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Abstract. In recent years, the research community has made great progress in
improving techniques for privacy-preserving computation, such as fully homomorphic
encryption (FHE). Despite the progress, there remain open challenges, mainly in
performance and usability, to further advance the adoption of these technologies.
This work provides multiple contributions that improve the current state-of-the-
art in both areas. More specifically, we significantly simplify the bootstrapping
by Carpov, Izabachène, and Mollimard [CIM19] for Boolean-based FHE schemes
such as FHEW or TFHE, making the concept usable in practice. Based on our
simplifications, we implement an easy-to-use interface for amortized bootstrapping in
the open-source library FHE-Deck [fhe23], derive new parameter sets for multi-bit
encryptions with state-of-the-art security, and build a toolset that translates high-level
code to multi-bit operations on encrypted data using circuit synthesis. We propose
the first non-trivial FHE-specific optimizations in synthesizing privacy-preserving
circuits: look-up table (LUT) grouping and adder substitution. Using LUT grouping,
we reduce the number of bootstrapping operations by almost 35 % on average, while
for adder substitution, we reduce the number of required bootstrappings by up to
80 % for certain use cases. Overall, the execution time is up to 3.8× faster using our
optimizations compared to previous state-of-the-art circuit synthesis.
Keywords: fully homomorphic encryption · FHEW · TFHE · circuit synthesis

1 Introduction
Encryption is a fundamental technology of today’s society, securing data and communica-
tions around the globe. One exciting application is privacy-preserving computation, where
techniques such as fully homomorphic encryption (FHE) encrypt and protect sensitive data
during computation. However, there remain open challenges in adopting these technologies,
for example, reducing computational costs or improving usability.

Gentry’s seminal work [Gen09] introduces bootstrapping, in which the error associated
with a homomorphic ciphertext is refreshed to allow for indefinite computation. Current
state-of-the-art schemes are still based on this ingenious idea, and two strains have emerged.
Word-based schemes such as BFV [Bra12,FV12], BGV [BGV14], and CKKS [CKKS17]
operate on multiple large elements at a time and excel at highly parallelizable tasks. These
schemes usually perform many operations followed by an expensive bootstrapping procedure
and are often used for specific use cases requiring mainly additions or multiplications.

In contrast, Boolean-based schemes such as FHEW [DM15] and TFHE [CGGI16a]
provide high flexibility encrypting single bits or small bit groups and are thus a good fit
for a wide variety of use cases. A target function is commonly represented as a circuit
composed of Boolean gates with encrypted input bits, and every gate evaluation requires a
comparatively fast bootstrapping. However, bootstrapping is still the most expensive part
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of such circuits, and thus, it is crucial to reduce the number of gates when translating a
use case to a circuit.

Translating use cases is either done manually for critical tasks (this can be compared
to hand-written assembly) or using tools to automate translation from high-level code
to Boolean circuits (similar to code compilation). Although the former can result in the
best performance for a given use case, the process is rather tedious, and there has been
some effort by the research community to provide automatic translations from high-level
code to circuits [CDS15,CMG+18,GSPH+21], improving usability and easing adoption for
non-experts interested in FHE.

Currently, two different approaches exist for automatically converting high-level code to
Boolean circuits. The first approach is based on instruction mapping, where the high-level
code is translated to an intermediate representation (IR). Afterward, the individual
instructions of the IR are mapped to Boolean primitives and composed accordingly. The
second approach is based on existing hardware tooling using so-called synthesizers. First,
high-level synthesis converts high-level code to a hardware description language (HDL).
Then, a synthesizer converts the HDL to a Boolean circuit. Finally, no matter the approach,
the resulting circuit is translated to FHE library code.

In this work, we introduce several contributions to enhance the current state-of-the-art
in FHE transpilation, with a primary focus on the synthesis-based approach:

• We significantly simplify the amortized bootstrapping idea proposed by Carpov,
Izabachène, and Mollimard [CIM19], improving the current state-of-the-art for
bootstrapping in FHEW-like schemes. Our modifications make it feasible to use
this amortization technique in practice and enhance the capabilities of homomorphic
gates (Subsection 3.2).

• We introduce the first non-trivial FHE-specific optimizations for single- and multi-
bit circuits, modifying the circuit synthesis process to handle additions specifically
optimized for FHE circuits. This results in circuits requiring up to 80 % less boot-
strappings compared to non-optimized circuits (Subsection 3.7).

• We also perform post-synthesis optimizations on the netlist based on our improved
amortized bootstrapping to evaluate multiple gates at once. With our optimizations,
execution times are up to 3.8× faster compared to the previous state-of-the-art
(Subsection 3.6).

• We propose new parameter sets for multi-bit FHEW-like encryptions with state-of-the-
art security. We also implement an easy-to-use interface for amortized bootstrapping
in the open-source library FHE-Deck [fhe23] (Subsection 3.4).

2 Preliminaries
In the following, we introduce the background to our work. We start with notations used
throughout the papers, provide a formal definition of Boolean and homomorphic circuits,
shortly describe FHE and its hardness assumption and conclude with a short section on
transpilation in the context of FHE.

2.1 Notation
We denote as ZQ the group of integers modulo Q and, for a power-of-two N , as R the ring
of polynomials ZQ[X]/(XN + 1). We call z ∈ R with zn = 1 ∈ R the n-th root of unity.
Note that RQ has 2N roots of unity of the form Xa for a ∈ Z2N . Furthermore, the roots
of unity in RQ form an algebraic group of order 2N with respect to multiplication. For
clarity, we denote ring elements as a ∈ RQ. We denote a n-dimensional column vector as
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[f(·, i)]ni=1, where f(·, i) defines the i-th coordinate. For brevity, we will also denote as [n]
the vector [i]ni=1, and as [n, m]mi=n the vector [n, . . . , m]⊤. We address the i-th entry of a
vector v⃗ by v⃗[i].

By x ←R S, we denote sampling a random variable from the set S. By default,
we sample from the uniform distribution and explicitly state when referring to other
distributions. For a random variable a ∈ Z, we denote as Var(a) the variance of a, its
expectation as E(x), and its standard deviation as SD(a). For a ∈ RQ, we define Var(a) and
E(a) to be the variance and expectation of the coefficients of the polynomial a, respectively.
We denote any polynomial as poly(·). We denote as negl(λ) a negligible function in λ ∈ N;
that is, for any positive polynomial poly(·) there exists c ∈ N such that for all λ ≥ c we
have negl(λ) ≤ 1

poly(λ) .

2.2 Boolean and Homomorphic Circuits
We define a Boolean gate as an arbitrary Boolean function Gn : Fn

2 → F2 for a positive
integer n. Any Boolean gate can be represented as LUT which stores 2n outputs O ∈ F2,
one for each input I ∈ Fn

2 ; we often use the terms Boolean gate and LUT interchangably.
An example for a Boolean gate G1 is an inverter gate

INV : F2 → F2, I 7→ O = I + 1.

We can generalize a Boolean gate to multiple outputs as Gn,m : Fn
2 → Fm

2 which can be
represented with m LUTs, one for each output bit. Here, an example is a full adder with
the inputs x, y ∈ F2 and a carry-in ci ∈ F2 defined as

FA : F3
2 → F2

2, (x, y, ci) 7→ (s, co) = (x + y + ci, x · y + ci · (x + y))

for the sum s and the carry-out co. The number of input wires is also called fan-in of a
gate, and the number of output wires fan-out.

