
Hashing to elliptic curves over highly 2-adic
fields Fq with O(log(q)) operations in Fq

Dmitrii Koshelev[0000−0002−4796−8989]

Parallel Computation Laboratory, École Normale Supérieure de Lyon, France
http://www.ens-lyon.fr/en/

dimitri.koshelev@gmail.com

Abstract. The current article provides a new deterministic hash func-
tion H to almost any elliptic curve E over a finite field Fq, having an Fq-
isogeny of degree 3. SinceH just has to compute a certain Lucas sequence
element, its complexity always equals O(log(q)) operations in Fq with a
small constant hidden in O. In comparison, whenever q ≡ 1 (mod 3),
almost all previous hash functions need to extract at least one square
root in Fq. Over the field Fq of 2-adicity ν this amounts to O(log(q)+ν2)
operations in Fq for the Tonelli–Shanks algorithm and O(log(q) + ν3/2)
ones for the recent Sarkar algorithm. A detailed analysis shows that H
is several times faster than earlier state-of-the-art hash functions to the
curve NIST P-224 (for which ν = 96) from the American standard NIST
SP 800-186.

Keywords: automorphism groups and twists · cubic polynomials · ex-
ceptional covers · genus 2 curves · hashing to elliptic curves · highly
2-adic fields · Lucas sequences

1 Introduction

Elliptic cryptography can be roughly divided into two types: discrete logarithm
cryptography and isogeny-based one. At the moment, the main attention of the
academic community is riveted to the second type, because it provides post-
quantum protection. Nevertheless, the traditional cryptography is still actively
used in the real world, for example in cryptocurrencies. In this regard, it is
puzzling why the number of articles on elliptic cryptography in top journals and
conferences is disproportionately less than twenty years ago. This is partly due to
the fact that the pre-quantum cryptography has already been studied in detail,
so it is probably difficult to make any significant scientific contribution.

In recent years, the author and some other researchers have made progress
(see, e.g., [33, Tables 1, 2]) in constructing novel efficient hash functions to elliptic
curves E over finite fields Fq. Today, it can be undeniably said that the theory of
such hash functions has become an independent, rapidly developing subarea of
elliptic cryptography. This claim is particularly confirmed by the draft [16], being
regularly updated, and by Chávez-Saab et al.’s article [13], which was recognized

http://www.ens-lyon.fr/en/

2 D. Koshelev

as one of the three best papers at Asiacrypt 2022. Thus, the given topic is one
of the few that contribute to the development of the classical cryptography.

Chávez-Saab et al. obtain an indifferentiable hash function called SwiftEC
to most elliptic curves used in practice. It requires to compute a square root
in Fq and two Legendre symbols

(·
q

)
. Similarly to the inverse operation in Fq

(see [6,40]), there are constant-time algorithms [20,41] of determining
(·
q

)
whose

performance does not exceed several field multiplications. Therefore, extracting√
· is the only bottleneck of SwiftEC as well as of most hash functions to E.

Let q − 1 = 2νm, where ν, m ∈ N and 2 ∤ m. The value ν is said to be
2-adicity of the field Fq. If ν is pretty small, then

√
· is either expressed via one-

two exponentiations in Fq or found by the classical Tonelli–Shanks algorithm.
Otherwise, Müller’s refinement [38] of the old Cipolla–Lehmer method is more
preferrable in a non-cryptographic context, because it is no more laborious than
two exponentiations in Fq. In particular, its running time is independent of ν.
Unfortunately, the Cipolla–Lehmer–Müller method is not deterministic, hence
it is vulnerable to timing attacks. As a result, most hash functions to elliptic
curves (including SwiftEC) do not work in a constant linear time O(log(q)) as
ν → +∞.

As we see, hashing to E for large ν is a much harder operation than a general
scalar multiplication [·] on E, which earlier seemed the unique bottleneck in non-
pairing-based protocols. At the same time, a lot of modern curves are actually
defined over highly 2-adic fields (see, e.g., [1]). This allows to apply the fast
Fourier transform (FFT) to speed up the arithmetic of polynomials over Fq. The
given acceleration has become in demand more and more due to the emergence
of advanced protocols such as zero-knowledge proofs. On the one hand, the novel
ECFFT (elliptic curve FFT) technique [2] is slower than the original FFT. On
the other hand, the discrete logarithm problem (DLP) on elliptic curves over
highly 2-adic fields is still recognized as intractable despite an attack attempt
made in [39].

Whenever q ≡ 2 (mod 3), we can utilize Icart’s encoding [25], which extracts a
(unique) cubic root in Fq instead of a square one. The solution of Icart is thereby
optimal for the given case. Nevertheless, the opposite case q ≡ 1 (mod 3) arises
quite often in practice. For instance, this is known to be a necessary condition for
the ordinariness of curves Eb : y

2 = x3+b of j-invariant 0. Therefore, Icart’s func-
tion is absolutely useless for them. Meanwhile, ordinary (a.k.a non-supersingular)
curves Eb are very attractive, especially in pairing-based cryptography, because
they (and only they) enjoy order 6 automorphisms and degree 6 twists. This
positively influences on efficiency of diverse operations on Eb.

The work [30] succeeds in obtaining an indifferentiable hash function to Eb

provided that
√
b ∈ Fq and hence 3 | #Eb(Fq). Surprisingly, it equally extracts

3
√
·, but in the desired case q ≡ 1 (mod 3). Since highly 3-adic fields are not

so popular in practice as their 2-adic counterparts, the new hash function costs
one exponentiation in Fq at least for q ̸≡ 1 (mod 27). The order 3 automor-
phism [ω](x, y) := (ωx, y) on Eb, where ω := 3

√
1 ̸= 1, underlies the established

result. Unfortunately, the other elliptic curves do not possess a non-trivial auto-

Hashing to elliptic curves over highly 2-adic fields 3

morphism of odd order. Consequently, the result cannot be generalized, staying
within elliptic curves.

More concretely, Icart’s idea consists in constructing (by elementary reason-
ing) a cyclic trigonal Fq-curve T : y3 = f(x) and an Fq-cover φ : T → E. By
the way, for the general E the curve T is of geometric genus 7 and the cover
φ is of degree 4. Note that T has the automorphism [ω] as well as Eb. When
q ≡ 2 (mod 3), the projection prx : T → P1 to the x-coordinate is an instance
of a so-called exceptional cover in the sense of [17]. By definition, the restriction
prx : T (Fq) → P1(Fq) is bijective and hence #T (Fq) = q + 1. Eventually, Icart’s
encoding is nothing but the composition φ ◦ pr−1x : Fq → E(Fq). It is useful to
remember that Fq(

√
−3) = Fq(ω) and the discriminant of the cubic polynomial

y3 − f(x) (in the variable y) equals −3(12f(x))2.

