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Abstract

This paper introduces Lasso, a new family of lookup arguments, which allow an untrusted prover to
commit to a vector a ∈ Fm and prove that all entries of a reside in some predetermined table t ∈ Fn.
Lasso’s performance characteristics unlock the so-called “lookup singularity”. Lasso works with any
multilinear polynomial commitment scheme, and provides the following efficiency properties.

• For m lookups into a table of size n, Lasso’s prover commits to just m+ n field elements. Moreover,
the committed field elements are small, meaning that, no matter how big the field F is, they are all
in the set {0, . . . ,m}. When using a multiexponentiation-based commitment scheme, this results in
the prover’s costs dominated by only O(m+ n) group operations (e.g., elliptic curve point additions),
plus the cost to prove an evaluation of a multilinear polynomial whose evaluations over the Boolean
hypercube are the table entries. This represents a significant improvement in prover costs over prior
lookup arguments (e.g., plookup, Halo2’s lookups, lookup arguments based on logarithmic derivatives).

• Unlike all prior lookup arguments, if the table t is structured (in a precise sense that we define),
then no party needs to commit to t, enabling the use of much larger tables than prior works (e.g.,
of size 2128 or larger). Moreover, Lasso’s prover only “pays” in runtime for table entries that are
accessed by the lookup operations. This applies to tables commonly used to implement range checks,
bitwise operations, big-number arithmetic, and even transitions of a full-fledged CPU such as RISC-
V. Specifically, for any integer parameter c > 1, Lasso’s prover’s dominant cost is committing to
3 · c ·m+ c · n1/c field elements. Furthermore, all these field elements are “small”, meaning they are in
the set {0, . . . ,max{m,n1/c, q} − 1}, where q is the maximum value in a.

Lasso’s starting point is Spark, a time-optimal polynomial commitment scheme for sparse polynomials
in Spartan (CRYPTO 2020). We first provide a stronger security analysis for Spark. Spartan’s security
analysis assumed that certain metadata associated with a sparse polynomial is committed by an honest
party (this is acceptable for its purpose in Spartan, but not for Lasso). We prove that Spark remains
secure even when that metadata is committed by a malicious party. This provides the first “standard”
commitment scheme for sparse multilinear polynomials with optimal prover costs. We then generalize
Spark to directly support a lookup argument for both structured and unstructured tables, with the
efficiency characteristics noted above.
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1 Introduction

Suppose that an untrusted prover P claims to know a witness w satisfying some property. For example, w
might be a pre-image of a designated value y of a cryptographic hash function h, i.e., a w such that h(w) = y.
A trivial proof is for P to send w to the verifier V, who checks that w satisfies the claimed property.

A zero-knowledge succinct non-interactive argument of knowledge (zkSNARK) achieves the same, but with
better verification costs (and proof sizes) and privacy properties. Succinct means that verifying a proof is
much faster than checking the witness directly (this also implies that proofs are much smaller than the size of
the statement proven). Zero-knowledge means that the verifier does not learn anything about the witness
beyond the validity of the statement proven.

Fast algorithms via lookup tables. A common technique in the design of fast algorithms is to use
lookup tables. These are pre-computed tables of values that, once computed, enable certain operations to be
computed quickly. For example, in tabulation-based universal hashing [PT12, PT13], the hashing algorithm is
specified via some small number c of tables T1, . . . , Tc, each of size n1/c. Each cell of each table is filled with
a random q-bit number in a preprocessing step. To hash a key x of length n, the key is split into c “chunks”
x1, . . . , xc ∈ {0, 1}n/c, and the hash value is defined to be the bitwise XOR of c table lookups i.e., ⊕ci=1Ti[xi].

Lookup tables are also useful in the context of SNARKs. Recall that to apply SNARKs to prove the correct
execution of computer programs, one must express the execution of the program in a specific form that is
amenable to probabilistic checking (e.g., as arithmetic circuits or generalizations thereof). Lookup tables can
facilitate the use of substantially smaller circuits.

For example, imagine that a prover wishes to establish that at no point in a program’s execution did any
integer ever exceed 2128, say, because were that to happen then an uncorrected “overflow error” would occur.
A naive approach to accomplish this inside a circuit-satisfiability instance is to have the circuit take as part
of its “non-deterministic advice inputs” 128 field elements for each number x arising during the execution. If
the prover is honest, these 128 advice elements will be set to the binary representation of x. The circuit must
check that all of the 128 advice elements are in {0, 1} and that they indeed equal the binary representation

of x, i.e., x =
∑127
i=0 2i · bi, where b0, . . . , b127 denotes the advice elements. This is very expensive: a simple

overflow check turns into at least 129 constraints and an additional 128 field elements in the prover’s witness
that must be cryptographically committed by the prover.1

Lookup tables offer a better approach. Imagine for a moment that the prover and the verifier initialize a
lookup table containing all integers between 0 and 2128− 1. Then the overflow check above amounts to simply
confirming that x is in the table, i.e., the overflow check is a single table lookup. Of course, a table of size
2128 is far too large to be explicitly represented—even by the prover. This paper describes techniques to
enable such a table lookup without requiring a table such as this to ever be explicitly materialized, by either
the prover or the verifier.

Table lookups are now used pervasively in deployed applications that employ SNARKs. They are very useful
for representing “non-arithmetic” operations efficiently inside circuits [BCG+18, GW20b, GW20a]. The
above example is often called a range check for the range {0, 1, . . . , 2128 − 1}. Other example operations for
which lookups are useful include bitwise operations such as XOR and AND [BCG+18], and any operations
that require big-number arithmetic.

Lookup arguments. To formalize the above discussion regarding the utility of lookup tables in SNARKs,
a (non-interactive) lookup argument is a SNARK for the following claim made by the prover.

Definition 1.1 (Statement proven in a lookup argument). Given a commitment cma and a public set T
of N field elements, represented as vector t = (t0, . . . , tN−1) ∈ FN to which the verifier has (possibly) been

1As we explain later (Remark 1.2), for certain commitment schemes, the prover’s cost to commit to vectors consisting of
many {0, 1} values can be much cheaper than if the to vectors contain arbitrary field elements. However, other SNARK prover
costs (e.g., number of field operations) will grow linearly with the number of advice elements and constraints in the circuit to
which the SNARK is applied, irrespective of whether the advice elements are {0, 1}-valued.
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provided a commitment cmt, the prover knows an opening a = (a0, . . . , am−1) ∈ Fm of cma such that all
elements of a are in T . That is, for each i = 0, . . . ,m− 1, there is a j ∈ {0, . . . , N − 1} such that ai = tj.

The set T in Definition 1.1 is the contents of a lookup table and the vector a is the sequence of “lookups”
into the table. The prover in the lookup argument proves to the verifier that every element of a is in T .

A recent flurry of works (Caulk [ZBK+22], Caulk+ [PK22], flookup [GK22], Baloo [ZGK+22], and cq [EFG22])
have sought to give lookup arguments in which the prover’s runtime is sublinear in the table size N . This
is important in applications where the lookup table itself is much larger than the number of lookups into
that table. As a simple and concrete example, if the verifier wishes to confirm that a0, . . . , am−1 are all in
a large range (say, in {0, 1, . . . , 232 − 1}), then performing a number of cryptographic operations linear in
N will be slow or possibly untenable. For performance reasons, these papers also express a desire for the
commitment scheme used to commit to a and t to be additively homomorphic. However, these prior works
all require generating a structured reference string of size N as well as an additional pre-processing work
of O(N logN) group exponentiations. This limits the size of the tables to which they can be applied. For
example, the largest structured reference strings generated today are many gigabytes in size and still only
support N < 230.2

Indexed lookup arguments. Definition 1.1 is a standard formulation of lookup arguments in SNARKs
(e.g., see [ZGK+22]). It treats the table as an unordered list of values—T is a set and, accordingly, reordering
the vector t does not alter the validity of the prover’s claim. However, for reasons that will become apparent
shortly (see Section 1.3), we consider a variant notion to be equally natural. We refer to this variant as
an indexed lookup argument (and refer to the standard variant in Definition 1.1 as an unindexed lookup
argument.) In an indexed lookup argument, in addition to a commitment to a ∈ Fm, the verifier is also
handed a commitment to a second vector b ∈ Fm. The prover claims that for all i = 1, . . . ,m, ai = tbi . We
refer to a as the vector of looked-up values, and b as the vector of indices.

Definition 1.2 (Statement proven in an indexed lookup argument). Given commitment cma and cmb, and
a public array T of N field elements, represented as vector t = (t0, . . . , tN−1) ∈ FN to which the verifier has
(possibly) been provided a commitment cmt, the prover knows an opening a = (a0, . . . , am−1) ∈ Fm of cma

and b = (b0, . . . , bm−1) ∈ Fm of cmb such that for each i = 0, . . . ,m− 1, ai = T [bj ], where T [bj ] is short hand
for the bj’th entry of t.

Any indexed lookup argument can easily be turned into an unindexed lookup argument: the unindexed
lookup argument prover simply commits to a vector b such that ai = T [bj ] for all i, and then applies the
indexed lookup argument to prove that indeed this holds. There is also a generic transformation that turns
any unindexed lookup argument into an indexed one, at least in fields of large enough characteristic (see
Appendix A). However, the protocols we describe in this work directly yield indexed lookup arguments,
without having to invoke this transformation. Accordingly, our primary focus in this work is on indexed
lookup arguments.

1.1 Lasso: A new lookup argument

We describe a new lookup argument, Lasso.3 Lasso’s starting point is a polynomial commitment scheme for
sparse multilinear polynomials. In particular, Lasso builds on Spark, an optimal polynomial commitment
scheme for sparse multilinear polynomials from Spartan [Set20]. Spark itself is based on the linear-time
sum-check protocol [LFKN90] and offline memory checking [BEG+91].

Lasso can be instantiated with any multilinear polynomial commitment scheme. Furthermore, Lasso can
be used with any SNARK, including those that prove R1CS or Plonkish satisfiability. This is particularly
seamless for SNARKs that have the prover commit to the witness using a multilinear polynomial commitment
scheme. This includes many known prover-efficient SNARKs [Set20, GLS+21, XZS22, CBBZ23, STW23]. If
a SNARK does not natively use multilinear polynomial commitments (e.g., Marlin [CHM+20] and Plonk

2See, for example, https://setup.aleo.org/stats.
3Lasso is short for LASSO-of-Truth: Lookup Arguments via Sparse-polynomial-commitments and the Sum-check protocol,

including for Oversized Tables.
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[GWC19], which use univariate polynomial commitments), then one would need an auxiliary argument that
the commitment cma used in Lasso is a commitment to the multilinear extension of the vector of all lookups
performed in the SNARK.

Below, we provide an overview of Lasso’s technical components.

(1) A stronger analysis of Spark, an optimal commitment scheme for sparse polynomials. A
sparse polynomial commitment allows an untrusted prover to cryptographically commit to a sparse multilinear
polynomial g and later provide a requested evaluation g(r) along with a proof that the provided value is
indeed equal to the committed polynomial’s evaluation at r. Crucially, we require that the the prover’s
runtime depends only on the sparsity of the polynomial.4 Spartan [Set20] provides such a commitment
scheme, which it calls Spark. Spartan assumed that certain metadata associated with the sparse polynomial
is committed honestly, which was sufficient for its purposes. But, as we see later, Lasso requires an untrusted
prover to commit to sparse polynomials (and the associated metadata).

A naive extension Spark to handle a maliciously committed metadata incurs concrete and asymptotic overheads,
which is undesirable. Nevertheless, we prove that Spark in fact satisfies a stronger security property without
any modifications (i.e., it is secure even if the metadata is committed by a potentially malicious party). This
provides the first “standard” sparse polynomial commitment scheme with optimal prover costs, a result of
independent interest. Furthermore, we specialize Spark for Lasso’s use to obtain concrete efficiency benefits.

(2) Surge: A generalization of Spark. We reinterpret Spark sparse polynomial commitment scheme as
a technique for computing the inner product of an m-sparse committed vector of length N with a dense—but
highly structured—lookup table of size N (the table is represented as a vector of size N). Specifically, in the
sparse polynomial commitment scheme, the table consists of all (logN)-variate Lagrange basis polynomials
evaluated at a specific point r ∈ FlogN . Furthermore, this table is a tensor product of c ≥ 2 smaller tables,
each of size N1/c (here, c can be set to any desired integer in {1, . . . , logN}). We further observe that many
other lookup tables can similarly be decomposed has product-like expressions of O(c) tables of size N1/c, and
that Spark extends to support all such tables.

Exploiting this perspective, we describe Surge, a generalization of Spark that allows an untrusted prover
to commit to any sparse vector and establish the sparse vector’s inner product with any dense, structured
vector. We refer to the structure required for this to work as Spark-only structure (SOS for short). We also
refer to this property as decomposability. In more detail, an SOS table T is one that can be decomposed into
α = O(c) “sub-tables” {T1, . . . , Tα} of size N1/c satisfying the following two properties. First, any entry T [j]
of T can be expressed as a simple expression of a corresponding entry into each of T1, . . . , Tα. Second, the
so-called multilinear extension polynomial of each Ti can be evaluated quickly (for any such table, we call Ti
MLE-structured, where MLE stands for multilinear extension). For example, as noted above, the table T
arising in Spark itself is simply the tensor product of MLE-structured sub-tables {T1, . . . , Tα}, where α = c.

(3) Lasso: A lookup argument for SOS tables and small/unstructured tables. We observe that
Surge directly provides a lookup argument for tables with SOS structure. We call the resulting lookup
argument Lasso. Lasso has the important property that all field elements committed by the prover are
“small”, meaning they are in the set {0, 1, . . . ,max{m,N1/c, q} − 1}, where q is such that {T1, . . . , Tα} all
have entries in the set {0, 1, . . . , q − 1}. As elaborated upon shortly (Section 1.2), this property of Lasso has
substantial implications for prover efficiency.

Lasso has new and attractive costs when applied to small and unstructured tables in addition to large SOS
ones. Specifically, by setting c = 1, the Lasso prover commits to only about m+N field elements, and all of

4For multilinear polynomials, m-sparse refers to polynomials g : F` → F in ` variables such that g(x) 6= 0 for at most m values
of x ∈ {0, 1}`. In other words, g has at most m non-zero coefficients in the so-called multilinear Lagrange polynomial basis.
There are n := 2` Lagrange basis polynomials, so if m� 2`, then only a tiny fraction of the possible coefficients are non-zero. In
contrast, if m = Θ(2`), then we refer to g as a dense polynomial.
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the committed elements are {0, 1, . . . ,max{m,N, q}} where q is the size of the largest value in the table.56

Lasso is the first lookup argument with this property, which substantially speeds up commitment computation
when m, N , and q are all much smaller than the size of the field over which the commitment scheme is
defined. For c > 1, the number of field elements that the Lasso prover commits to is 3cm+ α ·N1/c.

(4) GeneralizedLasso: Beyond SOS and small/unstructured tables. Finally, we describe a lookup
argument that we call GeneralizedLasso, which applies to any MLE-structured table, not only decomposable
ones.7 The main disadvantage of GeneralizedLasso relative to Lasso is that cm out of the 3cm+ cN1/c field
elements committed by the GeneralizedLasso prover are random rather than small. The proofs are also
somewhat larger, as GeneralizedLasso involves one extra invocation of the sum-check protocol compared to
Lasso.

GeneralizedLasso is reminiscent of a sum-check based SNARK (e.g., Spartan [Set20]) and is similarly built from
a combination of the sum-check protocol and the Spark sparse polynomial commitment scheme. There are two
key differences: (1) in GeneralizedLasso, the (potentially adversarial) prover commits to a sparse polynomial,
rather than an honest “setup algorithm” committing to a sparse polynomial in a preprocessing step in the
context of Spartan (where the sparse polynomial encodes the circuit or constraint system of interest); and
(2) invoking the standard linear-time sum-check protocol [LFKN90, CTY11, Tha13] makes the prover incur
costs linear in the table size rather than the number of lookups. To address (1), we invoke our stronger
security analysis of Spark. To address (2), we introduce a new variant of the sum-check protocol tailored for
our setting, which we refer to as the sparse-dense sum-check protocol. Conceptually, GeneralizedLasso can
be viewed as using the sparse-dense sum-check protocol to reduce lookups into any MLE-structured table
into lookups into a decomposable table (namely, a certain lookup table arising within the Spark polynomial
commitment scheme).

Additional discussion of the benefits and costs of GeneralizedLasso relative to Lasso can be found in Section
1.4.

1.2 Additional discussion of Lasso’s costs

Polynomial commitments and MSMs. As indicated above, a central component of most SNARKs is a
cryptographic protocol called a polynomial commitment scheme. Such a scheme allows an untrusted prover
to succinctly commit to a polynomial p and later reveal an evaluation p(r) for a point r chosen by the verifier
(the prover will also return a proof that the claimed evaluation is indeed equal to the committed polynomial’s
evaluation at r). In Lasso, the bottleneck for the prover is the polynomial commitment scheme.

Many popular polynomial commitments are based on multiexponentiations (also known as multi-scalar
multiplications, or MSMs). This means that the commitment to a polynomial p (with n coefficients
c0, . . . , cn−1 over an appropriate basis) is

n−1∏
i=0

gcii ,

for some public generators g1, . . . , gn of a multiplicative group G. Examples include KZG [KZG10], Bullet-
proofs/IPA [BCC+16, BBB+18], Hyrax [WTS+18], and Dory [Lee21].8

The naive MSM algorithm performs n group exponentiations and n group multiplications (note that each
group exponentiation is about 400× slower than a group multiplication). But Pippenger’s MSM algorithm
saves a factor of about log(n) relative to the naive algorithm. This factor can be well over 10× in practice.

5Lasso makes blackbox use of any so-called grand product argument. If using the grand product argument from [SL20, Section
6], a low-order number, say at most O(m/ log3m), of large field elements need to be committed (see Section E for discussion).

6If Lasso is used as an indexed lookup argument, the prover commits to m+N field elements. If used as an unindexed lookup
argument, the number can increase to 2m+N because in the unindexed setting one must “charge” for the prover to commit to
the index vector b ∈ Fm.

7In fact, GeneralizedLasso applies to any table with some low-degree extension, not necessarily its multilinear one, that is
evaluable in logarithmic time.

8In Hyrax and Dory, the prover does
√
n MSMs each of size

√
n.
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Working over large fields, but committing to small elements. If all exponents appearing in the
multiexponentiation are “small”, one can save another factor of 10× relative to applying Pippenger’s
algorithm to an MSM involving random exponents. This is analogous to how computing g2

16

i is 10× faster

than computing g2
160

i : the first requires 16 squaring operations, while the second requires 160 such operations.

In other words, if one is promised that all field elements (i.e., exponents) to be committed via an MSM are in
the set {0, 1, . . . ,K} ⊂ F, the number of group operations required to compute the MSM depend only on K
and not on the size of F.9

Quantitatively, if all exponents are upper bounded by some value K, with K � n, then Pippenger’s algorithm
only needs (about) one group operation per term in the multiexponentiation.10 More generally, with any
MSM-based commitment scheme, Pippenger’s algorithm allows the prover to commit to roughly k · log(n)-bit
field elements (meaning field elements in {0, 1, . . . , n}) with only k group operations per committed field
element.

Polynomial evaluation proofs. In any SNARK or lookup argument, the prover not only has to commit
to one or more polynomials, but also reveal to the verifier an evaluation of the committed polynomials at
a point of the verifier’s choosing. This requires the prover to compute a so-called evaluation proof, which
establishes that the returned evaluation is indeed consistent with the committed polynomial. For some
polynomial commitment schemes, such as Bulletproofs/IPA [BCC+16, BBB+18], evaluation proofs are quite
slow and this cost can bottleneck the prover. However, for others, evaluation proof computation is a low-order
cost [WTS+18, BBHR18]. In this work, we add another commitment scheme to this list, introducing Sona
(Section 1.5), which combines the excellent commitment time of Hyrax, and evaluation proof computation
involving sublinear cryptographic work, with the excellent verification costs of Nova.

Moreover, evaluation proofs exhibit excellent batching properties (whereby the prover can commit to many
polynomials and only produce a single evaluation proof across all of them) [BGH19, KST22, BDFG20]. So in
many contexts, computing opening proofs is not a bottleneck even when a scheme such as Bulletproofs/IPA.

For all of the above reasons, our accounting of prover cost in this work generally ignores the cost of polynomial
evaluation proofs.

Summarizing Lasso’s prover costs. Based on the above accounting, Lasso’s prover costs when applied
to a lookup table T can be summarized as follows.

• Setting the parameter c = 1, the Lasso prover commits to just m+N field elements (using any multilinear
polynomial commitment scheme), all of which are in {0, . . . ,m}.11 Using an MSM-based commitment
scheme, this translates to very close to m+N group operations.

• For c > 1, the Lasso prover applied to any decomposable table commits to 3cm+ αN1/c field elements,
all of which are in the set {0, . . . ,max{m,N1/c, q} − 1}, where q is the largest value in any of the α
sub-tables T1, . . . , Tα.

• The GeneralizedLasso prover applies to any MLE-structured table, and commits to the same number of
field elements as the Lasso prover, but cm of them are random field elements, instead of small ones.

In all cases above, no party needs to cryptographically commit to the table T or subtables T1, . . . , Tα, so long
as they are MLE-structured.

In Appendix B, we compare these costs with those of existing lookup arguments.

9Of course, the cost of each group operation depends on the size of the group’s base field, which is closely related to that of
the scalar field F. However, the number of group operations to compute the MSM depends only on K, not on F.

10To be very precise, if K ≤ n, then Pippenger’s algorithm performs only (1 + o(1))n group operations.
11In fact, for any k ≥ 1, at most m/k of these field elements are larger than k.
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1.3 A companion work: Jolt, and the lookup singularity

In the context of SNARKs, a front-end is a transformation or compiler that turns any computer program
into an intermediate representation—typically a variant of circuit-satisfiability—so that a back-end (i.e.,
a SNARK for circuit-satisfiability) can be applied to establish that the prover correctly ran the computer
program on a witness. A companion paper called Jolt (for “Just One Lookup Table”) shows that Lasso’s
ability to handle gigantic tables without either prover or verifier ever materializing the whole table (so long
as the table is modestly “structured”) enables substantial improvements in the front-end design.

Jolt’s idea is cleanest to describe in the context of a front-end for a simple virtual machine (VM), which in
SNARK design has become synonymous with the notion of a CPU. A VM is defined by a set of primitive
instructions (called an instruction set), one of which is executed at each step of the program. Typically,
a front-end for a SNARK outputs a circuit, that for each step of the computation, (a) determines which
instruction should be executed at that step and (b) executes the instruction. Jolt uses Lasso to replace part
(b) at each step with a single lookup, into a gigantic lookup table. Specifically, consider the popular RISC-V
instruction set [RIS], targeted by the RISC-Zero project.12 For each of the primitive RISC-V instructions
fi, the idea of Jolt to create a lookup table that contains the entire evaluation table of fi. For example, if
fi takes two 64-bit inputs, the table will have 2128 entries, whose (x, y)’th entry is fi(x, y). One can “glue
together” the tables for each instruction, into a single table of size 2128 times the number of instructions.