A Boolean circuit C2 : Fs
2 → Ft

2 is a directed acyclic graph where the vertices are
Boolean gates Gn,m and the edges connect gate outputs to the inputs of other gates with
s unconnected global inputs and t unconnected global outputs. A well-known fact is
that, for every directed acyclic graph, there exists a topological ordering of the graph. A
topological ordering is an ordering such that for every edge, the start vertex of this edge
appears before the end vertex in the sorted list of vertices. For a circuit C2, sorting the
graph topologically and evaluating the sorted gates for a global input I ∈ Fs

2 ensures that,
for any given gate Gn,m, all n inputs are known.

We can generate a Boolean circuit C2 from a circuit design in a HDL through a
process called synthesis. The output, a textual representation of C2, is also referred to as
netlist. Generally, a netlist can include additional elements such as registers for storage;
however, in this work, a netlist only contains Boolean gates. During synthesis, the circuit
is optimized, mostly heuristically, according to specific parameters, such as area usage or
power consumption. Extending the idea of synthesis to high-level code is called high-level
synthesis. Examples are the high-level synthesis tool XLS1, translating C++ code to the
HDL Verilog, and the low-level synthesis tool Yosys2, generating a netlist from Verilog.

Usually, synthesis tools output a netlist either based on a gate library, a list of available
gates for a given hardware platform, or output a LUT-based netlist with many LUTs for
different functions Gn and some upper bound on fan-in3. For hardware with special high-
performance gates, state-of-the-art synthesis tools are able to replace certain subcircuit

1https://github.com/google/xls
2https://github.com/yosyshq/yosys
3We note for completeness that synthesis tools also place gates Gn,m with m > 1, such as registers.

Since we configure these tools to only output LUTs, which, by definition, only have a single output, this
work assumes a netlist only containing a Boolean circuit C2 composed of gates Gn.

https://github.com/google/xls
https://github.com/yosyshq/yosys


4 Improved Circuit Synthesis with Amortized Bootstrapping for FHEW-like Schemes

patterns with optimized primitives; for example, multiplications are often realized in digital
signal processing units.

We define a homomorphic circuit C :Ms →Mt consisting of homomorphic gates of the
form f(b +

∑
xi · ai) for a function f : Zp → Zp, known scalars ai, b ∈ Zp, and encrypted

plaintexts xi. We compute the affine part b +
∑

xi · ai using the homomorphic capabilities
of the FHE scheme and the function f during bootstrapping, also known as functional
bootstrapping (see Subsection 3.2). Note that we compute the affine part over the integers,
but require the input to f in Zp; this has to be taken into account during homomorphic
circuit design.

2.3 Fully Homomorphic Encryption
A FHE scheme consists of four algorithms (Setup, Enc, Eval, Dec), each with the following
syntax [RAD78,Gen09].

• Setup(λ): This probabilistic polynomial time (PPT) algorithm takes as input a
security parameter λ and outputs an evaluation key ek and a secret key sk.

• Enc(sk, m): This PPT algorithm takes as input a secret key sk as well as a message m
and returns a ciphertext ct.

• Eval(ek, [cti]ni=1, C): Given an evaluation key ek, ciphertexts [cti]ni=1, and a circuit C,
this (non-)deterministic algorithm outputs a ciphertext ct.

• Dec(sk, ct): Given a secret key sk and a ciphertext ct, this deterministic algorithm
outputs a message m.

Informally, we say that an FHE scheme is correct, if the outcome of the evaluation
of a circuit C on ciphertxts encrypting messages m1, . . . , mn decrypts to C(m1, . . . , mn).
Formally, we say that FHE is correct if for all security parameters λ ∈ N, the circuits
C :Mn →M over the message space M of depth poly(λ), and all messages [mi ∈M]ni=1
we have

Pr
[
Dec(sk, ctout) = C([mi]ni=1)

]
= 1− negl(λ),

where sk← Setup(λ),
[
Dec(sk, cti) = mi

]n
i=1 and ctout ← Eval(ek, [cti]ni=1, C). For efficiency,

we require that Setup, Enc and Dec run in polynomial time in the security parameter, that
is poly(λ), and Eval runs in poly(λ, |C|). Finally, we say that a FHE scheme is compact if
the size of the output of Eval is independent of the size of the circuit C. More specifically,
we require that |Eval(ek, [cti]ni=1, C)| is poly(λ, |M|).

Indistinguishability Under Chosen Plaintext Attack. Let λ ∈ N be a security parameter
and A = (A0,A1) be a PPT adversary. We say that a FHE scheme is indistinguishable
under chosen plaintext attack (IND-CPA)-secure if the probability

Pr

 A1(ctb, st) = b:

sk← Setup(λ),
(st, m0, m1)← AO(sk,.)

0 (λ),
b←R {0, 1},

ctb ← Enc(λ, sk, mb)


is at most negl(λ) for all PPT adversaries A; the oracle O on input of a message m outputs
ct← Enc(λ, sk, m).
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2.4 Generalized Learning with Errors
Definition 1 (GLWE). Let Dsk be a (not necessarily uniform) distribution over RQ, and
σ > 0, n ∈ N and N ∈ N be a power-of-two, that are chosen according to a security
parameter λ. For a⃗←R Rn

Q, e←R DR,σ and s⃗ ∈ Dn
sk, we define a Generalized Learning

with Errors (GLWE) sample of a message m ∈ RQ with respect to s⃗, as

GLWEσ,n,N,Q(⃗s,m) =
[
−a⃗⊤ · s⃗ + e

a⃗⊤

]
+
[
m

0⃗

]
∈ R(n+1)

Q .

We say that the GLWEσ,n,N,Q-assumption holds if for any PPT adversary A we have∣∣∣∣Pr
[
A(GLWEσ,n,N,Q(⃗s, 0))

]
− Pr

[
A(Un+1

Q )
]∣∣∣∣ ≤ negl(λ)

where Un+1
Q is the uniform distribution over Rn+1

Q .

We denote a Learning with Errors (LWE) sample as LWEσ,n,Q(s⃗, m) = GLWEσ,n,1,Q,
which is a special case of a GLWE sample where the ring is ZQ[X]/(X + 1). Similarly we
denote a Learning with Errors over Rings (RLWE) sample as RLWEσ(s, m) = GLWEσ,1,N,Q

which is the special case of an GLWE sample with n = 1. For simplicity, we omit
to state the modulus and ring dimension for RLWE samples because we always use
RQ = ZQ[X]/(XN + 1) where N is a power-of-two. For LWE samples, we will be switching
between different moduli and different dimensions; hence we will indicate the current
modulus in the notation. We sometimes leave the inputs unspecified and substitute them
with a dot (·) when it is not necessary to refer to them within the scope of a function. We
define the error of c⃗ as Error(c⃗, m) = ⟨c⃗, s⃗⟩ −m. Finally, we define the symbol ∆Q,t = ⌊Q

t ⌉.

2.5 FHE Transpilation
Transpilation, also known as source-to-source compilation, is a process in which the source
code written in one programming language is converted into the source code of another
language. It converts code at similar levels of abstraction without changing the code’s
logic or functionality. In the context of FHE, transpilation mostly refers to converting
high-level code implementing functionality in the unencrypted domain to FHE library
code in the homomorphic realm. For example, the FHE transpiler [GSPH+21] converts a
subset of C++ code to C++ or Rust, depending on the chosen output library.

