
Jolt: SNARKs for Virtual Machines via Lookups

Arasu Arun∗ Srinath Setty† Justin Thaler‡

Abstract

Succinct Non-interactive Arguments of Knowledge (SNARKs) allow an untrusted prover to establish
that it correctly ran some “witness-checking procedure” on a witness. A zkVM (short for zero-knowledge
Virtual Machine) is a SNARK that allows the witness-checking procedure to be specified as a computer
program written in the assembly language of a specific instruction set architecture (ISA).

A front-end converts computer programs into a lower-level representation such as an arithmetic circuit
or generalization thereof. A SNARK for circuit-satisfiability can then be applied to the resulting circuit.

We describe a new front-end technique called Jolt that applies to a variety of ISAs. Jolt arguably
realizes a vision called the lookup singularity, which seeks to produce circuits that only perform lookups
into pre-determined lookup tables. The circuits output by Jolt primarily perform lookups into a gigantic
lookup table, of size more than 2128, that depends only on the ISA. The validity of the lookups are proved
via a new lookup argument called Lasso described in a companion work (Setty, Thaler, and Wahby, e-print
2023). Although size-2128 tables are vastly too large to materialize in full, the tables arising in Jolt are
structured, avoiding costs that grow linearly with the table size.

We describe performance and auditability benefits of Jolt compared to prior zkVMs, focusing on the
popular RISC-V ISA as a concrete example. The dominant cost for the Jolt prover applied to this ISA
(on 64-bit data types) is cryptographically committing to about six 256-bit field elements per step of the
RISC-V CPU. This compares favorably to prior zkVM provers, even those focused on far simpler VMs.

1 Introduction

A SNARK (Succinct non-interactive argument of knowledge) is a cryptographic protocol that lets an untrusted
prover P prove to a verifier V that they know a witness w satisfying some property. A trivial proof is for
P to explicitly send w to V, who can then directly check on its own that w satisfies the claimed property.
We refer to this trivial verification procedure as direct witness checking. A SNARK achieves the same effect,
but with better costs to the verifier. Specifically, the term succinct roughly means that the proof should be
shorter than this trivial proof (i.e., the witness w itself), and verifying the proof should be much faster than
direct witness checking.

As an example, the prover could be a cloud service provider running an expensive computation on behalf of
its client who acts as the verifier. A SNARK gives the verifier confidence that the prover ran the computation
honestly. Alternatively, in a blockchain setting, the witness could be a list of valid digital signatures authorizing
several blockchain transactions. A SNARK can be used to to prove that one knows the signatures, so that
the signatures themselves do not have to be stored and verified by all blockchain nodes. Instead, only the
SNARK needs to be stored and verified on-chain.

1.1 SNARKs for Virtual Machine abstractions

A popular approach to SNARK design today is to prove the correct execution of computer programs. This
means that the prover proves that it correctly ran a specified computer program Ψ on a witness. In the
example above, Ψ might take as input a list of blockchain transactions and associated digital signatures
authorizing each of them, and verify that each of the signatures is valid.

∗New York University
†Microsoft Research
‡a16 crypto research and Georgetown University

Many projects today accomplish this via a CPU abstraction (in this context, also often called a Virtual
Machine (VM)). Here, a VM abstraction entails fixing a set of primitive instructions, known as an instruction
set architecture (ISA), analogous to assembly instructions in processor design. A full specification of the VM
also includes the number of registers and the type of memory that is supported. The computer program that
the prover proves it ran correctly must be specified in this assembly language.

To list a few examples, several so-called zkEVM projects seek to achieve “byte-code level compatibility” with
the Ethereum Virtual Machine (EVM), which means that the set of primitive instructions is the 141 opcodes
available on the EVM. Other zkEVMs do not aim for byte-code level compatibility, instead aiming to offer
SNARKs for high-level smart contract languages such as Solidity (without first compiling the solidity to
EVM bytecode).

Still other so-called zkVM projects take a similar approach but do not target the EVM instruction set, nor
high-level languages like Solidity that are often compiled to EVM bytecode. These projects typically choose
(or design) ISAs for their purported “SNARK-friendliness”, or for surrounding infrastructure and tooling, or
for a combination thereof. For example, Cairo-VM is a very simple virtual machine designed specifically for
compatibility with SNARK proving [GPR21, AGL+22]. The VM has 3 registers, memory that is read-only
(each cell can only be written to once) and must be “continuous”, and the primitive instructions are roughly
addition and multiplication over a finite field, jumps, and function calls.1

Another example is the RISC Zero project, which uses the RISC-V instruction set. RISC-V is popular in
the computer architecture community, and comes with a rich ecosystem of compiler tooling to transform
higher-level programs into RISC-V assembly. Other zkVM projects include Polygon Miden,2 Valida,3 and
many others.

Front-end, back-end paradigm. SNARKs are built using protocols that perform certain probabilistic
checks, so to apply SNARKs to program executions, one must express the execution of a program in a
specific form that is amenable to probabilistic checking (e.g., as arithmetic circuits or generalizations thereof).
Accordingly, most SNARKs consist of a so-called front-end and back-end : the front-end transforms a witness-
checking computer program Ψ into an equivalent circuit-satisfiability instance, and the back-end allows the
prover to establish that it knows a satisfying assignment to the circuit.

Typically, the circuit will “execute” each step of the compute program one at a time (with the help of
untrusted “advice inputs”). Executing a step of the CPU conceptually involves two tasks: (1) identify
which primitive instruction should be executed at this step, and (2) execute the instruction and update the
CPU state appropriately. Existing front-ends implement these tasks by carefully devising gates or so-called
constraints that implement each instruction. This is time-intensive and potentially error-prone. As we show
in this work, it also leads to circuits that are substantially larger than necessary.

Pros and cons of the zkVM paradigm. One major benefit of zkVMs that use pre-existing ISAs is that
they can exploit extant compiler infrastructure and tooling. This applies, for example, to the RISC-V and
EVM instruction set, and leads to a developer-friendly toolchain without building the infrastructure from
scratch. One can directly invoke existing compilers that transform witness-checking programs written in
high-level languages down to assembly code for the ISA, and benefit from prior audits or other verification
efforts of these compilers.

Another benefit of zkVMs is that a single circuit can suffice for running all programs up to a certain time bound,
whereas alternative approaches may require re-running a front-end for every program (see the discussion in
Section 1.6 of other front-end approaches). Finally, frontends for VM abstractions output circuits with repeated

1The Cairo toolchain allows programmers to write programs in a higher-level language called Cairo 1.0, and these programs
are compiled into primitive instructions for the Cairo-VM. Even the high-level language only exposes write-once (also known as
immutable) memory to the programmer and does not offer signed integer data types. See https://www.cairo-lang.org/ for
information on the high-level language and [GPR21, AGL+22] and https://github.com/lambdaclass/cairo-vm for information
on the Virtual Machine.

2https://polygon.technology/polygon-miden
3https://github.com/valida-xyz/valida-compiler/issues/2

2

https://www.cairo-lang.org/
https://github.com/lambdaclass/cairo-vm
https://polygon.technology/polygon-miden
https://github.com/valida-xyz/valida-compiler/issues/2

structure. For a given circuit size, backends targeting circuits with repeated structure [Set20, BSBHR19,
WTS+18] can be much faster than backends that do not leverage repeated structur [CHM+20, GWC19, Gro16].

However, zkVMs also have downsides that render them inappropriate for some applications. First, circuits
implementing a VM abstraction are often much larger than circuits that do not. This means that zkVM
provers are often much slower end-to-end than SNARK provers that do not impose upon themselves a VM
abstraction.

For example, implementing certain important operations in a zkVM (e.g., cryptographic operations such as
Keccak hashing or ECDSA signature verification) is extremely expensive—e.g., ECDSA signature verification
takes up to 100 microseconds to verify on real CPUs, which translates to millions of RISC-V instructions.4

This is why zkVM projects contain so-called gadgets or built-ins, which are hand-optimized circuits and
lookup tables computing specific functionalities.

A second downside is that, in order to expose a high-level programming language to developers, zkVMs
require a compiler that transforms such high-level computer programs into assembly code for the VM. These
compilers represent a large attack surface. Any bug in the compiler can render the system insecure: proving
that one correctly ran assembly code does not guarantee knowledge of a valid witness if the assembly code
fails to correctly implement the intended witness-checking procedure.

The conventional wisdom on zkVMs. The prevailing viewpoint today is that simpler VMs can be
turned into circuits with fewer gates per step of the VM. This is most apparent in the design of particularly
simple and ostensibly SNARK-friendly VMs such as the Cairo-VM. However, this comes at a cost, because
primitive operations that are standard in real-world CPUs require many primitive instructions to implement
on the simple VM.

In part to minimize the overheads in implementing standard operations on such limited VMs, many projects
have designed domain specific languages (DSLs) that are exposed to the programmer who writes the witness-
checking program. The proliferation of DSLs places a burden on the programmer, who is responsible both for
learning the DSL and writing correct programs in it (with catastrophic security consequences if a program is
incorrect).

Moreover, existing zkVMs remain expensive for the prover, even for very simple ISAs. For example, the
prover for Cairo-VM programs described in [GPR21, AGL+22] cryptographically commits to 51 field elements
per step of the Cairo-VM. This means that a single primitive instruction for the Cairo-VM may cause the
prover to execute millions of instructions on real CPUs. This severely limits the applicability of SNARKs for
VM abstractions, to applications involving only very simple witness-checking procedures.

1.2 Jolt: A new paradigm for zkVM design

In this work, we introduce a new paradigm in zkVM design. The result is zkVMs with much faster provers,
as well as substantially improved auditability and extensibility (i.e., a simple workflow for adding additional
primitive instructions to the VM). Our techniques are general. As a concrete example, we instantiate them
for the RISC-V instruction set (with multiplication extension [And17]), a popular open-source ISA developed
by the computer architecture community without SNARKs in mind.

Our results upend the conventional wisdom that simpler instruction sets necessarily lead to smaller circuits
and associated faster provers. First, our prover is faster per step of the VM than existing SNARK provers
for much simpler VMs. Second, the complexity of our prover primarily depends on the size (i.e., number of
bits) of the inputs to each instruction. This holds so long as all of the primitive instructions satisfy a natural
notion of structure, called decomposability. Roughly speaking, decomposability means that one can evaluate
the instruction on a given pair of inputs (x, y) by breaking x and y up into smaller chunks, evaluating a small
number of functions of each chunk, and combining the results. A primary contribution of our work is to show
that decomposability is satisfied by all instructions in the RISC-V instruction set.

4See https://github.com/risc0/risc0/tree/v0.16.0/examples/ecdsa.

3

https://github.com/risc0/risc0/tree/v0.16.0/examples/ecdsa

Lookup arguments and Lasso. In a lookup argument, there is a predetermined “table” T of size N ,
meaning that T ∈ FN . An (unindexed) lookup argument allows the prover to commit to any vector a ∈ Fm

and prove that every entry of a resides somewhere in the table. That is, for every i ∈ {1, . . . ,m}, there exists
some k such that ai = T [k]. In an indexed lookup argument, the prover commits not only to a ∈ Fm, but
also a vector b ∈ Fm, and the prover proves that for every i, ai = T [bi]. In this setting, we call a the vector of
lookups and b the vector of associated indices.

In a companion paper, we describe a new lookup argument called Lasso (which applies to both indexed and
unindexed lookups). One distinguishing feature of Lasso is that it applies even to tables that are far too large
for anyone to materialize in full, so long as the table satisfies the decomposability condition mentioned earlier.

Jolt. Say P claims to have run a certain computer program for m steps, and that the program is written in
the assembly language for a VM. Today, front-ends produce a circuit that, for each step of the computation:
(1) identifies what instruction to execute at that step, and then (2) executes that instruction.

Lasso lets one replace Step 2 with a single lookup. For each instruction, the table stores the entire evaluation
table of the instruction. If instruction f operations on two 64-bit inputs, the table stores f(x, y) for every
pair of inputs (x, y) ∈ {0, 1}64 × {0, 1}64. This table has size 2128. In this work, we show that all RISC-V
instructions are decomposable.

1.3 Costs of Jolt

1.3.1 Background and context

Polynomial commitments and MSMs. A central component of most SNARKs is a cryptographic
protocol called a polynomial commitment scheme (see Definition 2.2). Such a scheme allows an untrusted
prover to succinctly commit to a polynomial p and later reveal an evaluation p(r) for a point r chosen by the
verifier (the prover will also return a proof that the claimed evaluation is indeed equal to the committed
polynomial’s evaluation at r). In Jolt, as with most SNARKs, the bottleneck for the prover is the polynomial
commitment scheme.

Many popular polynomial commitments are based on multi-exponentiations (also known as multi-scalar
multiplications, or MSMs). This means that the commitment to a polynomial p (with n coefficients c0, . . . , cn−1

over an appropriate basis) is
n−1∏
i=0

gcii ,

for some public generators g1, . . . , gn of a multiplicative group G. Examples include KZG [KZG10], Bullet-
proofs/IPA [BCC+16, BBB+18], Hyrax [WTS+18], and Dory [Lee21].5

The naive MSM algorithm performs n group exponentiations and n group multiplications (note that each
group exponentiation is about 400× slower than a group multiplication). But Pippenger’s MSM algorithm
saves a factor of about log(n) relative to the naive algorithm. This factor can be well over 10× in practice.

Working over large fields, but committing to small elements. If all exponents appearing in the
multi-exponentiation are “small”, one can save another factor of 10× relative to applying Pippenger’s
algorithm to an MSM involving random exponents. This is analogous to how computing g2

16

i is 10× faster

than computing g2
160

i : the first requires 16 squaring operations, while the second requires 160 such operations.

In other words, if one is promised that all field elements (i.e., exponents) to be committed via an MSM are in
the set {0, 1, . . . ,K} ⊂ F, the number of group operations required to compute the MSM depend only on K
and not on the size of F.6

5In Hyrax and Dory, the prover does
√
n MSMs each of size

√
n.

6Of course, the cost of each group operation depends on the size of the group’s base field, which is closely related to that of
the scalar field F. However, the number of group operations to compute the MSM depends only on K, not on F.

4

Quantitatively, if all exponents are upper bounded by some value K, with K ≪ n, then Pippenger’s algorithm
only needs (about) one group operation per term in the multi-exponentiation. More generally, with any
MSM-based commitment scheme, Pippenger’s algorithm allows the prover to commit to roughly k · log(n)-bit
field elements (meaning field elements in {0, 1, . . . , n}) with only k group operations per committed field
element. So for size-n MSMs, one can commit to log(n) bits with a single group operation.

Polynomial evaluation proofs. In any SNARK, the prover not only has to commit to one or more
polynomials, but also reveal to the verifier an evaluation of the committed polynomials at a point of the
verifier’s choosing. This requires the prover to compute a so-called evaluation proof, which establishes
that the returned evaluation is indeed consistent with the committed polynomial. For some polynomial
commitment schemes, such as Bulletproofs/IPA [BCC+16, BBB+18], evaluation proofs are quite slow and
this cost can bottleneck the prover. However, for others, evaluation proof computation is a low-order cost
[WTS+18, BBHR18, Lee21]. Moreover, evaluation proofs exhibit excellent batching properties, whereby
the prover can commit to many polynomials and only produce a single evaluation proof across all of
them [BGH19, Lee21, KST22, BDFG20]. So in many contexts, computing opening proofs is not a bottleneck
even when a scheme such as Bulletproofs/IPA is employed. For these reasons, our accounting in this work
ignores the cost of polynomial evaluation proofs.

1.3.2 Costs of Jolt

Prover costs. For RISC-V instructions on 64-bit data types (with the multiply extension), Jolt ’s P
commits to under 60 field elements per step of the RISC-V CPU. Only six of those field elements are larger
than 225, and none of them are larger than 264. With MSM-based polynomial commitment, the Jolt prover
costs are roughly that of committing to 6 arbitrary (256-bit) field elements per CPU step.

One caveat is that we handle six RISC-V instructions (all in the multiplication extension) via several
“pseudoinstructions”. For example, we handle the division with remainder instruction by having P provide the
quotient and remainder as untrusted advice, and they are checked for correctness by applying multiplication
and addition instructions. Another caveat is that some load and store instructions have modestly higher
costs than those listed above. Conversely, many instructions (those involving addition, subtraction, shifts,
jumps, loads, and stores) can be handled with fewer than five committed 256-bit field elements.

