,S (κ) < ν(κ).
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main GameblindA,BS(κ)

par← BS.Setup(1κ)

S1, . . . , Sr ← ∅
// opened signing sessions

b←$ {0, 1}

b′←$AOUSign1,..,USignr
(par)

return 0 if b′ ̸= b

return 1

OUSign1(sid, pksid,m0,sid,m1,sid, pm
I
0,sid, pm

I
1,sid)

return ⊥ if sid ∈ S1

S1 ← S1 ∪ {sid}

(stU0,sid, pm
U
0,sid)← BS.USign

(1)
1 (pksid,mb,sid, pm

I
0,sid)

(stU1,sid, pm
U
1,sid)← BS.USign

(2)
1 (pksid,m1−b,sid, pm

I
1,sid)

return (pmU
0,1,sid, pm

U
1,1,sid)

OUSignj (sid, pmI
0,sid, pm

I
1,sid) // j ∈ {2, . . . , r}

return ⊥ if sid ̸∈ S1, . . . , Sj−1

// ensure prior rounds have been queried

return ⊥ if sid ∈ Sj

// ensure this round has not yet been queried

Sj ← Sj ∪ {sid}

σb,sid (stU0,sid, pm
U
0,j,sid) ← BS.USign

(1)
j (stU0,sid, pm

I
0,sid)

σ1−b,sid (stU1,sid, pm
U
1,j,sid) ← BS.USign

(2)
j (stU1,sid, pm

I
1,sid)

return (⊥,⊥) if σ0,sid = ⊥ or σ1,sid = ⊥

return (σ0,sid, σ1,sid) (pmU
0,j,sid, pm

U
1,j,sid)

Fig. 9. The blindness game for a blind signature scheme. The public parameters par are implicitly given as input to
all algorithms. Dashed boxes denote Rounds 2 to r − 1, and solid boxes denote Round r only.

B.2 Unforgeability of Our Non-Blind Signature Scheme

We prove the EUF-CMA security of our non-blind signature scheme, which serves as a base for our blind
schemes, under the discrete logarithm assumption in the Algebraic Group Model. Standard techniques also
can be used to prove its unforgeability under DL in the Programmable Random Oracle Model. However, our
proof in the Algebraic Group Model more closely resembles the complex format of the security reduction for
our blind signature scheme.

Theorem 7. Let GrGen be a group generator that outputs G = (G, p, g), and let Hsig be a random oracle. The
signature scheme in Figure 3 is EUF-CMA secure under the discrete logarithm assumption in the Algebraic
Group Model with respect to G and Hsig.

We prove Theorem 7 in the Random Oracle Model with respect to a non-programmable random oracle
Hsig. We first transition to Game1, where if the adversary A returns a verifying signature σ = (R, z, y), then
R must commit to y. We then show that if A wins Game1, its responses must satisfy a polynomial expression
in the secret key sk. If Hsig(pk,m,R) is random, then a reduction B1 can use this expression to compute
sk with overwhelming probability. The security proof holds for any instantiation of f in which f(X, y) is
invertible for all y in Z∗

p.

Proof. (of Theorem 7) The algebraic adversary A takes as input the public parameters par = (G, p, g, h) as
well as the public key pk. If A returns a verifying (m∗, σ∗ = (R∗, z∗, y∗)) such that m∗ ̸∈ Q, it also outputs an
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main Gameeuf-cma
A,S (κ)

par← Setup(1κ)

QSign ← ∅
(pk, sk)←$ KeyGen()

(m∗, σ∗)←$AOSign

(pk)

return 0 if Verify(pk,m∗, σ∗) ̸= 1

or m∗ ∈ QSign

return 1

OSign(m)

σ ← Sign(sk,m)

QSign ← QSign ∪ {m}
return σ

Fig. 10. The EUF-CMA security game for a signature scheme. The public parameters par are implicitly given as
input to all algorithms.

algebraic representation of R∗. We argue that there exist reductions B1,B2 such that whenever A succeeds
in producing a forgery, B1 or B2 returns the solution to a discrete logarithm instance.

Adveuf-cma
A < AdvdlogB1

(κ) + AdvdlogB2
(κ) +

q2H
p

Gameeuf-cma 7→ Game1 : We transition to a game that is identical to the unforgability game except that
whenever A returns verifying (m∗, σ∗ = (R∗, z∗, y∗)) where R∗ has the algebraic representation

R∗ = gς
∗
hη

∗
pkχ

∗ ∏
i∈[qS ]

R
ρ∗
i

i

then A only wins if

y∗ = η∗ +
∑

i∈[qS ]

yiρ
∗
i

where qS is the number of signature queries A makes. We design a PPT reduction B1 such that

Adveuf-cma
A < AdvGame1

A (κ) + AdvdlogB1
(κ)

DL Input. B1 takes as input the discrete logarithm challenge h and aims to output ω such that h = gω.

Hash Queries. When A queries Hsig on (pk,m,R), B1 checks whether (pk,m,R, c) ∈ Qsig and, if so, returns
c. Else, B1 samples c←$ Zp, appends (pk,m,R, c) to Qsig, and returns c.

OSign Queries. When A queries OSign for the ith time on message mi, B1 computes the signature exactly
as in Gameeuf-cma. That is, B1 samples ri, yi←$ Zp and sets Ri ← grihyi . B makes an internal query on
Hsig(pk,mi, Ri), resulting in ci, and appends (mi, Ri, ci) to Qsig. B computes zi ← ri + f(ci, yi)sk, appends
(mi, Ri, zi, yi) to QSign, and returns (Ri, zi, yi).

Extracting the Discrete Logarithm Solution. B1 initializes the sets Q,QSign,Qsig to the empty set. B1
samples sk←$ Zp, sets pk ← gsk. Then, B1 runs A(pk). Suppose A terminates with (m∗, σ∗ = (R∗, z∗, y∗))

and that c∗ = Hsig(pk,m
∗, R∗). If A succeeds, then m∗ /∈ Q and R∗pkf(c

∗,y∗) = gz
∗
hy

∗
. A also outputs a

representation

R∗ = gς
∗
hη

∗
pkχ

∗ ∏
i∈[qS ]

R
ρ∗
i

i
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Then B1 computes

R∗ = gς
∗
hη

∗
pkχ

∗ ∏
i∈[qS ]

(grihyi)ρ
∗
i

Now because R∗pkf(c
∗,y∗) = gz

∗
hy

∗
, we have that

ς∗ + ωη∗ + skχ∗ +
∑

i∈[qS ]

(ri + ωyi)ρ
∗
i = z∗ + yy∗ − skf(c∗, y∗)

and

ω =
−ς∗ − skχ∗ −

∑
i∈[qS ] riρ

∗
i + z∗ − skf(c∗, y∗)

η∗ − y∗ +
∑

i∈[qS ] yiρ
∗
i

Thus, B1 returns ω provided that this denominator is nonzero, i.e., y∗ ̸= η∗ +
∑

i∈[qS ] yiρ
∗
i .

Game1 7→ dlog : We now design a PPT reduction B2 such that

AdvGame1
A < AdvdlogB2

(κ) +
q2H
p

DL Input. B2 takes as input the discrete logarithm challenge pk and aims to output sk such that pk = gsk.

Hash Queries. When A queries Hsig on (pk,m,R), B2 checks whether (pk,m,R, c) ∈ Qsig and, if so, returns
c. Else, B2 samples c←$ Zp, appends (pk,m,R, c) to Qsig, and returns c.

OSign Queries. When A queries OSign for the ith time on message mi, B2 samples zi, yi, ci←$ Zp and sets

Ri ← gzihyipk−f(ci,yi). (Note that ci is sampled uniformly at random, so does not constitute programming
the random oracle Hsig.) B2 appends (mi, Ri, ci) to Qsig, (mi, Ri, zi, yi) to QSign, and returns (Ri, zi, yi).