Kammerer et al. demonstrate in [28, Section 3.1] that for the role of T and φ
it is sufficient to take a genus 2 curve (of the same shape y3 = f(x)) and a degree
2 cover if E is a Hessian curve. Since their article was written after Icart and
has the same restriction q ≡ 2 (mod 3), it is not of great interest in the author’s
opinion. According to the famous classification (see, e.g., [24, Sections 1.82.1-2]),
a general member of Kammerer et al.’s family has the geometric automorphism
group Aut(T) ≃ D12, i.e., the dihedral group of order 12. Moreover, [ω] does not
belong to the Fq-automorphism group Aut(T) or, equivalently, 3 ∤ #Aut(T).

In [46] encodings to E obtained from exceptional covers to P1 are called
Icart-like. As shown in that article, for ordinary curves E such encodings cannot
be surjective. At the same time, the DLP on supersingular curves is known to be
weaker. To the author’s knowledge, all previous Icart-like encodings are based on
the exceptional projection prx : S → P1 (of degree d) from a superelliptic curve
S : yd = f(x). By assumption, q ̸≡ 0, 1 (mod d). Surprisingly, beyond d = 3 the
only known example (with d = 7) is represented in [33, Section 2.2]. However,
it is available exclusively for the curve of j-invariant −3353, that is, with the
complex multiplication (CM) discriminant −7.

There is also in [31] a cute encoding for d = 2, where h : P1(Fq) → S(Fq) is a
bijective map whose inverse map coincides with prx “by half”. From the formal
point of view, the given encoding is not Icart-like, because prx is obviously not
bijective for all odd q. Anyway, since h needs to compute a square root in Fq, it
is not suitable for highly 2-adic fields.

The associated function field extension Fq(S)/Fq(x), generated by y = d
√
f(x),

is clearly not Galois (i.e., not normal) whenever q ̸≡ 0, 1 (mod d). The current
article proposes to use an exceptional cover ψ : H → P1 of another type. More
precisely, Fq(H) ≃ Fq(t)[x]/ρ̂, where ρ̂(x) = x3 + ρ̂1x + ρ̂0 is a certain cubic
(irreducible) polynomial. Its discriminant ∆(t) = vD(t)2 for some quadratic
non-residue v ∈ F∗

q and function D(t) ∈ Fq(t). The situation resembles the case
d = 3 and q ≡ 2 (mod 3). We conclude (see, e.g., [26, Section 2]) that the Galois
group of ρ̂ is the symmetric one S3 and hence Fq(H)/Fq(t) is equally not Galois
even for q ≡ 1 (mod 3). Consequently, the given extension is not Kummer, that
is, it cannot be generated by a cubic root.

4 D. Koshelev

We will generalize Kammerer et al.’s encoding to the case q ≡ 1 (mod 3). For
this purpose, it is suggested to take a quadratic twist H of T with the property
3 ∤ #Aut(H). As a result, there is on H an order 3 automorphism σ whose
Frobenius conjugate coincides with σ2 = σ−1. Meanwhile, the quotient map
ψ : H → C := H/⟨σ⟩ is still defined over Fq, because the group ⟨σ⟩ is Frobenius
invariant. Besides, C obviously remains a rational curve parametrizable over Fq.
Finally, since the identity map is the only Fq-map in ⟨σ⟩, the cover ψ is an
exceptional one to P1 (up to an Fq-isomorphism).

In order to be relevant to elliptic cryptography the Jacobian of H has to be
Fq-split. By virtue of [19, Lemma 3], this is in particular true when the Klein four-
group (Z/2)2 ↪→ Aut(H). Indeed, if so, then there are onH two non-hyperelliptic
Fq-involutions τ± whose composition τ+ ◦ τ− = τ− ◦ τ+ is the hyperelliptic one.
Therefore, we have the two complementary quadratic Fq-covers φ± : H → E± to
the elliptic curves E± := H/τ±. It turns out that the curve E± is 3-isogenous
over Fq to the quadratic twist ET

∓ of E∓.

Furthermore, we will prove that for almost any elliptic Fq-curve E, having
an Fq-isogeny of degree 3, there is a genus 2 curve H such that Aut(H) ≃ D12

and Aut(H) ≃ (Z/2)2 and E is Fq-isomorphic to E+ or ET
+ (alternatively, E− or

ET
−). For instance, most twisted Hessian curves [5] are appropriate, since they

have an Fq-point of order 3. Eventually, we will obtain an Icart-like function to E
based on φ± ◦ ψ−1. It is worth noting that generalizing similarly Icart’s original
encoding to the case q ≡ 1 (mod 3) is more difficult, because twists of genus 7
curves are much less studied. However, this may help to cover remaining elliptic
curves E.

Hashing to (elliptic) curves can be realized as a simplified version of hashing
to isogeny graphs of (elliptic) curves. Unfortunately, at this stage in the develop-
ment of mathematics, the latter problem is intractable (even for supersingular
isogenies) as confirmed by the recent works [7,37].

As is known (see, e.g., [18, Sections 10.7-8]), a smooth projective Fq-curve C
of genus g is supersingular whenever all its first g Frobenius traces ti are zero,
that is, #C(Fqi) = qi+1, where 1 ⩽ i ⩽ g. Also, recall that any two supersingular
curves of the same genus are isogenous at least geometrically. Therefore, one of
the ways to construct a hash function to the isogeny graph of supersingular
curves consists in parametrizing explicitly a certain family of them. In contrast
to the case g = 1, there are a lot of rational curves in the moduli space of
supersingular curves of g = 2 according to [29]. However, it is not clear how to
parametrize them in large characteristics. Maybe in the future, breakthroughs in
computational algebraic geometry will allow to find a desired parametrization.

Kammerer et al. and the author solve a similar simpler problem by providing
one-parameter families of genus 2 curves with t1 = 0 and diverse t2. So, these
curves are “semi-supersingular”, although in general they are not isogenous even
geometrically. With this paper, the author wants to inspire isogenists to focus
on hashing to elliptic curves in the hope that this will sooner or later help in
hashing to isogeny graphs.

Hashing to elliptic curves over highly 2-adic fields 5

2 Explicit formulas

Throughout this section, facts and notions from [11] will be freely used unless
otherwise indicated. As usual, Fq stands for a finite field of characteristic p > 3
and Fq does for its algebraic closure. Given u ∈ Fq \{0, 4−1}, consider the smooth
genus 2 curve

Hu : y
2 = x6 + x3 + u.

In the case u = −50−1, the curve is still smooth, namely a twist of the Bolza
curve B : y2 = x5−x. By the way, the twists of B are completely studied in [10].

For this curve (and only for it) Aut(B) ≃ S̃4 ≃ GL2(F3), the maximum possible
automorphism group of genus 2 curves. Since the given case requires separate
consideration, hereafter, u ̸= −50−1 to be definite.

