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Abstract. A mutator set is a cryptographic data structure for authen-
ticating operations on a changing set of data elements called items. In-
formally:

– There is a short commitment to the set.
– There are succinct membership proofs for elements of the set.
– It is possible to update the commitment as well as the membership

proofs with minimal effort as new items are added to the set or as
existing items are removed from it.

– Items cannot be removed before they were added.
– It is difficult to link an item’s addition to the set to its removal from

the set, except when using information available only to the party
that generated it.

This paper formally defines the notion, motivates its existence with an
application to scalable privacy in the context of cryptocurrencies, and
proposes an instantiation inspired by Merkle mountain ranges and Bloom
filters.

1 Introduction

Blockchain-based money has the potential to transform and disrupt the financial
industry and even the global monetary system. However, its wider adoption and
success are obstructed by two critical challenges: privacy and scalability. Privacy
is the quality of a blockchain protocol that thwarts attempts to trace the source
and destination of payments based on information present in the public ledger.
Scalability is the quality of a blockchain protocol that resists feature degradation
as a result of increased use or age. Accordingly, much research has been devoted
to cryptographic techniques that promise to achieve one or both of these features.

Cryptographic accumulation schemes compress a large set of items into a com-
pact commitment in order to dramatically reduce the complexity of elementary
set operations at the modest cost of sacrificing perfect security for computational
security. They have applications in timestamping, blacklists, public key infras-
tructure, anonymous credentials, group signatures, to name examples without
being exhaustive. All these applications have one thing in common: they enable a
lightweight agent to verify with cryptographic certainty the correct computation
of elementary operations on relatively large sets.



Accumulation schemes have seen renewed interest in recent years in the con-
text of blockchains, due to their potential to improve scalability by reducing
the cost of participation. The lower barrier to entry and lower running costs
incentivize more participation, benefiting the protocol’s decentralization metrics
and the features that are downstream from there such as resilience against legal
attacks.

While accumulation schemes are extremely well suited to reduce the workload
of verifying traceable ledgers, they are incapable of the same task when it comes
to untraceable ledgers. This limitation comes from the static nature of the items
accumulated by an accumulation scheme. Whenever the same item is added and
later removed, or added and later modified, or modified once and later modified
again, it is apparent to all observers that the items in question are one and the
same. A basic requirement towards addressing privacy would stipulate items be
hidden behind cryptographic commitments, and that these commitments mutate
between operations such that external observers cannot link them.

However, up until now blockchains have relied on entirely different techniques
from accumulation schemes to achieve privacy, namely decoys or mixnets. In
either case, the transaction inputs and outputs are hidden behind cryptographic
commitments that hide the amount, and every transaction comes with a zero-
knowledge proof that establishes that no inflation is taking place and that all
amounts are positive.

Decoys are plausible transaction inputs listed alongside the true origin inputs,
which is where the funds that are being spent actually come from. The external
observer cannot distinguish between decoys and true origins. In order to catch
double-spending attempts, every transaction input that is being spent unlocks a
short string of data called the nullifier, and a zero-knowledge proof hides which
of the inputs to the transaction it came from. The blockchain maintains a set of
nullifiers and whenever a transaction is confirmed, the nullifiers announced by it
are added to the set. A transaction is only valid if its nullifiers are not already
in the set.

The downside of this decoy-and-nullifier approach is its poor scalability: this
nullifier set grows with the number of transactions in the history of the network.
In a näıve implementation, the verifying protocol participant stores the entire
set and incurs the associated storage cost. A more sophisticated implementation
uses an accumulation scheme that admits proofs of non-membership. It shifts the
burden of work but does not eliminate it: the verifying protocol participant only
needs to store a compact set commitment and verify succinct non-membership
proofs, but the transaction initiator must produce a non-membership proof rel-
ative to this set, which integrates knowledge of all nullifiers. An even more so-
phisticated implementation fixes a snapshot of the set commitment at the time
the coin was generated. To spend it, the transaction initiator must prove that
the nullifier was not added to the nullifier set since it was created. The user must
therefore remain online to continually update his non-membership proofs, or else
synchronize them upon rejoining. The complexity of this latter synchronization
task scales linearly with the intervening time because the updated proofs must
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depend on all the nullifiers announced in the time spent offline. To adapt this
approach for better scalability, either the nullifier set must be prunable somehow
or else its non-membership proofs should be practically independent of members.

Mixnets are an alternative to the decoy-and-nullifier approach. In this con-
struction, unspent transaction outputs (UTXOs) are hidden behind publicly re-
randomizable commitments, which enable anyone to transform an old commit-
ment into a new one that a) binds to the same information, and b) can be opened
only by the same parties that could open the old one, but c) is unlinkable to
the old commitment in the eyes of everyone else. Depending on the blockchain
architecture, the entire UTXO-commitment set or a subset thereof is mixed at
regular or variable intervals by miners, transaction initiators, or designated op-
erators that are neither.

The first downside of this approach is that the owner of a UTXO must
learn his new commitment by iterating over all mix outputs and either trying
to unlock them or running some other ownership test on them. The workload
of this task is linear in the size of the batch and thus proportional to the size
of the anonymity set. Even if the UTXO-commitment passes through multiple
smaller mixes instead, the workload merely shifts from tracing the UTXO across
one large mix to tracing it across multiple smaller ones. While the anonymity
set size does expand exponentially in the number of mixes, the user’s workload
scales linearly in this number, and thus once again either requires users to remain
online or face a costly catch-up task upon rejoining.

The second downside of this mixnet approach is the fact that the operator
selects the secret permutation and can be coerced or bribed to release it, or
to select one that is not uniformly random. A construction for eliminating the
operator’s randomness would obviate this trust assumption and moreover make
the mix outputs deterministic, thus simplifying the UTXO owner’s tracing task.

In summary, the existing constructions for scalability and for privacy seem
to induce tradeoffs that preclude achieving both scalability and privacy simulta-
neously. Specifically:

– accumulation schemes reduce the cost of participation but are inherently
traceable;

– decoys and nullifiers generate untraceable transactions but require operations
on an ever-growing nullifier set that cannot be pruned or truncated;

– mixnets generate untraceable transactions but require users to trace their
coins across mixes and moreover require trust in the mixnet operator.

Mutator sets are cryptographically authenticated data structures that fix
these deficiencies. Informally, mutator sets enable users to add items to a set and
remove them later. The essential differences relative to accumulation schemes
are that mutator sets accumulate commitments to data items rather than items
directly; and that the commitment when an item is added is unlinkable to its
commitment when it is removed. Phrased crudely, mutator sets are accumulation
schemes with addition-removal unlinkability.

Mutator sets are not just idly reminiscent of nullifier sets and decoy commit-
ments. What the full list of all historical commitments to transaction outputs and
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the full nullifier set jointly represent, is a set of unspent transaction outputs. A
transaction is valid only if all its inputs are members of this UTXO set: the nulli-
fier set keeps track of which items are removed from this set. As the commitment
and nullifier are unlinkable, this construction provides addition-removal unlink-
ability. The relevant difference relative to mutator sets is the workload. Phrased
crudely, mutator sets are succinct decoy-and-nullifier sets.

As for mixnets, the similarity is readily apparent: the items are removed
in a (possibly) different order from the one in which they were added, and
transformed untraceably in the process. The main difference is that there is no
operator. Consequently, there is no leakable permutation or re-randomization
randomness. Phrased crudely, mutator sets are operator-free mixnets.

Construction Overview. Our construction uses Merkle mountain ranges
(MMRs) [38,16], which are sequences of Merkle trees that support adding el-
ements to a list, in addition to inheriting the basic features of Merkle trees such
as compact membership proofs and support for modifying leafs. MMRs are used
to compactify two data structures, the append-only commitment list (AOCL)
and the sliding-window Bloom filter (SWBF).

The AOCL tracks additions to the mutator set by recording hiding commit-
ments to data items. These commitments are known as addition records.

The SWBF tracks removals from the mutator set by recording indices of bits
that are announced when items are removed from the mutator set. These indices
are uniquely determined by the data item, but which indices is impossible for
the computationally bounded external observer to predict. A zero-knowledge
proof certifies that a given set of bits corresponds to some addition record that
lives in the AOCL. A removal record is a set of bit indices along with this
zero-knowledge proof and along with the bits’ membership proofs in the SWBF
MMR. The removal record is valid only if some of the listed bits are not set yet.

The SWBF has infinite size in principle, but every addition record can only
sample bits from a finite window. This window slides periodically.

Figure 1 captures key elements visually:

– the commitment to the set consists of the Merkle roots of both MMRs and
the active window;

– an addition record consists of a commitment to the data item;
– the zero-knowledge proof establishes that for some addition record, a) the

addition record lives in the AOCL MMR, and b) the given bit indices were
derived correctly;

– a removal record consists of a set of announced bits, the zero-knowledge
proof, and membership proofs in the SWBF MMR for all bits that no longer
live in the active window.

The effect of the sliding window is to reduce the dependency of membership
proofs and removal records for items that were added early on, on the removal
records of items added later. Specifically, the MMR membership proofs for old
chunks of the SWBF require only a logarithmic number of updates as a function
of the number of items that were added (and maybe removed) after the item in
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active window

Fig. 1: Schematic overview of the present construction.

question was. Under the realistic assumption that at any point in time freshly
added items are more likely to be removed than old ones, this property translates
to a workload for updating membership proofs that decreases over time.