Extracting the Discrete Logarithm Solution. B2 initializes the sets Q,QSign,Qsig to the empty set. B2
samples ω←$ Zp and sets h← gω. Then, B2 runs A(pk). Suppose A terminates with (m∗, σ∗ = (R∗, z∗, y∗))

and that c∗ = Hsig(pk,m
∗, R∗). If A succeeds, then m∗ /∈ Q and R∗pkf(c

∗,y∗) = gz
∗
hy

∗
. A also outputs a

representation

R∗ = gς
∗
hη

∗
pkχ

∗ ∏
i∈[qS ]

R
ρ∗
i

i

Then B2 computes

R∗ = gς
∗
hη

∗
pkχ

∗ ∏
i∈[qS ]

(gzihyipk−f(ci,yi))ρ
∗
i

Now because R∗pkf(c
∗,y∗) = gz

∗
hy

∗
, we have that

ς∗ + ωη∗ + skχ∗ +
∑

i∈[qS ]

(zi + ωyi − skf(ci, yi))ρ
∗
i = z∗ + ωy∗ − skf(c∗, y∗)

and

sk =
z∗ + ωy∗ − ς∗ − ωη∗ −

∑
i∈[qS ](zi + ωyi)ρ

∗
i

χ∗ + f(c∗, y∗)−
∑

i∈[qS ] f(ci, yi)ρ
∗
i

Thus, B2 returns sk provided that this denominator is nonzero. Recall that for fixed y∗ there exists an inverse
function ψ such that ψ(f(X, y∗)) = X. All variables χ∗, {ci, ρ∗i }i∈[qS ], y

∗ are fully determined at the point
when c∗ is randomly selected, so the probability that

c∗ = ψ(−χ∗ +
∑

i∈[qS ]

f(ci, yi)ρ
∗
i )

is 1/p. Since the adversary can make no more than qH queries to Hsig, the probability that this holds is
bounded by q2H/p. This completes the proof of Theorem 7.
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C Correctness Proofs

C.1 Correctness of BS[f1]

The signature output by the signing protocol is σ = (R̄, z̄, ȳ) for the message m, where R̄ = grAα5

pkα
5βBα

using (A,B) output from the first round and z̄ = r+α5z+αb, ȳ = αy using (z, b, y) output from the second
round. Denote c̄ = Hsig(pk,m, R̄). Since z = a+ (c+ y5)sk and c = α−5c̄+ β, we check:

R̄pkc̄+ȳ5 ?
= gz̄hȳ

grAα5

pkα
5βBαpkc̄+ȳ5 ?

= gr+α5z+αbhαy

grgaα
5

gskα
5β(gbhy)αgskc̄+skα5y5 ?

= gr+α5(a+(c+y5)sk)+αbhαy

gr+aα5+skα5β+bα+skc̄+skα5y5

hαy
?
= gr+α5(a+(c̄α−5+β+y5)sk)+αbhαy

gr+aα5+skα5β+bα+skc̄+skα5y5

hαy = gr+α5a+skc̄+α5skβ+α5sky5+αbhαy

Since the verification equation holds, BS[f1] is correct.

C.2 Correctness of BS[f2]

The signature output by the signing protocol is σ = (R̄, z̄, ȳ) for the message m, where R̄ = grAαβ−1

Bα

using (A,B) output from the first round and z̄ = r + αβ−1z + αb, ȳ = αy using (z, b, y) output from the
second round. Denote c̄ = Hsig(pk,m, R̄). Since z = a+ cysk and c = βc̄, we check:

R̄pkc̄ȳ
?
= gz̄hȳ

grAαβ−1

Bα ?
= gr+αβ−1z+αbhαy

grgaαβ
−1

(gbhy)αgskc̄αy
?
= gr+αβ−1z+αbhαy

gr+aαβ−1+bα+skc̄αyhαy
?
= gr+αβ−1z+αbhαy

gr+aαβ−1+bα+skc̄αyhαy = gr+aαβ−1+bα+skc̄αyhαy

Since the verification equation holds, BS[f2] is correct.

D Security of Three-Round Blind Signature Scheme BSr3[f1]

We prove that the one-more unforgeability of our three-round blind signature scheme BSr3 can be reduced to
the discrete logarithm assumption in the Algebraic Group Model (AGM) and Random Oracle Model (ROM).
Our proof is given with respect to a non-programmable random oracle Hsig. We make use of a theorem by
[17] regarding the statistical unlikelihood of solving a one-dimensional ROS problem. In our case, this leads
to a tightness loss of qSq

2
H/p.

Proof. (of Theorem 1) The algebraic adversary A takes as input the public parameters G = (G, p, g, h) as
well as the public key pk. If A returns verifying {(m∗

k, σ
∗
k = (R̄∗

k, z̄
∗
k, ȳ

∗
k))}k∈[ℓ+1], it also outputs an algebraic

representation for each R̄∗
k. We argue that there exist reductions B0,B1,B2 such that whenever A succeeds in

producing a one-more forgery, one of these reductions returns the solution to a discrete logarithm instance.

Game0 7→ Game1 : We first transition to a game in which whenever A returns verifying (m∗
k, σ

∗
k =

(R̄∗
k, z̄

∗
k, ȳ

∗
k)) where R̄

∗
k has the algebraic representation

R̄∗
k = gς

∗
khη

∗
kpkχ

∗
k

∏
i∈[qS ]

A
ρ∗
k,i

i B
τ∗
k,i

i
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then A only wins if ρ∗k,i = 0 for each (Ai, Bi) responses in the first round with no corresponding (i, 3, ·) query
in the third round.

Suppose A makes qS queries to OISign1 in the first round. We design a PPT reduction B0 such that

AdvGame0
A < AdvGame1

A (λ) + qSAdv
dlog
B0

(λ)

DL Input. B0 takes as input the discrete logarithm challenge A and aims to output a such that A = ga. B
samples i′←$ [qS ] and sets Ai′ ← A.

Hash Queries. When A queries Hsig on (pk,m, R̄), B0 checks whether (pk,m, R̄, c̄) ∈ Qsig and, if so, returns
c̄. Else, B0 samples c̄←$ Zp, appends (pk,m, R̄, c̄) to Qsig, and returns c̄.

OISign1 Queries. When A queries OISign1 for the ith time, i ̸= i′, B0 samples ai, bi, yi, sidi←$ Zp and sets
Ai ← gai , Bi ← gbihyi . B adds (sidi, ai, bi, yi) to QSign and returns (sidi, Ai, Bi). For the i

′th query, B0 samples
bi′ , yi′ , sid

′←$ Zp and sets Bi′ ← gbi′hyi′ . B0 adds (sid′, Ai′ , bi′ , yi′) to QSign and returns (sid′, Ai′ , Bi′).

OISign2 Queries. When A queries OISign2 on (i, 2, ci, si), if i ̸= i′ then lookup (sidi, ai, bi, yi) ∈ QSign. If this
is the first second round query on i then set zi = ai + (ci + (yi + si)

5)sk and add (sidi, zi) to Q
′
Sign. Return

(bi, yi).
If i = i′ then lookup (sid′, Ai′ , bi′ , yi′) ∈ QSign and return (bi′ , yi′).

OISign3 Queries. When A queries OISign3 on (i, 3, ·), if i = i′ then B0 aborts. Else B0 looks up (sidi, zi) ∈ Q′
Sign

and returns zi.

Extracting the Discrete Logarithm Solution. B0 initializes st to the empty set. B0 samples sk, ω←$ Zp,
sets pk ← gsk, h ← gω and pk ← pk. Then, B0 runs A(pk). Suppose A terminates with {(m∗

k, σ
∗
k =

(R̄∗
k, z̄

∗
k, ȳ

∗
k))}k∈[ℓ+1] and that c̄∗k = Hsig(pk,m

∗
k, R̄

∗
k) for all k. Then A outputs a representation

R̄∗
k = gς

∗
khη

∗
kpkχ

∗
k

∏
i∈[qS ]

A
ρ∗
k,i

i B
τ∗
k,i

i

If A succeeds, then R̄∗
kpk

c̄∗k+(ȳ∗
k)

5

= gz̄
∗
khȳ

∗
k and we have the alternative representation

R̄∗
k = gz̄

∗
k+ωȳ∗

k−sk(c̄∗k+(ȳ∗
k)

5)

From A’s representation we have that

R̄∗
k = Ag

ς∗k+ωη∗
k+skχ∗

k+
∑

i∈[qS ],i ̸=i′ aiρ
∗
k,i+

∑
i∈qS

τ∗
k,i(bi+yiω)

Then B0 substitutes

θ = ai′ρ
∗
k,i′ =

(
z̄∗k + ωȳ∗k − sk(c̄∗k + (ȳ∗k)

5)
)
−

ς∗k + ωη∗k + skχ∗
k +

∑
i∈[qS ],i̸=i′

aiρ
∗
k,i +

∑
i∈qS

τ∗k,i(bi + yiω)


and returns θ/ρ∗k,i′ . Thus, B0 returns ai′ provided that this denominator is nonzero, i.e., ρ∗k,i′ ̸= 0. Note that
B0 simulates the game correctly except in round three if A makes a query (i′, 3). B0 aborts if A guesses i′,
which occurs with probability 1/qS .