Although FHE transpilation operates at a similar abstraction level with respect to the
input and output programming language, the process itself closely resembles a compilation
process as FHE libraries commonly only implement low-level operations on the encrypted
data. Thus, FHE transpilation first converts high-level code to an IR where optimizations
are performed. Then, the IR is further processed with instruction mapping or synthesis.
For instruction mapping, each IR instruction is mapped to the low-level operations exposed
by the FHE library, while for synthesis, hardware synthesis tools are used to convert the
IR to a low-level circuit matching the low-level operations provided by the chosen library.

3 Contributions
In the following, we describe our theoretical contributions across the circuit synthesis
process; some of these ideas also apply to FHE transpilation with instruction mapping
which we note appropriately. We describe our synthesis toolchain top to bottom, afterward
highlighting our contributions in the reverse starting with the modified FHE bootstrapping
and ending with our new optimizations for the synthesis process.
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Figure 1: Our synthesis toolchain with different stages and their transitions.

3.1 Synthesis Toolchain
Our synthesis toolchain closely follows the structure and even reuses parts of the FHE
transpiler [GSPH+21], which currently provides the best publicly available solution to
circuit synthesis. More specifically, high-level C++ code is converted to Verilog via the
XLS framework4. Then, as in the transpiler, we synthesize Verilog to a Boolean circuit C2
via Yosys5. We configure synthesis in Yosys with pre-defined Yosys scripts specifing the
exact steps Yosys should execute during synthesis. Instead of using the rather simple
script of the transpiler, we create our own scripts based on the default Yosys script for
LUT-based hardware. In contrast to the transpiler, there are two important differences:

• Using our new synthesis scripts, we can substitute certain subcircuits with cus-
tom gates. We use this to replace additions and subtractions with an optimized
homomorphic gate structure using FHE-specific primitives (Subsection 3.7).

• We perform post-synthesis optimizations on the circuit C2 with HAL [Emb19], a
netlist analysis tool, using its Python interface (Subsection 3.6, Subsection 3.8). Our
Python scripts directly translates the optimized circuit to FHE-Deck code [fhe23].

In Figure 1, we depict the different stages of our toolchain including their transitions. All
of our code, including tests and examples, is publicly available on GitHub 6.

3.2 Efficient Amortized Functional Bootstrapping
In the following, we describe our amortized bootstrapping algorithm, our instantiation of
the FHE scheme and how we enhance homomorphic gate evaluation from the function f to
a function fm : Zp 7→ Zm

p at the cost of computing just one f . Since the amortized boot-
strapping algorithm is based on FHEW-style bootstrapping algorithms [DM15,CGGI16a],
we first give an informal overview of these algorithms in a black-box fashion limiting
ourselves to their input-output relation, which is enough to understand the bootstrapping
algorithm. Second, we elaborate on the practical problems with previous work on amortized
bootstrapping and how we solve these problems.

Among the most efficient types of FHE schemes are schemes based on the FHEW-style
bootstrapping algorithms [DM15]. There are multiple variants [CGGI16a,MS18,CIM19,
BDF18, GBA21, Klu22b] and improvements [YXS+21, CLOT21, LMP22, KS22] of these
algorithms. The goal is to homomorphically compute the decryption function on a LWE
ciphertext and compute an arbitrary function on the encrypted plaintext message along
the way.

Suppose we have an LWE ciphertext c⃗ with ⟨c⃗, s⃗⟩ = M + e, where s⃗ is the secret
key, M the message, and e the error. The operation ⟨c⃗, s⃗⟩ can be realized within a cyclic
algebraic group, more specifically, the group of rotations. The idea is to realize the rounding

4https://github.com/google/xls
5https://github.com/yosyshq/yosys
6https://github.com/Chair-for-Security-Engineering/fhewsyn

https://github.com/google/xls
https://github.com/yosyshq/yosys
https://github.com/Chair-for-Security-Engineering/fhewsyn
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function ⌊·⌉ by setting the elements of the vector such that messages are encoded in intervals
of appropriate size to handle the noise term e. Bootstraping algorithms for FHEW-like
schemes use the design pattern established by Alperin-Sheriff and Peikert [AP14] over
polynomial rings. In particular, the observation first made by Ducas and Micciancio [DM15]
is that in the ring Z[X]/(XN + 1), the product of any ring element with a root of unity
(negacyclicly) rotates the coefficients of that ring element. In other words, given a
polynomial w =

∑N−1
i=0 wi ·Xi, we have

w ·Xy =
N−y−1∑

i=0
wi ·Xi+y −

N−1∑
i=N−y

wi ·Xi+y−N .

As part of the blind rotation procedure, we compute w ·X⟨c⃗,s⃗⟩ = w ·XM+e homomor-
phically. Since computation takes place over RLWE ciphertexts, we obtain at the end
of the blind rotation procedure an RLWE ciphertext of w · XM+e. Finally, Ducas and
Micciancio [DM15] observe that given such RLWE ciphertext, one can extract a LWE
ciphertext that encrypts the constant coefficent of the message; more specifically, the
element w · XM+e[1]. The step is done via the SampleExtract procedure (see Table 1).
Then, the final step is to choose the polynomial w such that w · XM+e[1] encodes the
desired value, according to a given function f : Zp → Zp, and switch the extracted LWE
ciphertext to a LWE ciphertexts that is suitable for another bootstrapping step.

It is easy to see that with a bootstrapping algorithm which computes a function
f : Zp 7→ Zp, we can modify it to compute a function fm : Zp 7→ Zm

p by grouping
m distinct f , one for every output of fm; this would require m bootstrapping invocations.
The goal of amortized bootstrapping is to compute all m functions at the cost of only
one bootstrapping. The general idea to amortize computation of different functions
on the same input ciphertext is based on a previous work by Carpov, Izabachène, and
Mollimard [CIM19], but in this paper, we significantly simplify execution of the idea. We
give a version of the bootstrapping algorithm Algorithm 1 and provide a bound on the
bootstrapping noise in Theorem 1.

The algorithm takes as input the blind rotation key brKey and the key switching
key ksKey, a LWE ciphertext c⃗ ∈ ZN+1

Q , and polynomials w and v⃗. First, the algorithm
switches the LWE key; this results in a LWE ciphertext c⃗ with a smaller dimension n ∈ N
and a secret key from a smaller distribution, for instance binary, ternary, or Gaussian.
Afterward, the algorithm switches the modulus from Q to 2N (recall that the roots of
unity in the ring RQ form an algebraic group of order 2N). Then, we run BlindRotate
which homomorphically computes macc ← w ·X⟨c⃗,s⃗⟩. Finally, we execute a for-loop that
multiplies the ciphertext with a polynomial from the vector v⃗. Consequently, we obtain
and return a vector of ciphertexts

[
c⃗out,i

]m
i=1. The i-th ciphertext in the returned vector

encrypts the message macc · v⃗[i]. The problem when using this construction is that the
multiplications by the elements of the vector v⃗ may blow up the error, ultimately destroying
the ciphertext. This can happen if the norm bounds of elements in v⃗ are too large.