Related Work. Accumulators.Arguably Merkle trees [28] are the first accumu-
lation schemes and when their leafs are sorted, they even admit non-membership
proofs. Benaloh and de Mare [6] introduce the term “accumulator” and describe a
construction where the order of accumulated items does not matter. Nyberg [33]
proposed a similar function based on on symmetric primitives. Barić and Pfitz-
mann [4] argue that accumulators should be presented as tuples of algorithms,
extending the term to accumulator schemes. Since then research has focused on
finding new building blocks for instantiating accumulator schemes [32,26,27,1],
extending their features and properties [10,13], and applying them to various
protocols and tasks [34,23].

The combined use of Bloom filters and Merkle trees to construct crypto-
graphic accumulator schemes was first proposed by Rambaja and Avdullahu [35].
Compared to just Merkle trees, the advantage is non-membership proofs with-
out sacrificing updatability; and compared to just Bloom filters, the advantage is
compactness. This construction does not provide addition-removal unlinkability.

Accumulators with Privacy. After finishing the bulk of this paper, the au-
thors became aware of two papers extending accumulator schemes in such a way
as to achieve a notion very similar to the one presented here. The first paper [2]
presents a generic framework for building accumulator schemes with fancy prop-
erties from accumulator schemes without. It then proceeds to construct one from
two additive RSA-based accumulators, one with membership proofs and one with
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non-membership proofs. The new construction features join-revoke unlinkability
— which is essentially the same property as addition-removal unlinkability of
the present paper.

The second paper [3] generically constructs an oblivious accumulator scheme,
which is one with add-delete unlinkability (also essentially the same property)
and add-delete indistinguishability (additionally hiding the set size). It builds
this from a key-value commitment scheme, and the key-value commitment scheme
from a universal accumulator and an extendable-length vector commitment scheme.
What is missing relative to mutator sets is a polylogarithmic bound on the run-
ning times of all algorithms.

Light Clients. Starting with informal discussions [30,18], there have been a
host of proposals for reducing the cost of participating in a blockchain network
by shrinking the state of a client to a short cryptographic commitment [16,8].
A related objective is to shrink the blockchain itself by having miners produce
succinct proofs of history verification, in addition to proof-of-work [24,25,22].

Privacy on Blockchains. Zerocoin [29] first proposed the use of accumulators
to ensure privacy in cryptocurrencies. ZCash [5] was the first to use zk-SNARKs
with the same objective. Monero uses ring signatures, a related tool to accumu-
lators and zero-knowledge proofs, to achieve privacy [36]. All three fall in the
decoy-and-nullifier category.

Mimblewimble [21,20,19] first constructed private UTXOs without nullifier
sets. Unfortunately, this approach limits privacy to amount confidentiality (or
state confidentiality) as UTXOs remain linkable across transactions.1 Quisquis [17]
first proposed to use mixnets to effect unlinkability without nullifier sets.

Mixnets. Mixnets were originally proposed by Chaum [11] for anonymous
messaging. Since then they have been used as a building block for a host of
privacy-enhancing technologies, including anonymous remailers [12], onion rout-
ing [15], electronic voting [37], etc.

Roadmap. Section 2 covers some basic preliminaries, and after that Section 3
presents formal definitions of both accumulation schemes and mutator sets. Sec-
tion 4 details how a mutator set can be used in the context of a UTXO-based
blockchain to achieve scalable privacy. Section 5 presents our construction in a
sequence of incremental steps, and proves its security properties. Finally, Sec-
tion 6 finishes with some concluding thoughts.

2 Preliminaries

Hash Function Security. We reduce the security of our construction to secu-
rity of some concrete hash function H : Σ∗ → D (the particular choice is irrel-
evant). To capture this notion we use two insecurity functions: 1) InSecHcoll, the
insecurity function for collision resistance for H; and 2) AdvHPRF, an adversary’s

1 Mimblewimble blockchains notably do not record individual transactions but only
aggregates of them. Nevertheless, the individual transactions can be collected by the
online but otherwise passive oberver as they are broadcasted.
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advantage over a random guess at distinguishing H from a random function. In
order to justify conflating a concrete function H with a family of functions (as
the PRF game requires) we implicitly designate part of the input as key material
and pretend as though the adversary cannot read it. These quantities are defined
as

InSecHcoll
△
= max

A
Pr [A()⇒ a, b ∈ Σ∗ ∧ a ̸= b ∧ H(a) = H(b)] (1)

AdvHPRF
△
= max

A

∣∣∣∣Pr [Afb()⇒ b
]
− 1

2

∣∣∣∣ , (2)

where f0 = H, f1
$←− {f | f : Σ∗ → D}, b $←− {0, 1}.

The omitted arguments of InSec and Adv can be the security parameter λ
(whose unary representation is λ), the allowance for adversaries with respect
to running time, memory, or (in a black box model) number of queries. The
maximum is taken over all adversaries A satisfying those constraints.

Commitment Scheme. A commitment scheme binds a party to a data item
whose value can be revealed in a way that prevents equivocation. Specifically, a
commitment scheme consists of two algorithms, presented here abstractly:

– commit : T [×R] → C takes a data item and possibly some randomness and
outputs a commitment.

– open : T × C [×O] → {True,False} takes a data item, the commitment,
possibly some auxiliary opening information, and outputs True if the item
was used to produce the commitment and False otherwise.

A commitment scheme generally satisfies two security properties, hiding and
binding, although the former requirement is sometimes dropped. Hiding is equiv-
alent to semantic security: no resource-bounded adversary should be able to com-
pute any function of the committed message, and therefore hiding commitment
functions require a randomness parameter. Binding captures non-equivocation:
no adversary should be able to produce a commitment that it can open to dis-
tinct messages.

A commitment scheme (commit, open) is hiding if for all the polynomial-time
adversaries A = (A0,A1) the advantage over a random guess in the semantic
security game is negligible:

AdvAss
△
=

∣∣∣∣Pr [A1(st , c)⇒ b]− 1

2

∣∣∣∣ ≤ ϵ(λ) , (3)

where m0,m1 ← A0(λ); b
$←− {0, 1}; r $←− R; c← commit(mb; r).

A commitment scheme (commit, open) is binding if for all polynomial-time
adversaries A the binding insecurity InSecbinding is negligible:

InSecAbinding
△
= Pr [m0 ̸= m1 ∧ open(m0, c, o0) = open(m1, c, o1)] , (4)
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where (m0, o0,m1, o1, c)← A(λ).
A common commitment scheme is defined relative to a hash function H :

Σ∗ → D and known as the canonical commitment scheme. The commitment
algorithm is defined as commit : T × R → D, (m, r) 7→ H(m∥r). In order to be
hiding, the space of randomness R must be at least as large as the space of
digests D. The binding property of the canonical commitment scheme reduces
to the collision-resistance of the hash function.

The canonical opening algorithm is a special case of the standard opening
algorithm, which is defined relative to a generic commitment algorithm commit :

T × R→ C as open : T × C× R→ {True,False}, (t, c, r) 7→ commit(t, r)
?
= c.

Merkle Tree. A Merkle tree [28] is a cryptographic data structure that com-
pactly commits to a vector of 2k items called leafs. This commitment, called the
root, is derived by repeatedly hashing together two neighboring nodes in every
layer of a balanced binary tree of height k, whose bottom layer consist of the
leafs. The list of siblings of nodes on a path from a leaf to the root is known as
that leaf’s authentication path and can be used to verify the claim that the leaf
belongs to the tree. We present only the interface here.

– root : [T ]→ D computes the root from the leafs.
– open : [T ]×N→ [D] computes the authentication path for an indicated leaf,

from the list of all leafs and a leaf index.
– verify : D×N× [D]×T → {True,False} verifies that a leaf belongs to a Merkle

tree, given the tree’s root, the leaf’s index, its authentication path, and the
leaf itself.

Additionally, we define two functions that are not traditionally associated
with Merkle trees but nevertheless represent relatively trivial extensions.

– modify : D× N× [D]× T × T → D ∪ {⊥} modifies an indicated leaf, assum-
ing its membership proof is valid. Specifically, it sends (old root , leaf index ,
authentication path, old item,new item) to new root if the authentication
path is valid, or to ⊥ if it is not. Note that afterwards the same authentica-
tion path should be valid for new item but relative to new root .

– update : T × N × [D] × (D × N × [D] × T × T ) → [D] ∪ {⊥} updates the
authentication path for a given leaf, given all of the arguments for modifying
another leaf.

Bloom Filter. A Bloom filter [7] is a probabilistic data structure for cheap
probabilistic set membership tests. While the test can generate a false positive,
it cannot produce false negatives. In other words, the result is either “the item
might be in the set” or “the item is definitely not in the set”. The cost of running
the test only to get an undefinitive positive answer back, is compensated for by
the definite negative alternative result, which allows the programmer to short-
circuit whatever procedure comes next.
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The state of a Bloom filter is defined by an array of w bits, which is initially
all zero. Whenever an item t ∈ T is added to the set, k indices in [0, . . . , w − 1]
are calculated from k independent hash functions [H0, . . . ,Hk−1] applied to t.
The indicated bits are set.

