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Abstract. Common verification steps in cryptographic protocols, such as signature or message authen-
tication code checks or the validation of elliptic curve points, are crucial for the overall security of the
protocol. Yet implementation errors omitting these steps easily remain unnoticed, as often the protocol
will function perfectly anyways. One of the most prominent examples is Apple’s goto fail bug where the
erroneous certificate verification skipped over several of the required steps, marking invalid certificates
as correctly verified. This vulnerability went undetected for at least 17 months.
We propose here a mechanism which supports the detection of such errors on a cryptographic level. In-
stead of merely returning the binary acceptance decision, we let the verification return more fine-grained
information in form of what we call a confirmation code. The reader may think of the confirmation
code as disposable information produced as part of the relevant verification steps. In case of an imple-
mentation error like the goto fail bug, the confirmation code would then miss essential elements.
The question arises now how to verify the confirmation code itself. We show how to use confirmation
codes to tie security to basic functionality at the overall protocol level, making erroneous implemen-
tations be detected through the protocol not functioning properly. More concretely, we discuss the
usage of confirmation codes in secure connections, established via a key exchange protocol and secured
through the derived keys. If some verification steps in a key exchange protocol execution are faulty, then
so will be the confirmation codes, and because we can let the confirmation codes enter key derivation,
the connection of the two parties will eventually fail. In consequence, an implementation error like goto
fail would now be detectable through a simple connection test.
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1 Introduction
Programming errors in software code keep on reoccurring. While detecting such bugs is already a te-
dious task in general, the situation gets exacerbated in the context of security and cryptographic code in
particular. The reason is that cryptographic implementations are extremely brittle: bugs can be entirely
unnoticeable from a functionality point of view, yet lead to a complete failure of security. Such bugs
are most hidden when cryptography is used within a single implementation; a prominent recent example
being a faulty key rotation mechanism at Amazon AWS using all-zero keys for TLS session ticket encryp-
tion [HNM+23], leading to a perfectly functional and simultaneously perfectly insecure cryptosystem.

But even when a cryptographic implementation is interoperating with others, implementation mistakes
can go unnoticed, for as long as months or years. Some of the best-known examples include Apple’s goto
fail bug [Pou14] where some certificate validation steps had been skipped due to a superflous goto fail;
code line, causing even invalid certificates to pass verification. A similar case of erroneous certificate
validation happened in the GnuTLS library [Tea14] where a procedure could return negative values, but
only zero values were interpreted as an error by the calling procedure. As yet another example, such
misinterpretation of parameters also caused programmers to use restricted certificate validation in cURL,
as pointed out in [GIJ+12], when setting the parameters unintentionally to true (interpreted as 1) instead
of integer value 2 for a full certificate check, including matching the name in the certificate with the
requested name.

Similarly widely exploited and remaining issues arise from missing soundness checks of cryptographic
parameters. The most prominent examples are presumably the small-subgroup attacks on discrete log-
arithms [vW96, AV96, LL97] where the verifier does not check that the received values belong to the
sufficiently large subgroup. The attack keeps on resurfacing in various forms, e.g., [ABD+15, VAS+17,
AMPS18], and can also be applied to RSA-based settings, e.g., see [AHMP23] for a recent attack on
the MEGA encryption system. Another nasty variation of this attack is the fixed-coordinate attack on
Bluetooth [BN19].

1.1 Tying Security to Functional Correctness

One may hope that testing of cryptographic code, e.g., via NIST’s Cryptographic Algorithm Validation
Program [oST23a], or verified implementations of cryptographic protocols (such as the miTLS implemen-
tation of TLS [BFK+13]) may mitigate the problem. This, however, does not match the community’s
experience with the persistence of such weaknesses. As Adam Langley put it in connection with the Poo-
dle attack [Lan14b]: “the Internet is vast and full of bugs.” We are not going to discuss potential reasons
for this, but instead ask ourselves whether it is inherent that cryptographic implementation errors remain
unnoticeable. Put differently, what if we could make crypto bugs surface through inflicted, noticeable
errors in a program’s functionality? Such functional errors would in turn be easily detected already during
basic interoperability testing of a cryptographic implementation, leading to an early mitigation of the
underlying bug in the cryptographic code.

Our approach is inspired by a talk by Nadia Heninger [Hen19] at the Workshop on Attacks in Cryp-
tography 2 (WAC2), affiliated with Crypto 2019. In her talk she proposed to minimize the damage caused
by inevitable human errors by “tying security to basic functionality.” Our work is perfectly aligned with
this idea. If the implementations enable attacks like the goto fail bug or the fixed-coordinate attack on
Bluetooth, then the goal is to make this visible via the functional behavior of the cryptographic protocol.
More concretely, an example —which we will explore in more detail— is a secure connection protocol in
which the two parties fail to connect if verification steps are erroneous.

While the idea of linking functionality to security is applicable in general, our focus here lies on cryp-
tographic verification steps in protocols, as discussed above. In particular, we assume that the unwary

3



implementer of the verification step may have introduced accidental errors, such as skipping some steps.
We do not protect against fully malicious behavior like fault injection attacks [BDL97, BS97]. Our ap-
proach focuses on detecting bugs by simple interoperability testing, where we presume that the faulty
implementation tries to establish a connection with another, sound implementation.

1.2 Enter Confirmation Codes

Recall the issue with the goto fail bug: the verification routine simply jumped over some steps and
always claimed verification was successful. Suppose now that, instead of having an error-prone decision
bit returned by the verification step, we would have a more precise description of which of the essential
steps of the full verification have actually been carried out. One observation is that such verification steps
usually compute some intermediate values and base their decision on comparing these values. One option,
which we also follow here, is thus to gather (some relevant subset of) these intermediate values in what we
call a “confirmation code”. Instead of returning merely the decision, the verification procedure will then
also hand back this confirmation code. Implementation errors like skipping some verification steps as in
the goto fail bug, misinterpretation of return values as in GnuTLS or parameters as in cURL, or reading
invalid inputs as in the Bluetooth attack, are hence surfaced through (changes in) the confirmation code.

Note that with the above approach the computation of the confirmation code basically comes for free
as part of the actual verification. A side condition, when envisioning the usage of the same confirmation
code by two parties, is that the creator (e.g., the signer of a message or the sampler of an elliptic curve
point) should also be able to derive the same confirmation code when performing its calculation. Ideally,
this should also come without significant overhead for the creator, e.g., without having to run verification
itself.

The next step is to take advantage of the extra information gathered in the confirmation code. A
naive attempt would be to have two communicating parties check whether they derived the same value.
This however simply introduces another layer of verification, likewise prone to implementation errors.
Instead, we will use the confirmation code implicitly in the overall protocol. This enables verifiability of
the verification steps of the cryptographic protocol, on a cryptographic level.

Since the use of confirmation codes is specific to the type of protocol, in this work we focus on secure
connection establishment through key exchange protocols and consider confirmation codes derived through
usual verification steps in such settings. This includes signature and MAC verifications or membership tests
for group elements. In a key exchange protocol, we can now accumulate the confirmation codes c1, . . . , cm
produced by its components and include them in a single, additional key derivation step: we use the
established key K in a key derivation function KDF, with the collection of confirmation codes as the label,
K ′ ← KDF(K , c1‖ . . . ‖cm). The resulting key K ′ is the final key of the augmented key exchange protocol.
Note that, if the confirmation codes on either side differ (e.g., due to an implementation error), then the
parties in the key exchange protocol will now derive different session keys as well. This in turn makes the
subsequent connection fail, leading to a clearly noticeable functionality error.

1.3 A Cryptographic Task

What is at hand now is the cryptographic task to make precise what properties confirmation codes should
have and what their effects on protocols employing them should be. We approach it as such, through formal
definitions, constructions, and security proofs, always keeping a focus on practice by aiming for simple,
low-overhead, and deployable solutions for existing cryptographic settings. Concretely, our contributions
are as follows.
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1.3.1 Defining confirmation codes and their goal

We begin, in Section 2, by generalizing classical verification algorithms like signatures, MACs, or parameter
validation under a common syntax for verification schemes, involving algorithms for creating and verifying
tokens (e.g., signatures, MACs, . . . ) for objects (e.g., messages, elliptic curve points, . . . ). We then
augment these classical schemes by adding the concept of confirmation codes to our generic syntax, allowing
the creation and verification algorithms to output a confirmation code (in form of a generic vector ~c), in
addition to the usual token resp. decision bit output.

The next step is to define what security property we expect from confirmation codes, in order to
make sure that verification errors translate into changes in confirmation codes which can then be noticed
in a higher-level protocol. At first glance, this might seem unachievable: since confirmation codes are
computable by the verifier, in the case for example of signatures even from fully public knowledge, a
malicious implementation may simply ignore the actual verification procedure and just make sure to
compute the confirmation code correctly. We cannot protect against such malicious implementations, and
the crucial point here is that we actually do not intend to. Our aim is rather to safeguard the benign
implementer from accidentally introducing an error in the verification implementation (without intend to
cover up their mistake by retrofitting confirmation codes).

We model such accidental but benign faults in verification steps cryptographically via a non-adaptive
adversary. More precisely, we let the non-adaptive adversary decide beforehand which parts of the con-
firmation code to modify, reflecting the idea that these are the erroneous parts in the program which are
put there independently of the actual cryptographic data.1 Quantifying over all non-adaptive adversaries
means to capture all such potential programming errors. This leads to a notion of unpredictability of con-
firmation codes, which we formalize in Section 3, meaning that the non-adaptively placed errors cannot
let the faulty confirmation code accidentally coincide with the actual confirmation code.

1.3.2 Adding confirmation codes to practical verification schemes

The next task is then to show that common cryptographic schemes support such unpredictable confirmation
codes. In Section 4, we discuss and prove secure concrete instances for the RSA-PSS signature scheme,
the HMAC message authentication code, and the validation of elliptic curve points. In each case, our
constructions’ goal is minimal overhead: we base the confirmation codes on intermediate values already
computed in the original schemes, allowing to add these codes in practice with little to no additional
computation and zero communication effort.2

1.3.3 Making connections fail noticeably

Finally, we apply the idea of verifiable verification through tying security to functionality to the setting
of secure connection establishment via key exchange protocols. In Section 5, we show that via a generic
transform adding a single extra key derivation step to the protocol, confirmation codes can be bound to
the derived session key in such a way that implementation errors in verification (like Apple’s goto fail bug)
break basic functionality: a verification error leading to non-matching confirmation codes now translates
to non-matching keys, and those in turn to connection establishment failing, which the implementer will
immediately discover during a simple connection test.

1We do allow dependency on the public key though, e.g., to capture the key being hardcoded into the program.
2We acknowledge that integrating confirmation codes into deployed libraries also requires system-level efforts, which are

beyond the scope of this work. For example, confirmation codes may be surfaced via additional API calls for verification,
allowing backwards compatibility for “classical verification” usage. Applications can then leverage this interface to tie in
confirmation codes in such a way that mismatches are surfaced through failing functionality.
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We formalize this through measuring correct functionality of the key exchange under faulty verification
implementations, again capturing accidental implementation errors as modifications by a non-adaptive
adversary. We then prove that confirmation-code unpredictability of verification schemes ensures that a
key exchange protocol with our transform applied will fail (via keys with high probability not matching)
whenever there are faults in the implementation of those verification schemes. Finally, we argue that
the so-augmented key exchange protocol is as secure as the original protocol. While seemingly intuitive,
showing this formally turns out to be non-trivial due to our transform —purposefully— collecting the
confirmation codes from the verification steps in the original key exchange protocol in a black-box manner,
without access to the verification keys, requiring the reduction to rely on publicly computable codes.