Previous Work

Carpov, Izabachène, and Mollimard [CIM19] suggest a polynomial factorization algorithm
that takes a polynomial q and returns factors w0 and w1 to tackle this problem. Aligned
with our notation, we would set w to w0 and and insert w1 into the vector v⃗. Essentially,
their factorization algorithms works as follows: First, they set w0 =

∑N
i=1 Xi and w1 =∑N

i=1 t′
iX

i. Then, to compute the t′
i coefficients, they build and solve a large system of

N linear equations. In practice, the polynomial degree is usually a power-of-two N ≥ 211

and Gaussian elimination runs in cubic time in the number of variables. Hence we may
expect that soving such system may take considerable time in practice.
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Algorithm 1: Bootstrap(brKey, ksKey, c⃗,w, v⃗)
Input:
The blind rotation key brKey;
The key switching key ksKey;
A LWE ciphertext c⃗ ∈ Zn+1

q ;
Polynomial w ∈ ZN

Q ; and
A vector of polynomials v⃗ ∈ Rk

p.
Output: We consider two different versions of the bootstrapping algorithm: the
classic variant and the amortized variant. For the classic variant, the vector v⃗ is
empty (k = 0), and the algorithm returns a ciphertext LWE.,N,Q(s⃗,w ·X⟨c⃗,s⃗⟩).
For the amortized variant, the algorithm returns a vector of LWE ciphertexts
[⃗cout,i]ki=1, where c⃗out,i = LWE.,N,Q(s⃗,w ·X⟨c⃗,s⃗⟩v⃗[i]).

begin
Run c⃗ksKey ← KeySwitch(c⃗, ksKey) ∈ Zn+1

Q ;
Run c⃗in ← ModSwitch(c⃗ksKey, 2N) ∈ Zn+1

2N ;
c⃗acc ← BlindRotate(brKey,w, c⃗in) ;
for i = 1 . . . k do

Compute c⃗acc,i ← c⃗acc · v⃗[i] ;
Compute c⃗out,i ← SampleExtract(⃗cacc,i) ;

Return
[
c⃗out,i

]k
i=1 ;

In their implementation [CIM19], the authors only test the bootstrapping for random
rotation polynomials, and there is no implementation of the linear system solver. Nev-
ertheless, for N = 214 [CIM19], we can roughly calculate that the number of modular
multiplications in the Gaussian elimination algorithm7 will be over 240. Furthermore,
we need to assume that the system is solvable, and that elements of the matrix that we
build for Gaussian elimination are invertible modulo Q which, with high probability, will
not be the case if Q is a power-of-two as in many TFHE implementations inlcuding the
bootstrapping implementation from [CIM19].

Our Contribution

In our work, we use a simpler and less involved solution that requires only linear time to
build the polynomials. In fact, the polynomials in our approach can be constructed online
without any significant slowdown during computation. Furthermore, for our solution to
work, we do not need to assume that a system of linear equations is solvable modulo Q. As
a consequence, we are not restricted to special moduli in contrast to [CIM19]. We observe
that when we are only interested in extracting bits the polynomials in v⃗ are already sparse
and of small infinity norm. Later, we compute a simple binary composition before running
the new bootstrapping algorithm and computing the next LUT function. Concretely, we
set w = ∆Q,p. Then, the polynomials in v⃗ are of the form

f(0)−
N∑

i=1
f(⌊i/2N⌉) ·XN−i,

where f : Zp 7→ {0, 1}.

7Recall that Gaussian elimination requires N(N + 1)/2 divisions, (2N3 + 3N2 − 5N)/6 multiplications,
and (2N3 + 3N2 − 5N)/6 subtractions modulo Q.
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In the worst case, all coefficients of the polynomials in the vector v⃗ could be 1 and −1.
Such polynomials, however, would not compute any interesting function, essentially the
outcome of every bootstrapping would be the constant function computing 1. In practice,
we have that at least one block must be equal to zero. Hence, the infinity norm of the
polynomials in v⃗ can be bounded by 2N/3.

Theorem 1 (Bootstrapping Correctness). Let c⃗acc ∈ R2
Q be an RLWE ciphertext returned

by BlindRotate in an execution of Algorithm 1. Let eacc = Error(⃗cacc,macc) where macc =
∆Q,p ·XM , and M = ⟨c⃗in, s⃗⟩ mod 2N . Then, for all i ∈ [k], we have

SD
(
Error(⃗cacc,i,macc · v⃗[i])

)
≤
√

2N

3 · Var(eacc)

Proof. Recall that we assume that at most 2N/3 of all coefficients in the polynomials in
the v⃗ vector are non-zero and that eacc ∈ RQ. When multiplying the RLWE ciphertext c⃗acc
by v⃗[i], we multiply the resulting error polynomial which is then equal to eacc,i = eacc · v⃗[i].
The d-th coefficient of eacc,i can be written as

eacc,i[d] =
d∑

j=1
eacc[j] · v⃗[i][d− i + 1] +

N∑
j=d+1

eacc[j] · v⃗[i][N + d− i + 1].

Crucially, observe that the sum takes each coefficient from the polynomials only once and
that at most 2N/3 of the coefficents of v⃗[i] are non-zero. All non-zero coefficents of v⃗[i]
are either 1 or −1. Hence, we have that

SD(eacc,i) ≤

√√√√2N/3∑
i=1

Var(eacc) ≤
√

2N

3 · Var(eacc).

3.3 The FHE Scheme
We now combine the algorithms from Table 1, containing subprocedures from previous
work [DM15], and our new amortized bootstrapping from Algorithm 1 to a FHE system
fitting the formal scheme definition in Subsection 2.3 and our model of computation. We
provide high-level interfaces in FHE-Deck [fhe23] for all algorithms, making them easily
accesible for researchers and developers.

Setup(λ). The setup algorithm consists of three main parts.

1. We choose the modulus Q, a power-of-two dimension N of the ring RQ, and a LWE
dimension n ∈ N according to the security parameter λ. Then, we choose s ∈ RQ for
the RLWE key and set s⃗ext to be the coefficient vector of s. We choose s⃗ ∈ {0, 1}n

for the LWE key.

2. We run ksKey← KSSetup(s⃗, s⃗ext, ℓksKey, σksKey).

3. We run brKey← BRSetup(s⃗, s, ℓbrKey, σbrKey).

Finally, we set the evaluation key ek = (brKey, ksKey) and the secret key sk = (s, s⃗ext, s⃗).

Enc(sk, m). To encrypt a message m′ ∈ Zp, we compute

c⃗← LWEσ,N,Q(s⃗ext, m) ∈ ZN+1
Q ,

where m = Q
p ·m

′ ∈ ZQ.
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Table 1: List of subprocedures commonly used in FHEW-like schemes [DM15].

Key Switching

KSSetup Input: Takes as input two LWE secret keys s⃗ ∈ {0, 1}n, s⃗ext ∈ ZN
Q ,

a performance parameter ℓksKey ∈ N, and a standard deviation
σksKey ∈ R.
Output: Generates a key switching key ksKey which consists of
N · ℓksKey LWEσksKey,n,Q(s⃗, ·) ciphertexts.

KeySwitch
Input: Takes as input a key switching key ksKey and a
LWE.,N,Q(s⃗ext, m) sample of a message m ∈ ZQ.
Output: Returns a LWE·,n,Q(s⃗, m) sample under the key s⃗ encod-
ing the same message m.
Description: The key switching process consists of N ·ℓksKey scalar
multiplications in ZQ. The parameter ℓksKey largely determines
the time and space efficiency; that is, the smaller ℓksKey, the faster
the computation and the smaller the space complexity of the key
material, but the bigger the noise induced by the key switching
operation.