Jolt shows that for each of the RISC-V instructions (including multiplication instructions and division and
remainder instructions), the resulting table has the structure that we require to apply Lasso. This leads
to a front-end for VMs such as RISC-V that outputs much smaller circuits than prior front-ends, and has
additional benefits such as easier auditability. Preliminary estimates from Jolt show that, when applied to
the RISC-V instruction set over 64-bit data types, the prover commits to ≤ 65 field elements per step of
the RISC-V CPU. Of these field elements, about a third lie in {0, 1}, only five are larger than about 222,
and none are larger than 264. This means that Jolt’s prover costs when applied to a T -step execution of
the RISC-V CPU on 64-bit data types is equivalent to computing roughly 6 multiexponentiations of size T
if using a 256-bit field. Put another way, the Jolt prover’s runtime is equivalent to committing to about 6
arbitrary field elements per step of the RISC-V CPU.

We believe that Lasso and Jolt together essentially achieve a vision outlined by Barry Whitehat called the
lookup singularity [Whi]. The lookup singularity seeks to transform arbitrary computer program into “circuits”
that only perform lookups. Whitehat’s post outlines many benefits to achieving this vision, from improved
performance to auditability and formal verification of the correctness of the front-end.

1.4 Lasso vs. GeneralizedLasso

The relationship between MLE-structured and decomposable tables. For any decomposable table
T ∈ FN , there is always some low-degree extension polynomial T̂ of T (namely, an extension of degree at
most k in each variable) that can be evaluated in O(logN) time. In general, T̂ is not necessarily multilinear,
so a table being decomposable does not necessarily imply that it is MLE-structured. But GeneralizedLasso
actually applies to any table with a low-degree extension that is evaluable in logarithmic time. In this sense,
decomposability (the condition required to apply Lasso) is a stronger condition than what is necessary to
apply GeneralizedLasso.

Pros and cons of GeneralizedLasso. We currently do not know specific tables of interest for which
GeneralizedLasso applies but Lasso does not. In particular, all lookup tables arising in our companion paper
Jolt are decomposable. However, there are benefits to GeneralizedLasso that may justify its increased costs.

For example, Jolt works conceptually by taking one lookup table for each primitive RISC-V instruction and
concatenating them together into a single gigantic table. Jolt shows that each of the constituent tables (one per
instruction) is both MLE-structured and decomposable. It is trivial to show that the concatenation of MLE-
structured tables is MLE-structured, and the GeneralizedLasso verifier when applied to the concatenated table
is essentially no more complicated than the GeneralizedLasso verifier when applied to each table individually.

12https://www.risczero.com/
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In contrast, while it is true that the concatenation of decomposable tables is decomposable, implementing the
concatenated table’s decomposition can be quite involved (at least, when the decompositions of the constituent
tables are all different, as is the case with Jolt). This is particularly relevant because any implementation of
the Lasso verifier applied to a given table depends on the decomposition of the table.

In summary, although Lasso is more performative than GeneralizedLasso in the context of decomposable
tables, for some lookup tables the Lasso verifier implementation may be more complicated. Hence, even
if future work does not identify MLE-structured tables of interest that are not decomposable, there are
nonetheless simplicity and auditability benefits to GeneralizedLasso that may compensate for its diminished
relative performance.13

1.5 Sona: A new transparent polynomial commitment scheme

Hyrax [WTS+18] provides a multilinear polynomial commitment scheme (for random evaluation queries)
with attractive prover costs. To commit to an `-variate multilinear polynomial (which means the polynomial
has m = 2` coefficients), the prover performs

√
m multiexponentiations each of length

√
m. To compute an

evaluation proof, the prover performs O(m) field operations and a O(
√
m) exponentiations (this requires

applying Bulletproofs to prove an inner product instance consisting of vectors of length
√
m); an evaluation

proof consists of O(logm) group elements.

The downside of Hyrax’s commitment scheme is that the verification costs are large: commitments consist of√
m group elements, and to verify an evaluation proof, the verifier has to perform two multiexponentiations

of size
√
m. Dory [Lee21] can be thought of as reducing the Hyrax verifier’s costs from O(

√
m) to O(logm),

at the cost of requiring pairings, and requiring the verifier to perform a logarithmic number of operations in
the target group of a pairing-friendly group.

We propose a new polynomial commitment scheme (for random evaluation queries) called Sona, which reduces
Hyrax’s verification costs in a different way. It uses two tools: Nova [KST22] and BabyHyrax (a simplified
version of Hyrax in a manner that we describe next). In particular, BabyHyrax’s evaluation proofs consist of
O(
√
m) field elements, but it requires no cryptographic operations (BabyHyrax does not invoke Bulletproofs

and instead proves the inner product instance by sending the underlying vectors).

With these tools in hand, in Sona, rather than sending a commitment cm consisting of
√
n group elements as

in BabyHyrax, the Sona prover sends the hash a = h(cm) of the group elements. And rather than sending an
evaluation proof π that consists of

√
n group elements and convinces the BabyHyrax verifier that p(r) = v,

the Sona prover uses Nova to prove that it knows:

• A vector cm in G
√
m such that a = h(cm).

• A proof π that would have convinced the BabyHyrax verifier that cm is a commitment to a polynomial
p such that p(r) = v.

The primary operations that Nova is applied to in this context are thus hashing a length-
√
m vector cm, and

applying the BabyHyrax verifier’s checks on π, which mainly consists of two multiexponentiations of size
√
m

in G. Applying the Nova prover to these computations results in O(
√
m log(λ)/ log(m)) group operations for

the prover. Hence, the prover’s total work to compute an evaluation proof for Sona is O(m) field operations
and O(

√
m log(λ)/ log(m)) group operations. Sona’s evaluation proofs are a constant number of field elements

and takes a constant-sized multiexponentiation to verify.

13Minimizing the number of field operations done by the prover in GeneralizedLasso is highly involved, and is the focus
of Appendix G.5. However, this does not affect auditability, as the verifier is very simple, and only the verifier needs to
be implemented correctly for the SNARK to be secure. Furthermore, there is a relatively simple GeneralizedLasso prover
implementation that performs O(m logN) field operations for many lookup tables (Appendix G.4). We believe that this in
many applications, including Jolt, this will be few enough field operations enough to avoid bottlenecking the prover, relative to
commitment costs.
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2 Preliminaries

We use λ to denote the security parameter and F to denote a finite field (e.g., the prime field Fp for a large
prime p). We use “PPT algorithms” to refer to probabilistic polynomial time algorithms. Throughout this
manuscript, we consider any field addition or multiplication to require constant time.

2.1 Multilinear extensions

An `-variate polynomial p : F` → F is said to be multilinear if p has degree at most one in each variable. Let
f : {0, 1}` → F be any function mapping the `-dimensional Boolean hypercube to a field F. A polynomial
g : F` → F is said to extend f if g(x) = f(x) for all x ∈ {0, 1}`. It is well-known that for any f : {0, 1}` → F,

there is a unique multilinear polynomial f̃ : F→ F that extends f . The polynomial f̃ is referred to as the
multilinear extension (MLE) of f .

The total degree of an `-variate polynomial p refers to the maximum sum of the exponents in any monomial of
p. Observe that if p is multilinear, then its total degree is at most `. However, note that not all polynomials
of total degree ` are multilinear.

A particular multilinear extension that arises frequently in the design of proof systems is ẽq, which is the
MLE of the function eq : {0, 1}s × {0, 1}s → F defined as follows:

eq(x, e) =

{
1 if x = e

0 otherwise.

An explicit expression for ẽq is:

ẽq(x, e) =

s∏
i=1

(xiei + (1− xi)(1− ei)) . (1)

Indeed, one can easily check that the right hand side of Equation (1) is a multilinear polynomial, and that if
evaluated at any input (x, e) ∈ {0, 1}s × {0, 1}s, it outputs 1 if x = e and 0 otherwise. Hence, the right hand
side of Equation (1) is the unique multilinear polynomial extending eq. Equation (1) implies that ẽq(r1, r2)
can be evaluated at any point (r1, r2) ∈ Fs × Fs in O(s) time.

Multilinear extensions of vectors. Given a vector u ∈ Fm, we will often refer to the multilinear
extension of u and denote this multilinear polynomial by ũ. ũ is obtained by viewing u as a function mapping
{0, 1}logm → F in the following natural way: the function interprets its (logm)-bit input (i1, . . . , ilogm) as the
binary representation of an integer i between 0 and n− 1, and outputs ui. ũ is defined to be the multilinear
extension of this function.

Lagrange interpolation. An explicit expression for the MLE of any function is given by the following
standard lemma (see [Tha22, Lemma 3.6]).

Lemma 1. Let f : {0, 1}` → F be any function. Then the following multilinear polynomial f̃ extends f :

f̃(x1, . . . , x`) =
∑

w∈{0,1}`
f(w) · χw(x1, . . . , x`), (2)

where, for any w = (w1, . . . , w`),

χw(x1, . . . , x`) :=
∏̀
i=1

(xiwi + (1− xi)(1− wi)) . (3)

Equivalently, χw(x1, . . . , x`) = ẽq(x1, . . . , x`, w1, . . . , w`).
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The polynomials {χw : w ∈ {0, 1}`} are called the Lagrange basis polynomials for `-variate multilinear

polynomials. The evaluations {f̃(w) : w ∈ {0, 1}`} are sometimes called the coefficients of f̃ in the Lagrange
basis, terminology that is justified by Equation (2).

Dense representation for multilinear polynomials. Since the MLE of a function is unique, it offers
the following method to represent any multilinear polynomial. Given a multilinear polynomial g : F` → F, it
can be represented uniquely by the list of tuples L such that for all i ∈ {0, 1}`, (to-field(i), g(i)) ∈ L if and
only if g(i) 6= 0, where to-field is the canonical injection from {0, 1}` to F. We denote such a representation
of g as DenseRepr(g).

Definition 2.1. A multilinear polynomial g in ` variables is a sparse multilinear polynomial if |DenseRepr(g)|
is sub-linear in O(2`). Otherwise, it is a dense multilinear polynomial.

As an example, suppose g : F2s → F. Suppose |DenseRepr(g)| = O(2s), then g is a sparse multilinear
polynomial because O(2s) is sublinear in O(22s).

The sum-check protocol. Let g be some `-variate polynomial defined over a finite field F. The purpose
of the sum-check protocol is for prover to provide the verifier with the following sum:

H :=
∑

b∈{0,1}`
g(b). (4)

To compute H unaided, the verifier would have to evaluate g at all 2` points in {0, 1}` and sum the results.
The sum-check protocol allows the verifier to offload this “hard work” to the prover. It consists of ` rounds,
one per variable of g. In round i, the prover sends a message consisting of di field elements, where di is the
degree of g in its i’th variable, and the verifier responds with a single (randomly chosen) field element. The

verifier’s runtime is O
(∑`

i=1 di

)
, plus the time required to evaluate g at a single point r ∈ F`. In the typical

case that di = O(1) for each round i, this means the total verifier time is O(`), plus the time required to
evaluate g at a single point r ∈ F`. This is exponentially faster than the 2` time that would generally be
required for the verifier to compute H. See [AB09, Chapter 8] or [Tha22, §4.1] for details.

SNARKs We adapt the definition provided in [KST22].

Definition 2.2. Consider a relation R over public parameters, structure, instance, and witness tuples. A
non-interactive argument of knowledge for R consists of PPT algorithms (G,P,V) and deterministic K,
denoting the generator, the prover, the verifier and the encoder respectively with the following interface.

• G(1λ)→ pp: On input security parameter λ, samples public parameters pp.

• K(pp, s)→ (pk , vk): On input structure s, representing common structure among instances, outputs the
prover key pk and verifier key vk.

• P(pk , u, w)→ π: On input instance u and witness w, outputs a proof π proving that (pp, s, u, w) ∈ R.

• V(vk, u, π)→ {0, 1}: On input the verifier key vk, instance u, and a proof π, outputs 1 if the instance
is accepting and 0 otherwise.

A non-interactive argument of knowledge satisfies completeness if for any PPT adversary A

Pr

 V(vk, u, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, (u,w))← A(pp),
(pp, s, u, w) ∈ R,
(pk , vk)← K(pp, s),
π ← P(pk , u, w)

 = 1.

A non-interactive argument of knowledge satisfies knowledge soundness if for all PPT adversaries A there
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exists a PPT extractor E such that for all randomness ρ

Pr

 V(vk, u, π) = 1,
(pp, s, u, w) 6∈ R

∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, u, π)← A(pp; ρ),
(pk , vk)← K(pp, s),
w ← E(pp, ρ)

 = neglλ.

A non-interactive argument of knowledge is succinct if the size of the proof π is polylogarithmic in the size of
the statement proven.

Polynomial commitment scheme We adapt the definition from [BFS20]. A polynomial commitment
scheme for multilinear polynomials is a tuple of four protocols PC = (Gen, Commit,Open, Eval):

• pp ← Gen(1λ, µ): takes as input µ (the number of variables in a multilinear polynomial); produces
public parameters pp.

• C ← Commit(pp, g): takes as input a µ-variate multilinear polynomial over a finite field g ∈ F[µ]; produces
a commitment C.

• b ← Open(pp, C, g): verifies the opening of commitment C to the µ-variate multilinear polynomial
g ∈ F[µ]; outputs b ∈ {0, 1}.

• b ← Eval(pp, C, r, v, µ, g) is a protocol between a PPT prover P and verifier V. Both V and P hold a
commitment C, the number of variables µ, a scalar v ∈ F, and r ∈ Fµ. P additionally knows a µ-variate
multilinear polynomial g ∈ F[µ]. P attempts to convince V that g(r) = v. At the end of the protocol,
V outputs b ∈ {0, 1}.

Definition 2.3. A tuple of four protocols (Gen, Commit,Open, Eval) is an extractable polynomial commitment
scheme for multilinear polynomials over a finite field F if the following conditions hold.

• Completeness. For any µ-variate multilinear polynomial g ∈ F[µ],

Pr

{
pp← Gen(1λ, µ); C ← Commit(pp, g):
Eval(pp, C, r, v, µ, g) = 1 ∧ v = g(r)

}
≥ 1− negl(λ)

• Binding. For any PPT adversary A, size parameter µ ≥ 1,

Pr

 pp← Gen(1λ,m); (C, g0, g1) = A(pp);
b0 ← Open(pp, C, g0); b1 ← Open(pp, C, g1):

b0 = b1 6= 0 ∧ g0 6= g1

 ≤ negl(λ)

• Knowledge soundness. Eval is a succinct argument of knowledge for the following NP relation given
pp← Gen(1λ, µ).

REval(pp) = {〈(C, r, v), (g)〉 : g ∈ F[µ] ∧ g(r) = v ∧ Open(pp, C, g) = 1}

2.2 Polynomial IOPs and polynomial commitments

Most modern SNARKs work by combining a type of interactive protocol called a polynomial IOP [BFS20] with
a cryptographic primitive called a polynomial commitment scheme [KZG10]. The combination yields a succinct
interactive argument, which can then be rendered non-interactive via the Fiat-Shamir transformation [FS86],
yielding a SNARK. Roughly, a polynomial IOP is an interactive protocol where, in one or more rounds, the
prover may “send” to the verifier a large polynomial g. Because g is so large, one does not wish for the
verifier to read a complete description of g. Instead, in any efficient polynomial IOP, the verifier only “queries”
g at one point (or a handful of points). This means that the only information the verifier needs about g to
check that the prover is behaving honestly is one (or a few) evaluations of g.
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Scheme Commit Size Proof Size V time Commit time P time

KZG + Gemini 1 |G1| O(logN) |G1| O(logN) G1 O(N) G1 O(N) G1

Brakedown-commit 1 |H| O(
√
N · λ) |F| O(

√
N · λ) F O(N) F, H O(N) F, H

Orion-commit 1 |H| O(λ log2N) |H| O(λ log2N) H O(N) F, H O(N) F, H
Hyrax-commit O(

√
N) |G| O(

√
N) |G| O(

√
N) G O(N) G O(N) F

Dory 1 |GT | O(logN) |GT | O(logN) GT O(N) G1 O(N) F
Sona (this work) 1 |H| O(1) |G| O(

√
N) G O(1) G O(N) F, O(

√
N)G

Figure 1: Costs of polynomial commitment schemes when committing to a multilinear `-variate polynomial over F,
with N = 2`. All are transparent. P time refers to the time to compute evaluation proofs. In addition to the reported
O(N) field operations, Hyrax and Dory require roughly O(N1/2) cryptographic work to compute evaluation proofs. F
refers to a finite field, H refers to a collision-resistant hash, G refers to a cryptographic group where DLOG is hard,
and (G1,G2,GT ) refer to pairing-friendly groups. Columns with a suffix of “size” depict to the number of elements of
a particular type, and columns with a suffix of “time” depict the number of operations (e.g., field multiplications or
the size of multiexponentiations). Orion also requires O(

√
N) pre-processing time for the verifier.

In turn, a polynomial commitment scheme enables an untrusted prover to succinctly commit to a polynomial
g, and later provide to the verifier any evaluation g(r) for a point r chosen by the verifier, along with a
proof that the returned value is indeed consistent with the committed polynomial. Essentially, a polynomial
commitment scheme is exactly the cryptographic primitive that one needs to obtain a succinct argument
from a polynomial IOP. Rather than having the prover send a large polynomial g to the verifier as in the
polynomial IOP, the argument system prover instead cryptographically commits to g and later reveals any
evaluations of g required by the verifier to perform its checks.

Whether or not a SNARK requires a trusted setup, as well as whether or not it is plausibly post-quantum
secure, is determined by the polynomial commitment scheme used. If the polynomial commitment scheme does
not require a trusted setup, neither does the resulting SNARK, and similarly if the polynomial commitment
scheme is plausibly secure against quantum adversaries, then the SNARK is plausibly post-quantum sound.

Lasso can make use of any commitment schemes for multilinear polynomials. Note that any univariate
polynomial commitment scheme can be transformed into a multilinear one, though the transformations
introduce some overhead (e.g.,[ZXZS20, BCHO22, CBBZ23]). A brief summary of the multilinear polynomial
commitment schemes is provided in Figure 2.2. All of the schemes in the figure, except for KZG-based scheme,
are transparent; Brakedown-commit and Orion-commit are plausibly post-quantum secure.

3 Technical overview

Suppose that the verifier has a commitment to a table t ∈ Fn as well as a commitment to another vector
a ∈ Fm. Suppose that a prover wishes to prove that all entries in a are in the table t. A simple observation
in prior works [ZBK+22, ZGK+22] is that the prover can prove that it knows a sparse matrix M ∈ Fm×n
such that for each row of M , only one cell has a value of 1 and the rest are zeros and that M · t = a, where
· is the matrix-vector multiplication. This turns out to be equivalent, up to negligible soundness error, to
confirming that ∑

y∈{0,1}logN
M̃(r, y) · t̃(y) = ã(r), (5)

for an r ∈ Flogm chosen at random by the verifier. Here, M̃ , ã and t̃ are the so-called multilinear extension
polynomials (MLEs) of M , t, and a (see Section 2.1 for details).

Lasso proves Equation (5) by having the prover commit to the sparse polynomial M̃ using Spark and then
prove the equation directly with a generalization of Spark called Surge. This provides the most efficient
lookup argument when either the table t is “decomposable” (we discuss details of this below), or when t is
unstructured but small. It turns out most tables that occur in practice (e.g., the ones that arise in Jolt are
decomposable). When t is not decomposable, but still structured, a generalization of Lasso, which we refer to
as GeneralizedLasso, proves Equation (5) using a combination of a new form of the sum-check protocol (which
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we refer to as the sparse-dense sum-check protocol) and the Spark polynomial commitment scheme. We defer
further details of GeneralizedLasso to Appendix F.

3.1 Lasso’s starting point: The Spark sparse polynomial commitment scheme

Lasso’s starting point is Spark, an optimal sparse polynomial commitment scheme from Spartan [Set20]. It
allows an untrusted prover to prove evaluations of a sparse multilinear polynomial with costs proportional to
the size of the dense representation of the sparse multilinear polynomial. Spartan established security of
Spark under the assumption that certain metadata associated with a sparse polynomial is committed honestly,
which sufficed for its application in the context of Spartan. In this paper, perhaps surprisingly, we prove that
Spark remains secure even if that metadata is committed by an untrusted party (e.g., the prover), providing
a standard commitment scheme for sparse polynomials.

The Spark sparse polynomial commitment scheme works as follows. The prover commits to a unique dense
representation of the sparse polynomial g, using any polynomial commitment scheme for “dense” (multilinear)
polynomials. The dense representation of g is effectively a list of all of the monomials of g with a non-zero
coefficient (and the corresponding coefficient). More precisely, the list specifies all multilinear Lagrange basis
polynomials with non-zero coefficient. Details as to what are the multilinear Lagrange basis polynomials are
not relevant to this overview (but can be found in Section 2.1).

When the verifier requests an evaluation g(r) of the committed polynomial g, the prover returns the claimed
evaluation v and needs to prove that v is indeed equal to the committed polynomial evaluated at r. Let c be
such that N = mc. As explained below, there is a simple and natural algorithm that takes as input the dense
representation of g, and outputs g(r) in O(c ·m) time. Spark amounts to the bespoke SNARK establishing
that the prover correctly ran this sparse-polynomial-evaluation algorithm on the committed description of g.
Note that this perspective on Spark is somewhat novel, though it is partially implicit in the scheme itself and
in an exposition of [Tha22, Section 16.2].

A time-optimal algorithm for evaluating a multilinear polynomial of sparsity m. We first describe
a naive solution and then describe an optimal solution used in Spark.

A naive solution. Consider an algorithm that iterates over each Lagrange basis polynomials specified in
the committed dense representation, evaluates that basis polynomial at r, multiplies by the corresponding
coefficient, and adds the result to the evaluation. Unfortunately, a naive evaluation of a (logN)-variate
Lagrange basis polynomial at r would take O(logN) time, resulting in a total runtime of O(m · logN).

Eliminating the logarithmic factor. The key to achieving time O(c ·m) is to ensure that each Lagrange basis
polynomial can be evaluated in O(c) time. This is done via the following procedure. This procedure is
reminiscent of Pippenger’s algorithm for multiexponentiation, with m being the size of the multiexponentiation,
and Lagrange basis polynomials with non-zero coefficients corresponding to exponents.

Decompose the logN = c · logm variables of r into c blocks, each of size logm, writing r = (r1, . . . , rc) ∈(
Flogm

)c
. Then any (logN)-variate Lagrange basis polynomial evaluated at r can be expressed as a product of

c “smaller” Lagrange basis polynomials, each defined over only logm variables, with the i’th such polynomial
evaluated at ri. There are only 2logm = m multilinear Lagrange basis polynomials over logm variables.
Moreover, there are now-standard algorithms that, for any input ri ∈ Flogm, run in time m and evaluate all
m of the (logm)-variate Lagrange basis polynomials at ri. Hence, in O(c ·m) total time, one can evaluate all
m of these basis polynomials at each ri, storing the results in a (write-once) memory M .

Given M , the time-optimal algorithm can evaluate any given log(N)-variate Lagrange basis polynomial at r
by performing c lookups into memory, one for each block ri, and multiplying together the results.14

Note that we chose to decompose the logN variables into c blocks of length logm (rather than more, smaller
blocks, or fewer, bigger blocks) to balance the runtime of the two phases of the algorithm, namely:

14This is also closely analogous to the behavior of tabulation hashing discussed earlier in the introduction, which is why we
chose to highlight this example from algorithm design.
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• The time required to “write to memory” the evaluations of all (logm)-variate Lagrange basis polynomials
at r1, . . . , rc.

• The time required to evaluate p(r) given the contents of memory.