Game1 7→ Game2 : We second transition to a game in which whenever A returns verifying (m∗
k, σ

∗
k =

(R̄∗
k, z̄

∗
k, ȳ

∗
k)) where R̄

∗
k has the algebraic representation

R̄∗
k = gς

∗
khη

∗
kpkχ

∗
k

∏
i∈[q′S ]

A
ρ∗
k,i

i B
τ∗
k,i

i
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then A only wins if

ȳ∗k = η∗k +
∑

i∈[q′S ]

yiτ
∗
k,i

where q′S is the number of queries A makes to OISign3 in the third round. We design a PPT reduction B1
such that

AdvGame1
A < AdvGame2

A (λ) + AdvdlogB1
(λ)

DL Input. B1 takes as input the discrete logarithm challenge h and aims to output ω such that h = gω.

Hash Queries. When A queries Hsig on (pk,m, R̄), B1 checks whether (pk,m, R̄, c̄) ∈ Qsig and, if so, returns
c̄. Else, B1 samples c̄←$ Zp, appends (pk,m, R̄, c̄) to Qsig, and returns c̄.

OISign1 Queries. When A queries OISign1 for the ith time, B1 samples sidi, ai, bi, yi←$ Zp and sets Ai ←
gai , Bi ← gbihyi . B1 appends (sidi, Ai, Bi) to QSign and returns (sidi, Ai, Bi).

OISign2 Queries. When A queries OISign2 for the ith time on (i, 2, ci, si), then lookup (sidi, ai, bi, yi) ∈ QSign.
If this is the first second round query on i then set zi = ai + (ci + (yi + si)

5)sk and add (sidi, zi) to Q′
Sign.

Then B1 returns (bi, yi).

OISign3 Queries. When A queries OISign3 on (i, 3, ·) then B1 looks up (sidi, zi) ∈ Q′
Sign and returns zi.

Extracting the Discrete Logarithm Solution. B1 initializes the setsQSign, Q
′
Sign,Qsig to the empty set. B1

samples sk←$ Zp, sets pk← gsk and pk← pk. Then, B1 runs A(pk). Suppose A terminates with {(m∗
k, σ

∗
k =

(R̄∗
k, z̄

∗
k, ȳ

∗
k))}k∈[ℓ+1] and that c̄∗k = Hsig(m

∗
k, R̄

∗
k) for all k. If A succeeds, then R̄∗

kpk
c̄∗k+(ȳ∗

k)
5

= gz̄
∗
khȳ

∗
k and A

outputs a representation

R̄∗
k = gς

∗
khη

∗
kpkχ

∗
k

∏
i∈[q′S ]

A
ρ∗
k,i

i B
τ∗
k,i

i

Then B1 substitutes

R̄∗
k = gς

∗
khη

∗
kpkχ

∗
k

∏
i∈[q′S ]

gaiρ
∗
k,i(gbihyi)τ

∗
k,i

Now because R̄∗
kpk

c̄∗k+(ȳ∗
k)

5

= gz̄
∗
khȳ

∗
k , we have that

ς∗k + ωη∗k + skχ∗
k +

∑
i∈[q′S ]

(aiρ
∗
k,i + biτ

∗
k,i + ωyiτ

∗
k,i) = z̄∗k + ωȳ∗k − sk(c̄∗k + (ȳ∗k)

5)

and

ω =
−ς∗k − skχ∗

k −
∑

i∈[q′S ](aiρ
∗
k,i + biτ

∗
k,i) + z̄∗k − sk(c̄∗k + (ȳ∗k)

5)

η∗k +
∑

i∈[q′S ] yiτ
∗
k,i − ȳ∗k

Thus, B1 returns ω provided that this denominator is nonzero, i.e., ȳ∗k ̸= η∗k +
∑

i∈[q′S ] yiτ
∗
k,i.

Game2 7→ dlog : We are now ready for the main and final argument of the proof, where we design a PPT
reduction B2 such that

AdvGame2
A < AdvdlogB2

(λ) +
qS + 2 + 4qH + qSq

2
H

p

DL Input. B2 takes as input the discrete logarithm challenge pk and aims to output sk such that pk = gsk.

Hash Queries. When A queries Hsig on (pk,m, R̄), B2 checks whether (pk,m, R̄, c̄) ∈ Qsig and, if so, returns
c̄. Else, B2 samples c̄←$ Zp, appends (pk,m, R̄, c̄) to Qsig, and returns c̄.
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OISign1 Queries. When A queries OISign1 for the ith time, B2 samples zi, v̄i, w̄i, sidi←$ Zp and sets Ai ←
gzipk−v̄i and Bi ← gw̄i . B2 appends (sidi, Ai, Bi, zi, v̄i, w̄i) to QSign, and returns (sidi, Ai, Bi).

OISign2 Queries. When A queries OISign2 for the ith time on (i, 2, ci, si), then lookup (sidi, Ai, Bi, zi, v̄i, w̄i) ∈
QSign. If this is the first second round query on i then B2: (i) computes yi ← (v̄i− ci)1/5− si, bi ← w̄i− yiω;
(ii) appends (sidi, zi, bi, yi) to Q′

Sign; and (iii) returns (bi, yi). Else B2 looks up (sidi, zi, bi, yi) ∈ Q′
Sign and

returns (bi, yi)

OISign3 Queries. When A queries OISign3 on (i, 3, ·) then B1 looks up (sidi, zi, bi, yi) ∈ Q′
Sign and returns zi.

Extracting the Discrete Logarithm Solution. B2 initializes the sets Qsig, QSign, Q
′
Sign to the empty set.

B2 samples ω←$ Zp, sets h← gω and pk← pk. Then, B2 runs A(pk). Suppose A terminates with {(m∗
k, σ

∗
k =

(R̄∗
k, z̄

∗
k, ȳ

∗
k))}k∈[ℓ+1] and that c̄∗k = Hsig(m

∗
k, R̄

∗
k) for all k. If A succeeds, then R̄∗

kpk
c̄∗k+(ȳ∗

k)
5

= gz̄
∗
khȳ

∗
k and A

outputs a representation

R̄∗
k = gς

∗
khη

∗
kpkχ

∗
k

∏
i∈[q′S ]

A
ρ∗
k,i

i B
τ∗
k,i

i

such that

ȳ∗k = η∗k +
∑

i∈[q′S ]

yiτ
∗
k,i (7)

Then B2 substitutes

R̄∗
k = gς

∗
khη

∗
kpkχ

∗
k

∏
i∈[q′S ]

(gzipk−v̄i)ρ
∗
k,i(gw̄i)τ

∗
k,i

= gς
∗
khη

∗
kpkχ

∗
k

∏
i∈[q′S ]

(gzipk−(ci+(yi+si)
5))ρ

∗
k,i(gbihyi)τ

∗
k,i

Now because R̄∗
kpk

c̄∗k+(ȳ∗
k)

5

= gz̄
∗
khȳ

∗
k , we have that

ς∗k + ωη∗k + skχ∗
k +

∑
i∈[q′S ]

(ziρ
∗
k,i − sk(ci + (yi + si)

5)ρ∗k,i + biτ
∗
k,i + ωyiτ

∗
k,i)

= z̄∗k + ωȳ∗k − sk(c̄∗k + (ȳ∗k)
5)

Substituting Equation 7 for ȳ∗k, we have

ς∗k + skχ∗
k +

∑
i∈[q′S ]

(ziρ
∗
k,i − sk(ci + (yi + si)

5)ρ∗k,i + biτ
∗
k,i)

= z̄∗k − sk(c̄∗k + (η∗k +
∑

i∈[q′S ]

yiτ
∗
k,i)

5)

and

sk =
−ς∗k −

∑
i∈[q′S ](ziρ

∗
k,i + biτ

∗
k,i) + z̄∗k

χ∗
k + c̄∗k + (η∗k +

∑
i∈[q′S ] yiτ

∗
k,i)

5 −
∑

i∈[q′S ](ci + (yi + si)5)ρ∗k,i

Thus, B2 returns sk provided that this denominator is nonzero.