Comparison of prover costs to prior works. A detailed experimental comparison of Jolt to existing
zkVMs will have to wait until a full implementation is complete, but some crude comparisons to prior works
are illustrative. Recall that, when using an MSM-based multilinear polynomial commitment scheme (such as
multilinear analogs of KZG, like Zeromorph [KT23]) we estimate the cost of the Jolt prover as being roughly
that of committing to five arbitrary 256-bit field elements per step of the RISC-V CPU.

Plonk [GWC19] is a popular backend that can prove statements about certain generalizations of arithmetic
circuit satisfiability. When Plonk is applied to an arithmetic circuit (i.e., consisting of addition and
multiplication gates of fan-in two), the Plonk prover commits to 11 field elements per gate of the circuit, and
7 of these 11 field elements are random. Thus, the Jolt prover costs are roughly equivalent to applying the
Plonk backend to an arithmetic circuit with only about one gate per step of the RISC-V CPU.

A more apt comparison is to the RISC Zero project7, which currently targets the RISC-V ISA on 32-bit data
types (with the multiplication extension). A direct comparison is complicated, in part because RISC Zero
uses FRI as its (univariate) polynomial commitment scheme, which is based on FFTs and Merkle-hashing,
avoiding the use of elliptic curve groups. Jolt can use related polynomial commitment schemes (Jolt can use
any commitment scheme for multilinear polynomials). However, we choose to focus on elliptic-curve-based
schemes, because Jolt’s property of having the prover commit only to elements in {0, . . . , b} for some b≪ |F|
benefits those commitment schemes more than hashing-based ones.8 Still, a crude comparison can be made
by comparing how many field elements the RISC Zero prover commits to, vs. the Jolt prover.

7https://www.risczero.com/
8This property would also benefit hashing-based commitment schemes that operate over an extension field of a relatively

small base field, owing to all committed elements in Lasso being in the base field.

5

https://www.risczero.com/

The RISC Zero prover commits to at least 275 31-bit field elements per CPU step [Tom23]. This is roughly
equivalent to committing to about 275 · 32/256 ≈ 34 different 256-bit field elements per CPU step: at least
on small instances, the prover bottleneck is Merkle-hashing the result of various FFTs [Tom23], and one can
hash 8 different 31-bit field elements with the same cost as hashing one 256-bit field element.

A final comparison point is to the SNARK for the Cairo-VM described in the Cairo whitepaper [GPR21]. The
prover in that SNARK commits to about 50 field elements per step of the Cairo Virtual Machine, using FRI
as the polynomial commitment scheme. StarkWare currently works over a 251-bit field.9 This field size may
be larger than necessary (it is chosen to match the field used by certain ECDSA signatures), but the provided
arithmetization of Cairo-VM requires a field of size at least 263. So the commitment costs for the prover
are at least equivalent to committing to 50 · 64/256 ≈ 13 256-bit field elements.10 Jolt’s prover costs per
CPU compare favorably to this, despite the RISC-V instruction set being vastly more complicated than the
Cairo-VM (and with the Cairo-VM instruction set specifically designed to be ostensibly “SNARK-friendly”).

Verifier costs of Jolt. For RISC-V programs running for at most T steps, the dominant costs for the
Jolt verifier are performing O(log(T) log log(T)) hash evaluations and field operations,11 plus checking one
evaluation proof from the chosen polynomial commitment scheme (when applied to a multilinear polynomial
over at most O(log T) variables).

Verifier costs can be further reduced, and the SNARK rendered zero-knowledge, via composition with a
zero-knowledge SNARK with smaller proof size. For example, see the recent work Testudo for a related
approach (Testudo instantiates Spartan [Set20] with a variant of PST polynomial commitments [PST13] (an
analog of KZG commitments [KZG10] for multilinear rather than univariate polynomials) and composes this
with Groth16 [Gro16].

1.4 The lookup singularity

In a research forum post in 2022, Barry Whitehat articulated a goal of designing front-ends that produce
circuits that only perform lookups [Whi]. Whitehat terms this the lookup singularity and sketches how
achieving this would help address a key issue (the potential for security bugs, and difficulty of auditability)
that must be addressed for long-term and large-scale adoption of SNARKs. Circuits that only perform
lookups (and the lookup arguments that enable them) should be much simpler to understand and formally
verify than circuits consisting of many gates that are often hand-optimized.

Whitehat’s post acknowledges that current lookup arguments are expensive, but predicts that lookup
arguments will get more performative with time. Arguably, Jolt realizes the vision of the lookup singularity.
The bulk of the prover work in Jolt lies in the lookup argument, Lasso. The Jolt front-end does output
some constraints that effectively implement the task of the RISC-V CPU figuring out, at each step of the
computation, which instruction to execute. These constraints are simple and easily captured in R1CS.

1.5 Technical details: CPU instructions as structured polynomials

Lasso is most efficient when applied to lookup tables satisfying a property called decomposability. Intuitively,
this refers to tables t such that one lookup into t of size N can be answered with a small number (say, about
c) of lookups into much smaller tables t1, . . . , tℓ, each of size N1/c. Furthermore, if a certain polynomial t̃i
associated with each ti can be evaluated at any desired point r using, say, O(log(N)/c) field operations,12

then no one needs to cryptographically commit to any of the tables (neither to t itself, nor to t1, . . . , tℓ).

9See, for example, https://github.com/starkware-libs/starkex-contracts/blob/master/audit/EVM_STARK_Verifier_v4.
0_Audit_Report.pdf.

10Furthermore, in order to control proof size, StarkWare currently uses a “FRI blowup factor” of 16, compared to RISC Zero’s
choice of 4. This adds at least an extra factor of 4 to the prover time per field element committed, relative to RISC Zero’s.

11As described in Appendix B.3, Lasso can use any so-called grand product argument. The O(log(T) log log(T)) verifier cost are
due to the choice of grand product argument from [SL20, Section 6]. Other choices of lookup argument offer different tradeoffs
between commitment costs for the prover, versus proof size and verifier time.

12The Lasso verifier has to evaluate t̃i at a random point r on its own, so we need this computation to be fast enough that we
are satisfied with the resulting verifier runtime. For all tables arising in Jolt, the verifier can compute all necessary t̃i polynomial
evaluations in O(log(N)) total field operations.

6

https://github.com/starkware-libs/starkex-contracts/blob/master/audit/EVM_STARK_Verifier_v4.0_Audit_Report.pdf
https://github.com/starkware-libs/starkex-contracts/blob/master/audit/EVM_STARK_Verifier_v4.0_Audit_Report.pdf

Specifically, t̃i can be any so-called low-degree extension polynomial of ti. In Jolt, we will exclusively work
with a specific low-degree extension of ti, called the multilinear extension, and denoted t̃i.

Hence, to take full advantage of Lasso, we must show two things:

• The evaluation table t of each RISC-V instruction has is decomposable in the above sense. That is, one
lookup into t, which has size N , can be answered with a small number of lookups into much smaller
tables t1, . . . , tℓ, each of size N1/c. For most RISC-V instructions, ℓ equals one or two, and about c
lookups are performed into each table.

• For each of the small tables ti, the multilinear extension t̃i is evalutable at any point, using just
O(log(N)/c) field operations.

Establishing the above is the main technical contribution of our work. It turns out to be quite straightforward
for certain instructions (e.g., bitwise AND), but more complicated for others (e.g., bitwise shifts, comparisons).

Decomposable instructions. Suppose that table t contains all evaluations of some primitive instruction
f : {0, 1}n → F. Decomposability of the table t is equivalent to the following property of f : for any n-bit
input x to f , x can be decomposed into c “chunks”, X0, . . . , Xc−1, each of size n/c, and such that there
following holds. There are ℓ functions f0, . . . , fℓ−1 such that f(x) can be derived in a relatively simple manner
from fi(xj) as i ranges over 0, . . . , ℓ− 1 and j ranges over 0, . . . , c− 1. Then the evaluation table t of f is
decomposable: one lookup into t can be answered with c total lookups into ℓ · c lookups into the evaluation
tables of f0, . . . , fℓ−1.

Bitwise AND is a clean example by which to convey intuition for why the evaluation tables of RISC-V
instructions are decomposable. Suppose we have two field elements a and b in F, both in {0, . . . , 264 − 1}.
We refer to a and b as 64-bit field elements (we clarify here that “64 bits” does not refer to the size of the
field F, which may, for example, be a 256-bit field. Rather to the fact that a and b are both in the much
smaller set {0, . . . , 264 − 1} ⊂ F, no matter how large F may be).

Our goal is to determine the 64-bit field element c whose binary representation is given by the bitwise AND of
the binary representations of a and b. That is, if a =

∑63
i=0 2

i ·ai and b =
∑63

i=0 2
i ·bi for (a0, . . . , a63) ∈ {0, 1}64

and (b0, . . . , b63) ∈ {0, 1}64, then c =
∑63

i=0 2
i · ai · bi.

One way to compute c is as follows. Break a and b into 8 chunks of 8 bits each compute the bitwise AND of
each chunk, and concatenate the results to obtain c. Equivalently, we can express

c =

7∑
i=0

28·i · AND(a′i, b′i), (1)

where each a′i, b
′
i ∈ {0, . . . , 28 − 1} is such that a =

∑7
i=0 2

8·i · a′i and b =
∑7

i=0 2
8·i · b′i. These a′i’s and b′i’s

represent the decomposition of a and b into 8-bit limbs.13

In this way, one lookup into the evaluation table of bitwise-AND, which has size 2128, can be answered by the
prover providing a′1, . . . , a

′
8, b

′
1, . . . b

′
8 ∈ {0, . . . , 28 − 1} as untrusted advice, and performing 8 lookups into the

size-216 table t1 containing all evaluations of bitwise-AND over pairs of 8-bit inputs. The results of these
8 lookups can easily be collated into the result of the original lookup, via Equation (1). No party has to
commit to the size-216 table t1 because for any input (r′0, . . . , r

′
7, r

′′
0 , . . . , r

′′
7) ∈ F16,

t̃1(r
′
0, . . . , r

′
7, r

′′
0 , . . . , r

′′
7) =

15∑
i=0

2i · r′i · r′′i ,

which can be evaluated directly by the verifier with only 32 field operations.

13Just as “digits” refers a base-10 decomposition of an integer or field element, “limbs” refer to a decomposition into a different
base, in this case base 8.

7

Challenges for other instructions. One may initially expect that correct execution of RISC-V operations
capturing 64-bit addition and multiplication would be easy prove, because large prime-order fields come
with addition and multiplication operations that behave like integer addition and multiplication until the
result of the operation overflows the field characteristic. Unfortunately, the RISC-V instructions capturing
addition and multiplication have specified behavior upon overflow that differs from that of field addition and
multiplication. Resolving this discrepancy is one key challenge that we overcome.

1.6 Other front-end approaches

As with other zkVM projects, Jolt produces a so-called universal circuit, meaning one circuit works for all
RISC-V programs running up to some time bound T . This has the benefit that the circuit-generation process
only needs to be run once.

Other front-end approaches do not implement a Virtual Machine abstraction (i.e., they do not produce
circuits that repeatedly execute the transition function of a specific ISA). These approaches typically output a
different circuit for every computer program, such as Buffet [WSR+15], Bellman, Circom, Zokrates, Noir, etc.
The circuits produced by these approaches can also be made smaller and proved faster using our techniques,
though we leave this to future work.

2 Technical Preliminaries

2.1 Multilinear extensions

An ℓ-variate polynomial p : Fℓ → F is said to be multilinear if p has degree at most one in each variable. Let
f : {0, 1}ℓ → F be any function mapping the ℓ-dimensional Boolean hypercube to a field F. A polynomial
g : Fℓ → F is said to extend f if g(x) = f(x) for all x ∈ {0, 1}ℓ. It is well-known that for any f : {0, 1}ℓ → F,
there is a unique multilinear polynomial f̃ : F→ F that extends f . The polynomial f̃ is referred to as the
multilinear extension (MLE) of f .

Multilinear extensions of vectors. Given a vector u ∈ Fm, we will often refer to the multilinear
extension of u and denote this multilinear polynomial by ũ. ũ is obtained by viewing u as a function mapping
{0, 1}logm → F in the natural way14: the function interprets its (logm)-bit input (i0, . . . , ilogm−1) as the
binary representation of an integer i between 0 and m− 1, and outputs ui. ũ is defined to be the multilinear
extension of this function.

Lagrange interpolation. An explicit expression for the MLE of any function is given by the following
standard lemma (see [Tha22, Lemma 3.6]).

Lemma 1. Let f : {0, 1}ℓ → F be any function. Then the following multilinear polynomial f̃ extends f :

f̃(x0, . . . , xℓ−1) =
∑

w∈{0,1}ℓ

f(w) · χw(x0, . . . , xℓ−1), (2)

where, for any w = (w0, . . . , wℓ−1), χw(x0, . . . , xℓ−1) :=
∏ℓ

i=0 (xiwi + (1− xi)(1− wi)) . Equivalently,

χw(x0, . . . , xℓ−1) = ẼQ(x0, . . . , xℓ−1, w0, . . . , wℓ−1).

The polynomials {χw : w ∈ {0, 1}ℓ} are called the Lagrange basis polynomials for ℓ-variate multilinear

polynomials. The evaluations {f̃(w) : w ∈ {0, 1}ℓ} are sometimes called the coefficients of f̃ in the Lagrange
basis, terminology that is justified by Equation (2).

14All logarithms in this paper are to base 2.

8

SNARKs. We adapt the definition provided in [KST22].

Definition 2.1. Consider a relation R over public parameters, structure, instance, and witness tuples. A
non-interactive argument of knowledge for R consists of PPT algorithms (G,P,V) and deterministic K,
denoting the generator, the prover, the verifier and the encoder respectively with the following interface.

• G(1λ)→ pp: On input security parameter λ, samples public parameters pp.

• K(pp, s)→ (pk , vk): On input structure s, representing common structure among instances, outputs the
prover key pk and verifier key vk.

• P(pk , u, w)→ π: On input instance u and witness w, outputs a proof π proving that (pp, s, u, w) ∈ R.

• V(vk, u, π)→ {0, 1}: On input the verifier key vk, instance u, and a proof π, outputs 1 if the instance
is accepting and 0 otherwise.

A non-interactive argument of knowledge satisfies completeness if for any PPT adversary A

Pr

 V(vk, u, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, (u,w))← A(pp),
(pp, s, u, w) ∈ R,
(pk , vk)← K(pp, s),
π ← P(pk , u, w)

 = 1.

A non-interactive argument of knowledge satisfies knowledge soundness if for all PPT adversaries A there
exists a PPT extractor E such that for all randomness ρ

Pr

 V(vk, u, π) = 1,
(pp, s, u, w) ̸∈ R

∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, u, π)← A(pp; ρ),
(pk , vk)← K(pp, s),
w ← E(pp, ρ)

 = negl(λ).

A non-interactive argument of knowledge is succinct if the verifier’s time to check the proof π and the size of
the proof π are at most polylogarithmic in the size of the statement proven.

Polynomial commitment schemes. We adapt the definition from [BFS20]. A polynomial commitment
scheme for multilinear polynomials is a tuple of four protocols PC = (Gen,Commit,Open,Eval):

• pp← Gen(1λ, ℓ): takes as input ℓ (the number of variables in a multilinear polynomial); produces public
parameters pp.

• C ← Commit(pp,G): takes as input a ℓ-variate multilinear polynomial over a finite field G ∈ F[ℓ];
produces a commitment C.

• b ← Open(pp, C,G): verifies the opening of commitment C to the ℓ-variate multilinear polynomial
G ∈ F[ℓ]; outputs b ∈ {0, 1}.

• b← Eval(pp, C, r, v, ℓ,G) is a protocol between a PPT prover P and verifier V. Both V and P hold a
commitment C, the number of variables ℓ, a scalar v ∈ F, and r ∈ Fℓ. P additionally knows a
ell-variate multilinear polynomial G ∈ F[ℓ]. P attempts to convince V that G(r) = v. At the end of the
protocol, V outputs b ∈ {0, 1}.

Definition 2.2. A tuple of four protocols (Gen,Commit,Open,Eval) is an extractable polynomial commitment
scheme for multilinear polynomials over a finite field F if the following conditions hold.