1.4 Related Work

While we are not aware of prior attempts to cryptographically tie security to basic functionality, our work
both in concepts and techniques connects to various other areas.

Proof-carrying code. Proof-carrying code, introduced by Necula and Lee [NL97, Nec97], should allow
to check if a program from an untrusted source satisfies certain safety properties. For this, the verifier
provides a safety policy and the code producer creates an additional safety proof which the verifier can
use to check efficiently that the program obeys the policy. One may view our approach with confirmation
codes as an implementation of this idea, but where the programmer is usually simultaneously producer and
verifier and where verification of the safety proof is done implicitly. Indeed, Necula [Nec97] in his original
paper argued that cryptography mechanisms rather implement trust relationships between parties and do
not necessarily allow to detect coding errors. Our solution bridges to the possibility that cryptography
can also be used to check that parts of the code are sound.

Cryptographic Algorithm Validation Program. NIST runs the Cryptographic Algorithm Valida-
tion Program (CAVP) [oST23a] to support tests for recommended algorithms. This includes common
block ciphers such as AES but also public-key schemes like DSA. Recently, NIST added hash functions to
the suite of algorithms [MC20], due to vulnerabilities found in Apple’s CoreCrypto library. The idea of the
program is to specify tests —including also false inputs— and to have a Cryptographic & Security Testing
(CST) lab check the validity. This blends in into other testing methods for cryptographic algorithms, and
yet does not seem to be able to capture all potential bugs.

Verifiable computation. The notion of verifiable computation dates back to a work of Gennaro et
al. [GGP10] and aims at verifying the results of outsourced computations. The idea of checking such
computations already appears in earlier works, especially in [BFLS91], and boils down to be able to check
if a derived value y coincides with some expected value F (x) for input x. The approach is to let the
verifier transform the input (e.g., by encrypting it under a fully homomorphic encryption scheme as in
[GGP10]), then letting the computing party perform the computation, and allowing the verifier to check
(interactively or non-interactively) that the result is correct. The most promising direction is to deploy
efficient zero-knowledge proofs where the verifying party augments the input by paramters for such a proof
system, and the computing party eventually prepares a proof of correctness of the result [GKR08].

While our approach here is related to verifiable computations in the sense that one should be able to
check that steps have been carried out, it is fundamentally different, though. In our setting we do not
outsource the computation to another party but run the verification locally with potential errors in the
code. We neither check for the correctness of result of the computation—in our case the decision bit—but
instead augment the output by more information. This output, however, needs to be synchronized with
the other party whose data we verify, e.g., both signer and verifier need to compute the same confirmation
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code. Finally, verifying verifications such as for signatures should be lightweight, such that transforming
inputs via fully homomorphic encryption or using zero-knowledge proofs to verify appear to be prohibitively
expensive.

Progressive verification. The notion of progressive verification [Fis03, Fis04] of cryptographic primi-
tives relates the error probability in verification to the actual time spent on verification: the more verifi-
cation steps are carried out, the more reliable is the result. Talen and Vergnaud [TV21] recently showed
that progressive verification is possible with ECDSA, RSA, and the GPV lattice-based signature scheme.
Boschini et al. [BFP22] discuss solutions for further lattice-based and multivariate signature schemes. Le
et al. [LKK19] considered the related concept of flexible signature schemes and showed than Lamport’s
one-time signature scheme is flexible.

While the goal of progressive verification, relating time investment to confidence, is different from the
one of verifiable verification for detecting programming errors, in some cases the techniques coincide. To
progressively verify hash chains, for example, Fischlin [Fis04] uses intermediate outputs when iterating
through the chain, resembling the approach we use here to put results of the verification into the confir-
mation code. However, other approaches in [Fis03, LKK19, TV21, BFP22] rather use random ordering of
sub-steps to achieve progressiveness.

Simultaneous verification. In the context of hybrid (post-quantum and classical) signature schemes,
Bindel and Hale [BH23] informally discuss a concept called “simultaneous verification”, which asks that,
when combining two signature schemes, the joint verifier may not “quit” before both sub-verification
processes completed. Confirmation codes could be seen as one approach to ensure that the execution of a
verification algorithm completes correctly.

Checksums. Our security goal for confirmation codes, unpredictability, aims to capture a non-malicious
implementer introducing verification errors and, implicitly, relies on honestly created tokens to have certain
entropy to make them unpredictable. This conceptually resembles non-cryptographic checksums like cyclic
redundancy checks, which likewise aim to detect unintentional flaws (in data) and which should catch, e.g.,
random bit flips.

Attacks skipping verification. Related in their effect of bypassing proper verification are protocol-
level attacks that make a protocol skip verification entirely, like the “Early ChangeCipherSuite” attack on
OpenSSL [Lan14a]. While those would also trigger non-matching confirmation codes in our setting, our
goal is not to defend against malicious adversaries, but to make unintentional implementation errors that
always skip some verification steps become noticeable.

2 Defining Verifiable Verification
Our concept of verifiable verification applies to different types of verification schemes like signatures, MACs,
or validity checks. We hence first introduce a common notation for verification schemes, then introduce
verifiable verification on top of it. Before we do so, let us define some basic notation first.

Notation. We write a bit as b ∈ {0, 1}, a (bit) string as s ∈ {0, 1}∗ with |s| indicating its (binary) length,
and s ∈ {0, 1}l∗ for a string whose length is a multiple of l. By s‖t we denote the concatenation and by
s⊕ t the bit-wise XOR of two strings s, t. For a vector v, we write v[i] for the i-th entry of v.

We write y ← x for assignments and z $←− Z for sampling z uniformly at random from a finite set Z.
By y $←− AO(x) and y ← AO(x) we denote the output y of a randomized resp. deterministic algorithm
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A run on input x with oracle access to O, where the probability is over A’s internal randomness. For a
security experiment Expt, we write Expt = 1 for the experiment returning 1.

2.1 Classical Verification Schemes

We distinguish between three common cases of verification: signature verification (where the verifier uses
a public key matching the signer’s secret key), message authentication (where the verifier uses the same
key as the signer), and validity verification such as checking validity of elliptic curve points (where no keys
are involved). Generalizing the three, we thus use an abstract syntax consisting of:

• A key generation algorithm outputting a triple (ck, vk, pk) of a secret creation key, a secret verification
key, and a public key; the latter will be given to the adversary in security games. For signatures ck
is the signing key, vk is empty, and pk is the public verification key, whereas for MACs we will set
ck = vk to be the secret key and pk to be empty. For validity checks ck = vk = ⊥ are empty and pk
may for example contain public parameters (like the description of an elliptic curve).

• A creation algorithm which takes as input a creation key ck, a public key pk, and some input in,
e.g., an input message in = m for signatures and MACs. The algorithm outputs a (cryptographic)
token tok together with an object obj which should be verified, e.g., for signatures and MACs the
object obj = m is the input message itself.

• A verification algorithm taking a verification key vk, a public key pk, an object obj, and a token tok,
returning a decision bit d.

We note that different, and equivalent, choices in syntax are possible; we opt for the distinction of secret
and public keys as above, with public keys being inputs to both creation and verification algorithms, for
clear indication of what are secret and what are public values in a scheme.

Definition 2.1 (Verification scheme). A (classical) verification scheme V = (KGen,Create,Vrfy) with
associated spaces for inputs, tokens, and objects I, T , resp. O consists of three efficient algorithms defined
as follows.

• KGen() $−→ (ck, vk, pk). This probabilistic algorithm outputs a secret creation key ck, a secret verifica-
tion key vk, as well as a public key pk. (Either key may be also set to ⊥.)

• Create(ck, pk, in) $−→ (obj, tok). For a creation key ck, a public key pk, and an input in ∈ I, this
(possibly) probabilistic algorithm outputs an object obj ∈ O and a token tok ∈ T .

• Vrfy(vk, pk, obj, tok) → d. On input a verification key vk, a public key pk, an object obj, and a
token tok, this deterministic algorithm outputs a decision bit d ∈ {0, 1} (where d = 1 indicates
validity of the token for the object).

Let (ck, vk, pk) $←− KGen(). We call V symmetric if always ck = vk 6= ⊥, asymmetric if always vk = ⊥,
and public if always ck = vk = ⊥.

Correctness. We say that a verification scheme V is correct if for any in ∈ I it holds that

Pr
[
d = 1

∣∣∣ (ck, vk, pk) $←− KGen(); (obj, tok) $←− Create(ck, pk, in); d← Vrfy(vk, pk, obj, tok)
]

= 1.

Canonical representation of signatures and MACs. We can canonically capture signature and
MAC schemes as (asymmetric, resp. symmetric) verification schemes, as shown in Figure 1. See Ap-
pendix A.1 for the standard definitions of signature and MAC schemes.
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VS.KGen():
1 (sk′, pk′) $←− KGen()
2 ck ← sk′; vk← ⊥; pk← pk′
3 return (ck, vk, pk)

VS.Create(ck, pk, in):
4 σ $←− Sign(ck, in)
5 obj ← in; tok ← σ
6 return (obj, tok)

VS.Vrfy(vk, pk, obj, tok):
7 d← Vrfy(pk, obj, tok)
8 return d

VM.KGen():
1 K $←− KGen()
2 ck ← K; vk← K; pk = ⊥
3 return (ck, vk, pk)

VM.Create(ck, pk, in):
4 τ $←− Tag(ck, in)
5 obj ← in; tok ← τ
6 return (obj, tok)

VM.Vrfy(vk, pk, obj, tok):
7 d← Vrfy(vk, obj, tok)
8 return d

Figure 1: Canonical representation of (left) a signature scheme S = (KGen, Sign,Vrfy) and (right) a MAC
scheme M = (KGen,Tag,Vrfy) as verification schemes VS, resp. VM.

2.2 Verification Schemes with Confirmation

To introduce the concept of confirmation in verification procedures, we augment the outputs of the creation
algorithm and the verification algorithm by vectors of confirmation codes. This leads to the following
syntax.

Definition 2.2 (Verification scheme with confirmation). A verification scheme with confirmation VC =
(KGenC,CreateC,VrfyC) with associated spaces for inputs, tokens, objects, and confirmation codes I, T ,
O, resp. C consists of three efficient algorithms defined as follows.

• KGenC() $−→ (ck, vk, pk). This probabilistic algorithm outputs a secret creation key ck, a secret verifi-
cation key vk, as well as a public key pk. (Either key may be also set to ⊥.)

• CreateC(ck, pk, in) $−→ (obj, tok,~c). On input a creation key ck, a public key pk, and an input in ∈ I,
this (possibly) probabilistic algorithm outputs an object obj ∈ O, a token tok ∈ T , and a vector of
confirmation codes ~c ∈ C∗.

