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Abstract
Recent years have seen the emergence of practical advanced cryptographic tools that not only protect
data privacy and authenticity, but also allow for jointly processing data from different institutions
without sacrificing privacy. The ability to do so has enabled implementations a number of traditional
and decentralized financial applications that would have required sacrificing privacy or trusting a
third party. The main catalyst of this revolution was the advent of decentralized cryptocurrencies
that use public ledgers to register financial transactions, which must be verifiable by any third party,
while keeping sensitive data private. Zero Knowledge (ZK) proofs rose to prominence as a solution
to this challenge, allowing for the owner of sensitive data (e.g. the identities of users involved in an
operation) to convince a third party verifier that a certain operation has been correctly executed
without revealing said data. It quickly became clear that performing arbitrary computation on
private data from multiple sources by means of secure Multiparty Computation (MPC) and related
techniques allows for more powerful financial applications, also in traditional finance.

In this SoK, we categorize the main traditional and decentralized financial applications that can
benefit from state-of-the-art Privacy-Enhancing Technologies (PETs) and identify design patterns
commonly used when applying PETs in the context of these applications. In particular, we consider
the following classes of applications: 1. Identity Management, KYC & AML; and 2. Markets &
Settlement; 3. Legal; and 4. Digital Asset Custody. We examine how ZK proofs, MPC and related
PETs have been used to tackle the main security challenges in each of these applications. Moreover,
we provide an assessment of the technological readiness of each PET in the context of different
financial applications according to the availability of: theoretical feasibility results, preliminary
benchmarks (in scientific papers) or benchmarks achieving real-world performance (in commercially
deployed solutions). Finally, we propose future applications of PETs as Fintech solutions to currently
unsolved issues. While we systematize financial applications of PETs at large, we focus mainly on
those applications that require privacy preserving computation on data from multiple parties.
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1 Introduction

Modern Cryptography and Traditional Finance. Due to their sensitive nature, financial
applications require strong security guarantees. Clearly, it is necessary to ensure authenticity
and integrity of any financial operation, i.e. guaranteeing that the operation has been
ordered by an entity authorized to do so and that this order has not been tampered with.
Moreover, it is also necessary to achieve privacy, i.e. preventing attackers from obtaining
sensitive information related to financial operations (e.g. the identities of entities involved in
a transaction and/or the value of that transaction). In the digital realm, authenticity and
privacy guarantees can be achieved against powerful adversaries who control communication
networks (e.g. the Internet) by means of digital signatures and encryption, respectively.
A Decentralized Conundrum. The meteoric rise of decentralized financial applications based
on cryptocurrencies and smart contracts hosted on blockchain platforms brought to light a
whole new set of challenges. While traditional financial applications are hosted and executed
by financial institutions in a centralized manner, the decentralized nature of blockchain-based
applications requires all operations to be verifiable by third parties by means of publicly
available records. If only simple cryptographic primitives are employed, this means that
sensitive data that was once internally handled by financial institutions must now be exposed
on the blockchain in order to perform a financial application. For example, Bitcoin requires
revealing the sender and the receiver of a financial token that is transferred, so that a transfer
transaction is considered valid if and only if the rightful owner of the token signs it.
Privacy-Enhancing Technologies (PETs) to the Rescue. While sacrificing privacy to
achieve decentralization may be acceptable in some situations, most financial operations
involving companies and private citizens cannot be conducted in this manner due to a number
of reasons (e.g. protecting business interests and complying to regulations). In order to
solve this issue, the cryptocurrency community turned to Privacy-Enhancing Technologies
(PETs) that allow for achieving the same authenticity and privacy guarantees as in traditional
centralized financial applications while providing the public verifiability guarantees needed
in decentralized blockchain platforms. In particular, many of the first proposals towards this
goal involved using a technology called Zero Knowledge (ZK) proof systems [75] : a method
that allows the owner of sensitive data to prove a statement about this data without having
to reveal it. For example, in the token transfer transaction example, a ZK proof allows a
user to prove that an “encrypted” transfer transaction has been signed by the rightful owner
of the token, without revealing neither the owner’s nor the receiver’s identity, e.g. as in [17].
From Decentralized to Traditional Finance. The vast usefulness of advanced PETs in
blockchain applications also sparked an interest in deploying similar solutions for traditional
financial applications. The aforementioned ZK proof technology has also been used in
innovative solutions to the Know Your Client (KYC) and Anti Money Laundering (AML)
problems commonly encountered in the banking industry, e.g., as in [90, 132, 129, 124]. As
in the case of privacy preserving cryptocurrency transactions, in many scenarios an entity
wants to prove that they comply with KYC/AML regulations without revealing their identity
nor their sensitive data. For example, a client can prove to a third party service provider
that their identity has been verified by their bank and that they are authorized to use a
certain service and perform operations up to a certain financial volume, while keeping their
identity, and other attributes (e.g. the list of operations they are allowed to perform) private.
PETs for the Masses - or - From ZK to MPC. The ZK proof technology lends itself
extremely well to applications that require a single entity to publicly prove a statement about
its private data, e.g. the KYC/AML or cryptocurrency examples above. However, it is limited
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by the fact that the entity who generates a ZK proof must necessarily know all the private
information about which the statement is proven. This is a serious limitation in two cases: 1.
applications that must process sensitive data provided by multiple entities; 2. applications
where certain data (e.g. cryptographic secret keys) are far too valuable to be stored on
a single device, which leaks the data if its security is compromised. Fortunately, these
limitations can be addressed by means of secure Multiparty Computation (MPC) [39, 74],
which allows a set of entities to jointly execute an arbitrary program that computes on an
“encrypted” version of their private data and only reveals the output of this computation.

For example, specific-purpose MPC protocols have long been used for sealed-bid auc-
tions [80, 27] among entities who do not trust each other, nor a third party auctioneer. In
this case, the parties provide as input “encrypted” versions of their bids and jointly compute
a program that determines the winner of the auction, without revealing the value of the
bids or any other information. In the context of blockchain-based cryptocurrencies, MPC
protocols [88] have also been successfully deployed [47] for protecting secret signature keys
used to authorizing/authenticating transactions. In this case, many entities locally stores a
“share” of the signing key that does not reveal any information about the key itself unless
all shares are united. When a transaction must be signed, all these entities use MPC to
jointly execute a program that takes as input all the signing key shares, reconstructs the true
key and computes the signature on the given transaction, while only revealing the resulting
signature and nothing else. Since knowledge of the key is split among many entities, an
attacker now has to compromise many, potentially all, entities instead of a single server.

1.1 Systematizing Privacy-enhancing Technologies in Finance
The goal of this SoK is to systematize financial applications that can benefit from PETs, as well
as systematizing relevant PETs according to their respective applications and technological
readiness. As summarized in Figure 1, we consider 5 main classes of financial applications,
which are each addressed in the specific section indicated next to the application class name.
At a high level, these applications can be potentially facilitated by the PETs indicated in the
PET column of Figure 1, which are introduced in detail in Section 2. In particular, we focus
on financial applications that require handling private data from multiple entities, as ZK
proof technology for financial applications has been extensively addressed in previous works
(e.g. [26, 4, 5, 103]). We summarize the main privacy enhancing technologies we consider in
this SoK and their Technology Readiness Level (TRL) in Figure 2, recalling that the scale
goes from 1 to 9 where level 1 means the basic principle has been observed and level 9 means
proven successful in real-world applications. While we aim at providing a general overview
of PETs for financial applications covering broad ranges of both PETs and applications,
we do not intend to provide an exhaustive review of the PET literature. For each class of
applications, we strive to survey the works that introduced the most relevant insights and
groundbreaking results, since it would be infeasible to cover every single optimization of each
PET that would be relevant for each application.

The financial applications we cover and the respective relevant PETs are summarized as
follows:

Identity, KYC & AML (Section 3): Identity management is a classical problem that has
the added challenges of Know Your Client (KYC) and Anti Money Laundering (AML)
regulations in the financial sector. PETs can be used in these applications to provide
robust identity management with privacy preserving methods for enforcing KYC & AML
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Figure 1 PET stack for financial ap-
plications. TSS = Threshold Secret
Sharing, DP = Differential Privacy,
(F)HE=(Fully) Homomorphic Encryption,
PSI = Private Set Intersection, MPC
= Multiparty Computation, ZK = Zero
Knowledge proofs. See Section 2 for a
discussion of each concept.

PET (§2)

(§3) Identity, KYC & AML MPC, ZK

(§A) Legal MPC, ZK

(§B) Digital Asset Custody TSS, MPC

(§4) Markets & Settlement (F)HE, MPC, ZK

(§5) Future applications PSI, DP, MPC

Figure 2 Technology Readiness Level
(TRL) between 1-9 of different PETs. See
Section 2 for a discussion of each concept.

PET (§2) TRL Demonstrated by

ZK 9 ZCash [82], Filecoin [87]

TSS 9 Zengo [86]

DP 9 Apple [58]

PSI 8 Apple [18]

MPC 7 JP Morgen [50], Meta [38]

FHE 6 Zama [43]

regulations in both decentralized and traditional scenarios.
Legal Procedures (Section A): Many legal procedures require evidence to be presented in

court. However, in many cases the evidence or even the relevant law/regulation must be
kept private. PETs allow for such legal procedures to be conducted without sacrificing
neither privacy nor auditability (i.e. the ability of any entity to verify that a legal procedure
has been properly executed). Furthermore, due to the novelty of PETs it is not always
clear how they fit within existing legal frameworks and how they might help and provide
utility while fulfilling privacy regulations such as GDPR.