In general, if we break the variables into c blocks of size ` = log(N)/c = log(m), the first phase will require
time c · 2` = cm, and the second will require time O(m · c).

How the Spark prover proves it correctly ran the above time-optimal algorithm. To enable an
untrusted prover to efficiently prove that it correctly ran the above algorithm to compute an evaluation of
a sparse polynomial g at r, Spark uses offline memory checking [BEG+91] to prove read-write consistency.
Furthermore, the contents of the memory is determined succinctly by r, so the verifier does not need any
commitments to the contents of the memory. Spark effectively forces the prover to commit to the “execution
trace” of the algorithm (which has size roughly c ·m, because the algorithm runs in time O(c) for each of
the m Lagrange basis polynomials with non-zero coefficient) plus c ·N1/c = O(c ·m). The latter term arises
because at the end of m operations, the offline memory-checking technique requires the prover to supply
certain access counts indicating the number of times a particular memory location was read during the course
of the protocol. Moreover, note that this memory has size c ·N1/c if the algorithm breaks the logN variables
into c blocks of size log(N)/c. As we will see later, this is why Lasso’s prover winds up cryptographically
committing to 3 · c ·m+ c ·N1/c field elements.

Remark 1. The cost incurred by Spark’s prover to “replay” to provide access counts at the very end of the
algorithm’s execution can be amortized over multiple sparse polynomial evaluations. In particular, if the
prover proves an evaluation of k sparse polynomials in the same number of variables, the aforementioned cost
in the offline memory checking is reused across all k sparse polynomials.

3.2 Surge: A generalization of Spark

Re-imagining Spark. A sparse polynomial commitment scheme can be viewed as having the prover commit
to an m-sparse vector u of length N , where m is the number of non-zero coefficients of the polynomial, and
N is the number of elements in a suitable basis. For univariate polynomials in the standard monomial basis,
N is the degree, m is the number of non-zero coefficients, and u is the vector of coefficients. For an `-variate
multilinear polynomial g over the Lagrange basis, N = 2`, m is the number of evaluation points over the
Boolean hypercube x ∈ {0, 1}` such that g(x) 6= 0, and u is the vector of evaluations of g at all evaluation
points over the hypercube {0, 1}`.

An evaluation query to g at input r returns the inner product of the sparse vector u with the dense vector t
consisting of the evaluations of all basis polynomials at r. In the multilinear case, for each S ∈ {0, 1}`, the
S’th entry of t is χS(r). In this sense, any sparse polynomial commitment scheme achieves the following: it
allows the prover to establish the value of the inner product 〈u, t〉 of a sparse (committed) vector u with a
dense, structured vector t.

Spark → Surge. To obtain Surge from Spark, we critically examine the type of structure in t that is
exploited by Spark, and introduce Surge as a natural generalization of Spark that supports any table t with
this structure. More importantly, we observe that many lookup tables critically important in practice (e.g.,
those that arise in Jolt) exhibit this structure.

In more detail, the Surge prover essentially establishes that it correctly ran a natural O(c·m)-time algorithm for
computing 〈u, t〉. This algorithm is a natural analog of the sparse polynomial evaluation algorithm described
in Section 3.1: it iterates over every non-zero entry ui of u, quickly computes ti = T [i] by performing one
lookup into each of O(c) “sub-tables” of size N1/c, and quickly “combines” the result of each lookup to obtain
ti and hence ui · ti. In this way, this algorithm takes just O(c ·m) time to compute the desired inner product∑
i : ui 6=0 ui · ti.

Details of the structure needed to apply Surge. In the case of Spark itself, the dense vector t is
simply the tensor product of smaller vectors, t1, . . . , tc, each of size N1/c. Specifically, Spark breaks r into c
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“chunks” r = (r1, . . . , rc) ∈
(
F(logN)/c

)c
, where r is the point at which the Spark verifier wants to evaluate the

committed polynomial. Then ti contains the evaluations of all ((logN)/c)-variate Lagrange basis polynomials
evaluated at ri. And for each S = (S1, . . . , Sc) ∈

(
{0, 1}(logN)/c

)c
, the S’th entry of t is:

c∏
i=1

ti(ri).

In general, Spark applies to any table vector t that is “decomposable” in a manner similar to the above.
Specifically, suppose that k ≥ 1 is an integer and there are α = k · c tables T1, . . . , Tα of size N1/c and
an α-variate multilinear polynomial g such that the following holds. For any r ∈ {0, 1}logN , write r =
(r1, . . . , rc) ∈

(
{0, 1}log(N)/c

)c
, i.e., break r into c pieces of equal size. Suppose that for every r ∈ {0, 1}logN ,

T [r] = g (T1[r1], . . . , Tk[r1], Tk+1[r2], . . . , T2k[r2], . . . , Tα−k+1[rc], . . . , Tα[rc]) . (6)

Simplifying slightly, Surge allows the prover to commit to a m-sparse vector u ∈ FN and prove that the inner
product of u and the table T (or more precisely the associated vector t) equals some claimed value. And the
cost for the prover is dominated by the following operations.

• Committing to 3 · α ·m+ α ·N1/c field elements, where 2 · α ·m+ α ·N1/c of the committed elements
are in the set

{0, 1, . . . ,max{m,N1/c} − 1},

and the remaining α ·m of them are elements of the sub-tables T1, . . . , Tα. For many lookup tables T ,
these elements are themselves in the set {0, 1, . . . , N1/c − 1}.

• Let b be the number of monomials in g. Then the Surge prover performs O(k · αN1/c) = O(b · c ·N1/c)
field operations. In many cases, the factor of b in the number of prover field operations can be removed.

We refer to tables that can be decomposed into sub-tables of size N1/c as per Equation (6) as having
Spark-only structure (SOS), or more simply as being decomposable.

4 Spark: Spartan’s sparse polynomial commitment scheme, with
a stronger security analysis

We prove a substantial strengthening of a result from Spartan [Set20, Lemma 7.6]. In particular, we prove
that in Spartan’s sparse polynomial commitment scheme, which is called Spark, one does not need to assume
that certain metadata associated with a sparse polynomial is committed honestly (in the case of Spartan, the
metadata is committed by the setup algorithm, so it was sufficient for its purposes). We thereby obtain the
first “standard” polynomial commitment scheme (i.e., meeting Definition 2.3) with prover costs linear in the
number of non-zero coefficients. We prove this result without any substantive changes to Spark.

For simplicity of presentation, we make a minor change that does not affect costs nor analysis: we have
the prover commit to metadata associated with the sparse polynomial at the time of proving an evaluation
rather than when the prover commits to the sparse polynomial (the metadata depends only on the sparse
polynomial, and in particular, it is independent of the point at which the sparse polynomial is evaluation, so
the metadata can be committed either in the commit phase or when proving an evaluation). Our text below
is adapted from an exposition of Spartan’s result by Golovnev et al. [GLS+21]. It is natural for the reader to
conceptualize the Spark sparse polynomial commitment scheme as a bespoke SNARK for a prover to prove it
correctly ran the sparse (logN)-variate multilinear polynomial evaluation algorithm described in Section 3.1
using c memories of size N1/c.

4.1 A (slightly) simpler result: c = 2

We begin proving a special case of the final result, the proof of which exhibits all of the ideas and techniques.
This special case (Theorem 1) describes a transformation from any commitment scheme for dense polynomials
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defined over logm variables to one for sparse multilinear polynomials defined over logN = 2 logm variables.
It is the bespoke SNARK mentioned above when using c = 2 memories of size N1/2.

The dominant costs for the prover in Spark is committing to 7 dense multilinear polynomials over log(m)-many
variables, and 2 dense multilinear polynomials over log(N1/c)-many variables. In dense `-variate multilinear
polynomial commitment schemes, the prover time is roughly linear in 2`. Hence, so long as m ≥ N1/c, the
prover time is dominated by the commitments to the 7 dense polynomials over log(m)-many variables. This
ensures that the prover time is linear in the sparsity of the committed polynomial as desired (rather than
linear in 22 logm = m2, which would be the runtime of applying a dense polynomial commitment scheme
directly to the sparse polynomial over 2 logm variables).

The full result. If we wish to commit to a sparse multilinear polynomial over ` variables, let N := 2`

denote the dimensionality of the space of `-variate multilinear polynomials. For any desired integer c ≥ 2, our
final, general, result replaces these two memories (each of size equal to N1/2) with c memories of size equal
to N1/c. Ultimately, the prover must commit to (3c+ 1) many dense (logm)-variate multilinear polynomials,
and c many dense (log(N1/c))-variate polynomials.

We begin with the simpler result where c equals 2 before stating and proving the full result.

Theorem 1 (Special case of Theorem 2 with c = 2). Let M = N1/2. Given a polynomial commitment scheme
for (log M)-variate multilinear polynomials with the following parameters (where M is a positive integer and
WLOG a power of 2):

– the size of the commitment is c(M);

– the running time of the commit algorithm is tc(M);

– the running time of the prover to prove a polynomial evaluation is tp(M);

– the running time of the verifier to verify a polynomial evaluation is tv(M);

– the proof size is p(M),

there exists a polynomial commitment scheme for multilinear polynomials over 2 log M = logN variables that
evaluate to a non-zero value at at most m locations over the Boolean hypercube {0, 1}2 log M, with the following
parameters:

– the size of the commitment is 7c(m) + 2c(M);

– the running time of the commit algorithm is O(tc(m) + tc(M));

– the running time of the prover to prove a polynomial evaluation is O(tp(m) + tc(M));

– the running time of the verifier to verify a polynomial evaluation is O(tv(m) + tv(M)); and

– the proof size is O(p(m) + p(M)).

Representing sparse polynomials with dense polynomials. Let D denote a (2 log M)-variate mul-
tilinear polynomial that evaluates to a non-zero value at at most m locations over {0, 1}2 log M. For any
r ∈ F2 log M, we can express the evaluation of D(r) as follows. Interpret r ∈ F2 log M as a tuple (rx, ry) in a
natural manner, where rx, ry ∈ Flog M. Then by multilinear Lagrange interpolation (Lemma 1), we can write

D(rx, ry) =
∑

(i,j)∈{0,1}log M×{0,1}log M : D(i,j)6=0

D(i, j) · ẽq(i, rx) · ẽq(j, ry). (7)

Claim 1. Let to-field be the canonical injection from {0, 1}log M to F and to-bits be its inverse. Given a
2 log M-variate multilinear polynomial D that evaluates to a non-zero value at at most m locations over
{0, 1}2 log M, there exist three (logm)-variate multilinear polynomials row, col, val such that the following holds
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for all rx, ry ∈ Flog M.

D(rx, ry) =
∑

k∈{0,1}logm
val(k) · ẽq(to-bits(row(k)), rx) · ẽq(to-bits(col(k)), ry). (8)

Moreover, the polynomials’ coefficients in the Lagrange basis can be computed in O(m) time.

Proof. Since D evaluates to a non-zero value at at most m locations over {0, 1}2 log M, D can be represented
uniquely with m tuples of the form (i, j,D(i, j)) ∈ ({0, 1}log M, {0, 1}log M,F). By using the natural injection
to-field from {0, 1}log M to F, we can view the first two entries in each of these tuples as elements of F
(let to-bits denote its inverse). Furthermore, these tuples can be represented with three m-sized vectors
R,C, V ∈ Fm, where tuple k (for all k ∈ [m]) is stored across the three vectors at the kth location in the
vector, i.e., the first entry in the tuple is stored in R, the second entry in C, and the third entry in V . Take
row as the unique MLE of R viewed as a function {0, 1}logm → F. Similarly, col is the unique MLE of C, and
val is the unique MLE of V . The claim holds by inspection since Equations (7) and (8) are both multilinear
polynomials in rx and ry and agree with each other at every pair rx, ry ∈ {0, 1}log M.

Conceptually, the sum in Equation (8) is exactly what the sparse polynomial evaluation algorithm described
in Section 3.1 computes term-by-term. Specifically, that algorithm (using c = 2 memories) filled up one
memory with the quantities ẽq(i, rx) as i ranges over {0, 1}log M (see Equation (7), and the other memory
with the quantities ẽq(j, rx), and then computed each term of Equation (8) via one lookup into each memory,
to the respective memory cells with (binary) indices to-bits(row(k)) and to-bits(col(k)), followed by two field
multiplications.

Commit phase. To commit to D, the committer can send commitments to the three (logm)-variate
multilinear polynomials row, col, val from Claim 1. Using the provided polynomial commitment scheme, this
costs O(m) finite field operations, and the size of the commitment to D is Oλ(c(m)).

Intuitively, the commit phase commits to a “dense” representation of the sparse polynomial, which simply lists
all the Lagrange basis polynomial with non-zero coefficients (each specified as an element in {0, . . . ,M− 1}2),
along with the associated coefficient. This is exactly the input to the sparse polynomial evaluation algorithm
described in Section 3.1.

In the evaluation phase described below, the prover proves that it correctly ran the sparse polynomial
evaluation algorithm sketched in Section 3.1 on the committed polynomial in order to evaluate it at the
requested evaluation point (rx, ry) ∈ F2 log M.

A first attempt at the evaluation phase. Given rx, ry ∈ Flog M, to prove an evaluation of a committed
polynomial, i.e., to prove that D(rx, ry) = v for a purported evaluation v ∈ F, consider the polynomial IOP
in Figure 2, where the polynomial IOP assumes that the verifier has oracle access to the three (logm)-variate
multilinear polynomial oracles that encode D (namely row, col, val).

Here, the oracles Erx and Ery should be thought of as the (purported) multilinear extensions of the values
returned by each memory reads that the algorithm of Section 3.1 performed into each of its two memories,
step-by-step over the course of its execution.

If the prover is honest, it is easy to see that it can convince the verifier about the correct of evaluations of D.
Unfortunately, the two oracles that the prover sends in the first step of the depicted polynomial IOP can be
completely arbitrary. To fix, this, V must additionally check that the following two conditions hold.

• ∀k ∈ {0, 1}logm, Erx(k) = ẽq(to-bits(row(k)), rx); and

• ∀k ∈ {0, 1}logm, Ery(k) = ẽq(to-bits(col(k)), ry).

A core insight of Spartan [Set20] is to check these two conditions using memory-checking techniques [BEG+91].
These techniques amount to an efficient randomized procedure to confirm that every memory read over the
course of an algorithm’s execution returns the value last written to that location.
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1. P → V : two (logm)-variate multilinear polynomials Erx and Ery as oracles. These polynomials are
purported to respectively equal the multilinear extensions of the functions mapping k ∈ {0, 1}logm
to ẽq(to-bits(row(k)), rx) and ẽq(to-bits(col(k)), ry).

2. V ↔ P: run the sum-check reduction to reduce the check that

v =
∑

k∈{0,1}logm
val(k) · Erx(k) · Ery(k)

to checking if the following hold, where rz ∈ Flogm is chosen at random by the verifier over the
course of the sum-check protocol:

• val(rz)
?
= vval;

• Erx(rz)
?
= vErx and Ery(rz)

?
= vEry . Here, vval, vErx , and vEry are values provided by the prover

at the end of the sum-check protocol.
3. V: check if the three equalities hold with an oracle query to each of val, Erx, Ery.

Figure 2: A first attempt at a polynomial IOP for revealing a requested evaluation of a (2 log(M))-variate
multilinear polynomial p over F such that p(x) 6= 0 for at most m values of x ∈ {0, 1}2 log(M).

We take a detour to introduce new results that we rely on here.

Detour: Offline memory checking. Recall that in the offline memory checking algorithm of [BEG+91],
a trusted checker issues operations to an untrusted memory. For our purposes, it suffices to consider only
operation sequences in which each memory address is initialized to a certain value, and all subsequent
operations are read operations. To enable efficient checking using multiset-fingerprinting techniques, the
memory is modified so that in addition to storing a value at each address, the memory also stores a timestamp
with each address. Moreover, each read operation is followed by a write operation that updates the timestamp
associated with that address (but not the value stored there).

In prior descriptions of offline memory checking [BEG+91, CDD+03, SAGL18], the trusted checker maintains
a single timestamp counter and uses it to compute write timestamps, whereas in Spark and our description
below, the trusted checker does not use any local timestamp counter; rather, each memory cell maintains its
own counter, which is incremented by the checker every time the cell is read.15 For this reason, we depart
from the standard terminology in the memory-checking literature and henceforth refer to these quantities as
counters rather than timestamps.

The memory-checking procedure is captured in the codebox below.

Local state of the checker: Two sets: RS and WS, which are initialized as follows.16 RS = {}, and for an
M-sized memory, WS is initialized to the following set of tuples: for all i ∈ [N1/c], the tuple (i, vi, 0) is
included in WS, where vi is the value stored at address i, and the third entry in the tuple, 0, is an “initial
count” associated with the value (intuitively capturing the notion that when vi was written to address i, it
was the first time that address was accessed). Here, [M] denotes the set {0, 1, . . . ,M− 1}.

Read operations and an invariant. For a read operation at address a, suppose that the untrusted memory
responds with a value-count pair (v, t). Then the checker updates its local state as follows:

15The same timestamp update procedure was used in Spartan’s use of Spark [Set20, §7.2.3]. The purpose was to achieve a
concrete efficiency benefit. In particular, Spartan used a separate timestamp counter for each cell and considered the case where
all read timestamps were guaranteed to be computed honestly. In this case, the write timestamp is the result of incrementing an
honestly returned read timestamp, which allows Spartan to not explicitly materialize write timestamps. Here, we are interested
in the case where read timestamps themselves are not computed honestly.

16The checker in [BEG+91] maintains a fingerprint of these sets, but for our exposition, we let the checker maintain full sets.
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1. RS← RS ∪ {(a, v, t)};

2. store (v, t+ 1) at address a in the untrusted memory; and

3. WS←WS ∪ {(a, v, t+ 1)}.

The following claim captures the invariant maintained on the sets of the checker:

Claim 2. Let F be a prime order field. Assuming that the domain of counts is F and that m (the number of
reads issued) is smaller than the field characteristic |F|. Let WS and RS denote the multisets maintained by
the checker in the above algorithm at the conclusion of m read operations. If for every read operation, the
untrusted memory returns the tuple last written to that location, then there exists a set S with cardinality M
consisting of tuples of the form (k, vk, tk) for all k ∈ [M] such that WS = RS ∪ S. Moreover, S is computable
in time linear in M.

Conversely, if the untrusted memory ever returns a value v for a memory call k ∈ [M] such v does not equal
the value initially written to cell k, then there does not exist any set S such that WS = RS ∪ S.

Proof. If for every read operation, the untrusted memory returns the tuple last written to that location, then
it is easy to see the existence of the desired set S. It is simply the current state of the untrusted memory
viewed as the set of address-value-count tuples.

We now prove the other direction in the claim. For notational convenience, let WSi and RSi (0 ≤ i ≤ m)
denote the multisets maintained by the trusted checker at the conclusion of the ith read operation (i.e., WS0

and RS0 denote the multisets before any read operation is issued). Suppose that there is some read operation
i that reads from address k, and the untrusted memory responds with a tuple (v, t) such that v differs from
the value initially written to address k. This ensures that (k, v, t) ∈ RSj for all j ≥ i, and in particular that
(k, v, t) ∈ RS, where recall that RS is the read set at the conclusion of the m read operations. Hence, to
ensure that there exists a set S such that RS ∪ S = WS at the conclusion of the procedure (i.e., to ensure
that RS ⊆WS), there must be some other read operation during which address k is read, and the untrusted
memory returns tuple (k, v, t− 1).17 This is because we have assumed that the value v was not written in
the initialization phase, and outside of the initialization phase, the only way that the checker writes (k, v, t)
to memory is if a read to address k returns tuple (v, t− 1).

Accordingly, the same reasoning as above applies to tuple (k, v, t− 1). That is, to ensure that RS = WS at
the conclusion of the procedure, there must be some other read operation at which address k is read, and the
untrusted memory returns tuple (k, v, t− 2). And so on. We conclude that for every field element in F of
the form t− i for i = 1, 2, . . . , char(F), there is some read operation that returns (k, v, t′). Since there are m
many read operations and the characteristic of field is greater than m, we obtain a contradiction.

Remark 2. Claim 2 assumes that the characteristic of the field is at least the number of read operations (if
this is not the case, there is no contradiction in the conclusion that tuples of the form (v, t− i) where written
for all i ∈ 1, . . . , char(F)). We can nonetheless work over fields of smaller characteristic by modifying the
procedure by which the checker updates the counts returned by each read operation. Specifically, rather than
initializing counts to 0 and replacing a count t returned by a read operation with t+ 1, we instead initialize
the counts to 1, and replace a returned count t with t · g, where g is a fixed generator of the multiplicative
group of the field F. With this modification, Claim 2 applies so long as |F| > m.

Remark 3. The proof of Claim 2 implies that, if the checker ever performs a read to an “invalid” memory
cell k, meaning a cell indexed by k 6∈ [M], then regardless of the value and timestamp returned by the untrusted
prover in response to that read, there does not exist any set S such that WS = RS ∪ S.

17Recall here that counter arithmetic is done over F, i.e., t and t− 1 are in F.

19



Counter polynomials. To aid the polynomial evaluation proof of the sparse polynomial the prover commits
to additional multilinear polynomials beyond Erx and Ery. We now describe these additional polynomials and
how they are constructed.

Observe that given the size M of memory and a list of m addresses involved in read operations, one can
compute two vectors Cr ∈ Fm, Cf ∈ FM defined as follows. For k ∈ [m], Cr[k] stores the count that would
have been returned by the untrusted memory if it were honest during the kth read operation. Similarly, for
j ∈ [M], let Cf [j] store the final count stored at memory location j of the untrusted memory (if the untrusted
memory were honest) at the termination of the m read operations. Computing these three vectors requires
computation comparable to O(m) operations over F.

Let read ts = C̃r,write cts = C̃r + 1, final cts = C̃f . We refer to these polynomials as counter polynomials,
which are unique for a given memory size M and a list of m addresses involved in read operations.

The actual evaluation proof. To prove the evaluation of a given a (2 log M)-variate multilinear poly-
nomial D that evaluates to a non-zero value at at most m locations over {0, 1}2 log M, the prover sends
the following polynomials in addition to Erx and Ery: two (logm)-variate multilinear polynomials as ora-
cles (read tsrow, read tscol), and two (log M)-variate multilinear polynomials (final ctsrow, final ctscol), where
(read tsrow, final ctsrow) and (read tscol, final ctscol) are respectively the counter polynomials for the m addresses
specified by row and col over a memory of size M.

After that, in addition to performing the polynomial IOP depicted earlier in the proof (Figure 2), the core
idea is to check if the two oracles sent by the prover satisfy the conditions identified earlier using Claim 2.

Claim 3. Given a (2 log M)-variate multilinear polynomial, suppose that (row, col, val) denote multilinear
polynomials committed by the commit algorithm. Furthermore, suppose that

(Erx, Ery, read tsrow, final ctsrow, read tscol, final ctscol)

denote the additional polynomials sent by the prover at the beginning of the evaluation proof.

For any rx ∈ Flog M, suppose that

∀k ∈ {0, 1}logm, Erx(k) = ẽq(to-bits(row(k)), rx). (9)

Then the following holds: WS = RS ∪ S, where

• WS = {(to-field(i), ẽq(i, rx), 0) : i ∈ {0, 1}log(M)} ∪ {(row(k), Erx(k),write ctsrow(k) = read tsrow(k) +
1): k ∈ {0, 1}logm};

• RS = {(row(k), Erx(k), read tsrow(k)) : k ∈ {0, 1}logm}; and

• S = {(to-field(i), ẽq(i, rx), final ctsrow(i)) : i ∈ {0, 1}log(M)}.