• VrfyC(vk, pk, obj, tok) → (d,~c). On input a verification key vk, a public key pk, an object obj, and
a token tok, this deterministic algorithm outputs a decision bit d ∈ {0, 1} (where d = 1 indicates
validity of the token for the object) and a vector of confirmation code ~c ∈ C∗ ∪ {⊥} (where ~c = ⊥ iff
d = 0).

Correctness. We say that a verification scheme with confirmation, VC, is correct if for any in ∈ I it
holds that

Pr
[
d = 1 ∧ ~cc = ~cv

∣∣∣∣∣ (ck, vk, pk) $←− KGenC(); (obj, tok,~cc) $←− CreateC(ck, pk, in);
(d,~cv)← VrfyC(vk, pk, obj, tok)

]
= 1.

Augmenting classical verification schemes with confirmation codes. Observe that any classical
verification scheme can canonically be written as one with confirmation, by simply letting CreateC and
VrfyC output empty confirmation code vectors ~c = ().

In practice, we are interested in augmenting a classical verification scheme V to also output (non-empty)
confirmation codes, in such a way that the other outputs remain unmodified, for compatibility reasons. We
call a verification scheme with confirmation VC a confirmation-augmented version of V, formally defined
as follows.
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ExptEUF-CMA
VC,A :

1 (ck, vk, pk) $←− KGenC()
2 Q← ∅
3 (m∗, tok∗) $←− AOCreate (pk)
4 (d∗,~c∗)← VrfyC(vk, pk,m∗, tok∗)
5 return

[
d∗ = 1 ∧ (m∗, ·) /∈ Q

]

ExptSUF-CMA
VC,A :

1 (ck, vk, pk) $←− KGenC()
2 Q← ∅
3 (m∗, tok∗) $←− AOCreate (pk)
4 (d∗,~c∗)← VrfyC(vk, pk,m∗, tok∗)
5 return

[
d∗ = 1 ∧ (m∗, tok∗) /∈ Q

]

OCreate(m):
6 (tok,~c) $←− CreateC(ck, pk,m)
7 Q← Q ∪ {(m, tok)}
8 return (tok,~c)

Figure 2: Security experiments for existential and strong unforgeability under chosen-message attacks
(EUF-CMA, resp. SUF-CMA) for verification schemes with confirmation. We write (a, ·) /∈ Q if @ b s.t.
(a, b) ∈ Q.

Definition 2.3 (Confirmation-augmented verification scheme). Let V = (KGen,Create,Vrfy) be a (classi-
cal) verification scheme and VC = (KGenC,CreateC,VrfyC) be a verification scheme with confirmation with
the same spaces for inputs I, tokens T , objects O, as well as random coins R and R′ for Create resp.
CreateC. We say that VC is a confirmation-augmented version of V if

• KGenC = KGen,

• R = R′,

• for all keys generated as (ck, vk, pk) $←− KGen(), inputs in ∈ I, and random coins r ∈ R, letting
(obj, tok,~c) ← CreateC(ck, pk, in; r) and (obj ′, tok ′) ← Create(ck, pk, in; r), it holds that obj = obj ′
and tok = tok ′, and

• for all keys generated as (ck, vk, pk) $←− KGen(), objects obj ∈ O, and tokens tok ∈ T , letting (d,~c)←
VrfyC(vk, pk, obj, tok) and d′ ← Vrfy(vk, pk, obj, tok), it holds that d = d′.

Example. Note that the above definition coincides with the common notions for signature and MAC
schemes with regard to messages m = in = obj and tokens (the latter capturing signatures resp. MAC
tags), augmented with confirmation codes. We have seen in Figure 1 how signature and MAC schemes can
canonically be represented as verification schemes, and hence augmented with verification codes. Here, we
briefly discuss how validity checks for randomly generated elliptic curve points fit in, albeit we revisit the
approach in more detail later in Section 4.3. In the case of elliptic curves we assume that key generation
creates the description of an elliptic curve, with equation x3 + ax + b = y2 over a prime field F. (The
reader may think of a concrete curve like the FIPS 186-4 curve P-256.) The creation algorithm is supposed
to output a random curve point obj = (x, y) ∈ F2 and ignore the input in. The token itself tok is empty
in this case. We neglect the confirmation code here, since we discuss this in more detail in light of the
security requirements of such values later. The verification algorithm, on receiving an object (x, y), checks
that indeed x3 + ax+ b = y2 over F and outputs this result as its decision bit.

Unforgeability. The classical (existential and strong) unforgeability notions for signatures and MACs
(given in Appendix A.1 for completeness) generalize to verification schemes without change beyond ac-
counting for confirmation codes being output. These unforgeability notions are not suitable for validity
checks and other public verification schemes without secret creation key (ck = ⊥), as the adversary can
then simply forge arbitrary “tokens” (which the verifier accepts by correctness). We can nonetheless define
the notion for verification schemes in general, as follows.
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Definition 2.4 (Existential and strong unforgeability of verification schemes with confirmation). Let
VC be a verification scheme with confirmation and let experiments ExptEUF-CMA

VC,A and ExptSUF-CMA
VC,A for an

adversary A be defined as in Figure 2.
We define the advantage of an adversary A against the existential (resp. strong) unforgeability under

chosen-message attacks (EUF-CMA, resp. SUF-CMA) of VC as

AdvEUF-CMA
VC,A := Pr

[
ExptEUF-CMA

VC,A = 1
]
, resp. AdvSUF-CMA

VC,A := Pr
[
ExptSUF-CMA

VC,A = 1
]
.

3 Confirmation-code Unpredicatability
We next define a simple yet sufficient security notion for verification schemes with confirmation, which
we call confirmation-code unpredictability. It should be able to thwart faulty implementations up to a
certain severeness. To capture this we consider an adversary playing against our notion of unpredictablity,
formalized in Figure 3, albeit one may rather think of this adversary as a benign implementer possibly
introducing errors in the verification code. In particular, we assume that such errors are introduced while
implementing the protocol, before executions take place, such that we model this benign adversary in a
non-adaptive way.

Recall that we are interested in using confirmation codes in the context of some overall protocol (e.g.,
key exchange), whose execution should fail if we have a mismatch in the confirmation codes (on the sender’s
side running CreateC and on the receiver’s side running VrfyC). Hence, to capture the bad cases, we are
interested in the chance of sender and receiver accidentally agreeing on the confirmation codes although
there are programming errors in the verification step while the creation step of the sender is correctly
implemented.3 This can happen via two cases:

• Either the benign implementer introduces programming errors in the verification step (e.g., skip-
ping instructions as in the goto fail bug [Pou14] or misinterpreting parameters leading to verification
not be correctly executed as in the GnuTLS [Tea14] and cURL [GIJ+12] bugs). This is described by
having the adversary A non-adaptively output a vector of modifications ~δ∗c to the confirmation code,
either of the type “.” to describe that this step of the verification procedure remains intact, or a new
confirmation code entry c ∈ C, e.g., to denote that this verification step has not been executed and
the confirmation code is set to some default value c. For non-trivial programming errors at least one
entry in ~δ∗c needs to be different from .. Since these programming errors should ideally be detectable
for any subsequent input, the adversary also chooses the potentially “bad” input in for the test run
on the sender’s side.

• Or, the implementer introduces input errors in the verification step for obj, like reading only the
x-coordinate of an elliptic curve point and defaulting the y-coordinate to 0 (akin to the Bluetooth
attack [BN19]). Unlike in the first case, this error may now depend on the actual object obj or the
other values created by the sender. To ensure that we gave a read error we require that the substituted
object obj∗ is different from obj. This may be even combined with further programming errors, i.e.,
the adversary may again output ~δ∗c as in the first case, only that we allow for non-modifying changes
(all entries set to .) this time.

More formally, in the confirmation-code unpredictability (c-UP) experiment in Figure 3, we define the
modified confirmation codes, representing the flawed execution, as ~c∗ ← Sub(~c, ~δ∗c ) for equal-length vectors

3A typical scenario we envision is that the verification step is part of a newly-written implementation of, say, a secure
connection protocol, which is tested against some other, existing implementation of that protocol. We want that bugs in the
new implementation should surface immediately, assuming the other implementation is correct.
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Exptc-UP
VC,A:

1 (ck, vk, pk) $←− KGenC()
2 (~δ∗c , δ∗in, in) $←− A(pk)
3 (obj, tok,~c) $←− CreateC(ck, pk, in)
4 ~c∗prog ← Sub(~c, ~δ∗c )
5 (vk∗, pk∗, obj∗, tok∗)← Sub((vk, pk, obj, tok), δ∗in)
6 (dinput,~cinput)← VrfyC(vk∗, pk∗, obj∗, tok∗)
7 ~c∗input ← Sub(~cinput, ~δ

∗
c )

8 return
[(
~c∗prog = ~c ∧ ~δ∗c 6= (., ., . . . , .)︸ ︷︷ ︸

(programming error)

)
∨
(
~c∗input = ~c ∧ obj∗ 6= obj︸ ︷︷ ︸

(input error)

)]

Exptc-UP(A)
VC,A :

1 (ck, vk, pk) $←− KGenC()
2 (~δ∗c , in) $←− A(pk)
3 (obj, tok,~c) $←− CreateC(ck, pk, in)
4 ~c∗prog ← Sub(~c, ~δ∗c )
5 return

[
~c∗prog = ~c ∧ ~δ∗c 6= (., ., . . . , .)︸ ︷︷ ︸

(programming error)

]
Exptc-UP(B)

VC,A :

1 (ck, vk, pk) $←− KGenC()
2 (~δ∗c , δ∗in, in) $←− A(pk)
3 (obj, tok,~c) $←− CreateC(ck, pk, in)
4 (vk∗, pk∗, obj∗, tok∗)← Sub((vk, pk, obj, tok), δ∗in)
5 (dinput,~cinput)← VrfyC(vk∗, pk∗, obj∗, tok∗)
6 ~c∗input ← Sub(~cinput, ~δ

∗
c )

7 return
[
~c∗input = ~c ∧ obj∗ 6= obj︸ ︷︷ ︸

(input error)

]

Figure 3: Security experiment for confirmation-code unpredictability (c-UP) for verification schemes with
confirmation. Combined experiment on left, split-up experiment on right; see text for the definition of Sub.
Note that the first case (A) covers errors in the verification program, and the second case (B) covers input
errors and, optionally, further programming errors.

~c and ~δc, with algorithm Sub either leaving entries in ~c unchanged and proceeding as expected (for symbol
.), or overwriting the value in ~c[i] with the erroneous code ~δ∗c [i], possibly ~δ∗c [i] = ⊥:

~c∗[i] =
{
~c[i] if ~δ∗c [i] = .
~δ∗c [i] else.

As mentioned above, the adversary now succeeds if it correctly predicts the confirmation code ~c∗ = ~c
of the verification algorithm, in a non-trivial way. Here, non-trivial means that

• either some verification step modified the confirmation code (e.g., due to an error this particular step
is skipped, setting the corresponding confirmation code to some default value): ~δc 6= (., ., . . . , .),

• or there is a “bad” object obj∗ used in verification causing the same confirmation code as on the
creator’s side which used a different object obj 6= obj∗. Here, the code may on top also contain
further errors, once more described by a modification of confirmation codes.