Digital Asset Custody (Section B): Digital assets such as cryptocurrencies are usually
transferred by means of a digital signature, which can only be generated given a secret key.
Since storing this key in a single device poses a risk of key leakage, PETs can be employed
to distribute the signing power (and thus the power to move the asset) among many entities,
in such a way that the system is only compromised if all entities are compromised.

Markets & Settlements (Section 4): Both the traditional and decentralized financial mar-
kets use complex trading instruments that may be abused by entities who retain privileged
information about trades. PETs provide a robust solution to this issue via distributed
“Dark Pools” or privacy preserving DeFi mechanisms (e.g. Automated Market Makers)
that process trades without revealing any sensitive information to the entities evolved.

Future Applications (Section 5): Besides financial applications that have already been ad-
dressed in previous work, we propose that several PETs can be potentially used to address
other interesting challenges in finance. In particular, recent advances in PETs enable the
execution of advanced machine learning (ML) algorithms on private data, allowing for
detecting patterns (e.g. for fraud) without revealing neither the ML models nor the data.

2 Available Privacy-enhancing Technologies

Before we describe applications of Privacy-Enhancing Technologies (PETs) to finance, we
will give a short overview over existing PETs and how mature they are.
Zero-Knowledge proofs. Zero-Knowledge proofs [75] are cryptographic algorithms which
allows a prover to convince a distrusting verifier that a certain statement is true. While the
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statement (usually specified in the form of a program) is known to the verifier, the proof (e.g.
a certain input that makes the program output 0) is never leaked to the verifier. There exists
a large variety of different ZK proof algorithms, and choosing the optimal proof depends
largely on the application. Recently, efforts have been underway to standardize ZK proofs1

to make them more accessible to practitioners.
Private Set Intersection. Private Set Intersection (PSI) [66] allows two (or more) distrusting
parties with respective input sets S1 and S2 to securely learn their intersection, i.e. S1 ∩ S2,
without revealing the non-intersecting elements to the other party. For example, if party
1 has S1 = {a, b, d} and party 2 has S2 = {b, c, e} then both parties will learn that they
have b in common in their sets. At the same time, party 2 will not learn that party 1 also
had a, d in its input set and vice-versa for c, e. Highly efficient PSI protocols have been
developed recently and some, such as the one developed by Chen et al. [42] found applications
in industry.
Threshold Secret Sharing. Threshold Secret Sharing (TSS) allows a dealer to distribute [112]
a secret x among n different parties, who each receive a share of the secret. Given a threshold
t < n, TSS guarantees that if t or less parties pool their shares together, then they cannot
reconstruct any information about x. If instead more than t parties cooperate (i.e. pool their
shares), then x can be reconstructed. Multiple versions of secret sharing exist, for example
with security against share-holders who don’t act honestly during the reconstruction of the
secret [45, 106]. Moreover, secret-sharing can be generalized so that not a threshold decides
about the possibility of reconstruction, but instead any pattern can be used by the sender of
the shares.
Multiparty Computation. Cryptographic protocols for Multiparty Computation (MPC) [16,
40, 73] allow 2 or more mutually distrusting parties who each have an input xi to evaluate an
arbitrary function y = f(x1, . . . , xn) on their inputs. MPC guarantees that only the function
output y and no other information about the inputs is revealed. One can see PSI as a special
case of MPC where the computed function is the intersection of input sets. MPC can be made
robust against parties who maliciously deviate from the protocol description, and security
usually holds if less than a threshold t of the participants in the computation collaborate to
undermine the security. Therefore, MPC can be seen as constructing a distributed trusted
entity. Recent progress in MPC research has made practical use of MPC possible2.
Fully-Homomorphic Encryption. Fully-Homomorphic Encryption (FHE) is a special type
of encryption scheme first proposed in [108] and later realized in [71]. In FHE, everyone
with a so-called public key can encrypt information, while only the holder of the private key
can decrypt it later. In addition, given encrypted of data as well as the public key, anyone
can perform computations on the encrypted data and evaluate algorithms on secret inputs.
For example. Given encryption [x], [y], [z] of the values x, y, z, FHE allows to compute an
encryption [x · y + z] of x · y + z or any other efficiently computable algorithm on these inputs.
The clue is that the decryptor who obtains [x ·y +z] will only learn x ·y +z but not the inputs
to the computation. Although concrete FHE schemes are relatively new, the technology is
already somewhat mature3 and powerful testing implementations4 are available.
Differential Privacy. Differential Privacy [61] (DP) is a technique to compute add noise to
outcomes of algorithms such that leakage about the inputs of the computation is minimized.

1 See https://zkproof.org/.
2 https://www.mpcalliance.org/
3 https://fhe.org/
4 https://www.openfhe.org/

https://zkproof.org/
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The level of the noise is calibrated such that mathematical guarantees about the privacy of
the inputs can be given.
A note on Trusted Execution Environments. Trusted Execution Environments (TEE) such
as Intel’s SGX are special modes of modern processors. A processor in its trusted execution
setting guarantees that programs and their data are shielded from every other program
running on the computer - even the operating system or any user having full access. A
secure TEE allows to build many of the aforementioned PETs such as ZK proofs, PSI, MPC
etc. “cheaply” and without additional cryptographic tools. In practice, SGX and similar
technologies from other vendors5 are regularly broken and do not offer the protection that
they claim. We therefore do not consider it as a PET in this document.

3 Identity, KYC, AML

A general issue facing the financial world is the validation of customer identities and attributes.
Laws and regulations require financial institutions, both classical and decentralized, to employ
Know Your Customer (KYC) rules, for example to prevent money laundering and to be able
aid in criminal cases - or even to lock accounts in case of sanctions. Being able to correctly
determine a legal owner of an account can in itself help in preventing money laundering by
precluding the use of fake accounts which could otherwise aid in smurfing, see Sec. 3.1. In
the EU this is for example in place through the Anti-Money Laundering Directives and in
the US through the Money Laundering Control Act of 1986. In the classical banking setting
such validations are carried out through customers going to their physical bank and bringing
required documents to prove their identity, residence or perhaps even criminal history, of
which the bank would keep a copy. However, with the advent of online-only banks such as
Lunar, Revolut and N26, along with crypto-currency exchanges like Binance and Coinbase,
such validations become tricky, as there are no physical locations to validate identities.

Today KYC is instead carried out online, and in many cases through machine learning
algorithms, where customers upload copies of their data which gets validated. When it
comes to security this unfortunately as several disadvantages: i) it is easy to create a
picture of a document or manufacture it, or even modify some data of a real document [118];
and ii) the leakage of legitimate documents online allows an adversary to steal identities.
Simply considering how often a copy of ones passport is needed (e.g. basically any hotel or
accommodation in any country), it is not hard to see that copies of legitimate documents will
be easy to find on the dark market. Even though requirements can be made to include selfies
or short videos to validate authenticity, this has turned into a race against Photoshop and
deep fakes, which have shown tremendous advancement in the recent years [119]. While such
attacks are also possible in physical space (i.e. creating fake documents and having them
validated by a human), they are significantly more cumbersome due to human involvement
and more expensive to mount, and therefore do not scale like digital-only attacks. Thus it is
clear that the digital attack vector on KYC is the weakest link in account validation.

3.1 Identity management
One possible way of combating attacks when validating digital copies of physical identity
documents is simply to move the documents into the digital realm. Digital signatures
and revocation systems can ensure that digital documents are legitimate. This is done by

5 See e.g. the exhaustive list on https://sgx.fail/.

https://sgx.fail/
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combining them with an identification scheme where a user needs to prove they know a
password/key used in the construction of their digital identity. This can prevent theft by
simply copying the digital document. Often a simple password or key is not deemed secure
enough in financial applications by law [102], and a second factor is required.Thus the use
of authentication apps is common in electronic ID (eID) solutions, like the Danish MitID.
Such eID solutions validate user-identities by the a trusted issuer during setup, allowing
other applications to piggy-back on existing validation. This naturally comes with a risk
of compromise or identity sharing through the eID provider, although it may arguably be
harder than with their physical counterparts.

Single Sign-On. eIDs are typically validated by a centralized and trusted server that is
able to perform relevant logging, and hence poses a risk to user privacy. Furthermore, such
identity management is not exclusive to official or government identities, but can involve
any kind of self-reported identity, which is the case for example for a Facebook or Google
account. These platforms act as federated identity management services, allowing the sharing
of the user’s identity, along appropriate attributes of the user, to third-party websites. Thus
facilitating a single sign-on (SSO) system. In this setting, the server validating the user’s
identity is known as the identity provider (IdP), which would be Facebook or Google in the
above example. The third-party website is known as the service provider. This could for
example be Netflix or Spotify. The idea of an SSO service goes beyond simply having an
IdP facilitating a user authenticating towards a service provider. In fact an IdP may gather
certified attributes about a user from multiple trusted issuers, and sign off on the user indeed
being validated to have such attributed. This for example happens when Facebook validates
that a given user has access to a specific email account, or phone number. While using an
SSO makes things much simpler for a user, it also is a big privacy issue as an IdP now hold a
large amount of the user’s personal information, along with knowledge of whenever the user
users this information and towards which service provider. Furthermore, it also means that
large amount of trust has to be put in the IdP as they are would be able to impersonate
any of their users towards any service provider. While such a thing is also possible for
any attribute issuer (to a lesser extent) it becomes more of a problem for an IdP as they
must be user-friendly enough that they can be used several times a day and since their only
job is authentication. Hence becoming more exposed. Beyond this, simply using an SSO
service can also lead to traceability and linkability of the user across the web. Traceability
means that a user can be identified from the data resulting from using their eID. Whereas
linkability means that it is possible for different service providers to find out if they have
the same users. This can be an issue even if the user is authenticated using a pseudonym,
since all it takes is one sharing of personal data, such as credit card information at a service
provider, to de-anonymize the user. However, works like PASTA [2] and PESTO [14] use
threshold cryptographic to enhance the security of IdPs and limit traceability and linkability
without reducing the usability. I.e. password based authentication can still be used and
they remain compliant with solutions like OAuth and OpenID Connect. While they only
focus on password-based authentication, they can be generalized to support multi-factor
authentication [65] and thus be used when multi-factor authentication is required for financial
compliance, as e.g. in Europe according to PSD2 [102].