To test an item t ∈ T for membership, the same k hash functions are eval-
uated. If all indicated bits are set, the item might be in the set. But if some
indicated bit is not set, then the item cannot have been added to the set, and
as a result the item is definitely not in the set.

3 Definition

3.1 Accumulation Scheme

The following definition of accumulation schemes is different from formal def-
initions of accumulator schemes existing in the literature [9]. The difference is
motivated by the need for scaffolding to exposit the main construction and prove
its security. Regardless, the notions are the same in spirit.

Definition 1 (accumulation scheme). An accumulation scheme is a tuple of
polynomial time algorithms relative to a item data type T .

– init : [{1}]→ K generates a commitment to the empty set.
– prove : K × T → M takes a set commitment and a new item, and outputs

a membership proof that will be valid under the updated commitment if the
item is added, but invalid if is removed thereafter.

– verify : K × T ×M → {True,False} verifies a membership proof.
– add : K × T → K × A updates the set commitment so that the represented

set includes the given item, and additionally outputs an addition record.
– remove : K×T ×M → K×R updates the set commitment so that the set no

longer includes the given item, and additionally outputs a removal record.
– update : K × T ×M × (A ∨ R) → M updates an item’s membership proof

given an addition or removal record.

The main difference relative to existing definitions of accumulator schemes
comes from the explicit treatment of addition and removal records. Intuitively,
records are the pieces of information that are associated with a change to the set
commitment. As such, they are also needed to update a membership proof so that
it is synchronized to the new set commitment. The addition and removal records
expose a feature (or deficiency) of accumulation schemes: in all constructions the
authors are aware of, the addition records and removal records pertaining to the
same item are trivially linkable.

Another difference is that prove can only be invoked before the item in ques-
tion was added. The scope of this paper does not cover generating proofs for
items that were added in the past; it covers maintaining proofs and synchroniz-
ing them when they are out of date.

Some constructions enable modification of existing items. Strictly speaking,
modification is implied by removing and adding. However, for practical use it is
worthwhile to define the interface explicitly:
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– modify : K ×M × T × T → (K ×E) ∪ {⊥} updates the set commitment so
that the given item is replaced with the second given item, if the membership
proof is valid, and if so outputs a modification record (“E” for edit).

When abstracting the type of record and intend only to capture some piece of
data inducing an update to the set commitment, we use the term update record
and reserve the symbol υ ∈ A ∪R ∪ E.

3.2 Security

An accumulation scheme needs to have the following security properties, de-
fined in asymptotic terms relative to a security parameter λ. Additionally, the
security games are defined with respect to a sequence O = (oi)

#O
i=1 of valid set

operations oi : {add, remove} × T , corresponding to an underlying set2 S re-
cursively defined as S(O∥(add, t)) = S(O) ∪ {t}, S(O∥(remove, t)) = S(O)\{t},
and S(∅) = ∅. Specifically, a sequence of operations O = (oi)

#O
i=1 is valid iff

∀i ∈ {1, . . . ,#O} . oi = (remove, t)⇒ t ∈ S((oj)
i−1
j=1).

Definition 2 (completeness for accumulation schemes). Consider the
completeness game GameAScmplt.

An accumulation scheme is complete iff, for any valid sequence of operations
O1∥(add, t)∥O2, the completeness error Errcmpl is negligible:

Errcmpl(λ)
△
= 1− Pr [Gamecmplt(λ, O1, O2, t)→ True] ≤ ϵ(λ) . (5)

It is tricky to define soundness for a proof system for set membership, when
the set is determined by a compact commitment. Indeed: a single commitment
may decommit to multiple sets, in which case soundness is a moot notion, and
knowledge-soundness is preferred. We avoid definitional complexity by assuming
instead that the commitment is computed honestly. The adversary can only
provide the items to be added to the set and the randomnesses to be used when
computing these additions. This definition of soundness fails in contexts where
the adversary is capable of computing the commitment dishonestly. However,
this dishonest calculation will be exposed at a later stage through the use of
general-purpose zero-knowledge proofs.

Definition 3 (honest-commitment soundness). Consider the honest-
commitment soundness game Gamehcsnd.

An accumulation is honest-commitment sound iff the honest-commitment
soundness error is negligible, where the maximum is taken over all polynomial-
time adversaries A.

Errhcsnd(λ)
△
= max

A
Pr
[
GameAhcsnd(λ)

]
≤ ϵ(λ) . (6)

2 Throughout this paper we use the word “set” to denote multiset, or unordered list.
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Game 1: Completeness

1 define GameAScmplt(λ, O1, O2, t)
as:

2 κ← init(λ)
3 for o ∈ O1 :
4 if o = (add, s) :
5 κ, µ⋆, ← add(κ, s)
6 if o = (remove, s) :
7 κ, ←

remove(κ, s, µ⋆)

8 κ, µ, α← add(κ, t)
9 for o ∈ O2 :

10 if o = (add, s) :
11 κ, µ⋆, α⋆ ←

add(κ, s)
12 µ← update(t, µ, α⋆)

13 if o = (remove, s) :
14 κ, ρ⋆ ←

remove(κ, s, µ⋆)
15 µ← update(t, µ, ρ⋆)

16 return verify(κ, t, µ)

Game 2: Honest-Commit-
ment Soundness

1 define GameAhcsnd(λ) as:
2 κ← init(λ)

▷ adversary supplies:
-set operations O,
-randomnesses R,
-item t,
-membership proof µ

3 O,R, t, µ← A(λ) ;
4 for (o, r) ∈ zip(O,R) :
5 if o = (add, s) :
6 κ, , ← add(κ, s; r)
7 if o = (remove, s) :
8 κ, ←

remove(κ, s; r)
9 return

verify(κ, t, µ) ∧ t ̸∈ S(O)

3.3 Mutator Set

Informally, a mutator set is an accumulation scheme that additionally satisfies
addition-removal unlinkability, which asserts that it is difficult to relate addition
records to removal records. However, the set operations for accumulation schemes
are deterministic, giving rise to a trivial attack against unlinkability whereby the
adversary runs through all possible permutations of the given set operations to
see which one matches with his view. In order to achieve unlinkability, the set
operations must involve some randomness that the adversary does not have
access to. Mutator sets provide this interface.

To define the accumulator set interface we start from accumulation schemes
and modify this interface as follows:

– Users must commit to items t ∈ T using secret randomness r
$←− R to generate

an addition record α before they can be added. This function is achieved by
the method commit : T × R→ A, where R is a sufficiently large alphabet of
random symbols. The addition record α ∈ A is a commitment to the item t
(not to be confused with the commitment κ to the set).

– The public input to the add method is the addition record α ∈ A, instead of
the randomness-free item t ∈ T . (Note that in contrast to add for accumu-
lation schemes, α is an input not an output.)
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– To remove an item t ∈ T from the set, the user must first generate a removal
record ρ ∈ R, which observers can then use to update the set commitment
or membership proofs with. This separation of concerns is captured by to
methods, drop and remove.

• drop : K×T×M → R generates a removal record from a set commitment,
an item, and its membership proof.

• remove : K × R → K ∪ {⊥} updates the set commitment with a valid
removal record.

(Note: symmetrically to α, ρ has moved from the output of remove in an
accumulation scheme to the input of remove in a mutator set.)

Definition 4 (mutator set). A mutator set is a tuple of polynomial time al-
gorithms relative to a item data type T :

– init : [{1}]→ K generates a commitment to the empty set.
– commit : T × R → A generates an addition record by using the supplied

randomness to commit to an item.
– prove : K×T×R→M takes a set commitment, a new item, and randomness

used to commit to it, and outputs a membership proof that will be valid
under the updated commitment if the item is added, but invalid if is removed
thereafter.

– verify : K × T ×M → {True,False} verifies a membership proof.
– add : K × A → K updates the set commitment so that the set includes the

item committed to by the addition record.
– drop : K × T ×M → R generates a removal record from a set commitment,

an item, and its membership proof.
– remove : K × R → K ∪ {⊥} updates the set commitment so that the set no

longer includes the item determined by the removal record, assuming it is a
valid removal record.

– update : K × T ×M × (A ∨ R) → M updates an item’s membership proof
given an addition or removal record for another item, such that the updated
membership proof is valid for the new set commitment resulting from applying
the record.

3.4 Security

Completeness for mutator sets is defined analogously to Definition 2: any se-
quence of valid set operations should give rise to valid membership proofs. Def-
inition 5 adapts this intuition to the updated interface.

Definition 5 (completeness for mutator sets). Consider the completeness
game GameMS

cmplt. A mutator set is complete iff, for any valid sequence of opera-
tions O, and any t ∈ S(O), the completeness error Errcmpl is negligible:

Errcmpl(λ)
△
= 1− Pr

[
GameMS

cmplt(λ, O, t)→ True
]
≤ ϵ(λ) . (7)
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Honest-commitment soundness is inadequate for mutator sets due to the
changed interface. In particular, and in contrast to accumulation schemes, addi-
tion and removal records hide which items they pertain to. The set represented
by the set commitment κ, cannot be defined directly in terms of the constituent
items; but can only defined by proxy, in terms of the items to which the addi-
tion and removal records are bound to. It follows that an adequate definition of
soundness for mutator sets must imply that both addition records and removal
records are binding commitments to particular items.