Blind Rotation

BRSetup Input: Takes as input the LWE key s⃗ ∈ {0, 1}n, a RLWE key
s ∈ RQ, a performance parameter ℓbrKey ∈ N, and a standard
deviation σbrKey.
Output: Generates a blind rotation key brKey that consists of
2nℓbrKey RLWEσbrKey (s, ·) ciphertexts.

BlindRotate
Input: Takes as input a blind rotation key brKey, a LWE sample ct
under modulus 2N , and an accumulator acc = RLWE(s, m⃗acc).
Output: BlindRotate returns a sample accout = RLWE(s, m⃗out)
with m⃗out = m⃗acc · X⟨ct,s⃗⟩. The blind rotation process [DM15,
CGGI16a] consists of 2n · (ℓksKey + 1) polynomial multiplications
of elements in RQ. In particular, at the heart of a blind rota-
tion algorithm, there is a ring version of the GSW cryptosys-
tem [GSW13]. In this paper, we consider the concrete blind
rotation from [CGGI16a], hence the number of polynomial multi-
plications. Similarly to key switching, the smaller the parameter
ℓbrKey, the faster the blind rotation algorithms and the smaller the
blind rotation key (at the cost of larger noise).

Other

ModSwitch Input: Takes as input a LWE sample LWE·,n,Q(s⃗, ∆Q,p ·m) and a
modulus q < Q with m ∈ Zp.
Output: Returns a LWE sample LWE·,n,q(s⃗, ∆q,p ·m) under mod-
ulus q.

SampleExtract Input: Takes as input a RLWE encryption RLWEσbrKey (s,m) of a
message m ∈ RQ.
Output: Returns a LWE sample LWE·,N,Q(s⃗ext, m) with m = m[1];
that is, the LWE sample encodes the constant coefficient of the
polynomial m.
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Table 2: New parameter choices.

BR Key KS Key

Set Amort. Q N ℓBR SD n ℓKS SD

tfhe-11-bin × 248 211 2 3.2 912 6 226

tfhe-11-amort ✓ 251 211 3 3.2 950 6 218

tfhe-12-amort ✓ 250 212 6 3.2 950 6 218

Eval(ek, [cti]n
i=1, C). For the homomorphic circuit C, we compute each individual gate

fm

(
k∑

i=1
xi · 2i−1 ∈ Zp

)
∈ Zm

p ,

where where p = 2k and k is the maximum fan-in of the gates in the circuit C. While the
output domain is Zm

p , we compute m bits in {0, 1} at an amortized cost of running just
one bootstrapping from Algorithm 1.

Dec(sk, ct). To decrypt a LWE sample c⃗ ∈ ZN+1
Q , we compute ⟨c⃗, s⃗ext⟩ = Q

p ·m
′ +e ∈ ZQ,

rescale and round the result obtaining⌈
p

Q

(Q

p
·m′ + e

)⌋
= m′

if |e| ≤ Q
2p .

3.4 New Parameters for Amortized Bootstrapping
We choose our parameter sets to target 128-bit security for the LWE and RLWE samples.
The parameters are listed in Table 2. We estimate the security using the latest commit of
the Lattice Estimator [APS15]. We also include a Python script to estimate the statistical
security. In Table 2, we specify three parameter sets. The tfhe-11-bin parameter set is
based on previous work by Kluczniak [Klu22a] and chosen for binary ciphertexts. The
parameter sets tfhe-11-amort and tfhe-12-amort are new parameter sets to support
amortized bootstraping for 3-bit and 4-bit LUTs, respectively.

We choose our parameters accoring to the following strategy. For the bootstrapping key,
we choose two rings, one with dimension deg = 211 and one with dimensiton deg = 212. The
idea is to choose the highest modulus such that the RLWE problem remains 128-bit secure
according to the Lattice Estimator [APS15] and the modulus is below 51-bits to allow for
faster multiplication of ring elements using the HEXL library [BKS+21]. The larger ring
gives us a larger group of the roots of unity, and we thus correctly process larger messages.
For the LWE parameters, we set n = 950 for both rings and a binary secret key, since
there are asymptotic reductions from binary LWE to LWE with uniform keys. Moreover,
we stress that we choose the secret key vector uniformly from the binary distributions.
In particular, we do not use sparse secret keys and we do not fix the hamming weight,
but there are algorithms to handle other key distributions [DM15,LMK+23]. However,
these bootstrapping algorithms are usually slightly slower or require larger bootstrapping
keys. Then, we choose the decomposition bases to minize the number of polynomial
multiplications ℓ while at the same time preserving correctness with a probability of at
most 2−80 for a faulty bootstraping.

Based on Table 2, we can conclude that tfhe-11-bin will require the least amount
of polynomials multiplications. In particular, recall that the number of polynomial
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multiplications is given by n · (2 · (ℓbrKey + 1)). For tfhe-11-bin, we need 5472 polynomial
multiplicaiotns while for tfhe-11-amort and tfhe-12-amort, we need 7600 and 13300
polynomial multiplications, respectively. Furthermore, note that the ring dimension in
tfhe-12-amort is doubled compared to the other parameter sets. Hence, a polynomial
multiplication in this ring will be slower. We provide benchmarking results confirming
these observations in Section 4.

3.5 Circuit Mapping
We now move from the bottom layer of our toolchain, the FHE scheme and its capabilities,
to the post-synthesis layer above, that is to the netlist storing the synthesis output C2 and
how the Boolean circuit is translated to a homomorphic circuit. Due to our efficient and
secure amortized bootstrapping, we upgrade homomorphic gate capabilities and are able
to compute m outputs within a single bootstrapping via fm. This enables a more generic
approach to circuit mapping, which we describe in the following.

Recall that we assume a C2 which only consists of gates Gn. To convert a Boolean
circuit C2 to a homomorphic circuit C, we compose the gate inputs via the affine part
of the FHE scheme and translate each gate Gn to a function f . Let k = max n be the
maximum fan-in for all gates Gn in C2. We set p = 2k and compose the input to f as
x =

∑n−1
i=0 2i · xi homomorphically for encrypted values xi ∈ F2. Theoretically, we could

encrypt any value xi ∈ Zp, but by encrypting single bits, we have x ∈ Zp and thus x
serving as valid input to f by definition. Finally, we map the gate functionality of Gn to a
function f and compute the homomorphic equivalent as f(x).

For example, consider the gate AND : F2
2 → F2, (I0, I1) 7→ I0 ·I1. We define fAND mapping

the encrypted plaintexts {0, 1, 2, 3} to {0, 0, 0, 1}, respectively, and fAND(I0 + 2I1) computes
an AND gate homomorphically. Note that, while the output domain of f is Zp, we will
output only bits in {0, 1}. For a circuit C2 with gates Gn,m, we trivially extend our mapping
to a function fm with m distinct functions f , one for every output bit.