Meanwhile, if Equation (9) does not hold, then there is no set S such that WS = RS ∪ S, where WS and RS
are defined as above.

Similarly, for any ry ∈ Flog M, checking that ∀k ∈ {0, 1}logm, Ery(k) = ẽq(to-bits(col(k)), ry) is equivalent (in
the sense above) to checking that WS′ = RS′ ∪ S′, where

• WS′ = {(to-field(j), ẽq(j, ry), 0) : j ∈ {0, 1}log(M)} ∪ {(col(k), Ery(k),write ctscol(k) = read tscol(k) +
1): k ∈ {0, 1}logm};

• RS′ = {(col(k), Ery(k), read tscol(k)) : k ∈ {0, 1}logm}; and

• S′ = {(to-field(j), ẽq(j, ry), final ctscol(j)) : j ∈ {0, 1}log(M)}.

Proof. The result follows from an application of the invariant in Claim 2.

Here, we clarify the following subtlety. The expression to-bits(row(k)) appearing in Equation (9) is not
defined if row(k) is outside of [M] for any k ∈ {0, 1}logm. But in this event, Remark 3 nonetheless implies the
conclusion of the theorem, namely that there is no set S such that WS = RS ∪ S. The analogous conclusion
holds by the same reasoning if col(k) is outside of [M] for any k ∈ {0, 1}logm.
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There is no direct way to prove that the checks on sets in Claim 3 hold. Instead, we rely on public-coin,
multiset hash functions to compress RS, WS, and S into a single element of F each. Specifically:

Claim 4 ([Set20]). Given two multisets A,B where each element is from F3, checking that A = B is
equivalent to checking the following, except for a soundness error of O(|A|+ |B|)/|F|) over the choice of γ, τ :
Hτ,γ(A) = Hτ,γ(B), where Hτ,γ(A) =

∏
(a,v,t)∈A (hγ(a, v, t)− τ), and hγ(a, v, t) = a · γ2 + v · γ + t. That is,

if A = B, Hτ,γ(A) = Hτ,γ(B) with probability 1 over randomly chosen values τ and γ in F, while if A 6= B,
then Hτ,γ(A) = Hτ,γ(B) with probability at most O(|A|+ |B|)/|F|).

Intuitively, Claim 4 gives an efficient randomized procedure for checking whether two sequences of tuples
are permutations of each other. First, the procedure Reed-Solomon fingerprints each tuple (see [Tha22,
Section 2.1] for an exposition). This is captured by the function hγ and intuitively replaces each tuple
with a single field element, such that distinct tuples are unlikely to collide. Second, the procedure applies
a permutation-independent fingerprinting procedure Hr,γ to confirm that the resulting two sequences of
fingerprints are permutations of each other.

We are now ready to depict a polynomial IOP for proving evaluations of a committed sparse multilinear
polynomial. Given rx, ry ∈ Flog M, to prove that D(rx, ry) = v for a purported evaluation v ∈ F, consider
the polynomial IOP given in Figure 3, which assumes that the verifier has an oracle access to multilinear
polynomial oracles that encode D (namely, row, col, val)

Completeness. Perfect completeness follows from perfect completeness of the sum-check protocol and the
fact that the multiset equality checks using their fingerprints hold with probability 1 over the choice of τ, γ if
the prover is honest.

Soundness. Applying a standard union bound to the soundness error introduced by probabilistic multiset
equality checks with the soundness error of the sum-check protocol [LFKN90], we conclude that the soundness
error for the depicted polynomial IOP as at most O(m)/|F|.

Round and communication complexity. There are three invocations of the sum-check protocol. First,
the sum-check protocol is applied on a polynomial with logm variables where the degree is at most 3 in each
variable, so the round complexity is O(logm) and the communication cost is O(logm) field elements. Second,
four sum-check-based “grand product” protocols are computed in parallel. Two of the grand products are
over vectors of size M and the remaining two are over vectors of size m. Third, the depicted IOP runs four
additional “grand products”, which incurs the same costs as above. In total, with the protocol of [SL20,
Section 6] for grand products, the round complexity of the depicted IOP is Õ(logm + log(N)) and the
communication cost is Õ(logm+ logN) field elements, where the Õ notation hides doubly-logarithmic factors.
The prover commits to an extra O(m/ log3m) field elements.

Verifier time. The verifier’s runtime is dominated by its runtime in the grand product sum-check reductions,
which is Õ(logm) field operations.

Prover Time. Using linear-time sum-checks [Tha13] in all three sum-check reductions (and using the
linear-time prover in the grand product protocol [Tha13, SL20]), the prover’s time is O(N) finite field
operations for unstructured tables.

Finally, to prove Theorem 1, applying the compiler of [BFS20] to the depicted polynomial IOP with the
given dense polynomial commitment primitive, followed by the Fiat-Shamir transformation [FS86], provides
the desired non-interactive argument of knowledge for proving evaluations of committed sparse multilinear
polynomials, with efficiency claimed in the theorem statement. Appendix E provides additional details of the
grand product argument.
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//During the commit phase, P has committed to three (logm)-variate multilinear polynomials row, col, val.
1. P → V: four (logm)-variate multilinear polynomials Erx, Ery, read tsrow, read tscol and two (log M)-

variate multilinear polynomials final ctsrow, final ctscol.
2. Recall that Claim 1 (see Equation (8)) shows that D(rx, ry) =

∑
k∈{0,1}logm val(k) · Erx(k) · Ery(k)

assuming that
• ∀k ∈ {0, 1}logm, Erx(k) = ẽq(to-bits(row(k)), rx); and
• ∀k ∈ {0, 1}logm, Ery(k) = ẽq(to-bits(col(k)), ry).

Hence, V and P apply the sum-check protocol to the polynomial val(k) · Erx(k) · Ery(k), which
reduces the check that v =

∑
k∈{0,1}logm val(k) · Erx(k) · Ery(k) to checking that the following

equations hold, where rz ∈ Flogm chosen at random by the verifier over the course of the sum-check
protocol:

• val(rz)
?
= vval; and

• Erx(rz)
?
= vErx and Ery(rz)

?
= vEry . Here, vval, vErx and vEry are values provided by the prover

at the end of the sum-check protocol.
3. V: check if the three equalities above hold with one oracle query each to each of val, Erx, Ery.
4. // The following checks if Erx is well-formed as per the first bullet in Step 2 above.
5. V → P: τ, γ ∈R F.
6. V ↔ P: run a sum-check-based protocol for “grand products” ([Tha13, Proposition 2] or [SL20,

Section 5 or 6]) to reduce the check that Hτ,γ(WS) = Hτ,γ(RS) · Hτ,γ(S), where RS,WS, S
are as defined in Claim 3 and H is defined in Claim 4 to checking if the following hold, where
rM ∈ Flog M, rm ∈ Flogm are chosen at random by the verifier over the course of the sum-check
protocol:

• ẽq(rM, rx)
?
= veq

• Erx(rm)
?
= vErx

• row(rm)
?
= vrow; read tsrow(rm)

?
= vread tsrow ; and final ctsrow(rM)

?
= vfinal ctsrow

7. V : directly check if the first equality holds, which can be done with O(log M) field operations; check
the remaining equations hold with an oracle query to each of Erx, row, read tsrow, final ctsrow.

8. // The following steps check if Ery is well-formed as per the second bullet in Step 2 above.
9. V → P: τ ′, γ′ ∈R F.

10. V ↔ P: run a sum-check-based reduction for “grand products” ([Tha13, Proposition2] or [SL20,
Sections 5 and 6]) to reduce the check thatHτ ′,γ′(WS′) = Hτ ′,γ′(RS′)·Hτ ′,γ′(S′), where RS′,WS′, S′

are as defined in Claim 3 and H is defined in Claim 4 to checking if the following hold, where
r′M ∈ Flog M, r′m ∈ Flogm are chosen at random by the verifier in the sum-check protocol:

• ẽq(r′M, ry)
?
= v′eq

• Ery(r′m)
?
= vEry

• col(r′m)
?
= vcol; read tscol(r

′
m)

?
= vread tscol

; and final ctscol(r
′
M)

?
= vfinal ctscol

11. V : directly check if the first equality holds, which can be done with O(log M) field operations; check
the remaining equations hold with an oracle query to each of Ery, col, read tscol, final ctscol.

Figure 3: Evaluation procedure of the Spark sparse polynomial commitment scheme.
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Additional discussion and intuition. As previously discussed, the protocol in Figure 3 allows the prover
to prove that it correctly ran the sparse polynomial evaluation algorithm described in Section 3.1 on the
committed representation of the sparse polynomial. The core of the protocol lies in the memory-checking
procedure, which enables the untrusted prover to establish that it produced the correct value upon every
one of the algorithm’s reads into the c = 2 memories of size M = N1/2. Intuitively, the values that the
prover cryptographically commits to in the protocol are simply the values and counters returned by the
aforementioned read operations (including a final “read pass” over both memories, which is required by the
offline memory-checking procedure).

A key and subtle aspect of the above is that the prover does not have to cryptographically commit to the
values written to memory in the algorithm’s first phase, when it initializes the two memories (aka lookup
tables, albeit dynamically determined by the evaluation point (rx, ry)), of size M = N1/2. This is because
these lookup tables are MLE-structured, meaning that the verifier can evaluate the multilinear extension of
these tables on its own. The whole point of cryptographically committing to these values is to let the verifier
evaluate the multilinear extension thereof at a randomly chosen point in the grand product argument. Since
the verifier can perform this evaluation quickly on its own, there is no need for the prover in the protocol of
Figure 3 to commit to these values.

4.2 The general result

Theorem 1 gives a commitment scheme for m-sparse multilinear polynomials over logN = 2 log(M) many
variables, in which the prover commits to 7 dense multilinear polynomials over logm many variables, and 2
dense polynomials over log(M) many variables.

Suppose we want to support sparse polynomials over c log(M) variables for constant c > 2, while ensuring
that the prover still only commits to 3c+ 1 many dense multilinear polynomials over logm many variables,
and c many over log(N1/c) many variables. We can proceed as follows.

The function eq and its tensor structure. Recall that eqs : {0, 1}s×{0, 1}s → {0, 1} takes as input two
vectors of length s and outputs 1 if and only if the vectors are equal. (In this section, we find it convenient
to make explicit the number of variables over which eq is defined by including a subscript s.) Recall from
Equation (1) that ẽqs(x, e) =

∏s
i=1 (xiei + (1− xi)(1− ei)) .

Equation (7) expressed the evaluation D̃(rx, ry) of a sparse 2 log(M)-variate multilinear polynomial D̃ as

D̃(rx, ry) =
∑

(i,j)∈{0,1}log(M)×{0,1}log(M)

D(i, j) · ẽqlog(M)(i, rx) · ẽqlog(M)(j, ry). (10)

The last two factors on the right hand side above have effectively factored ẽq2 log(M) ((i, j), (rx, ry)) as the
product of two terms that each test equality over log(M) many variables, namely:

ẽq2 log(M) ((i, j), (rx, ry)) = ẽqlog(M)(i, rx) · ẽqlog(M)(j, ry).

Within the sparse polynomial commitment scheme, this ultimately led to checking two different memories,
each of size M, one of which we referred to as the “row” memory, and one as the “column” memory. For each
memory checked, the prover had to commit to three (logm)-variate polynomials, e.g., Erx, row, read tsrow,
and one log(M)-variate polynomial, e.g., final ctsrow.

Supporting logN = c logM variables rather than 2 logM . If we want to support polynomials over
c log(M) variables for c > 2, we simply factor ẽqc log(M) into a product of c terms that test equality over log(M)
variables each. For example, if c = 3, then we can write:

ẽq3 log(M) ((i, j, k), (rx, ry, rz)) = ẽqlog(M)(i, rx) · ẽqlog(M)(j, ry) · ẽqlog(M)(k, rz).

Hence, if D is a (3 logM)-variate polynomial, we obtain the following analog of Equation (10):
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D̃(rx, ry, rz)=
∑

(i,j,k)∈{0,1}log(M)×{0,1}log(M)×{0,1}log(M)

D(i, j, k) · ẽqlog(M)(i, rx) · ẽqlog(M)(j, ry) · ẽqlog(M)(k, rz).

(11)

Based on the above equation, straightforward modifications to the sparse polynomial commitment scheme lead
to checking c different untrusted memories, each of size M, rather than two. For example, when c = 3, the first
memory stores all evaluations of ẽqlog(M)(i, rx) as i ranges over {0, 1}logm, the second stores ẽqlog(M)(j, ry) as

j ranges over {0, 1}logm, and the third stores ẽqlog(M)(k, rz) as k ranges over {0, 1}logm. These are exactly

the contents of the three lookup tables of size N1/c used by the sparse polynomial evaluation algorithm of
Section 3.1 when c = 3.

For each memory checked, the prover has to commit to three multilinear polynomials defined over log(m)-many
variables, and one defined over log(M) = log(N)/c variables. We obtain the following theorem.

Theorem 2. Given a polynomial commitment scheme for (log M)-variate multilinear polynomials with the
following parameters (where M is a positive integer and WLOG a power of 2):

– the size of the commitment is c(M);

– the running time of the commit algorithm is tc(M);

– the running time of the prover to prove a polynomial evaluation is tp(M);

– the running time of the verifier to verify a polynomial evaluation is tv(M);

– the proof size is p(M),

there exists a polynomial commitment scheme for (c log M)-variate multilinear polynomials that evaluate to a
non-zero value at at most m locations over the Boolean hypercube {0, 1}c log M, with the following parameters:

– the size of the commitment is (3c+ 1)c(m) + c · c(M);

– the running time of the commit algorithm is O (c · (tc(m) + tc(M)));

– the running time of the prover to prove a polynomial evaluation is O (c (tp(m) + tc(M)));

– the running time of the verifier to verify a polynomial evaluation is O (c (tv(m) + tv(M)));

– the proof size is O (c (p(m) + p(M))).

Many polynomial commitment schemes have efficient batching properties for evaluation proofs. For such
schemes, the factor c can be omitted in the final three bullet points of Theorem 2 (i.e., prover and verifier
costs for verifying polynomial evaluation do not grow with c).

4.3 Specializing the Spark sparse commitment scheme to Lasso

In Lasso, if the prover is honest then the sparse polynomial commitment scheme is applied to the multilinear
extension of a matrix M with m rows and N columns, where m is the number of lookups and N is the size
of the table. If the prover is honest then each row of M is a unit vector.

In fact, we require the commitment scheme to enforce these properties even when the prover is potentially
malicious. Achieving this simplifies the commitment scheme and provides concrete efficiency benefits. It also
keeps Lasso’s polynomial IOP simple as it does not need additional invocations of the sum-check protocol to
prove that M satisfies these properties.

First, the multilinear polynomial val(k) is fixed to 1, and it is not committed by the prover. Recall from Claim
1 that val(k) extends the function that maps a bit-vector k ∈ {0, 1}logm to the value of the k’th non-zero
evaluation of the sparse function. Since M is a {0, 1}-valued matrix, val(k) is just the constant polynomial
that evaluates to 1 at all inputs.
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//During the commit phase applied to the multilinear extension M̃ of m×N matrix M with each row
a unit vector, P has committed to c different `-variate multilinear polynomials dim1, . . . ,dimc, where
` = log(N1/c). These are analogs of the polynomials row and col from Figure 3. dimi is purported to
provide the indices of the cells of the i’th memory that are read by the sparse polynomial evaluation
algorithm of Section 3.1. Note that these indices depend only on the the locations of the non-zero entries
of M̃ .

//If P is honest, then each dimi maps {0, 1}logm to {0, . . . , N1/c − 1}. For each j ∈ {0, 1}logm,
(dim1(j), . . . ,dimc(j)) is interpreted as specifying the identity of the unique non-zero entry of row j of
M .

//V requests to evaluate M̃ at input (r, r′) where r′ = (r′1, . . . , r
′
c) ∈

(
F`
)c

.

1. P → V: 2c different (logm)-variate multilinear polynomials E1, . . . , Ec, read ts1, . . . read tsc and c
different `-variate multilinear polynomials final cts1, . . . , final ctsc.
//If P is honest, then read ts1, . . . read tsc and final cts1, . . . , final ctsc map {0, 1}logm to {0, . . . ,m−
1}, as these are “counter polynomials” for each of the c memories.
//If P is honest, then E1, . . . , Ec contain the values returned by each read operation that the sparse
polynomial evaluation algorithm of Section 3.1 makes to each of the c memories.

2. Recall (Equation 11) that M̃(r, r′) =
∑
k∈{0,1}logm ẽq(r, k) ·

∏c
i=1Ei(k), assuming that

• ∀k ∈ {0, 1}logm, Ei(k) = ẽq(to-bits(dimi(k)), r′i).
Hence, V and P apply the sum-check protocol to the polynomial g(k) := ẽq(r, k) ·

∏c
i=1Ei(k),

which reduces the check that v =
∑
k∈{0,1}logm ẽq(r, k)

∏c
i=1Ei(k) to checking that the following

equations hold, where rz ∈ Flogm chosen at random by the verifier over the course of the sum-check
protocol:

• Ei(rz)
?
= vEi for i = 1, . . . , c. Here, vE1 , . . . , vEc are values provided by the prover at the end

of the sum-check protocol.
3. V: check if the above equalities hold with one oracle query to each Ei.

// The following checks if Ei is well-formed as per the first bullet in Step 2 above.
4. V → P: τ, γ ∈R F.

//In practice, one would apply a single sum-check protocol to a random linear combination of the
below polynomials. For brevity, we describe the protocol as invoking c independent instances of
sum-check.

5. V ↔ P: For i = 1, . . . , c, run a sum-check-based protocol for “grand products” ([Tha13, Proposi-
tion2] or [SL20, Section 5 or 6]) to reduce the check that Hτ,γ(WS) = Hτ,γ(RS) · Hτ,γ(S), where
RS,WS, S are as defined in Claim 3 and H is defined in Claim 4 to checking if the following hold,
where r′′i ∈ F`, r′′′i ∈ Flogm are chosen at random by the verifier over the course of the sum-check
protocol:

• Ei(r
′′′
i )

?
= vEi

• dimi(r
′′′
i )

?
= vi; read tsi(r

′′′
i )

?
= vread tsi ; and final ctsi(r

′′
i )

?
= vfinal ctsrow

6. V: check that the remaining equations hold with an oracle query to each of
Ei,dimi, read tsi, final ctsi.

Figure 4: Evaluation procedure of the Spark sparse polynomial commitment scheme, optimized for its
application to M in Lasso.
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Second, for any k = (k1, . . . , klogm) ∈ {0, 1}logm, the k’th non-zero entry of M is in row to-field(k) =∑logm
j=1 2j−1 · kj . Hence, in Equation (8) of Claim 1, to-bits(row(k)) is simply k.18 This means that Erx(k) =

ẽq(k, rx), which the verifier can evaluate on its own in logarithmic time. With this fact in hand, the prover
does not commit to Erx nor prove that it is well-formed.

In terms of costs in the resulting sparse polynomial commitment scheme applied to M̃ , this effectively removes
the contribution of the first logm variables of M̃ to the costs. Hence, the costs are that of applying the
commitment scheme to an m-sparse log(N)-variate polynomial (with val fixed to 1).

This means that, setting c = 2 for illustration, the prover commits to 6 multilinear polynomials with log(m)
variables each and to two multilinear polynomials with (1/2) logN variables each.

Figure 4 describes Spark specialized for Lasso to commit to M̃ . The prover commits to 3c dense (log(m))-
variate multilinear polynomials, called dim1, . . . ,dimc (the analogs of the row and col polynomials of Section
4.1), E1, . . . , Ec, and read ts1, . . . , read tsc, as well as c dense multilinear polynomials in log(N1/c) = log(N)/c
variables, called final cts1, . . . , final ctsc. Each dimi is purported to be the memory cell from the i’th memory
that the sparse polynomial evaluation algorithm (§3.1) reads at each of its m timesteps, E1, . . . , Ec the
values returned by those reads, and read ts1, . . . , read tsc the associated counts. final cts1, . . . , final ctsc are
purported to be to counts returned by the memory checking procedure’s final pass over each of the c memories.

If the prover is honest, then dim1, . . . ,dimc each map {0, 1}logm to {0, . . . , N1/c−1}, and read ts1, . . . , read tsc
each map {0, 1}logm to {0, . . . ,m− 1} and final cts1, . . . , final ctsc each map {0, 1}logm to {0, . . . ,m− 1}. In
fact, for any integer j > 0, at most m/j out of the m evaluations of each counter polynomial read tsi and
final ctsi can be larger than j.

5 Surge: A generalization of Spark, providing Lasso

The technical core of the Lasso lookup argument is Surge, a generalization of Spark. In particular, Lasso is
simply a straightforward use of Surge.

Recall from Section 4 and Figure 4 that Spark allows the untrusted Lasso prover to commit to M̃ , purported
to be the multilinear extension of an m × N matrix M , with each row equal to a unit vector, such that
M · t = a. The commitment phase of Surge is same as that of Spark. Surge generalizes Spark in that the
Surge prover proves a larger class of statements about the committed polynomial M̃ (Spark focused only on

proving evaluations of the sparse polynomial M̃).

Overview of Lasso. In Lasso, after committing to M̃ , the Lasso verifier picks a random r ∈ Flogm and
seeks to confirm that ∑

j∈{0,1}logN
M̃(r, j) · t(j) = ã(r). (12)

Indeed, if M · t and a are the same vector, then Equation (12) holds for every choice of r, while if Mt 6= a,
then by the Schwartz-Zippel lemma, Equation (12) holds with probability at most logm

|F| . So up to soundness

error logm
|F| , checking that Mt = a is equivalent to checking that Equation (12) holds.

In Lasso, the verifier obtains ã(r) via the polynomial commitment to ã. Then, the prover establishes Equation
(12) using Surge. Specifically, Surge generalizes Spark’s procedure for generating evaluation proofs, to directly
produce a proof as to the value of the left hand side of Equation (12). Essentially, the proof proves that the
prover correctly ran a (very efficient) algorithm for evaluating the left hand side of Equation (12).

A roughly O(αm)-time algorithm for computing the LHS of Equation (12). From Equation (7),

M̃(r, y) =
∑

(i,j)∈{0,1}logm+logN

Mi,j · ẽq(i, r) · ẽq(j, y).

18More precisely, this holds if we define rx to be in Flogm and ry to be in FlogN , rather than defining them both to be in
FlogM = F(1/2)(logm+logn).
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Hence, letting nz(i) denote the unique column in row i of M that contains a non-zero value (namely, the
value 1), the left hand side of Equation (12) equals∑

i∈{0,1}logm
ẽq(i, r) · T [nz(i)]. (13)

Suppose that T is a SOS table. This means that there is an integer k ≥ 1 and α = k · c tables T1, . . . , Tα of
size N1/c, as well as an α-variate multilinear polynomial g such that the following holds. Suppose that for
every r = (r1, . . . , rc) ∈

(
{0, 1}log(N)/c

)c
,

T [r] = g (T1[r1], . . . , Tk[r1], Tk+1[r2], . . . , T2k[r2], . . . , Tα−k+1[rc], . . . , Tα[rc]) . (14)

For each i ∈ {0, 1}logm, decompose nz(i) and (nz1(i), . . . , nzc(i)) ∈ [N1/c]c. Then Expression (13) equals∑
i∈{0,1}logm

ẽq(i, r)·g (T1[nz1(i)], . . . , Tk[nz1(i)], Tk+1[nz2(i)], . . . , T2k[nz2(i)], . . . , Tα−k+1[nzc(i)], . . . , Tα[nzc(i)]) .