Moreover, in order for the value κ to compactly represent a set of items it
must be binding to that set. However, this variant of binding is tricky to capture
formally because the interface does not provide a functionality for opening the
commitment and revealing the entire set. Instead, we opt for a simpler and
stronger quality: the set commitment must be binding to the set of all addition
and removal records that produced it, starting from the commitment to the
empty set.

At this point what remains for security is a means for outlawing invalid
set updates, such as removing non-members or removing the same item twice.
Note that the interface delegates to the security definition the choice as to what
happens when an item is added twice. We opt here to disallow removing an item
more often than it was added. Technically speaking, this choice implicitly counts
multiplicities and thus corresponds to multisets rather than sets, but we ignore
this distinction and overload the latter term with the meaning of the former.

Definition 6 (security for mutator sets). A mutator set is secure iff

– (commit, open) where open(α, t; r)
△
=
(
commit(t, r)

?
= α

)
is a binding com-

mitment scheme with negligible binding insecurity: InSeccommit
bnd (λ) ≤ ϵ(λ);

and

– (drop, open) where open(ρ, t;µ)
△
=
(
drop(t, µ)

?
= ρ
)
is a binding commitment

scheme with negligible binding insecurity: InSecdropbnd (λ) ≤ ϵ(λ); and

– (set commit, open) where set commit : {A,R}∗ × {∅} → K,

(O,∅) 7→

 init(λ) ⇐ O = ∅
add(set commit(O⋆,∅), α) ⇐ O = α∥O⋆ ∧ α : A
remove(set commit(O⋆,∅), ρ)⇐ O = ρ∥O⋆ ∧ ρ : R

and open(κ,O;∅)
△
=
(
set commit(O;∅)

?
= κ

)
is a binding commitment

scheme with negligible binding insecurity: InSecset commit
bnd (λ) ≤ ϵ(λ); and

– the non-negativity insecurity InSecnonneg is negligible, where this quantity is
defined as the maximum probability over all polynomial-time adversaries A
of winning the non-negativity game of Game 4:

InSecnonneg(λ)
△
= max

A
Pr
[
GameAnonneg(λ)

]
≤ ϵ(λ) .
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Game 3: Completeness

1 define GameMS
cmplt(λ, O, t) as:

2 κ← init(λ)
3 T ← ∅
4 for o ∈ O :
5 if o = (add, s) :

6 r
$←− R

7 α← commit(κ, t; r)
8 µ← prove(κ, t, r)
9 for (s∗, µ∗) ∈ T :

10 µ∗ ←
update(κ, s∗, µ∗, α)

11 T ← T ∪ {(s, µ)}
12 κ← add(κ, s)

13 if o = (remove, s) :
14 find µ such that

(s, µ) ∈ T
15 ρ← drop(κ, s, µ)
16 T ← T \{(s, µ)}
17 for (s∗, µ∗) ∈ T :
18 µ∗ ←

update(κ, s∗, µ∗, ρ)
19 κ← remove(κ, ρ)

20 find µ such that (t, µ) ∈ T
21 return verify(κ, t, µ)

Game 4: Non-negativity

1 define GameAnonneg(λ) as:
2 κ← init(λ)
3 ctr ← 0
4 O, T , ρ⋆ ← A(λ)
5 for o ∈ O :
6 if o = (add, α) :
7 κ← add(κ, α)
8 ctr ← ctr + 1

9 if o = (remove, ρ) :
10 κ← remove(κ, ρ)
11 ctr ← ctr − 1

12 return ctr =
#T ∧ remove(κ, ρ⋆) ̸= ⊥ ∧
∀(t, µ) ∈ T . verify(κ, t, µ) ∧
ρ∗ ̸= drop(κ, t, µ)

3.5 Unlinkability and Anonymity

Capturing unlinkability in cryptographic terms is tricky. As a first attempt, one
might devise a game whereby the adversary sees two addition records and one
removal record and nothing else, but with the guarantee that the removal record
is linked to one of the addition records and not to the other, but the order in
which they are supplied is random. The adversary wins if he guesses which one.
No resource-bounded adversary should be able to win this game with more than
a negligible probability.

However, this approach is rather moot because realistic adversaries have ac-
cess to more information than just three records. They see the set commitment
and the entire sequence of addition and removal records that generated it.

As a second attempt, one might devise a game whereby the adversary sees
an entire mutator set history play out, and is then tasked with finding the
addition record that matches with a given removal record. The baseline is the
success probability of the optimal algorithm for this task that reads only the set
operations and no cryptographic data. The concrete adversary’s advantage when
attacking a concrete scheme is the difference between its success probability and
this baseline. A mutator set may be defined as unlinkable if for all bounded
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resource adversaries, this unlinkability advantage is negligible in the security
parameter.

While the above intuition captures the essence of an ideal mutator set in
regards to linkability, it is still rather moot because in practice the produced
privacy might be constrained by the sequence of set operations. In the extremal
case where every addition except for the last is followed immediately by a re-
moval, the adversary in this game can have a 100% success probability even
without breaking any cryptography.

An alternative to capturing unlinkability in cryptographic terms, is to capture
anonymity in entropic terms [14]. In the present context, the attacker observes
one removal record and assigns probabilities to all possible addition records
representing the likelihood, in the attacker’s estimation, that they are linked
to the same item. The degree of anonymity is the entropy of this probability
distribution. We refer to this notion as removal entropy.

3.6 Succinctness

In order for a mutator set to be practically useful, it must be succinct. Specif-
ically, the commitments and records must be compact, and the operations on
them efficient. Informally, compactness denotes a polylogarithmic size limit (as
a function of the number of historical set operations) on the set commitments,
membership proofs, and update records. Likewise, the operations are efficient if
they have polylogarithmic running time.

Definition 7 (succinctness). A mutator set is succinct relative to a number
of set operations N iff both

– the set commitments κ ∈ K, addition records α ∈ A, and removal records
ρ ∈ R, are compact, i.e., all have a representation that grows at most poly-
logarithmically: max(|κ|, |α|, |ρ|) ≤ polylog(N);

– all algorithms comprising the scheme are efficient: their running time is
bounded from above by polylog(N).

Succinct Synchronization Suppose the set was updated N times in some
period of time spent offline. Once online again, how much work does it take to
update a membership proof accordingly? Ideally, the answer ought to be much
less than N .

We opted to omit this feature from the formal definition of succinctness and
discuss it only informally, because capturing it formally in complexity theoretic
terms is rather tricky. Surely the user wanting to update a membership proof
needs to read all the updates, even if only to come to the conclusion that some
or perhaps most of them are not necessary for updating his membership proofs.
We leave the proper formalization of this intuition as an open question.
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4 Scalable Privacy

In UTXO-based cryptocurrencies like Bitcoin [31], every transaction consumes
existing coins and produces new ones. The consumed coins determine a public
key, and the transaction is only valid if it is signed by the consumed coins.
Synchronized nodes only need to keep track of the set of unspent transaction
outputs (UTXO set) to verify new transactions. Once a coin is consumed, and
after this expenditure confirmed by enough blocks, old coins can be discarded
safely.

Transaction A

a

b

c

d

Transaction B

d

e

f

g

Fig. 2: Fragment of a transaction graph in a transparent UTXO-based ledger.

Figure 2 illustrates the mechanics. UTXOs a, b, d, and e are consumed and
can thus be discarded to save disk space. UTXOs c, f , and g have not been
spent yet and can therefore be used as inputs in future transactions. Every coin
can be consumed at most once. The ledger is transparent in two senses. First,
the UTXOs themselves are public and so the observer can see their public keys3

even if he cannot produce a signature for them. Second, the UTXOs are traceable
across transactions. While this transparency is beneficial for auditability, it also
undermines privacy.

Mutator sets serve as a drop-in replacement for the transparent UTXO set.
The consumed coins in a transaction are replaced by removal records and the
generated coins by addition records. Both the removal records and the addi-
tion records are binding commitments to coins, and so it is possible to prove
statements about the committed coins. Specifically, the transaction contains
zero-knowledge proofs establishing that a) the spending policies of all inputs
are satisfied (for instance, because the owner signed off on the transaction); and
b) the coin logic is satisfied (for instance, all outputs have positive amounts and
their sum equals that of of all inputs). The mutator set guarantees that every
coin can be removed at most once.

As coins are hidden behind commitments, and as removal records are un-
linkable with addition records, it is impossible to track them. All the while, the
ledger’s soundness is guaranteed with zero-knowledge proofs.

3 The phrase “public key” is used loosely to refer to a binding commitment to a
spending policy that must be satisfied by the transaction initiator.
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Transaction A
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Transaction B
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A

A

Fig. 3: Fragment of an opaque ledger based on mutator sets.

5 Construction

5.1 Merkle Mountain Range

A Merkle mountain range (MMR) [38,16] is an authenticated data structure that
compactly represents a growing set of items along with generating membership
proofs for elements of this set. We provide here only an informal overview. The
novelty of this section consists of fitting the folklore notion into our definition of
an accumulation scheme.