Claim. There exists k such that

Pr

c̄∗k ̸=
∑

i∈[q′
S

]

ρ
∗
k,i((yi + si)

5
+ ci) −

(
η
∗
k +

∑
i∈[q′

S
]

τ
∗
k,iyi

)5

− χ
∗
k

 ≤
ℓ + 2 + 4qH + qSq2H

p
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Proof. We shall show this holds by considering four cases regarding the relation between nonzero values of
τ∗k,i and the timing of when (i, ci, si) is queried.

Case 1. There exists k such that for all i with τ∗k,i ̸= 0, A has queried (i, 2, ci, si) to OISign2 before Hsig selects
c̄∗k.

In this case, we see directly that

Pr

c̄∗k ̸= ∑
i∈[q′S ]

ρ∗k,i((yi + si)
5 + ci)−

(
η∗k +

∑
i∈[q′S ]

τ∗k,iyi

)5

− χ∗
k

 ≤ qH
p

because all variables ρ∗k,i, η
∗
k, τ

∗
k,i, χ

∗
k and (ci, si, yi) are fully determined at the point when c̄∗k is randomly

selected.

Case 2. There exist k, i such that τ∗k,i ̸= 0 and such that (i, 2, ci, si) has not been queried to OISign2 before
Hsig selects c̄∗k. Additionally, there exist at least two indices i′ and i′′ such that τ∗k,i′ ̸= 0 and τ∗k,i′′ ̸= 0.

In this case, we will show that

Pr

c̄∗k ̸= ∑
i∈[q′S ]

ρ∗k,i((yi + si)
5 + ci)−

(
η∗k +

∑
i∈[q′S ]

τ∗k,iyi

)5

− χ∗
k

 ≤ 2

p

Suppose

c̄∗k =
∑

i∈[q′S ]

ρ∗k,i((yi + si)
5 + ci)−

(
η∗k +

∑
i∈[q′S ]

τ∗k,iyi

)5

− χ∗
k

and that (i′, ci′ , si′) is the last query such that τ∗k,i′ ̸= 0. By the case assumption, c̄∗k is determined before
ci′ , si′ . Then the polynomial

f(Z) = c̄∗k −
∑
i ̸=i′

ρ∗k,i((yi + si)
5 + ci)− ρ∗k,i′((Z + si′)

5 + ci′) +

(
η∗
k +

∑
i̸=i′

τ∗
k,iyi + τ∗

k,i′Z

)5

+ χ∗
k

evaluates to 0 at yi′ . The probability of this happening if f ̸≡ 0 is 1/p because yi′ is completely hidden from
the user. If f ≡ 0, then using binomial expansion, this implies

5ρ∗k,i′si′ = 5(τ∗k,i′)
4(η∗k +

∑
i ̸=i′

τ∗k,iyi)Z
4 (8)

ρ∗k,i′Z
5 = (τ∗k,i′)

5Z5 (9)

Since τ∗k,i′ ̸= 0, Equation 8 implies

si′τk,i′ = η∗k +
∑
i ̸=i′

τ∗k,iyi

Note that Equation 9 implies ρ∗k,i′ ̸= 0.

Let (i′′, 2, ci′′) be another query made to OISign2 such that τ∗k,i′′ ̸= 0. Then si′ is fixed before yi′′ is sampled
and the polynomial

f ′(Z) = −si′τk,i′ + η∗k +
∑

i ̸=i′,i′′

τ∗k,iyi + τ∗k,i′′Z

evaluates to 0 at yi′′ . The probability of this happening if f ′ ̸≡ 0 is 1/p because yi′′ is completely hidden
from the user. If f ′ ≡ 0, then τ∗k,i′′ = 0.
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Case 3. For all k, there exists exactly one i′ such that τ∗k,i′ ̸= 0 and (i′, 2, ci′ , si′) has not been queried to

OISign2 before Hsig selects c̄∗k. Additionally, there exist i, j, k such that τ∗j,i, τ
∗
k,i ̸= 0 and (i, 2, ci, si) has not

been queried to OISign2 before Hsig selects c̄∗j and c̄∗k.

Let Eℓ be the event

c̄∗ℓ ̸=
∑

ξ∈[q′S ]

ρ∗ℓ,ξ((yξ + sξ)
5 + cξ)−

(
η∗ℓ +

∑
ξ∈[q′S ]

τ∗ℓ,ξyξ

)5

− χ∗
ℓ

In this case, we will show that

Pr [Ej ∨ Ek] ≤
2qH
p

+
qSq

2
H

p

Suppose there exist j, k such that for ℓ ∈ {j, k},

c̄∗ℓ =
∑

ξ∈[q′S ]

ρ∗ℓ,ξ((yξ + sξ)
5 + cξ)−

(
η∗ℓ +

∑
ξ∈[q′S ]

τ∗ℓ,ξyξ

)5

− χ∗
ℓ

and τ∗ℓ,i ̸= 0 and c̄∗ℓ is determined before (i, ci, si) is queried to OISign2 . Then

fℓ(Z) = c̄∗ℓ −
∑
ξ ̸=i

ρ∗ℓ,ξ((yξ + sξ)
5 + cξ)− ρ∗ℓ,i((Z + si)

5 + ci) + (η∗ℓ + τ∗ℓ,iZ)
5 + χ∗

ℓ

evaluates to 0 at yℓ. This happens with probability 1/p unless fℓ ≡ 0. If fℓ ≡ 0, then using binomial
expansion, this implies

ρ∗ℓ,i(ci + s5i ) = c̄∗ℓ −
∑
ξ ̸=i

ρ∗ℓ,ξ(y
5
ξ + cξ) + χ∗

ℓ + (η∗ℓ )
5 (10)

5ρ∗ℓ,isiZ
4 = 5(η∗ℓ )(τ

∗
ℓ,i)

4Z4 (11)

ρ∗ℓ,iZ
5 = (τ∗ℓ,i)

5Z5 (12)

Since τ∗ℓ,i ̸= 0 we have that Equation 12 implies ρ∗ℓ,i = (τ∗ℓ,i)
5 ̸= 0 and Equation 11 implies η∗ℓ = siτℓ,i. Thus

ρ∗ℓ,is
5
i = (η∗ℓ )

5 and Equation 10 implies

ci =
1

ρ∗j,i

(
c̄∗j −

∑
ξ ̸=i

ρ∗j,ξ v̄ξ + χ∗
j

)

=
1

ρ∗k,i

(
c̄∗k −

∑
ξ ̸=i

ρ∗k,ξ v̄ξ + χ∗
k

)

Thus,

Hsig(pk,m
∗
j , R̄

∗
j ) = ρ∗j,ici +

∑
ξ ̸=i

ρ∗j,ξ v̄ξ − χ∗
j

Hsig(pk,m
∗
k, R̄

∗
k) = ρ∗k,ici +

∑
ξ ̸=i

ρ∗k,ξ v̄ξ − χ∗
k

Suppose Hsig is the hash function given by

Hsig(pk,m
∗
k, R̄

∗
k) = HROS(ρ

∗
k,i; ς

∗
k , η

∗
k, χ

∗
k, ρ

∗
k,0, τ

∗
k,0, . . . , ρ

∗
k,ℓ, τ

∗
k,ℓ)−

∑
ξ ̸=i

ρ∗k,ξ v̄ξ + χ∗
k
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and so
HROS(ρ

∗
j,i; auxj) = ρ∗j,ici ∧ HROS(ρ

∗
k,i; auxk) = ρ∗k,ici

This is a one-dimensional ROS solution. By Lemma 2 of [18], the probability of this occurring is bounded by(
qH
2

)
+ 1

p
<
q2H
p

Where there are up to qS different choices of i, we see the result holds.