• Completeness. For any ℓ-variate multilinear polynomial G ∈ F[ℓ],

Pr

{
pp← Gen(1λ, ℓ); C ← Commit(pp,G):
Eval(pp, C, r, v, ℓ,G) = 1 ∧ v = G(r)

}
≥ 1− negl(λ)

9

• Binding. For any PPT adversary A, size parameter ℓ ≥ 1,

Pr

 pp← Gen(1λ, ℓ); (C,G0,G1) = A(pp);
b0 ← Open(pp, C,G0); b1 ← Open(pp, C,G1):

b0 = b1 ̸= 0 ∧ G0 ̸= G1

 ≤ negl(λ)

• Knowledge soundness. Eval is a succinct argument of knowledge for the following NP relation given
pp← Gen(1λ, ℓ):

REval(pp) = {⟨(C, r, v), (G)⟩ : G ∈ F[µ] ∧ G(r) = v ∧ Open(pp, C,G) = 1} .

2.2 Polynomial IOPs and polynomial commitments

Modern SNARKs are constructed by combining a type of interactive protocol called a polynomial IOP
[BFS20] with a cryptographic primitive called a polynomial commitment scheme [KZG10]. The combination
yields a succinct interactive argument, which can then be rendered non-interactive via the Fiat-Shamir
transformation [FS86], yielding a SNARK.

Roughly, a polynomial IOP is an interactive protocol where, in one or more rounds, the prover may “send”
to the verifier a very large polynomial g. Because g is so large, one does not wish for the verifier to read a
complete description of g. Instead, in any efficient polynomial IOP, the verifier only “queries” g at one point
(or a handful of points). This means that the only information the verifier needs about g to check that the
prover is behaving honestly is one (or a few) evaluations of g.

In turn, a polynomial commitment scheme enables an untrusted prover to succinctly commit to a polynomial
g, and later provide to the verifier any evaluation g(r) for a point r chosen by the verifier, along with a
proof that the returned value is indeed consistent with the committed polynomial. Essentially, a polynomial
commitment scheme is exactly the cryptographic primitive that one needs to obtain a succinct argument
from a polynomial IOP. Rather than having the prover send a large polynomial g to the verifier as in the
polynomial IOP, the argument system prover instead cryptographically commits to g and later reveals any
evaluations of g required by the verifier to perform its checks.

Whether or not a SNARK requires a trusted setup, as well as whether or not it is plausibly post-quantum
secure, is determined by the polynomial commitment scheme used. If the polynomial commitment scheme does
not require a trusted setup, neither does the resulting SNARK, and similarly if the polynomial commitment
scheme is plausibly binding against quantum adversaries, then the SNARK is plausibly post-quantum sound.

Lasso can make use of any commitment schemes for multilinear polynomials g.15 Here an ℓ-variate multilinear
polynomial g : Fℓ → F is a polynomial of degree at most one in each variable.

2.3 Lookup arguments

Lookup arguments allow a prover to commit to two vectors a ∈ Fm and b ∈ Fm (with a polynomial
commitment scheme) and prove that each entry ai of vector a resides in index bi of a pre-determined lookup
table T ∈ FN . That is, For each i = 1, . . . ,m, ai = T [bi]. Here, to emphasize the interpretation of T as
a table, we use square brackets T [i] to denote the i’th entry of T . Here, if bi ̸∈ {1, . . . , N}, then t[bi] is
undefined, and hence ai ≠ T[bi]. We refer to a as the vector of looked-up values and b as the vector of indices.

Definition 2.3 (Lookup arguments, indexed variant). Let PC = (Gen,Commit,Open,Eval) be an extractable
polynomial commitment scheme for multilinear polynomials over F. A lookup argument (for indexed lookups)
for table T ∈ FN is a SNARK for the relation{
(pp, C1, C2, w = (a, b)) : a, b ∈ Fm ∧ ai = T [bi] for all i ∈ {1, . . . , n} ∧ Open(pp, C1, ã) = 1 ∧ Open(pp, C2, b̃) = 1

}
.

Here w = (a, b) ∈ Fm × Fm is the witness, while pp, C1, and C2 are public inputs.

15Any univariate polynomial commitment scheme can be transformed into a multilinear one, though the transformations
introduce some overhead (see, e.g., [CBBZ23, BCHO22, ZXZS20]).

10

Definition 2.3 captures so-called indexed lookup arguments (this terminology was introduced in our companion
work [STW23]). Other works consider unindexed lookup arguments, in which only the vector vector a ∈ Fm

of looked-up values is committed, and the prover claims that there exists a vector b of indices such that
ai = T [bi] for all i = 1, . . . ,m.

Definition 2.4 (Lookup arguments, unindexed variant). Let PC = (Gen,Commit,Open,Eval) be an ex-
tractable polynomial commitment scheme for multilinear polynomials over F. A lookup argument (for indexed
lookups) for table T ∈ FN is a SNARK for the relation{
(pp, C1, C2, a) : a ∈ Fm ∧ for all i ∈ {1, . . . , n}, there exists a bi such that ai = T [bi] ∧ Open(pp, C1, ã) = 1

}
.

Here a ∈ Fm × Fm is the witness, while pp and C1 are public inputs.

Jolt primarily requires indexed lookups. However, a few instructions (namely ADVICE and MOVE) require
range checks, which are naturally handled by unordered lookups (to prove that a value is in the range
{0, . . . 2L − 1}, perform an unordered lookup into the table T with T [i] = i for i = {0, . . . , 2L − 1}).

There are natural reductions in both directions, i.e., unindexed lookup arguments can be transformed into
index lookup arguments and vice versa. To obtain an unindexed lookup argument from an indexed one, P
separately commits to the index vector b and applies the indexed lookup argument. Obtaining an indexed
lookup argument from an unindexed one is slightly more complicated and is detailed in our companion
paper [STW23, Appendix A]. Our companion work, Lasso, described below, directly yields an indexed lookup
argument, and hence does not require this transformation.

A companion work: Lasso. Our companion work [STW23] introduces a family of lookup arguments called
Lasso. The lookup arguments in this family are the first that do not require any party to cryptographically
commit to the table vector T ∈ FN , so long as T satisfies one of the two structural properties defined below.

Definition 2.5 (MLE-structured tables). We say that a vector T ∈ FN is MLE-structured if for any input

r ∈ Flog(N), T̃(r) can be evaluated with O(log(N)) field operations.

Definition 2.6 (Decomposable tables). Let T ∈ FN . We say that T is c-decomposable if there exist a
constant k and α ≤ kc tables T1, . . . , Tα each of size N1/c and each MLE-structured, as well as a multilinear
α-variate polynomial g such that the following holds. As in Section 2.1, let us view T as a function mapping
{0, 1}logN to F in the natural way, and view each Ti as a function mapping {0, 1}log(N)/c → F. Then for any
r ∈ {0, 1}logN , writing r = (r1, . . . , rc) ∈ {0, 1}log(N)/c,

T [r] = g(T1[r1], . . . , Tk[r1], Tk+1[r2], . . . , T2k[r2], . . . , Tα−k+1[rc], . . . , Tα[rc]).

We refer to T1, . . . , Tα as sub-tables.

For any constant c > 0 and any c-decomposable table, our companion paper gives a lookup argument called
Lasso, in which the prover commits to roughly 3cm + cN1/c field elements. Moreover, all of these field
elements are small, meaning that they are all in {0, . . . ,m} (specifically, they are counts for the number
of times each entry of each subtable is read), or are elements of the subtables T1, . . . , Tα. The verifier
performs O(log(m) log log(m)) hash evaluations and field operations, processes one evaluation proof from
the polynomial commitment scheme applied to a multilinear polynomial in logm variables, and evaluates
T̃1, . . . , T̃α each at a single randomly chosen point.

Our companion paper also describes a lookup argument called Generalized-Lasso, which applies to any
MLE-structured table, not just decomposable ones.16 The main disadvantage of Generalized-Lasso relative to
Lasso is that cm out of the 3cm+ cN1/c field elements committed by the Generalized-Lasso prover are random
rather than small. As described in Section 1.3.1, such field elements can take an order of magnitude more
work to commit to than small field elements.

16In fact, Generalized-Lasso applies to any table with some low-degree extension, not necessarily its multilinear one, that is
evaluable in logarithmic time.

11

The relationship between MLE-structured and decomposable tables. For any decomposable table
T ∈ FN , there is some low-degree extension T̂ of T (namely, an extension of degree at most k in each variable)
that can be evaluated in O(logN) time. Specifically, the extension polynomial is

T̂ (r) = g(T̃1(r1), . . . , T̃α(rc)).

In general, T̂ is not necessarily multilinear, so a table being decomposable does not necessarily imply that it
is MLE-structured. But Generalized-Lasso actually applies to any table with a low-degree extension that is
evaluable in logarithmic time. In this sense, decomposability (the condition required to apply Lasso) is a
strictly stronger condition than what is necessary to apply Generalized-Lasso.

In Jolt, we show all lookup tables used are both c-decomposable (for any integer c > 0) as well as MLE-
structured. We choose to apply Lasso rather than Generalized-Lasso due to its superior efficiency (which
comes from the prover only committing to small field elements, avoiding the need to commit to random field
elements). On the other hand, we believe that there would be meaningful improvements in simplicity of
implementation if Jolt used Generalized-Lasso rather than Lasso. Arguably, the performance loss from using
Generalized-Lasso in place of Lasso is justified by the simplicity benefits. See Section 7 for further discussion.

2.4 Offline Memory Checking

Any SNARK for VM execution has to perform memory-checking. This means that the prover must be able
to commit to an execution trace for the VM (that is, a step-by-step record of what the VM did over the
course of its execution), and the verifier has to find a way to confirm that the prover maintained memory
correctly throughout the entire execution trace. In other words, the value purportedly returned by any read
operation in the execution trace must equal the value most recently written to the appropriate memory cell.
We use the term memory-checking argument to refer to a SNARK for the above functionality. Note that a
lookup table T ∈ FN can be viewed as a read-only memory of size N , with memory cell i initialized to T [i].
Hence, a lookup argument for indexed lookups (Definition 2.3) is equivalent the a memory-checking argument
for read-only memories.

A variety of memory-checking arguments have been described in the research literature [ZGK+18, BCG+18,
STW23, BFR+13, BSCGT13] (with the underlying techniques rediscovered multiple times). The most efficient
are based on lightweight fingerprinting techniques for the closely related problem of offline memory checking
[Lip89, BEG+91]. In this work, we use such an argument due to Spice [SAGL18], but optimize it using Lasso.
For completeness, we an provide overview of other memory-checking arguments in Appendix B, and Spice’s
in particular in Appendix B.3.

2.5 R1CS

The Jolt prover convinces the verifier that it correctly ran a VM for some number of steps on a specified
input. Most of the VM’s work is verified in Jolt via a lookup argument and a memory-checking arguments.
The remaining checks are simple and can be captured via any natural constraint system. One such option is
the standard notion of rank-one constraint systems, defined next.

Definition 2.7. An R1CS instance is a tuple (F, A,B,C,M,M ′, N, x), where A,B,C ∈ FM×M ′
, M ′ ≥ |x|+1,

x denotes the public input and output, and there are at most N non-zero entries in each matrix. A vector
z = (w, 1, x) ∈ FM ′

is said to satisfy the instance if A · z ◦B · z = C · z, where · denotes matrix-vector product
and ◦ denotes Hadamard (i.e., entrywise) product.

3 An Overview of RISC-V and Jolt’s Approach

This section first provides a brief overview of the RISC-V instruction set architecture considered in this work.
Our goal is to convey enough about the architecture that readers who have not previously encountered it
can follow this paper. However, a complete specification is beyond the scope of this work, and can be found

12

at [And17].17 We also stick to regular control flow and do not support external events and other unusual
run-time conditions like exceptions, traps, interrupts and CSR registers.

Informally, the RISC-V ISA consists of a CPU and a read-write memory, collectively called the machine.

Definition 3.1 (Machine State). The machine state consists of (PC,R,M). R denotes the 32 integer
registers, each of W bits, where W is 32 or 64. M is a linear read-write byte-addressable array consisting of
a fixed number of total locations (such as 220) with each location storing 1 byte. The PC, also of W bits, is a
separate register that stores the memory location of the instruction to be executed.

Assembly programs consist of a sequence of instructions, each of which operate on the machine state. The
instruction to be executed at a step is the one stored at the address pointed to by the PC. Unless specified by
the instruction, the PC is advanced to the next memory location after executing the instruction. The RISC-V
ISA specifies that all instructions are 32 bits long (i.e., 4 bytes), so advancing the PC to the next memory
location entails incrementing PC by 4.

While RISC-V uses multiple formats to store instructions in memory, we can abstract away the details and
represent all instructions in the following 5-tuple format.

Definition 3.2 (5-tuple RISC-V Instruction Format). Any RISC-V instruction can be written in the
following format: [opcode, rs1, rs2, rd, imm]. That is, each instruction specifies an operation code
uniquely identifying its function, at most two source registers rs1, rs2, a destination register rd, and a
constant value imm (standing for “immediate”) provided in the program code itself.

Figure 1 provides a brief schematic of the CPU state change and instruction format. Operations read the
source registers, perform some computation, and can do any or all of the following: read from memory, write
to memory, store a value in rd, or update the PC. For example, the logical left-shift instruction “(SLL, r5,
r8, r2, -)” reads the value stored in register #5, performs a logical left shift on the value by the length
stored in register #8, and stores the result in register #2 (and does not involve any immediates).

As another example, the branch instruction “(BEQ, r5, r8, -, imm)” sets PC to be PC+ imm if the values
stored in registers #5 and #8 are equal, or increments PC by 4, otherwise. (The destination register is not
involved).

Unsigned and signed data types. For the RISC-V ISA, data in registers has no type. A register simply
stores W bits. However, different instructions can be conceptualized as interpreting register values in different
ways. Specifically, some instructions operate upon unsigned data types, while others operate over signed
data types. All RISC-V instructions involving signed data types interpret the bits in a register as an integer
via two’s complement representation.18 For many instructions (such as ADD and SUB), the use of two’s
complement has the consequence that the instruction operates identically regardless of whether or not the
inputs are interpreted as signed or unsigned. See Appendix C for more information on two’s complement
notation and arithmetic.

For some instructions, like multiplication MUL, and integer comparison, the desired input/output behavior
differs depending on whether the inputs are interpreted as signed or unsigned. In these cases, there will
be two different RISC-V instructions, one for each interpretation. For example, there are MUL and MULU
instructions, with the former interpreting its inputs as signed, and the latter interpreting its inputs as
unsigned. Similarly, there are two integer comparison operations, SLT and SLTU.

Let z be an W -bit data type with constituent bits [zW−1, . . . , z0] such that z =
∑W−1

i=0 2i ·zi. When discussing
instructions interpreting their W -bit inputs as signed data types represented in twos-complement format
(e.g., Section 5.3), we refer to zW−1 as the sign bit of z, and denote this by zs. (Concretely, the sign bit of a
64-bit register value z will be zs = z63.) We use z<s to refer to [zW−2, . . . , z0] ∈ {0, 1}W−1.

17Another helpful resource for interested readers is Lectures 5-8 at https://inst.eecs.berkeley.edu/~cs61c/resources/

su18_lec/.
18See https://en.wikipedia.org/wiki/Two%27s_complement for an overview of how two’s complement maps bit vectors in

{0, 1}L to integers in {−2L, . . . , 2L − 1} and vice versa.

13

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/
https://en.wikipedia.org/wiki/Two%27s_complement

(a) The CPU state and instruction formats.

CPU Step Transition:

1. Read the instruction at location PC in Program Code.

Parse instruction as [opcode, rs1, rs2, rd, imm].

2. Read the W -bit values stored in registers rs1, rs2.

3. If required, write to or read from memory.

The value written and memory location accessed are derived from the values stored in rs1, rs2, imm.

4. Perform the instruction’s function on the values read from registers and imm to get result.

Examples of functions are arithmetic, logical and comparison operations.

5. Store result to register rd.

Only a few instructions, like STOREs, do not involve rd.

6. Update PC.

PC is usually incremented by 4, but instructions like jumps and branches update PC in other ways.

(b) The broad stages of a CPU step transition.

Figure 1: A model of RISC-V’s CPU state and transition function. Note that the transition function is
deterministic and all information required, such as the location of memory accessed, is derived from the CPU
state and instr.

Sign and Zero Extensions. A “sign-extension” of an L-bit value z to W bits (where L < W) is the W -bit
value zsign-ext with bits [zs, . . . , zs, zL−1, . . . , z0]. That is, the sign bit of z is replicated to fill the higher-order
bits of z until it reaches length W . A “zero-extension” is when, instead of the sign bit, the 0 bit is used. This
results in W -bit zzero-ext with bits [0, . . . , 0, zL−1, . . . , z0].