Decentralized Identifiers. With the advent of blockchain technologies a lot of work has
sprung up, trying to remove centralization from the management of eIDs. This is generally
known as a Decentralized Identifier (DID) [115]. The overall idea is that any kind of attribute
provider issues a pseudonym to a user’s blockchain account, reflecting a specific attribute.
The user can then later use the pseudonym to prove certain certain attributes, or to simply
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get a reusable link to their pseudonymous identity at the same identity provider. However, it
is clear to see that this basic construction is unfortunately not enough to ensure privacy, as
again it possible to link the user across the internet (or blockchain) through their pseudonym.
For this reason DID systems are starting to incorporate more advanced cryptographic
constructions allowing users to anonymously prove that they hold a certain pseudonym
towards a service provider (in order to facilitate authentication). Such a construction is
known as a cryptographic credential.

Camenisch and Lysyanskaya [31] were the first to show a fully self-managed solution
allowing users to prove their identity has been certified by a trusted provider, in an anonymous
manner. Their credential construction affords validation of issuance from a trusted authority,
while allowing the user to anonymously use it and preventing anyone who does not know
the user’s key6 to impersonate it. However their construction did not allow the validation
of arbitrary attributes. Something which is needed in many financial situations. Consider
for example the case for loan or insurance issuance, where the customer’s financial situation
or health status has to be validated. Classically these must be provided as signed physical
documents from the customer’s attribute provider (such as credit bureaus), but the line of
work on credentials, known as attribute based credentials shows how to achieve this in the
digital sphere [32, 110] with cryptographic security and privacy guarantees. It was later shown
how to compute arbitrary predicates on the certificated attributes [29]. Further development
of such schemes into commercial products have been done by both IBM with their Idemix
framework [33] and by Microsoft through U-Prove [100]. The underlying primitives have
even been taken up by standardization frameworks such as W3C [114]. Still, despite such
commercial traction, widespread adoption is still lacking. Moreover, in the context of DeFi
systems, decentralized versions of anonymous credentials [70, 28, 6, 52] have been proposed.

One could imagine that the requirement for self-managed private keys could be the reason
that such approaches lack adoption since the regular news bulletins of people having lost
their cryptocurrency keys, show that self-administered key management is not for the general
public. However, multiple solutions based on threshold cryptography can be used to securely
store keys under a client’s password [30, 83]. A more likely explanation might be the need of
existing attribute providers to completely change their work-flow and systems, without any
direct financial, legal or customer requirements.
Deploying Privacy Preserving Identity Management. Fortunately, recent research have
shown how PETs can be used to get certified attributed from issuers without modifying
existing infrastructure, when such attributes be retrieved from the provider through TLS-
secured connections. The Town Crier system [131] shows how to construct certified attributes
using secure hardware (like Intel SGX and using a TLS connection with a trusted provider).
Concretely, they discussed how such certified attributes could be relayed to smart-contracts to
allow more advanced decentralized user-attribute validation. Later, DECO [132] then showed
how to remove the need for secure hardware and replace it with MPC while achieving the
same goal. However, they extended their construction to also integrate with zero-knowledge
proofs, allowing clients to construct certified proofs of arbitrary predicates on attributes from
any provider, trusted through a TLS certificate which provides online access to the user’s
attributes. This could for example include a bank providing online banking access, where
a user would then be able to construct a proof that they hold a bank account with e.g. at
least $20.000. If the user’s government provides an online residency portal, then it could

6 Allowing the user to fully control the use of their credential through a single key can be conceptually
advantageous.
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also be used for the users to prove that they legally reside in a given city in a given country
without leaking their exact address.

The CanDID system [90] fully realizes a DID system with legacy support though either
Town Crier or DECO. This is achieved through the usage of an MPC committee that validates
legacy identity data and constructs a zero-knowledge friendly credential. Based on this
credential, a user can prove arbitrary predicates on their attributes towards any provider.

Using attribute based credential allows the construction of fully private identity and
attribute-based systems. However, in some situations full privacy might be undesirable,
we would rather want to privately validate whether transactions are permissible based on
attributes or identity, for example by ensuring that the identity of the credential holder
is not on a deny-list. Kohlweiss et al. [85] showed that such a system can efficiently be
constructed on top of credentials. The construction allows an auditor to specify any predicate
on the attributes in a credential, where the identity of the credential holder gets leaked if the
predicate is fulfilled. Such conditional privacy leakage could prove tremendously helpful in
fighting money laundering as we discuss next.
Anti Money Laundering. Money laundering is the process of concealing the origins of
money, such as financial gains from drug trafficking or other serious crimes, by changing its
origin to a benevolent source. This is because criminals must acquire many services and
goods in the regular economy: put simply, most luxury car dealers don’t accept briefcases full
of bills. Money laundering is a huge problem in the financial sector: the estimated amount
of laundered money is at the level of 2-3% of the national GDP in the US alone, excluding
tax evasion [107, Chap. 2].

Getting large amount of illegitimate cash into the financial system requires multiple steps
and multiple accounts to avoid raising suspicion. Simply getting dirty money into the system
is known as placement. A concrete and common approach for this is known as smurfing,
where multiple legal people deposit small amounts of money for a criminal, with the promise
of earning a small amount as a kick-back. After a period of time the smurfs move the money
out of their accounts (minus their fee), by transferring to other accounts controlled by the
criminal. If this process is done with small amounts, and the receiving party’s account is not
flagged, then smurfing is hard to identify7.

Once the money is in the legal financial system, it needs to be mixed with legitimate
transfers, to counter suspicions caused by the initial transfers. This involves creating
reasonable and justifiable transfers among multiple accounts of multiple entities in a process
known as layering. By setting up a layering scheme through multiple banks, in different legal
jurisdictions, using different legal entities, it becomes almost impossible to trace the flow of
money. This is because the involved banks are (reasonably!) not allowed to communicate
private account and customer information about the sender and recipient of a money transfer.
After the layering, the money is finally moved out of financial institutions and into legitimate
investments such as real estate or legitimate businesses. This last step is known as integration.
What banks do to counter money laundering. As banks cannot share account and customer
information with each other it is extremely hard for them to trace dirty money during layering.
To address this, banks use multiple approaches usually subsumed as Anti-Money Laundering
(AML) techniques. For example, banks internally use a suspiciousness score for customers.
It is based on a base score, which is derived from the meta information about the account
and its owner. The score may be derived from e.g. age of the account/holder, amount of

7 This step is sometimes also realized through other means, such as deposits from cash-driven businesses
such as laundromats or food trucks.
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money in the account, expected income and nationality of the owner. Through transfers,
the base score is then updated, e.g. based on the score of the account a transfer goes to or
comes from if both sender and receiver account are held by the same bank. If they instead
are held by different banks, then metadata such as the amount of money going in/out and
the frequency of the transfers is used in updates.

Finally, banks do have one common tool in measuring the suspiciousness of transfers, and
that is a common, yet secret, grey list. This grey list contains accounts that have been deemed
significantly suspicious, but for whom no provable money laundering has been identified yet.
A transfer to or from a grey-listed account significantly increases the suspiciousness score.
At certain time intervals, the suspiciousness score of an account is checked against a certain
threshold and if the score is too high, then it gets flagged for manual8 inspection.
What can banks do? Due to GPDR and other privacy laws, it is not possible for banks
to directly share meta-information about accounts or its owner without their consent.
Furthermore, if a bank finds a flagged account it believes is engaging in illegal activities then
when informing authorities, it must be able to explain to said authorities how they came
to this conclusion. Hence the bank’s judgements must be auditable by a third party. If the
conclusion depends on data received from other financial institutions, the bank must be able
to point to this data and the third party must trust it as well. While data from banks from
within the same legal framework (the EU, USA, etc.) is usually considered as valid, data
from international banks, in particular those from countries with a history of corruption, has
less trustworthiness.

Implementing sufficient and efficient AML techniques is also difficult due to the quantities
of information involved. AML technologies should ideally be scalable to include all transac-
tions and accounts. At the same time, even a limited AML technology which only covers
cross-country transfers or an arbitrary subset of accounts, could still make a substantial dent
into the suspected large amount of money laundering currently going unnoticed.
Cryptography and AML. The conjunction of AML and MPC is new and the main bodies of
work on the topic are by Zand et al. [129] and Egmond et al. [124]. Zand et al. show how
computation on secret data can be used to notify an auditor of suspicious behavior. Egmond
et al. show, in collaboration with multiple banks, how to use additively homomorphic
encryption to obliviously update risk scores, and eventually (with consent from collaborating
banks) decrypt the risk scores and flag accounts and customers appropriately.

However, related to this is the area of auditability of confidential transactions. As for
example discussed by Tomescu et al. [121] where users are given a limited monthly "anonymity"
budget. This budget is a certain amount of currency they are able to transfer anonymously
per month. However, transfers surpassing this amount, is subject to deanonymization and
clearance by a trusted auditor.

Finally, we note that a survey of real world concepts using PETs to combat financial
crime has been conducted by the Future of Financial Intelligence Sharing consortium [92].
Unfortunately, many of their mentioned solutions require a trusted party to be involved.