Over Fq the curve Hu has the dihedral automorphism group Aut(Hu) ≃ D12

of order 12. And conversely, every smooth genus 2 curve H : y2 = f(x) over Fq
such that Aut(H) ≃ D12 is a twist of some unique Hu/Fq. In other words, u is
an absolute invariant of the given curve family. Recall that

D12 = ⟨U, V | U2 = V 6 = 1, V U = UV 5⟩

as an abstract group. In particular, the hyperelliptic involution (x, y) 7→ (x,−y)
on H corresponds to V 3. Denote by τ± the non-hyperelliptic involutions on H
corresponding to U , UV 3. As always, they give the quadratic covers φ± : H →
E± to the elliptic curves E± := H/τ±.

Up to an Fq-isomorphism,H possesses the formHu,v : y
2 = f(x) :=

∑6
i=0 fix

i

with the coefficients

f6 := 27(u+ 2z), f5 := −324sv, f4 := 27(u− 10z)v, f3 := 360sv2,

f2 := 9(u+ 10z)v2, f1 := −36sv3, f0 := (u− 2z)v3

for some s, z ∈ Fq, and v ∈ F∗
q such that 3s2v = u3 − z2.

By virtue of [9, Section 2], the j-invariants of E± are equal to

j± := j(E±) =
±2833α(2∓ 5α)3

(1∓ 2α)(1± 2α)3
, (1)

where α :=
√
u. Note that j± do not depend on the parameters s, z, and v. It is

suggested to put s = 0 for the sake of simplicity. In particular, α = z/u ∈ Fq up
to a sign. In this case, Hu (or, equivalently, Hu,v) has exactly 6 twists according
to [8, Proposition 13]. We will see that vanishing s will not lead to the loss of
generality, because our final destination is the twists of E± and not those of Hu.
From now on, f5 = f3 = f1 = 0 and

f6 = 27(1+2α), f4 = 27(1−10α)v, f2 = 9(1+10α)v2, f0 = (1−2α)v3

up to the multiplication by u.

6 D. Koshelev

As is known, each (Fq-)automorphism on an arbitrary genus 2 curve H/Fq
(given by a hyperelliptic model) can be represented by the unique (Fq-)matrixa b

c d

 as follows: (x, y) 7→
(
ax+ b

cx+ d
,
ad− bc

(cx+ d)3
·y
)
.

In other words, there is a natural embedding Aut(H) ↪→ GL2(Fq) of Fq-modules.
In this notation, the order 3 automorphisms on Hu,v are associated with the

matrices

σ :=
1

2

−1
√
v

−3√
v

−1

, σ2 = σ−1 =
1

2

−1 −
√
v

3√
v

−1

.
Among other things, σ (or, equivalently, σ2) is not defined over Fq if and only
if
√
v ̸∈ Fq as assumed henceforth. In this case, Hu,v is a non-trivial quadratic

twist of Hu and, at the same time, Hu,v is the unique non-trivial hyperelliptic
twist of Hu,1.

By abuse of notation, Hu,v will be denoted just by H. Below, the author
sometimes uses the computer algebra system Magma [32] to derive or verify the
formulas. First, the quotient curve C := H/⟨σ⟩ and map are represented in the
following way:

C : y2 = f6x
2 +

f0
v2
, ψ : H → C (x, y) 7→

(
x(x2 − v)

9x2 − v
,

y

9x2 − v

)
.

The conic C does not seem to possess a visible point rationally expressed through
α, v (and even ω). As a result, we need to introduce additional variables x0, y0
being the coordinates of a general point P0 on C. Whenever the field Fq and the
parameters α, v are fixed, we can readily find P0 ∈ C(Fq) once and for all.

As usual, the projection from P0 has the form

prP0
: C → A1

t (x, y) 7→ x− x0
y − y0

.

Therefore, the composition

prP0
◦ ψ : H → A1

t (x, y) 7→ T (x, y) :=
x(x2 − v)− x0(9x

2 − v)

y − y0(9x2 − v)

is of degree 3. Besides, y = Y (x, T (x, y)), where

Y (x, t) :=
x(x2 − v) + (ty0 − x0)(9x

2 − v)

t
.

Substituting Y (x, t) instead of y in the equation of H, we obtain an reducible
curve on A2

(x,t). One of the irreducible components K (depending on t) has the

defining polynomial ρ(x) :=
∑3

i=0 ρix
i with the Fq[t]-coefficients

ρ3 := f6t
2−1, ρ2 := 9(f6x0t

2−2y0t+x0), ρ1 := −vρ3, ρ0 := −vρ2
9
.

Hashing to elliptic curves over highly 2-adic fields 7

Also, there are the birational isomorphisms

χ : H → K (x, y) 7→ (x, T (x, y)),

χ−1 : K → H (x, t) 7→ (x, Y (x, t)).

For the sake of convenience, put di := ρi/ρ3. Let’s get rid of x2 in ρ by means
of the map

η : K → K̂ (x, t) 7→
(
x+

d2
3
, t
)
,

η−1 : K̂ → K (x, t) 7→
(
x− d2

3
, t
)
.

(2)

Here, the curve K̂ ⊂ A2
(x,t) is defined by the polynomial ρ̂(x) := x3 + ρ̂1x + ρ̂0

with the Fq(t)-coefficients

ρ̂1 := d1 −
d22
3
, ρ̂0 := d0 −

d1d2
3

+
2d32
27

. (3)

For compactness, the argument t is omitted in the notation of the rational func-
tions ρi, di, and ρ̂i. Trivially, the latter have poles exactly at the roots of the
polynomial ρ3, i.e., at ±1/

√
f6.

Magma says that the discriminant of ρ̂ equals

∆(t) = −16
(
4ρ̂1

3 + 27ρ̂0
2) = vD(t)2,

where D(t) := 8·num(t)/(vρ3)
2 and

num(t) := v2f26 (27x
2
0 + v)·t4 − 108v2f6x0y0 ·t3 + 2(81f6v

2x20 + 54f0 − f6v
3)·t2

−108v2x0y0 ·t+ v2(27x20 + v).

As a result,
√
∆(t) ̸∈ Fq for each t ∈ Fq such that num(t), ρ3(t) ̸= 0. As is well

known, this means that ρ̂ has the unique Fq-root X(t) for such elements t.
Moreover, X(t) is expressed through the n-th element of the (full) Lucas

sequence

Vi(a, b) = Vi := aVi−1 − bVi−2, V0 := 2, V1 := a

given a, b ∈ Fq. Indeed, as said in [14, Theorem 2] (be careful, a, b are swapped),

X(t) = −c1Vn
(
−27ρ̂0,−27ρ̂1

3),
where

(n, c1) :=

(q + 2

3
,

1

9ρ̂1

)
if q ≡ 1 (mod 3),(q − 2

3
, ρ̂1

)
if q ≡ 2 (mod 3).

8 D. Koshelev

Thus, the projection prt : K̂ → A1
t is an exceptional cover, because on Fq-points

it enjoys the inverse map

pr−1t : Fq → K̂(Fq) t 7→
(
X(t), t

)
.