(15)

The algorithm to compute Expression (15) simply initializes all tables T1, . . . , Tα, then iterates over every
i ∈ {0, 1}m and computes the i’th term of the sum with a single lookup into each table (of course, the
algorithm evaluates g at the results of the lookups into T1, . . . , Tα, and multiplies the result by ẽq(i, r)).

Description of Surge. The commitment to M̃ in Surge consists of commitments to cmultilinear polynomials
dim1, . . . ,dimc, each over logm variables. dimi is purported to be the multilinear extension of nzi.

The verifier chooses r ∈ {0, 1}logm at random and requests that the Surge prover prove that the committed

polynomial M̃ satisfy Equation (13). The prover does so by proving it ran the aforementioned algorithm
for evaluating Expression (15). Following the memory-checking procedure in Section 4, with each table
Ti : i = 1, . . . , α viewed as a memory of size N1/c), this entails committing for each i to log(m)-variate
multilinear polynomials Ei and read tsi (purported to capture the value and count returned by each of the
m lookups into Ti) and a log(N1/c)-variate multilinear polynomial final ctsi (purported to capture the final
count for each memory cell of Ti.)

Let t̃i be the mutlilinear extension of the vector ti whose j’th entry is Ti[j]. The sum-check protocol is applied
to compute ∑

j∈{0,1}logm
ẽq(r, j) · g (E1(j), . . . , Eα(j)) . (16)

At the end of the sum-check protocol, the verifier needs to evaluate ẽq(r, r′) ·g(E1(r′), . . . , Eα(r′)) at a random
point r′ ∈ Flogm, which it can do with one evaluation query to each Ei (the verifier can compute ẽq(r, r′) on
its own in O(logm) time).

The verifier must still check that each Ei is well-formed, in the sense that Ei(j) equals Ti[dimi(j)] for all
j ∈ {0, 1}logm. This is done exactly as in Spark to confirm that for each of the α memories, WS = RS ∪ S
(see Claims 3 and 4 and Figure 4). At the end of this procedure, for each i = 1, . . . , α, the verifier needs to
evaluate each of dimi, read tsi, final ctsi at a random point, which it can do with one query to each. The
verifier also needs to evaluate the multilinear extension t̃i of each sub-table Ti for each i = 1, . . . , α at a single
point. T being SOS guarantees that the verifier can compute each of these evaluations in O(log(N)/c) time.

Prover time. Besides committing to the polynomials dimi, Ei, read tsi, final ctsi for each of the α memories
and producing one evaluation proof for each (in practice, these would be batched), the prover must compute
its messages in the sum-check protocol used to compute Expression (16) and the grand product arguments
(which can be batched). Using the linear-time sum-check protocol [CTY11, Tha13, Set20], the prover can
compute its messages in the sum-check protocol used to compute Expression (16) with O(b · k · α ·m) field
operations, where recall that α = k · c and b is the number of monomials in g. If k = O(1), then this is
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T is an SOS lookup table of size N , meaning there are α = kc tables T1, . . . , Tα, each of size N1/c, such
that for any r ∈ {0, 1}logN , T [r] = g(T1[r1], . . . , Tk[r1], Tk+1[r2], . . . , T2k[r2], . . . , Tα−k+1[rc], . . . , Tα[rc]).
During the commit phase, P commits to c multilinear polynomials dim1, . . . ,dimc, each over logm
variables. dimi is purported to provide the indices of T(i−1)k+1, . . . , Tik the natural algorithm computing∑

i∈{0,1}logm ẽq(i, r) · T [nz[i]] (see Equation (15)).

//V requests 〈u, t〉, where the ith entry of t is T [i] and the yth entry of u is M̃(r, y).

1. P → V: 2α different (logm)-variate multilinear polynomials E1, . . . , Eα, read ts1, . . . read tsα and
α different (log(N)/c)-variate multilinear polynomials final cts1, . . . , final ctsα.
//Ei is purported to specify the values of each of the m reads into Ti.
//read ts1, . . . read tsα and final cts1, . . . , final ctsα, are “counter polynomials” for each of the α
sub-tables Ti.

2. V and P apply the sum-check protocol to the polynomial h(k) := ẽq(r, k) · g(E1(k), . . . , Eα(k)),
which reduces the check that v =

∑
k∈{0,1}logm g(E1(k), . . . , Eα(k)) to checking that the following

equations hold, where rz ∈ Flogm chosen at random by the verifier over the course of the sum-check
protocol:

• Ei(rz)
?
= vEi for i = 1, . . . , α. Here, vE1 , . . . , vEα are values provided by the prover at the end

of the sum-check protocol.
3. V: check if the above equalities hold with one oracle query to each Ei.
4. // The following checks if Ei is well-formed, i.e., that Ei(j) equals Ti[dimi(j)] for all j ∈ {0, 1}logm.
5. V → P: τ, γ ∈R F.

//In practice, one would apply a single sum-check protocol to a random linear combination of the
below polynomials. For brevity, we describe the protocol as invoking c independent instances of
sum-check.

6. V ↔ P: For i = 1, . . . , α, run a sum-check-based protocol for “grand products” ([Tha13, Proposi-
tion2] or [SL20, Section 5 or 6]) to reduce the check that Hτ,γ(WS) = Hτ,γ(RS) · Hτ,γ(S), where
RS,WS, S are as defined in Claim 3 and H is defined in Claim 4 to checking if the following hold,
where r′′i ∈ F`, r′′′i ∈ Flogm are chosen at random by the verifier over the course of the sum-check
protocol:

• Ei(r
′′′
i )

?
= vEi

• dimi(r
′′′
i )

?
= vi; read tsi(r

′′′
i )

?
= vread tsi ; and final ctsi(r

′′
i )

?
= vfinal ctsi

7. V: Check the equations hold with an oracle query to each of Ei,dimi, read tsi, final ctsi.

Figure 5: Surge’s polynomial IOP for proving that
∑
y∈{0,1}logN M̃(r, y)T [y] = v.

28



• Input: A polynomial commitment to the multilinear polynomials ã : Flogm → F, and a description
of an SOS table T of size N .

• The prover P sends a Surge-commitment to the multilinear extension M̃ of a matrix M ∈ {0, 1}m×N .
This consists of c different (log(m))-variate multilinear polynomials dim1, . . . ,dimc (see Figure 5
for details).

• The verifier V picks a random r ∈ Flogm and sends r to P . The verifier makes one evaluation query
to ã, to learn ã(r).

• P and V apply Surge (Figure 5), allowing P to prove that
∑
y∈{0,1}logN M̃(r, y)T [y] = ã(r).

Figure 6: Description of the Lasso lookup argument. Here, a denotes the vector of lookups and t the
vector capturing the lookup table (Definition 1.1). A polynomial commitments to the multilinear extension
polynomial ã : Flogm → F is given to the verifier as input. If t is unstructured, then c will be set to 1.

O(b · c · m) time. For many tables of practical interest, the factor b can be eliminated (e.g., if the total
degree of g is a constant independent of b, such as 1 or 2). The costs for the prover in the memory checking
argument is similar to Spark: O(α ·m+ α ·N1/c) field operations, plus committing to a low-order number of
field elements.

Verification costs. The sum-check protocol used to compute Expression (16) consists of logm rounds in
which the prover sends a univariate polynomial of degree at most 1 + α in each round. Hence, the prover
sends O(c · k · logm) field elements, and the verifier performs O(k · logm) field operations. The costs of the
memory checking argument (which can be batched) for the verifier are identical to Spark.

Completeness and knowledge soundness of the polynomial IOP. Completeness holds by design
and by the completeness of the sum-check protocol, and of the memory checking argument.

By the soundness of the sum-check protocol and the memory checking argument, if the prover passes
the verifier’s checks in the polynomial IOP with probability more than an appropriately chosen threshold
γ = O(m + N1/c/|F|), then

∑
y∈{0,1}logN M̃(r, y)T [y] = v, where M̃ is the multilinear extension of the

following matrix M . For i ∈ {0, 1}logm, row i of M consists of all zeros except for entry Mi,j = 1, where
j = (j1, . . . , jc) ∈ {0, 1, . . . , N1/c}c is the unique column index such that j1 = dim1(i), . . . , jc = dimc(i).

We have established the following theorem.

Theorem 3. Figure 5 is a complete and knowledge-sound polynomial IOP for establishing that the prover
knows an m×N matrix M ∈ {0, 1}m×N with exactly one entry equal to 1 in each row, such that∑

y∈{0,1}logN
M̃(r, y)T [y] = v. (17)

The discussion surrounding Equation (12) explained that checking that Mt = a is equivalent, up to soundness
error log(m)/|F|, to Equation (17) holding for a random r ∈ Flogm. Combining this with Theorem 3 implies
that the protocol in Figure 6, i.e., Lasso, is a lookup argument.

Remark 4. Figure 6 describes an unindexed lookup argument, as for each i ∈ {0, . . . ,m− 1}, it must be the
case that ai = tj where j = (j1, . . . , jc) is defined as in the proof of Theorem 3 above. To obtain an indexed
lookup argument (Definition 1.2), one would need to additionally have to check that for each i ∈ {0, . . . ,m−1},
bi =

∑c
i=1(N1/c)i−1 · ji, i.e., that the i’th (“chunked”) index encoded by M matches the i’th entry of the

committed index vector b.
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A Obtaining an indexed lookup argument from an unindexed one

Let T ∈ FN be a lookup table, and let R be such that all table elements are in {0, 1, . . . , R− 1}, and assume
that m ·N is less than the field characteristic. Replace each table element T [i] with i ·R+ T [i] to obtain a
modified table T ′ ∈ FN , and replace each lookup pair (bj , aj) with the field element a′j = bj ·R+ aj . Apply a
range check to confirm that aj ∈ {0, 1, . . . , R− 1} for all lookups. Then T [bj ] = aj implies that a′j = T ′[bj ].
Conversely, under the guarantee that each aj is in {0, . . . , R− 1}, if T [bj ] 6= aj then no entry of T ′ is equal to
a′j . Hence, one can apply a lookup argument for unindexed lookups (Definition 1.1) to a′ and T ′ to confirm
that T [bj ] = aj for all pairs (bj , aj) in the list of lookups.

If R is chosen to be the smallest power of 2 bounding all the table elements, then the range check can be
implemented via a lookup into the (MLE-structured and decomposable) table {0, 1, . . . , R− 1}, and moreover
T ′ is decomposable or MLE-structured if and only if t is decomposable or MLE-structured. The range check
on aj can be omitted if the value aj is provided by a party that is guaranteed to be honest.

B Comparison of Lasso’s costs to prior lookup arguments

Figure B below compares the costs of Lasso to prior lookup arguments. We clarify that several prior lookup
arguments refer to the cost of a general m-sized multiexponentiation as linear in m [ZGK+22, DGM21].
However, as discussed in Section 1.2, the fastest known multiexponentiation algorithm, due to Pippenger
[Pip80], requires a number of group operations that is (slightly) superlinear in m, namely O (mλ/ log(λm)),
where λ = Θ(log |G|) is the security parameter and G is the group in which the multiexponentiation is
occurring. Here, λ must be considered superlogarithmic in m, to ensure that adversaries running in time 2λ

are superpolynomial time. Similarly, prior works [ZGK+22, EFG22] refer to group exponentiations as group
operations, when in fact they require up to O(log |G|) many group operations.

C Details on polynomial commitment schemes

In this section, we give more information about the properties and cost profiles of the polynomial commitment
schemes in Figure 2.2. Below, let n = 2`, and assume that the prover knows all n evaluations of q over domain
{0, 1}`, i.e., knows {(x, q(x)) : x ∈ {0, 1}`}.

• KZG + Gemini [BCHO22] transforms the KZG scheme [KZG10], which is designed for univariate
polynomials, to provide a polynomial commitment scheme for multilinear polynomials. To commit
to q, the prover performs a multiexponentiation each of size n. The commitment size is O(1) group
elements. Evaluation proofs are also O(log n) group elements. To compute the evaluation proof, the
prover performs O(n) field operations and a multiexponentiation of size n. Verifying the evaluation
proof requires log n group operations and a few pairings.

• Hyrax [WTS+18] is based on the hardness of the discrete logarithm problem. To commit to q, the
prover performs

√
n multiexponentiations each of size

√
n. The commitment size is

√
n group elements.

Evaluation proofs are also
√
n group elements. To compute the evaluation proof, the prover performs

O(n) field operations and a multiexponentiation of size
√
n. Verifying the evaluation proof requires a

multiexponentiation of size
√
n.

• Dory [Lee21] requires pairing-friendly groups and is based on the SXDH assumption. Its primary benefit
over Bulletproofs is that verifying evaluation proofs can be done with just logarithmically many group
operations. In addition, computing an evaluation proof requires O(n) field operations and roughly
O(
√
n) cryptographic work. Dory does use a transparent pre-processing phase for the verifier that

requires O(
√
n) cryptographic work.

• In Brakedown, Orion, and Orion+ [GLS+21, XZS22, CBBZ23], evaluation proofs are computed with
O(n) field operations and cryptographic hash evaluations. Commitments are just a single hash value.
However, Brakedown proof sizes include O(

√
λn) field elements, where λ is the security parameter.

The verifier performs O(
√
λn) field operations and also hashes this many field elements. Brakedown
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Scheme Proof Prover work Verifier
size group, field work

Plookup [GW20b] 5G1, 9F O(N), O(N logN) 2P
Halo2 [BGH20] 6G1, 5F O(N), O(N logN) 2P

Caulk [ZBK+22] 14G1, 1G2, 4F 15m, O(m2 +m log(N)) 4P
Caulk+ [PK22] 7G1, 1G2, 2F 8m, O(m2) 3P
Flookup [GK22] 7G1, 1G2, 4F O(m), O(m log2m) 3P
Baloo [ZGK+22] 12G1, 1G2, 4F 14m, O(m log2m) 5P

cq [EFG22] 8G1, 3F 7m+ o(m), O(m logm) 5P

Lasso w/ Dory O(log(m)) GT o(cm+ cN1/c), O(cm) O(log(m)) GT

(SOS table) Õ(log(m)) F O(
√
m) P Õ(log(m)) F

Lasso w/ Dory O(logm) GT min{2m+O(
√
N),m+ o(N)}, O(m+N) O(logm) GT

(unstructured table) Õ(log(m)) F O(
√
N) P Õ(log(m)) F

Lasso w/ Sona Õ(log(m)) F o(cm+ cN1/c), O(cm) Õ(log(m)) F
(SOS table) O(1) G O(1) G

Lasso w/ Sona Õ(log(m)) F min{2m+O(
√
N), N}, O(m+N) Õ(log(m)) F

(unstructured table) O(1) G O(1) G
Lasso w/ KZG+Gemini O(logm) G1 (c+ 1)m+ cN1/c, O(m) Õ(log(m)) F

(SOS table) Õ(log(m)) F O(logm) G1 2P

Lasso w/ KZG+Gemini O(logm) G1 (c+ 1)m+ cN1/c, O(m+N) Õ(log(m)) F
(unstructured table) Õ(log(m)) F O(logm) G1 2P

Figure 7: Dominant costs of prior lookup arguments vs. our work. Sona is the polynomial commitment scheme
proposed in this work (Section 1.5). Other cost profiles for our schemes are possible by using other polynomial
commitments. Notation: m is the number of lookups, N is the size of the lookup table. We assume N ≥ m for
simplicity. For verification costs only, we assume that m ≤ poly(N), so that logm = Θ(logN). The notation Õ(logm)
notation hides a factor of log logm. Throughout, m “group work” for the prover refers to a multiexponentiation of
size m, while “m exps” refers to m group exponentiations (m multiexponentiations are subject to a Pippinger speedup
of a factor of roughly O(log(mλ)) that m exponentiations are not). Operations involving O(m) group operations
(not exponentiations) are denoted via “o(m) group work” to clarify that they are cheaper than a general m-sized
multiexponentiation. SOS tables refer to those to which Lasso applies. F refers to field operations, and G1,G2,GT to
relevant group elements or operations in a pairing-friendly group. P refers to pairing operations. KZG + Gemini
refers to a polynomial commitment scheme for multilinear polynomials given in [BCHO22] obtained by transforming
the KZG scheme for univariate polynomials. Finally, c denotes an arbitrary positive integer. Plookup and Halo2 are
agnostic to the choice of polynomial commitment scheme, and that the reported costs and transparency properties in
these rows refer to the case of using KZG commitments.

is also field-agnostic—it applies to polynomials defined over any sufficiently large field F. Orion
reduces verification costs to polylogarithmic via SNARK composition, but is not field-agnostic. Neither
Brakedown nor Orion are homomorphic, but they are plausibly post-quantum secure. Orion+ [CBBZ23]
reduces the proof size further to logarithmic (concretely under 10 KBs) but gives up transparency and
post-quantum security in addition to field-agnosticism.

D Sparse polynomial commitments with logarithmic overhead

This section describes a sparse polynomial commitment scheme that is suboptimal by a logarithmic factor. We
include this merely for illustration, because this suboptimal scheme is substantially simpler than Spark (§4).

Notation. For the remainder of this section, let f̃ denote an `-variate multilinear polynomial to be
committed, with sparsity m in the Lagrange basis. Let f : {0, 1}` → F denote the function with domain equal

to the Boolean hypercube that f̃ extends.

In this work, we only apply a sparse polynomial commitment scheme in a setting where (if the prover is
honest)

f(x) ∈ {0, 1} for all x ∈ {0, 1}`. (18)
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We describe a commitment scheme that applies to multilinear extensions of functions of this form. This
slightly simplifies the description of the scheme, and makes the bound on the prover runtime to compute the
commitment slightly cleaner.19

Let vf ∈ Fm` be the following “densified” description of f . Break vf into m blocks each of length `. Impose
an arbitrary order on the set S := {x ∈ {0, 1}` : f(x) 6= 0}, and let x(i) denote the ith element in S. Assign
the ith block of v to be x(i) ∈ {0, 1}`. In other words, vf simply lists each x such that f(x) 6= 0.

The commit phase. To commit to a sparse polynomial f̃ , we apply any desired dense polynomial
commitment scheme to commit to the multilinear extension ṽf of the vector vf .

Evaluation proofs. As a warm-up, we begin with a conceptually simple high-level sketch of an evaluation
proof procedure. We then specify full details of a more direct protocol with similar costs. The direct evaluation
proof procedure involves a single application of the sum-check protocol.

Warm-up: a conceptually simple procedure (sketch). To reveal an evaluation f̃(r) for r ∈ F`, we
apply any sum-check-based SNARK (e.g., Spartan, Brakedown, Orion, Libra, etc.) to the natural arithmetic

circuit of size O(m · `) that takes as input the densified description vf of f and outputs f̃(r). This circuit has
a “uniform” wiring pattern that ensures that the verifier in any of these SNARKs will run in polylogarithmic
time when applied to this circuit (without any pre-processing), plus the time to check a single evaluation
proof from the dense polynomial commitment scheme applied to ṽf .

Complete description of an evaluation proof procedure via direct application of sum-check.
Let us assume that m and ` are both powers of 2. If the prover is honest, then

f̃(r) =
∑

k∈{0,1}logm

∏
j∈{0,1}log(`)

(ṽf (k, j)rj + (1− ṽf (k, j))(1− rj)) . (19)

To compute Equation (19), we can apply the sum-check protocol to the polynomial g defined below:

g(k) =
∏

j∈{0,1}log(`)
(ṽf (k, j)rj + (1− ṽf (k, j)) (1− rj)) .

Observe that g has logm variables and degree ` in each of them, so the proof length of the sum-check protocol
applied to g is O(` · logm) field elements. At the end of the sum-check protocol, the verifier has to evaluate g
at a random point r′ ∈ Flogm. This can be done in O(`) time given ` evaluations of ṽf , namely ṽf (r′, j) for
each j ∈ {0, 1}log(`). Standard techniques can efficiently reduce these ` evaluations of ṽf to a single evaluation
of ṽf . Specifically, the prover is asked to send the entire (log(`))-variate polynomial h(y) = ṽf (r′, y), i.e., the
polynomial obtained from ṽf by fixing the first logm variables to r′. This costs only ` + 1 field elements
in communication. The verifier picks a random point r′′ and confirms that h(r′′) = ṽf (r′, r′′) with a single
evaluation query to the committed polynomial ṽf . By the Schwartz-Zippel lemma, if h(y) 6= ṽf (r′, y), then
with probability at least 1− log(1 + `)/|F|, the verifier’s check will fail.

Theorem 4. The above protocol is an extractable polynomial commitment scheme for multilinear polynomials.

Proof. Suppose that P is a prover that, with non-negligible probability, produces evaluation proofs that pass
verification. By extractability of the dense polynomial commitment scheme used to commit to ṽf , there is a
polynomial time algorithm E that produces a multilinear polynomial polynomial p that explains all of P’s
evaluation proofs, in the following sense. If P is able to, with non-negligible probability, produce an evaluation

19To clarify, the scheme as described in this section does not guarantee that the committed polynomial satisfies Equation (18).

While it cannot be used by an honest prover to commit to arbitrary polynomials, it can always be used to commit to f̃ if f
satisfies Equation (18).
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proof for the claim that the committed polynomial polynomial’s evaluation at any input (r′, r′′) ∈ Flogm × F`
equals value v ∈ F, then p(r′, r′′) = v.

By soundness of the sum-check protocol, if the prover passes the verifier’s checks with probability more than
O ((logm+ log(1 + `))/|F|) then v equals∑

k∈{0,1}logm

∏
j∈{0,1}log `

(ṽf (k, j)rj + (1− ṽf (k, j))(1− rj)) .

This is a multilinear polynomial in (r′, r′′).

Costs of the sparse polynomial commitment scheme. There are two sources of costs in the sparse
polynomial commitment scheme above.

• One is applying the dense polynomial commitment scheme to commit to the multilinear extension ṽ
of a vector v ∈ {0, 1}m`, and later produce a single evaluation proof for ṽ(r′, r′′) via this commitment
scheme.

Prover costs. If the dense polynomial commitment scheme used is Hyrax [WTS+18], Dory [Lee21],
or BMMTV [BMM+21], the commitment can be computer with only O(m`) group operations. Here,
we exploit that the entries of v are al in {0, 1}). Dory and BMMTV require pairing-friendly groups and
also require the prover to compute a multi-pairing of length-O(

√
m`).

Evaluation proofs for all three commitment schemes require O(m log n) field operations and roughly
O(
√
m`) cryptographic work.

Verifier costs. Hyrax’s proofs consist of O(
√
m`) group elements, and the verifier must perform a

multiexponentiation of size O(
√
m`). Dory and BMMTV proofs consist of O(log(m`)) elements of the

target group Gt, and the verifier performs O(log(m`)) exponentiations/scalar-multiplications in Gt.

• The other is the costs of the sum-check protocol, and the final step in reducing 1 + ` evaluations of ṽf
to a single evaluation. The verification costs of these two protocols is O((logm) · log `) field operations.
Meanwhile, via standard techniques, the prover can be implemented with O(m`) field operations in
total across all rounds of the protocol.

E Additional details on the grand product argument

For completeness of exposition, we provide additional details on the grand product argument we use (Lines 6
and 10 of Figure 3) and its application in our context. Note that these details are identical to prior works
[Set20, SL20, GLS+21].