3.1 Performing instruction logic using lookups

As described in Section 2.3, the Jolt paradigm avoids the complexity of implementing each instruction’s
logic as constraints by encapsulating instruction execution into a lookup table. Specifically, we identify
an “evaluation table” for each operation opcode, Topcode[x ∥ y] = r, that contains the required result for all
possible inputs x, y. Jolt combines the tables for all instructions into one table and thus makes only one
lookup query per step to this table as Trisc-v[opcode ∥ x ∥ y] = r (see Section 7 for details). Given a processor
and instruction set, this table is fixed and independent of the program or inputs. The key contribution of
Jolt is to design these enormous tables with a certain structure (see Definition 2.6) that allows for efficient
lookup arguments using Lasso.

Preparing operands and the lookup query. The main responsiblity of the constraint system is to
prepare the appropriate operands x, y at each step before the lookup. This is efficient to do as the operands
only come from the set {value in rs1, value in rs2, imm, PC}. This means, for example, that the instructions

14

ADD and ADDI are expressed by the same lookup table as they only differ in whether the second operand
comes from register rs2 or is imm, respectively. With the operands prepared, the lookup query is then
committed to by the prover and fed to the lookup argument for verification. The query is of the form opcode

∥ z where z is generally x ∥ y or (x + y) or (x × y), making it either 2 ·W or W + 1 bits in length. The
prover provides as advice the claimed entry, result, in the lookup table corresponding to the query.

The trace of all lookup queries and entries is sent to Lasso. As described in Definition 2.6, Lasso requires the
query to be split into “chunks” which are fed into different subtables. The prover provides these chunks as
advice, which are c in number for some small constant c, and hence approximately W/c or 2W/c bits long,
depending on the structure of z. The constraint system must verify that the chunks correctly constitute z,
but need not perform any range checks as the Lasso algorithm itself later implicitly enforces these on the
chunks.

Figure 2: Proving the correctness of CPU execution using offline memory checking (Section 3.2) and lookups
(Section 3.1).

3.2 Using Memory-Checking

The machine state transition involves reading from and writing to three conceptually separate parts of
memory: (1) the program code, (2) the registers and (3) the random access memory. As discussed in Section
2.4, the most efficient way to enforce correct reads and writes is by using the offline memory checking
techniques. Unlike other operations, loads and stores do not involve lookups to a large table to perform their
core function.

As is standard in zkVM design, Jolt conceptualizes the memory-checking procedure as a black box that
guarantees correctness of all the memory reads and writes required by the CPU execution, and hence the
proof proceeds assuming these operations are correct. For example, suppose a value v was written to location
k at step t of the CPU’s execution. Later, when location k needs to be read, the prover sends as advice
(v′, t′) claiming that the most recent write to location k was done at step t′ and the value written was v′. All
of these read and write (k, v, t) tuples are committed to during the execution of Jolt and later fed to the
memory-checking argument, which will only pass if every read was consistent with the latest write. The main
job of the constraint system here is to prevent any cheating by enforcing range checks on the time values
provided by the prover (t′ in the above example). These are done efficiently using Lasso. See Appendix B.3
for more details.

15

Supporting byte-addressable memory. RISC-V requires that memory be byte-addressable (as opposed
to word-addressable). A load or store operation may read up to W/8 (which equals four and eight for 32-bit
and 64-bit processors, respectively) bytes in a given instruction. Thus, when writing a W -bit value v, the
prover must provide its byte-decomposition [v1 . . . vW/8] as each byte is stored in a separate address in memory.
Jolt enforces range-checks on the provided bytes through lookups performed using Lasso. See Appendix A.2
for more details.

Furthermore, certain load instructions also require the values read from memory to be sign-extended to W
total bits before stored in the register. This requires only a short lookup query using the highest order byte
to a small table to obtain the sign bit.

3.3 Formatting assembly code

Before the proof starts, the assembly code is formatted into the 5-tuple form of Definition 3.2: (opcode,

rs1, rs2, rd, imm). Additionally, each instruction also comes with 14 one-bit “flags” opflags[14] that
guide the constraint system. For example, opflag[5] is 1 for only Jump instructions, and opflags[7] is 1 if
and only if the lookup’s result is to be stored in rd. Note that these flags are fixed for any given instruction.
See Appendix A.1 for a list of all the flags used in Jolt. Load and store instructions (that is, those involving
memory) involve additional flags of their own.

In RISC-V, instructions may need to sign-extend or zero-extend imm to W bits. This is a deterministic choice
that depends only on the instruction (and is independent of the rest of the program or inputs). Thus, when
formatting the instruction to the 5-tuple format, the immediate is appropriately extended to W bits.

Putting this together, before the proof starts, the prover and verifier convert the RISC-V assembly code and
store it in a manner accessible to the constraint system. For the purposes of memory-checking, program
code is in a different address-space than regular random-access memory. It is read-only and is initialized
as follows: the original instruction at location PC is converted to the form (opcode, rs1, rs2, rd, imm,

opflags[14]) and the elements of this tuple are respectively stored at locations [6 · PC, . . . 6 · PC+ 5]. The
constraint system performs six memory-checking reads per CPU step to obtain these entries. As the program
code is read-only, the prover simply commits to the elements of the tuple and only one extra timestamp that
we know to be less than T , the number of steps up to that point in the program (see Appendix B.3 for more
details).

4 Analyzing MLE-structure and Decomposability

This section illustrates the process of designing MLE-structured tables and decomposing them as per Definition
2.6 required by Lasso. We first establish notation and then design the tables for three important functions
that are used as building blocks for the tables of many RISC-V instructions: equality, less than, and shifts.

4.1 Notation

Associating field elements with bit-vectors and vice versa. Let z be a field element in {0, 1, . . . , 2W −
1} ⊂ F. We denote the binary representation of z as bin(z) = [zW−1, . . . , z0] ∈ {0, 1}W . Here, z0 is the least

significant bit (LSB), while zW−1 is the most significant bit (MSB). That is, z =
∑W−1

i=0 2izi. We refer to the
“sign-bit” of z as zs = zW−1.

We use z<i to refer to the subsequence [zi−1, . . . , z0]. Analogously, z>i refers to the subsequence [zW−1, . . . , zi+1].
Similarly, given a vector z = [zW−1, . . . , z0] ∈ {0, 1}W , we denote the associated field element as int(z) =∑W−1

i=0 2i · zi.

Remark 1. In the above paragraphs, we used an italicized z to denote both a field element in {0, . . . , 2W − 1}
and a vector in {0, 1}W . Throughout the paper, which of the two sets any variable z resides in will be clear
from context.

16

Concatenation of bit vectors. Given two bit vectors x, y ∈ {0, 1}W , we use x ∥ y to refer to the number
whose binary representation is the concatenation [xW−1, . . . , x0 ∥ yW−1, , . . . , y0]. Under this definition, it
holds that int(x ∥ y) = int(x) · 2W + int(y).

Decomposing bit vectors into chunks. For a constant c, and any x ∈ {0, 1}L, we divide the bits of
input x naturally into chunks

x = [xW−1 . . . x0] = Xc−1 ∥ . . . ∥ X2 ∥ X0, (3)

with each Xi ∈ {0, 1}W/c.

Throughout the following description of tables and decompositions, we assume c divides W for simplicity.
However, this is not necessary. In fact, it is more efficient in practice to set c = 3 for W = 32 and c = 6 for
W = 64, resulting in some chunks being length 10 and others being length 11.

4.2 Three instructive functions and associated lookup tables

Let field F be a prime order field of size at least 2W (for concreteness, let us fix W to be 64). Let x and y
denote field elements that are guaranteed to be in the set {0, 1, . . . , 2W − 1}.

4.2.1 The Equality function

MLE-structured. The equality function EQ takes as inputs two vectors x, y ∈ {0, 1}W of identical length
and outputs 1 if they are equal, and 0 otherwise. We will use a subscript to clarify the number of bits in each
input to EQ, e.g., EQW denotes the equality function defined over domain {0, 1}W × {0, 1}W . It is easily
confirmed that the multilinear extension of EQW is as follow:

ẼQW (x, y) =

W−1∏
j=0

(xjyj + (1− xj)(1− yj)) . (4)

Indeed, the right hand side is clearly a multilinear polynomial in x and y, and if x, y ∈ {0, 1}W , it equals 1 if
and only if x = y. Hence, the right hand side must equal the unique multilinear extension of the equality
function. Clearly, it can be evaluated at any point (x, y) ∈ FW × FW with O(W) field operations.

Decomposability. To determine whether two W -bit inputs x, y ∈ {0, 1}W are equal, one can decompose x
and y into c chunks of length W/c, compute equality of each chunk, and multiply the results together.

Let x = [Xc−1, . . . , X0] and y = [Yc−1, . . . , Y0] denote the decomposition of x and y into c chunks each, as per
Equation (3). Let EQW denote the “big” table of size N = 22W indexed by pairs (x, y) with x, y ∈ {0, 1}W ,

such that EQW [x ∥ y] = ẼQW (x, y). Let EQW/c denote the “small” table of size N2W/c indexed by pairs

(X,Y) of chunks X,Y ∈ {0, 1}W/c, such that EQW/c[X ∥ Y] = 1 if X = Y and EQW/c[X ∥ Y] = 0 otherwise.
The table below asserts that evaluating the equality function on x and y is equivalent to evaluating the
equality function on each chunk Xi ∥ Yi and multiplying the results.

CHUNKS SUBTABLES FULL TABLE

Ci = Xi ∥ Yi EQW/c[Xi ∥ Yi] = ẼQW/c(Xi, Yi) EQW [x, y] =
c−1∏
i=0

EQW/c[Xi ∥ Yi]

The (lone) subtable EQW/c is MLE-structured by Equation (4).

17

4.2.2 Less Than comparision

MLE-structured. The comparison of two unsigned data types x, y ∈ {0, 1, . . . , 2W−1} is involved in many
instructions. For example, SLTU outputs 1 if x < y and 0 otherwise, where the inequality interprets x and
y as integers in the natural way. Note that the inequality computed here is strict. Consider the following
2W -variate multilinear polynomial (LTU below stands for “less than unsigned”):

L̃TUi(x, y) = (1− xi) · yi · ẼQW−i−1(x>i, y>i). (5)

Clearly, this polynomial satisfies the following two properties:

(1) Suppose x ≥ y. Then L̃TUi(x, y) = 0 for all i.

(2) Suppose x < y. Let k be the first index (starting from the MSB of x and y) such that xk = 0 and

yk = 1. Then L̃TUk(x, y) = 1 and L̃TUi(x, y) = 0 for all i ̸= k.

Based on the above properties, it is easy to check that

L̃TU(x, y) =
W−1∑
i=0

L̃TUi(x, y). (6)

Indeed, the right hand side is clearly multilinear, and by the two properties above, it equals L̃TU(x, y)
whenever x, y ∈ {0, 1}W . It is not difficult to see that the right hand side of Equation (6) can be evaluated at

any point (x, y) ∈ FW × FW with O(W) field operations as the set {ẼQW−i(x>i, y>i)}W−1
i=0 can be computed

in O(W) total steps using the recurrence relation

ẼQW−i−1(x>i, y>i) = ẼQW−i−2(x>(i+1), y>(i+1)) · ẼQ(xi, yi). (7)

See [Tha22, Figure 3.3] for a depiction of this procedure.

Decomposing L̃TU. A similar reasoning to the derivation of Equation (6) reveals the following. As usual,

break x and y into c chunks, Xc−1 ∥ · · · ∥ X0 and Yc−1 ∥ · · · ∥ Y0. Let LTUW/c[Xi ∥ Yi] = L̃TUW/c(Xi, Yi)
denote the subtable with entry 1 if Xi < Yi when interpreted as unsigned (W/c)-bit data types, and 0
otherwise. Then

LTUW [x ∥ y] =
c−1∑
i=0

LTUW/c[Xi ∥ Yi] · EQW/c[X>i ∥ Y>i] =

c−1∑
i=0

(
LTUW/c[Xi ∥ Yi] ·

∏
j<i

EQW/c(Xj ∥ Yj)
)
.

Thus, evaluating LTU(x, y) can be done by evaluating LTUW/c and EQW/c on each chunk (Xi, Yi) (EQW/c

need not be evaluated on the lowest-order chunk (Xc, Yc)). This is summarized in the table below.

CHUNKS SUBTABLES FULL TABLE

Ci = Xi ∥ Yi LTUW/c[Xi ∥ Yi], EQW/c[Xi ∥ Yi] LTUW [x ∥ y] =
c−1∑
i=0

LTUW/c[Xi ∥ Yi] ·
∏
j<i

EQW/c[Xj ∥ Yj]

The two subtables LTU and EQ are MLE-structured by Equations (4) and (6).

4.2.3 Shift Left Logical

MLE-structured. SLL takes an W -bit integer x and a log(W)-bit integer y, and shifts the binary
representation of x to the left by length y. Bits shifted beyond the MSB of x are ignored, and the
vacated lower bits are filled with zeros.19 For a constant k, let

S̃LLk(x) =
W−1∑
j=k

2j · xj−k. (8)

19For L = 32-bit data types, the RISC-V manual says that the “shift amount is encoded in the lower 5 = log(W) bits”.

18

It is straightforward to check that the right hand side of Equation (8) is multilinear (in fact, linear) function
in x, and that when evaluated at x ∈ {0, 1}W , it outputs the unsigned W -bit data type whose binary
representation is the same as that of the output of the SLL instruction on inputs x and k, SLL(x, k).

Now consider
S̃LL(x, y) =

∑
k∈{0,1}log W

ẽq(y, k) · S̃LLk(x). (9)

It is straightforward to check that the right hand side of Equation (9) is multilinear in (x, y), and that, when
evaluated at x ∈ {0, 1}W × {0, 1}logW , it outputs the unsigned W -bit data type SLL(x, y).

Decomposability. We split the value to be shifted, x, into c chunks, X1, . . . , Xc, each consisting of
W ′ = W/c bits. y has only one chunk, Y0, consisting of the lowest order logW bits. As explained below, we
decompose a lookup into the evaluation table of SLL into a lookup into c different subtables, each of size
2W

′+logW . For W = 64, a reasonable setting of c would be 4 (instead of the usual c = 6 for most other
instructions), ensuring that 2W

′+logW = 220.

Conceptually, each chunk Xi of X needs to determine how many of its input bits goes “out of range” after
the shift of length y. By out of range, we mean that shifting x left by y bits causes those bits to overflow the
MSB of x and hence not contribute to the output of the instruction.

For chunks i = 0, . . . , (c− 1) and shift length k ∈ {0, 1}logW , define:

mi,k = min{W ′,max{0, (int(k) +W ′ · (i+ 1))−W}}

Here, mi,k equals the number of bits from the i’th chunk that go out of range. Let m′
i,k = W ′ −mi,k − 1

denote the index of the highest-order bit within the i’th chunk that does not go out of range. Then the
evaluation table of SLL decomposes into c smaller tables SLL0, . . . ,SLLc−1 as follows.

CHUNKS SUBTABLES FULL TABLE

Ci = Xi ∥ Y0
SLLi[Xi ∥ Y0] =

∑
k∈{0,1}log W

ẼQ(Y0, k) ·

(
m′

i,k∑
j=0

2j+int(k) ·Xi,j

)
SLL[x ∥ y] =

c−1∑
i=0

2i·W
′ · SLLi[Xi ∥ Yc]

Note that each SLLi can be evaluated at any input (x, y) ∈ FW ′ × FlogW in O(W ′) field operations. Indeed,

the set {ẼQ(Y0, k)}k∈{0,1}log W can be computed in O(W) field operations via the recurrence in Equation (7).

Similarly, the set {2j+int(k)}i∈{0,...,c−1},k∈{0,1}log W can be computed with O(W) field operations. It follows
that SLL0(x ∥ y), . . . ,SLLc−1(x ∥ y) can be evaluated in O(W) field operations in total.

4.3 The Cost of a Lookup

We briefly state the costs incurred by the prover when making a lookup query. As usual, this is analyzed
in terms of the bit-lengths of the elements to be committed to. Most lookup queries require separating
x ∥ y ∈ {0, 1}2W into c chunks which are then sent to c subtables within Lasso. This involves the Jolt prover
committing to 3c elements: (1) c are the chunks themselves, which are of 2W/c bits, (2) c are the entries in
the subtables involved, which are up to W/c bits long, (3) c elements are “access counts” for the subtables,
which can go up to T , the current step count.