3.6 Optimization: LUT Grouping
In the following, we introduce our first optimization performed during post-synthesis
processing. Synthesis outputs C2 only consisting of single LUT gates Gn,1, and our first
optimization is constructing gates Gn,m to reduce the number of gates. As described in
Subsection 3.5, we then trivially map these to homomorphic gates computing fm via
amortized bootstrapping, thus reducing the number of bootstrappings compared to before.
The straightforward case is two gates Gn with exactly the same inputs in the same order
which we can group as Gn,2. There are, however, other opportunities enabling us to group
different LUTs into a single LUT with multiple outputs. More specifically, we can group
Gn′ to Gn as long as (1) the inputs of Gn′ are a subset of the inputs of Gn (or the other
way around), and (2) grouping Gn′ to Gn does not introduce cycles to C2.

Condition (1) follows relatively straightforward from our amortized bootstrapping
technique: We compute the blind rotation for an encrypted input x ∈ Zp to the function fm

which, for a gate Gn,m and encrypted values xi, is composed as x =
∑n−1

i=0 2i · xi. We
do have to be careful when grouping the individual f to a single fm, however, as the xi

for all gates have to be in the same position i within a grouping. During post-synthesis
optimization, we thus first extend each gate in the grouping to have all xi as input, adding
new inputs as required without modifying the gate output. Second, we order the inputs
according to their unique IDs in HAL always composing the same x; hence, we compute
Gn,m correctly.

Condition (2) ensures that C2 still matches our definition from Subsection 2.2 preventing
cycles in C2 as we otherwise could not evaluate it anymore. Consider the following scenario:
Two inputs to some gates G2 and G3 are the same while the third input to G3 is the output of
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G2

G2

G3 G3 G2

ct1

ct1ct1 ct1

ct2

ct2ct2

ct3

Figure 2: Grouping gates in an example circuit by matching the inputs while preserving
topological order, each group is surrounded by a dashed line in green. The gate G2 in the
top row cannot be grouped with the bottom row as it would introduce a cycle.

G2; here, grouping would introduce a cycle. This example generalizes to more complicated
settings with additional gates in between and detecting such cases specifically is rather
difficult; it would require checking all inputs to gates which are directly or indirectly
connected to the output of a grouping candidate. We therefore choose a simpler, although
non-optimal method, and only group Gn′ to Gn if Gn appears before Gn′ in the topological
order and the inputs of Gn′ are a subset of Gn (but not the other way around).

An example for LUT grouping where both conditions are at play is depicted in Figure 2.
Here, the two gates G3 in the bottom row have the same inputs and hence can be grouped.
Additionally, we can add G2 in the bottom row to the same group, as its inputs are a
subset (we assume it appears later in the sorted graph). G2 in the middle row has a unique
input combination and is its own group. As for the top row, the inputs of G2 are a subset
of the inputs from the bottom row. But, adding it to the group at the bottom would
introduce a cycle, and it thus remains its own group.

3.7 Optimization: Adder Substitution
Adder substitution, our second optimization, is based on the following observation: Using
LUTs to realize additions is generally more costly than using the native addition capabilities
of the FHE scheme (the same idea can be applied to transpilation based on instruction
mapping). For example, with p = 23, a two-bit addition with LUT grouping requires
two amortized bootstrappings while adder substitution reduces it to one bootstrapping as
depicted in Figure 3.

At its core, adder substitution takes place during synthesis moving us up another
layer in the toolchain, but for simplicity, we split its implementation into two steps, one
performed during synthesis in Yosys and one during post-synthesis processing in HAL:
First, we hook into the synthesis process mapping additions and subtractions from the
Yosys IR to custom adder gates. In the second step, we group these adders depending on
the plaintext modulus p. In the following, we explore both steps in more detail.

During synthesis, we instruct Yosys to use single-bit full adder gates

FA : F3
2 → F2

2, (x, y, ci) 7→ (s, co) = (x + y + ci, x · y + ci · (x + y))
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G2,2

G3,2

x0 y0 x1 y1

s0 s1 s2

G3,3

x + y

s0 s1 s2

Figure 3: Comparing a two-bit addition s = x + y with a three-bit output based on LUTs
for computation (left) and based on ciphertext addition with decomposition (right) with
p = 23. The former requires two amortized bootstrappings while the latter requires one.

0

FA

x0y0

s0

FA

x1y1

s1

FA

x2y2

s2

FA

x3y3

s3

FA

x4y4

s4 s5

Figure 4: Grouping FA gates for a 5-bit addition s = x + y with p = 23 and ci = 0, each
grouping is marked by a dashed green box.

for addition. Since an addition x + y in the Yosys IR has arbitrary width, we start with a
single-bit addition by adding the least significant bits x0 and y0 with ci = 0, building up
to an arbitrary-width addition by connecting the FA gates via the carry bits as required.
For a subtraction x− y, we place inversion gates

INV : F2 → F2, I 7→ O = I + 1

for y and set ci = 1 for the least significant bit, this corresponds to a negation in the two’s
complement representation. Note that, for a ciphertext ct, computing inversion as 1− ct
does not require a bootstrapping and is considered free (see also Subsection 3.8).

During post-synthesis processing, we identify adder chains and group them into groups
of log p − 1 gates. Using log p − 1 gates ensures that addition does not wrap around
modulo p, which we require for correctness. The FA for the least significant bit serves
as root of a chain and is easy to identify with a constant ci ∈ F2. Figure 4 contains an
example for a 5-bit addition with p = 23.

As an additional optimization, we exclude constant addition or subtraction from adder
substitution. The reason is rather straightforward: Since the individual bits of one operand
are known at synthesis time, they can be folded with surrounding logic very efficiently and
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using our custom FA gate would result in worse performance. We evaluate the effect of
constant bits on adder substitution in more detail in Section 4.

3.8 Additional Optimizations

Beyond the improvements achieved by LUT grouping and adder substituions, we employ
three further minor optimizations:

• We use the well-known fact that inversion of a ciphertext ct encrypting a value in F2
corresponds to the affine function 1− ct, also known as free inversion optimization;
hence, no bootstrapping is required (this is also applicable to transpilation based on
instruction mapping).

• We employ LUT conversion, during which we convert LUT1 gates to affine functions
on a ciphertext without performing a bootstrapping. The mapping is trivial as a
LUT1 either computes the identity function or an inversion.

• Type sorting is applied during the topological sorting of the circuit graph. We split
the gates according to their depth and sort each layer with respect to gate types.
Most importantly, we sort the LUTs according to the number of inputs in descending
order. This ensures that we do not miss out on LUT groupings within a layer, as
these cannot introduce cycles to the graph.

4 Evaluation
In the following, we evaluate our contributions with a multitude of examples; most designs
stem from the FHE transpiler [GSPH+21], the remaining ones are our own addition.
Overall, we use the following examples: Compute the sum of 3-bit, 4-bit or 32-bit integers,
respectively (add3, add4, add32); calculate the addition, subtraction or multiplication of
two 16-bit integers (calc); compute the sum of a 4-bit integer with a constant (const4);
apply blurring to a small image (img-blur); apply a ricker wavelet transformation to a
small image (img-ricker); apply sharpening to a small image (img-sharp); compute a
rectified linear unit function (relu); compute the square root of a 16-bit integer (sqrt);
reverse an array of up to eight characters (strrev); compute the sum over a one-dimensional
array of structs (structs1d); compute the sum over a three-dimensional array of structs
(structs3d); compute the sum over a three-dimensional array of integers (sum3d).

For these examples, we target several architectures:

• prev: The Yosys script from the FHE transpiler without optimizations [GSPH+21].

• noX: Our Yosys script with a maximum LUT-size of X bit without optimizations.

