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Abstract

Keller and Sun (ICML’22) have found a gap in the accuracy between
floating-point deep learning in cleartext and secure quantized deep learning
using multi-party computation. We have discovered that this gap is caused
by a bug in the implementation of max-pooling. In this note, we present
updated figures to support this conclusion. We also add figures for another
network on CIFAR-10.

1 Introduction
Multi-party computation (MPC) is a way to compute on distributed data
without revealing it to other parties [Lin20]. In MPC, the common floating-point
arithmetic is considerably slower than using quantization. Instead, Keller and
Sun [KS22] represent a real number x as an integer ⌊x · 2f⌉, where f > 0 is a
prescribed precision and ⌊·⌉ means rounding to the nearest integer. They found
no improvement in going beyond f = 16 (i.e. f > 16) for LeNet. They also
established a gap in the accuracy between cleartext floating-point computation
and quantized computation of 99.2%/99.0% for SGD and 99.3%/99.2% for
AMSGrad. For an AlexNet-like network with CIFAR-10, the gap is 69%/65%
with Adam. This is somewhat surprising for two reasons. First, any positive
single-precision floating-point number can be represented with f = 127. Second,
Keller and Sun use precise computation of exponentiation and division instead
of rough approximation. Since then, we have identified a bug in the back-
propagation of max-pooling in their implementation in MP-SPDZ [Kel20]. The
bug had the effect that the gradient would always be back-propagated to one
corner of the pooling window rather than the position of the maximum input
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Table 1: LeNet Benchmarks in the three-party LAN setting with one cor-
ruption. Accuracy “N/A” means that the accuracy figures were not given
or computed in a way that does not reflect the secure computation. (∗)
[WTB+21] only implemented their online phase.

s/epoch GB/ep. Acc. (# ep.) Precision (f)

[WGC19] 7,188 N/A N/A 13
[WTB+21]∗ 1,412 162 N/A 13
[TKTW21] 1,036 534 94.0% (5) 20
[KVH+21] 10,940 N/A 96.7% (4) 16
Ours (SGD) 283 280 99.0% (5) 16
Ours (AMSGrad) 409 603 99.1% (5) 16

signal. Closing the gap between quantized and floating-point computation means
that there is no need for more expensive computation in MPC in order to match
the accuracy of cleartext computation. The updated implementation is available
on the same repository as the previous version.1

2 Updated Figures
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Figure 1: Comparison of cleartext training and secure training for LeNet with
f = 16 and probabilistic truncation. γ is the learning rate, and the shaded
area shows the range of 20 independent executions.

Figure 1 compares LeNet training on MNIST between cleartext floating-
point computation and secure quantized computation, and Figure 2 does so for

1https://github.com/csiro-mlai/deep-mpc
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Figure 2: Comparison of cleartext training and secure training for FALCON’s
AlexNet-like network with f = 16 and probabilistic truncation. γ is the
learning rate, and the shaded area shows the range of 20 executions.

Table 2: Time (seconds) and communication (GB) per epoch, accuracy after
ten epochs, and fixed-point precision for CIFAR-10 training in the three-party
LAN setting with one corruption. [TKTW21] do not train from scratch,
which is why we do not include their accuracy figure. (∗)[WTB+21] only
implemented their online phase.

s/epoch GB/ep. Acc. (# ep.) Precision (f)

[WTB+21]∗ 3,156 80 N/A 13
[TKTW21] 1,137 535 N/A 20
Ours (SGD) 783 740 66.5% 16
Ours (AMSGrad) 1,630 3,167 67.6% 16

the CIFAR-10 and AlexNet-like network proposed by the authors of FALCON
[WTB+21]. The hyperparameters were chosen to match [KS22]. γ = 0.001 is a
common default choice for AMSGrad, and probabilistic truncation is the most
efficient truncation method. Both figures show that there is not gap between the
two, and the secret computation is within the range of 20 cleartext executions
after 10 and 15 epochs, respectively. Tables 1 and 2 contain updated timing results
corresponding to a part of Table 3 and Table 6 in [KS22], respectively. They
show that the bugfix does not increase the complexity. Instead, optimizations to
MP-SPDZ actually decrease the cost.
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3 New Figures
The FALCON adaption of AlexNet reduces several convolutional layers to fully-
connnected layers by the fact that the kernel is at least as large as the input
channels. In Figure 3, we propose another AlexNet-like network, which has fewer
parameters but results in better accuracy on CIFAR-10. Figure 4 shows that
the one run of secure training is entirely within the range of 20 runs of cleartext
training after five epochs.
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nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=2),
nn.ReLU(inplace=inplace),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(64, 96, kernel_size=3, padding=2),
nn.ReLU(inplace=inplace),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(96, 96, kernel_size=3, padding=1),
nn.ReLU(inplace=inplace),
nn.Conv2d(96, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=inplace),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=inplace),
nn.MaxPool2d(kernel_size=3, stride=2)
nn.Flatten(),
nn.Linear(1024, 128),
nn.ReLU(inplace=inplace),
nn.Linear(128, 256),
nn.ReLU(inplace=inplace),
nn.Linear(256, num_classes),

)

Figure 3: Our AlexNet-like network for CIFAR-10. The network architecture
is specified in PyTorch syntax.
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Figure 4: Comparison of cleartext training and secure training for our AlexNet-
like network with f = 16 and probabilistic truncation. γ is the learning rate,
and the shaded area shows the range of 20 executions.
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