With the parameter settings (W = 32, c = 3) and (W = 64, c = 6), the first two bit-lengths involved are
2W/c ≈ 22 and W/c ≈ 11. Many instructions (such as SLL), involve smaller lookup queries of closer to
W bits and can be split into fewer chunks, leading to a proportional reduction in the number of elements
committed to in each group.

An interesting case is that of that the LTU subtable, which uses c chunks but involves 2c total subtables
(recall that each chunk is sent to both LTU and EQ). This involves committing to c extra elements in both

19

groups (2) and (3) above. While most instructions do not incur this extra cost, we report costs for this
instruction in Section 8, as it captures the worst-case scenario (excluding instructions that are not handled
directly, but are rather transformed into a short sequence of other instructions, such as division, see Section
6.1).

5 Evaluation Tables for the Base Instruction Set

We now consider each of the RISC-V instructions one at a time, and analyze the MLE-structure and the
decomposability of their evaluation tables. Conceptually, Jolt’s “one giant lookup table” is obtained by simply
concatenating each of the evaluation tables for all instructions (see Section 7.3). For most instructions, we
first present an MLE-structured table and describe how it can be decomposed into subtables, as required by
Lasso.

5.1 Logical instructions

Each instruction performs the corresponding operation bitwise over the W bits of x and y and stores the
W -bit result in rd. The lookup tables here have a row for each possible x ∥ y with the entry being the desired
output to be stored in rd.

OP INDEX FULL MLE

AND x ∥ y ∈ {0, 1}W × {0, 1}W
W−1∑
i=0

2i · (xi · yi)

OR x ∥ y ∈ {0, 1}W × {0, 1}W
W−1∑
i=0

2i · (xi + yi − xi · yi)

XOR x ∥ y ∈ {0, 1}W × {0, 1}W
W−1∑
i=0

2i · (xi · (1− yi) + yi · (1− xi))

Decomposition. These MLEs can further be decomposed in the natural way, requiring only one subtable
per instruction. For example, a bitwise AND on two W -bit inputs can be decomposed into c bitwise ANDs, each
on two (W/c)-bit inputs. That is, if D0, . . . , Dc−1 ∈ {0, 1}W/c denote the results of these “smaller” bitwise

AND operations, with Ci = ANDW/c(Xi,Yi) then the result of the W-bit operation is simpler
∑c−1

i=0 2(W/c)·iDi.
The decompositions for OR and XOR follow analagously.

5.2 Arithmetic instructions

Addition. For x, y ∈ {0, 1}W , ADD(x, y) returns the lowest W bits of (the binary representation of) the
sum int(x) + int(y). We need not specify whether the inputs to these instructions are signed versus unsigned
because in RISC-V, signed data types are represented via two’s complements. When the inputs and outputs
are viewed as strings in {0, 1}W , the behavior of ADD and SUB is identical for signed data types as for
unsigned ones.

As finite field addition costs just one constraint in R1CS, we cheaply compute z = x+ y in the circuit, where
here, addition is performed over finite field F. However, this sum can be W + 1 bits long, i.e., z can be any
field element in {0, . . . , 2W+1 − 2}. The prescribed behavior for the RISC-V instruction ADD in this event is
for the “overflow bit” to be ignored.

To this end, the lookup table for the ADD instructions contains an entry for all possible (W + 1)-bit vectors

z ∈ {0, 1}W+1, with each z’s entry equal to the field element
∑W−1

i=0 2i · zi equal to int(z<W). Note that this
lookup table has size only 2W+1, which is less than the tables of size 22W that we identify for most RISC-V
instructions.

20

Subtraction. Due to RISC-V’s use of two’s complement representation of signed data types, subtraction
can be performed using addition. Specifically, SUB(x, y) outputs the same W-bit string as

ADD
(
x, bin

(
2W − int(y)

))
.

In words, subtracting y from x is equivalent to adding the two’s complement of y to x.20

OP INDEX FULL MLE

ADD(x, y) z = bin(x+ y) ∈ {0, 1}W+1
W−1∑
i=0

2izi

SUB(x, y) z = bin
(
x+

(
2W − y

))
∈ {0, 1}W+1

W−1∑
i=0

2izi

Decomposition. The decomposition of the above lookup table is simple (and essentially equivalent to the
case of range checks considered in our companion paper on Lasso [STW23]).

5.3 Set Less Than

SLTU and SLT return 1 if x < y and 0 otherwise, where x, y are unsigned and two’s complement signed W -bit
numbers, respectively.

The tables for SLTU is equivalent to LTU derived in Section 4.2.2. For SLT, we must additionally take into
consideration the sign bits of the two numbers and resort to a comparison of the remaining bits only when
the sign bits are the same.

OP INDEX FULL MLE

SLTU x ∥ y See Section 4.2.2

SLT x ∥ y L̃TS = xs · (1− ys) + ẼQ(xs, ys) · L̃TU(x<s, y<s)

Decomposition. The decomposition of SLTU was discussed in Section 4.2.2 and requires two subtables of
size 2W/c. The decomposition of SLT uses the same decomposition (applied to x<s, y<s, which has W − 1

rather than W bits), but additionally devotes more two subtables to compute the xs(1− ys) and ẼQ(xs, ys)
terms. This brings the total to four types of subtables and 2c+ 1 total subtables used for SLT.

5.4 Shifts

SLL(x, y) (Shift Left Logical), SRL(x, y) (Shift Right Logical) and SRA(x, y) (Shift Right Arithmetic) are the
three shift operations. All shift operations take a W -bit input x, shift it by a length defined by the lowest
logW bits of y and return W -bit values. Bits shifted beyond the MSB or LSB are ignored. In logical shifts,
vacated bits are filled by zeros, and in arithmetic shifts, the vacated bits are filled by the sign bit of the
original input x.

The MLE-structured table for SLL and its decomposition were presented in Section 4.2.3. The tables for SRL
and SRA are presented below. Let W ′ = W/c. For chunks i = 0, . . . , (c− 1) and shift length k ∈ {0, 1}logW ,
define:

mr
i,k = max{0,min{16, int(k)−W ′ · i}}.

20In a system implementing arithmetic on W-bit unsigned data types, the quantity 2W cannot be represented. Hence, the
two’s complement of y needs to be computed in two steps, as

(
2W − 1− y

)
+1, with the expression in parenthesis computed first,

and then one added to the result. See https://en.wikipedia.org/wiki/Two%27s_complement for details. In Jolt, the quantity
2W − int(y) will be computed directly in the field F, which we assume to have characteristic more than 2W . Hence, the quantity
2W can be represented, and the two’s complement of y is (the binary representation of) the field element 2W − y.

21

https://en.wikipedia.org/wiki/Two%27s_complement

Here, mr
i,k equals the number of bits from the i’th chunk that go out of range (that is, to the “right” of bit 0).

Note that mr
i,k is also the index of the lowest-order bit within the i’th chunk that does not go out of range.

That is, i’th chunk Xi will have subsequence [Xi,0, Xi,mr
i,k−1] go out of range and the remaining values will

now be present in indices [W ′ · (i− 1)− int(k) +mr
i,k, . . . ,W

′ · (i− 1)− int(k) +W ′ − 1] of the final output.
The evaluation table of SLL decomposes into c smaller tables SLL0, . . . ,SLLc−1 as follows.

CHUNKS SUBTABLES FULL TABLE

Ci = Xi ∥ Y0
SRLi[Xi ∥ Y0] =

∑
k∈{0,1}log W

ẼQ(Y0, k) ·

(
W ′−1∑
j=mr

i,k

2W
′·(i−1)−int(k)+j ·Xi,j

)
SRL[x ∥ y] =

c−1∑
i=0

SRLi[Ci]

The SRA instruction uses an extra subtable to perform sign extension. This subtable takes as its input chunk
Cc = xs ∥ Y0, where xs is the sign bit of the input.

CHUNKS SUBTABLES FULL TABLE

i ∈ [0, c− 1]: Ci = Xi ∥ Y0 For i ∈ [0, c− 1], SRAi[Ci] = SRLi[Ci] SRA[x ∥ y] =
c∑

i=0

SRAi[Ci]

and Cc = xs ∥ Y0 and SRAc(xs ∥ Y0) =
W−1∑

i=W−int(k)

ẼQ(Y0, k) · 2i · xs

5.5 Immediate Loads

AUIPC(x, y) takes the 20-bit immediate (operand y here), adds it to PC (operand x here) and stores the
output in the destination register rd, but does not change the PC. LUI takes the 20-bit immediate (operand y,
here) and loads it into the upper 20 bits of the destination register rd.

In both of these instructions, the 20-bit immediate is formatted (see Section 3.3) into a W -bit value with the
20 significant bits stored in the higher positions of imm in program code (as opposed to the lower positions,
as done for all other instructions). With this pre-processing, AUIPC can be treated identically to ADD with
the two operands being PC and imm.

As the above pre-processing does most of the work, the only task for LUI in the circuit is to store the given
imm as provided into rd. This does not require a lookup table.

OP INDEX FULL MLE

AUIPC z = x+ y
W−1∑
i=0

2izi // identical to ADD

Decomposability. This table can be decomposed just like the table for ADD.

5.6 Jumps

JAL sets PC ← PC + imm and stores the address of the memory location after this new PC (obtained by
incrementing it by 4) into rd. JALR similarly sets PC to be the sum PC+ imm but with the LSB set to 0. It
sets rd to be memory location after this new PC.

For both jump instructions, the sum z ← PC + imm + 4 is calculated using constraints. The lookup table
for JAL is identical to that of ADD and returns the lower W bits of z. The table for JALR does the same
but then sets the LSB to 0, as well. In both instructions, PC is set to be the lookup’s result minus 4. This
subtraction is performed with constraints. If it results in an underflow the memory-checking will fail when
reading PC in the next step.

22

OP INDEX FULL MLE

JAL z = x+ y + 4
W−1∑
i=0

2izi

JALR z = x+ y + 4
W−1∑
i=1

2izi

Decomposability. These tables can be decomposed just like the table for ADD. Note that the lookup queries
here are also W + 1 bits long.

5.7 Branches

The B[COND] instructions set PC ← PC + imm if COND(x, y) = true. If false, they resort to the default
change in PC.

The new PC is computed using only constraints and not with a lookup (as the lookups here are used to test
the branching condition). When imm is positive, the sum (PC+ imm) obtained is correct as is. However, when
imm is negative, we must perform (PC− imm) directly without using two’s complement subtraction (as that
might result in an overflow). To choose which to perform, the sign of imm is stored in the program code itself
during formatting as one of the opflags discussed in Section 3.3. If this subtraction results in an underflow
the memory-checking algorithm will fail when reading PC in the next step.

Now, the lookup is used to perform the comparisons to decide whether to use this new shifted PC or not. The
MLE for doing both signed and unsigned strict less than comparisons were discussed in Section 4.2.2 and

used in SLT/SLTU. We use the same MLEs here, along with the ẼQ MLE.

OP INDEX FULL MLE

BEQ x ∥ y 1− ẼQ(x, y)

BNE x ∥ y ẼQ(x, y)

BLTU x ∥ y L̃TU(x, y) // as used in SLTU

BLT x ∥ y L̃TS(x, y) // as used in SLT

BGEU x ∥ y 1− L̃TU(x, y)

BGE x ∥ y 1− L̃TS(x, y)

Decomposability. These MLE-structured tables can be decomposed with the same techniques used for
the EQ, LTU and LTS tables.

5.8 Memory Loads and Stores

RISC-V uses a byte-addressable memory system that can be accessed by only the following variants of the
load and store instructions:

• LD reads a 64-bit value from memory and stores it into rd. L[W/H/B] are similar, but they read only
the lowest 32/16/8 bits of the value in memory and store it sign-extended to W bits into rd. L[W/H/B]U
are identical to their signed counterparts but do not perform any sign-extension.

• SD takes a 64-bit operand, y, and stores it into a specified memory location. S[W/H/B] store only the
lowest 32/16/8 bits of the operand (without any sign-extension).

These operations are performed using offline memory-checking techniques, as discussed in Section 3.2. They
thus do not require a large lookup table and can be handled efficiently using just constraints and simple

23

range checks in Lasso. Note that the memory location involved in these operations is obtained as the sum of
the value in rs1 and imm, calculated using constraints just like in the Branch instructions (see Section 5.7).

6 Evaluation Tables for the Multiplication Extension

The M extension adds multiplication, division and remainder operations to the RISC-V ISA. These instructions
are generally more complex than the base ones covered so far and involve new techniques in Jolt to handle -
namely the addition of “virtual” registers and instructions.

6.1 Virtual Instructions and Virtual Registers

Jolt splits certain complex assembly instructions (such as MULH) into a sequence of instructions that are
executed in the ZKVM in place of the original instruction. The CPU state transition guarantee that should
hold for the original assembly instruction now holds after the entire sequence is executed. Note that the
splitting of instructions is done in the assembly code during formatting and is independent of the input or
even the rest of the program code.

To avoid jumbling with the base registers, Jolt introduces new “virtual” registers that virtual instructions use
to store intermediate values. These registers have addresses outside the standard set of base registers but
are otherwise read from and stored to identically. To ensure safety, the only time the “real” CPU state is
changed is when the last virtual instruction of the sequence stores the final result in the “real” destination
register of the original instruction.

Reflecting the program counter. It is common for programs to use the value stored in the PC register
directly in program logic, such as through Jumps or the AUIPC instruction. In these cases, it may be required
to maintain two program counters in the ZKVM. The first is the normal one used for keeping tracking of
the next address in the VM including virtual instructions. The second is used for reflecting the true value
of “real” PC and is not updated during virtual instructions. As the PC is a relatively small value to commit
to, this incurs neglible overhead to the prover’s costs and the constraint system. For simplicity, we assume
the standard one PC model in the rest of this paper’s discussion but incorporate the cost of a second PC in
Section 8.

6.1.1 ASSERT Instructions

Asserts are a type of virtual instruction that add circuit constraints on an instruction’s result. For example,
an ASSERT-[COND] constraint uses the lookup table for the branch instruction B[COND] but additionally
adds a constraint that the lookup must return 1. Assert instructions do not have a destination register. On
top of the conditional checks seen in the Set-Less-Than and Branch instructions, Jolt supports the following
assert instructions:

ASSERT-LT-ABS takes two W -bit two’s complement signed inputs and outputs |x| < |y|.

ASSERT-EQ-SIGNS takes two W -bit two’s complement signed inputs and outputs xs == ys.

OP INDEX FULL MLE

ASSERT-LT-ABS x ∥ y LTU(x<s, y<s) // ignore sign bits

ASSERT-EQ-SIGNS x ∥ y ẼQ(xs, ys)

6.1.2 ADVICE and MOVE Instructions

ADVICE v: stores a special W -bit non-determistic circuit input into virtual register v.

MOVE v1, v2: copies the value in register v1 into register v2 (either could be virtual).

24

The advice instruction allows the prover to store non-deterministic advice into virtual registers. The lookup
query’s function here is to act as a range check on the advice and thus, uses the range check table. The
“non-deterministic” part of these instructions is that their lookup’s query isn’t derived in the circuit (such as
through registers, memory or imm) but comes from advice passed into the CPU step circuit. Thus, unlike the
immediate imm, these values aren’t fixed in the assembly code and can be set by the prover at proving time.
ADVICE has no source register or immediate and only specifies a destination register.

The MLEs of these instructions are identical to the that of the range checks.

OP INDEX MLE

ADVICE x
W−1∑
i=0

2i · xi // range check

MOVE x
W−1∑
i=0

2i · xi // range check

6.2 The M-Extension Tables

As before, for some new instructions, we give MLE-structured tables for each instruction and describe how
it can be decomposed. For other new instructions, we provide the “virtual” sequence of previously-defined
instructions that result in the same CPU state change.

6.2.1 Unsigned or Lower Multiplication

The following instructions take two W -bit operands x and y.

MUL returns the lower W bits of x× y where the operands are treated as signed two’s complement numbers.

MULU returns the lower W bits of x× y where the operands are treated as unsigned W -bit numbers.

MULHU returns the higher W bits of x× y where the operands are treated as unsigned W -bit numbers.

Similar to ADD, Jolt performs the core multiplication operation in the circuit as computing z = x× y costs
just one constraint. The circuit then queries z in the lookup tables of the instructions, which have a row for
every possible 2W -bit z with the entry being the desired bits. Note that while MUL is a signed operation,
performing unsigned multiplication returns the same lower bits.

OP INDEX FULL TABLE MLE

MUL z = x× y
W−1∑
i=0

2i · zi // lower L bits

MULU z = x× y
W−1∑
i=0

2i · zi // lower L bits

MULHU z = x× y
2W−1∑
i=L

2i · zi // higher L bits

Decomposability. These MLEs can be decomposed in a manner similar to the AND table and effectively
like the tables for range checks.