Case 4. For all k there exists exactly one i such that τ∗k,i ̸= 0 and (i, 2, ci, si) has not been queried to OISign2

before Hsig selects c̄∗k.

In this case, we will show that there exists at least one k such that

Pr

c̄∗k ̸= ∑
i∈[q′S ]

ρ∗k,i((yi + si)
5 + ci)−

(
η∗k +

∑
i∈[q′S ]

τ∗k,iyi

)5

− χ∗
k

 ≤ ℓ

p
+
qH
p

Suppose

c̄∗k =
∑

i∈[q′S ]

ρ∗k,i((yi + si)
5 + ci)−

(
η∗k +

∑
i∈[q′S ]

τ∗k,iyi

)5

− χ∗
k

and (ik, cik , sik) is the last query to OISign2 such that τ∗k,ik ̸= 0. By the case assumption, c̄∗k is determined
before cik , sik .

Now each ik is unique. Without loss of generality, suppose that i1 is the first query (i1, ci1 , si1) made to
OISign2 . Then τ∗k,i = 0 for all i ̸= i1 and

c̄∗1 =
∑
i ̸=i1

ρ∗1,i((yi + si)
5 + ci) + ρ∗1,i1((yi1 + si1)

5 + ci1)− (η∗1 + τ∗1,i1yi1)
5 − χ∗

1

Suppose iℓ is the last query (iℓ, ciℓ , siℓ) made to OISign2 such that ρ1,iℓ ̸= 0. The polynomial

f1(Z) = c̄∗1 −
∑
i ̸=iℓ

ρ∗1,i((yi + si)
5 + ci)− ρ∗1,iℓ((Z + siℓ)

5 + ciℓ) + (η∗1 + τ∗1,i1yi1)
5 + χ∗

1

evaluates to 0 at Z = yiℓ . Now because (yiℓ) are hidden from the adversary at the time when R̄∗
1 and siℓ

is defined, this occurs with probability 1/p unless f1(Z) ≡ 0. If f1(Z) ≡ 0, then ρ∗1,iℓ = 0. As such we can
assume that ρ1,i = 0 for all i ̸= i1 This implies

F1(Z) = c̄∗1 − ρ∗1,i1((Z + si1)
5 + ci1) + (η∗1 + τ∗1,i1Z)

5 + χ∗
1

evaluates to 0 at yi1 . Now because yi1 is hidden from the adversary at the time when R̄∗
1, s1 is defined, this

occurs with probability 1/p unless F1(Z) ≡ 0. If F1(Z) ≡ 0, then

ρ∗1,i1Z
5 = (τ∗1,i1)

5Z5

5ρ∗1,i1si1Z
4 = 5η∗1(τ

∗
1,i1)

4Z4

c̄∗1 = ρ∗1,i1s
5
i1 + ρ∗1,i1ci1 − η

∗
1 − χ∗

1

and the first two equations imply that η∗1 = si1τ
∗
1,i1

. Substituting into the third equation yields

c̄∗1 = ρ∗1,i1ci1 − χ
∗
1 ⇒ ci1 =

1

ρ∗1,i1
(c̄∗1 + χ∗

1)
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We now compute the form of cik for all k > 1 via induction. Suppose that

cik =
1

ρ∗k,ik

(
c̄∗k −

∑
j<k

ρ∗k,ij v̄ij + χ∗
k

)

Indeed, by the case assumption, τ∗k+1,i = 0 for all i ̸∈ {i1, . . . , ik+1} and

c̄∗k+1 =
∑

i∈[q′S ]

ρ∗k+1,i((yi + si)
5 + ci)− (η∗k+1 + τ∗k+1,i1yik+1

)5 − χ∗
k+1

Suppose iℓ is the last query (iℓ, ciℓ , siℓ) made to OISign2 such that ρk+1,iℓ ̸= 0. The polynomial

fk+1(Z) = c̄∗1 −
∑
i ̸=iℓ

ρ∗1,i((yi + si)
5 + ci)− ρ∗1,iℓ((Z + siℓ)

5 + ciℓ) + (η∗1 + τ∗1,i1yi1)
5 + χ∗

1

evaluates to 0 at Z = yiℓ . Now because (yiℓ) are hidden from the adversary at the time when R̄∗
k+1 and siℓ

is defined, this occurs with probability 1/p unless fk+1(Z) ≡ 0. If fk+1(Z) ≡ 0, then ρ∗k+1,iℓ
= 0. As such we

can assume that ρk+1,i = 0 for all i ̸∈ {i1, . . . , ik+1 This implies

Fk+1(Z) = c̄∗k+1 −
∑

i∈{i1,...,ik}

ρ∗k+1,i((yi + si)
5 + ci)

− ρ∗k+1,ik+1
((Zik+1

+ sik+1
)5 + cik+1

) + (η∗k+1 + τ∗k+1,ik+1
Zik+1

)5 + χ∗
k+1

= c̄∗k+1 −
∑

j<k+1

ρ∗k,ij v̄ij

− ρ∗k+1,ik+1
((Zik+1

+ sik+1
)5 + cik+1

) + (η∗k+1 + τ∗k+1,ik+1
Zik+1

)5 + χ∗
k+1

evaluates to 0 at yik+1. Now because yik+1
is hidden from the adversary at the time when R̄∗

k+1, sk+1 is
defined, this occurs with probability 1/p unless Fk+1(Z) ≡ 0. If Fk+1(Z) ≡ 0, then

ρ∗k+1,ik+1
Z5 = (τ∗

k+1,ik+1
)5Z5

5ρ∗k+1,ik+1
sik+1Z

4 = 5η∗
k+1(τ

∗
k+1,ik+1

)4Z4

c̄∗k+1 =
∑

j<k+1

ρ∗k,ij v̄ij + ρ∗k+1,ik+1
s5ik+1

+ ρ∗k+1,ik+1
cik+1 − η∗

k+1 − χ∗
k+1

and the first two equations imply that η∗k+1 = sik+1
τ∗k+1,ik+1

. Substituting into the third equation yields

c̄∗k+1 =
∑

j<k+1

ρ∗k,ij v̄ij + ρ∗k+1,ik+1
cik+1

− χ∗
k+1

⇒ cik+1
=

1

ρ∗k+1,ik+1

(
c̄∗k+1 −

∑
j<k+1

ρ∗k+1,ij v̄ij + χ∗
k+1

)

However, for the (ℓ+1)st challenge, the user is out of queries and thus the (ℓ+1)st challenge is such that
all (ci, si, yi) are fully determined. Hence

Pr

c̄∗ℓ+1 =
∑

i∈[q′S ]

ρ∗ℓ+1,i((yi + si)
5 + ci)−

(
η∗ℓ+1 +

∑
i∈[q′S ]

τ∗ℓ+1,iyi

)5

− χ∗
ℓ+1

 ≤ qH
p

⊓⊔
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E Security of Three-Round Blind Signature Scheme BSr3[f2]

Proof (Theorem 2). The algebraic adversary A takes as input the public parameters G = (G, p, g, h) as well
as the public key pk. Assume without loss of generality that the session id is from 1 to qS and A makes
exactly one query to OISign1 and OISign2 for each sid ∈ [qS ]. (If A does not query OISign1,ISign2 for some sid,
it can make dummy queries to OISign1,ISign2 for each sid, which does not affect whether A wins the game or
not.) For session id i ∈ [qS ], denote the output of OISign1 as (Ai, Bi), the input of OISign2 as (ci, si), and the
output of OISign2 as (bi, yi). For session id i ∈ S3, denote the output of OISign3 as zi.