Now, we come back to the involutions τ±. For s = 0 they take the elementary
form

τ± : H → H (x, y) 7→ (−x,±y).

The corresponding quadratic covers

φ+ : H → E+ (x, y) 7→ (x2, y),

φ− : H → E− (x, y) 7→
(1

x2
,
y

x3

)
often occur in the literature. Here, the elliptic curves have the equations

E± : y2 = g±(x) :=

3∑
i=0

g±,i ·xi

with the coefficients g+,i := f2i and g−,i := f6−2i.
As is customary, the leading coefficients can be eliminated as follows:

ζ± : E± → Ê± (x, y) 7→ (g±,3 ·x, g±,3 ·y),

thereby leading to the equations

Ê± : y2 = ĝ±(x) := x3 +

2∑
i=0

ĝ±,i ·xi

having the coefficients ĝ±,i := g±,i ·g2−i
±,3 .

By analogy with the transformation (2), there are ones ϕ± : Ê± → W± to
short Weierstrass forms

W± : y2 = h±(x) := x3 + h±,1 ·x+ h±,0

with the coefficients computable by the formulas (3). Let’s shorten these coeffi-
cients by means of the auxiliary maps

θ+ :W+ → Ŵ+ (x, y) 7→
(x

62v
,
y

63v2

)
,

θ− :W− → Ŵ− (x, y) 7→
(x

(2v)2
,

y

(2v)3

)
.

The resulting models

Ŵ+ : vy2 = ĥ+(x) := x3+ĥ+,1x+ĥ+,0, Ŵ− : y2 = ĥ−(x) := x3+ĥ−,1x+ĥ−,0

Hashing to elliptic curves over highly 2-adic fields 9

possess the quite simple coefficients

ĥ+,1 := 3(2− 5α)α, ĥ+,0 := −(1− 14α+ 22α2)α,

ĥ−,1 := −27(2 + 5α)α, ĥ−,0 := 27(1 + 14α+ 22α2)α.

The discriminants of ĥ± are equal to

∆+ = 2433(2α− 1)(2α+ 1)3α2, ∆− = 2439(2α− 1)3(2α+ 1)α2,

respectively. Note that ∆± = 0 if and only if α ∈ {0,±2−1}. This is impossible
by our assumption on u. Also, do not forget that α ̸= ±1/(5

√
−2) to bypass the

Bolza curve.
The formulas of the compositions φ′

± := θ± ◦ϕ± ◦ ζ± ◦φ± are fairly compact
to be exhibited:

φ′
+ : H → Ŵ+ (x, y) 7→

(
3(1 + 2α)x2 + (1− 10α)v

4v
,
1 + 2α

8v2
·y
)
,

φ′
− : H → Ŵ− (x, y) 7→

(
3(1 + 10α)x2 + (1− 2α)v

4x2
,
1− 2α

8x3
·y
)
.

To sum up, we obtain the rational Fq-maps

e± := φ′
± ◦ χ−1 ◦ η−1 : K̂ → Ŵ±

and the associated encodings

e′± := e± ◦ pr−1t : Fq → Ŵ±(Fq).

For readability, it is better to change the notation:

A := ĥ+,1, B := ĥ+,0, h(x) := ĥ+(x), W := Ŵ+, W ′ := Ŵ−,

because the further reasoning will be asymmetric. Denote byWT : y2 = h(x) the
unique non-trivial quadratic twist of W . The corresponding Fq2 -isomorphism is
obviously

ι :W →WT (x, y) 7→ (x,
√
v ·y).

The 3-division polynomial ψ3(x) of the curve W ′ has the root 9α. Conse-
quently, there is the 3-isogeny

δ :W ′ →WT (x, y) 7→
(
numx(x)

9(x− 9α)2
,
numy(x)

27(x− 9α)3
·y
)

with the numerators

numx(x) := x3 − 18αx2 − 27(4− 11α)αx+ 108(1 + 5α− 14α2)α,

numy(x) := x3 − 27αx2 + 27(4 + α)αx− 27(8 + 4α− 13α2)α.

It is notable that for u ∈ Fp and q = p2 the curve W ′ (up to an Fq-isomorphism)

is the reduction to Fq of a so-called Q-curve of degree 3 over the field Q(
√
u′),

where u′ is a lift of u to Q. Incidentally, Q-curves also appear in [44] in the
context of efficient scalar multiplication.

10 D. Koshelev

3 New hash function and its complexity

We will stick to the notation of the previous section. In addition, let E : y2 =
g(x) := x3 + ax + b be an ordinary elliptic Fq-curve with the j-invariant j.
Assume that E enjoys an Fq-isogeny of degree 3 to some elliptic Fq-curve E′

of j-invariant j′. This is equivalent to the fact that the 3-division polynomial
ψ3(x) = 3x4 + 6ax2 + 12bx − a2 of the curve E admits an Fq-root x1. If so,
then the kernel of the isogeny is generated by the order 3 point (x1, y1), where
y1 :=

√
g(x1) ∈ F∗

q2 . As usual, j′ can be found by means of Vélu’s formulas [18,

Section 25.1.1].
As is known (see, e.g., [18, Section 25.2]), pairs of 3-isogenous (over Fq) j-

invariants constitute a plane affine singular Fq-curve M3 given by the classical
modular polynomial Φ3(x, y). We do not use the traditional notation Y0(3),
because it usually stands for the non-singular model of M3, parametrizing 3-
isogenies rather than just the pairs (j, j′). It is easy to check that the roots of
Φ3(y, y) are exactly

0, j8 := 8000 = 2653, j11 := −32768 = −215, j12 := 54000 = 243353.

These j-invariants correspond to the CM discriminantsDCM = −3,−8,−11, and
−12, respectively. Moreover, 0, j12 are simple roots and j8, j11 are of multiplicity
2.

The formulas (1) provide the rational Fq-parametrization par : α 7→ (j+, j−)
of the curve M3. By the way, in [36, Tables 4, 5] one can find a slightly sim-
pler parametrization, but we are forced to work with par. The inverse map
π : M3 99K A1

α to par (as a birational map) is readily determined by Magma
[32]. Furthermore, π = par−1 (as a biregular map) outside the subsets S1 ⊂ A1

α

and S2 ⊂M3 of the form

S1 := par−1(Sing) ∪
{
±1

2

}
, S2 := Sing ∪

{
(j12, j12)

}
,

where Sing is the set of all singular Fq-points on M3. To be more concrete,
#S1 = 18 and #S2 = 9. Among other things,

±1

5
√
−2

∈ par−1(Sing), (j8, j8), (j11, j11) ∈ Sing.

The CM discriminants of the remaining j-invariants from the set prx(Sing) are
precisely −20, −32, and −35.