• noXfa: noX with adder substitution.

• optX: noX with all optimizations except adder substitution.

• optXfa: optX with adder substitution.

In Table 3, we list the number of bootstrappings for all examples with a wide variety of
architectures.
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Table 3: Results for all examples with different synthesis processes and optimization
techniques; each row contains the number of bootstrappings.

prev no2 no2fa opt2 opt2fa no3 no3fa opt3 opt3fa

add3 12 12 3 7 3 6 2 3 2
add4 17 17 4 10 4 8 2 4 2
add32 165 163 32 102 32 63 32 32 16
calc 948 884 857 655 653 491 479 351 358
const4 4 4 4 2 2 3 3 1 1
img-blur 318 316 74 193 74 146 37 90 37
img-ricker 342 334 90 212 89 145 48 95 47
img-sharp 183 194 76 125 65 94 43 57 35
relu 30 15 15 15 15 15 15 15 15
sqrt 195 224 334 183 307 102 179 85 162
strrev 668 805 805 744 744 364 364 341 341
structs1d 159 157 31 98 31 61 16 31 16
structs3d 1091 1056 217 654 217 460 112 246 112
sum3d 954 926 203 553 203 396 105 199 105

4.1 Evaluating LUT Grouping

To evaluate LUT grouping, we compare the results for architectures no2 and no3 with
architectures opt2 and opt3, respectively. For the chosen use cases, we reduce the number
of bootstrappings by up to 66 % and, for most use cases, by at least 30 %. On average,
using LUT grouping reduces the number of bootstrappings by almost 35 %. Due to its
effectiveness with only a slight overhead in the parameters, we recommend to always enable
LUT grouping to improve performance for FHE circuit synthesis.

4.2 Evaluating Adder Substitution

For adder substitution, we compare the results for no2 and no3 with no2fa and no3fa,
respectively. Here, results are more mixed than before and we can make multiple interesting
observations. As expected, for use cases without additions such as strrev, the number of
bootstrappings stays the same. For use cases with lots of additions, however, improvements
are much more drastic compared to before, and the number of bootstrappings is reduced
by up to 80 % and, on average, we reduce the number of bootstrappings by almost 44 %.

Nevertheless, in the use case sqrt, we actually perform worse with our optimization.
In Listing 1, we extract the culprits for this result. The subtractions performed depend
on many constant bits for the second input. However, we cannot detect this during
synthesis in Yosys as the built-in constant folding is not aggressive enough to mark the
appropriate subset of input bits as constant. Since folding additions and subtractions with
many constant input bits into LUTs is relatively efficient, the default LUT optimizations
outperform adder substitution.

Overall, as efficient arithmetic is one of the main selling points of word-based schemes
compared to Boolean-based schemes, we believe that the above optimization can be an
important step to gain efficient arithmetic while keeping flexibility for FHE computations.
For now, we suggest transpiling circuits with and without adder substitutions and choosing
the better performing option (this can happen automatically); we discuss possibilities for
future work in Subsection 5.4 to avoid such scenarios.
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[...]
assign sub_1935 = sel_1912 - \

({1 ’h0 , sel_1910 , 13’ h0000 } | 16’ h1000 );
[...]
assign sub_1962 = sel_1939 - \

({1 ’h0 , sel_1937 , 11’ h000} | 16’ h0400 );
[...]
assign sub_1989 = sel_1966 - \

({1 ’h0 , sel_1964 , 9’h000} | 16’ h0100 );
[...]
assign sub_2016 = sel_1993 - \

({1 ’h0 , sel_1991 , 7’h00} | 16’ h0040 );
[...]
assign sub_2043 = sel_2020 - \

({1 ’h0 , sel_2018 , 5’h00} | 16’ h0010 );
[...]
assign sub_2070 = sel_2047 - \

({1 ’h0 , sel_2045 , 3’h0} | 16’ h0004 );
[...]

Listing 1: Subtractions in the sqrt example containing constant bits.

Table 4: Performance of the new parameter sets.

Set Boot. [s] brKey [MB] ksKey [MB]

tfhe-11-bin 0.24 44.8 78.5
tfhe-11-amort 0.29 81.7 81.8
tfhe-12-amort 0.58 217.9 163.6

4.3 Benchmarking
We run benchmarks on Ubuntu 20.04.4 with an Intel Core i7-11850H central processing
unit (CPU) at 2.50 GHz featuring 8 cores. Our system has 16 GiB of available memory.
For the new parameter sets, we summarize our results in Table 4 regarding runtime and
memory consumption, confirming our observations from Subsection 3.4. For prev, we
use the parameter sets tfhe-11-bin while we use tfhe-11-amort for opt2fa, opt3, and
opt3fa. For opt4, we use tfhe-12-amort.

Our benchmarking results for all examples are summarized in Table 5. As expected,
the execution time highly correlates with the number of bootstrappings. In most cases,
we receive the best speed-ups for 3-bit LUTs. But, there are exceptions such as the relu
example where 2-bit LUTs perform the best. Using 4-bit LUTs is generally not worth due
to the increased polynomial degree and thus the longer bootstrapping time.

5 Discussion
In the following, we put our work in the context of current research, first discussing related
work on FHEW-like implementations followed by related work on FHE circuit synthesis.
Afterward, we discuss limitations of our optimizations and explore multiple opportunities
for future work to further optimize the tool-based generation of circuits for FHE.

5.1 Related Work on FHEW-like Implementations
In Table 6, we roughly compare different libraries implementing FHEW-like schemes. A
distinguishing feature of FHE-Deck is the support for correct and secure parameter sets
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Table 5: Execution time in seconds including the corresponding rounded speed-ups
compared to prev for all examples and a selection of synthesis processes with optimizations
on our benchmarking setup, an Ubuntu 20.04.4 with an Intel Core i7-11850H CPU.

prev opt2fa opt3 opt3fa opt4

t t′ t/t′ t′ t/t′ t′ t/t′ t′ t/t′

add3 2.40 0.91 2.6 1.31 1.8 1.01 2.4 2.79 0.9
add4 3.33 1.23 2.7 1.75 1.9 1.14 2.9 3.88 0.9
add32 30.90 9.69 3.1 13.91 2.2 9.13 3.3 36.44 0.8
calc 146.50 107.60 1.4 104.30 1.4 106.00 1.4 149.60 1.0
const4 0.86 0.54 1.6 0.50 1.7 0.59 1.5 1.38 0.6
img-blur 56.00 17.00 3.3 30.82 1.8 15.70 3.6 61.71 0.9
img-ricker 59.88 19.38 3.1 31.98 1.9 18.67 3.2 64.19 0.9
img-sharp 32.39 13.26 2.4 19.34 1.7 12.90 2.5 36.60 0.9
relu 5.94 3.53 1.7 5.50 1.1 5.43 1.1 12.89 0.5
sqrt 33.23 52.51 0.6 25.64 1.3 50.77 0.7 41.63 0.8
strrev 115.10 123.70 0.9 103.10 1.1 103.60 1.1 171.50 0.7
structs1d 30.01 9.42 3.2 13.38 2.2 9.00 3.3 36.56 0.8
structs3d 193.20 53.68 3.6 88.20 2.2 50.62 3.8 202.80 1.0
sum3d 167.10 46.33 3.6 71.13 2.3 43.86 3.8 161.90 1.0

for amortized bootstrapping. Both FHE-Deck and TFHE-rs support different algorithms
for functional bootstrapping (also known as programmable bootstrapping), but without
amortization. In particular, FHE-Deck supports the full domain bootstrapping algorithm
based on work by Liu, Micciancio, and Polyakov [LMP22] while THFE-rs supports the
algorithm by Chilotti et al. [CLOT21]. Moreover, both libraries support simple padding-
based functional bootstrapping. The TFHE library [CGGI16b] supports only binary gates.
Open-FHE [ABBB+22], which is derived from PALISADE [PAL21], implements binary as
well as full domain bootstrapping based on work by Liu, Micciancio, and Polyakov [LMP22].