Informally, a Merkle mountain range is a list of Merkle trees in descending
order by size. Whenever two trees of equal height exist, they are folded into one.
To add an item to the MMR, add it as a singleton to the small end of the list,
and apply the folding operation as often as necessary. Every item ever added
is a leaf in some tree, and so every item has an authentication path relative to
some Merkle root.

To fit this object into our definition of accumulation schemes, we populate
the types required by it:

– The data structure accumulates items of data type T .
– A commitment consists of a list of Merkle roots and a leaf count:K = [D]×N.
– A membership proof is an index and an authentication path, the latter of

which is a list of hash digests: M = N× [D].
– An addition record is given by the hash digest of the added element along

with its index: A = D× N.
– A modification record is given by the the new leaf, its index, and its authen-

tication path: E = T × N× [D].

Likewise, we populate the functions defined by the accumulation scheme
interface:

– init : [{1}] → K generates an empty list of Merkle roots along with a leaf
count set to zero. This commitment represents the empty list.

– prove : K × T → M produces a membership proof for an item t ∈ T that
will be valid under the new set commitment if the item is added to the data
structure.
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– add : K × T → K × A increments the leaf count, appends the item to
the peaks list, reduces the number of peaks by folding equal-height roots as
necessary, and outputs a new set commitment along with an addition record.

– verify : K × T × M → {True,False} verifies the membership proof which
supposedly establishes that the given item is a member of the data structure
at the given index.

– modify : K × M × T × T → K × E takes a commitment, a membership
proof, an old element, and a new element; and outputs a set commitment
list obtained by replacing the indicated element with the new one, along with
a modification record. Note that the membership proof for the new item is
the same as for the old one.

– update : K × T ×M × (A ∨ E) → M takes a set commitment, the item,
its membership proof, and an addition or modification record, and produces
a new membership proof. It does this by extending the old authentication
path by zero or more digests if an item was added, or modifying some suffix
of it if an item in the same tree was modified.

Removals can be simulated by modifying items to set a deletion bit.

Theorem 1 (MMR Completeness). MMR has perfect completeness.

Proof. The statement follows from construction. ⊓⊔

Theorem 2 (MMR Soundness). MMR is honest-commitment sound with er-
ror bounded by the hash collision resistance insecurity of H: ErrMMR

hcsnd ≤ InSecHcoll.

Proof. In order for MMR.verify(κ, t, µ) to output True for an element t ̸∈ S(O),
Merkle.verify(κ.p[j], g, t, µ.auth path) has to output True for some tree index j
that corresponds to κ.n, and for some (local-tree) leaf index g corresponding to
(MMR-wide) item index j. Since t ̸∈ S(O), no pair (g, j) satisfies that t is the
gth leaf of the jth Merkle tree. So the valid Merkle verification must come from
a collision of hashes somewhere.

A successful adversary A in the honest-commitment soundness game gives
rise to a successful collision finder B. The description of this collision-finder is
identical to the description of Game 2 except that it collects all preimage-digest
pairs of the hash function as they are computed. After the execution is done,
B simply sorts for digest. This sorted list will contain one pair with distinct
preimages and identical digests, so B outputs the preimages. The overhead of
B is logQ where Q is the number of times the hash function is called. This
fact establishes that B still runs in polynomial time and therefore has success
probability bounded by InSecHcoll. ⊓⊔

5.2 Append-Only Commitment List

An append-only commitment list is a data structure that contains a growing list
of commitments to data items, with the obvious remark that these commitments
are themselves data items as well. The state of an append-only commitment list
is fully determined by one object:
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– a list V : [D] whose elements are hiding commitments to the accumulated
items.

The commitment scheme is defined as follows. To commit to a message t ∈ T ,

obtain randomness r
$←− R drawn uniformly at random from a sufficiently large

set of symbols R, and compute the commitment c ∈ D as c← H(t∥r). To verify
that a commitment c binds to a message t, it suffices to supply r as it enables

the test c
?
= H(t∥r).

Adding an item t ∈ T to the set consists of simply appending a new commit-
ment. Having added an item, it is possible to prove membership of the item t to
the set in a way that can be verified efficiently, provided that the item’s index
of addition m ∈ N is known. Therefore, this index must be part of the item’s
membership proof, along with the randomness.

The scheme AOCL has the interface of an accumulation scheme, with the
exception that removals are disallowed. The functions, add and verify include
logic specific to the commitments. The remaining functions are omitted because
obvious.

Algorithm 1: AOCL.add

1 define AOCL.add(κ = V, t; r)
as:

2 m← #V
3 c← H(t∥r)
4 V ← V ∥c
5 return

κ = V, µ = (m, r), α = c

Algorithm 2: AOCL.verify

1 define AOCL.verify(κ =
V, t, µ = (m, r)) as:

2 c← H(t∥r)
3 return V[m]

?
= c

Security. The completeness of the append-only timestamped commitment list
follows from constuction. Its honest-commitment soundness is less straightfor-
ward. We consider Game 2 with the restriction that O does not contain any
remove operations.

Theorem 3. As an accumulation scheme, AOCL has honest-commitment
soundness error bounded by

ErrAOCL
snd ≤ InSecHcoll . (8)

Proof. Assume that (add, t) ̸∈ O but verify returns True. This event implies a
collision since for some t∗ ̸= t and some r∗, c = H(t∥r) = H(t∗∥r∗). The pair
t∗, r∗ is obtained by recording all preimage-digest pairs as the hash function is
computed. A successful adversary can be transformed into a successful collision-
finder, whose success probability is bounded by definition by InSecHcoll. ⊓⊔
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5.3 Sliding Window Bloom Filter

A sliding window Bloom filter represents a growing set of timestamped items
(l, t) ∈ N × T = T ⋆. The state of a filter is fully defined by an infinite array of
bits F ∈ {0, 1}∗. The bits in the array are initially set to zero but are set to one
as elements are added to the set. Since only finite sets are ever represented, only
a finite section of the bit array is ever represented.

A sliding window Bloom filter is parameterized by four integers:

– the window width w ∈ N, which determines the size of the interval where
bits can be set as items are added;

– the pointer count k ∈ N, which determines the maximum number of bits
flipped by any item;

– the batch size b ∈ N, which determines the number of items in between
window slides; and

– the step size s ∈ N. Assume the step size divides the window width.

Additionally, we associate a hash function Hw : N×T×R×N→ {0, . . . , w−1} ⊂
N with the window size w.

A filter defines two set operations:

– add : {0, 1}∗ × T ⋆ ×R→ ({0, 1}∗ ×N)×Nk, which adds a timestamped and
randomized item to the set represented by the filter.

– probe : {0, 1}∗ × T ⋆ × R → {True,False}, which tests if a given item is a
member of the set with true positives, false positives, and true negatives,
but no false negatives.

What sets a sliding window Bloom filter apart from a regular Bloom filter
is that the array of bits has infinite length but the window of settable bits
shifts in accordance with the timestamp l that items come with. Specifically, the
add operation consists of sampling k indices in {0, . . . , w − 1} pseudorandomly,
translating the indices by ⌊ lb⌋ · s, and setting the indicated bits.

Algorithm 3: SWBF.add

1 define SWBF.add(F, (l, t), r)
as:

2 J ← ∅
3 for i ∈ {0, . . . , k − 1} :
4 j ← Hw(l ∥ t ∥ r ∥ i)
5 J ← J ∪ j
6 F[j+⌊ l

b
⌋·s] ← 1

7 return F, J

Algorithm 4: SWBF.probe

1 define SWBF.probe(F, (l, t), r)
as:

2 for i ∈ {0, . . . , k − 1} :
3 j ← Hw(l ∥ t ∥r ∥ i)
4 if F[j+⌊ l

b
⌋·s] = 0 :

5 return false

6 return true

To probe whether an element is a member of the set, check the indicated
array elements. If any one element is 0, then the element definitely was not
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added. Crucially, this operation requires the timestamp l because otherwise the
offset is not known.

The false positive probability corresponds to the probability that k given
indices are nonzero. This probability is(

1−
(
1− 1

w

) kbw
s

)k

≈
(
1− e−

kb
s

)k
. (9)

By setting s to a significant fraction of kb, and w much larger than kb, it
is possible to engineer a cryptographically small false positive probability. The
optimal value of k as a function of b and s is k = s·ln 2

b . Plugging that ratio into
the expression (9) gives a probability of roughly 2−k.

5.4 Non-Compact Mutator Sets

In this section we build a mutator set from an append-only commitment list
and a sliding window Bloom filter. This mutator set lacks a crucial property:
compactness. The next section remedies this deficiency.

The general strategy is to use canonical commitments to items as addition
records and keep track of them inthe append-only commitment list. Simultane-
ously, the removal records contain a list of pseudorandom indices of set bits in
the sliding window Bloom filter, which tracks which items are being removed.
A membership proof to the mutator set consists of a membership proof to the
append-only commitment list, and a non-membership proof to the sliding window
Bloom filter. This construction turns the cryptographically small false positive
probability into a negligible completeness error.