Henceforth, it is supposed everywhere that (j, j′) ̸∈ S2 and so we deal with
the Fq-curve WT : y2 = x3 + Ax+ B (with j(WT) = j+ = j) whose coefficients
are instantiated by the value α = π(j, j′) ∈ Fq. In particular, j+ = 0 (i.e.,
DCM = −3) if and only if α ∈ {0, 2/5}. In the present case, ψ3(x) = 3x(x3+4b).
Unlike − 3

√
4b, the root x1 = 0 (for which y1 = ±

√
b) generates an endomorphism

on E or, equivalently, j′ = 0. Thereby, it is easy to memorize that α = 0 ⇔ j =
j′ = 0 ⇔ x1 = 0. However, the zero α is not allowable in the previous section,
hence it is more correct to reassign S1 := S1 ∪ {0} and S2 := S2 ∪ {(0, 0)}. In

Hashing to elliptic curves over highly 2-adic fields 11

turn, the value α = 2/5 does not contradict anything. It is also worth adding
that Φ3(0, y) = y(y + 2153·53)3.

Besides, j+ = 1728 (i.e., DCM = −4) if and only if 22α2 − 14α + 1 = 0,
that is, α = (7 ± 3

√
3)/22. Recall that q ≡ 1 (mod 4) (i.e.,

√
−1 ∈ Fq) is a

necessary condition for 1728 to be an ordinary j-invariant. At the same time,
the results of this article are relevant only for q ≡ 1 (mod 3) (i.e.,

√
−3 ∈ Fq). So,

the mentioned values α always lie in Fq in our cryptographic context, although
the curves y2 = x3 + ax do not occur in real-world cryptography (especially
over highly 2-adic fields). The polynomial Φ3(1728, y) = Q(y)2, where Q(y) is a
certain quadratic Fq-polynomial. Its discriminant is a quadratic residue in Fq if
and only if so is 3, which is consistent with the fact that α ∈ Fq.

We need the additional value

f :=

AB

ab
if ab ̸= 0, i.e., j ̸∈ {0, 1728},

A

a
if b = 0, i.e., j = 1728,

B

b
if a = 0, i.e., j = 0.

Let d ∈ {2, 4, 6} be the order of the (cyclic) group Aut(E). From the general the-
ory we know that the curves E, WT are isomorphic precisely over the extension
Fq(d

√
f)/Fq of degree ⩽ d. The corresponding isomorphism has the form

γ− :WT → E (x, y) 7→
(x
z2
,
y

z3

)
,

where

z :=

a
√
f

A
=

B

b
√
f

if j ̸∈ {0, 1728}, i.e., d = 2,

d
√
f otherwise.

The next lemma seems folklore, but we prove it for lack of a reference.

Lemma 1. Assume as above that (j, j′) ̸∈ S2 or, alternatively, α ̸∈ S1. It turns
out that g := d/2

√
f ∈ Fq. In other words, WT ≃Fq E or W ≃Fq E, depending on

whether the condition
√
g ∈ Fq (i.e., d

√
f ∈ Fq) is met or not, respectively. In the

latter case, the composition γ+ := γ− ◦ ι :W → E is defined over Fq.

Proof. The lemma is trivial whenever j ̸∈ {0, 1728}.
Consider the case j = 0. We need to show that W (equivalently, WT) cannot

be a higher degree twist of E. As well as E, the curve W has an Fq-isogeny of
degree 3 to a curve of non-zero j-invariant j′ = −2153 ·53. Unlike E and W ,
the curve E′ has no higher degree twists. Therefore, W has to be Fq-isogenous
to E′ (and so to E) or to its quadratic twist (and so to ET). At the same
time, the twists of E are pairwise non-isogenous over Fq, since it is an ordinary
curve. Thereby, if W was not Fq2 -isomorphic to E, then we would come to a
contradiction.

12 D. Koshelev

For the case j = 1728 the given argumentation does seem to work, because
there are two possibilities for j′. Fortunately, there is another simple reasoning.
Denote by t the Fq-trace of E. As is well known, the Frobenius discriminant
t2 − 4q = −4f2 for some f ∈ N. Owing to [21, Proposition 8], the Fq-trace of W
equals ±2f under the assumption thatW is a higher degree twist of E (namely of
degree 4). Meanwhile, according to [18, Theorem 25.4.6], the 3-isogenies from the
curves E, W are necessarily vertical. This means that 3 | f (that is, 3 | t2 − 4q)
and 3 | 4(f2 − q) for the same reason. As a result, 3 | q, which is prohibited in
this article. □

From the previous section we have the encodings e′± : Fq → Ŵ±(Fq). Based
on them, we come to the new one

e : Fq → E(Fq) e :=

γ− ◦ δ ◦ e′− if

√
g ∈ Fq,

γ+ ◦ e′+ if
√
g ̸∈ Fq.

It is important to realize that e is not correctly defined at a few t ∈ Fq. This
happens when at least one of the denominators within the components of e is
zero. Nonetheless, for a random element t the probability of the given event is
negligible. And if desired, such degenerate cases can be easily processed.

Denote by G ⊂ E(Fq) a subgroup in which we consider the DLP. Let r be
the (large prime) order of G and h := #E(Fq)/r be the cofactor of G. The scalar
multiplication [h] : E(Fq) → G is said to be clearing cofactor. Let’s also introduce
the tensor square

e⊗2 : F2
q → E(Fq) (t, t′) 7→ e(t) + e(t′).

Below are some statistical notions, which are common in the current research
area. They can be found, e.g., in [13,15], so all the details on this matter are
omitted.

By analogy with [31, Corollary 1], the maps e′± are 2-well-distributed. Con-
sequently, their tensor squares are regular. If

√
g ∈ Fq and ker(δ) ⊂W ′(Fq) (and

so 3 | h), then the 3-isogeny δ is far from surjective on the level of Fq-points. In
the present case, e⊗2 is obviously not regular. However, we are in fact interested
in the composition

[h] ◦ e⊗2 = ([h] ◦ e)⊗2 : F2
q → G,

which is in contrast regular. Besides, [h]◦e⊗2 is clearly samplable and hence it is
admissible. Eventually, given an indifferentiable hash function H : {0, 1}∗ → F2

q ,
the composition [h]◦e⊗2◦H : {0, 1}∗ → G is also indifferentiable. In practice, one
prefers to take for the role of H standard hash functions (e.g., SHA) rather than
provable ones. Since the former manipulate bits instead of finite field elements,
we can neglect their complexity.

Let ℓ := ⌈log2(q)⌉ and let q − 1 = 2νm, where ν, m ∈ N and 2 ∤ m. To be
definite, we focus on the case q ≡ 1 (mod 3) more interesting for us. We will also
need the natural numbers

n :=
q + 2

3
, n− 1 =

q − 1

3
= 2ν

m

3
, m′ :=

m− 1

2
.