There are implementations for LUT evaluation [CGGI17]. However, the techniques are
vastly different, as the authors evaluate a LUT on so-called RGSW ciphertexts requiring
numerous bootstrapping invocations (the number depends on the chosen parameters) for
each output bit of the LUT. In contrast, we focus on computing LUTs using a single
bootstrapping invocation. Finally, the amortized bootstrapping technique by Micciancio
and Sorrel [MS18] and its improvement [GPvL23] compute functional bootstrapping over
many input ciphertexts at a cheaper cost than bootstrapping ciphertexts separately. In
particular, the functional difference is that we amortize computation for many output
functions on the same input ciphertexts while they compute the same functions on multiple
ciphertexts. Combining both amortization techniques in a practical way is an interesting
open problem for future work.

Amortized Bootstrapping in TFHE

The TFHE library implements amortized bootstrapping [CIM19] in a separate branch.
However, the method is not integrated into a usable interface, and parameters are hardcoded
in the low-level code mainly for benchmarking purposes. In particular, the performance tests
do not switch the key back to the LWE form, thereby disallowing to use the implementation
in applications. Furthermore, as we addressed in Subsection 3.2, the implementation
only tests the performance of bootstrapping itself for randomly chosen polynomials w
and v⃗. Unfortunately, there is no implementation of the procedures that generate these
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Table 6: Functionality Comparison of Different FHE Libraries for FHEW-like schemes. For
functional bootstrapping, we denote as # the plain FHEW/TFHE algorithm to evaluate
boolean gates. By G#, we denote a full domain functional bootstrapping algorithm [YXS+21,
CLOT21,LMP22,KS22]. By  , we denote support for our improved funtional bootstrapping
algorithm. In this comparison, a high-level interface for functional bootstrapping is required.

Library Language Bootstrapping

Functional Amortized

FHE-Deck C++  ✓

Open-FHE C++ G# ×
TFHE C++ # ×

tfhe-rs/CONCRETE Rust  ×

polynomials. Moreover, the bootstrapping parameters chosen in the implementation do
not allow generating the rotation polynomials as suggested [CIM19] because the ciphertext
moduli are a powers-of-two. Hence the system of linear equations will not be solvable.

To fix the problem, we may choose prime power moduli. However, even with prime power
moduli, the method for the suggested parameters requires over 240 multiplications and
modulus reductions. While 240 isn’t considered cryptographically hard, it is a considerable
time in practice. Additionally, we note that previous parameters [CIM19] use a much larger
ring of dimension 214, which may be justified by the larger target precision. However,
the choice of the LWE dimension seems to be controversial with respect to security. In
particular, the dimension n is only 803 with a sparse binary secret key of hamming weight 63.
Finally, the online bootstrapping algorithm used in [CIM19] is the same as Algorithm 1.
Hence differences in running time may be attributed to differences in implementation,
benchmarking setups, or parameter choices.

5.2 Related Work on Circuit Synthesis
There are a couple of previous works on circuit synthesis for FHEW-like schemes, the
previously mentioned FHE transpiler [GSPH+21] as well as two earlier works named
Cingulata, originally released under the name Armadillo [CDS15], and the E3 framework
[CMG+18]. In Cingulata, the authors divide their toolchain in three parts: the front-end
translating C++ code to a Boolean circuit, the middle-end optimizing the circuit and the
back-end transpiling the circuit to a FHE library. The mapping from C++ to a Boolean
circuit in the front-end defers optimizations to the middle-end based on ABC [Mis], which
we also use as part of our toolchain via Yosys. No other optimizations are performed. The
E3 framework also uses hardware tooling for transpilation, however, no details regarding
optimizations are available in their publication.

The FHE transpiler currently improves upon all previously known work and thus serves
as a good foundation to evaluate new research ideas. Common compiler optimizations such
as constant folding or dead code elimination are performed in the XLS-based high-level
synthesis layer. However, to the best of our knowledge, the only FHE-specific optimization
currently performed is rather trivial treating inversion as free for Boolean-based circuits. For
LUT-based circuits, there is currently no post-processing implementing this optimization.

5.3 Limitations
There are some limitations for our proposed optimizations. First, as highlighted in
Subsection 4.2, using adder substitution can result in worse performance when the inputs
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contain many constant bits which can be non-detectable using our current approach.
Therefore, a user has to manually check for the better circuit. One solution and useful
contribution in future work would be improving constant bit detection and constant
folding in the Yosys IR. Second, although using three-bit ciphertexts tends to provide the
largest speed-ups, sometimes other bit sizes can be more beneficial such as using two-bit
ciphertexts for the relu example. Exploring the root causes and detecting such cases,
especially if also done for subcircuits, would further improve circuit synthesis for FHE.

5.4 Future Work

An in our opinion important observation is that the current state-of-the-art in bootstrapping
for FHEW-like schemes can still be improved upon. We also believe that there is still room
for improvement regarding performance for TFHE implementations as well as regarding
usability for currently available libraries, including, but not limited to, FHE-Deck. As for
circuit synthesis, our work is a first step in FHE-specific optimizations and we believe that
there is a multitude of other possibilities making automatically generated circuits more
efficient. For example, amortized bootstrapping greatly benefits from LUTs with the same
inputs which current hardware tooling is not optimizing for.

Another important contribution would be providing high-level implementations for
a representative set of use cases serving as foundation to better evaluate optimizations
(similar to compiler benchmarking where, for specific use cases, the performance of the
compiler is evaluated considering compilation time and output quality). This is necessary
as optimizations are often heuristic in nature and hard to evaluate generically. Overall, we
are looking forward to future work in the area of circuit synthesis for Boolean-based FHE
schemes.

6 Conclusion

In this work, we improve performance and usability of FHEW-like schemes by extending
the current state-of-the-art in bootstrapping as well as circuit synthesis. To improve perfor-
mance, we significantly simplify the bootstrapping idea proposed by Carpov, Izabachène,
and Mollimard [CIM19] and provide the first efficient implementation for amortized
bootstrapping. With respect to usability, we provide new and secure parameter sets
for multi-bit encryptions, which can be used by researchers and developers alike, and
implement a high-level interface for amortized bootstrapping in the open-source library
FHE-Deck [fhe23].

We provide a generalized model for mapping Boolean circuits to homomorphic circuits
and introduce the first non-trivial FHE-specific optimizations for generating circuits from
high-level code: LUT grouping and adder substitution. Using LUT grouping, generated
circuits require almost 35 % less bootstrappings on average and adder substitution reduces
the number of required bootstrappings by up to 80 %. Overall, our performance improve-
ments result in up to 3.8× faster execution times compared to previous synthesized circuits
with state-of-the-art methods.
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