The item acquires a timestamp when it is added to the set. The timestamp is
part of the membership proof µ. The timestamp is necessary to slide the Bloom
filter window, which in turn is necessary to avoid saturating the filter. There-
fore, the further apart items are added, the more noticeably will their removal
records reflect this distance and relative order. Phrased differently, unlinkability
is optimal for items added immediately after one another; and degrades with
their distance.

To ensure non-negativity, the property that prevents the set commitment
from being updated with a removal record for a non-member, it is necessary
to add a non-interactive zero-knowledge proof π ∈ Π to the removal record.
Informally, this proof establishes that the index set J of set bits was derived
from some item, timestamp, randomizer, and matching canonical commitment
that lives in the AOCL. Moreover, it is important that this proof system has
knowledge soundness with respect to the secrets: specifically, ZKPoK{(l, t, r, c) :
c = H(t∥r) ∧ c ∈ V ∧ J = {Hw(l∥t∥r∥i) + ⌊ lb⌋ · s | 0 ≤ i < k}}. Let ς denote
the soundness error for this proof system; but note that completeness and zero-
knowledge are taken for granted. For the purpose of comparing equality between
removal records, the proof π is ignored; in particular, this means that malleating
the proof is not considered an attack on the binding property of drop.

The types are defined as follows.
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– MS.T = T
– MS.K = [C]× {0, 1}∗
– MS.M = N× R
– MS.A = C× N
– MS.R = Nk ×Π

The following algorithm definitions use subscript 1 in anticipation of another
variant with improved features.

Algorithm 5: MS1.init

1 define MS1.init(i) as:
2 λ← #i
3 return κ = ([ ], [0]∞)

Algorithm 6: MS1.commit

1 define MS1.commit(t, r) as:
2 , α← AOCL.add([ ], t; r)
3 return α

Algorithm 7: MS1.prove

1 define
MS1.commit(κ = (V, F ), t, r)
as:

2 , µ, ← AOCL.add(V, t; r)
3 return µ

Algorithm 8: MS1.verify

1 define MS1.verify(κ =
(V, F ), t, µ = (l, r)) as:

2 return
AOCL.verify(V, t, (l, r)) =
True ∧
SWBF.probe(F, (l, t), r) =
False

Algorithm 9: MS1.add

1 define MS1.add(κ = (V, F ), α)
as:

2 V ← V ∥α
3 return κ = (V, F )

Algorithm 10: MS1.drop

1 define MS1.drop(κ =
(V, F ), t, µ = (l, r)) as:

2 , J ←
SWBF.add(F, (l, t), r)

3 π ← Π.prove({(l, t, r, c} :
c = H(t∥r) ∧ c ∈ V ∧ J =
{Hw(l∥t∥r∥i) + ⌊ lb⌋ · s | 0 ≤
i < k})

4 return κ = (V, F )

While there are records α and ρ, neither record is necessary to update the
membership proof µ. Therefore the update function is just the identity.

Theorem 4 (completeness of MS1). As a mutator set, MS1 is complete with

completeness error
(
1−

(
1− 1

w

) kbw
s

)k
≈
(
1− e−

kb
s

)k
.

Proof. Suppose Gamecmplt(λ, O1, O2, t) output False in some execution for a
valid sequence op operations O1∥(add, t)∥O2. This proposition implies that
verify(κ, t, µ) on line Line 21 of Algorithm 1 fails, which in turn implies that
either AOCL.verify(V, t, (m, r)) = False or SWBF.probe(F, (l, t)) = True on line
Line 2 of Algorithm 8. The AOCL has perfect completeness and so the left clause
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Algorithm 11: MS1.remove

1 define MS1.remove(κ = (V, F ), ρ) as:
2 if Π.verify(ρ.π, {(l, t, r, c} : c = H(t∥r) ∧ c ∈ V ∧ J =

{Hw(l∥t∥r∥i) + ⌊ lb⌋ · s|0 ≤ i < k}) = False :
3 return ⊥
4 else
5 F ∗, ← SWBF.add(F, (l, t), r)
6 if F ∗ ̸= F :
7 return κ = (V, F ∗)
8 else
9 return ⊥

of this conjunction is guaranteed to return True. The right clause returning true
corresponds to the false positive probability of the SWBF, which is given by
Eqn. 9. ⊓⊔

Theorem 5 (security of MS1). MS1 is secure; specifically:

– commit, in combination with the standard opening algorithm, has bounded
binding insecurity InSeccommit

bnd ≤ InSecHcoll;
– drop, in combination with the standard opening algorithm, has bounded bind-

ing insecurity InSecdropbnd ≤
Q(Q−1)k!

2wk + AdvHw

PRF, where Q is the number of
queries to Hw;

– the function set commit : {A,R}∗ × {∅} → K,

(O,∅) 7→

 init(λ) ⇐ O = ∅
add(set commit(O⋆,∅), α) ⇐ O = α∥O⋆ ∧ α : A
remove(set commit(O⋆,∅), ρ)⇐ O = ρ∥O⋆ ∧ ρ : R

in combination with the standard opening algorithm, has bounded binding

insecurity InSecset commit
bnd ≤

(
1−

(
1− 1

w

) kbw
s

)k
+ AdvHw

PRF;

– MS1 has bounded non-negativity insecurity InSecMS1
nonneg ≤ ς + InSecHcoll.

Proof. Commit. The bounded binding insecurity of commit follows from the fact
that its definition coincides with that of a canonical commitment scheme. The
adversary who successfully equivocates on a given commitment can be used to
build a collision-finder, so InSeccommit

bnd (λ) ≤ InSecHcoll.
Drop. If the hash function Hw : Σ∗ → {0, . . . , w − 1} is uniformly random,

then so is the implicit mapping from (l, t, r, i) to J ∈ {0, . . . , w − 1}k as a list
of indices, i.e., where the order matters. In the worst case there are k unique
indices and then there are k! ways to order them. So every index set defines
up to k! different but equivalent lists. Therefore, the probability of observing

a collision of sets is bounded by Q(Q−1)k!
2wk , where Q is the number of queries

to Hw. A successful adversary in the binding game for drop can be transformed
into an algorithm that finds collisions of index sets, and so its success probability
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must be bound by this quantity. An adversary with success probability in excess
of this amount can be used to distinguish the hash function (interpreted as a
PRF with implicit key r) from random. The advantage of this distinguisher is
bounded by AdvHw

PRF by assumption. By the union bound, the binding adversary’s

success probability is bounded by Q(Q−1)k!
2wk + AdvHw

PRF.
Set commit. The AOCL is perfectly binding to the set of addition records

because it is a list. A pair of different sets of removal records O1 ̸= O2 that
induce the same bits in the SWBF can be reduced to a pair of non-intersecting
sets with the same properties in addition to O1 ∩ O2 = ∅. Assuming Hw is
uniformly random it is possible to calculate the probability that all bits in-
dicated by some ρ ∈ O1 are already set by the removal records in O2. In
fact, this calculation repeats the derivation of the completeness error, which

is
(
1−

(
1− 1

w

) kbw
s

)k
≈
(
1− e−

kb
s

)k
. Furthermore, the adversary who succeeds

in excess of this probability can be used to build a distinguisher in the PRF
game to distinguish Hw from random, whose advantage is bounded by AdvHw

PRF.
By the union bound, the binding adversary’s success probability is bounded by(

1−
(
1− 1

w

) kbw
s

)k

+ AdvHw

PRF .

Non-negativity. Suppose the adversary wins Game 4, meaning that
remove(κ, ρ∗) ̸= ⊥ even though all items still in the mutator set generate re-
moval records distinct from ρ∗. By using the extractor implied by the knowledge-
soundness of π one extracts the witness (l, t, r, c) such that H(t∥r) = c ∈ V . There
are two possibilities:

1. (t, (l, r)) ̸∈ T . In this case we have an attack on the binding property of
commit because T must contain some other element that also generates
c ∈ V . This attack on binding in turn implies an attack on the collision
resistance of H.

2. (t, (l, r)) ∈ T . This is a contradiction because on the one hand ρ∗ =
drop(κ, t, µ = (l, r)) because this is implied by remove(κ, ρ∗) ̸= ⊥ in the
middle of Line 12 in Algorithm 4; on the other hand ρ∗ ̸= drop(t, µ = (l, r))
is asserted in the same line.

In summary, if the adversary A is successful, and if the extractor E is successful,
then some collision-finder C for H is successful. One derives a bound on the
success probability of A from this:

1 =Pr[A✓ ∧ E✓⇒ C✓] (10)

=Pr[¬(A✓ ∧ E✓) ∨ C✓] (11)

=Pr[Ax ∨ Ex ∨ C✓] (12)

≤Pr[Ax] + Pr[Ex] + Pr[C✓] (13)

≤ 1− Pr[A✓] + ς + InSecHcoll (14)
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Pr[A✓] ≤ ς + InSecHcoll . (15)

⊓⊔

5.5 Compact Mutator Sets

A pair of MMRs transform the non-compact mutator set MS1 into a compact
one (MS2). The general idea behind the transformation is this:

– Use one MMR to compactify the AOCL V , and adapt the algorithms that
access it accordingly.

– Use another MMR to compactify the inactive part of the SWBF F , and
adapt the algorithms that access it accordingly. For the purpose of comput-
ing Merkle trees, the chunk size is s. In other words, each leaf contains a
contiguous chunk of s bits from F . The active part is represented explicitly
as an array of w bits. The dividing line between inactive and active lies at
index ⌊Nb ⌋ · s, where N is the total number of items added to the mutator
set.