It may appear that the second condition (input errors, possibly with program errors) implies the first one.
Note, however, that both properties are incomparable, since the first case requires some modification in
the verification step for an unaltered object, whereas the second property requires some modification in
the object. In proofs, it will be helpful to treat both cases separately, which is why in Figure 3 we display
both the overall (“combined”) unpredictability experiment Exptc-UP

VC,A, as well as separate experiments for
case (A) “programming errors”, Exptc-UP(A)

VC,A , and case (B) “input errors” (with optional programming
errors), Exptc-UP(B)

VC,A .

Definition 3.1 (Confirmation-code unpredictability of verification schemes with confirmation). Let VC
be a verification scheme with confirmation and let experiment Exptc-UP

VC,A for an adversary A be defined as
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in Figure 3. We define the advantage of an adversary A against the confirmation-code unpredictability
( c-UP) of VC as

Advc-UP
VC,A := Pr

[
Exptc-UP

VC,A = 1
]
.

Generally speaking, confirmation-code unpredictability covers the class of any “hard-coding” in com-
puting confirmation codes, be it due to skipped instructions and hence uninitialized codes returned, or
input values wrongly read. We emphasize that protection against arbitrary programming errors is elusive,
as this would include the “malicious” error of merely computing the confirmation code (and possibly even
a proof of following the verification steps) while ignoring the verification decision. Exploring notions which
cover broader classes of implementation errors is an interesting direction for future research.

To illustrate the definition let us argue that simply putting obj into ~c = (obj) to thwart predictability
attacks in general does not work. Take a signature scheme as an example, where in = obj = m is the
message to be protected via the signature tok. Note that this message is chosen by the adversary. In the
first step, our successful attacker A against unpredictability chooses an arbitrary message in = m and also
sets ~δ∗c = (m). In the next step it chooses a different message m∗ 6= m and sets obj∗ ← m∗. Then, running
VrfyC on obj∗ yields the confirmation code ~cinput = (m∗), but the ~δ∗c value overwrites the only confirmation
code again with m in ~c∗input. Hence, the adversary has successfully created a different object obj∗ for which
VrfyC creates, due to a non-adaptive programming error, the same confirmation code as CreateC, letting
A win the unpredictability game.

As another example, let us consider using the signature or MAC tag of a signature resp. MAC scheme
as the confirmation code, ~c = (tok). This generically achieves unpredictability, assuming the scheme is
(existentially) unforgeable: if the adversary can predict the token for a message (be it the creator’s code
~c overwritten by ~δ∗c or the verifier’s code ~cinput), then this prediction together with the corresponding
message is indeed a valid forgery. Using the tok as confirmation code however is bad solution in practice:
a verification implementation would naturally copy the confirmation code, counteracting the idea that the
confirmation code should capture the verification steps taken.4 We hence do not consider this approach
further, but instead next turn to better, practical constructions of confirmation codes based on actual
intermediate computation values that cannot simply be copied.

4 Practical Verification with Unpredictable Confirmation Codes
Recall the idea that, ideally, confirmation codes should be computable on the verifier’s side as a by-product
of the verification steps. In this section we give three examples where one can indeed achieve this, one each
for asymmetric, symmetric, and public verification schemes. The asymmetric example is the RSA-PSS
signature scheme, for the symmetric example we consider the HMAC message authentication algorithm,
and in the public verification setting we discuss curve-point validation in elliptic curves, both that the
point is on the curve and also that it belongs to the right subgroup.

4.1 RSA-PSS Signatures

As an example of an asymmetric verification scheme, we consider the RSA-PSS signature scheme, proposed
by Bellare and Rogaway [BR96], standardized by the IETF in PKCS #1 v2.1 [JK03] and NIST [oST23b],
and mandated in major protocols like TLS 1.3 [Res18]. Figure 4 shows the RSA-PSS signature scheme,

4One might try to rule out such bad solutions in the unpredictability notion, e.g., by allowing a flawed VrfyC implementation
to copy input values (like tok). However, similar trivial codes would exist under such definition, like splitting the signature
in halves, or flipping a bit in it. This issue appears to be inherent in the general way a cryptographic notion like c-UP
treats algorithms, namely, as atomic operations. Only if one talks about specific schemes and their individual steps, one can
determine more fine-grained confirmation codes.
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RSA-PSS.Sign(sk,m), RSA-PSS+c.CreateC(sk, pk,m):
1 r $←− {0, 1}n
2 s← H(〈padding〉‖m‖r)
3 mask ← G(s)
4 t‖u← mask ⊕ (r‖0l)
5 σ ← (0‖s‖t‖u)d mod N
6 return σ (m,σ, (s))

RSA-PSS.Vrfy(pk,m, σ), RSA-PSS+c.VrfyC(vk, pk,m, σ):
7 b‖s‖t‖u← σe mod N
8 mask ← G(s)
9 r ← t⊕mask

10 s′ ← H(〈padding〉‖m‖r)
11 If s′ = s and mask[n : . . . ] = u and b = 0
12 then return 1 (1, (s′))

13 else return 0 (0,⊥)

Figure 4: The RSA-PSS signature scheme using functions G : {0, 1}` → {0, 1}n+l, H : {0, 1}∗ → {0, 1}`,
and RSA-PSS+c augmenting it with confirmation codes. Output for RSA-PSS in gray boxes , output for
RSA-PSS+c in framed boxes .

both the classical version (mostly following RFC 3447 [JK03]), as well as the confirmation-augmented
version. For the latter, we leverage that in RSA-PSS, the verifier essentially recomputes the computational
steps performed upon signing, re-deriving in particular the signer’s randomness. This is allows us to use a
single confirmation code, in which the re-derived randomness r and signed message m are bundled together
in the hash value H(〈padding〉‖m‖r).

Confirmation code rationale. When deploying verification schemes with confirmation, the main prop-
erty we are interested in achieving is confirmation-code unpredictability (c-UP). For RSA-PSS, the confir-
mation code leverages the randomness r drawn when signing (which is re-derived when verifying) as an
a-priori unpredictable value. One might wonder whether using r alone as confirmation code, ~c = (r), al-
ready yields unpredictability. This would indeed be sufficient to satisfy the “programming errors” condition
of c-UP (cf. Figure 3).

The “input errors” condition of c-UP however demands that changes to the object obj, i.e., the signed
message, lead to unpredictable changes in the confirmation code, too; this is not the case when ~c = (r).
Instead, we employ the hash value s = H(〈padding〉‖m‖r) computed upon signing. As we will show next,
the r value entering the hash ensures unpredictability while the inclusion of m ensures that modifications
of the message lead to confirmation code changes. With the confirmation code involving both r and m,
we can indeed fully establish confirmation code unpredictability.5

It remains to show that the chosen confirmation code does not negatively affect unforgeability of the
augmented scheme RSA-PSS+c. Concretely, even when outputting confirmation codes along with the sig-
natures in response to signing oracle queries in the unforgeability games (cf. Definition 2.4), RSA-PSS+c

should remain unforgeable. This is indeed easy to see: Since by correctness VrfyC computes the same con-
firmation code as CreateC given only public information (vk = pk), the message m and the signing oracle’s
token output tok, an unforgeability adversary can simply compute the confirmation codes corresponding
to the signatures generated by the signing oracle itself.

Theorem 4.1. The RSA-PSS+c verification scheme with confirmation augmenting the RSA-PSS signa-
ture scheme, given in Figure 4, is confirmation-value unpredictable when modeling H as random oracle.
Concretely, for any (even possibly unbounded) adversary A we have

Advc-UP
RSA-PSS+c,A ≤ 2 · 2−min(n,`).

5A possibly more robust approach could be to leverage that H is an extendable output function and generate further output
bits (“beyond” s) to be used as confirmation code. This may avoid implemenation errors copying s for s′ in verification. We
leave studying unpredictability notions that differentiate such errors for future work.
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Proof. We separately consider the two parts (A) “programming errors” and (B) “input errors” of c-UP, so
that we have

Advc-UP
RSA-PSS+c,A ≤ Advc-UP(A)

RSA-PSS+c,A + Advc-UP(B)
RSA-PSS+c,A.

To win in part (A) “programming errors” of c-UP, adversary A must correctly predict, overwriting
via ~δ∗c , the confirmation code H(〈padding〉‖m‖r). We leverage that the randomness r sampled within
RSA-PSS+c.CreateC generating the confirmation code ~c to be predicted, is a uniformly random string of
length n bits. Modeling H as random oracle, A must hence either predict r ∈ {0, 1}n (in a query to H), or
otherwise the hash value itself (which in that case is a random `-bit output of H). Hence, we can bound
A’s advantage in this case as Advc-UP(A)

RSA-PSS+c,A ≤ 2−min(n,`).
In part (B) “input errors” of c-UP, A may arbitrarily overwrite the inputs to VrfyC computing ~cinput in

the c-UP experiment, as long as this overwriting modifies the message, i.e., obj∗ 6≡ obj. Further, A can but
need not overwrite the confirmation code ~cinput. We analyze A’s advantage based on whether it overwrites
the confirmation code (i.e., whether ~δ∗c = (.) or not).

1. Overwriting (~δ∗c 6= (.)): Since there is only a single entry in ~c, if A overwrites ~cinput, it actually needs
to predict ~c as for part (A), so this case is already covered above.

2. No overwriting (~δ∗c = (.)): Without overwriting, the confirmation codes ~c and ~cinput output by CreateC
resp. VrfyC must collide for A to win. Note that the two algorithms use different message inputs
m and m∗, which get output as objects obj∗ 6≡ obj, where obj = m = in and obj∗ is the result of
applying δ∗in to obj. Hence the H(〈padding〉‖m‖r) values in ~c and ~cinput must collide for distinct
inputs for m. Observe that although r ∈ {0, 1}n is drawn at random in CreateC, A may opt to
not overwrite the signature via δ∗in, in which case VrfyC will use the same value r when computing
~cinput. Nevertheless, r serves as a kind of “salt” in the computation: A either needs to predict the
value of r ∈ {0, 1}n used in CreateC (from which it may pre-compute a collision under H for distinct
messages), or guess the `-bit output of H directly (for pre-computation). This leaves A with chance
of Advc-UP(B)

RSA-PSS+c,A ≤ 2−min(n,`) for part (B).

4.2 HMAC

Turning towards symmetric verification scheme, we next show how the message authentication code al-
gorithm HMAC [BCK96a], standardized by IETF [KBC97] and NIST [oST08], and universally used as a
MAC, PRF, and for key derivation, can be augmented with a confirmation code. Recall that HMAC, in
its most simple form for some key K (of full block length of the underlying compression function) and
message m, is defined as

HMAC(K,m) := H(K ⊕ opad‖H(K ⊕ ipad‖m)),

where H is a Merkle–Damgård hash function [Mer90, Dam90] (e.g., SHA-256) and opad, ipad are two
distinct (full-block) constants.