If A outputs {(m∗
k, σ

∗
k = (R̄∗

k, z̄
∗
k, ȳ

∗
k))}k∈[ℓ+1] and wins the game, it also outputs an algebraic representa-

tion for each R̄∗
k, i.e., it outputs ς

∗
k , η

∗
k, χ

∗
k, {ρ∗k,i, τ∗k,i}i∈[qS ] such that

R̄∗
k = gς

∗
khη

∗
kpkχ

∗
k

∏
i∈[qS ]

A
ρ∗
k,i

i B
τ∗
k,i

i . (13)

Since we have Ai = gzipk−ci(yi+si) for each i ∈ S3 and Bi = gbihyi for each i ∈ [qS ], we have

R̄∗
k =g

ς∗k+
∑

i∈S3
ρ∗
k,izi+

∑
i∈[qS ] τ

∗
k,ibih

η∗
k+
∑

i∈[qS ] τ
∗
k,iyipkχ

∗
k−
∑

i∈S3
ρ∗
k,i(yi+si)ci

·

 ∏
i∈[qS ]\S3

A
ρ∗
k,i

i

 .

Suppose A wins. We have

R̄∗
k = gz̄

∗
khȳ

∗
kpk−c̄∗kȳ

∗
k , (14)

where c̄∗k = Hsig(pk,m
∗
k, R̄

∗
k). Intuitively, if the exponents of the two representations do not match, we can

construct an adversary B that solves the discrete logarithm problem. Formally, we define the following events
that correspond the mismatch of the exponents of Ai, h, pk respectively:

– Let E0 be the event that there exists k ∈ [ℓ+ 1] and i ∈ [qS ] \ S3 such that ρk,i ̸= 0.
– Let E1 be the event that there exists k ∈ [ℓ+ 1] such that ȳ∗k ̸= η∗k +

∑
i∈[qS ] τ

∗
k,iyi.

– Let E2 be the event that there exists k ∈ [ℓ+ 1] such that c̄∗kȳ
∗
k ̸= −χ∗

k +
∑

i∈S3
ρ∗k,i(yi + si)ci.

We define a series of games as follows.

– Game0 is the game Gameomuf
BS[GrGen,f2].

– Game1 is the same as Game0 except A fails if E0 occurs.
– Game2 is the same as Game1 except A fails if E1 occurs.
– Game3 is the same as Game2 except A fails if E2 occurs.

For each i ∈ {0, 1, 2}, we will show that there exists an adversary Bi for the game GameDLog
GrGen such that

the probability that A wins Gamei but not Gamei+1 is bounded by the advantage of Bi. Finally, we will show
the advantage of A against Game3 is negligible.

Game0 7→ Game1 : We construct the adversary B0 as follows. B0 takes as input (G, p, g) and the discrete
logarithm challenge A and aims to output a such that A = ga. B0 samples i′←$ [qS ], sk, ω←$ Zp and sets
pk← gsk, h← gω. B0 initializes Qsig to an empty set. Then, B0 runs A on input ((G, p, g, h), pk) by simulating
oracle queries from A as follows.

Hash Queries. When A queries Hsig on (pk,m, R̄), B0 checks whether (pk,m, R̄, c̄) ∈ Qsig and, if so, returns
c̄. Else, B0 samples c̄←$ Zp, appends (pk,m, R̄, c̄) to Qsig, and returns c̄.

OISign1 Queries. B0 answers queries the same as Game0 except when sid = i′, B sets Ai′ ← A.
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OISign2 and OISign3 Queries. B0 answers queries the same as Game0 except when sid = i′, B aborts.

Extracting the Discrete Logarithm Solution. If A terminates and wins Game0, but E1 occurs, there
exists k ∈ [ℓ+ 1] and i∗ ∈ [qS ] \ S3 such that ρk,i∗ ̸= 0. If i∗ = i′, by (13) and (14), we have

gz̄
∗
k+ωȳ∗

k−skc̄∗kȳ
∗
k = R̄∗

k

= g
ς∗k+ωη∗

k+skχ∗
k+
∑

i∈[qS ]\{i′} ρ∗
k,iai+

∑
i∈[qS ] τ

∗
k,i(bi+ωyi)Aρ∗

k,i′ .

Therefore, B0 computes the discrete logarithm of A as

a ← 1

ρ∗k,i′

(
z̄∗k + ωȳ∗k − skc̄∗kȳ

∗
k − ς∗k − ωη∗k − skχ∗

k −
∑

i∈[qS ]\{i′}

ρ∗k,iai −
∑

i∈[qS ]

τ∗k,i(bi + ωyi)
)

.

Since the probability that B0 guesses i′ = i∗ is at least 1/qS and B0 simulates the game perfectly if i′ = i∗,
we have

AdvGame0
A (λ) ≤ AdvGame1

A (λ) + Pr[(A wins Game0) ∧ E1]

≤ AdvGame1
A (λ) + qSAdv

dlog
B0

(λ) .

Game1 7→ Game2 : We construct the adversary B1 as follows. B1 takes as input (G, p, g) and the discrete
logarithm challenge h and aims to output ω such that h = gω. B1 samples sk←$ Zp and sets pk← gsk. Then,
B1 runs A on input ((G, p, g, h), pk) by simulating oracle queries exactly the same as Game1.

Extracting the Discrete Logarithm Solution. If A terminates and wins Game1, but E2 occurs, there
exists k ∈ [ℓ+ 1] such that ȳ∗k ̸= η∗k +

∑
i∈[qS ] τ

∗
k,iyi. By (13) and (14), we have

gz̄
∗
k−skc̄∗kȳ

∗
khȳ

∗
k = R̄∗

k

= g
ς∗k+skχ∗

k+
∑

i∈S3
ρ∗
k,iai+

∑
i∈[qS ] τ

∗
k,ibiAρ∗

k,i′h
η∗
k+
∑

i∈[qS ] τ
∗
k,iyi .

Therefore, B1 computes the discrete logarithm of h as

ω ←
z̄∗k − skc̄∗kȳ

∗
k − ς∗k − skχ∗

k −
∑

i∈S3
ρ∗k,iai −

∑
i∈[qS ] τ

∗
k,ibi

η∗k +
∑

i∈[qS ] τ
∗
k,iyi − ȳ∗k

.

Since B1 simulates the game perfectly, we have

AdvGame1
A (λ) ≤ AdvGame2

A (λ) + Pr[(A wins Game1) ∧ E2]

≤ AdvGame2
A (λ) + AdvdlogB1

(λ) .

Game2 7→ Game3 : We construct the adversary B2 as follows. B2 takes as input (G, p, g) and the discrete
logarithm challenge pk and aims to output sk such that pk = gsk. B2 samples ω←$ Zp and sets ← gω. B2
initializes Qsig to an empty set. Then, B2 runs A on input ((G, p, g, h), pk) by simulating oracle queries from
A as follows.

Hash Queries. When A queries Hsig on (pk,m, R̄), B2 checks whether (pk,m, R̄, c̄) ∈ Qsig and, if so, returns
c̄. Else, B2 samples c̄←$ Zp, appends (pk,m, R̄, c̄) to Qsig, and returns c̄.

OISign1 Queries. B2 answers queries the same as Game2 except when computing (Ai, Bi), B2 samples
zi, v̄i, w̄i←$ Zp and sets Ai ← gzipk−v̄i and Bi ← gw̄i .

OISign2 Queries. B2 answers queries the same as Game2 except when computing (bi, yi), B2 computes
yi ← v̄i/ci − si and bi ← w̄i − ωyi.
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main Gamemwfros
A (q, p)

hid← 0; Ifin ← ∅

(I,J )← AOH,S

()

if J ̸⊆ [hid] or I ̸⊆ [q] or Ifin ̸= [q] or |J | ≤ |I| then
return 0

for j ∈ J do

Cj ← αj,0 +
∑
i∈[q]

αj,ici(yi + si)

Dj ← βj,0 +
∑
i∈[q]

βj,iyi

return (∀ j ∈ J : Cj = δjDj ∧ Dj ̸= 0)

∧ (∀ j ∈ J , i ∈ [q] \ I : αj,i = 0)

OH(α⃗, β⃗)

hid← hid+ 1

α⃗hid ← α⃗; β⃗hid ← β⃗

δhid←$ Z∗
p

return δhid

OS(i, ci, si)

return ⊥if i ̸∈ [q] \ Ifin
yi←$ Z∗

p

Ifin ← Ifin ∪ {i}
return yi

Fig. 11. The modified WFROS game Gamemwfros
A . Here, p is a prime number, and α⃗, β⃗ ∈ Z1+q

p , which is indexed as

α⃗ = (α0, . . . , αq) and β⃗ = (β0, . . . , βq).