6.2.2 Signed and Higher MUL

MULH returns the higher W bits of x×y where the operands are treated as signed two’s complement numbers.

MULHSU returns the higher W bits of x× y where only x is signed but y is unsigned.

25

These instructions are more complicated than the others as they require signed multiplication which means
the operands are sign-extended to 2W bits before performing the multiplication. This leads to the result
having 4W and 3W total bits in MULH and MULHSU, respectively. As this is too large to handle with a
lookup query, we instead compute the desired bits in stages.

For a number x, let sx be
W−1∑
i=0

2ixs such that [sx ∥ x] is the sign-extension of x to 2W bits. The signed

multiplication algorithm performs the following 2W × 2W -bit multiplication and returns the highest 2W bits:
[sx ∥ x]× [sy ∥ y]. As the instructions above are only interested in the higher W bits of this result, we can
represent the required bits as the lower W bits of the sum of the following three values each computed using
only unsigned multiplication:

[higher W bits of x× y] + [lower W bits of sx × y] + [lower W bits of sy × x]

Given sx, sy, the above terms can be obtained using MULH, MULU instructions and the sum computed using
ADD. To get sx, sy, we define a new instruction, MOVSIGN, which takes an W -bit input x and stores the
W -bit number with xs as all of its binary coefficients in the destination register.

OP INPUT FULL MLE

MOVSIGN x
W−1∑
i=0

2i · xs // place sign bit in all positions

Decomposability. This table can be decomposed naturally using one subtable function.

We can now split MULH, MULHSU into virtual instructions following the above procedure. We use rx, ry to
denote the two operand registers. We use “v” to name virtual registers. (In actual formatted assembly code,
these are replaced by a free numbered virtual register.)

Original Virtual Sequence (OPCODE, rs1, rs2, imm, rd)

MULH rx, ry, rd 1. MOVSIGN rx,−,−, vsx // store sx in a virtual register

2. MOVSIGN ry,−,−, vsy // store sy

3. MULHU rx, ry,−, v0 // get higher bits of x× y

4. MULU vsx , ry,−, v1 // get lower bits of sx × y

5. MULU vsy , rx,−, v2 // get lower bits of sy × x

6. ADD v0, v1,−, v3
7. ADD rd, v2,−, rd

MULH rx, ry, rd 1. MOVSIGN rx,−,−, vsx
2. MULHU rx, ry,−, v1
3. MULU vsx , vy,−, v2
4. ADD v1, v2,−, rd

The correctness of the output can be seen by inspection as the steps follow the natural binary multiplication
algorithm. It can also be seen that the “real” CPU state is only modifed in the final steps of each sequence,
when the result is stored into rd.

6.3 Division and Remainder

In RISC-V, division and remainder operations take two W -bit values read from registers. In Jolt, for both
operations, the prover provides as non-deterministic advice the quotient q and remainder r using the ADVICE
instruction introduced in Section 6.1.2. The correctness of this advice is verified using a sequence of virtual

26

instructions, as shown below. As both DIV and REM instructions perform the same checks, they have nearly
identical virtual instructions with only the last instruction differing based on the desired value (q or r).

Unsigned versions. In unsigned division, both operands x, y and quotient q and remainder r are all
treated as unsigned W-bit numbers. DIVU/REMU require x to be equal to q × y + r such that r < y and
q × y ≤ x.

Original Virtual Sequence (OPCODE, rs1, rs2, imm, rd)

DIVU rx, ry, rd 1. ADVICE −,−,−, vq // store non-deterministic advice q into vq

2. ADVICE −,−,−, vr // store non-deterministic advice r into vr

3. MULU vq, ry,−, vqy // compute q × y

4. ASSERT LTU vr, ry,−,− // verify that r < y

5. ASSERT LTE vqy, rx,−,− // assert q × y ≤ x

6. ADD vqy, vr,−, v0 // compute q × y + r

7. ASSERT EQ v0, rx,−,−
8. MOVE vq,−,−, rd // store q in rd

REMU rx, ry, rd 1-7. same as above

8.MOVE vr,−,−, rd // store r in rd

Signed versions. In signed division, both operands x, y and quotient q and remainder r are all treated as
signed 2’s complement W -bit numbers.

DIVU/REMU requires x = q × y + r such that |r| < |y| and r, y have the same sign.

Original Virtual Sequence

DIV rx, ry, rd 1. ADVICE −,−,−, vq // store non-deterministic advice q into vq

2. ADVICE −,−,−, vr // store non-deterministic advice r into vr

3. ASSERT LT ABS vr, ry,−,− // verify that |r| < |y|
4. ASSERT EQ SIGNS vr, ry,−,− // require r to have the sign of y

5. MUL vq, ry,−, vqy // compute q × y

6. ADD vqy, vr,−, v0 // compute q × y + r

7. ASSERT EQ v0, x,−,−
8. MOVE vq,−,−, rd // store q in rd

REM rx, ry, rd 1-7. same as above

8. MOVE vr,−,−, rd // store r in rd

As with the splitting of the multiplication instructions, the correctness of the output can be seen by inspection
as the steps follow the straightforward verification of division. Also, the real CPU state is only modified in
the final steps.

7 Putting It all Together: a SNARK for RISC-V Emulation

The overall architecture of Jolt is depicted in Figure 2. The prover begins by cryptographically committing
to the execution trace z of the VM on the appropriate input (or more precisely, its multilinear extension
polynomial z̃, using any multilinear polynomial commitment scheme).

27

The R1CS instance and the cost of proving its satisfaction. It is straightforward to identify R1CS
constraint matrices A,B,C (see Definition 2.7) such that z is a valid execution trace if and only if z satisfies
Az ◦Bz = Cz assuming z satisfies memory-consistency and relevant entries of z are indeed in the relevant
lookup tables capturing evaluation of the RISC-V instructions. The constraint system is sketched in Appendix
A.3. A preliminary implementation of the constraint system in Zokrates [ET18] requires about 250 lines of
code. We apply Spartan to establish that z satisfies the constraint system.

The R1CS constraint matrices A,B,C are uniform, in the sense that the multilinear extensions Ã, B̃, and C̃
can each be evaluated in O(log T) field operations, where T is the number of steps the prover runs the RISC-V
program. Because of this, the Spartan prover need only commit cryptographically to z̃, and in particular no
party has to commit to Ã, B̃, or C̃. The constraint system has several hundred constraints per step of the
RISC-V CPU. When Spartan is applied to this R1CS instance, the number of field operations performed by
the prover is a small constant factor larger than the number of constraints (rows of the constraint matrices)
plus the number of variables (columns of the constraint matrices). Since a field operation is at least an
order of magnitude faster than a group operation, if an MSM-based polynomial commitment scheme is used,
this implies that the Spartan prover time is dominated by the polynomial commitment costs summarized in
Section 8.

Memory checking. Memory checking is handled by the memory-checking argument from Spice [SAGL18]
sketched in Appendix B.3. Details specific to the memory model of RISC-V are discussed in Appendix A.2.
The cost of the memory-checking argument are included in Section 8.

Lookup argument. The Lasso family of lookups is used to confirm that the relevant entries of z are in the
relevant lookup tables. The remaining issue to address is that Sections 4.3-6 explained that the evaluation
table of each individual RISC-V instruction is both MLE-structured and decomposable. But Lasso is a
lookup argument for a single decomposable table (and Generalized-Lasso is a lookup argument for a single
MLE-structured table). The following subsections explain how to bridge this gap.

7.1 The case of Generalized-Lasso

This gap is simple to bridge if using Generalized-Lasso rather than Lasso. This is because the concatenation of
several MLE-structured tables is also MLE-structured. So we just apply Generalized-Lasso to the concatenation
of the evaluation tables of every RISC-V instruction.

Indeed, suppose that the lookup table is the union of ℓ different tables, where assume for simplicity that each
table has size N . For i = 1, . . . , ℓ, let Ti ∈ FN denote the vector representing table i. and let T ∈ Fℓ·N denote
the concatenation of these vectors. Then viewing T as a function mapping {0, 1}log ℓ ×{0, 1}logN → F, in the
natural way, the following equation holds, with x ∈ {0, 1}log ℓ and y ∈ {0, 1}logN :

T̃ (x, y) =
∑

k∈{0,1}log ℓ

ẼQ(k, x) · T̃int(k)(y), (10)

where recall that int(k) =
∑ℓ

i=1 2
i−1 · ki denotes the integer of which k is the binary representation. This

is because the right hand side of Equation (10) is a multilinear polynomial in the variables of x and y and
agrees with T at all inputs in {0, 1}log ℓ×{0, 1}logN . Hence, it is the unique multilinear polynomial extending
T . Moreover, Equation (10) can be evaluated at any point (r1, r2) ∈ Flog ℓ × FlogN in time O(log ℓ) plus the
amount of time required to evaluate each of T1, . . . , Tℓ at r2.

7.2 The case of Lasso

Addressing the gap discussed above is more involved if using Lasso. Closely related issues have been addressed
in earlier work on zkVMs.

Specifically, the fact that the evaluation tables of different RISC-V instructions have different decompositions
into subtables is analogous to the following issue dealt with in earlier approaches to front-end design for

28

zkVMs: different instructions are computed by different circuits. and while only one instruction is executed
per step of the VM, in general it is not known until runtime which instruction will be executed at any given
step. Very early front-ends for zkVMs such as TinyRAM dealt with this naively, by producing circuits that
contained logic to execute every possible instruction for every step of the VM [BSCG+13a, BSCG+13b].

A reordering approach. vRAM [ZGK+18] proposed to avoid this overhead in a manner similar to the
sorting-based memory-checking arguments sketched in Appendix B.2 (see also Arya [BCG+18] for related
techniques). We sketch vRAM’s approach as an interactive argument, but it can be rendered non-interactive
via the Fiat-Shamir transformation.

Specifically, after running the VM on the appropriate input, the prover tells the verifier how many times each
of the primitive instructions was executed (if there are ℓ primitive instructions, call these numbers k1, . . . , kℓ),
and commits to a reordering of the execution trace in which the entries are not sorted by timestep, but rather
grouped by which instruction is executed at that step. That this second execution trace is indeed a reordering
of the first is confirmed via the standard randomized permutation-checking procedure described in Appendix
B.2 (Equation (11)). The instruction counts k1, . . . , kℓ unique specify a circuit C that takes as input the
reordered execution trace, and confirms that at each step the appropriate instruction was executed correctly.
That is, C contains circuitry executing instruction one k1 times, instruction two k2 times, and so on.

Any SNARK can then be applied to prove the the reordered execution trace indeed passes all of the checks
computed within C. Conceptually, this approach uses the prover’s knowledge (after running the program) of
which instruction was executed at each step to eliminate the extraneous circuitry in earlier work (devoted to
executing instructions that were not actually executed by the VM). See [ZGK+18] for further details.

An identical approach applies to the use of Lasso in Jolt. After the prover tells the verifier k1, . . . , kℓ and
commits to a reordered execution trace grouped by executed instruction, Lasso is applied ℓ different times,
i.e., to the first k1 entries of the reordered execution trace using the evaluation table of the first instruction,
to the second k2 entries of the reordered execution trace using the evaluation table of the second instruction,
and so on. Via standard batching techniques [Set20], this does not increase the verification costs relative to a
single invocation of Lasso.

Avoiding reordering. Cairo and other zkVM projects address the issue by including constraints that
do capture all instructions, but using a SNARK targeted at uniform computation that ensures the prover’s
cryptographic work do not grow with the number of constraints (i.e., the prover only cryptographically
commits to the solution vector to the constraint system, whose length is independent of the number of
constraints. Note, however, that the number of field operations performed by the prover does grow with the
number of constraints). We can take an analogous approach with Lasso.

Conceptually, this approach expresses the concatenation of the evaluation tables of each instruction (and of
which we have shown to be decomposable) as itself decomposable, analogous to how the concatenation of
MLE-structured tables is itself MLE-structured (Equation (10)).

To this end, it is convenient to treat each instruction as leading to 2c− 1 different lookups into subtables
(2c− 1 here comes from the maximum number of subtable lookups across all instructions, namely due to
SLTU as described in Section 5.3). For istructions that require fewer than 2c− 1 lookups into subtables, the
extraneous lookup results can be set to 0, thereby avoiding any cryptographic work on the part of the prover
if using an MSM-based commitment scheme. (we will explain below how to ensure that these extraneous
subtable lookup results will be ignored by all subtables).

There will be a single collation polynomial g (Definition 2.6) for all instructions, but g will take as input not
only the results of relevant subtable lookups, but also 8 additional variables that, when assigned values in
{0, 1}, are interpreted as the bit-representation of the opcode. Denoting these variables as w = (w1, . . . , w8),
and letting gi(z) denote the collation polynomial for the i’th instruction, and letting x denote a vector of
2c− 1 variables, interpreted as specifying the results of 2c− 1 subtable lookups, we define

g(w, x) =
∑

y∈{0,1}8

ẼQ(w, y) · gint(y)(x).

29

This definition ensures that for any instruction i, g(bin(i), x) = gi(x), i.e., collation for each instruction is
performed correctly by g.

Ensuring that subtable lookups get “routed” to the correct subtables. As sketched in Appendix
B.3, the core of Lasso is to invoke a grand product argument for each subtable (in order to compute the
quantities given in Expressions (12) and (13) of Appendix B.3, to confirm they are equal). Applying a
highly-optimized variant of the GKR protocol to a circuit computing this product [Tha13] yields a grand
product argument in which the prover only performs field operations (the number of which is linear in the
circuit size). Other related grand product arguments reduce the proof size at the cost of a low-order increase
in commitment costs for the prover.

We can modify the circuit used for each subtable to take as input the bits of the opcode associated with each
lookup. This way, the circuit can simply ignore any lookups associated with opcodes that do not access the
subtable associated with the circuit. By ignore, we mean that the circuit sets to 1 the factor in the size-m
product within Expressions (12) and (13) that is associated with this particular lookup.

To minimize the size of this circuit, rather than having the prover commit to the bits of the opcode, it may be
preferable to instead have the prover commit to some additional Boolean flags (beyond the 14 Boolean flags
already described in Appendix A, so that each subtable’s circuit only needs to inspect a handful of Boolean
flags to determine whether or not a given lookup operation actually is intended to access the subtable.

7.3 Pros and cons of using Lasso vs. Generalized-Lasso within Jolt

We estimate that using Lasso in Jolt reduces commitment costs for the prover by 2×-3×, owing to Generalized-
Lasso’s need for the prover to commit to c random field elements per lookup, where c is a parameter.21

Generalized-Lasso has the prover commit to the same number of field elements as Lasso, but all of them are
small, meaning in the set {0, 1, . . . ,m} where m is the number of lookups.

However, a benefit of Generalized-Lasso is that it encapsulates inside of it all of the complexity regarding
different instructions having different subtables. That is, for Generalized-Lasso, the prover and verifier can be
implemented using only an oracle (i.e., function) that takes as input a point r ∈ Fℓ where ℓ is the logarithm
of the evaluation table size, and evaluates the multilinear extension of each instruction’s evaluation table at a
required point. This makes specifying the evaluation table of each instruction extremely simple. In contrast,
with Lasso, the verifier needs to know how each evaluation table is decomposed into subtables, and how the
results of lookups into subtables are collated into the result of the associated lookup into the “big” evaluation
table.

One challenge here is that Generalized-Lasso involves an additional invocation of the sum-check protocol
[LFKN90], and if the prover is only given an evaluation oracle for the multilinear extension of an instruction,
it may require O(m logN) oracle queries for m lookups into a table of size N [CMT12]. Since, for all the
evaluation tables used in Jolt, each oracle query can be answered in O(logN) field operations this translates to
O(m log2 N) field operations total, and the log2 N factor may be large enough for this to bottleneck the prover.
Fortunately, by leveraging more information about the lookup tables arising in Jolt than that their multilinear
extensions can be evaluated in O(logN) time, it is in fact possible to implement the sparse-dense sum-check
prover in O(m logN) or even O(cm) field operations (our companion paper [STW23] works through the
details of this for several of the lookup tables arising in Jolt). These sum-check prover implementations are
more complicated than the O(m log2 N)-time prover that only uses an evaluation oracle for the multilinear
extensions. However, this does not affect auditability because only the Jolt verifier needs to be implemented
correctly for the SNARK to be secure (and indeed, the verifier itself acts as an automatic auditor of the
prover implementation).