If one wanted to opt for a minimalist approach while sending HMAC values, one could use the inner
hash value C = H(K ⊕ ipad‖m) as confirmation code. We show next that this confirmation-augmented
version HMAC+c of HMAC, given in Figure 5, achieves confirmation-code unpredictability based on as-
sumptions used already in establishing PRF security of the regular HMAC function [Bel06, Bel15]: the
dual-PRF security of the underlying compression function h, asking that both h and h(x, y) := h(y, x), i.e.,
when keyed via the second input, are secure PRFs (see Appendix A.2 for the definition of PRF security,
PRF-sec).
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CreateC(ck, pk, in):
1 C ← H(ck ⊕ ipad‖in)
2 tok ← H(ck ⊕ opad‖C)
3 obj ← in; ~c← (C)
4 return (obj, tok,~c)

VrfyC(vk, pk, obj, tok):
5 C′ ← H(vk⊕ ipad‖obj)
6 tok′ ← H(vk⊕ opad‖C′)
7 if tok = tok′
8 then return (1, (C′))
9 else return (0,⊥)

Figure 5: The tag creation and verification algorithms of HMAC+c, the confirmation-augmented version of
HMAC. Key generation as for HMAC samples a b-bit key ck $←− {0, 1}b.

For notation, recall that a Merkle–Damgård hash function involves iterating a compression function
h : {0, 1}c × {0, 1}b → {0, 1}c, mapping a c-bit chaining value and b-bit input block to a c-bit out-
put. The iteration, or cascade, h∗ : {0, 1}c × {0, 1}b∗ → {0, 1}c then processes a multi-block input as
h∗(C0,m1‖ . . . ‖m`) := C` where Ci := h(Ci−1,mi) and mi ∈ {0, 1}b for 1 ≤ i ≤ `. We can hence write a
Merkle–Damgård hash function as H(M) := h∗(IV,M), where M denotes padding M with its length and
to a multiple of b bits. As a useful intermediate security notion, the advantage of an almost-universal (AU)
adversary against h∗ is defined as

AdvAU
h∗,A := Pr

[
h∗(X,M1) = h∗(X,M2) ∧M1 6= M2

∣∣∣ (M1,M2) $←− A;X $←− {0, 1}c
]
.

We are now ready to state the confirmation-code unpredictability of HMAC+c.

Theorem 4.2. The verification scheme with confirmation HMAC+c augmenting the HMAC MAC scheme,
given in Figure 5, is confirmation-value unpredictable.

Concretely, we construct reductions B1, B2, B3, B4 such that

Advc-UP
HMAC+c,A ≤ AdvPRF-sec

h,B1
+ `1 · AdvPRF-sec

h,B1 + AdvPRF-sec
h,B3

+ (`1 + `2) · AdvPRF-sec
h,B4 + 2 · 2−c,

where `1, `2 denotes the block-length of the padded message in output resp. message object obj∗ modified
by A.

Proof. We separately consider the two parts (A) “programming errors” and (B) “input errors” of c-UP, so
that we have

Advc-UP
HMAC+c,A ≤ Advc-UP(A)

HMAC+c,A + Advc-UP(B)
HMAC+c,A.

For part (A) “programming errors”, we use that h∗ is a PRF for prefix-free queries [BCK96b, Theo-
rem 3.1], which allows us to replace its output C making up the confirmation code output by CreateC in
the c-UP game with a random c-bit value. For the case of HMAC, we obtain the prefix-free PRF result
for h∗ via PRF security of h (processing the key block as h(IV, ck ⊕ ipad)) and then PRF security of the
`1-block sequence of h processing the input message.

After this step, the adversary A has a remaining chance of 2−c in guessing the now-random confirmation
value. Thus, the bound for part (A) is

Advc-UP(A)
HMAC+c,A ≤ AdvPRF-sec

h,B1
+ `1 · AdvPRF-sec

h,B1 + 2−c.

For part (B) “input errors”, we leverage the AU security of h∗ and the PRF security of h (the latter
again for processing the key block). Recall that in part (B), A must modify the message object obj to be
verified and may optionally overwrite parts of the confirmation code resulting from verifying the modified
object obj∗. Similar to the proof for RSA-PSS (cf. Theorem 4.1), since there is only one component in the
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confirmation code, overwriting ~cinput puts A in the same setting as for part (A), so we can focus on A not
overwriting it (i.e., ~δ∗c = (.)).

The confirmation code is computed as C = H(ck⊕ipad‖in) = h∗(h(IV, ck⊕ipad), in). We first replace
the value h(IV, ck ⊕ ipad) within the CreateC and VrfyC calls by a uniformly random string X $←− {0, 1}c,
applying PRF security of h. Observe that we are now precisely in the AU setting for h∗: A is tasked
to produce two different message objects in = obj and obj∗ such that ~c = (h∗(X,M1)) = (h∗(X,M2)) =
~c∗input = ~cinput, where M1 = in and M2 = obj∗ are the padded message objects. Applying the AU bound
for h∗ by Bellare [Bel15, Lemma 3.1], together with the dual-PRF step above we can hence bound part (B)
as

Advc-UP(B)
HMAC+c,A ≤ AdvPRF-sec

h,B3
+ (`1 + `2) · AdvPRF-sec

h,B4 + 2−c.

Summing up the terms for both parts yields the claim.

It remains to argue that HMAC+c is still a secure MAC, although the unforgeability adversary learns
the confirmation code, i.e., the inner hash value H(K⊕ipad‖m). To show this we consult the tight security
proof of Gazi et al. [GPR14] for HMAC, showing that the augmented version is also tightly secure. They
first consider the independent-key variant NMAC of HMAC:

NMAC((Kin,Kout),m) = H(Kout,H(Kin,m)).

Then they argue that one can replace the outer hash function by a truly random function r. This is
admissible if one assumes that H is a pseudorandom function. The reduction actually computes the inner
hash values, such that knowing our confirmation values does not lend additional power to the adversary.

In the next step of their proof, Gazi et al. argue that one cannot distinguish r(H(Kin, ·)) from a random
function R, unless the adversary finds a weak collision in the inner hash function. The reduction proceeds
in multiple steps, first turning the adaptive adversary into a non-adaptive one, then into a prefix-free one,
and finally arguing that this prefix-free adversary cannot distinguish the inner hash function from a random
one. In all intermediate steps the adversaries may learn the results of the inner hash evaluations, showing
that the argument is independent of the question if the adversary against NMAC learns the intermediate
values or not.

The final step is to lift the security proof from NMAC to HMAC, which can be found for example in
[Bel06]. This follows from the assumption that the compression function h underlying H is a dual-PRF
and also holds if an adversary learns the inner hash values. Overall it follows that the output of HMAC
still looks random, even if the adversary gets to learn the inner hash value. This also implies that the
augmented HMAC version is still a secure MAC.

Implicit verification of MACs. As an interesting side note, we remark that for a PRF-based MAC
scheme like HMAC, the MAC value itself can act as a good confirmation code as long as the MAC is actually
not sent in the higher-level protocol, but only implicitly checked, for example by letting it enter a key
derivation step in a key exchange protocol. While some key exchange protocols do not sent MAC values
explicitly (e.g., the SIGMA [Kra03] protocol variant with MACs under the signature), we are not aware of
one enforcing computation of the implicit MAC by binding it to key derivation. We speculate that this is
mainly since MACs are usually explicitly added for key confirmation, and an implicit re-computation lacks
the explicit verification decision (bit). We leave exploring implicit verification of MACs and the definition
of confirmation codes in this context as an interesting avenue for future work.

4.3 Validity Checks for Elliptic Curve Points

For the public verification setting, let us consider a scheme for checking if a pair (x, y) is a point on the
elliptic curve x3 + ax + b = y2 over a field F. As a motivational example consider the fixed-coordinate
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KGenC():
1 pick curve (a, b, P, q,F)
2 ck ← vk← ⊥
3 pk← (a, b, P, q,F)
4 return (ck, vk, pk)

CreateC(ck, pk, in):
5 pick r $←− Zq
6 compute (xr, yr)← rP over curve
7 obj ← enc(xr, yr)
8 tok ← ⊥
9 ~c← (y2

r , y
2
r) in F∞

10 return (obj, tok,~c)

VrfyC(vk, pk, obj, tok):
11 parse (xr, yr)← dec(obj)
12 compute x3

r + axr + b and y2
r over F∞

13 d← [x3
r + axr + b = y2

r over F∞]
14 ~c← (x3

r + axr + b, y2
r)

15 return (d,~c)

Figure 6: Construction of verification scheme with confirmation VC = (KGenC,CreateC,VrfyC) for checking
validity of a random point on the elliptic curve.

invalid-curve attack of Biham and Neumann against the Bluetooth protocol [BN19]. The attack works
as follows: In the attacked version of the Bluetooth protocol both parties, Alice and Bob, exchange the
x- and y-coordinates of two public Diffie–Hellman shares, (xA, yA) and (xB, yB). The attack sets both
y-coordinates to 0 for the Diffie–Hellman values in transition, such that the parties use the point (xA, 0)
resp. (xB, 0) to complete the Diffie–Hellman computation. Although not relevant for us here, let us remark
that Biham and Neumann [BN19] show that these modified points have low order on another curve, such
that, with probability 1/4, the parties end up with a trivial Diffie–Hellman key consisting of the neutral
element.

Note that the fixed coordinate invalid curve attack above is an active network attack (called “semi-
passive” in [BN19]). But we can envision it to be a programming mistake which erroneously reads the input
y-coordinate as 0 or some other value, and where no validity check is carried out. The straightforward
way to mitigate the attack is to check that the received point indeed lies on the curve. We can model
such a verification check in our notion for confirmation codes as shown in Figure 6. The idea is, given an
incoming pair (xr, yr) on the verifier’s side, to compute the value x3

r+axr+b and check that it matches the
value y2

r ; alas, a false implementation may skip this check. Hence, we let the confirmation code computed
by the verifier include the value x3

r + axr + b as well as y2
r .

The creator also computes the confirmation code vector, simply placing the square of the y-coordinate
in both components, ~c← (y2

r , y
2
r ) over F. Note also that we are interested in checking random curve points,

as will be used in genuine test runs in, say, an implementation of the Bluetooth key exchange protocol.
Formally, we thus set the input space I = {⊥} to be empty, and since the keys are all public, tokens are
irrelevant and we also set T = {⊥}.

A caveat lies in the actual encoding of elliptic curve points. We assume that the object of the curve
point (xr, yr) uses an encoding, enc(xr, yr), e.g., with encoding 0x00 for the point at infinity, prefix 0x02
or 0x03 for compressed encoding, and 0x04 for uncompressed encoding. We assume that the receiver
can decode such values correctly, i.e., dec(enc(xr, yr)) = (xr, yr) returns the (uncompressed) x-coordinate
and y-coordinate of the point. For simplicity of representation we assume here that decoding the point
at infinity yields the coordinates ∞ /∈ F for both entries, that performing any field operation with this
dedicated value yields ∞ again, and that ∞ = ∞ by definition. We simply say that the operations are
over F∞ to include this case.