Thaler’s grand product argument [Tha13, Proposition 2] is simply an optimized application of the GKR
interactive proof for circuit evaluation to a circuit computing a binary tree of multiplication gates. The
prover in the interactive proof does a number of field operations that is linear in the circuit size, which in
the application of the grand product argument in our lookup argument is O(m). The verifier in the GKR
protocol has to evaluate the MLE of the input vector to the circuit at a randomly chosen point r. In our
applications of the grand product argument, the input to the circuit is either:

{a · γ2 + v · γ + t− τ : (a, v, t) ∈WS},

{a · γ2 + v · γ + t− τ : (a, v, t) ∈ RS} ∪ {a · γ2 + v · γ + t− τ : (a, v, t) ∈ S},

{a · γ2 + v · γ + t− τ : (a, v, t) ∈WS′},

or
{a · γ2 + v · γ + t− τ : (a, v, t) ∈ RS′} ∪ {a · γ2 + v · γ + t− τ : (a, v, t) ∈ S′}.
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For simplicity of notation, let us assume that N1/c = m, and let k = (k1, . . . , klogm) be variables, and let us
focus for illustration on the second case above. In this second case above, the multilinear extension of the
input to the circuit is

g(k0, k1, . . . , klogm) = k0 ·
(
γ2row(k) + γErx(k) + read tsrow(k)

)
+

(1− k0) ·

γ2
logN1/c∑

i=1

2i−1 · ki

+ γ · ẽq (k, rx) + final ctsrow(k)

− τ.
Indeed, by the definition of RS and S in Claim 2, the expression above is multilinear and agrees with
the input to the circuit whenever (k0, . . . , klogm) ∈ {0, 1}logm. Here, k0 acts a selector bit—when k0 = 1
(respectively, k0 = 0), it indicates that (k1, . . . , klogm index into the set RS′ (respectively, S′). Hence, it must
equal the unique multilinear extension of the input. The expression above can be evaluated at any point
(k0, . . . , klogm) ∈ F1+logm in logarithmic time by the verifier, with one evaluation query to each of row, Erx,
read tsrow and final ctsrow. A similar expression holds in the other three cases above.

We propose to use Setty and Lee’s grand product argument [SL20, Section 6], which reduces the proof size of
Thaler’s to O(log(m) · log logm) at the cost of committing to an additional, say, m/ log3(m), field elements.
The rough idea is that the prover cryptographically commits to the values of the gates at all layers of circuit
(the binary-tree of multiplication gates), except for the O(log logm) layers closest to the inputs. While the
committed gates account for most of the layers of the circuit, they account for a tiny fraction of the gates in
the circuit, as there are only m/ log3m gates at these layers. This commitment enables the prover to apply a
Spartan-like SNARK to the committed layers, resulting in just logarithmic communication cost (whereas
Thaler’s interactive proof applied to those layers would have communication cost O(log2 n)).

Then Thaler’s protocol is used to handle the O(log logm) layers that were not committed. The total
communication cost of applying Thaler’s protocol just to these layers is O(log(m) · log logm).

F GeneralizedLasso: Beyond decomposable tables

This section describes how GeneralizedLasso checks Equation (5) to provide a lookup argument. We first
provide an overview of the main technical component in GeneralizedLasso that is not present in Lasso.

F.1 Sparse-dense sum-check protocol

Equation (5) can be computed with the sum-check protocol of Lund, Fortnow, Karloff, and Nisan [LFKN90],
so long as the verifier can evaluate each of the polynomials in the equation at a random point. The key
question for this technical overview is: how fast can the prover be implemented in this application of the
sum-check protocol?

The challenge is that this protocol is computing the inner product between two vectors in u, t ∈ FN , and
we are unsatisfied with a prover time of O(N) field operations. Here, entries of u are indexed by vectors

y ∈ {0, 1}logN and the y’th entry of u equals M̃(r, y). Fortunately, we are guaranteed that at most m entries
of u are non-zero. We leverage this guarantee to show how to implement the prover in this sum-check protocol
with only O(cm) field operations where c is such that N = M c, so long as t is structured.

Brief overview of existing linear-time sum-check provers. In each round j of the sum-check protocol,
the jth input to the polynomials ũ(y1, . . . , ylogN ) and t̃(y1, . . . , ylogN ) gets “bound” to a random field element
rj of the verifier’s choosing. Existing linear-time sum-check protocols [CTY11, Tha13] applied to compute
〈u, t〉 achieve a prover that runs in O(N) time by treating two or more entries of u (and of t) as a single entity
once all their “bit-differences” are bound. That is, if y, y′ ∈ {0, 1}logN agree on their last ` entries, then
existing prover implementations treat uy and uy′ as a “single entity” for the final ` rounds of the protocol.
This ensures that in each round j, the prover only needs to process N/2j entries, yielding total runtime of

O
(∑logN

j=1 N/2j
)

= O(N).
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Earlier techniques [CMT12] can reduce the prover time instead to O(m ·polylogN). However, achieving O(m)
prover time is substantially more challenging.

Brief overview of our sparse-dense sum-check prover. We reduce the prover time to O(cm) as
follows. Whereas prior works on the linear-time sum-check provers treat two indices y, y′ ∈ {0, 1}logN of u as
a single entity after their last “bit-difference” gets bound, our key idea (and fundamentally new technique)
is to give a way treat any two indices y, y′ as a single entity until their first bit-difference gets bound. For
example, in round 1, the indices are split into just two entities: those with high-order bit equal to 0 and
those with high-order bit equal to 1. In round 2, they are split into four entities, based on their highest-order
two bits. And so forth.

This observation lets the prover handle each round j = 1, . . . , logm in time O(2j). P begins to run into a
problem once the protocol passes round logm, since then O(2j) time starts to become larger than the O(m)
time bound we wish to satisfy. We think of this phenomenon, of the number of “relevant entities” to be
tracked by the prover potentially doubling in each round, as expansion.

The idea then is to apply the techniques from the existing linear-time sum-check protocols, spending O(m)
time to “make the first logm bits of the index of each non-zero entry uy of u no longer relevant to the
protocol”, by updating the entries of u to “incorporate” the binding of the first logm variables of ũ to the
values r1, . . . , rlogm. We call this procedure consolidation, as it reduces the number of “relevant entities”
tracked by the prover from m down to 1.

The above procedure can be repeated every logm rounds. That is, for each contiguous “chunk” of input
variables to ũ of size logm, P spends O(m) field work processing the rounds that bind variables in that
chunk. This is O(c ·m) field work total if N = mc, i.e., if there are logN = c · logm variables.

In the above procedure, there’s a tension whereby the more rounds that go by without consolidating, the more
time P is paying each round. But consolidating costs O(m) work. Hence, P does not want to consolidate
too frequently. The optimal approach is to let expansion occur unchecked for logm rounds at a time—this
balances the cost of consolidating vs. deferring consolidation.

F.2 The GeneralizedLasso protocol

The polynomial IOP. In the polynomial IOP, the prover sends M̃ to the verifier as the first message
in the protocol. (In the succinct arguments resulting from this polynomial IOP, the prover will commit to

M̃ using our specialized version of Spark, which additionally ensures that each row of M is a unit vector.)
Below, we check that M · t = a using the sparse-dense sum-check protocol.

Following the same approach as Surge (Section 5), define b = M · t, and let b̃ denote the multilinear extension
of b. Then it is easy to see that:

b̃(r) =
∑

j∈{0,1}logN
M̃(r, j) · t̃(j). (20)

Indeed, the RHS is a multilinear polynomial in the variables of r, and by the definition of matrix-vector
multiplication, it agrees with b at all inputs in {0, 1}logm. Hence, the RHS is the unique multilinear polynomial
extending b.

Accordingly, to confirm that M · t = a, it suffices to confirm that b̃ and ã are the same polynomial. To do this,
it suffices for the verifier to pick a random input r ∈ Flogm and confirm that b̃(r) = ã(r) (up to soundness
error log(m)/|F|, by the Schwartz-Zippel lemma). The verifier can learn ã(r) with one evaluation query to ã.

To learn b̃(r), the verifier applies the sumcheck protocol to the (logN)-variate polynomial g(j) := M̃(r, j) · t̃(j),
in order to compute the right hand side of Equation (20). At the end of the sum-check protocol, the verifier

needs to evaluate M̃(r, r′) and t̃(r′) for a randomly chosen point r′ ∈ FlogN . This can be done with one

evaluation query to M̃ and one to t̃.

As explained later (Appendix G), M̃(r, j) = 0 for all but at most m values of j ∈ {0, 1}logN . Hence,
standard techniques [CMT12] suffice to implement the prover in the application of the sum-check protocol
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to g(j) := M̃(r, j) · t̃(j) with a number of field operations that is quasilinear in m. However, we wish to
lower this to O(m), especially considering that we would like to apply GeneralizedLasso to (MLE-structured)
tables so large that logN is well over one hundred. We call this O(m)-time prover algorithm the sparse-dense
sum-check protocol. We defer a detailed description of the algorithm to Section G. The consequence of this
result is captured in Theorem 5.

• Polynomial commitments to the multilinear polynomials ã : Flogm → F and t̃ : FlogN → F are given
to the verifier as input. The commitment to t̃ is omitted if t̃(r) can be evaluated at any point
r ∈ FlogN in logarithmic time.

• The prover P sends a polynomial commitment to the MLE M̃ of a matrix M ∈ {0, 1}m×N using
our specialized version of Spartan’s sparse polynomial commitment scheme.

• The verifier V picks a random r ∈ Flogm and sends r to P . The verifier makes one evaluation query
to ã, to learn ã(r).

• P and V apply the (sparse-dense) sum-check protocol to the (logN)-variate polynomial g(j) :=

M̃(r, j) · t̃(j), to confirm that

ã(r) =
∑

j∈{0,1}logN
g(j).

• At the end of the sum-check protocol, the verifier needs to evaluate M̃(r, r′) and t̃(r′) for a random
point r′ ∈ FlogN that is chosen entry-by-entry over the course of the sum-check protocol. This
costs one evaluation query to M̃ and one to t̃.

Figure 8: Description of the GeneralizedLasso lookup argument. Here, a denotes the vector of lookups and t
the vector capturing the lookup table (Definition 1.1). Polynomial commitments to the multilinear extension
polynomials ã : Flogm → F and t̃ : FlogN → F are given to the verifier as input (the commitment to t̃ can be
omitted if t̃ can be evaluated at any point in logarithmic time).

Theorem 5. There is a polynomial IOP that can be combined with an appropriate commitment scheme for
sparse polynomials to obtain a lookup argument for m lookups into a table of size N . The polynomial IOP
requires that the characteristic of the field F over which the lookup argument is defined is at least max{m,N}.
The polynomial IOP has soundness error at most

(logm+ 2 logN)/|F|.

The honest prover sends one polynomial M̃ , which is the multilinear extension of a matrix in {0, 1}m×N in

which each row is a unit vector. The verifier queries the polynomials ã, t̃, and M̃ once each, to obtain the
values ã(r), t̃(r′), and M̃(r, r′). The proof length and verifier time is O(logm+ logN) field elements and
operations respectively, plus the time to query the aforementioned polynomials. The prover time is O(m) field
operations if the table satisfies the properties of Theorem 9, plus the time to answer the above queries to the
polynomials ã, t̃, and M̃ .

Proof. Completeness holds because, if the prover is honest, then Mt = a, and the verifier’s checks pass with
probability 1.

Soundness holds by the following reasoning. If the prover’s claim is false, then Mt 6= a. By the Schwartz-Zippel
lemma, with probability at least 1− log(m)/|F|, b̃(r) 6= ã(r). The sum-check protocol (bulletpoint four of

Figure 8) forces the prover to provide b̃(r), and it has soundness error 2 log(N)/|F|. By a union bound, the
total soundness error is at most

log(m) + 2 log(N)

|F|
.

The prover runtime assertion is immediate from Theorem 9, which is stated in proved in Section G.5.2.
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We remark that while the soundness error of the polynomial IOP in Figure 8 is O(log(N)/|F|), actual SNARKs
derived from the polynomial IOP will use the sparse polynomial commitment scheme of Section 4 (Spark) to

commit to M̃ . And this sparse polynomial commitment scheme is itself based on a polynomial IOP with
soundness error O(N/|F|). So the resulting lookup argument will need to work over fields of size substantially
larger than N to ensure adequate soundness error.

F.3 Details on what is a “structured table” for sparse-dense sum-check

Recall that our sparse-dense sum-check protocol exploits structure in the table in two ways: to implement
the prover in the sum-check protocol in only O(m) field operations, and to ensure that the verifier in the
protocol, on its own, can quickly compute the information it needs about the table. Details follow, starting
with how the verifier computes the information about the table that it needs to check the proof.

F.3.1 Ensuring the verifier can quickly compute the information it needs about the table

For many natural lookup tables, the multilinear polynomial t̃ that “captures” the table in our protocol can be
directly evaluated by the verifier at any desired point r ∈ FlogN in O(logN) time. We call tables satisfying
this property MLE-structured. In fact, often the evaluation procedure only involves finite field additions and
multiplication by powers of 2, rather than general finite field multiplications.

Hence, the verifier’s work is inexpensive even if t̃ is not cryptographically committed by the prover. In
contrast, all prior lookup arguments require the prover to cryptographically commit to some polynomial
“encoding” the table, which requires cryptographic costs at least linear in the table size.

Our companion work, Jolt, demonstrates that the evaluation tables of essentially all primitive RISC-V
instructions are MLE-structured. For illustration, we mention some specific examples below.

• All integers between 0 and N − 1 (this table enables range checks).

• All even (or all odd) integers between 0 and 2N .

• All integers between 0 and N2 whose natural binary representations have all even-indexed (or odd-
indexed) bits set to 0. This table was used in early work on representing bitwise operations within
constraint systems defined over large prime-order fields [BCG+18] including bitwise XOR, OR, and
AND.

The key technical property that all of the above tables have in common is that the i’th table entry is a
specific linear combination of the individual bits of the binary representation of i. Moreover, lookup tables
that are the union of O(logN) many tables of the form above also fall into the class. That is, for such tables,
the polynomial t̃ used in GeneralizedLasso can be evaluated by the verifier itself in O(logN) time.

For illustration, consider the table consisting of all finite field elements between 0 and N − 1. If we index the

table entries by i ∈ {0, 1}logN , then the i’th table element is simply the field element
∑log(N)−1
j=0 2i · ij . As we

explain later, this means that for arbitrary finite field elements (r1, . . . , rlogN ) ∈ F,

t̃(r1, . . . , rlogn) =

logN∑
j=0

2i · rj . (21)

Clearly, Equation (21) can be evaluated in O(logN) time, and in fact only requires multiplications-by-powers-
of-two and finite field additions.

Two more examples. An illustrative example that is somewhat more complicated than any of the above,
is a lookup table introduced in our companion paper, Jolt, to handle bitwise operations more efficiently than
prior works. For bitwise AND over b-bit inputs x, y ∈ {0, 1}b, the (x, y)’th entry of the appropriate (ordered)
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table is
∑b
i=1 2i−1 · xi · yi, implying that

t̃(x, y) = ·
b∑
i=1

2i−1 · xi · yi. (22)

To derive the above expression for the table entries, observe that for any two bits a, b ∈ {0, 1}, AND(a, b) = a·b,
and then take the appropriate weighted sum of the bitwise AND of x and y to transform it into the associated
integer. The result is that any (x, y) ∈ {0, 1}b × {0, 1}b gets mapped to the field element with binary
representation equal to the bitwise AND of x and y.

Observe that the (x, y)’th entry of the evaluation table for the bitwise AND operation is not a weighted sum
of the bits of x and y, because the function has total degree 2. Nonetheless, the multilinear extension t̃ of
this table can be evaluated by the verifier in logarithmic time, and the prover in the sparse-dense sum-check
protocol applied to this table (Theorem 9) runs in O(m) time.

As a final, more complicated example, Jolt also considers the lookup table associated with the integer
comparison instruction LT (short for “less than”). This instruction takes two 64-bit inputs x and y, interprets
them as (say, unsigned) integers, and outputs 1 if and only if x ≥ y. The appropriate lookup table has
(x, y)’th entry equal to the output of the LT instruction when run on x and y. As with the table AND above,
we show that the multilinear extension of this table can be evaluated by the verifier in logarithmic time, and
the prover in the sparse-dense sum-check protocol applied to this table (Theorem 9) runs in O(cm) time
when the table size is at most O(mc).

F.3.2 Ensuring the sum-check prover runs in time close to m

Depending on just how “structured” the table y is, we prove two results regarding how fast the prover can be
implemented in the sparse-dense sum-check protocol. First, using prior techniques [CMT12], we bound the
prover time in the sparse-dense sum-check protocol by

O
(
m · logN · evaltime(t̃)

)
,

where evaltime(t̃) denotes the time required to evaluate t̃(r′) for any point r′ ∈ FlogN . In particular, if
evaltime(t̃) = O(logN), then this means O(m · log2N) field operations for the prover.

Theorem 6. The prover in the sparse-dense sum-check protocol applied to compute 〈u, t〉 can be implemented
in O

(
m · logN · evaltime(t̃)

)
field operations.

Using the same techniques, we are in fact able to reduce the prover runtime for all tables considered in Section
F.3.1 to O(m logN) field operations (see Section G.4).

Reducing the prover’s runtime to the optimal O(cm) field operations is a substantially more challenging task.
Intuitively, this requires the prover to spend a constant amount of work per non-zero entry of u, in total
across all logN rounds of the protocol. This is a far more exacting task then achieving a constant amount of
work per non-zero entry of u in each of the logN rounds, which is what the previous paragraph achieved.20

Hence, fundamentally new algorithmic techniques (outlined in Section F.1) are required to reduce the prover’s
runtime to the optimal O(m) field operations. We achieve this in Theorem 7 below for a large class of tables
that captures all of those considered in Section F.3.1 Informally, the key property that we require to achieve
O(m) prover time is that, given any evaluation t̃(r1, . . . , rlogN ) of t̃, changing the value of one variable from
rj to r′j has a “simple” effect on the evaluation of t̃.

Theorem 7 (Informal version of Theorem 9 in Section G.5.2). Suppose there is some constant C > 0 such
that m ≤ O(NC). Suppose that t̃ : FlogN → F satisfies the following property. For any (r1, . . . , rlogN ) ∈ FlogN

and any r′ ∈ FlogN ,

t̃(r1, . . . , rj−1, r
′
j , rj+1, . . . , rlogN ) = m · t̃(r1, . . . , rj−1, rj , rj+1, . . . , rlogN ) + a

20Because cryptographic operations are one or more orders of magnitude more expensive than field operations, we believe that
even O(m logN) field work would not be a bottleneck for the GeneralizedLasso prover, compared to the work of committing to
O(m) field elements, unless logN is in the thousands or larger.

42



where m and a are field elements that depend only on j, r1, . . . , rj , rj+1, and r′j and can be computed in O(1)
time. Then the sparse-dense sum-check protocol prover can be implemented in O(m) field operations.

In GeneralizedLasso, the O(Cm) field operations incurred by the prover in the sparse-dense sum-check protocol
will not be a bottleneck for the prover relative to the task of applying a sparse polynomial commitment
scheme to commit to O(cm) field elements (Section 1.1).

When the sparse-dense sum-check protocol is applied to compute 〈u, t〉 where u is m-sparse, the prover
ultimately has to provide the verifier with the value ũ(r) for a randomly chosen r ∈ FlogN , where ũ is the
multilinear extension polynomial of u. The fastest known algorithm for evaluating ũ(r) requires O(Cm) field
work. In fact this algorithm underlies Spark, our sparse polynomial commitment scheme (it is described in
Section 3.1). Hence, if this algorithm for evaluating sparse multilinear polynomials is optimal, then so is the
O(Cm)-time algorithm of implementing the sparse-dense sum-check prover.

F.4 Beyond multilinear extensions, and a generic speedup over bit-decomposition

In our lookup argument (Figure 8) there is nothing special about using the multilinear extension t̃ of t. We
can replace t̃ with any extension polynomial t̂ of t (recall from Section 2.1 that t̂ extends t if t̂(i) = t(i) for
all i ∈ {0, 1}logN ).

Indeed, the key equality (Equation (20)) that for b = M · t that

b̃(r) =
∑

j∈{0,1}logN
M̃(r, j) · t̃(j).

holds with t̃ replaced by any extension t̂ of t. This is because the right hand side of the equation is multilinear
in r regardless of whether or not t̃(j) is multilinear in j.

This means that if the multilinear extension t̃ of t cannot be evaluated by the verifier sufficiently quickly
(say, in polylogarithmic time), we can replace t̃ with another extension t̂ that can be. This does potentially
increase the costs of the sum-check protocol applied to compute∑

j∈{0,1}logN
M̃(r, j) · t̃(j)

(see Figure 9). In particular, the length of each message j from prover to verifier across the logN rounds of the
sum-check protocol grows from 3 field elements (specifying a degree-2 univariate polynomial) to 1 + dj where
dj is the degree of t̂ in its j’th variable. Assuming that dj ≤ polylog(N) for each variable j = 1, . . . , logN ,
and applying standard techniques to implement the sum-check protocol prover [CMT12], we obtain a prover
performing O(m · polylog(N)) field operations.

This result can be viewed as formalizing the following intuitive statement: any operation that can be
“efficiently performed via bit-decomposition” (meaning there is an arithmetic or Boolean formula of size
polynomial in the number of bits in the bit-decomposition that outputs the result of the operation) can be
solved by GeneralizedLasso with P only needing to cryptographically commit to 3c many field elements per
lookup (P also performs polylogarithmic field operations per lookup). In contrast, as explained in Section
1, naive bit-decomposition of integers in the range {0, 1, . . . , R− 1} requires the prover to commit to logR
many field elements.

G Details of the sparse-dense sum-check protocol

Let u ∈ FN be a vector with at most m non-zero entries and t ∈ FN be another vector (which may have N
non-zero entries). Let ũ and t̃ denote their multilinear extensions. Throughout, we assume that there is some
constant C > 0 such that N ≤ mC .
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• Polynomial commitment to the multilinear polynomial ã : Flogm → F.
• The prover P sends a polynomial commitment to the MLE M̃ of a matrix M ∈ {0, 1}m×N using

our specialized version of Spartan’s sparse polynomial commitment scheme.
• The verifier V picks a random r ∈ Flogm and sends r to P . The verifier makes one evaluation query

to ã, to learn ã(r).

• P and V apply the sum-check protocol to the (logN)-variate polynomial g(j) := M̃(r, j) · t̂(j), to
confirm that

ã(r) =
∑

j∈{0,1}logN
g(j).

• At the end of the sum-check protocol, the verifier needs to evaluate M̃(r, r′) and t̂(r′) for a random
point r′ ∈ FlogN that is chosen entry-by-entry over the course of the sum-check protocol. This
costs one evaluation query to M̃ and one to t̂.

Figure 9: Description of GeneralizedLasso when using an extension polynomial t̂ of the table vector t, where t̂
may not be multilinear. A polynomial commitment to the multilinear polynomial ã : Flogm → F is given to
the verifier as input.