In summary, while prover commitment costs are higher if Jolt is built using Generalized-Lasso as the lookup
argument rather than Lasso, there are substantial auditability benefits to using Generalized-Lasso that may
justify the performance price.

21Reasonable values of c are c = 3 or c = 4 for 32-bit data types, ensuring subtables of size 222 or 216 and c = 6 or c = 8 for
64-bit data types.

30

Per-step Commitment Costs for Non-Memory Operations

Bit-length
Number of
Elements

In RV32
W = 32, c = 3

In RV64
W = 64, c = 6

1 22 22 22

[2, 12] 3 + 2c 9 15

(2W/c) ≈ 22 1 + c 4 7

log (T) 4 + 2c 10 16

W 5 5 5

Total Elements 35 + 5c 50 65

In 256-bit equivalents: ≈ 5 elements ≈ 6 elements

Figure 3: An overview of the spread of elements committed to in Jolt in non-memory operations (i.e., excluding
loads and stores which do not involve lookups) by their bit-length. The Lasso parameter c is 3 with RV32
(W = 32) and c = 6 with RV64 (W = 64). We approximate the per-step committments costs in terms of the
cost of committing to a 256-bit element when using Pippenger’s MSM algorithm, assuming that the program
code is under 222 bytes long, and the program finishes in under 230 CPU steps.

8 Qualitative Cost Estimation

In this section, we provide a qualitative evaluation of the prover cost involved in Jolt when using the Lasso
lookup argument. As discussed in Section 1.3.1, the dominating cost is in producing commitments to the
elements fed to the constraint system and lookup argument every step. Table 3 provides a upper bound on
the elements committed per step grouped by their bit-lengths. We analyze bit-length as that is the main
factor determining the commitment cost when using Pippenger’s multi-scalar multiplication algorithm. 22 We
provide below a brief overview of the elements involved and leave a more detailed discussion to Appendix A.

Elements involved in CPU Execution. First, let’s look at the elements involved in satisfying the CPU
step circuit’s constraints before looking at the elements needed for the Lasso argument. The smallest of these
are the 1-bit ones constituting the bits of opflags[14] and opcode[8] and the 5-bit elements indexing the
source (rs1, rs2) and destination (rd) registers read from the instruction. Slightly larger elements are the
PC (which could be as large as log |program code| bits) and the step counter. The latter starts small but
grows over time: for example, it can reach 25 bits for a reasonably long execution of 30 million steps. Finally,
the largest elements involved are the W -bit ones specifying the values stored in the two source registers,
the sign-extended imm read from the program code, the lookup output, (which is generally stored in the
destination register), and the advice element involved (only) in division and reminder operations. Note that
most instructions do not involve all these elements (notably, the advice element is used rarely and the ones
that do use advice never use imm) and thus, the numbers from Table 3 are a worst-case upper bound.

Elements involved in Lasso The cost of a lookup query with Lasso was discussed in Section 4.3. In
brief, most lookups require the prover to commit to three groups of c elements each with the groups having
bit-lengths W/c, 2W/c and log(T), respectively. The lookup costs figuring into Table 3 are for the worst-case
scenario of lookups involving the less-than comparison table of Section 5.3 which commits to 2c more elements
than normal. Thus, most RISC-V instructions are actually slightly cheaper than the costs reported. In fact,
many, like ADD and those related to it, require fewer than 3c elements to be committed as their queries are
smaller (only W + 1 bits long).

As a quick note, using Generalized-Lasso for lookups would increase the bit complexity of c of the committed

22In Pippenger’s multi-scalar multiplication algorithm to commit to elements, committing to an N -bit element costs roughly
ceil(N/22) group operations. This makes committing to a 32-bit element cost two group operations while a 256-bit element costs
12 group operations.

31

Base Costs per Memory Instruction Overhead per Byte

Bit-length
Number of
Elements

for Loads for Stores

1 22 1 1

[2, 8] 3 1 1

log (T)/2 3 4 4

log (T) 5 6 7

W 3 - -

Total Elements 36 12 13

In 256-bit equivalents
3.5 elements 1.5 elements 1.5 elements

(both RV32, RV64)

Figure 4: The spread of elements committed to per memory operation with the extra overhead elements per
byte of load or store. That is, a load and store of k bytes involves the prover committing to 36+12k elements,
and 36 + 13k elements, respectively. We approximate the per-step committments costs in terms of the cost of
committing to a 256-bit element when using Pippenger’s MSM algorithm, assuming that the program code is
under 222 bytes long (placing it in the log(T) category), and the program finishes in under 230 CPU steps.

field elements from 2W/c to log |F|.

8.1 Cost of Memory Operations

We analyze the cost of load and store operations separately as these do not involve large lookups to perform
the core instruction logic. Rather, the main cost here is performing memory-checking operations, one for each
byte of memory involved in the load/store. This can be up to four for 32-bit processors and eight for 64-bit
processors. The elements involved on top of the non-lookup elements of the non-memory instructions are the
actual bytes read/written, the timestamps involved in memory-checking, and the cost of range-checks and
computing max function (via small lookup tables) with the timestamps. Memory operations also commit to
two fewer W -bit elements as they never involve the advice (used only in division and remainder operations)
and lookup output elements.

Firstly, a minor cost involved in memory operations are extra 1-bit memory “flags” which act as a unary vector
indicating the exact number of bytes read/stores. For both loads/stores, for each byte read/written, the prover
commits to the actual byte value and provides a timestamp ts read to be used in offline memory-checking
(indicating when the byte was last written to). This must be range-checked and verified to be less than the
current step counter. This range-check is very efficient in Lasso and requires commiting to a single element of
value bounded bounded by the number of steps up to that point. Verifying that ts read is less than the
current step counter uses the less-than lookup table (of Section 5.3) and requires committing to four elements
of bit-length bounded by that of the step counter and four more of half those many bits.

Stores, which are memory “writes”, require 8-bit range checks of the bytes written. These range-checks are
again very efficient in Lasso and only involve committing to a single element of value at most the number of
steps up to that point.

32

Acknowledgements and Disclosures

Justin Thaler was supported in part by NSF CAREER award CCF-1845125 and by DARPA under Agreement
No. HR00112020022. Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the views of the United States Government or DARPA.

Disclosures. Thaler is a Research Partner at a16z crypto and is an investor in various blockchain-
based platforms, as well as in the crypto ecosystem more broadly (for general a16z disclosures, see https:

//www.a16z.com/disclosures/.)

References

[AGL+22] Jeremy Avigad, Lior Goldberg, David Levit, Yoav Seginer, and Alon Titelman. A verified
algebraic representation of cairo program execution. In Proceedings of the 11th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pages 153–165, 2022.

[And17] Andrew Waterman1, Krste Asanovic. The RISC-V instruction set manual. https://riscv.
org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf, 2017.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P), 2018.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon interac-
tive oracle proofs of proximity. In Proceedings of the International Colloquium on Automata,
Languages and Programming (ICALP), 2018.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient
zero-knowledge arguments for arithmetic circuits in the discrete log setting. In Proceedings
of the International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 2016.

[BCG+18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, and Mary Maller. Arya: Nearly
linear-time zero-knowledge proofs for correct program execution. In Proceedings of the Inter-
national Conference on the Theory and Application of Cryptology and Information Security
(ASIACRYPT), 2018.

[BCHO22] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orru. Gemini: Elastic snarks
for diverse environments. In Proceedings of the International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), 2022.

[BDFG20] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo Infinite: Recursive zk-SNARKs
from any Additive Polynomial Commitment Scheme. Cryptology ePrint Archive, Report
2020/1536, 2020.

[BEG+91] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the
correctness of memories. In Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), 1991.

[BFR+13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blumberg, and
Michael Walfish. Verifying computations with state. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2013.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK compilers.
In Proceedings of the International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), 2020.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition without a trusted
setup. Cryptology ePrint Archive, Report 2019/1021, 2019.

33

https://www.a16z.com/disclosures/
https://www.a16z.com/disclosures/
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

[BGtR23] Jeremy Bruestle, Paul Gafni, and the RISC Zero Team. RISC Zero zkVM: Scalable, transparent
arguments of RISC-V integrity, 2023.

[BSBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge
with no trusted setup. In Advances in Cryptology–CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part III
39, pages 701–732. Springer, 2019.

[BSCG+13a] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks for
c: Verifying program executions succinctly and in zero knowledge. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO 2013, pages 90–108, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[BSCG+13b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Tinyram
architecture specification, v0. 991. en. In:(Aug. 2013), page 16, 2013.

[BSCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from rams
to delegatable succinct constraint satisfaction problems. In Proceedings of the 4th conference
on Innovations in Theoretical Computer Science, pages 401–414, 2013.

[BSCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via
cycles of elliptic curves. In Proceedings of the International Cryptology Conference (CRYPTO),
2014.

[CBBZ23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk with linear-
time prover and high-degree custom gates. In Proceedings of the International Conference on
the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 2023.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas
Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Proceedings
of the International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 2020.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation
with streaming interactive proofs. In Proceedings of the Innovations in Theoretical Computer
Science (ITCS), 2012.

[ET18] Jacob Eberhardt and Stefan Tai. Zokrates - scalable privacy-preserving off-chain computations.
In 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pages 1084–1091, 2018.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Proceedings of the International Cryptology Conference (CRYPTO),
pages 186–194, 1986.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. In Proceedings of the ACM Symposium on Theory of Computing
(STOC), 2008.

[GPR21] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo–a turing-complete stark-friendly
cpu architecture. Cryptology ePrint Archive, 2021.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Proceedings of
the International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 2016.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge. ePrint Report 2019/953,
2019.

34

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive Zero-Knowledge
Arguments from Folding Schemes. In Proceedings of the International Cryptology Conference
(CRYPTO), 2022.

[KT23] Tohru Kohrita and Patrick Towa. Zeromorph: Zero-knowledge multilinear-evaluation proofs
from homomorphic univariate commitments. Cryptology ePrint Archive, 2023.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to
polynomials and their applications. In Proceedings of the International Conference on the
Theory and Application of Cryptology and Information Security (ASIACRYPT), pages 177–194,
2010.

[Lee21] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. In Theory of Cryptography Conference, pages 1–34. Springer, 2021.

[LFKN90] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. In Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), October 1990.

[Lip89] Richard J Lipton. Fingerprinting sets. Princeton University, Department of Computer Science,
1989.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct computa-
tion. In Theory of Cryptography Conference, pages 222–242. Springer, 2013.

[SAGL18] Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee. Proving the correct
execution of concurrent services in zero-knowledge. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI), October 2018.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In
Proceedings of the International Cryptology Conference (CRYPTO), 2020.

[SL20] Srinath Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent zkSNARKs. Cryptol-
ogy ePrint Archive, Report 2020/1275, 2020.

[STW23] Srinath Setty, Justin Thaler, and Riad S. Wahby. Lasso: Unlocking the lookup singularity,
2023.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Proceedings of the
International Cryptology Conference (CRYPTO), 2013.

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. Foundations and Trends in Privacy
and Security, 4(2–4):117–660, 2022.

[Tom23] Tomer Solberg. RISC Zero prover protocol & analysis. https://github.com/ingonyama-zk/
papers/blob/main/risc0_protocol_analysis.pdf, 2023.

[Whi] Barry Whitehat. Lookup singularity. https://zkresear.ch/t/lookup-singularity/65/7.

[WSR+15] Riad S. Wahby, Srinath Setty, Zuocheng (Andy) Ren, Andrew J. Blumberg, and Michael
Walfish. Efficient RAM and control flow in verifiable outsourced computation. In NDSS, 2015.

[WTS+18] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. Doubly-
efficient zkSNARKs without trusted setup. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2018.

[ZGK+18] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. vRAM: Faster verifiable RAM with program-independent preprocessing. In
Proceedings of the IEEE Symposium on Security and Privacy (S&P), 2018.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent polynomial
delegation and its applications to zero knowledge proof. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2020.

35

https://github.com/ingonyama-zk/papers/blob/main/risc0_protocol_analysis.pdf
https://github.com/ingonyama-zk/papers/blob/main/risc0_protocol_analysis.pdf
https://zkresear.ch/t/lookup-singularity/65/7

A The Jolt Elements and Constraints in More Detail

The table below lists the elements committed by the prover per CPU step for instructions that are not loads
or stores (see Table 2 for the elements involved there).

ELEMENT PURPOSE #SIG. BITS

opflags[14] These are 1-bit elements used to guide the constraint system
on if-else branches. (List given below.)

1 bit ×14

opcode[8] These bits constitute the 8-bit opcode for the instruction. 1 bit ×8

rs1, rs2, rd Indices of the step instruction’s source and destination regis-
ters.

5 bits ×3

PC The program counter (possible two for certain programs with
virtual instructions).

log(|code|)× 2

step counter The global timestamp incremented every step. log(#steps) bits

read ts code The timestamp passed as advice for memory-checking when
reading the program code.

log(#steps) bits

read ts rs1,

read ts rs2

The timestamps passed as advice for memory-checking when
reading the values at registers rs1, rs2.

log(#steps) bits ×2

imm The step instruction’s immediate, appropriately sign or zero
extended.

W bits

Values read at rs1,

rs2

The actual values read from registers rs1, rs2. W bits ×2

Lookup result The instruction’s output passed in as advice. W bits

Extra advice The non-deterministic advice element used only in division
and remainder operations.

W bits

Elements involved in
Lasso lookups.

Commitment to subtable outputs 10 bits ×2c

Commitment to the chunks C[c] of the lookup query. 22-bits ×c

Commitment to the step counter log(#steps) bits ×2c

Table 1: The basic elements involved in most instructions.

A.1 List of Operation Flags employed:

1. This flag is 0 if the first operand is rs1 and 1 if it is rs2.

2. This flag is 0 if the second operand is rs2 and 1 if it is imm.

3. Is this a load instruction?

4. Is this a store instruction?

5. Is this a jump instruction?

6. Is this a branch instruction?

7. Does this instruction update rd?

8. Does this instruction involve adding the operands?

36

9. Does this instruction involve subtracting the operands?

10. Does this instruction involve multiplying the operands?

11. Does this instruction involve non-deterministic advice?

12. Does this instruction assert the lookup output to be false?

13. Does this instruction assert the lookup output to be true?

14. This flag is the sign bit of the immediate.

The memory flags are as follows: if the instruction is a load/store operation that reads/writes k bytes, then
the memory flags will be of the form 1k ∥ 0W/8−k.

A.2 Supporting byte-addressable loads and stores

One challenge with implementing a zkVM for RISC-V is supporting byte-addressable memory. This requires
performing up to W/8 memory operations per load/store, one for each byte written or read. This section
describes the memory-checking steps involved. Large lookup tables are not involved in these instructions.

Stores. Each store instruction reads the lower k-byte-suffix from rs2 (k = 8, 4, 2, 1 for instructions SD, SW,
SH, SB, respectively) and writes the result into memory locations starting from loc = rs1+ imm (see Section
5.8 for how this is calculated). There are two steps involved in stores:

1. The prover provides as advice the bytes-decomposition of the value in rs2. These values are range-
checked and verified to be the correct decomposition.

2. Memory-checking can then write these bytes one by one to their memory locations (which starts at
rs1+ imm). Offline memory-checking requires that the prover provide a timestamp of the latest write
that occured to that memory location. This timestamp must be range-checked and verified to be less
than the current timestamp.

Loads. The load operations take k bytes of memory (k = 8, 4, 2, 1 for instructions LD, LW, LH, LB,
respectively) from location loc = rs1+ imm, sign-extends it to W bits and then stores the result in rd.

1. The k bytes are first read using memory-checking. As with stores, range checks and less-than comparisons
are performed on the timestamps provided. not required here, as they were enforced during the stores.

2. Jolt employs a small lookup table to get the sign-bit of the highest order byte. Sign-extension and
concatenation can then be performed using constraints.

Range-check costs. The CPU circuit requires performing range-checks on inputs of the following bit-sizes:
8 bits (for the bytes in stores) and log(#steps) bits (for the timestamps). Both these range checks can be
performed using Lasso with parameter c = 1. This is a special case that requires the prover to commit to
only one element of value bounded by the step counter.

Table 2 shows the overheads (on top of the basic non-lookup elements involved in all operations) for load
and store operations per byte involved in the operation (up to 4 for RV32 and 8 for RV64). These elements
are always 0 in other operations and hence only count towards the prover’s cost when performing loads and
stores.

37

Element Purpose #Bits per byte

memflags Unary vector indicating the byte positions that are active in
the load or store.