Hashing to elliptic curves over highly 2-adic fields 13

Below, ω(k) stands for the Hamming weight of a number k ∈ N in its binary
representation. As should be clear,

log2(n) ≈ log2(n− 1) ≈ ℓ, log2(m) ≈ log2(m
′) ≈ ℓ− ν

as well as
ω(n) ≈ ω(n− 1), ω(m) ≈ ω(m′) ≈ ω(q).

For simplicity, we will not distinguish squarings and general multiplications
in Fq. Evaluating each component in the definition of e costs at most several
multiplications. So, the bottleneck of the new encoding is computing the n-th
member of the Lucas sequence Vi. There is the (deterministic) Joye–Quisquater
algorithm [27] slightly improved by Koval [34]. In addition to Vn, the given
algorithm determines the n-th member of the sister (full) Lucas sequence

Ui(a, b) = Ui := aUi−1 − bUi−2, U0 := 0, U1 := 1.

Since it is not very famous, it is reasonable to write out Algorithm 1 and to
check it in Magma [32].

The value Un is unnecessary for us and computing Vn does not depend on
Ui in the algorithm. Thereby, we could exclude from it all the lines containing
Ui. After doing that, the complexity of the algorithm becomes ≈ 4ℓ+ω(n) field
multiplications. The number n is odd, hence the second (simplified) loop for is
not executed. Alternatively, the 2-adic valuation of n − 1 is equal to ν. At the
same time,

Vn =
aVn−1 + (a2 − 4b)Un−1

2

as follows from [45, Equality (3.8)]. So, it is suggested to first compute Un−1,
Vn−1 and then Vn. This approach costs ≈ JQK := 4ℓ+ ω(n)− ν multiplications
in Fq and hence it is a little quicker than the previous one.

It is worth emphasizing that the non-full Lucas sequence Vi(a, 1) (for some
a ∈ Fq) underlies Müller’s square root method. There is faster Postl’s algorithm
[42] of finding its members in comparison with Vi(a, b) for an arbitrary b ∈
Fq. That is why the given paper would be meaningless if Müller’s method was
deterministic.

As said in the introduction, the bottleneck of SwiftEC is one square root in
Fq. The constant-time Tonelli–Shanks algorithm of extracting

√
· is represented

in [16, Appendix I.4]. In two words, the algorithm consists of the exponentiation
to m′ and a double loop. It is readily checked that the overall complexity equals
≈ TS := ℓ + ω(q) + ν(ν + 1)/2 multiplications in Fq. Eventually, putting c :=
ω(q)− ω(n)− 3ℓ, we conclude that

TS− JQK =
ν(ν + 3)

2
+ c > 0 ⇔ ν >

−3 +
√
9− 8c

2
. (4)

Table 1 exhibits some real-world elliptic curves for which the new encoding e
(and hence e⊗2) is relevant. By coincidence, all of them are of prime order r (i.e.,

14 D. Koshelev

Algorithm 1: The Joye–Quisquater–Koval algorithm of computing si-
multaneously the n-th members of the sister Lucas sequences

Data: n = 2ν ·
∑ℓ−1

i=ν ni2
i−ν ∈ N, where nν = 1, as well as a, b ∈ Fq.

Result: Un(a, b), Vn(a, b).
begin

Vl := 2;
Vh := a;
Ql := 1;
Qh := 1;
for i := ℓ− 1 downto ν do

Ql := Ql ∗Qh;
if ni = 1 then

Qh := b ∗Ql;
Vl := Vh ∗ Vl − a ∗Ql;
Vh := V ∧

h 2− 2 ∗Qh

else
Qh := Ql;
Vh := Vh ∗ Vl − a ∗Ql;
Vl := V ∧

l 2− 2 ∗Ql

end

end
Ql := Ql ∗Qh;
D := a∧2− 4 ∗ b;
Uh := (2 ∗ Vh − a ∗ Vl)/D;
for i := 1 to ν do

Uh := Uh ∗ Vl;
Vl := V ∧

l 2− 2 ∗Ql;
Ql := Q∧

l 2
end
return Uh, Vl.

end

Hashing to elliptic curves over highly 2-adic fields 15

h = 1), but this property was non-essential in the choice of the curves. More
importantly, they are defined over finite fields Fq of various 2-adicity, respecting
the principal condition q ≡ 1 (mod 3). In fact, as is customary in cryptography,
the fields are also prime, that is, q is equal to the characteristic p.

SwiftEC is not applicable to the curve NIST P-224 from the standard NIST
SP 800-186, namely from [12, Section 4.2.1.2]. Indeed, it is easily checked that
the condition 3 of [13, Theorem 3] is not met. As a result, before this article,
the state-of-the-art admissible map to the given curve was the tensor square
e⊗2
sSWU of the so-called simplified SWU encoding esSWU (see, e.g., [47, Section
2.4]). Recall that esSWU (resp., e⊗2

sSWU) needs to extract one (resp., two) square
roots in Fq. Meanwhile, ν = 96 for the base field of NIST P-224 and, as far as the
author knows, this is the largest 2-adicity occurring anywhere in practice today.

The remaining four curves from the table are of j-invariant 0. They are
divided into two cycles of length 2. Put another way, we deal with two pairs
of curves E1/Fq and E2/Fr such that r := #E1(Fq) and q = #E2(Fr). As the
name indicates, the hybrid cycle of BN382-Plain curves [1, Section 5.4] consists
of a Barreto–Naehrig curve and a non-pairing-friendly one. In turn, the second
cycle is composed of two non-pairing-friendly curves called Pasta (Pallas-Vesta)
curves.

The latter curves were generated, taking into account the indirect hashing
approach of Wahby–Boneh [47]. On the Internet page [22] it is written: “both
Pallas and Vesta have low-degree isogenies (both of degree 3) from curves with a
nonzero j-invariant. This is useful when hashing to the curve using the “simpli-
fied SWU” algorithm, and perhaps for other not-yet-known purposes”. The same
motivation exists for the hybrid cycle Pluto-Eris [23]. SwiftEC is applied to all
curves of j-invariant 0, hence the composition of esSWU (or e⊗2

sSWU) with isoge-
nies is now an obsolete solution. Nonetheless, the result of this article qualifies
for “other not-yet-known purpose”.

As seen from the last line of the table, e (resp., e⊗2) performs approximately
4144 (resp., 8288) fewer multiplications than esSWU (resp., e⊗2

sSWU). Without
doubt, this is a substantial acceleration, especially for NIST P-224. The point is
that this curve has the 112-bit security level, which is smaller than the standard
128-bit one. So, the given curve is chosen for cryptographic environments in
which a part of the security is sacrificed for the sake of performance. In other
words, the last indicator is the most significant in such environments. At one
time, Bernstein [4] (cf. [35]) made a low-level implementation of NIST P-224,
benefiting (among other things) from the large 2-adicity of Fq.