We note that correctness of the validity verification scheme holds straightforwardly, since the creator
and the verification compute the same value by the curve equation, independently of the input in. In
the proof below we assume that the curve parameters are trustworthy, e.g., if parties used fixed-curve
parameters like NIST’s P-256 or Bernstein’s Curve25519 [Ber06]. In particular, we assume that the curve
is given by the values a, b, the field F, a generator P and the order q of the group generated by P . Note
that we deal with subgroup membership tests in the next section and only discuss checking validity of
curve points here.
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Theorem 4.3. For any elliptic curve (a, b, P, q,F) the construction of the verification scheme VC =
(KGenC,CreateC,VrfyC) in Figure 6 is confirmation-code unpredictable. Concretely, for any (even pos-
sibly unbounded) adversary A against unpredictability we have

Advc-UP
VC,A ≤

12
q
,

where q is the order of the elliptic curve.

Proof. Consider an arbitrary adversary A. Note that the creator key, the verification key, and the public
key only contain the description of an elliptic curve of prime order q. In order for the adversary to win, it
would need to have to either output a non-trivial ~δ∗c such that value ~c∗prog ← Sub(~c, ~δ∗c ) coincides with ~c,
or to output ~δ∗c , δ∗in such that ~c∗input ← Sub(~cinput, ~δ∗c ) equals ~c but for a different object obj∗ 6= obj.

For the first case, a non-trivial ~δ∗c making ~c∗prog match ~c, note that the adversary chooses the modification
~δ∗c before the random curve point rP is selected. Let us first consider the case that A chooses ~δ∗c such that
it sets the first entry X∗ in the confirmation code to some predefined value; the value Y ∗ in the second
component may also be set, or may be left equal to y2

r , but this decision is also made before the curve
point is chosen. If X∗ = ∞ describes the point at infinity, then the probability that our random curve
point ends up there, i.e., r = 0, is at most 1/q. If X∗ ∈ F does not match a valid curve point, then the
x-coordinate of our random point cannot match X∗, such that the probability of an adversarial success is
0 in this case.

So we may next assume that X∗ ∈ F belongs to a valid curve point. Recall that we must have Y ∗ = y2
r

for a match on the confirmation codes. Hence, there are at most 6 valid curve points with the same value
Y ∗ = y2

r in total: The equation x3 + ax + b = y2
r has at most three solutions for x∗ over the field F, and

each solution x∗ can only be combined with either sign ± for the y-value to yield the same square. Since
we pick a curve point rP uniformly at random, the probability of landing on one of these at most 6 points
is bounded by 6/q.

Next assume that the adversary leaves the first entry unchanged but sets the y2
r component to a pre-

selected value Y ∗. If Y ∗ is not a valid square of a curve point then the y-coordinate our value rP cannot
equal Y ∗ after squaring. If Y ∗ = ∞ describes the point at infinity then the probability that r = 0 is at
most 1/q. It remains to consider Y ∗ which equals the square of a y-coordinate of a valid curve point.
Analogously to the previous argument, the Y ∗-value on the curve can account for at most 6 elliptic curve
points. Hence, the probability that our random curve points induces the same value Y ∗ is at most 6/q.

The other case is that the adversary tries to create a different object obj∗ 6= obj, but where the
confirmation code ~c created with the object obj by CreateC matches ~c∗input. This value, in turn, is the
non-adaptively determined substitution of the confirmation code ~cinput computed by VrfyC for obj∗. With
the same argument as in the first case we can bound the probability that any predetermined changes to
~cinput yield the same confirmation code ~c is at most 6/q. Note that this is independent of the fact that
~c∗input is a modification of ~cinput computed by VrfyC for obj∗ instead. Hence, we can for now assume that
~δ∗c = (.)∗ and ~c∗input = ~cinput, and therefore ~c∗input = ~cinput = ~c for a successful attack.

Next observe that ~cinput is fully determined by the input object obj∗ given to VrfyC. This object,
however, is determined by the original object obj with non-adaptively chosen modifications δ∗in. If the
modification δ∗in leaves the object unchanged then this cannot constitute a valid attack. But for any non-
trivial modification we can conclude once more that a match for the confirmation code of the randomly
chosen curve point obj can only occur with probability at most 6/q. Only this time we have to add the
two probabilities.
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KGenC():
1 pick curve (a, b, P, q, n, h,F)
2 ck ← vk← ⊥
3 pk← (a, b, P, q, n, h,F)
4 return (ck, vk, pk)

CreateC(ck, pk, in):
5 pick r $←− Zn
6 compute (xr, yr)← rP over curve
7 obj ← enc(xr, yr)
8 tok ← ⊥
9 ~c← (xr,−yr) in F∞

10 return (obj, tok,~c)

VrfyC(vk, pk, obj, tok):
11 parse R = (xr, yr)← dec(obj)
12 Q← n`R
13 for i = `− 1 downto 0 do
14 Q← 2Q
15 if i = 0 then ~c← (Qx, Qy)
16 Q← Q+ niR
17 if Q = O then d← 1 else d← 0
18 return (d,~c)

Figure 7: Construction of verification scheme with confirmation VC = (KGenC,CreateC,VrfyC) for checking
that a random point on the elliptic curve belongs to the prime order subgroup.

4.4 Subgroup Membership Tests for Elliptic Curves

The verification in Section 4.3 only checks that the received value is indeed a curve point. For some
applications this is already sufficient, since the parties use the so-called (low-order) clearing, also called
clamping for Bernstein’s curve Curve25519 [Ber06]. This clearing means to multiply the received random
point R with the cofactor h of the elliptic curve, where h is such that q = nh and h is co-prime to the
prime order n of the subgroup. If R is a valid curve point then Q = hR is definitely in the subgroup
of order n. This approach is for example recommended by the German Federal Agency of Information
Security [fIS18], where the check for Q to lie on the curve is nonetheless mandatory.

For other applications, checking that the point is indeed in the subgroup is recommended. For instance,
NIST [BCR+18] recommends for “ECC Full Public-Key Validation” that one checks that the received value
R is a curve point and that nR = O is the point at infinity. The two properties together ensure that R is
in the right subgroup, since h is co-prime to n and nR thus cannot have a smaller order.

We only describe here the subgroup membership test, it can be easily combined with the curve-point
test of the previous section. We stress once more that this subgroup membership test requires that the
input value is indeed a curve point. We assume that the test nR = O is done by computing nR via
square-and-multiply, with n = ∑`

i=0 ni2i being the binary representation of the (odd) prime n describing
the subgroup’s order. Note that n0 = 1 such that the verifier computes 2(n−1

2 R) + R = (n − 1)R + R
in the final iteration. Now (n − 1)R + R can only equal O if and only if (n − 1)R = −R for valid curve
points. Hence, we let the confirmation code equal this pair of field values in the last iteration. The creator
of the random curve point can easily compute the matching confirmation code by putting (xr,−yr) for the
created point R = (xr, yr).

Theorem 4.4. For any elliptic curve (a, b, P, q, n, h,F) the construction of the verification scheme VC =
(KGenC,CreateC,VrfyC) in Figure 7 is confirmation-code unpredictable. Concretely, for any (even possibly
unbounded) adversary A against unpredictability we have

Advc-UP
VC,A ≤

1
n
,

where n is the order of the subgroup of the elliptic curve.

Proof. The proof is similar to the one for testing for curve points in the previous section. First note that,
if the adversary non-adaptively overwrites one of the two elements for F∞ via ~δ∗c , then the probability
of hitting this element with the random point is at most 1/n. Similarly, if the adversary overwrites the
object obj adaptively via some other (valid) curve point obj∗, then we distinguish two cases: If obj∗ is
also a member in the subgroup then the verification will output (n− 1)obj∗ = −obj∗ as the confirmation
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code, which will not match −obj output by the creator. If obj∗ is a curve point but does not belong
to the subgroup, then (n − 1)obj∗ cannot equal −obj, or else the point obj∗ would indeed belong to the
subgroup.

5 Key Exchange with Verifiable Verification
We now show how confirmation codes can be checked in practice with very little overhead, using key
exchange protocols as example. Key exchange not only is one of the most widely deployed types of
cryptographic protocols, underlying secure communiation protocols like TLS, SSH, QUIC, Signal, and
others, it has in the past also been at the heart of severe verification bugs in the past, including Apple’s
goto fail bug [Pou14] and the erroneous certificate validation in GnuTLS [Tea14] or cURL [GIJ+12].

Here we show how confirmation codes can be easily integrated into the key derivation step of key
exchange protocols. This ensures that programming mistakes that lead to verification steps to be skipped
(and hence confirmation codes not properly be computed) immediately lead to functional incorrectness via
diverging keys being derived. Such diverging keys will in turn be immediately noticed upon interoperability
testing: the erroneous protocol implementation will simply be unable to establish the correct session key,
making the programmer aware of the verification bug before deployment.

5.1 Basic Key Exchange Syntax

For our setting, we are most concerned with correctness properties of key exchange protocols. It hence
suffices to consider the following, simple syntax for key exchange protocols for the most part, and defer
more subtle aspects related to security properties to later.

Definition 5.1 (Key exchange protocol). A key exchange protocol KE = (KGen,Execute) consists of two
efficient algorithms defined as follows.

KGen() $−→ (sk, pk). This probabilistic algorithm outputs a secret key sk and a public key vk.

Execute(skA, pkA, skB, pkB) $−→ (trans,KA,KB) On input the secret/public keys of two parties A and B, this
probabilistic algorithm honestly executes a run of the key exchange protocol between the two parties
and outputs the resulting communication transcript trans as well as the session keys established by
each party, KA resp. KB.

For technical reasons, we restrict our focus to what we call canonical key exchange protocols where
(1) the protocol aborts whenever a verification step fails during the protocol execution, and (2) the users’
public keys of the key exchange protocol, generated by KGen, only contain public keys of the verification
sub-procedures. We consider both to be reasonable restrictions, adhered by most practical protocols.

5.2 Correctness and Faulty Verification

We next consider correctness for key exchange protocols. Classically, correctness is defined as an undis-
turbed run of a key exchange protocol between two parties leads to the same session key at each party
with probability 1. We call this an always correct key exchange protocol.

For detecting accidental mistakes in implementations, we are further interested in what we call notice-
able correctness: whether an undisturbed key exchange run leads to matching session keys with noticeable
probability. We will see that, for a faulty implementation, verifiable verification should preclude noticeable
correctness, to make sure implementation mistakes by one side of the communication lead to correctness
failures (i.e., a non-functional protocol run) with high probability in an honest execution of a key exchange.

21



ExptCORR
KE :

1 (skA, pkA) $←− KGen()
2 (skB , pkB) $←− KGen()
3 (trans,KA,KB) $←− Execute(skA, pkA, skB , pkB)
4 return

[
KA = KB 6= ⊥

]
ExptCORRf

KE,S,A:
1 (skA, pkA) $←− KGen()
2 (skB , pkB) $←− KGen()
3 (U,~δc, ~δin) $←− A(pkA, pkB) // U ∈ {A,B}
4 If ~δc ∈ ((.)∗)∗ and ~δin ∈ (.)∗
5 then return 0 // at least one substitution must be made
6 (trans,KA,KB) $←− ExecuteSub∗S [U, ~δin,~δc](skA, pkA, skB , pkB)

// ExecuteSub∗S [U, ~δin,~δc] denotes:
Every verification step (di, ~ci)← Si.VrfyC(vk, pk, obj, tok) executed by
user U within Execute, where i is a running counter over S, is replaced
by (di,Sub(~ci, ~δc[i]))← S[i].VrfyC(Sub((vk, pk, obj, tok), ~δin[i])).