OISign3 Queries. B2 answers queries the same as Game2 except B2 does not need to compute zi but just
retrieves zi sampled during the OISign1 Query.

Extracting the Discrete Logarithm Solution. If A terminates and wins Game2, but E3 occurs, there
exists k ∈ [ℓ+ 1] such that

c̄∗kȳ
∗
k ̸= −χ∗

k +
∑
i∈S3

ρ∗k,i(yi + si)ci .

By (13) and (14), we have

gz̄
∗
k+ωȳ∗

kpk−c̄∗kȳ
∗
k = R̄∗

k

= g
ς∗k+ωη∗

k+
∑

i∈S3
ρ∗
k,izi+

∑
i∈[qS ] τ

∗
k,iw̄ipkχ

∗
k−
∑

i∈S3
ρ∗
k,i(yi+si)ci .

Therefore, B2 computes the discrete logarithm of sk as

sk←
z̄∗k + ωȳ∗k − ς∗k − ωη∗k −

∑
i∈S3

ρ∗k,izi −
∑

i∈[qS ] τ
∗
k,iw̄i

χ∗
k −

∑
i∈S3

ρ∗k,i(yi + si)ci + c̄∗kȳ
∗
k

.

Since B2 simulates the game perfectly, we have

AdvGame2
A ≤ AdvGame3

A (λ) + Pr[(A wins Game2) ∧ E3]

≤ AdvGame3
A (λ) + AdvdlogB2

(λ) .

Game3 7→ Gamemwfros : Finally, we show AdvGame0
A is negligible by reducing it to a modified version of the

WFROS problem [42], which we show to be information-theoretically hard. The modified WFROS game is
defined in Fig. 11.

Formally, given a randomly generated group (G, p, g)←$ GrGen(1λ), we construct an adversary C for the
game Gamemwfros

A (qS , p) as follows. C samples sk, ω←$ Zp and sets pk ← gsk, h ← gω. C initializes Qsig to
an empty set, Hid to an empty table, and hid to 0. Then, C runs A on input ((G, p, g, h), pk) by simulating
oracle queries from A as follows.
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Hash Queries. When A queries Hsig on (pk,m, R̄), C checks whether (pk,m, R̄, c̄) ∈ Qsig and, if so, returns
c̄. Otherwise, since A is algebraic, A also sends ς, η, χ, {ρi, τi}i∈[qS ] such that

R̄ = gςhηpkχ
∏

i∈[qS ]

Aρi

i B
τi
i ,

and C queries OH on input α⃗ = (−χ, ρ1, . . . , ρqS ) and β⃗ = (η, τ1, . . . , τqS ) and receives c̄. Then, C sets
hid← hid+ 1, sets Hid(pk,m, R̄)← hid, appends (pk,m, R̄, c̄) to Qsig and returns c̄.

OISign1 Queries. C answers queries the same as Game3 except when computing (Ai, Bi), B2 samples
ai, w̄i←$ Zp and sets Ai ← gai and Bi ← gw̄i .

OISign2 Queries. C answers queries the same as Game3 except when computing (bi, yi), C queries OS on
input (i, ci, si) to receive yi and computes bi ← w̄i − ωyi.

OISign3 Queries. B2 answers queries the same as Game3.

Extracting an output for Gamemwfros. IfA terminates and wins Game3, C outputs J ← {Hid(pk,m∗
k, R̄

∗
k)}k∈[ℓ+1]

and I ← S3.
We now show that if A wins Game3, then C wins Gamemwfros. Assume A wins Game3. We first show

|J | = ℓ + 1, which implies |J | > ℓ = |S3| = |I|. If |J | ≤ ℓ + 1, then there exists k1, k2 ∈ [ℓ + 1] such that
k1 ̸= k2 and (m∗

k1
, R̄∗

k1
) = (m∗

k2
, R̄∗

k2
), which implies (η∗k1

, τ∗k1,i
) = (η∗k2

, τ∗k2,i
). Since E2 does not occur, we

have ȳ∗k1
= η∗k1

+
∑

i∈[qS ] τ
∗
k1,i

yi = η∗k2
+
∑

i∈[qS ] τ
∗
k2,i

yi = ȳ∗k2. Since both σ∗
k1

and σ∗
k2

are valid, we have

z̄∗k1
= z̄∗k2

, which contradicts with the fact that (m∗
k1
, σ∗

k1
̸= (m∗

k2
, σ∗

k2
).

Also, since none of E1,E2,E3 occurs, we have for each k ∈ [ℓ+ 1],

−χ∗
k +

∑
i∈[qS ]

ρ∗k,i(yi + si)ci = c̄∗k(η
∗
k +

∑
i∈[qS ]

τ∗k,iyi) ,

and for each i ∈ [qS ]\S3, ρ
∗
k,i = 0. Therefore, by the above simulation, C wins Gamemwfros. Since C simulates

Game3 perfectly, we have AdvGame3
A (λ) ≤ AdvGamemwfros

C (qS , p). Since A makes qS valid queries to OISign2 , C
queries OS on (i, ci, si) for each i ∈ [qS ]. Also, the total number of OH queries made by C is bounded by
qH + qS (at most once per random oracle query from A and at most ℓ + 1 times for checking the validness
of the output signatures). Therefore, we conclude the theorem with the following lemma.

Lemma 2. For any integer q > 0, prime p, and any adversary A for the game Gamemwfros making at most

qH queries to OH, we have AdvGamemwfros

C (q, p) ≤ (q+1)(qH+1)qH
p−1 .

⊓⊔

E.1 Proof of Lemma 2

Let A be an adversary for the game Gamemwfros making at most qH queries to OH. Denote I(j)fin as the set

Ifin when A makes the j-th query to OH. Denote the event Goodj as there exists i ∈ [q] \ I(j)fin such that
αj,ici = δjβj,i and βj,i ̸= 0. Denote the event Win as A wins the game. We prove the lemma by showing

Pr[Win ∧ (∃ j ∈ J : ¬Goodj)] ≤ (q+1)qH
p−1 and Pr[Win ∧ (∀ j ∈ J : Goodj)] ≤ q2Hq

p−1 in the following claims.

Claim. Pr[Win ∧ (∃ j ∈ J : ¬Goodj)] ≤ (q+1)qH
p−1 .

Proof. Suppose Win ∧ (∃ j ∈ J : ¬Goodj) occurs. There exists j ∈ [qH ] such that

αj,0 +
∑
i∈[q]

ci(yi + si)αj,i = δj(βj,0 +
∑
i∈[q]

yiβj,i) , (15)
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βj,0 +
∑
i∈[q]

yiβj,i ̸= 0 , (16)

∀ i ∈ [q] \ I(j)fin : ciαj,i ̸= δjβj,i ∨ βj,i = 0 . (17)

Let us fix j now. Then, we define a sequence of random variables (X0, X1, . . . , XN , Y1, . . . , YN , Z1, . . . , ZN ),

where N = q−|I(j)fin |+1, such that X0 := αj,0+
∑

i∈I(j)
fin

ci(yi+si)αj,i, X1 := βj,0+
∑

i∈I(j)
fin

yiβj,i, Y1 := −δj ,

Z1 = 0. Further, for 1 ≤ k ≤ N −1, denote ik ∈ [q]\I(j)fin as the index such that (ik, cik , sik) is the k-th query

made to OS among the indexes in [q]\I(j)fin and let Xk+1 = cikαj,ik−δjβj,ik , Yk+1 := yik , Zk+1 := ciksj,ikαj,ik .
(15) implies X0 +

∑
k∈[N ](YkXk + Zk) = 0. By (17), it is not hard to see there exists k ∈ [N ] such

that Xk ̸= 0, since if Xk = 0 for all k ∈ [N ], by (16), we have βj,i = 0 for all i ∈ [q] \ I(j)fin and X1 =
βj,0 +

∑
i∈I(j)

fin

yiβj,i = 0. This implies βj,0 +
∑

i∈[q] yiβj,i = 0, which contradicts with (17).