– Replace the commitment κ = (V, F ) : [D] × {0, 1}∗ with (κV , κF , FA) :
MMR.K ×MMR.K × {0, 1}w = K.

– Expand the membership proof µ = (l, r) : N× R with:
• an authentication path auth pathV : [D] which is the authentication path

for element m in the MMR of V ; and
• a dictionary sending indices to chunk-and-authentication-path pairs:
target chunks : N → ({0, 1}s × [D]). This dictionary is used to access
bits in the inactive part of the filter, specifically those bits that will be
set if the item is removed: J = {⌊ lb⌋ · s + Hw(l∥t∥r∥i) | 0 ≤ i < k}. The
keys in this dictionary correspond to chunk indices ci derived from the
bit indices bi via ci = ⌊ bis ⌋. There are no entries in this dictionary for
bits in the active portion of the filter.

The new membership proof is therefore (l, r, auth pathV , target chunks) :
N× R× [D]× (N→ ({0, 1}s × [D])) = M .

– Modify the zero-knowledge proof system Π to prove the correct execution
of MMR.verify(κV , c, µV ) rather than the membership c ∈ V .

– Expand the removal record ρ = (J, π) : Nk×Π with a dictionary of leaf-and-
authentication-path pairs where the leaf represents the chunk of the filter F
needed to set the inactive bits indicated by J : ρ = (J, π, target chunks) :
Nk ×Π × (N → ([{0, 1}]s × [D])) = R. There are no leafs or authentication
paths for bits in the active part of the filter.

The algorithms are defined explicitly below, except for MS2.commit which is
identical to MS1.commit. Unfortunately, using the MMR to compress commit-
ments requires unrolling the calls to the proper functions of AOCL and SWBF.

Security. The use of MMRs does not affect completeness. In terms of security, if
the MMRs are sound then a successful adversary against the compact mutator set
MS2 can be reduced to a successful adversary against the non-compact mutator
set MS1.
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Algorithm 12: MS2.init

1 define MS2.init(λ) as:
2 λ← #λ
3 κV ← MMR.init(λ)
4 κF ← MMR.init(λ)
5 FA ← [0]w

6 return κ = (κV , κF , FA)

Algorithm 13: MS2.add

1 define
MS2.add(κ = (κV , κF , FA), α)
as:

2 κV , ← MMR.add(κV , α)
3 if κV ≡ 0 mod b :

// window slides

4 slid chunk ← FA[0:s]

5 FA ← FA[s:]∥[0]w−s

6 κF , ←
MMR.add(chunk)

7 return κ = (κV , κF , FA)

Algorithm 14: MS2.prove

1 define MS2.prove(κ = (κV , κF , FA), t, r) as:
// compute commitment to item

2 l← κV .n
3 c← H(t∥r)

// add commitment to list

4 κV , µV , α← MMR.add(κV , c)
// test if window slides; if so update filter MMR

5 target chunks ← dict()
6 if κV .n ≡ 1 mod b :
7 chunk← FA[:s]

8 FA ← FA[s:]∥[0]s
9 κF , µF , ← MMR.add(κF , chunk)

// prepare filter MMR authentication paths

10 if j < ⌊κV .n
b
⌋ · s for some j ∈ J = {Hw(l∥t∥i) + l · s | 0 ≤ i < k} :

11 target chunks(j)← (chunk , µF )

12 return µ = (l, r, µV , target chunks)

Algorithm 15: MS2.verify

1 define MS2.verify(κ = (κV , κF , FA), t, µ = (l, r, µV , target chunks) as:
2 c← H(t∥r)
3 if MMR.verify(κV , auth pathV , c) = False : return false

4 for j ∈ J = {Hw(l∥t∥i) + ⌊ lb⌋ · s | 0 ≤ i < k} :
5 if j > ⌊κV .n

b
⌋ · s :

6 if FA[j−⌊ l
b
⌋·s] = 1 : return False

7 else
8 chunk , path ← target chunks(j)
9 if chunk [j mod s] = 1 : return False

10 if MMR.verify(κF , path, chunk) = False : return False

11 return True
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Algorithm 16: MS2.drop

1 define MS2.drop(κ = (κV , κF , FA), t, µ = (l, r, µV , target chunks) as:
2 J ← {Hw(l∥t∥r∥i) + ⌊ lb⌋ · s | 0 ≤ i < k}
3 π ← Π.prove({(l, t, r, c, µV ) : c = H(t∥r) ∧MMR.verify(κV , c, µV ) ∧ J =

{Hw(l∥t∥r∥i) + ⌊ lb⌋ · s | 0 ≤ i < k}})
4 return ρ = (J, π, target chunks)

Algorithm 17: MS2.remove

1 define MS2.remove(κ = (κV , κF , FA), ρ = (ρ.J, ρ.π, ρ.target chunks)) as:
2 set some bit ← False
3 if Π.verify(ρ.π, {(l, t, r, c, µV ) : c = H(t∥r) ∧MMR.verify(κV , c, µV ) ∧ J =

{Hw(l∥t∥r∥i) + ⌊ lb⌋ · s | 0 ≤ i < k}}) = False :
4 return ⊥
5 for j ∈ J :
6 if j > ⌊κV .n

b
⌋ · s :

7 if FA[j−⌊ l
b
⌋·s] = 0 :

8 set some bit ← True
9 FA[j−⌊ l

b
⌋·s] ← 1

10 else

11 path, chunk ← target chunks(⌊ j
b
⌋)

12 if MMR.verify(κF , chunk , path) = False :
13 return ⊥
14 new chunk ← chunk
15 if new chunk [j mod s] = 0 :
16 set some bit ← True
17 new chunk [j mod s] ← 1
18 κF ← MMR.modify(κF , path, chunk ,new chunk)

19 if set some bit :
20 return κ = (κV , κF , FA)
21 else
22 return ⊥

27



Algorithm 18: MS2.update

1 define MS2.update(κ = (κV , κF , FA), t, µ = (l, r, µV , target chunks), υ) as:
2 if υ : A :
3 , µV ← MMR.update(κV , t, (l, µV ), α = (υ, κV .n))
4 if κV .n+ 1 ≡ 0 mod b :

// chunk slides

5 J ← {Hw(l∥t∥r∥i) + ⌊ lb⌋ · s | 0 ≤ i < k}}
6 if J ∩ {⌊κ.n

b
⌋ · s, . . . , ⌊κ.n

b
⌋ · s+ s− 1} ≠ ∅ :

// need to keep track of this chunk

7 slid chunk ← FA[0:w]

8 slid mp ← MMR.prove(κF , slid chunk)
9 target chunks(κF )← (slid mp, slid chunk)

10 else
// υ is a removal record

11 , , ρ.target chunks ← υ
12 for (ρ.chunk index , ρ.chunk mp, ρ.chunk) ∈ ρ.target chunks :

// prepare modification in SWBF MMR

13 ε← (ρ.chunk , ρ.chunk index , ρ.chunk path)
14 for

(own chunk index , own chunk mp, own chunk) ∈ target chunks :
15 if ρ.chunk index = own chunk index :
16 own chunk ← ρ.chunk
17 else
18 own chunk mp ←

MMR.update(κF , own chunk , own chunk mp, ε)
// update own dictionary

19 target chunks.(own chunk index )←
(own chunk mp, own chunk)

20 return µ = (l, r, µV , target chunks)
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Theorem 6 (security of MS2). MS2 is secure; specifically:

– commit, in combination with the standard opening algorithm, has bounded
binding insecurity InSeccommit

bnd ≤ InSecHcoll;
– drop, in combination with the standard opening algorithm, has bounded bind-

ing insecurity InSecdropbnd ≤
Q(Q−1)k!

2wk + AdvHw

PRF, where Q is the number of
queries to Hw;

– the function set commit : {A,R}∗ × {∅} → K,

(O,∅) 7→

 init(λ) ⇐ O = ∅
add(set commit(O⋆,∅), α) ⇐ O = α∥O⋆ ∧ α : A
remove(set commit(O⋆,∅), ρ)⇐ O = ρ∥O⋆ ∧ ρ : R

in combination with the standard opening algorithm, has bounded binding

insecurity InSecset commit
bnd ≤

(
1−

(
1− 1

w

) kbw
s

)k
+ AdvHw

PRF + 2 · InSecHcoll;
– MS2 has bounded non-negativity insecurity InSecMS2

nonneg ≤ 2 · ς + 3 · InSecHcoll.

Proof. Commit. MS2.commit is identical to MS1.commit and so is its security.
Drop. For the purpose of testing equality both the proof π and the dictionary

target chunks are ignored. As a result, the security argument is identical to that
of MS1.drop.

Set commit. Suppose the adversary finds two sequences of operations O1 ̸=
O2 resulting in the same set commitment κ = (κV , κF , FA). Then one (or more)
of three possibilities must hold:

1. O1 and O2 define two different AOCLs even though their MMR set commit-
ment κV is identical. This implies a break of the MMR’s honest-commitment
soundness.