7 return
[
KA = KB 6= ⊥

]
Figure 8: Correctness experiment, regular (left) and under faulty verification (right), for a key exchange
protocol KE.

Definition 5.2 (Key exchange correctness). Let KE be a key exchange protocol and let experiment
ExptCORR

KE be defined as in Figure 8. We define the correctness probability of KE as

CorrKE := Pr
[
ExptCORR

KE = 1
]
.

We say that KE is always correct iff CorrKE = 1.

To formally capture faulty verification steps, we now strengthen the classical correctness notion for
key exchange by introducing an adversary A which is allowed to non-adaptively introduce errors in the
execution of certain verification steps at one side of the protocol run. Concretely, this means that A may
hard-code verification mistakes into the verification steps of a set of verification schemes S, run within a
key exchange protocol KE. As for our confirmation-code unpredictability notion (cf. Section 3), we consider
both programming and input errors, modeled by modification vectors ~δc resp. ~δin in Figure 8. Correctness
under faulty verification then measures whether a so-modified run of KE still yields matching keys with
noticeable probability—which in practice would mean such mistakes might remain undetected.

Definition 5.3 (Key exchange correctness under faulty verification). Let KE be a key exchange protocol
and let S be a vector of verification schemes with confirmation. Define experiment ExptCORRf

KE,S,A for an
adversary A as in Figure 8.

We define the advantage of an adversary A in achieving correctness under faulty verification for KE
as

AdvCORRf
KE,S,A := Pr

[
ExptCORRf

KE,S,A = 1
]
.

We say that KE is noticeably correct under faulty verification in S iff there exists an adversary A such
that AdvCORRf

KE,S,A is non-negligible.6

5.3 Detecting Verification Faults with a Generic Key Exchange Transform

We are now ready to introduce our generic transform of a key exchange protocol using classical verification
schemes, into one that detects faulty verification steps using confirmation-augmented verification schemes.
Our transform will be entirely oblivious to the type of verification schemes, which means it can be used to

6Strictly speaking we do not consider asymptotics in our definitions; we will nonetheless later give exact bounds for
correctness under faulty verification which obey the common asymptotic behavior under reasonable assumptions.
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KE+c
F .Execute(skA, pkA, skB , pkB):

1 (trans,KA,KB ; ~cA,~cB) $←− KE.ExecuteS→S
+c

(skA, pkA, skB , pkB)
// KE.ExecuteS→S

+c
denotes:

Run KE.Execute with scheme S[i] replaced by scheme S+c[i], for 1 ≤ i ≤ |S|. Vectors ~cA and ~cB collect the sequences
of confirmation codes ~ci output by S+c[i].CreateC resp. S+c[i].VrfyC calls of user A resp. B, in order of the indices i.

2 For U ∈ {A,B}:
3 If KU 6= ⊥ then K+c

U ← F(KU ,~cU ) // for some unambiguous encoding of ~cU into a bitstring
4 Else K+c

U ← ⊥
5 return (trans,K+c

A ,K+c
B )

Figure 9: Generic transform KE+c
F of a key exchange protocol KE replacing the usage of verification schemes

in vector S with corresponding confirmation-augmented versions in vector S+c. Key generation remains
unmodified, i.e., KE+c

F .KGen = KE.KGen.

incorporate and check confirmation codes not only from classical signature- or MAC-based online authen-
tication, but also from certificate checks at lower levels of the protocol execution (which were the sources of
Apple’s goto fail and other vulnerabilities [Pou14, Tea14, GIJ+12]), or elliptic curve parameter validation.

Formally, our transform KE+c
F of a key exchange protocol KE using an additional function F is given in

Figure 9. Its approach is simple and modular: the original key exchange protocol KE is executed, replacing
instances of some classical verification schemes S with confirmation-augmented versions S+c. By definition
of being augmented versions (cf. Definition 2.3), this results in identical protocol executions except that,
additionally, confirmation codes ~cA, ~cB are computed by both parties involved in the protocol. Upon
successful completion of the original key exchange, each party now takes their derived session key K and
their collected confirmation codes ~c and computes the final session key as F(K,~c). In our analysis, we will
see that a simple collision-resistant PRF (e.g., HMAC [BCK96a, KBC97]) suffices for F; see Appendices A.2
and A.3 for the standard definitions of PRF security (PRF-sec) and collision resistance (CR).

We emphasize that our transform has several desirable properties, namely, it is

• simple: beyond introducing confirmation-augmented verification schemes, it only adds a single func-
tion call F;

• non-intrusive: it does not change the operations of the original key exchange protocol; and

• transparent: it does neither modify any of the messages exchanged in the key exchange protocol nor
introduce an additional message.

This makes our transform amenable to existing, deployed key exchange protocols, allowing to leverage
prior analysis.

5.3.1 Noticeable Incorrectness

We now formalize and prove that our transform achieves its main goal: making certain implementation
faults in verification steps visible via noticeable correctness failures.

Theorem 5.4. Let KE be a canonical, always-correct key exchange protocol and F a collision-resistant
function. Let S, S+c be two equal-size vectors of verification schemes such that S+c[i], for 1 ≤ i ≤ |S|, is a
confirmation-augmented version of S[i] (cf. Definition 2.3). Let all schemes in S+c provide confirmation-
value unpredictability.

Then the key exchange protocol KE+c
F resulting from the generic transform in Figure 9 applied to KE

is not noticeably correct under faulty verification. Concretely, we construct reductions B1 against the
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collision resistance (CR) of F and B2,i against the confirmation-code unpredictability (c-UP) of S+c[i] (for
1 ≤ i ≤ |S|) such that

AdvCORRf

KE+c
F ,S+c,A ≤ AdvCR

F,B1 +
|S|∑
i=1

Advc-UP
S+c[i],B2,i

.

Proof. Recall that the goal of A in the CORRf game is to make the executed key exchange sessions agree on
the session keys (KA = KB 6= ⊥) despite introducing some modification to the confirmation code outputs
(~δc /∈ ((.)∗)∗) or the verification step inputs ( ~δin /∈ (.)∗) at user U .

Since KE is canonical, we can disregard any input modifications that make a verification step fail (i.e.,
output d = 0), as then KU = ⊥ and also K+c

U = ⊥ and A loses. Combining this with each S+c[i] being a
confirmation-augmented version of S[i], we have that verification outputs di do not change when replacing
algorithms S[i].Vrfy with S+c[i].VrfyC, when KU 6= ⊥. As a result, we have that the outputs (trans,KA,KB)
of KE.Execute[S → S+c] equal those of KE.Execute (with the non-augmented schemes from S, for the same
choice of random coins). Since KE is always correct, this means that in the execution of the transformed
key exchange KE+c

F , we are guaranteed that KA = KB in Line 1 of the transform (Figure 9), whenever
KU 6= ⊥.

Next, we rule out collisions under F in Line 3 of KE+c
F .Execute, i.e., we let ExptCORRf

KE+c
F ,S+c,A abort whenever

K+c
A = F(KA,~cA) = F(KB,~cB) = K+c

B for distinct ~cA 6= ~cB. (Note that by the above, KA = KB.) The
probability of such abort can directly be bounded by the advantage AdvCR

F,B1 of a reduction B1 to the
collision resistance of F, which simulates the CORRf game for A and outputs (KA,~cA), (KB,~cB) as the
collision under F if it occurs.

Finally, we rule out that ~cA = ~cB in Line 1 of KE+c
F .Execute, within game ExptCORRf

KE+c
F ,S+c,A, relying on the

confirmation-value unpredictability of the schemes in S+c. Recall that by the definition of the CORRf game,
A must overwrite at least one confirmation-value output (via ~δc) or input (via ~δin) of some verification step
of a scheme in S+c. Let Ei denote the event that the creation and verification steps corresponding to S+c[i]
yields equal confirmation codes for users A and B in the execution of KE+c

F .Execute, but the confirmation-
value output or input of the verification step is overwritten. Note that for the overall confirmation code
vectors to be equal (~cA = ~cB), one of these events Ei must occur. We bound the probability of each event Ei
individually by the confirmation-value unpredictability of S+c[i], concretely by the advantage Advc-UP

S+c[i],B2,i
of a reduction B2,i.

To this end, B2,i simulates the CORRf game for A as follows. It obtains the public key pk for S+c[i] in
the c-UP game and uses this to compute pkA and pkB as per the definition of KE, sampling all other keys
itself. (Recall that since KE is canonical, pkA and pkB only depend on the public key for S[i]. Further,
key generation for the augmented scheme S+c[i] is the same as for S[i].) It then invokes A on pkA, pkB to
obtain (U,~δc, ~δin). If no overwriting values in ~δc, ~δin corresponding to scheme S+c[i] are set, i.e., event Ei
is not triggered, B2,i aborts. Otherwise, B2,i extracts the overwriting values from ~δc, ~δin for S+c[i] into
values ~δ∗c , δ∗in, and sets in to the input value for S+c[i].CreateC in the key exchange execution.

We now observe that the event Ei corresponds to the confirmation code ~c output by CreateC equaling
that output by the VrfyC step executed by user U , despite ~δc, ~δin overwriting verification input or output.
This translates to, in the c-UP game, ~c being equal to ~c∗prog (despite overwriting parts of the verification
output) resp. to ~c∗input (despite overwriting parts of the verification input), and B2,i winning in the c-UP
game. Hence, Pr[Ei] ≤ Advc-UP

S+c[i],B2,i
. Summing over all schemes in S yields the theorem bound’s term.

At this point, we have established that the user confirmation codes in KE+c
F .Execute must be distinct

(~cA 6= ~cB) which, having ruled out collisions under F, means that also their derived session keys are distinct,
i.e., K+c

A 6= K+c
B . Hence now ExptCORRf

KE+c
F ,S+c,A always outputs 0, establishing the claim.
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5.3.2 Maintaining Security

It remains to argue that our generic transform maintains regular key exchange security, in the form of key
indistinguishability under active attackers, if verification is implemented correctly.7 The concrete flavor
of key exchange security (e.g., whether to capture forward security, explicit authentication, extended
version of key compromise, etc.) is highly dependent on the respective setting, and we hence refrain from
narrowing down a specific formal security model. Instead, we provide a general argument for security
within the fundamental game-based definition of key exchange security by Bellare and Rogaway [BR94]
which forms the base of all modern key exchange security notions.

In the Bellare–Rogaway key exchange security model, the adversary is given the power to initiate
many key exchange sessions among a large set of users, and arbitrarily interfere with the exchanged
messages through tampering, dropping, or rerouting. It is further allowed to corrupt the long-term secret
keys of users as well as to reveal the session keys established in sessions of its choice. In brief, key
indistinguishability (IND security) then demands that such adversary is unable to distinguish a real session
key from a uniformly random key in a challenge session (targeted via some OTest oracle query), conditioned
that this session is not trivially compromised (“fresh”) through reveal or corruption queries, and denoting
its advantage against a protocol KE by AdvIND

KE,A.
It is within this basic security model that we provide our following security result. Interestingly, for

technical reasons related to computing confirmation codes in our reduction, we are only able to show
security is maintained generically when confirmation codes can be publicly computed. This covers a
large class of practical protocols, especially for asymmetric and public verification schemes, including
the signature and/or parameter checks in signed Diffie–Hellman and SIGMA [Kra03], checks for elliptic
curve points in Bluetooth protocols [BT521], and TLS 1.3 [Res18] when treating handshake encryption
modularly [DDGJ22]. Key exchange protocols with confirmation codes that cannot be publicly computed
would require an individual treatment; we leave establishing a general result on handling non-public
confirmation codes as an open question.