As mentioned above, AML in centralized banking is challenging as the transaction graph
is hidden due to e.g. privacy regulations. However in the decentralized finance space, such
transaction graphs are usually visible. This is why most popular cryptocurrencies, such as
Bitcoin, Ethereum or Cardano, are only pseudonymous and not anonymous9. Cryptocurrency

8 In practice it turns out that about 95% of automatically flagged accounts are false-positives.
9 We note that there exist privacy-focused blockchains like ZCash, Monero, or Dash that hide the

transaction graph. Moreover, one can build private transactions on top of non-privacy focused blockchains
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exchanges such as Coinbase and Binance allow to turn large amount of cryptocurrency into
Fiat currencies. These exchanges are required by law to enforce know-your-customer (KYC)
rules. Through the help of transaction graph analysis firms such as Chainalysis, it has
become hard to launder money using pseudonymous cryptocurrencies.

Researchers have also proposed mechanisms to enforce AML even if transactions are kept
private. This includes using an escrow system where anonymity and privacy can be broken
in case suspicious activities occur, such as transfers to or from an account known to be used
by criminals [109, 98, 10, 52]. Such escrow mechanisms does not necessarily imply the usage
of a trusted third party, as the data for escrow activities can e.g. be shared using Threshold
Secret Sharing. Another approach is to specify a small budget per client which they can use
every month for anonymous payments. After the client has made more transactions than
covered by this budget, any future transactions can be traced [127, 121]. Although seemingly
a good compromise between privacy and security, this does still pose a risk to smurfing.

4 Markets & Transaction Settlement

In this section, we systematize PETs in market and settlement applications.
In financial markets, there is a need for auctions and markets with fairness guarantees, as

rational actors are incentivized to collude and front-run honest parties, if the true valuation
or trade-intent of the latter is revealed. Here, we first consider the traditional finance setting
(§4.1), where the settlement of transactions is handled by traditional, asynchronous settlement
processes. In the presence of a public ledger (§4.2), settlements occur synchronously and
immediately after a transaction is completed. Such a mechanism also permits the “netting”
of inter-bank payments §4.3) to minimize the liquidity requirements on participating banks;
this must done with PET approaches, since the public ledger would otherwise expose all
individual payment orders, a clear breach of consumer privacy.

Finally, we highlight approaches to achieve bidder privacy in demand-response electricity
markets (Appendix C), which coordinate the remote scheduling of power consuming devices
to match forecast production from sustainable production sources; the submission of granular
device-level information to an auction in the clear can reveal the activity and presence of
customers at home, violating their privacy.

4.1 Markets in Traditional Finance
The first setting reflects an idealized view of traditional finance, where accounts and balances
are generally maintained by financial institutions and considered private. Here, the settlement
of auctions, or exchange transactions, occur asynchronously; whilst the counterparty risk from
defaulting on obligations implied by pending transactions is real, we consider it an orthogonal
challenge addressed in the public ledger setting (§4.2, §4.3). Clearing prices and executed
volumes are considered public information as this information is forwarded to institutions
executing the settlement. This first setting intends to achieve resilience against dishonest
venue operators and participants attempting to obtain a financial gain from unwarranted
information flow. Communication between parties generally assumes direct, authenticated
channels, implying the knowledge of identities and a pubic key infrastructure.

using e.g. Zether [24] that leverages encryption and ZK proofs. Finally, mixers such as Tornado [105]
take transfers from many users and put them into a holding account, from which they can later be
transferred to the intended recipient.
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Setting Applications Privacy Benchmarks PET Works

Markets in
Traditional Finance

(§4.1)

Distributed
sealed-bid
auctions

Single-sided Bid privacy MPC [64], [80],
[27], [97]

Double-sided Bid privacy MPC [21], [20]
Public verifiability - HE+ZK [101]

Distributed
Dark Pools

Continuous matching Order privacy MPC [36]

Periodic matching
Order privacy MPC [37], [48]
Order privacy FHE [9]

with many assets Order privacy MPC+HE [37]
with many servers Order privacy MPC [48]
Public verifiability - HE+ZK [120]

Markets on
Public Ledgers

(§4.2)

Decentralized
sealed-bid
auctions

Single-sided Order privacy MPC+ZK [8], [54],
[68]

Privacy-preserving
Decentralized
Exchanges

Futures
Periodic matching

Net position
privacy

MPC+ZK [91]

Periodic matching
Balance privacy
Partial order privacy

MPC+ZK [77]

Order privacy
(Balance privacy)

MPC+ZK [13], ([12])

Intent-based
order matching

Balance privacy
Order privacy

ZK [22], [128]

Balance privacy
Order privacy

WKA [99]

Settlement on
Public Ledgers

(§4.3)

Liquidity preserving
inter-bank netting

-
Payment privacy ZK [35]
Payment privacy
& Robustness

MPC+ZK [55]

Demand-Response
Markets

(Appendix C)

Distributed auctions
for demand flexibility

Double-sided
(Single buyer)

Device power
constraint privacy

MPC [1], [133]
[67]

Figure 3 Auctions & Markets: no benchmarks ( ), preliminary benchmarks ( ), benchmarks
achieving real-world performance with traditional market parameters ( ).

Distributed Sealed-bid Auctions. One-off, sealed-bid auctions are frequently performed in
the sale of frequency-spectrum rights, government contracts, real-estate and other private
items, such as art. In open-cry, single-sided auctions, bids are broadcast publicly until no
additional bids are made. However, the leakage of bids or orders can be exploited by the
adversary for financial gain. In Vickrey auctions, where the winner pays the price submitted
by the second-highest bid, the auction operator collecting the submitted bids is incentivized
to collude with other bidders to increase the second-highest bid price and maximize auction
fees. The auction operator must also be trusted to not reveal anything about submitted bids,
in order for all bidders to submit their true valuation. The advent of the public, commercial
internet coincides with the first protocol proposals which permit the execution of one-time,
sealed-bid auctions by distributing the role of the auction operator, thereby removing the
need for a trusted auction venue.

Franklin et al. [64] propose a one-sided auction protocol, where the auction venue is
distributed amongst multiple servers; bidders to submit their signed bids as verifiable secret-
shares (VSS) to participating servers during the bidding phase. Subsequently, bids and
signatures are jointly reconstructed by all servers, upon which all bid information becomes
public. Verifiable secret-sharing ensures that bidders submit well-formed bids. As long as a
single server is honest, the reconstruction of bids cannot occur before the end of the bidding
phase. However, it is often important to protect the privacy of bids, even if they are not
successful; the valuation may reveal a bidding strategy for another, related auction.

In the work of Harkavy et al. [80], MPC is deployed to maintain the privacy of all
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submitted bids; only the winning bid is made public. Naor et al. [97] propose a variant
of MPC with garbled circuits, to reduce the rounds of communication, thereby improving
performance. Cachin [27] builds a purpose-built, privacy-preserving protocol, which permits
the comparison (>) of prices between two parties with the help of an untrusted third party.
An auction determining the highest bidder is then constructed from this primitive.

The first work to demonstrate the feasibility of privacy-preserving (one-time) double-sided,
sealed-bid auctions was proposed by Bogetoft et al. [21]. Later secure auctions were used
in practice [20], to facilitate the auctioning of sugar beet delivery contracts in Denmark.
Concretely, farmers producing sugar beets hold contracts which represent an obligation and
right to deliver beets to the the (single) Danish sugar beet processor Danisco. The trading
of such contracts permits the reallocation of contracts to the most efficient producers, but
such an exchange run by Danisco would permit it to learn information about the economic
circumstances of producers, potentially compromising sugar beet farmers during contract
negotiations. The matching and determination of a price computation from 1229 buy and
sell orders was achieved in approximately half an hour by an MPC committee of 3 servers;
a throughput volume sufficient for a one-time auction, but unacceptable for traditional
electronic security exchanges. Notice, however, that cryptographic techniques have improved
drastically since this work. Such an auction would run much more efficiently today.

Publicly verifiable auction operators are proposed in the work of Parkes et al. [101], a
weaker alternative to implementing the auction operator with MPC; instead, the dark pool
venue is still operated by single entity, but provides cryptographic proofs that the auction
algorithm is performed correctly by the venue operator. Whilst this prevents the auction
venue from manipulating the correct evaluation of auction bids, it does not prevent the
auction operator from leaking bid information to malicious participants.

Distributed Dark Pools. Dark pools have gained adoption in traditional finance as venues
where submitted orders are not publicly accessible, thus minimizing the potential price
impact caused by signalling trade intent to front-running market participants. As is the case
with auction venues, the dark pool operator must be trusted to not share the order flow
information with malicious participants, a trust assumption that is frequently violated in
practice (Table 1 in [37]), motivating the need for distributing the role of the venue operator.

Whilst the matching of orders in a secret order book is a natural domain of MPC,
we observe that current proposals illustrate specific configurations and architectures for
distributed dark pools that may or may not match throughput observed in traditional,
centralized dark pool markets. In particular, the choice of auction clearing algorithm
remains a deciding feasibility factor. Whilst secret-sharing based MPC schemes permit secret
computation with n participating servers, the runtime bottleneck generally lies in the amount
of communication that is required between servers. This is because MPC has a specific model
of defining computations, and certain auction clearing algorithms can be realized with less
communication overhead in MPC than others.