In turn, for BN382-Plain curves, unlike e⊗2, the encoding e itself is more
efficient with respect to SwiftEC. To be more precise, e performs ≈ 1212 fewer
multiplications. In some applications the behavior of a hash function to E as a
random oracle is unnecessary, hence the function e is sufficient. Finally, in the
case of Pasta curves, SwiftEC is even better than e, not to mention e⊗2.

16 D. Koshelev

Curve Reference DCM ℓ ν ω(q) ω(n) TS 2·TS JQK 2·JQK

Pallas
[22]

−3

254 32
47 107 829 1658 1091 2182

Vesta 44 113 826 1652 1097 2194

BN382
[1, Section 5.4] 382 67

107 92 2767 5534 1553 3106

Plain 109 99 2769 5538 1560 3120

NIST P-224 [12, Section 4.2.1.2] ≈ −2222.5 224 96 129 65 5009 10018 865 1730

Table 1. Some popular elliptic curves (suitable for the new hash function) over highly
2-adic (prime) fields Fq such that q ≡ 1 (mod 3) as well as the approximate number of
multiplications in Fq of the constant-time Tonelli–Shanks algorithm and of the Joye et
al. algorithm 1. The entries are verified in Magma [32].

4 Conclusion

A constant-time version of the recent Sarkar algorithm [43] probably improves
upon that of the Tonelli–Shanks algorithm. Given this circumstance, further
research is needed to establish the exact lower bound on ν like (4). This is
problematic to do in this article, because the scientific community has not yet
sufficiently explored the actual running time of the new square-root algorithm
or of its potential modifications.

The same can be said about computing the full Lucas sequence Vi(a, b),
because the attention of researchers has been focused much more on extracting
roots d

√
· (especially on

√
·). It is likely that in the near future a new method will

be proposed with a smaller constant in O(log(q)). The given article can serve as
an additional motivation for this.

In any case, the Sarkar algorithm has a worse asymptotic behaviour as
ν → +∞ than the Joye et al. algorithm 1. Perhaps, elliptic curves of the next
generation will be soon generated over fields of 2-adicity ν > 96. As said in [1,
Section 1], larger values of ν allow “to prove deeper arithmetic circuits”.

Finally, it is worth mentioning Bernstein [3] and Sarkar’s table look-up based
variants of the square-root algorithms. They have smaller complexity at the price
of an exponentiational growth of required memory. In the context of hashing to
elliptic curves this is an essential obstacle, because elliptic cryptography is often
implemented on tiny devices with limited amount of memory.

Acknowledgements. The author expresses his gratitude to Damien Stehlé
for hiring him as a postdoc at École Normale Supérieure de Lyon.

References

1. Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves for proof
systems. Designs, Codes and Cryptography (2022), https://link.springer.com/
article/10.1007/s10623-022-01135-y

https://link.springer.com/article/10.1007/s10623-022-01135-y
https://link.springer.com/article/10.1007/s10623-022-01135-y

Hashing to elliptic curves over highly 2-adic fields 17

2. Ben-Sasson, E., Carmon, D., Kopparty, S., Levit, D.: Elliptic curve fast Fourier
transform (ECFFT) Part I: Low-degree extension in time O(n logn) over all finite
fields. In: Bansal, N., Nagarajan, V. (eds.) ACM-SIAM Symposium on Discrete
Algorithms (SODA 2023). pp. 700–737. Society for Industrial and Applied Math-
ematics, Philadelphia, Pennsylvania (2023)

3. Bernstein, D.J.: Faster square roots in annoying finite fields (2001), https://cr.
yp.to/papers.html#sqroot

4. Bernstein, D.J.: nistp224 (2001), https://cr.yp.to/nistp224.html
5. Bernstein, D.J., Chuengsatiansup, C., Kohel, D., Lange, T.: Twisted Hessian

curves. In: Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) Progress in Cryptology –
LATINCRYPT 2015. Lecture Notes in Computer Science, vol. 9230, pp. 269–294.
Springer, Cham (2015)

6. Bernstein, D.J., Yang, B.Y.: Fast constant-time GCD computation and modular
inversion. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(3), 340–398 (2019)

7. Booher, J., Bowden, R., Doliskani, J., Fouotsa, T.B., Galbraith, S.D., et al.: Fail-
ing to hash into supersingular isogeny graphs (2022), https://eprint.iacr.org/
2022/518

8. Cardona, G.: On the number of curves of genus 2 over a finite field. Finite Fields
and Their Applications 9(4), 505–526 (2003)

9. Cardona, G.: Q-curves and abelian varieties of GL2-type from dihedral genus 2
curves. In: Cremona, J.E., Lario, J.C., Quer, J., Ribet, K.A. (eds.) Modular Curves
and Abelian Varieties. Progress in Mathematics, vol. 224, pp. 45–52. Birkhäuser,
Basel (2004)

10. Cardona, G.: Representations of Gk-groups and twists of the genus two curve
y2 = x5 − x. Journal of Algebra 303(2), 707–721 (2006)

11. Cardona, G., Quer, J.: Curves of genus 2 with group of automorphisms isomorphic
to D8 or D12. Transactions of the American Mathematical Society 359(6), 2831–
2849 (2007)

12. Chen, L., Moody, D., Regenscheid, A., Randall, K.: Recommendations for discrete
logarithm-based cryptography: Elliptic curve domain parameters (Draft NIST Spe-
cial Publication 800-186) (2019), https://csrc.nist.gov/publications/detail/
sp/800-186/draft

13. Chávez-Saab, J., Rodŕıguez-Henŕıquez, F., Tibouchi, M.: SWIFTEC: Shallue-van
de Woestijne indifferentiable function to elliptic curves. In: Agrawal, S., Lin, D.
(eds.) Advances in Cryptology – ASIACRYPT 2022. Lecture Notes in Computer
Science, vol. 13791, pp. 63–92. Springer, Cham (2022)

14. Dudeanu, A., Oancea, G.R., Iftene, S.: An x-coordinate point compression method
for elliptic curves over Fp. In: 12th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing. pp. 65–71. Institute of Electrical
and Electronics Engineers, New York (2010)

15. Farashahi, R.R., Fouque, P.A., Shparlinski, I.E., Tibouchi, M., Voloch, J.F.: Indif-
ferentiable deterministic hashing to elliptic and hyperelliptic curves. Mathematics
of Computation 82(281), 491–512 (2013)

16. Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R.S., Wood, C.A.:
Hashing to elliptic curves (2022), https://datatracker.ietf.org/doc/

draft-irtf-cfrg-hash-to-curve
17. Fried, M.D.: Global construction of general exceptional covers, with motivation for

applications to encoding. In: Mullen, G.L., Shiue, P.J. (eds.) Finite Fields: Theory,
Applications, and Algorithms. Contemporary Mathematics, vol. 168, pp. 69–100.
American Mathematical Society, Providence (1994)

https://cr.yp.to/papers.html#sqroot
https://cr.yp.to/papers.html#sqroot
https://cr.yp.to/nistp224.html
https://eprint.iacr.org/2022/518
https://eprint.iacr.org/2022/518
https://csrc.nist.gov/publications/detail/sp/800-186/draft
https://csrc.nist.gov/publications/detail/sp/800-186/draft
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve

18 D. Koshelev

18. Galbraith, S.D.: Mathematics of public key cryptography. Cambridge University
Press, New York (2012)

19. Gaudry, P., Schost, E.: On the invariants of the quotients of the Jacobian of a
curve of genus 2. In: Boztas, S., Shparlinski, I.E. (eds.) Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes. AAECC 2001. Lecture Notes in Computer
Science, vol. 2227, pp. 373–386. Springer, Berlin, Heidelberg (2001)

20. Hamburg, M.: Computing the Jacobi symbol using Bernstein–Yang (2021), https:
//eprint.iacr.org/2021/1271

21. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006)

22. Hopwood, D.: The Pasta curves for Halo 2 and beyond (2020), https://

electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond

23. Hopwood, D.: Pluto/Eris supporting evidence (2021), https://github.com/

daira/pluto-eris

24. Hurt, N.E.: Many rational points: Coding theory and algebraic geometry, Mathe-
matics and Its Applications, vol. 564. Springer, Dordrecht (2003)

25. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) Advances in Cryptol-
ogy – CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677, pp. 303–316.
Springer, Berlin, Heidelberg (2009)

26. Janson, S.: Roots of polynomials of degrees 3 and 4 (2010), https://arxiv.org/
abs/1009.2373

27. Joye, M., Quisquater, J.J.: Efficient computation of full Lucas sequences. Electron-
ics Letters 32(6), 537–538 (1996)

28. Kammerer, J.G., Lercier, R., Renault, G.: Encoding points on hyperelliptic curves
over finite fields in deterministic polynomial time. In: Joye, M., Miyaji, A., Otsuka,
A. (eds.) Pairing-Based Cryptography – Pairing 2010. Lecture Notes in Computer
Science, vol. 6487, pp. 278–297. Springer, Berlin, Heidelberg (2010)

29. Katsura, T., Oort, F.: Families of supersingular abelian surfaces. Compositio Math-
ematica 62(2), 107–167 (1987)

30. Koshelev, D.: Indifferentiable hashing to ordinary elliptic Fq-curves of j = 0 with
the cost of one exponentiation in Fq. Designs, Codes and Cryptography 90(3),
801–812 (2022)

31. Koshelev, D.: Optimal encodings to elliptic curves of j-invariants 0, 1728. SIAM
Journal on Applied Algebra and Geometry 6(4), 600–617 (2022)

32. Koshelev, D.: Magma code (2023), https://github.com/dishport/

Hashing-to-elliptic-curves-over-highly-2-adic-fields-Fq-with-O-log-q-operations-in-Fq

33. Koshelev, D.: Some remarks on how to hash faster onto elliptic curves (2023),
https://eprint.iacr.org/2021/1082

34. Koval, A.: On Lucas sequences computation. International Journal of Communi-
cations, Network and System Sciences 3(12), 943–944 (2010)

35. Käsper, E.: Fast elliptic curve cryptography in OpenSSL. In: Danezis, G., Diet-
rich, S., Sako, K. (eds.) Financial Cryptography and Data Security. FC 2011. Lec-
ture Notes in Computer Science, vol. 7126, pp. 27–39. Springer, Berlin, Heidelberg
(2012)

36. Maier, R.S.: On rationally parametrized modular equations (2008), https://

arxiv.org/abs/math/0611041

37. Mula, M., Murru, N., Pintore, F.: Random sampling of supersingular elliptic curves
(2022), https://eprint.iacr.org/2022/528

38. Müller, S.: On the computation of square roots in finite fields. Designs, Codes and
Cryptography 31(3), 301–312 (2004)

https://eprint.iacr.org/2021/1271
https://eprint.iacr.org/2021/1271
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond
https://github.com/daira/pluto-eris
https://github.com/daira/pluto-eris
https://arxiv.org/abs/1009.2373
https://arxiv.org/abs/1009.2373
https://github.com/dishport/Hashing-to-elliptic-curves-over-highly-2-adic-fields-Fq-with-O-log-q-operations-in-Fq
https://github.com/dishport/Hashing-to-elliptic-curves-over-highly-2-adic-fields-Fq-with-O-log-q-operations-in-Fq
https://eprint.iacr.org/2021/1082
https://arxiv.org/abs/math/0611041
https://arxiv.org/abs/math/0611041
https://eprint.iacr.org/2022/528

Hashing to elliptic curves over highly 2-adic fields 19

39. Petit, C., Kosters, M., Messeng, A.: Algebraic approaches for the elliptic curve
discrete logarithm problem over prime fields. In: Cheng, C.M., Chung, K.M., Per-
siano, G., Yang, B.Y. (eds.) Public-Key Cryptography – PKC 2016. Lecture Notes
in Computer Science, vol. 9615, pp. 3–18. Springer, Berlin, Heidelberg (2016)

40. Pornin, T.: Optimized binary GCD for modular inversion (2020), https://eprint.
iacr.org/2020/972

41. Pornin, T.: X25519 implementation for ARM Cortex-M0/M0+ (2020), https://
github.com/pornin/x25519-cm0

42. Postl, H.: Fast evaluation of Dickson polynomials. Contributions to General Alge-
bra 6, 223–225 (1988)

43. Sarkar, P.: Computing square roots faster than the Tonelli–Shanks/Bernstein
algorithm. Advances in Mathematics of Communications (2022), https://www.
aimsciences.org/article/doi/10.3934/amc.2022007

44. Smith, B.: The Q-curve construction for endomorphism-accelerated elliptic curves.
Journal of Cryptology 29(4), 806–832 (2016)

45. Smith, P.J., Lennon, M.J.: LUC: A new public key system. In: Graham Dougall, E.
(ed.) International Conference on Information Security (SEC 1993). IFIP Trans-
actions, vol. A-37, pp. 103–117. North-Holland, Amsterdam (1993)

46. Tibouchi, M.: Impossibility of surjective Icart-like encodings. In: Chow, S.S.M.,
Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) Provable Security. ProvSec 2014. Lecture
Notes in Computer Science, vol. 8782, pp. 29–39. Springer, Cham (2014)

47. Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to the BLS12-
381 elliptic curve. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2019(4), 154–179 (2019)

https://eprint.iacr.org/2020/972
https://eprint.iacr.org/2020/972
https://github.com/pornin/x25519-cm0
https://github.com/pornin/x25519-cm0
https://www.aimsciences.org/article/doi/10.3934/amc.2022007
https://www.aimsciences.org/article/doi/10.3934/amc.2022007

	Hashing to elliptic curves over highly 2-adic fields Fq with O((q)) operations in Fq