Also, it is not hard to see that k ∈ [N ], Yk is uniformly distributed over Z∗
p independent of (X0,. . . ,Xk,Y1,

. . . ,Yk−1,Z1,. . . ,Zk). Moreover, we have Xk = 0 implies Zk = 0 for k ∈ [N ]. It holds for k = 1 since
Zk = 0. For k > 1, if Xk = 0, we have cik−1

αj,ik−1
− δjβj,ik−1

= 0 and, by (17), βj,ik−1
= 0, which implies

cik−1
αj,ik−1

= 0 and thus Zk = cik−1
sj,ik−1

αj,ik−1
= 0.

Therefore, by Lemma 3 shown below, we have the probability that all of (15), (16), and (15) hold for any
j ∈ [qH ] is bounded by N/(p− 1) ≤ (q + 1)/(p− 1). Therefore, by the union bound, Pr[Win ∧ (∃ j ∈ J :

¬Goodj)] ≤ (q+1)qH
p−1 . We defer the proof of Lemma 3 to Appendix E.2

Lemma 3. Let p be prime. Let X0, X1, . . . , XN , Y1, . . . , YN , Z1, . . . , ZN ∈ Zp be random variables such that
for all k ∈ [N ], Yk is uniform over Z∗

p and independent of (X0, . . . , Xk, Y1, . . . , Yk−1, Z1, . . . , Zk), and Xk = 0
implies Zk = 0. Then,

Pr

∃ i ∈ [N ] : Xi ̸= 0 ∧ X0 +
∑
j∈[N ]

(YjXj + Zj) = 0

 ≤ N

p− 1
.

⊓⊔

Claim. Pr[Win ∧ (∀ j ∈ J : Goodj)] ≤ q2Hq
p−1 .

Proof. Suppose Win ∧ (∀ j ∈ J : Goodj) occurs. For each j ∈ J , there exists i ∈ [q] \ I(j)fin such that
ciαj,i = δjβj,i and βj,i ̸= 0. Since δj ̸= 0, we have implies αj,i ̸= 0, which implies i ∈ I. Since |J | > |I|, by
the pigeonhole principle, there exists j1, j2 ∈ J and i ∈ I \ (I(j1)fin ∪ I

(j2)
fin ) such that

ciαj1,i = δj1βj1,i, βj1,i ̸= 0 ,

ciαj2,i = δj2βj2,i, βj2,i ̸= 0 .

Since δj1 ̸= 0 and δj2 ̸= 0, we have αj1,i ̸= 0 and αj2,i ̸= 0. Therefore,

δj1βj1,i/αj1,i = ci = δj2βj2,i/αj2,i . (18)

For any j1, j2 ∈ [qH ] and i ∈ [q] such that j2 > j1 and αj1,i ̸= 0, αj2,i ̸= 0, βj1,i ̸= 0, and βj2,i ̸= 0, since δj2
are uniformly sampled from Z∗

p after δj1 , αj1,i, αj2,i, βj1,i, and βj2,i are fixed, the probability that (18) holds

is bounded by 1/(p− 1). Therefore, by the union bound, we have Pr[Win ∧ (∀ j ∈ J : Goodj)] ≤ q2Hq
p−1 . ⊓⊔

E.2 Proof of Lemma 3

For k ∈ {0, . . . , N}, define Ek as

∃ i ∈ {0, . . . , k} : Xi ̸= 0 ∧ X0 +

k∑
j=1

(YjXj + Zj) = 0 .
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We will prove the theorem using induction. It is clear that Pr[E0] = 0. For k ≥ 1, assume Pr[Ek−1] ≤ k−1
p−1 .

It holds that

Pr[Ek] ≤ Pr[Ek−1] + Pr[Ek|¬Ek−1]

≤ Pr[Ek−1] + Pr
[
Ek

∣∣ (¬Ek−1) ∧ Xk ̸= 0
]
+ Pr

[
Ek

∣∣ (¬Ek−1) ∧ Xk = 0
]
.

(19)

It is left to bound Pr
[
Ek

∣∣ (¬Ek−1) ∧ Xk ̸= 0
]
and Pr

[
Ek

∣∣ (¬Ek−1) ∧ Xk = 0
]
.

Suppose Ek−1 does not occur and then we have either Xi = 0 for all 0 ≤ i < k or X0+
∑k−1

j=1 (YjXj+Zj) =
0.

If Xk = 0, then Zk = 0, and we have either Xi = 0 for all 0 ≤ i ≤ k, or X0 +
∑k

j=1(YjXj + Zj) =

D0 +
∑k−1

j=1 (YjXj + Zj) ̸= 0, which means Ek does not occur. Therefore, we have

Pr
[
Ek

∣∣ (¬Ek−1) ∧ Xk = 0
]
= 0. (20)

Otherwise, if Xk ̸= 0, we know Ek occurs if and only if X0+
∑k

j=1(YjXj +Zj) ̸= 0. Since Yk is uniformly
distributed over Z∗

p independent of (X0, . . . , Xk, Y1, . . . , Yk−1, Z1, . . . , Zk), given Xk ̸= 0 and Ek−1 does not
occur, it holds that

Pr
[
Ek

∣∣ (¬Ek−1) ∧ Xk ̸= 0
]

= Pr

D0 +

k∑
j=1

(YjXj + Zj) = 0
∣∣ (¬Ek−1) ∧ Xk ̸= 0


= Pr

[
Yk =

X0 + Zk +
∑k−1

j=1 (YjXj + Zj)

Dk

∣∣ (¬Ek−1) ∧ Dk ̸= 0

]

≤ 1

p− 1
.

(21)

Therefore, from (19), (20), and (21), we have

Pr[Ek] ≤ Pr[Ek−1] +
1

p− 1
≤ k

p− 1
.

Therefore, we can conclude the lemma by induction.

F Proof of Theorem 4

The proof is very similar to that of Theorem 3. We refer the reader to that proof for the formal setup, here we
only highlight the differences. Here as well, the view is determined by the randomness η = (r0, α0, β0, r1, α1, β1).
We claim that, in both cases b = 0, b = 1, vA(η) = ∆ if and only if for i ∈ {0, 1}, η satisfies

ri = z̄ωi
− ziαiβ

−1
i − αibi

αi = ȳωi
/yi

βi = ci/c̄ωi ,

(22)

where ω0 = b and ω1 = 1− b. In the “only if” direction, from Figure 4, it is clear that when vA(η) = ∆, then
η satisfies all constraints in Equation 22.

To prove the “if” direction, assume that η satisfies all constraints in Equation 22. We need to show that
vA(η) = ∆. This means in particular verifying that the challenges output by OUSign1 are indeed (c0, c1) and
the signatures output by OUSign2 are indeed (σ0, σ1). Note that because we only consider ∆’s that result in
OUSign2 not producing output (⊥,⊥), for i ∈ {0, 1}, we have ȳi ̸= 0, as well as

gzi = Aipk
ci·yi , Bi = gbihyi , R̄ωi

= gz̄ωihȳωipk−c̄ωi
ȳωi .
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Therefore, using Equation 22,

R̄ωi = gri+ziαiβ
−1
i +αibihαiyipk−ciβ

−1
i ·αiyi

= Bαi
i gri+ziαiβ

−1
i pk−ciβ

−1
i ·αiyi

= griA
αiβ

−1
i

i Bαi
i .

Consequently, for i ∈ {0, 1}, OUSign1 outputs the challenge

βiHsig(pk,mωi , g
riA

αiβ
−1
i

i Bαi
i ) + βi = βiHsig(pk,mωi

, R̄ωi
) = βic̄ωi

= ci ,

i.e., the two challenges are consistent with the view ∆. Furthermore, for i ∈ {0, 1}, the signatures (σ̃1, σ̃2)
output by OUSign2 are such that

σ̃ωi
= (griA

αiβ
−1
i

i Bαi
i , ri + αiβ

−1
i zi + αibi, αiyi) = (R̄ωi

, z̄ωi
, ȳωi

) = σωi
,

i.e., these are exactly the signatures from ∆. ⊓⊔
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