In the case of auction clearing algorithms, which must compute a clearing price from
current bids and sell orders, the sorting thereof by price limit induces many comparisons
(>, <, =) between secret-shared values, which in turn imply sub-protocols generating the
majority of communication cost. Alternatively, order matching based on volume only (where
prices are determined by third party price feeds) can greatly accelerate throughput, as
the expensive clearing price evaluation is not required. Furthermore, whether orders are
processed continuously or periodically also greatly affects the real-world applicability of the
following distributed dark pool protocols.
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Continuous Double Auctions with MPC: A recent line of work by Smart et al. [36, 37,
48, 49] implements and examines real-world, double-side auction algorithms. In the initial
work [36], continuous double auctions (CDA) are implemented in a distributed fashion
across servers running an MPC. Continuous double auctions maintain a limit order book
(LOB) where buy and sell orders are ordered by ascending and descending price respectively;
each incoming order is matched against one or more LOB orders if it crosses the “spread”
between best buy (or sell) prices; its remaining volume is then inserted into the LOB. It is
also the most expensive exchange algorithm since (1) each single order must be matched
against m other fulfilled orders and (2) its remaining trade volume must be inserted into a
(potentially large) order book of N size. Benchmarking such an algorithm requires specifying
the expected state of the order book, given the sensitivity of CDA run-time on (1) the average
number of matched orders m; and (2) the expected order book length N . In the dark CDA
implementation of Cartlidge et al. [36], run with 3 servers and Shamir-sharing based MPC, a
worst-case throughput of 34 − 43 orders per second for LOB parameters m = 3 and N ≈ 30
is achieved. This work demonstrates that distributed CDA with MPC cannot yet match
the throughput volumes of traditional CDA venues10. In contrast, periodic order matching
greatly improves the performance of distributed dark pools.

Periodic Double Auctions with MPC: Periodic auctions in the dark pool setting imple-
mented with MPC promise throughput that match those of traditional dark pool markets,
as shown in these works by Cartlidge et al. [36, 37]. In periodic auctions, limit orders are
submitted during an open auction period after which a clearing price is computed during
the clearing phase, which maximizes the volume of matched orders (unmatched orders are
carried over to the next round). In contrast to CDA algorithms, where orders are processed
individually against a potentially large order book, periodic auctions only need to compute a
single clearing price for the entire batch in a given period. In fact, real-world order execution
throughput has been achieved with a realistic number of asset pairs.

In [37], the London Stock Exchange Group’s Turquoise Plato Uncross, a widely-used
traditional dark pool supporting thousands of assets, is implemented with promising results.
Based on volume observed on the real-world Turquoise Plato Uncross venue, it is assumed that
order book clearing occurs at most every 5 seconds, where at most 2000 newly input orders
must be processed across an asset universe of 4000 financial instruments. This throughput
was successfully handled by smaller MPC committee sizes of 2 (dishonest majority) and
3 (honest-majority), but required multiple MPC instances, each handling orders trading a
small subset of all assets (Figure 4). For example, ∼ 280 MPC committee instances are each
randomly assigned 16 assets in each round by a gateway engine. This gateway periodically
reassigns asset subsets to new MPC instances in order to break potential linkages between
orders across time periods. We note that auction algorithms are not entirely oblivious. Indeed,
the direction of orders are leaked in [36, 37], whilst volumes and order limits remain private.

Complementary follow-up work by Da Gama et al. [48, 49] both focus on (single-asset)
privacy-preserving volume matching, which enables further performance gains since the
clearing prices are determined by an external reference price; [48] introduces an improved
MPC volume matching algorithm which permits dummy orders and hides the trade direction.
[49] scales volume matching up to MPC instances consisting of ∼ 100 servers and shows

10 In their work, the runtime of MPC pre-processing is neglected, which represents a non-trivial “hidden”
computational cost that can be performed during “offline” hours or outsourced to dedicated pre-
processing workers; pre-processing generally does not limit the maximum, sustainable throughput of
MPC.
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Figure 4 In [37], a gateway MPC (A) distributes inbound received orders across multiple MPC
committees (B,C,D) to improve order clearing throughput. MPC servers never learn the asset pairs
its committee is assigned in each round.
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Figure 5 In [9], market auctions are implemented with fully homomorphic encryption (FHE);
here, the encryption key is jointly generated by key servers (P1-P3), but the FHE evaluation is
solely performed by the evaluator, who never learns the plaintext of the inputs or intermediary
results. Decryption of the FHE output requires interaction with all key servers. In contrast,
private computation with MPC in [36] requires interaction amongst MPC servers (P4-P6) for each
(multiplicative) operation.

the economic costs associated with operating such a single server in a MPC instance of up
to 100 servers to be below ∼ 0.10 USD and ∼ 0.025 USD for computation and network
communication respectively in each auction round; the negligible cost demonstrates the
feasibility of market participants contributing to the distributed operation of dark pools.

Periodic Double Auctions with FHE: JP Morgan has demonstrated initial results in work
by Balch et al. [9] to realize dark pool venues where the venue operator is not distributed,
but computes the periodic volume matching over data encrypted under a jointly controlled
public key; here, the secret encryption key material used in the threshold fully homomorphic
encryption is held in secret-shared form by all participants (Figure 5). While the computation
can be done by one party on the ciphertexts (not knowing their plain values), the participants
then later take part in a so-called distributed decryption protocol which reconstructs the
outcomes to the venue operator. Whilst [9] benchmark periodic volume matching implemented
with threshold FHE, the omission of the partial decryption sub-protocol complicates the
evaluation of its performance. Still, FHE offers an alternative approach to secret sharing-based
MPC which promises competitive performance; fewer communication rounds are required,
since computation is performed locally by the dedicated venue operator over encrypted data,
although local computation (over encrypted data) is more costly.

Publicly, verifiable dark pool operator: Similar to verifiable one-sided auctions [101], a
weaker notion of order privacy for dark pools is proposed in the following work by Thorpe et
al. [120], where the venue operator only reveals a homomorphically encrypted order book to
traders; the operator itself, however, maintains the encryption key and can thus compute
over the order book plaintext. Each update to the public, encrypted order book triggered
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by a submitted order is accompanied with a zero-knowledge range proof generated by the
operator; any public party can locally re-compute the claimed update over encrypted values
and verify zero-knowledge range proofs that guarantee that the plaintext values lies within
certain ranges, thereby enabling verification of comparison statements between encrypted
values. This system ensures the correctness of each order book update without revealing
the order details themselves. [120] implements the CDA algorithm in a publicly verifiable
manner; as in [101], this approach does not prevent any misuse of the order information held
by the operator.

4.2 Markets on Public Ledgers
The advent of public ledger protocols [69, 84, 72] resulting from permissionless participation
of servers across the public internet promises a truly “server-less” system of transaction
settlements, no longer dependent on any single trusted intermediary. The state of the ledger
is public and its integrity is publicly verifiable (by any online party) by local verification of all
previously finalized transactions sequenced in form of a append-only list or blockchain. The
realization of a global transaction history also implies a Turing-complete state machine; smart
contracts represent user-deployed programs run on blockchain protocols that, in addition
to custom ledgers [ERC20, ERC721], can realize decentralized auctions or decentralized
exchanges (DEX), which forgo the need for trusted venue operators. In contrast to traditional
finance, market applications in the public ledger setting offer instant settlement; any market
application implemented with smart contracts instances permits the simultaneous evaluation
and settlement between participants. Despite scalability challenges arising from the vast
number of participants running the blockchain backbone protocol, the promise of instant
settlement would allow the mitigation of counter-party risk, a real cost to transactions
conducted in traditional finance today.

However, the public verifiability of a public ledger also introduces novel challenges for
financial applications; account balances are public by default and leak information about
submitted bids, trades or margin positions; the latter must be backed by valid balances. In
decentralized finance (DeFi) [126], front-running is indeed rampant in decentralized exchanges
(DEX) [122], since pending transactions leak trade intent to the adversary which can precisely
order and inject transactions to execute optimal front-running strategies. Thus, proposals
have been made to implement private balances on public ledgers with publicly verifiable,
non-interactive zero-knowledge [111, 25]. However, a privacy-preserving ledger (even with
standard smart contract support) is generally not sufficient for privacy-preserving financial
applications such as exchanges [15].

Privacy-preserving ledgers generally complicate the realization of smart contracts, since
these must verify and update account balances known only to its owners according to
an agreed-upon transition logic. For decentralized exchanges implemented in the privacy-
preserving ledger setting, this requires the presence of a secure multiparty computation
instance, to which users can privately input their trade orders and private balances; the
MPC then computes an updated DEX state and private balances, which are then updated
on the ledger (Figure 6). Enforcing consistency between the secret, internal MPC state and
private account balances on the ledger requires protocol design advances illustrated in the
subsequent paragraphs. We emphasize that counter to popular belief, zero-knowledge is
not sufficient to realize universally expressive, privacy-preserving smart contracts, as the
witness (or secret state) for decentralized privacy-preserving applications are partially held by
separate, distrusting parties; instead, function evaluation over private inputs from separate
parties and secret-shared data is the natural domain of secure multiparty computation.
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Figure 6 We sketch the architecture of privacy-preserving smart contract applications in MPC
with instant settlement on a (confidential) ledger; clients provide input parameters to the MPC
instance, and forward financial deposits to a smart contract in a confidential manner. The MPC
privately returns computation output to clients, but also authorizes a new financial distribution
which is paid out to the clients by the smart contract functionality.

We note there are privacy-preserving smart contract proposals which shield private
data [117, 116] held by individual users or private contract logic [22], but such techniques
are generally limited in their expressiveness. The work of Bowe et al.[22] only supports two
parties, and is not widely used to realize privacy-preserving financial applications.