G.1 Establishing that for any r ∈ Flogm, M̃(r, y) is m-sparse

In GeneralizedLasso, t ∈ FN will be the table (Definition 1.1), while ũ will be M̃(r, y). If the prover is

honest, each row of M has exactly one non-zero entry, and accordingly M̃(r, y) 6= 0 for at most m values of
y ∈ {0, 1}logN by the following reasoning. Let

χi(r) =

logm∏
k=1

(rkik + (1− rk)(1− ik))

denote the i’th Lagrange basis polynomial, which maps i to 1 and maps all other inputs in {0, 1}logm to zero.
Standard Lagrange interpolation for multilinear polynomials (see [Tha22, Chapter 3]) states that

M̃(r, y) =
∑

(i,j)∈{0,1}logm+logN

Mi,j · χi(r) · χj(y). (23)

Since for any i, Mi,j 6= 0 for exactly one j, the right hand side of Equation (23) can be non-zero for at most
m values of y ∈ {0, 1}logN , namely those y’s indexing columns of M with at least one non-zero entry.

G.2 Background on the sum-check protocol

For each round j = 1, . . . , logN of the sum-check protocol, the prescribed prover message is the degree-2
univariate polynomial sj where

sj(c) =
∑

(bj+1,bj+2,...,blogN )∈{0,1}log(N)−j

ũ(r1, . . . , rj−1, c, bj+1, . . . , blogN ) · t̃(r1, . . . , rj−1, c, bj+1, . . . , blogN ).

(24)

Here, r1, . . . , rj−1 are random field elements chosen by the verifier in rounds 1, 2, . . . , j − 1. The prover will
specify sj by sending its evaluations at 3 inputs, say, sj(0), sj(1), and sj(−1).

G.3 Proof of Theorem 6

Proof of Theorem 6. Observe that

ũ(r1, b2, . . . , blogN ) = (1− r1) · ũ(0, b2, . . . , blogN ) + r1 · ũ(1, b2, . . . , blogN )
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This holds because the left hand size and right hand sides are both multilinear polynomials that agree on all
inputs (r1, b2, . . . , blogN ) ∈ {0, 1}logN .

Let Su = {i = (i1, . . . , ilogN ) ∈ {0, 1}logN : ui 6= 0} denote the non-zero entries of u. For every i ∈ Su, and
every round j of the sum-check protocol, P will store the value

χi(r1, . . . , rj−1, ij , ij+1, . . . , ilogN ) =

j−1∏
k=1

(ik · rk + (1− ik) · (1− rk)) . (25)

Note that given all such values for round j, the prover can compute all the relevant values for round j + 1 in
time O(m). This is because there are m elements in i ∈ Su and computing χi(r1, . . . , rj−1, rj , ij+1, . . . , ilogN )
given χi(r1, . . . , rj−1, ij , ij+1, . . . , ilogN ) can be done with just one field multiplication. Hence, maintaining
all such values across all rounds j takes time O(m logN) in total for the prover.

By standard multilinear Lagrange interpolation (see [Tha22, Chapter 3]),

ũ(r1, . . . , rlogN ) =
∑
i∈Su

ui · χi(r1, . . . , rlogN ), (26)

where ui denotes the i’th entry of u when its entries are indexed by bit-vectors {0, 1}logN . Hence, for any
c ∈ F,

sj(c) =
∑

(bj+1,bj+2,...,blogN )∈{0,1}log(N)−j

ũ(r1, . . . , rj−1, c, bj+1, . . . , blogN ) · t̃(r1, . . . , rj−1, c, bj+1, . . . , blogN )

=
∑

(bj+1,bj+2,...,blogN )∈{0,1}log(N)−j

(∑
i∈Su

ui · χi(r1, . . . , rj−1, c, bj+1, . . . , blogN )

)
· t̃(r1, . . . , rj−1, c, bj+1, . . . , blogN )

=
∑
i∈Su

ui · χi(r1, . . . , rj−1, c, ij+1, . . . , ilogN ) · t̃(r1, . . . , rj−1, c, ij+1, . . . , ilogN ).

(27)

The final equality above exploits the fact that for any (bj+1, . . . , blogN ) ∈ {0, 1}log(N)−j , if

(ij+1, . . . , ilogN ) 6= (bj+1, . . . , blogN ),

then
χi(r1, . . . , rj−1, c, bj+1, . . . , blogN ) = 0.

To see this, observe that

χi(x1, . . . , xlogN ) =

logN∏
k=1

(ikxk + (1− ik)(1− xk)) ,

and if ik = 1 and xk = 0 or vice versa then the k’th term of this product is zero.

So to compute sj(c) for c ∈ {0, 1,−1}, the prover directly computes Expression (27). Given that the prover
maintains in each round j the values in Expression (25), in round j computing sj(c) takes time

O
(
m · evaltime

(
t̃
))
.

Across all logN rounds of the sum-check protocol, this entails total prover time

O
(
m · evaltime

(
t̃
))
.
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G.4 Improving the runtime to O(m logN) if t̃ has additional structure

In the proof of Theorem 6, the prover time is bottlenecked by evaluating t̃ at all points of the form

(r1, . . . , rj−1, c, ij+1, . . . , ilogN ),

where i = (i1, . . . , ilogN ) ranges over i ∈ Su and c ∈ {0, 1,−1}. For all the example tables in Section F.3.1,
given

t̃(r1, . . . , rj−1, ij , ij+1, . . . , ilogN ),

it takes only constant time (in most cases, just one multiplication by a power of two and one field addition)
to compute

t̃(r1, . . . , rj−1, rj , ij+1, . . . , ilogN ).

This reduces the prover time for all such tables from O(m log2N) of Theorem 6 down to O(m logN).

G.5 Improving the runtime to O(cm)

Fundamentally different techniques are required to reduce the prover’s runtime to O(m).

We begin by explaining how to implement the prover in O(m) time under the assumption that t̃ has total
degree one, i.e.,

t̃(r1, . . . , rlogN ) =

logN∑
j=1

djrj .

This is sufficient to capture most of the example tables considered in Section F.3.1. Later (Section G.5.2) we
explain how to implement the prover in O(m) time for a larger class of tables.

G.5.1 Handling tables for which t̃ has total degree 1

Theorem 8. Suppose that the multilinear extension t̃ of t has total degree 1, i.e., can be written as
t̃(r1, . . . , rlogN ) =

∑logN
k=1 dk · rk for some field elements d1, . . . , dlogN ∈ F. Then the prover in the sparse-

dense sum-check protocol can be implemented in O(m) field operations.21

Proof. We begin by showing that t̃ having total degree 1 ensures that altering the value of a single variable
leads to “simple” changes in the output of t̃.

Understanding the effect on an evaluation of t̃ of altering the j’th variable. Let

t̃(r1, . . . , rlogN ) =

logN∑
j=1

djrj .

This ensures that for any c ∈ F, and any (r1, . . . , rj−1, bj , bj+1, . . . , blogN ) ∈ Fj × {0, 1}log(N)−j ,

t̃(r1, . . . , rj−1, c, bj+1, . . . , blogN ) = t̃(r1, . . . , rj−1, bj , bj+1, . . . , blogN ) + (c− bj) · dj . (28)

The important implication of Equation (28) is that “revising’ the j’th variable value from bj to c affects the
evaluation of t̃ by an additive term (c − bj) · dj . The key here is that this term can be computed in O(1)
time, and does not depend on the variables blog(m)+1, . . . , blogN .

In Section G.5.2, we extend our techniques to achieve O(m) prover time whenever t̃ can be decomposed into a
sum of η = O(1) polynomials t̃1, . . . , t̃η such that the following holds. There exist values a`(c, j, bj), m`(c, j, bj)
such that “revising” the j’th variable from bj to c affects the evaluation of t̃` by a multiplicative factor of
m`(c, j, bj) and an additive factor of a`(c, j, bj). Moreover, these factors a`(c, j, bj) and m`(c, j, bj) can be

21To clarify, Theorem 8 also assumes that for each index b, the b’th table entry, tb, can be computed in constant time
(otherwise, it is impossible to even compute the correct answer 〈u, t〉 in the sparse-dense sum-check protocol in O(m) time).
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evaluated in O(1) time and do not depend on the variables blog(m)+1, . . . , blogN . The special case of t̃ having
total degree 1, which we consider first, corresponds to η = 1, a`(c, j, bj) = (c− bj) · dj and m`(c, j, bj) = 1.

Values computed by the prover at the start of the protocol. For every k ∈ {0, 1}logm, let extend`(k)
denote the set of all vectors in {0, 1}` whose first logm entries equal k. At the start of the protocol, the
prover computes the following two values qk and zk for every k ∈ {0, 1}logm:

qk :=
∑

y∈extendlogN (k)

ũ(y) · t̃(y) (29)

zk :=
∑

y∈extendlogN (k)

ũ(y). (30)

Since u is m-sparse, all m quantities qk and zk can be computed in O(m) total time.

The prover also computes “a binary tree of aggregations” of the above values. Specifically, let us think of the
m different qk (respectively, zk) values as the roots of a binary tree Q (respectively, Z), and assign each node
in Q and Z the value equal to the sum of its leaves. These values can be computed in O(m) time in total.

For example, the roots of Q and Z respectively store∑
k∈{0,1}logm

qk =
∑

y∈{0,1}logN
ũ(y) · t̃(y),

and ∑
k∈{0,1}logm

zk =
∑

y∈{0,1}logN
ũ(y).

Likewise, the two children of the root in Q store: ∑
k=(k1,...,klogm)∈{0,1}logm : k1=0

qk, (31)

and ∑
k=(k1,...,klogm)∈{0,1}logm : k1=1

qk, (32)

and similarly for Z. In general, let Q(j) ∈ F2j ∈ F2j is the vector of values assigned to nodes at at depth j of
Q, and similarly let Z(j) denote the corresponding vector of values for Z. For example, Q(1) is the length-2
vector whose two entries are given in Equations (31) and (32).

The prover’s workflow in the first logm rounds. Recall from Equation (24) that

sj(c) =
∑

(bj+1,bj+2,...,blogN )∈{0,1}log(N)−j

ũ(r1, . . . , rj−1, c, bj+1, . . . , blogN ) · t̃(r1, . . . , rj−1, c, bj+1, . . . , blogN ).

And recall from Equation (26) that

ũ(r1, . . . , rlogN ) =
∑
i∈Su

ui · χi(r1, . . . , rlogN ).

Moreover, for any i = (i1, . . . , ilogN ) ∈ {0, 1}logN , if ij = 1, then

χi(r1, . . . , rj−1, c, ij+1, . . . , ilogN ) = c · χi(r1, . . . , rj−1, ij , ij+1, . . . , ilogN ),

and if ij = 0 then

χi(r1, . . . , rj−1, c, ij+1, . . . , ilogN ) = (1− c) · χi(r1, . . . , rj−1, ij , ij+1, . . . , ilogN ).

47



Based on the above equations, it can be derived that

s1(c) =
∑

y∈{0,1}logN
ũ(c, y2, . . . , ylogN ) · t̃(c, y2, . . . , ylogN )

=
∑

y∈{0,1}logN

 ∑
i=(i1,...,ilogN )∈Su

ui · χi(c, y2, . . . , ylogN )

 · t̃(c, y2, . . . , ylogN ) (33)

=
∑

i=(i1,...,ilogN )∈Su

ui · χi(c, i2, . . . , ilogN ) · t̃(c, i2, . . . , ilogN ) (34)

=
∑

i=(i1,...,ilogN )∈Su

χi1(c) · ui · χi(i1, i2, . . . , ilogN ) ·
(
t̃(i1, i2, . . . , ilogN ) + (c− i1) d1

)
(35)

=
∑

i=(i1,...,ilogN )∈Su : i1=0

(1− c) · ui ·
(
t̃(i1, i2, . . . , ilogN ) + cd1

)
(36)

+
∑

i=(i1,...,ilogN)∈Su : i1=1

c · ui ·
(
t̃(i1, i2, . . . , ilogN ) + (c− 1) d1

)
. (37)

Here, Equation (33) invokes Equation (26). Equation (34) holds because χi(j) = 0 whenever there is even
a single index ` ∈ 2, 3, . . . , logN such that i`, j` ∈ {0, 1} and i` 6= j`. Equation (35) holds by Equation
(28). Equation (36) holds because χi(i) = 1 for all i ∈ {0, 1}logN . Equation (37) holds by definition of χi1
(Equation (3)).

Round 1 computation. Expression (37) above equals:

∑
k=(k1,...,klogm)∈{0,1}logm : k1=0

((1− c) · qk + (1− c) · c · d1 · zk)

+
∑

k=(k1,...,klogm)∈{0,1}logm : k1=1

(c · qk + c · (c− 1) · d1 · zk)

For each c ∈ {−1, 0, 1}, computing this expression requires just a constant amount of work given the values
of the two children of the root vertex of the trees Q (Equations (31) and (32)) and Z.
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Round j > 1 computation. A similar calculation to the above reveals that sj(c) equals:∑
(yj+1,...,ylogN )∈{0,1}log(N)−j

ũ(r1, . . . , rj−1, c, yj+1, . . . , ylogN ) · t̃(r1, . . . , rj−1, c, yj+1, . . . , ylogN )

=
∑

(yj+1,...,ylogN )∈{0,1}log(N)−j

 ∑
i=(i1,...,ilogN )∈Su

ui · χi(r1, . . . , rj−1, c, yj+1, . . . , ylogN )

 · t̃(r1, . . . , rj−1, c, yj+1, . . . , ylogN )

=
∑

i=(i1,...,ilogN )∈Su

ui · χi(r1, . . . , rj−1, c, ij+1, . . . , ilogN ) · t̃(r1, . . . , rj−1, c, ij+1, . . . , ilogN )

=
∑

i=(i1,...,ilogN )∈Su

χ(i1,...,ij)(r1, . . . , rj−1, c) · ui ·

(
t̃(i1, i2, . . . , ilogN ) +

j−1∑
k=1

(rk − ik) dk + (c− ij)dj

)

=
∑

(b1,...,bj)∈{0,1}j

∑
i=(i1,...,ilogN )∈Su : (i1,...,ij)=(b1,...,bj)

ui · χ(b1,...,bj)(r1, . . . , rj−1, c) ·

(
t̃(i1, i2, . . . , ilogN ) +

j−1∑
k=1

(rk − ik) dk + (c− ij)dj

)

=
∑

(b1,...,bj)∈{0,1}j

∑
i=(i1,...,ilogN )∈Su : (i1,...,ij)=(b1,...,bj)

ui · χ(b1,...,bj)(r1, . . . , rj−1, c) · t̃(i1, i2, . . . , ilogN ) (38)

+
∑

(b1,...,bj)∈{0,1}j

∑
i=(i1,...,ilogN )∈Su : (i1,...,ij)=(b1,...,bj)

ui · χ(b1,...,bj)(r1, . . . , rj−1, c) ·

(
j−1∑
k=1

(rk − ik) dk + (c− ij)dj

)
(39)

Recall that Q(j) ∈ F2j (respectively Z(j)) is the vector of values assigned to nodes at at depth j of Q. Let
v(j) be the length-2j vector with entries indexed by (b1, . . . , bj) ∈ {0, 1}j , with (b1, . . . , bj)’th entry given by

χ(b1,...,bj)(r1, . . . , rj). (40)

Let (v′)(j) be the vector with (b1, . . . , bj)’th entry given by

χ(b1,...,bj)(r1, . . . , rj−1, c) = v(j−1)[b1, . . . , bj−1] · (bjc+ (1− bj)(1− c)).

Note that (v′)(j) can be computed in O(2j) time given v(j−1). And Expression (38) equals

〈(v′)(j), Q(j)〉.

Similarly, let w(j) be the length-2j vector with entries indexed by (b1, . . . , bj) ∈ {0, 1}j , with (b1, . . . , bj)’th
entry given by

j−1∑
k=1

(rk − ik) dk.

Let (w′)(j) be the vector with (b1, . . . , bj)’th entry given by w(j−1)[b1, . . . , bj ] + (c− bj) · dj . Then Expression
(39) equals

〈(v′)(j) ◦ (w′)(j), Z(j)〉,
where (v′)(j) ◦ (w′)(j) denotes the Hadamard (i.e., entry-wise) product of (v′)(j) and (w′)(j).

In summary, we have shown that for j = 1, . . . ,m, the sum-check prover’s j’th message sj can be computed
in time O(2j) so long as the prover can compute v(j) and w(j) in this time bound. And indeed this is the
case. For v(j), observe that, given all entries of v(j−1), one can compute v(j) in time O(2j). This is because

v(j)[b1, . . . , bj ] = v(j−1)[b1, . . . , bj−1] · (rjbj + (1− rj)(1− bj)).

Similarly, for w(j), observe that, given all entries of w(j−1), one can compute w(j) in time O(2j). This is
because

w(j)[b1, . . . , bj ] = w(j−1)[b1, . . . , bj−1] + (rj − bj) · dj .
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Rounds log(m) + 1, . . . , 2 log(m). Because the prover’s runtime in round j takes time O(2j), by the time we
reach round logm, the prover is requiring O(m) time per round. Hence, before the prover proceeds to round
m+ 1, the prover needs to perform a “condensation” operation so that round log(m) + 1 behaves like round
1 in terms of prover complexity.

Round j = log(m) + 1 of the sparse-dense sum-check protocol is equivalent to round 1 of the sparse-dense
sum-check protocol with the (log(N))-variate polynomials ũ and t̃ replaced by the following (log(N)− log(m))-
variate polynomials ũ′ and t̃′:

ũ′(blog(m)+1, . . . , blogN ) := ũ(r1, . . . , rlogm, blog(m)+1, . . . , blogN ),

t̃′(blog(m)+1, . . . , blogN ) := t̃(r1, . . . , rlogm, blog(m)+1, . . . , blogN ).

So we merely need to show that in round m+ 1 of the sparse-dense sum-check protocol, the prover can in
O(m) time compute the necessary data structures about ũ′ and t̃′, namely (per Equations (29) and (30)) the
following quantities:

q′k :=
∑

y∈extendlog(N)−log(m)(k)

ũ′(y) · t̃′(y) (41)

z′k :=
∑

y∈extendlog(N)−log(m)(k)

ũ′(y). (42)

All m of the z′k can be computed in O(m) time, as z′k = zk · χk(r1, . . . , rlogm) and the values

{χk(r1, . . . , rlogm) : k ∈ {0, 1}logm} (43)

can all be computed in O(m) total time, and in fact are precisely the contents of the vector v(logm) (see
Equation (40)) computed by the prover anyway during the course of the first logm rounds of sum-check.

All m of the q′k values can also be computed in O(m) total time. To see this, recall that there are at most m
values y = (y1, . . . , ylogN ) ∈ {0, 1}logN such that ũ(y) 6= 0. For each such y, let y = (y′, y′′) ∈ {0, 1}logm ×
{0, 1}log(N)−log(m). Then ũ′(y′) =

∑
k∈{0,1}logm χk(r1, . . . , rlogm) · ũ(k, y′). Since the χk(r1, . . . , rlogm) values

(Equation (43)) can all be computed in O(m) total time, this means that all non-zero ũ′(y′) values can in
turn all be computed in O(m) time. Let S be the set

{y′ ∈ {0, 1}log(N)−log(m) : ũ′(y) 6= 0},

and recall that S has size at most m. For all y′ ∈ S, we can also compute t̃′(y′) in O(m) total time, by the
following reasoning.

First, recall from Equation (28) that for round j = logm and (b1, . . . , blogN ) ∈ {0, 1}logN ,

t̃`(r1, . . . , rj , bj+1, . . . , blogN ) = t̃`(b1, . . . , . . . , blogN ) +

j∑
k=1

(rk − bk) · dk

Using dynamic programming, the following values can be computed in total time O(2j) = O(m) for all
(b1, . . . , bj) ∈ {0, 1}j :

j∑
k=1

(rk − bk) · dk. (44)

Indeed, let H(j) be the length 2j-array with entries indexed by (b1, . . . , bj) ∈ {0, 1}j and such that

H(j)[b1, . . . , bj ] =
∑j
k=1(rk − bk) · dk. Then H(j+1) can be computed from H(j) in O(2j+1) time, since

H(j)[b1, . . . , bj , bj+1] = H(j)[b1, . . . , bj ] + (rj+1 − bj+1) · dj+1. This means H(logm) can be computed in

O(
∑logm
j=1 2j) = O(m) time in total.

50



The prover, having computed and stored t̃`(y) for all y ∈ S in O(m) total time at the start of the protocol
(see Footnote 21), can use these values to compute

t̃(r1, . . . , rj , bj+1, . . . , blogN )

for all y ∈ S in O(m) total time.

Remaining rounds. The prover’s computation in the remaining rounds (2 log(m) + 1, . . . , logN) proceeds
analogously to rounds logm, . . . , 2 logm. Every logm rounds, the prover perform a “condensation” operation
so that subsequent round behaves like round 1 in terms of prover complexity. This entails computing quantities
q′k,` and z′k for each k ∈ {0, 1}logm, defined analogously to Equations (41) and (42). As above, these m
quantities can all be computed in time O(m) per condensation operation. In total, the prover performs O(C)
condensation operations, so O(Cm) time is spent on condensation operations. Outside of the condensation
operations, the prover implements each “chunk” of logm rounds in O(m) time. Since there are O(C) chunks,
this means that the total prover time is O(Cm).

G.5.2 An O(cm)-time prover for tables with t̃ having total degree larger than one

Theorem 9. Suppose that t̃ can be decomposed into a sum of η = O(1) polynomials t̃1, . . . , t̃η, i.e.,

t̃ =

η∑
`=1

t̃` (45)

and such that the following holds. For any (r1, . . . , rj−1, c) ∈ Fj and any (bj , . . . , blogN ) ∈ {0, 1}log(N)−j+1,
there exist values a`(c, j, bj), m`(c, j, bj), each of which can be evaluated in O(1) time, and which do not
depend on the variables bj+1, . . . , blogN , such that:

t̃`(r1, . . . , rj−1, c, bj+1, . . . , blogN ) = m`(c, j, bj) · t̃`(r1, . . . , rj−1, bj , bj+1, . . . , blogN ) + a`(c, j, bj). (46)

Moreover, assume that for each y ∈ {0, 1}logN such that t̃(y) 6= 0, and each ` = 1, . . . , κ, it holds that t̃`(y)
can be computed by the prover in O(1) time.22 Then the prover in the sparse-dense sum-check protocol can be
implemented in O(m) field operations.

The theorem continues to hold if the values a` and m` depend on (r1, . . . , rj−1) in addition to c, j, and bj . It
also holds if a` and m` depend on bj+1, . . . , bj+γ for some γ = O(1) (in addition to c, j, bj and (r1, . . . , rj−1)).

The last sentence of Theorem 9 is needed to capture the two final example tables in Section F.3.1, namely
those capturing bitwise AND and Less-Than (LT) operations (for both of these examples, it suffices to take
γ = 1). For example, recall from Equation (22) that for the table t capturing bitwise AND evaluations on
b-bit inputs, the following holds:

t̃(x, y) =

b∑
i=1

2i−1 · xi · yi.

Unfortunately, Theorem 6 does not apply to t̃, which has total degree 2.

Let us order the variables of (x, y) so that x1 comes first and y1 comes second, followed x2 in third and y2 in
fourth, and so on. Then for even values of j = 2k, changing the value of the j’th variable from yk to rj leads
to an additive update to t̃1(x, y) of

22b+k−1 · rj−1 · (rj − yk),

22As with Footnote 21, if t̃(y) itself cannot be computed in O(1) time for all y ∈ {0, 1}logN then the correct answer 〈u, t〉
cannot necessarily be computed by the prover in O(m) time.
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which depends only on j = 2k, rj−1, rj and yk. However, if j = 2k− 1 is odd, then the additive “effect” on t̃1
when changing the value of the jth variable from xj to rj is

22b+k−1 · (rj − xk) · yk.