2. O1 and O2 define two different SWBFs even though the MMR set commit-
ment to the inactive parts are identical. This implies a break of the MMR’s
honest-commitment soundness.

3. O1 and O2 define identical AOCLs and SWBFs. In this case O1 and O2 give
rise to an attack against MS1.set commit.

So relative to MS1.set commit, MS2.set commit incurs a term 2 · ErrMMR
hcsnd ≤ 2 ·

InSecHcoll security degradation.
Non-negativity. Suppose that an adversary A2 wins the non-negativity game

for MS2. Build an adversary A1 against the non-negativity game for MS1 as
follows. Take the output from A2 and strip all the Merkle authentication paths
and inactive SWBF chunks. Modify the proof π2 on the removal record by a)
extracting the witness (l, t, r, c, µV ) using the extractor E; and b) generating π1

with Π.prove({(l, t, r, c} : c = H(t∥r) ∧ c ∈ V ∧ J = {Hw(l∥t∥r∥i) + ⌊ lb⌋ · s | 0 ≤
i < k}). There are three conditions on which A1 fails even though A2 succeeds:

– The extractor E fails to produce a valid witness; the probability of this event
is ς.

– The witness produced by E is valid c ̸∈ V even thoughMMR.verify(κV , c, µV ).
This implies a break of the honest-commitment soundness of the MMR.
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– The chunks with bits that are flipped in Line 17 of MS2.remove do not
correspond to the actual SWBF because of a malicious membership proof in
the SWBF MMR. This implies a break of the honest-commitment soundness
of the MMR.

If none of these conditions are met, then A1 must be successful. This leads to a
bound on the success probability of A2:

Pr[A2✓] ≤ ς + 2 · ErrMMR
hcsnd + Pr[A1✓] (16)

≤ 2 · ς + 3 · InSecHcoll (17)

⊓⊔

Theorem 7 (succinctness). MS2 is succinct.

Proof. By construction. All algorithms touch at most a number of nodes in the
MMRs that scales logarithmically with the number of addition and removal
records. ⊓⊔

Synchronization is definitely succinct when only additions are concerned be-
cause in this case the MMRs are only added to. When there can also be removal
updates, the SWBF membership proofs must be updated to accomodate for
modifications as well. This fact would undermine succinct synchronization if the
modifications were arbitrary, but in the case of mutator sets the modifications
induced by removal records are not arbitrary. The range of chunks that could
be modified is contiguous and can even be small relative to a large number of
chunks. Moreover, and specifically to a blockchain context, old UTXOs are less
likely to be spent than new UTXOs, and so the older the chunk the less likely
it is to change.

5.6 Unlinkable Mutator Sets

The security theorem statements enable a search for parameters in pursuit of
a target security level. What they do not do is quantify the amount of privacy
generated by a given set of parameters. That is the purpose of this section.

Within one batch, the addition records have identically distributed removal
records. It may be a viable strategy to increase the step size s and decrease the
active window size w until they meet. At this point, the windows of settable
bits of distinct batches are disjunct and there is essentially one Bloom filter per
batch.

However, when s < w it is possible that the set of set bits does not uniquely
determine which batch a removal record must have come from. This situation
is qualitatively more appealing because from the adversary’s point of view the
batches themselves are only probabilistically delineable. In other words, the ad-
versary is not only incapable of assigning a given removal record (provided it
has this property) to its batch index with certainty; but he is also incapable of
listing a given record’s would-be siblings assuming its batch index is given.
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In general, the privacy increases with the active window size w. However,
practice requires w be small enough to be stored on the intended machinery. A
natural question that arises is, what is the effect of w on privacy? One way to
answer this question is to plot a histogram of removal entropy (see Section 3.5).
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Fig. 4: Frequency of observed entropy.

Figure 4 was generated for parameter set (w = 220, b = 8, s = 212, k = 45)
which incidentally achieves completeness error 2−160. Note that the batch size
is b = 8, and as removal records are identically distributed with their batch-
siblings, the entropy can never be lower than log2 8 = 3. However, as the entropy
is frequently larger, the expectation (indicated by the orange line) is substantially
higher. For these parameters, the expected entropy of removal records is slightly
larger than 5, roughly equivalent to hiding perfectly behind 31 decoys.

5.7 Implementation Aspects

Reversibility. In a blockchain context, it is possible that what seems to be the
consensus now is later overturned as a longer chain is disseminated. In this case
nodes must revert the changes induced by the orphaned blocks and apply those
induced by the new canonical chain tip. If the mutator set is part of the consensus
rules, as described in Section 4, some set bits need to be unset, but only if no
other historical removal record set the bit in question. It is easy to support these
reversions when the Bloom filter in invertible.

Sparsity. The calculation of the false positive probability in Section 5.3 sug-
gests that the optimal value of k in terms of s and b is k = s·ln 2

b . But k corre-
sponds to the number of indices of set bits sampled pseudorandomly and, im-
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portantly, whose integral sampling must be proved. Even if an arithmetization-
oriented hash function is used for this purpose, it may still be desirable to reduce
the number of required invocations of this primitive at the cost of other trade-
offs. In particular, when k is smaller than this optimal value, the Bloom filter
may be sparse — containing far more zeros than ones even in the inactive part.
A straightforward way to represent this sparse Bloom filter efficiently is to store
the indices of the set bits, and not the bit array itself. Note that this represen-
tation affects only performance and does not affect any calculations regarding
security or completeness. For the parameters suggested in Section 5.6, the active
window consists of at most w

s · k = 11520 integers of at most 20 bits, and on
average half that. In our implementation this data structure is around 20 kiB in
size.

Batching. Updates tend to come in batches rather than individually, for
instance because a new block confirms a bunch of transactions rather than
one at time. While it is possible to separate a batch of updates into its
constituent elements and apply them individually, the update operations stand
to benefit from batching them together and reusing intermediate calculations.
There are compelling use cases for all permutations of the regular expression
/update [((batch of)?(membership proof)), ((batch of)?(removal record)), (set com
mitment)] for(batch of)? [(addition), (removal)] (reversion)?/.

Sender and Receiver Randomness. As it is described in Sections 5.4 and 5.5,
the randomizer r serves two purposes: a) it gives the canonical commitment,
and thus the addition record, semantic security; and b) it randomizes the set of
set bits when a removal record is generated. A non-interactive proof establishes
that r links the removal record to the addition record, but as this proof is zero-
knowledge, external observers do not learn this link. This construction suffices for
exposition, but has two drawbacks. First, the party who chooses r can determine
(with reasonable likelihood) the pattern of set bits, giving rise to maliciously
increased false positive probability. Second, in a blockchain context, while the
sender of a transaction cannot spend the UTXO (after all, the UTXO requires
its own separate unlocking logic) he does know the pattern of set bits and can
therefore observe when the receiver spends it. Both deficiencies are remedied

with the following fix: the receiver selects a secret random preimage rp
$←− and

disseminates its hash digest rd = H(rp), for instance as part of his receiving

address. The sender samples his own secret randomness rs
$←− D. The canonical

commitment is computed as α = H(t∥rs∥rd), but the bit indices are derived
from Hw(l∥t∥rs∥rp∥i) and the zero-knowledge proof additionally establishes that
rp and rd are correctly related. The sender communicates rs via an off-chain
protocol or uploads a public key encryption of this value to the blockchain such
that only the intended receiver can read this secret.

6 Conclusion

Mutator sets capture a notion conceptually in between accumulation schemes
and mixnets. While this exposition in this paper focused on the application to

32



blockchain protocols, mutator sets likely also apply to various other schemes and
protocols that also rely on an accumulator or on a mixnet. For instance:

– Accumulation schemes can generate dynamic ring and group signature
schemes. While there is perfect anonymity among signers that belong to the
group, the group itself well defined even from the point of view of external
observers. Using a mutator set instead, the group itself can be made fuzzy as
external observers can no longer observe who joins and who leaves the group.
Mutator sets can thus generate anonymous group and ring signatures.

– Accumulation schemes can generate dynamic cryptographically authenti-
cated access control policies, or whitelists. As before, the set of users with
access is well defined even from the external observer’s point of view. Using
mutator sets, the whitelist can hide who is granted access and for whom it
is revoked. In other words, mutator sets can generate anonymous dynamic
whitelists.

– Mixnets are one of the two main constructions for private electronic vot-
ing; the other one being additively homomorphic encryption. In traditional
mixnet-based voting, authorities are required to shuffle and rerandomize the
set of encrypted votes. They are not trusted for integrity because they are
required to prove it, but they are trusted for availability. Moreover, the se-
cret decryption key must exist somewhere, even if it is spread across multiple
shards. Using a mutator set instead of a mixnet addresses both of these defi-
ciencies: voters can mix the votes themselves, and open their own committed
votes. This sketch gives rise to cryptographic voting without encryption.

Our construction for mutator sets relies only on hash functions for security
and in particular does not use any number-theoretic hard problems. While we
do take the zero-knowledge proof for granted, we do note that there adequate
proof systems that likewise rely only on hash functions for security. As a result,
our construction is plausibly secure against quantum adversaries in addition to
classical ones. An interesting open question remains what performance improve-
ments or security tradeoffs come about as a result of migrating to a construction
that does rely on number-theoretic hard problems, if such a construction can be
found.
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