Sealed-bid Auctions (with Instant Settlement). The first work by Bag et al. [8] to realize
sealed-bid auctions specifically in the setting of public ledgers focuses on using the blockchain
as a communication medium instead of a settlement layer; as a permissionless protocol,
any party can anonymously post an arbitrary message to the bulletin board, visible to all
other parties. For protocols with low communication rounds, this is a practical solution;
in particular, the simplicity of evaluating single-sided sealed-bid auctions permits task-
specific secure multiparty protocols which only require public message broadcasts. The
SEAL [8] protocol proposes the use of a anonymous veto protocol [79] requiring only two
communication two rounds, that is then repeated once by auction bidders for each bit of
their bid price, thereby removing the necessity an auctioneer role entirely. In its particular,
the veto protocol of [79] receives the private input bi ∈ {0, 1} for party i ∈ [n], for each of
the m bits representing the permissible price range; the parties learn the highest bid, bit
by bit. Each execution of the veto protocol will thus publicly output 1 if one of the users
submits a veto; thus, by repeating the veto protocol for each bit position, all participants
receive the highest bid without revealing the prices of failed bids. [8] assumes participants to
behave according to the protocol (semi-honesty).

This mechanism was later adopted and hardened by FAST [54] to be secure against
malicious participants not adhering to the protocol. Furthermore, [54] introduces guaranteed
settlement on the public ledger featuring privacy-preserving deposits. Participants are thus
committed to execute the payment for their bids if these are successful during the auctions.
Cheating participants are penalized by having their deposits slashed and reimbursed to other
parties; non-interactive zero-knowledge proofs from all parties ensure that parties only submit
a veto if it is consistent with their initial bid (in commitment form on the ledger); still, despite
the privacy-preserving aspects of the anonymous veto protocol, privacy leakage occurs when
the highest bidder learns when he overtakes the second highest bidder. The work of Ganesh
et al. [68] adopts a similar construction which is proven to be game-theoretically secure; it is
rational to pursue the honest protocol despite any strategy chosen by other players. The work
of Chin et al. [44] does not employ zero-knowledge proofs to shield commmitted funds for a
single-sided, sealed-bid auction; deposits are sent to committed, yet undeployed contracts
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and are thus indistinguishable from normal Ethereum transactions, a similar technique used
in Breidenbach et al. [23] to commit inputs to smart contracts without revealing them to
the front-running adversary. This approach only guarantees k-anonymity and relies on the
presence of other, unrelated transactions.

Privacy-preserving Decentralized Exchanges. We note a number of recent proposals for
privacy-preserving DEX applications in recent years; intent-based privacy-preserving DEX
applications mirror the functionality of over-the-counter (OTC) venues (in traditional finance)
and only require a public ledger, but do not scale well and are not widely deployed. Privacy-
preserving and front-running secure DEX protocols generally involve private ledger deposits
and perform the order matching in an MPC instance, as is the case in distributed Dark Pool
proposals previously described in Section 4.1, but offer instant settlement following each
DEX round (Figure 6).
Intent-based, privacy-preserving DEX. In the works of [22] and [99], a simpler model of a
decentralized exchange is implemented; a bulletin board functionality provided by a public
ledger permits a “maker” to broadcast their trade intent. An interested counter-party or
“taker” then directly opens an authenticated communication channel with the maker to
jointly perform a privacy-preserving atomic swap on the public ledger [22]. Intent-based
DEX protocols resemble over-the-counter models in traditional finance. [99] introduces a
“witness key agreement” (WKA) construction which preserves the privacy of the maker’s
offer; the WKA allows a taker to establish a shared secret key with a maker which has
posted its order in commitment form to the ledger. The key agreement protocol succeeds if
the committed, private order fulfills a relation determined by the taker. This key permits
subsequent anonymous communication with the maker to finalize the transaction.
Privacy-preserving Futures DEX. An interesting example of decentralized exchanges is
illustrated by Massacci et al. [91], which realizes a futures exchanges modelled closely after
the Chicago Mercantile Exchange; here, the future obligation (or contract) to buy or sell a
commodity is traded. The net position of a market participant is the sum of both current
liquidity balances and future obligations; importantly, a party holding a future to “sell” a
given commodity, must always hold sufficient liquidity to acquire the respective commodity,
as it otherwise would default on its contractual obligation. Thus, a net position that falls
below zero must be liquidated to protect the counter-party of any futures contract held by
the liquidated party. Achieving this in a privacy-preserving manner without revealing the
net position of a party is the goal of the work of [91].

If the net position of a participant is revealed, price manipulations could be conducted
with the explicit intention of forcing the liquidation of otherwise valid positions. Thus, [91]
proposes a similar scheme to [111], where the net position of each account is committed
in a cryptographic accumulator. The validity of each update to the account is proven in
zero-knowledge, whilst the trading venue is executed in a MPC instance, similarly to the
Dark Pool proposals in Section 4.1. [91] requires parties participate in the protocol for
each account update, even if this means the liquidation of their own account. We note that
the subsequent privacy-preserving smart contract framework instantiated with MPC and a
confidential ledger [12] achieves the privacy guarantees of [91] without permitting users to
block application liveness.
Front-running Secure DEX. A general motivation for privacy in decentralized exchanges is
the front-running of DEX applications in Decentralized Finance due to public transactions
and accounts in the default ledger setting; Despite offering instant settlement of trades and
transactions, pending user input authorizations generally broadcast a users trade intent
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Figure 7 We adopt a netting example from [125]; processing of individual payment orders may
fail due to a lack of liquidity (left), as balances must remain positive following execution of each
individual payment. Netting relaxes this constraint; balances need only to be positive following
execution of all payments orders (right).

before their finalization. To this end, P2DEX [13] proposes the first privacy-preserving
decentralized exchange, which can operate and settle transactions across multiple ledger
instances; clients submit orders to an MPC committee which computes the order matching
and subsequently settles these on the respective public ledgers; since the trade inputs are
private, front-running is mitigated. Follow-up work [12] generalizes this model to a setting
with confidential accounts; here, all zero-knowledge proofs are moved outside the MPC
computation, as computing such proofs inside the MPC remains generally unfeasible for
real-world application. The work of Govindarajan et al. [77] realizes a privacy-preserving
DEX in a similar manner; here, however, the actual order matching is computed in the clear of
a smart contract over anonymized trade lists to accelerate the determination of a clearing price.

4.3 Inter-bank Netting on Public Ledgers
Inter-bank payment requests are currently submitted to the real-time gross settlement
(RTGS) system managed by the central bank to update the accounts of sending and receiving
financial institutions. In times of low liquidity, a bank may fail to honor individual payment
instructions, as the liquidity requirement may exceed its balance and credit line granted
by the central bank; a gridlock occurs, when a failed payment settlement prevents further
payment instructions from being processed. Given the large payment volumes processed each
day, liquidity saving mechanisms are implemented which settle payment instructions on a
netting basis (Figure 7).

Recent work has proposed distributing the role of the RTGS operator with a public ledger
protocol, whilst implementing efficient netting protocols with smart contracts [125, 96], therby
increasing system resiliency as the operational liability burden on the central bank operator
today is very high. Whilst the aforementioned works implement inter-bank netting of queued
payments, the nature of public ledgers means that payment instructions are revealed to parties
participating in the underlying blockchain backbone protocol. Instead, [35] proposes payment
instructions to be posted to the ledger in commitment form accompanied with non-interactive
zero-knowledge proofs attesting their well-formedness. Here, local netting solutions are
computed by each participating bank and verified by a coordinating smart contract, which
verifies correctness of all submitted, local netting solutions without revealing amounts and
the identity of institutions. Since parties must compute partial netting solutions, the protocol
of [35] is not robust against cheating participants, who can stall or abort the netting process
by posting invalid partial netting proposals. In contrast, [55] computes the netting solution
inside an MPC instance, thereby achieving fault tolerance against dishonest participants.
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Despite initial implementation benchmarks provided by works above, it remains an open
question in what configuration such systems can scale to real-world payment settlement
volume and what netting frequency is required in practice.

5 Future applications

We will now outline which other PET use cases could be of interest in the financial sector in
the foreseeable future. While many of the use cases previously described in this work may
also not yet be production-ready, we want to highlight areas in this section which we think
deserve more attention by researchers and practitioners. This necessarily is of speculative
nature, so the reader may see this as food for thought.
Voting. Voting is a standard mechanism in deciding on future policies. While in many
cases it is sufficient to make the whole voting process public, this is not always possible.
For example, a voter may fear repercussions or embarrassment if his or her vote becomes
public. Hence, to ensure honest digital voting, cryptographic voting algorithms have to be
used. These ensure that election outcomes can be computed while individual votes cannot
be attributed to participants. While such cryptographic voting can be realized using MPC
or FHE, a dedicated line of work started by Chaum [41] presents highly efficient dedicated
voting protocols. Cryptographic voting mechanisms find interesting applications in the DeFi
space, e.g. for privacy-preserving Decentralized Anonymous Organizations (DAOs). In
particular, a treasury system for DAOs based on electronic voting has been proposed in [130]
and a board room voting scheme based on smart contracts (and this amenable to the DAO
scenario) has been proposed in [93]. We believe that these techniques may also be useful
for coordination among classical banking institutions and other financial operations (e.g.
shareholder meetings).
Fraud detection. Both insurance and gambling are known as industries where companies in
the sector exchange information on their customers in order to detect fraud or exploitative
customers11. This information sharing may be problematic for privacy reasons, and it
also leaks information about suspected but ultimately honest customers if done in plain.
PETs such as PSI might be an interesting tool to construct a trusted intermediary. This
intermediary can obtain information from participating companies and alerts them if e.g.
more than 3 of them share the same customer. Here, PSI can ensure that only those customers
are revealed that appear often enough.
Better and fairer pattern recognition. In section 3 we have outlined how AML does benefit
from recognition of suspicious patterns. Such patterns, if one wants to keep up in the digital
age, must be learned from a large dataset and must be updated frequently. Moreover, many
companies in an industry have an interest in pooling their data with other institutions for
the purpose of learning these patterns. At the same time, they may not want to share raw
customer or transaction data. Another, related area is assessing the credit risk of potential
customers. Here, the risk becomes more accurate the more participants can contribute
information or models. At the same time, input providers have an interest to keep their data
private (for data protection or to protect intellectual property).