This depends on variable j + 1 (i.e., on yk).

Conceptually, this means that the value of yk cannot be “ignored” by the sum-check prover algorithm during
round j = 2k − 1, which is the round in which variable xk is “processed”. However, the proof of Theorem
9 shows that this does not substantially affect prover time, essentially because there are only two possible
values of yk+1 ∈ {0, 1} that the algorithm needs to contemplate.

Proof of Theorem 9. We will prove the theorem assuming Equation (46) holds, and then explain what
modifications are necessary if a`(c, j, bj) and m`(c, j, bj) have additional dependencies as per the last two
sentences of the theorem statement.

A consequence of Equation (46) is that for any j ∈ {1, . . . , logN}, and any (b1, . . . , blogN ) ∈ {0, 1}logN ,

t̃`(r1, . . . , rj , bj+1, . . . , blogN ) =

(
j∏

k=1

m`(rk, k, bk)

)
· t̃`(b1, . . . , . . . , blogN ) +

j∑
k=1

a`(rk, k, bk). (47)

Values computed by the prover at the start of the protocol. At the start of the protocol, for each
polynomial t̃` in the decomposition of t̃ of Equation (45), the prover computes the exact same qk,` and zk
values as in Section G.5.1 and builds binary trees Q` and Z over them exactly as in Section G.5.1. That is,
for each ` = 1, . . . , κ,

qk,` :=
∑

y∈extendlogN (k)

ũ(y) · t̃`(y) (48)

and zk is defined exactly as in Definition (30). Q` is a binary tree over the qk,` values, where each internal
node stores the sum of its two children, and Z is a binary tree over the zk values.

The prover’s workflow in the first logm rounds. Following the derivation in Section G.5.1, we calculate
the following convenient expression for the prover’s first message polynomial s1:

s1(c) =
∑

y∈{0,1}logN
ũ(c, y2, . . . , ylogN ) · t̃(c, y2, . . . , ylogN )

=
∑

y∈{0,1}logN

 ∑
i=(i1,...,ilogN )∈Su

ui · χi(c, y2, . . . , ylogN )

 · t̃(c, y2, . . . , ylogN ) (49)

=
∑

i=(i1,...,ilogN )∈Su

ui · χi(c, i2, . . . , ilogN ) · t̃(c, i2, . . . , ilogN )

=
∑

i=(i1,...,ilogN )∈Su

χi1(c) · ui · χi(i1, i2, . . . , ilogN ) ·

(
η∑
`=1

(
m`(c, 1, i1) · t̃`(i1, i2, . . . , ilogN ) + a`(c, 1, i1)

))
(50)

Here, Equation (49) invokes Equation (26) and Equation (50) holds by Equations (45) and (46).

Round 1 computation. Expression (50) above equals:
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∑
k=(k1,...,klogm)∈{0,1}logm : k1=0

κ∑
`=1

(χ0(c) ·m`(c, 1, 0) · qk,` + χ0(c) · a`(c, 1, 0) · zk)

+
∑

k=(k1,...,klogm)∈{0,1}logm : k1=1

κ∑
`=1

(χ1(c) ·m`(c, 1, 1) · qk,` + χ1(c) · a`(c, 1, 1) · zk) (51)

For each c ∈ {−1, 0, 1}, computing this expression requires just a constant amount of work given the values
of the two children of the root vertex of the trees Q1, . . . , Qκ (Equations (31) and (32)) and Z1, . . . , Zκ.

Round j > 1 computation. A similar calculation to the above reveals that sj(c) equals:∑
(yj+1,...,ylogN )∈{0,1}log(N)−j

ũ(r1, . . . , rj−1, c, yj+1, . . . , ylogN ) · t̃(r1, . . . , rj−1, c, yj+1, . . . , ylogN )

=
∑

(yj+1,...,ylogN )∈{0,1}log(N)−j

 ∑
i=(i1,...,ilogN )∈Su

ui · χi(r1, . . . , rj−1, c, yj+1, . . . , ylogN )

 · t̃(r1, . . . , rj−1, c, yj+1, . . . , ylogN )

=
∑

i=(i1,...,ilogN )∈Su

ui · χi(r1, . . . , rj−1, c, ij+1, . . . , ilogN ) · t̃(r1, . . . , rj−1, c, ij+1, . . . , ilogN )

= .
∑

i=(i1,...,ilogN )∈Su

χ(i1,...,ij)(r1, . . . , rj−1, c) · ui ·

(
κ∑
`=1

(
j−1∏
k=1

m`(rk, k, bk)

)
t̃`(i1, i2, . . . , ilogN ) +

j−1∑
k=1

a`(rk, k, bk)

)

=
∑

(b1,...,bj)∈{0,1}j

∑
i=(b1,...,bj ,ij+1,...,ilogN )∈Su

ui · χ(b1,...,bj)(r1, . . . , rj−1, c) ·
κ∑
`=1

((
j−1∏
k=1

m`(rk, k, bk)

)
t̃`(i1, i2, . . . , ilogN ) +

j−1∑
k=1

a`(rk, k, bk)

)

=
∑

(b1,...,bj)∈{0,1}j

∑
i=(b1,...,bj ,ij+1,...,ilogN )∈Su

ui · χ(b1,...,bj)(r1, . . . , rj−1, c)

(
κ∑
`=1

(
j−1∏
k=1

m`(rk, k, bk)

)
t̃`(i1, i2, . . . , ilogN )

)
(52)

+
∑

(b1,...,bj)∈{0,1}j

∑
i=(b1,...,bj ,ij+1,...,ilogN )∈Su

ui · χ(b1,...,bj)(r1, . . . , rj−1, c)

(
κ∑
`=1

j−1∑
k=1

a`(rk, k, bk)

)
. (53)

Recall that for each ` = 1, . . . , κ, Q
(j)
` ∈ F2j (respectively Z(j)) is the vector of values assigned to nodes at at

depth j of Q`. As in Section G.5.1, let v(j) be the length-2j vector with entries indexed by (b1, . . . , bj) ∈ {0, 1}j ,
with (b1, . . . , bj)’th entry given by

χ(b1,...,bj)(r1, . . . , rj).

Let (v′)(j) be the vector with (b1, . . . , bj)’th entry given by

χ(b1,...,bj)(r1, . . . , rj−1, c) = v(j−1,`)[b1, . . . , bj−1] · (bjc+ (1− bj)(1− c)).

Note that (v′)(j) can be computed in O(2j) time given v(j−1). For each ` = 1, . . . , k, let x(j,`) denote the

vector with entries indexed by b = (b1, . . . , bj) ∈ {0, 1}j whose b’th entry is
∏j
k=1 m`(rk, k, bk), and let (x′)(j,`)

equal
x(j−1,`)[b1, . . . , bj−1] ·m`(c, j, bj).

Then Expression (52) equals
κ∑
`=1

〈(v′)(j) ◦ (x′)(j,`), Q
(j)
` 〉,

where (v′)(j) ◦ (x′)(j,`) denotes the Hadamard (i.e., entry-wise) product of (v′)(j) and (x′)(j,`).
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Similarly, let w(j) be the length-2j vector with entries indexed by (b1, . . . , bj) ∈ {0, 1}j , with (b1, . . . , bj)’th
entry given by

κ∑
`=1

j−1∑
k=1

a`(rk, k, bk)

Let (w′)(j) be the vector with (b1, . . . , bj)’th entry given by w(j−1)[b1, . . . , bj ] +
∑κ
`=1 a`(c, j, bj). Then

Expression (53) equals
〈(v′)(j) ◦ (w′)(j), Z(j)〉.

In summary, we have shown that for j = 1, . . . ,m, the sum-check prover’s j’th message sj can be computed
in time O(κ · 2j) so long as the prover can compute v(j), w(j), and x(j,`) for ` = 1, . . . , κ in this time bound.
And indeed this is the case. This was explained for v(j) in Section G.5.1. For x(j,`), observe that, given all
entries of x(j−1,`), one can compute x(j,`) in time O(2j). This is because

x(j,`)[b1, . . . , bj ] = v(j−1)[b1, . . . , bj−1] ·m`(rj , j, bj),

and we have assumed that m`(rj , j, bj) can be computed in constant time. The case of w(j) is similar.

Rounds log(m) + 1, . . . , 2 log(m). As in Section G.5.1, round j = log(m) + 1 of the sparse-dense sum-check
protocol is equivalent to round 1 of the sparse-dense sum-check protocol with the (log(N))-variate polynomials
ũ and t̃ replaced by the following (log(N)− log(m))-variate polynomials ũ′ and t̃′:

ũ′(blog(m)+1, . . . , blogN ) := ũ(r1, . . . , rlogm, blog(m)+1, . . . , blogN ),

t̃′(blog(m)+1, . . . , blogN ) := t̃(r1, . . . , rlogm, blog(m)+1, . . . , blogN ).

For ` = 1, . . . , κ, let

t̃`(blog(m)+1, . . . , blogN ) = t̃`(r1, . . . , rlogm, blog(m)+1, . . . , blogN )

So we merely need to show that in round m+ 1 of the sparse-dense sum-check protocol, the prover can in
O(m) time compute the necessary data structures about ũ′ and t̃′1, . . . , t̃

′
`, namely (per Equations (48) and

(30)) the following quantities:

(q′)k,` :=
∑

y∈extendlog(N)−log(m)(k)

ũ′(y) · t̃′`(y) (54)

z′k :=
∑

y∈extendlog(N)−log(m)(k)

ũ′(y). (55)

All m of the z′k can be computed in O(m) time, as z′k = zk · χk(r1, . . . , rlogm) exactly as per Section
G.5.1. All m · κ of the q′k,` values can also be computed in O(m) total time. To see this, recall that

there are at most m values y = (y1, . . . , ylogN ) ∈ {0, 1}logN such that ũ(y) 6= 0. For each such y, let
y = (y′, y′′) ∈ {0, 1}logm × {0, 1}log(N)−log(m). Then ũ′(y′) =

∑
k∈{0,1}logm χk(r1, . . . , rlogm) · ũ(k, y′). Since

the χk(r1, . . . , rlogm) values (Equation (43)) can all be computed in O(m) total time, this means that all
non-zero ũ′(y′) values can in turn all be computed in O(m) time. Let S be the set

{y′ ∈ {0, 1}log(N)−log(m) : ũ′(y) 6= 0},

and recall that S has size at most m. For all y′ ∈ S, we can also compute t̃′`(y
′) and ` = 1, . . . , κ in

O(κ ·m) total time, by the following reasoning. First, recall from Equation (47) that for round j = logm
and (b1, . . . , blogN ) ∈ {0, 1}logN ,
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t̃`(r1, . . . , rj , bj+1, . . . , blogN ) =

(
j∏

k=1

m`(rk, k, bk)

)
· t̃`(b1, . . . , . . . , blogN ) +

j∑
k=1

a`(rk, k, bk).

Using dynamic programming, the following values can be computed in total time O(2j) = O(m) for all
(b1, . . . , bj) ∈ {0, 1}j :

j∏
k=1

m`(rk, k, bk) (56)

and
j∑

k=1

a`(rk, k, bk). (57)

The prover, having computed and stored t̃`(y) for all y ∈ S in O(m) total time at the start of the protocol
(see Footnote 22), can use these values to compute

t̃`(r1, . . . , rj , bj+1, . . . , blogN )

for all y ∈ S in O(m) total time.

Remaining rounds. The prover’s computation in the remaining rounds (2 log(m) + 1, . . . , logN) proceeds
analogously to rounds logm, . . . , 2 logm. Every logm rounds, the prover perform a “condensation” operation
so that subsequent round behaves like round 1 in terms of prover complexity. This entails computing quantities
q′k,` and z′k for each k ∈ {0, 1}logm, The total prover runtime is O(Cm) as in Section G.5.1.

Modifications if a`(c, j, bj) and m`(c, j, bj) have additional dependencies. If a`(c, j, bj) and m`(c, j, bj)
depend on (r1, . . . , rj−1), in addition to c, j, and bj , nothing about the prover’s computation needs to change
because in each round j, there is only one vector (r1, . . . , rj−1) for the algorithm to consider.

If if a` and m` also depend on bj+1, . . . , bj+γ for some γ = O(1) (in addition to c, j, bj and (r1, . . . , rj−1)),
then some modifications are required. Conceptually, in each round j, the prover computation groups those
y ∈ {0, 1}logN such that ũ(y) 6= 0 so that elements of the same group all have a` and m` equal to the
same quantities. These groups correspond to the internal nodes at level j of the binary trees Q` and
Z. If a` and m` depend on bj+1, . . . , bj+γ , then the grouping needs to incorporate bj+1, . . . , bj+γ as well.
Fortunately, the number of groups under consideration in each round j grows by at most a factor of 2γ

because (bj+1, . . . , bj+γ) ∈ {0, 1}γ can only take 2γ values.

Specifically, Equations (51) (capturing the prover’s round-one message) is updated to have 21+γ sums rather
than 2 sums. Associating each sum with a bit-vector in {0, 1}γ , the i’th sum is over terms k ∈ {0, 1}logm
that have with (k1, . . . , kγ) = i (Equation (51) itself corresponds to the case γ = 0). Explicitly, Equation (51)
becomes:

∑
i=(i1,...,iγ)∈{0,1}γ

∑
k=(k1,...,klogm)∈{0,1}logm : (k1,...,kγ)=i

κ∑
`=1

(χi(c, k2, . . . , kγ) ·m` · qk,` + χi(c, k2, . . . , kγ) · a` · zk) ,

where the quantities a` and m` may depend on c, k1, . . . , kγ .

Similarly (52), and (53) are updated to become:

∑
(b1,...,bj)∈{0,1}j

∑
i=(b1,...,bj ,ij+1,...,ilogN )∈Su

ui · χ(b1,...,bj+γ)(r1, . . . , rj−1, c, bj+1, . . . , bj+γ)

(
κ∑
`=1

(
j−1∏
k=1

m`(rk, k, bk)

)
t̃`(i1, i2, . . . , ilogN )

)

+
∑

(b1,...,bj+γ)∈{0,1}j+γ

∑
i=(b1,...,bj+γ ,ij+γ ,...,ilogN )∈Su

ui · χ(b1,...,bj+γ)(r1, . . . , rj−1, c, bj+1, . . . , bj+γ)

(
κ∑
`=1

j−1∑
k=1

a`(rk, k, bk)

)
.
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Here, we write a`(rk, k, bk) and m`(rk, k, bk) for simplicity and consistency with Equations (52) and (53), but
these quantities may in general depend on k, r1, . . . , rk and bk+1, . . . , bk+γ .

Applications to the AND and LT tables. The discussion following the statement of Theorem 9 explained
that the theorem applied to the lookup table for the AND instruction, whose (x, y)’th entry is

∑b
i=1 2i−1xi ·yi.

Recall from Section F.3.1 that LT denotes the function that takes two b-bit inputs x and y as input and
outputs 1 if x < y and 0 otherwise. The appropriate lookup table to capture this function has (x, y)’th entry

equal to LT(x, y). Let L̃T denote the multilinear extension of the function LT : {0, 1}b × {0, 1}b → F.

Deriving an expression for L̃T. Let x = (x1, . . . , xb) and y = (y1, . . . , yb).

For i = 2, . . . , b, define x>i = (xi+1, . . . , xb), and define

L̃Ti(x, y) = (1− xi) · yi · ẽq(x>i, y>i),

where recall that ẽq was defined in Equation (1).

We claim that

L̃T(x, y) =

b∑
i=1

L̃Ti(x, y). (58)

Indeed, the right hand side of this equation is multilinear and agrees with LT(x, y) at all inputs x, y ∈ {0, 1}b.
This is because, if j is the highest-order bit that differs between x and y, then L̃Tj′(x, y) = 0 for all j′ 6= j,

and L̃Tj(x, y) = 1 if and only if xj = 0 and yj = 1.

Showing that L̃T(x, y) satisfies the requirement of Theorem 9 so long as m ≥ logN . Let us order

the 2b variables of (x, y) (i.e., the variables of the polynomial L̃T) so that the low-order bits x1 and y1 get
bound in the first two rounds of sparse-dense sum-check, x2 and y2 get bound in the next two rounds, and so
on. For any (r1, . . . , rj−1, rj) ∈ Fj and any (zj , . . . , z2b) ∈ {0, 1}2b−j+1, we must show that there exist values
a`, m`, each of which can be evaluated in O(1) time, and which do not depend on the variables zj+2, . . . , z2b,
such that:

L̃T(r1, . . . , rj−1, rj , zj+1, . . . , z2b) = m · L̃T(r1, . . . , rj−1, zj , zj+1, . . . , z2b) + a. (59)

Say that j = 2k is even and let us write

x = (r1, r3, r5, . . . , rj−1, zj+1, . . . , z2b−1)

and
y′ = (r2, r4, r6, . . . , rj , zj+2, . . . , z2b).

Let
y = (r2, r4, r6, . . . , rj−1, zj , zj+2, . . . , z2b).

Let k∗ be the highest-order bit such that xk∗ 6= yk∗ .

• If k < k∗, then t̃(x, y)− t̃(x, y′) = 0. This holds by the following reasoning. For all i ≤ k, L̃Ti(x, y) =

L̃Ti(x, y) = 0 due to the factor ẽq(x>i, y>i) appearing in L̃Ti and the fact that xk∗ 6= yk∗ . And for

i > k, L̃Ti(x, y) = L̃Ti(x, y
′) because y and y′ differ only in the k’th coordinate, and for each i > k, L̃Ti

does not depend on inputs 1, . . . , i− 1.
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• Suppose k ≥ k∗. Then:

L̃T(x, y′) =

b∑
i=1

L̃Ti(x, y
′) =

k∑
i=1

(1− r2i−1) · r2i · ẽq(x>i, y
′
>i) +

b∑
i=k+1

LTi(x, y
′)

=

k∑
i=1

(1− r2i−1) · r2i ·
b∏

j=i+1

(xiy
′
i + (1− xi)(1− y′i))

+

b∑
j=k+1

LTj(x, y
′)

=

k∑
i=1

(1− r2i−1) · r2i ·
b∏

j=i+1

(xiy
′
i + (1− xi)(1− y′i))

 (60)

Here, Equation (60) holds because xi = yi = y′i for all i > k by assumption that k∗ is the most
significant index at which x and y differ.

– Suppose k > k∗. Then (assuming each rj 6∈ {0, 1}) Equation (60) equals

LT(x, y) · rj−1zj + (1− rj−1)(1− zj)
rj−1rj + (1− rj−1)(1− rj)

.

– Suppose k = k∗. Then Equation (60) equals

k−1∑
i=1

(1− r2i−1) · r2i ·
k∏

j=i+1

(xiy
′
i + (1− xi)(1− y′i))

+ (1− r2k−1) · r2k

=(1− rj−1)·rj+
k−1∑
i=1

(1− r2i−1) · r2i ·

 k−1∏
j=i+1

(xiy
′
i + (1− xi)(1− y′i))

·(rj−1rj + (1− rj−1)(1− rj)) .

Here, we have used that xi = yi and xi, yi ∈ {0, 1} for all i > k∗. Meanwhile, LT(x, y) equals

(1−rj−1)·zj+
k−1∑
i=1

(1− r2i−1) · r2i ·

 k−1∏
j=i+1

(xiy
′
i + (1− xi)(1− y′i))

·(rj−1zj + (1− rj−1)(1− zj)) .

Let

β =
rj−1rj + (1− rj−1)(1− rj)
rj−1zj + (1− rj−1)(1− zj)

. (61)

Hence,
LT(x, y′) = LT(x, y) · β + (1− r2k−1) · r2k − β(1− rj−1) · zj .

Summarizing, if we are in round j = 2k with k < k∗ where k∗ is the most significant where x and y differ,
then a = 0 and m = 1. If k > k∗ then a = 0 and23

m =
rj−1rj + (1− rj−1)(1− rj)
rj−1zj + (1− rj−1)(1− zj)

.

If k = k∗ then m = β (defined in Equation (61)) and

a = (1− r2k−1) · r2k − β(1− rj−1) · zj .
23Note that while multiplicative inverses take super-constant time to compute, the denominator of the fraction only involves

rj−1, and zj , and hence only takes two different values, as rj−1 is fixed by the verifier before starting round j and zj is only
ever 0 or 1. That is, the prover does not have to compute a different inverse for each tuple (x, y) with ũ(x, y) 6= 0.
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The case of j = 2k − 1 is similar and we highlight the main differences. In this case, let us write

x′ = (r1, r3, r5, . . . , rj , zj+2, . . . , z2b−1)

and
x = (r1, r3, r5, . . . , zj , zj+2, . . . , z2b−1),

and
y = (r2, r4, r6, . . . , rj−1, zj , zj+2, . . . , z2b).

Then we have the following analog of Equation (60):

L̃T(x′, y) =

b∑
i=1

L̃Ti(x
′, y) =

k∑
i=1

(1− r2i−1) · r2i · ẽq(x>i, y
′
>i) +

b∑
i=k+1

LTi(x
′, y)

=

k∑
i=1

(1− r2i−1) · r2i ·
b∏

j=i+1

(x′iyi + (1− x′i)(1− yi))

+

b∑
j=k+1

LTj(x
′, y)

=

k∑
i=1

(1− r2i−1) · r2i ·
b∏

j=i+1

(x′iyi + (1− x′i)(1− yi))

 (62)

The main difference when j = 2k − 1 compared to the analysis for j = 2k lies is in the case that k = k∗. In
this case, Equation (62) equals

k−1∑
i=1

(1− r2i−1) · r2i ·
k∏

j=i+1

(x′iyi + (1− x′i)(1− yi))

+ (1− r2k−1) · yk

= (1− rj) · yk +

k−1∑
i=1

(1− r2i−1) · r2i ·

 k−1∏
j=i+1

(x′iyi + (1− x′i)(1− yi))

 · (rjyk + (1− rj)(1− yk))

Meanwhile, LT(x, y) equals

(1− xk) · yk +

k−1∑
i=1

(1− r2i−1) · r2i ·

 k−1∏
j=i+1

(x′iyi + (1− x′i)(1− yi))

 · (xkyk + (1− xk)(1− yk)) = −0,

where we have used the fact that k = k∗ and xk∗ 6= yk∗ by assumption.

Hence,
LT(x′, y) = LT(x, y) + (1− rj) · yj − (1− xj) · yj + η

where η equals

=

k−1∑
i=1

(1− r2i−1) · r2i ·

 k−1∏
j=i+1

(x′iyi + (1− x′i)(1− yi))

 · (rjyk + (1− rj)(1− yk))

k−1∑
i=1

(1− r2i−1) · r2i ·

 k−1∏
j=i+1

(r2i−1r2i + (1− r2i−1)(1− r2i))

 · (rjyk + (1− rj)(1− yk)) . (63)

In this case, we can set a = (1− rj) · yj − (1− xj) · yj + η and m = 1. The prover can devote O(logN) total
time over the entire course of the sum-check protocol to ensure that η can always be computed in O(1) time.
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That is, at all odd rounds j = 2k − 1 of the sparse-dense sum-check protocol it will update the quantity

k−1∑
i=1

(1− r2i−1) · r2i ·

 k−1∏
j=i+1

(r2i−1r2i + (1− r2i−1)(1− r2i))

 .

Note that when moving from round j to round j + 2 this quantity can be updated in O(1) time. Moreover,
given this quantity, for either of the two possible values of yk ∈ {0, 1}, η can be computed in O(1) time.
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