1 bit

memory v byte The actual byte value read/stored 8 bits

memory timestamp The timestamps passed as advice for memory-checking. log(#steps) bits

ts range check Element involved in the range checks of memory ts[k] per-
formed with Lasso

log(#steps) bits

max checks
Elements involved in verifying that the read timestamp is
less than the step counter.

3 bits ×2

5 bits ×2

(log #steps) bits ×4

byte range checks Stores only: Element involved in the 8-bit-range checks of
memory v bytes[8] performed with Lasso

(log #steps) bits

Table 2: The extra elements involved per-byte in loads and stores.

A.3 Summary of CPU Step Constraints

Here, we go through the CPU steps outlined in Figure 1 and add more context in terms of the committed
elements used and constraints involved.

1. Read the program code using PC to get the instructions details: opflags[14], opcode, rs1, rs2,

imm.

• As discussed in Section 3.3, this involves six reads from program memory: one for each element of
the tuple.

2. Read the source registers rs1, rs2. And then set operands x and y

• Reading the source registers involves two memory-checking updates. The locations are the registers
themselves.

• The values and timestamps involved are committed advice elements: (read val rs1, read ts rs1)
and (read val rs2, read ts rs2), respectively.

• The setting of operands x and y involves using opflags[0], opflags[1] described earlier.

3. Perform loads and stores using memory-checking.

• For both loads and stores, the memory location involved is rs1 + imm. This sum is calculated
using constraints and also involves opflag[14] which holds the sign of imm.

• This involves up to two range-checks and a less-than comparison per byte of memory read/written
(see Appendix A.2).

• As RISC-V memory is byte-addressable, the lookup argument involves W/8 memory operations.
The required bytes-decomposition are the elements in memory v bytes[W/8].

4. Construct the lookup element.

• This is structured as opcode ∥ z where z could be x ∥ y, x+ y, x− y or x ∗ y.

• The exact format chosen is guided by many opflags.

5. Updating the destination register.

38

• If the corresponding opflag if 1, the lookup result is stored in rd.

• The memory-checking write operation here involves the location rd, value result and timestamp
being the current global step count.

6. Updating the PC.

• For Jump instructions, PC ← (lookup result). For Branch instructions, PC ← PC + imm (sum
computed similar to Step 3 above) if and only if the lookup result was true. For other instructions,
PC← PC+ 4. The right choice is guided by the corresponding opcodes.

B Overview of Memory-Checking Arguments

B.1 Merkle trees

One way to implement a memory-checking argument is via Merkle trees. This approach was first introduced
to the literature on SNARKs in Pantry [BFR+13] and is still used today in so-called incrementally verifiable
computing (IVC) schemes (see [BSCTV14] for an early example). Conceptually, the VM whose execution is
being proved is modified as follows, so as to authenticate its own memory. The VM at all times tracks the
root hash of a Merkle tree that has the contents of each of its memory cells at the leaves (let us say that the
number of memory cells is N). Every read operation returns not only the value stored in the appropriate
memory cell, but also a Merkle authentication path that the machine checks for consistency with the stored
root hash. Write operations are preceded by a read operation, which allows the VM to update the root hash
in an authenticated manner.

The downside of the Merkle tree approach is that each read and write requires proving knowledge of a Merkle
authentication path, which involves logN many hash evaluations. This can be an effective approach if there
are not many reads and writes, but is very expensive for the prover for executions involving many reads and
writes.

B.2 Re-ordering the execution trace

The rough idea of this approach to designing a memory-checking argument is to have the prover “re-order”
the execution trace so that, rather than entries appearing in increasing order of timestep, they instead are
grouped by the memory location read or written at that step, and within each group, entries are sorted
by time. This is called a “memory-ordered” execution trace (see [Tha22, Section] for an exposition). It is
straightforward to design a quasilinear-size circuit that takes as input a memory-ordered execution trace, and
confirms that the value returned by every read operation is indeed the value last written to the appropriate
memory cell. zkVM projects taking this, or related, approaches to memory-checking include RISC Zero
[BGtR23] and Cairo [GPR21].

The core of the memory-checking argument amounts to confirming that the memory-ordered execution trace
is indeed a re-ordering (i.e., permutation) of the time-ordered execution trace. Some early works [BSCGT13]
proposed to accomplish this using so-called routing networks, a complicated and expensive technique from the
PCP literature. Later works [BCG+18, ZGK+18] proposed to instead use lightweight permutation-invariant
fingerprinting techniques dating to the memory-checking literature from the late 1980s and early 1990s
[Lip89, BEG+91]. The key idea in these techniques is to check whether two vectors a, b ∈ FN are permutations
of each other (i.e., whether there exists a permutation π : {1, . . . N} → {1, . . . , N} such that ai = bπ(i) for all
i) by having the verifier pick a random r ∈ F, and checking that

N∏
i=1

(r − ai) =

N∏
i=1

(r − bi). (11)

If a and b are permutations, this check will pass with probability 1, while if they are not permutations, the
check will pass with probability only m/|F|. This technique is now pervasive in SNARK design, appearing in
works such as Plonk [GWC19]. We refer to this as permutation-invariant fingerprinting.

39

1. Input: vectors a, b ∈ FN .

2. Goal: determine whether a and b are permutations of each other.

3. Pick a random r ∈ FN , and checks that

N∏
i=1

(r − ai) =

N∏
i=1

(r − bi).

Figure 5: Permutation-invariant fingerprinting.

1. Input: vectors a, b ∈ FN .

2. Goal: determine whether a = b.

3. Pick a random r ∈ FN , and checks that

N∑
i=1

air
i−1 =

N∏
i=1

bir
i−1.

Figure 6: Reed-Solomon fingerprinting. If a = b then the check passes with probability 1. If a ̸= b, then the
check passes with probability at most (N − 1)/|F.

We have described the checking procedure as interactive, since the verifier picks the random field element r,
but the procedure can be rendered non-interactive via the Fiat-Shamir transformation. In any SNARK that
uses permutation-checking, the vectors a and b will be committed by the prover, and r will be chosen by
hashing those commitments (and any other messages sent by the prover earlier in the interactive protocol).

B.3 Memory-checking via permutation-checking, without re-ordering

Spartan [Set20], Spice [SAGL18], and descendants including our companion paper Lasso [STW23] build on
the memory-checking work of Blum et al. [BEG+91] to obtain memory-checking arguments that do not
reorder the execution trace.

Overview of the Lasso lookup argument. To illustrate the approach, we begin with a brief overview of
(the simplest variant of) the Lasso lookup argument from our companion paper [STW23], which has prover
commitment costs linear in the table size. Here, let us consider a VM that is given read-only access to lookup
table T . To render the VM’s reads more easily checkable, let us modify the VM’s reading procedure as
follows.

• For each memory cell j = 1, . . . , N maintain a counter cj , which is supposed to track how many times
cell j has been read.

• Every time a read operation to cell bi returns a (value, count) pair (a, c), have the VM write the tuple
(a, c+ 1) to cell bi. That is, the VM follows every read operation by writing the returned value back to
the cell that was just read, incrementing the returned counter value by 1.

• When all the reads are done, the VM makes one final pass over memory. This final set of N reads are
not paired with write operations.

Let RS (short for read-set) be the vector of all (cell, value, count) tuples returned by the memory across all
read operations. Let WS (short for write-set) be the vector of all (cell, value, count) tuples across all write
operations. WS includes the N writes to initialize memory, i.e., the tuples (j, T [j], 0) : j = 1, . . . , N . Prior

40

works [BEG+91, Set20, STW23] establish the following lemma, whose proof we omit for brevity.

Lemma 2. RS and WS are permutations of each other if and only if the result of every read operation to
each cell j indeed returns the (value, count) pair last written to that cell. Here, RS and WS are permutations
of each other if they are equal as multisets of (cell, value, count) tuples.

With this lemma in hand, one can obtain an (indexed) lookup argument as follows. Recall that in an indexed
lookup argument, the prover has committed to two vectors a, b ∈ Fm, and wishes to prove that ai = T [bi] for
all i. View a as the vector of all values returned by the read operations of the modified VM above, and b
as the vector specifying the cell targeted by each read operation. The prover next commits to the vector
c ∈ Fm+N , whose i’th entry is purported to be the count returned by the i’th read operation.

If the prover chooses c honestly, then by Lemma 2, RS and WS are permutations of each other. Conversely,
by the same lemma, if RS and WS are permutations of each other, then each read operation returned the
correct value, and hence ai = T [bi] for all i = 1, . . . ,m. So it suffices for the lookup argument prover to prove
that RS and WS are permutations of other.

To this end, first Reed-Solomon fingerprint each (cell, value, count) tuple. That is, the verifier picks a random
γ ∈ F and sends γ to the prover. The prover then replaces all tuples (b, a, c) in RS or WS with b+ γa+ γ2c.

This reduces RS and WS from vectors of N +m triples of field elements, to vectors RS′ and WS′ in FN+m. If
there are no “collisions” (two distinct tuples with matching fingerprints) then RS′ and WS′ are permutations
of each other if and only if RS and WS are. Clearly, the probability of a collision is at most (N +m)2/|F| (a
more careful analysis can bound the soundness error by at most 2(N +m)/|F|).

Hence, up to the above soundness error, checking whether RS and WS are permutations of each other is
equivalent to checking whether RS′ and WS′ are permutations.

This latter check is done via permutation-invariant fingerprint (Figure 5).

In summary, in the indexed lookup argument, the prover first commits to the vector c ∈ Fm+N purported to
be the counts returned by the read operations specified by the vectors a, b ∈ Fm. (More precisely, the prover
commits to the multilinear extension c̃ of c, using any multilinear polynomial commitment scheme).

The verifier then confirms that RS is a permutation of WS by picking two random field elements γ, α, and
ensuring that the following two quantities are equal:

m−1∏
i=0

(
α−

(
bi + γ · ai + γ2 · ci

))N−1∏
i=0

(
α−

(
i+ γ · T [i] + γ2 · cm+i

))
(12)

and (
N−1∏
i=0

(α− (i+ γ · T [i]))

)
·

(
m−1∏
i=0

(
α−

(
bi + γ · ai + γ2 · (ci + 1)

)))
. (13)

Here, Expressions (12) and (13) are the permutation-invariant fingerprints of RS′ and WS′ respectively.

Lasso forces the prover to correctly compute these two expressions using any grand product argument.
Specifically, it Lasso suggests to use either a highly optimized variant of the GKR-protocol [GKR08] due to
Thaler [Tha13], which avoids any additional commitment costs for the prover, or a variant with shorter proofs
but slightly higher commitment costs [SL20]. At the end of these grand product arguments, the verifier needs

to evaluate each of T̃ , ã, b̃, and c̃ at a randomly chosen point. The evaluations of ã, b̃, and c̃ can be obtained
from the polynomial commitment scheme used to commit to each of these polynomials. For MLE-structured
tables, the evaluation of T̃ can be computed by the verifier with only O(logN) field operations.

The above argument protocol is implicit in Spark, the sparse polynomial commitment scheme given in Spartan
[Set20]. However, Spark’s security analysis assumed that (the commitment to the) vector c of purported
counts is computed by an honest party. This sufficed for Spartan’s application, but not for giving a lookup
argument. Our companion paper Lasso shows that the lookup argument is secure even if c is committed by a
malicious party.

41

How Lasso handles large tables. If the lookup table is too large to justifying paying a commitment cost
linear in the table size, but the table is decomposable (Definition 2.6), Lasso will automatically decompose
any lookup into the large table into c lookups into smaller tables, and collate the results into the result of the
lookup into the large table. The simple variant of Lasso described above (with prover costs linear in table
size) is applied to each subtable. See our companion paper [STW23] for details.

Overview of Spice’s memory-checking argument. In (the variant of) the Lasso lookup argument
described above, every read operation is followed by a write that increments the count returned by the read by
one. When supporting read/write memory as required in a memory-checking argument, incrementing counts
by one is not sufficient to ensure security. This is because in the memory-checking setting, the machine that
is reading from, and writing to, memory may write a value to memory that differs from the value returned
by the most recent read operation. This gives an attacker more flexibility than a Lasso attacker has. In
particular, if one tries to apply Lasso in the memory-checking setting, an attacker can potentially answer
reads “out of order”, meaning answering a read at time i with a value that won’t be written until time j > i.

To prevent this type of attack, Spice updates counts in a different way (which is, unfortunately, more
expensive to implement in the context of memory-checking arguments). Specifically, in Spice’s memory-
checking argument, the machine is modified to maintain a timestamp ts. As in Lasso, every write is preceded
by a read. If the read operation returns a count c, the count that is written is not c + 1 as in Lasso, but
rather max{c, ts}+ 1. The machine then updates the timestamp to max{c, ts}+ 1.

In Spice itself, max{c, ts} is computed by having the prover provide the bit decomposition of c and ts as
untrusted advice. In Jolt, we instead compute max{c, ts} with a single lookup, into the evaluation table of
the max function. Note that if the prover is honest, c and ts are always between 0 and the number of steps
m that the machine is running for. This ensures that we can use a lookup table of size roughly m2.

C A brief overview of two’s complement representation

An unsigned L-bit data type refers to a value z ∈ {0, 1, . . . , 2L − 1}. A signed L-bit data type (in twos-
complement format) refers to a value z ∈ {−2L−1, . . . , 2L−1 − 1}. The twos-complement representation
[zL−1, . . . , z0] ∈ {0, 1}L of z is the unique vector such that

z = −zL−1 · 2L−1 +

L−2∑
i=0

2izi. (14)

For clarity, when discussing instructions interpreting their inputs as signed data types represented in twos-
complement format (e.g., Section 5.3), we refer to zL−1 as the sign bit of z, and denote this by zs. We use
z<s to refer to [zL−2, . . . , z0] ∈ {0, 1}L−1.

As discussed in Section 3, the use of two’s complement allows instructions to operate identically regardless of
whether or not the inputs are interpreted as signed or unsigned. For example, consider the ADD instruction
when L = 3.

When adding three-bit unsigned integers 3 and 4, the addition operation proceeds as follows:

3 (i.e., 011) + 4 (i.e., 100) = 7 (i.e., 111).

Here, in parenthesis we have provided the binary representations of 3, 4, and 7 when interpreted as unsigned
data types in two’s-complement format.

When adding three-bit signed integers 3 and −4, the addition operation proceeds as follows:

3 (i.e., 011) +−4 (i.e., 100) = −1 (i.e., 111).

42

Again, in parentheses we have provided the binary representations of 3 and −4 when interpreted as signed
data types in two’s complement format.

The above example demonstrates that, when using two’s complement binary representations, the input/output
behavior of the addition operation is independent of whether the inputs are interpreted as signed or unsigned.

43

	Introduction
	SNARKs for Virtual Machine abstractions
	Jolt: A new paradigm for zkVM design
	Costs of Jolt
	Background and context
	Costs of Jolt

	The lookup singularity
	Technical details: CPU instructions as structured polynomials
	Other front-end approaches

	Technical Preliminaries
	Multilinear extensions
	Polynomial IOPs and polynomial commitments
	Lookup arguments
	Offline Memory Checking
	R1CS

	An Overview of RISC-V and Jolt's Approach
	Performing instruction logic using lookups
	Using Memory-Checking
	Formatting assembly code

	Analyzing MLE-structure and Decomposability
	Notation
	Three instructive functions and associated lookup tables
	The Equality function
	Less Than comparision
	Shift Left Logical

	The Cost of a Lookup

	Evaluation Tables for the Base Instruction Set
	Logical instructions
	Arithmetic instructions
	Set Less Than
	Shifts
	Immediate Loads
	Jumps
	Branches
	Memory Loads and Stores

	Evaluation Tables for the Multiplication Extension
	Virtual Instructions and Virtual Registers
	ASSERT Instructions
	ADVICE and MOVE Instructions

	The M-Extension Tables
	Unsigned or Lower Multiplication
	Signed and Higher MUL

	Division and Remainder

	Putting It all Together: a SNARK for RISC-V Emulation
	The case of Generalized-Lasso
	The case of Lasso
	Pros and cons of using Lasso vs. Generalized-Lasso within Jolt

	Qualitative Cost Estimation
	Cost of Memory Operations

	The Jolt Elements and Constraints in More Detail
	List of Operation Flags employed:
	Supporting byte-addressable loads and stores
	Summary of CPU Step Constraints

	Overview of Memory-Checking Arguments
	Merkle trees
	Re-ordering the execution trace
	Memory-checking via permutation-checking, without re-ordering

	A brief overview of two's complement representation