Both applications fall into the area of privacy-preserving Machine Learning [89, 60, 95] or
confidential benchmarking [51] which are subfields of MPC. While these areas have received
much attention recently12, optimized applications to finance seem to be lacking.

11 For example the infamous “Griffin Book”.
12 Privacy-preserving Machine Learning opens up interesting use cases, but it does not come without its
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Another important aspect is that (automatically generated) models should not be biased
against certain groups. While fair machine learning itself is a rapidly developing field, its
application to finance [56] may deserve more attention.
Privacy preserving mitigation of systemic risk. Audits of financial institutions guarantee
that their balances plus credit cover outstanding obligations. This reduces counter-party
risk and means that the overall system can rely less on biasable methods such as ratings
and reputation. At the same time, an audited company may not want to open its books
fully to the public, or it might not be guaranteed that these books are correct. [91] have
shown how audits can be realized using ZK proofs, although limited to the futures market.
We believe that this concept may be generalized to the wider financial system to permit
privacy-preserving audits.
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A PETs and the law

Usage of “classical” cryptography such as (public/private key) encryption, MACs, hash
functions and digital signatures have been prevalent for decades and have so found their
reasonable places within the legal framework of nations. For example legally speaking
robust encryption schemes, used with long, high-entropy keys, provides a reasonable measure
to secure sensitive data [62, § 83]. However, besides affirming the security provided by
cryptography, the law can only be used to deteriorate the security cryptography offer. This
can occur through the usage of back-door mandates, forced usage of insecure parameters or
the forced assistance in by people and companies to break circumvent encryption as is for
example the case in India [94, Sec. 69]. This is not something new, and goes back to 90’s,
where export restrictions of highly secure encryption schemes were in place in the US [59].
Even more concerning than imposed weaknesses in underlying cryptography, is the legal
issue of forced decryption. While this has generally been an issue for individuals [46], it has
also become an issue for companies. Apple was for example mandated to decrypt a user’s
iPhone the San Bernardino terror attack of 2015 [78]. Compelling a company to decrypt
data should in itself not be regarded as a problem for PETs, as such cases already occur
in non-private computation. However, this does become an issue in situations where PETs
could be used to carry out transactions, which would otherwise not be possible due to their
sensitive nature. In such a case, legal requests could also become preemptive requirements.
Thus meaning that even if a company itself might not be trusted to not behave maliciously, it
could be compelled to do so by its government. This is concretely a problem when entities in
distrusting countries need to collaborate. One entity might trust another one to not behave
maliciously, perhaps due to the public backlash of getting caught actively cheating13 However
if an entity acts malicious due to a governmental mandate, then such a backlash will be
practically non-existing. Thus such legal potential could require the use of the strongest
possible models of security.

While law could be used to break the security of PETS in certain weaker models, PETs
can also help keeping the law. An example of this can be seen in the need for different
governmental institutions or law enforcement agencies to share personal data in order to e.g.
thwart terrorist plots. The need can be as simple as checking whether the same individuals
are present in two different databases, and if so share relevant data. However, doing so
without the aid of PETs would require leaking the individuals present in at least one of these
databases. This goes against privacy laws, and in jurisdiction such as the EU, This would
require explicit consent by all people in the database. While lawful sharing of personal data
within law enforcement agencies might be possible in certain situations, such as sharing the
list of publicly convicted criminals, this is not possible when it comes to other potentially
relevant databases, such as people with a record of mental illness or people with gun permits.
A study of how to use MPC in such cases has been thoroughly studied in both a cryptographic
and legal framework by Treiber et al. where different law enforcement agencies aim to find
and share data about common entries in their databases, under approval by a judge [123].
This framework could also prove relevant within law enforcement and financial institutions to
ensure legality, such as law enforcement requests to the financial institution e.g. in relation
to anti-money laundering (see Sec. 3.1). Thus PETs can be used to ensure the rights of
citizens when the law gets involved. However, the law can also hinder certain computations

13 Certain flavours of MPC [7] can for example be used to ensure that if someone tries to cheat, the honest
parties will get a publicly audible proof of this, which can then be release to the appropriate authorities.



Carsten Baum et al. :31

and model on certain types of data as we discuss in the following.
GDPR and MPC. On May 25th, 2018 the General Data Protection Regulation (GDPR) [62]
came into effect in the EU. The law dictates how data concerning EU citizens, should be
protected and handled, along with legal requirements concerning individuals’ rights; such
as requiring appropriate consent for data storage and computation, and the possibility of
withdrawing such consent.

While the GDPR is an 88 page law document consisting of 11 chapters and a total of 99
articles, its general gist can be described from the a few terms:

Personal Data : Any information that relates to an individual, which can be directly or
indirectly used to identify the individual. For example name, gender, social security
number, religious belief, web cookies, etc. It should be noted that some pieces of data
alone uniquely defined an individual, such as social security number, whereas as some
pieces of data are just indirect identifiers, such as gender, town, religious belief. A single
indirect identifier does not uniquely identify an individual, but combining several of these
may uniquely identify the individual. The GDPR considers even a single indirect identifier
as personal data.

Data processing : Any process performed on data. For example computing, storing, trans-
mitting, deleting, etc.

Data subject : The legal person whose data is processed. For example a customer or a web
page visitor.

Data controller : The entity who decides what actions will happen to personal data. I.e.
the holder of such data. For example the employee at a company responsible for data
storage. In practice a data controller will generally be consider a legal entity such as a
company, who holds personal data. For example Google, Tesco, Die Bahn, etc.

Data processor : A third party that performs actions data on behalf of a data controller. For
example cloud storage providers such as Amazon or Microsoft, or researchers computing
statics.

Based on these definitions the GDPR requires that data gathering must be as minimal
as needed and measures must be taken to ensure that personal data kept is up to date.
Furthermore, any processing must be as minimal as needed, transparent, and done in a
way that ensures confidentiality and integrity. Finally the data controller must be able to
demonstrate compliance with the requirements. The GDPR has further requirements such
as disclosure of breaches within 72 hours and in some cases the need for employee training
and the appointment of a data protection officer. The requirements of a data controller is
unsurprisingly much higher than for a data-processor. For example, a data controller requires
consent from the data subjects for storage, computation and other actions on their data.
These are not required by the data processor, although the data processor must still ensure
that the data is protected and can still risk huge fines for failure to do so.

Relating the GDPR to PETs we see that the main question is whether any legal entity
other than the data controller has access to personal data on its data subjects. This becomes
a question of what “access” means. The GDPR states that if it is not reasonably possible
recover the identity of persons based on the data in their possession, then they are not data
controllers [113, 3.2.1]. Furthermore, there is precedence suggesting that a server simply
storing encrypted data, for which it does not hold the key, is generally out of scope of GDPR
requirements [104, Sec. II. D.]. Thus the legal requirements and scope of different entities
participating using PETs on personal data comes down to the definition of reasonably.

For secure hardware is seems reasonable to assume that outsourcing the computation
on personal data would either not be considered reasonable, or the provider of the secure



:32 SoK: Privacy-Enhancing Technologies in Finance

hardware would be considered a data controller. E.g. for an execution on personal data
on SGX on a server, either 1) the server and the initial data controller together would be
considered a joint data controller (if SGX does not reasonably protect the data). Or 2) the
initial data controller and Intel would be considered joint data controllers (as Intel is claiming
their hardware reasonably secure).

In the case of secure computation, the situation becomes more unclear, firstly since it
is undefined if collusion can be considered reasonable, and secondly since there is no single
legal entity that can be held accountable in case of a breach. Thus there is a chance that the
servers executing MPC would all be considered joint controllers on the set of all personal
data which is computed on. This is called the absolute interpretation of the law. A less
conservative view would imply that they become data processors, and thus need to adhere to
general data safety and operational requirements, but do not need consent from the data
subjects whose data they compute on, assuming they gave their data controller consent to
carry out such a computation [3, 2.2]. This means that MPC could be used as tool for
proving data privacy by design. However, the general consensus is that if data is secret
share or encrypted when computed on, in a way where a single malicious legal entity is
not able to reasonably recover the personal data, then the data is no longer personal and
out of the scope of GDPR [113, 3.2.1] if the result of the computation does not reasonably
allow deanonymization of the individual’s whose personal data was used [81]. Crucially this
applies, not just for a single computation but for the conjunction of all computations done
on the data subject’s personal data. This is known as the relative interpretation. Technically,
the interpretation comes down to whether personal data is considered anonymous if no-one
can reconstruct or if no single legal entity can reconstruct the data (up to cryptographic
hardness).

More concretely, regardless the legal status of the different servers, when it comes to
computing on personal data, the GDPR imposes other requirements in that 1) data subjects
must consent to the specific computation to be carried out, at the time they give their
personal data and 2) and the result of the computation must not be able to lead back to the
data subject’s personal data or identity. Thus according to the GDPR care must also be
taken to only perform computations on personal data, where the result of the computation
cannot lead to deidentifying the data subjects

One interesting exception to personal data under the GDPR is pseudonomyzation. Pseud-
onomization involves replacing identifiable parts of personal data with pseudonyms. It should
not be confused with anonymization, which completely removes the coupling of personal
data to a data subject. Pseudonomyzation is considered a reasonable approach to securing
raw personal data, but at the same time is still considered personal data! Hence sharing and
computation on pseudonomized data still make participating entities data processors at a
minimum.