Theorem 5.5. Let KE be a key exchange protocol satisfying Bellare–Rogaway key indistinguishability ( IND)
and F be a PRF. Let S, S+c be two equal-size vectors of asymmetric or public verification schemes such
that S+c[i], for 1 ≤ i ≤ |S|, is a confirmation-augmented version of S[i] (cf. Definition 2.3). Let KE+c

F be
the key exchange protocol resulting from the transform in Figure 9 applied to KE. Assume the confirmation
codes derived in each session can be publicly computed from the session’s transcript and public keys.

Then KE+c
F also satisfies IND security. Concretely, we construct reductions B1 against the key indis-

tinguishability ( IND) of KE and B2 against the PRF security (PRF-sec) of F such that

AdvIND
KE+c

F ,A ≤ AdvIND
KE,B1 + AdvPRF-sec

F,B2 .

Proof. We begin with the “real world” case of the IND game for KE+c
F , i.e., the case where A receives

the real session key K+c computed in the tested session. Via one game hope, we bound A’s advantage in
distinguishing the “real” from the “random” case of the IND game.

In a first step, we modify this game to replace the session key K output by the underlying KE run in
the test session (i.e., the session key derived in Line 1 of the transform, Figure 9) by a uniformly random
key. We bound A’s change in noticing this change by the IND security of KE: In a reduction B1, we relay
all queries that A makes to the IND game for KE. Whenever A reveals a session key of KE+c

F , B1 reveals
the underlying key K in KE, derives the confirmation codes ~c for the session (which by assumption it can
compute based on the public session transcript and user public keys) and returns K+c = F(K ,~c). For the

7Note that detecting faulty verification is captured by triggering noticeable correctness errors, as shown in Theorem 5.4.
Here, we ask that the confirmation codes and key derivation step via function F introduced by our transform do not infringe
with security.
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tested session, B1 likewise tests the underlying key in KE and performs the same computations. In case
the IND game for KE returns the real key, this simulates the original game, whereas with a random key
returned, B1 simulates the modified game, hence bounding this step by AdvIND

KE,B1 .
In the second step, we can now leverage that the key K obtained from KE in the test session is

uniformly random and independent of other values in the execution. We use this to bound the advantage
of A between this game and the “random world” of the IND game for KE+c

F , where A receives a random
key in response to its OTest query. We do so via a reduction B2 to the PRF security of F. Reduction B2
simulates the key exchange game for A as before, except that it replaces the F evaluation step in Line 3 of
the transform in the test session by a call to its PRF oracle, using the (publicly computable) confirmation
codes of the test session as label inputs to its oracle. Note that the now-random session key K of KE in the
test session is only used within F, hence B2 can outsource sampling it to the PRF game. In case the PRF
oracle responds with the real function evaluation, B2 simulates the previous game, otherwise, it simulates
the random world of the IND game for KE+c

F , resulting in the second bound, AdvPRF-sec
F,B2 .

6 Conclusion
Our work takes a first step towards formally tying security to basic functionality in cryptographic protocols,
in which, due to the brittleness of cryptographic implementations, critical errors are easily introduced and
often remain unnoticed for long, like Apple’s goto fail bug. Focusing on verification schemes like signatures,
MACs, or parameter validation in elliptic curve groups, we introduced the concept of verifiable verification
through confirmation codes that are output by verification algorithms, beyond the verification decision
itself. When these confirmation codes achieve a non-adaptive notion of unpredictability, capturing a benign
implementer accidentally skipping some verification steps, then they can be used to help implementers
detect these implementation errors through basic functionality breaking on the protocol level. We exemplify
this in the context of secure connections, providing and formally proving a simple transform for key
exchange protocols. As concrete examples for verification schemes, we augment the RSA-PSS signature
scheme, HMAC message authentication code, and elliptic curve point and subgroup membership validation
with practical confirmation codes that essentially come “for free” as result of the actual verification steps.

Interesting next steps include exploring practical confirmation codes in other cryptographic settings
performing verification. Natural candidates include, e.g., authenticated encryption (using integrity check
codes to mask decrypted messages, scrambling the latter if verification is flawed), verifiable secret sharing
(binding codes into reconstruction), and FO-based KEMs (confirming re-encryption steps are executed).
For MAC schemes, implicitly verifying a MAC tag through only recomputing but not sending it appears to
be a compelling approach for a confirmation code that does not come with an explicit verification decision
(bit). On the protocol level, confirmation-code augmented primitives may be deployed, e.g., in code signing
(requiring confirmation codes as input during installation), secure messaging (rejecting messages if codes
do not match), entity authentication (using codes as challenge within challenge-response protocols), or
even blockchain protocols (including codes in blocks to ensure miners verified prior blocks). Ultimately,
the idea of tying security to basic functionality is not restricted to verification. Introducing it to other
cryptographic settings could further help making implementing cryptography less fragile.
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A Standard Definitions

A.1 Signature and MAC Schemes

Definition A.1 (Signature scheme). A signature scheme S = (KGen, Sign,Vrfy) with associated spaces for
messages and signaturesM resp. S consists of three efficient algorithms defined as follows.

• KGen() $−→ (sk, vk). This probabilistic algorithm outputs a secret signing key sk and a public verifica-
tion key vk.

• Sign(sk,m) $−→ σ. On input a signing key sk and a message m ∈ M, this (possibly) probabilistic
algorithm outputs a signature σ ∈ S.

• Vrfy(vk,m, σ)→ d. On input a verification key vk, a message m, and a signature σ, this deterministic
algorithm outputs a decision bit d ∈ {0, 1} (where d = 1 indicates validity of the signature).

Correctness. We say that a signature scheme S is correct, if for any m ∈M it holds that

Pr
[
d = 1

∣∣∣ (sk, vk) $←− KGen();σ $←− Sign(sk,m); d← Vrfy(vk,m, σ)
]

= 1.

Definition A.2 (MAC scheme). A message authentication code (MAC) scheme M = (KGen,Tag,Vrfy)
with associated spaces for messages and tags M resp. T consists of three efficient algorithms defined as
follows.
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ExptEUF-CMA
S,A :

1 (sk, vk) $←− KGen()
2 Q← ∅
3 (m∗, σ∗) $←− AOSign (vk)
4 d∗ ← Vrfy(vk,m∗, σ∗)
5 return

[
d∗ = 1 ∧ (m∗, ·) /∈ Q

]

ExptSUF-CMA
S,A :

1 (sk, vk) $←− KGen()
2 Q← ∅
3 (m∗, σ∗) $←− AOSign (vk)
4 d∗ ← Vrfy(vk,m∗, σ∗)
5 return

[
d∗ = 1 ∧ (m∗, σ∗) /∈ Q

]

OSign(m):
6 σ $←− Sign(sk,m)
7 Q← Q ∪ {(m,σ)}
8 return σ

ExptEUF-CMA
M,A :

1 K $←− KGen()
2 Q← ∅
3 (m∗, τ∗) $←− AOTag ()
4 return 1 iff (m∗, ∗) /∈ Q

and Vrfy(K,m∗, τ∗) = 1

ExptSUF-CMA
M,A :

1 K $←− KGen()
2 Q← ∅
3 (m∗, τ∗) $←− AOTag ()
4 return 1 iff (m∗, τ∗) /∈ Q

and Vrfy(K,m∗, τ∗) = 1

OTag(m):
1 τ $←− Tag(K,m)
2 Q← Q ∪ {(m, τ)}
3 return τ

Figure 10: Security experiments for existential and strong unforgeability under chosen-message attacks
(EUF-CMA, resp. SUF-CMA) for signature and MAC schemes. We write (a, ·) /∈ Q if @ b s.t. (a, b) ∈ Q.

• KGen() $−→ K. This probabilistic algorithm outputs a secret MAC key K.

• Tag(K,m) $−→ τ . On input a MAC key K and a message m ∈ M, this (possibly) probabilistic
algorithm outputs a tag τ ∈ T .

• Vrfy(K,m, τ)→ d. On input a MAC key K, a message m, and a tag τ , this deterministic algorithm
outputs a decision bit d ∈ {0, 1} (where d = 1 indicates validity of the MAC).

Correctness. We say that a MAC scheme M is correct, if for any m ∈M it holds that

Pr [d = 1 | K $←− KGen(); τ $←− Tag(K,m); d← Vrfy(K,m, τ)] = 1.

Definition A.3 (Existential and strong unforgeability of signature schemes). Let X be a signature resp.
MAC scheme and let experiments ExptEUF-CMA

X,A and ExptSUF-CMA
X,A for an adversary A be defined as in

Figure 10, for signatures resp. MAC schemes.
We define the advantage of an adversary A against the existential (resp. strong) unforgeability under

chosen-message attacks (EUF-CMA, resp. SUF-CMA) of X as

AdvEUF-CMA
X,A := Pr

[
ExptEUF-CMA

X,A = 1
]
, resp. AdvSUF-CMA

X,A := Pr
[
ExptSUF-CMA

X,A = 1
]
.

A.2 Pseudorandom Functions

Definition A.4 (Pseudorandom function (PRF)). Let F : X × Y → Z be a function. We define the
advantage of an adversary A against the PRF security (PRF-sec) of F as

AdvPRF-sec
F,A := Pr

[
AF(K,·) = 1

]
− Pr

[
AR(·) = 1

]
,

where K $←− X and R is randomly sampled from all functions mapping Y to Z.

A.3 Collision Resistance

Definition A.5 (Collision resistance). Let F : X → Y be a function. We define the advantage of an
adversary A against the collision resistance (CR) of F as

AdvCR
F,A := Pr

[
F(x) = F(x′) ∧ x 6= x′

∣∣ (x, x′) $←− A
]
.

32


	Introduction
	Tying Security to Functional Correctness
	Enter Confirmation Codes
	A Cryptographic Task
	Defining confirmation codes and their goal
	Adding confirmation codes to practical verification schemes
	Making connections fail noticeably

	Related Work

	Defining Verifiable Verification
	Classical Verification Schemes
	Verification Schemes with Confirmation

	Confirmation-code Unpredicatability
	Practical Verification with Unpredictable Confirmation Codes
	RSA-PSS Signatures
	HMAC
	Validity Checks for Elliptic Curve Points
	Subgroup Membership Tests for Elliptic Curves

	Key Exchange with Verifiable Verification
	Basic Key Exchange Syntax
	Correctness and Faulty Verification
	Detecting Verification Faults with a Generic Key Exchange Transform
	Noticeable Incorrectness
	Maintaining Security


	Conclusion
	References
	Standard Definitions
	Signature and MAC Schemes
	Pseudorandom Functions
	Collision Resistance