An example application of how to achieve utility from personal data without breaking
privacy was demonstrated by Damgård et al. [51]. They constructed a scheme based on MPC
where personal data held by a consultancy house, was used to compute credit scores (relative
to other applicants in the same category) for load applicants, hence helping banks to give
rational interest requirements and loan offers. Their concrete case was focused on Danish
farmers, as they are not required to publish financial information about their business, and
thus it is a challenge for banks to give reasonable loan requirements as they don’t know
how the specific applications compare to the general market. While not done explicitly the
protocol of Damgård et al. could have allowed banks to give farmers loan offers without the
farmers needing to disclose their financial situation to the bank beforehand.
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Other laws. Many countries have privacy laws but few have been studied in the relation to
PETs and to keep the scope of this survey simple we have only covered GDPR. Furthermore,
the scope of GDPR is in a sense the one of the strictest privacy framework when comparing
e.g. with HIPAA and CCPA in the US.
PETs assisting businesses and governments. Disregarding personal data, there are
often other situations where companies, or even governmental instances might want to
validate that the other party holds the information they claim they to do. This could for
example be the case of mergers and acquisitions, where one company claims to hold some
algorithms or machine learning model capable to perform certain actions, but they would of
course not want to disclose this before the acquisition is complete.

A similar problem has also occurred during trials, such as the case of U.S. v. Michaud
and U.S. v. Coplon, where the defendants were charged based on evidence gathered through
the use of proprietary and secret law enforcement software. However the defendants defense
wanted to inspect the software to ensure that it did not have faults and that it did not
violate the Fourth Amendment (unreasonable searches and surveillance). In situations like
these, zero-knowledge proofs could be constructed and used to convincingly validate the
necessary constraints, without leaking proprietary information [19]. The same is true when
the proprietary information is not a program, but classified data instead. If the data has
been certified by an authority, then zero-knowledge proofs could be used to validate such
data against a public predicate without leaking any content. Such zero-knowledge proofs
could furthermore be augmented to allow for public verifiability, meaning that any external
party can validate the proof. By combining this with a blockchain, such proofs could remain
publicly accessible for anyone to validate. The possibility for public verifiability is for example
highly relevant in the case of U.S. secret laws. These are laws whose content, or even existence,
are classified. Such laws for example contain constraints on how law enforcement are allowed
to circumvent security measurements to access people’s personal data, without warrants. In
court cases it is useful for the public and jury to be able to validate that the constraints in
the secret laws have been obeyed by law enforcement [76].

In the finance sector such approaches could also be useful, for example for banks to
prove that their AML software fulfill the minimum legal requirements, without leaking their
proprietary algorithms, see Sec. 3.1. Such proofs could also be useful to post publicly for
public verifiability, allowing (potential) customers to validate that their bank of choice is
following legal requirements. Another example where this might prove useful, is in the
situation of acquisition where information about the quantity, or demographic, of customers
might be highly relevant to the price purchaser is willing to pay.

B Digital Asset Custody

As the vast majority of financial transactions are automatically executed over vast inter-bank
and payment networks, the signing and encryption of sensitive transaction messages require
secret cryptographic key material that must be carefully managed to prevent impersonation,
theft and forgery. In traditional finance, this is implemented at the device instance level
with hardware security modules (HSM). These generate, store and use sensitive key material
locally; any signing or encryption operations are performed strictly on the HSM such that
the key material never leaves the device during usage. Thus, physical access to HSMs must
carefully guarded and its operation must adhere to rigorous standards, such as those set by
the Payment Card Industry (PCI).

HSMs are widely used in payment networks, for example, when the EMV protocol [11]
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for credit card transactions requires the online verification of a customer PIN entered at the
point-of-sales (POS). In this case, the PIN must be forwarded in authenticated and encrypted
form to the card issuer for verification. However, as the POS supplier does not have a direct
relationship with the card issuer, the PIN is forwarded via hops between intermediaries, where
only neighboring intermediaries have established shared keys for encrypted communication;
Such keys for encryption are managed by HSM’s. However, security which HSM provide
also means they are costly to acquire (tens of thousands of dollars) and to operate, as even
the most basic maintenance items such as firmware upgrades must be conducted on-site
and involve multiple, redundant operators with requiring specific access authorizations.
Furthermore, strict PCI standards on the design and operation of HSM’s make changes
to the underlying cryptography very difficult, as custom HSM firmware are generally not
permitted.

Threshold signatures computed by MPC committees have emerged as an alternative to
HSMs in the context of digital assets, which have deployed non-standardized signature schemes
such as ECDSA based on non-standard elliptic curves (e.g. secp256k1 in Bitcoin). Whilst
HSMs have traditionally played the role of secure signing, they are difficult to customize and
adapt in an industry with rapidly evolving cryptography on ever newer blockchain protocols.
Furthermore, since HSMs represent a single point of failure, their installation and physical
access control requires expertise, not readily available to fast-moving cryptocurrency startups
and institutions. MPC can be offered as Software-as-a-Service or cloud solutions. Suppliers
of such digital asset custody solutions include Unbound14 [47] and Fireblocks [63], which
have implemented highly performant threshold signing algorithms [88, 34, 53]. In contrast
to HSMs, MPC servers can be run on standard virtual cloud instances, offering a high
level of elasticity for both (1) performance and (2) key security; (1) Signing of independent
transactions to authorize transfer of digital assets is easily parallelizable and (2) the number
of MPC servers can be scaled to increase decentralization of the key material. MPC instances
can also be easily upgraded to perform new cryptographic tasks as there is a lesser need
for standardization and hardening of individual MPC devices given a lack of a single point
of failure. Furthermore, using MPC allows for easy and simple portability and back-up of
key material. Another benefit of using this technology is employing the concept of proactive
security for MPC protocols to periodically refresh their internal scret states in order to
recover from momentary security compromises. In particular, this has been implemented in
the context of MPC-based key management for digital asset custody [34].

We note several critical differences between traditional finance and decentralized finance,
which explain the quicker adoption of MPC by the latter. In traditional finance, transactions
can generally be revoked; if an individual HSM is compromised and its key material exposed,
the log of the attack can be traced to an individual device. The post-mortem analysis can thus
establish a clear breach event and entry point, providing clear evidence that a transaction was
authorized with stolen keys for its later revocation. In contrast, transactions in digital ledgers
can generally not be reverted; they are final. For this reason, cryptocurrency exchanges and
custodial services will operate “cold” and “hot” wallets; the former are generally disconnected
from the business logic and require human authorization to move funds. The latter hold a
fraction of the total assets, but are automatically triggered to produce valid digital signatures
when prompted by the customer-facing application.

We consider the adoption of MPC for the application of digital asset custody an illustrative
one; the improved updateability and tuneability of both performance and security in MPC

14 Acquired by Coinbase, Inc.
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(over classical HSM’s) is a major selling point for emerging applications, and we anticipate
MPC to spread to other key management domains in finance over time.

C Privacy-Preserving, Demand Response Markets

Privacy in markets is applicable to other domains, such as demand-response auctions; the
growth of sustainable energy generation has introduced the necessity of increased coordination
between the production and consumption of electricity. In contrast to traditional power
generation sources, such as gas turbines, which can be throttled to match current power
demand on the grid, sustainable power sources such as wind or solar cannot. Today, grid
operators purchase future flexible demand from large, industrial scale consumers of energy or
even power generators with flexibility to scale production in either direction to balance the
grid.

There are efforts to aggregate retail consumers of electricity to form sellers of demand-
response capacity; for example, home HVAC system of buildings can easily shift their power
consumption forwards or backwards in time whilst maintaining set temperature. Residential
electric vehicle charging stations can easily defer charging until opportune time periods to
stabilize the grid, without compromising the convenience of the owner. However, serious
privacy concerns arise when submitting device-level power consumption constraints to a
demand-response auction run by the utility, as such information easily reveals the type of
activity occurring in private homes.

Thus, in the work of Zobiri et al. [133], future demand capacity at the retail device-
level can be sold to buyers; in this work, each auction round for a time frame within the
day-ahead will accept submitted bids that include the maximum power consumption or
power draw (KW), price limit ($/KWh) as well as characterization of each the demand-
flexibility of each individually controllable device. For example, a washing machine can only
provide demand flexibility for its starting time; once activated, a washing cycle cannot be
interrupted. In contrast, an electric vehicle charger can charge intermittently at different
power levels, but must completely charge the vehicle by a certain time. Thus, the auction
does not simply involve buy and sell bids by "volume" and "price"; rather, it must take
into consideration the forecast, future consumption-demand of the buyer, and device-level
constraints submitted by sellers. When implemented in MPC, this arguably leads to a more
complicated auction algorithm than in traditional markets; the work [133] permits private
bids to be submitted to capture the consumption flexibility as constraints for each device
(temporal constraints, power consumption cycle constraints), in addition to a electricity price
limit; power consumption constraints are aggregated over private bids inside the MPC, such
that device-level information is protected from the buyer of demand-response capacity. The
auction clearing mechanism must then match device-level consumption constraints against
predicted power generation schedule published by the buyer. Thus, demand-response markets
imply direct device scheduling in residential homes by the buyer (or utility operator); privacy
of end-users must therefore be protected by such solutions where any scheduling information
is evaluated inside an MPC instance.

Da Gama et al. [67] propose a peer-2-peer electricity market run a similar MPC setting,
where local producers and consumers of electricity can trade energy intra-day; here, the
auction design resembles that of the author’s prior work in dark-pools [48], and exhibits
sufficient transaction throughput for intra-day auction applications. [67] builds on prior
work [1], but also considers geographical proximity of buyers and sellers, thereby stabilizing
grid operations as power generation and consumption can be optimized to occur locally.
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