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Abstract

Real-world healthcare data sharing is instrumental in constructing broader-based and larger
clinical data sets that may improve clinical decision-making research and outcomes. Stakeholders
are frequently reluctant to share their data without guaranteed patient privacy, proper protection
of their data sets, and control over the usage of their data. Fully homomorphic encryption (FHE)
is a cryptographic capability that can address these issues by enabling computation on encrypted
data without intermediate decryptions, so the analytics results are obtained without revealing
the raw data. This work presents a toolset for collaborative privacy-preserving analysis of
oncological data using multiparty FHE. Our toolset supports survival analysis, logistic regression
training, and several common descriptive statistics. We demonstrate using oncological data sets
that the toolset achieves high accuracy and practical performance, which scales well to larger
data sets. As part of this work, we propose a novel cryptographic protocol for interactive
bootstrapping in multiparty FHE, which is of independent interest. The toolset we develop is
general-purpose and can be applied to other collaborative medical and healthcare application
domains.
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1 Introduction

There is a growing recognition of the important contribution of real-world data (RWD) in sup-
porting healthcare decision-making in general [12, 24] and specifically in oncology [18, 30]. RWD
are routinely collected from a variety of sources, such as electronic health records; medical claims
and billing data; product and disease registries; and mobile devices [22]. RWD can complement
data generated from randomized control trials (RCTs). While RCTs analyze data collected from
controlled, limited, and homogenous patient populations, RWD allow the evaluation of larger and
broader-based patient populations within the context of routine clinical practice [44]. Sharing RWD
between several data owners results in a more complete data set than that obtained from a single
data source and thus allows broader data analyses for better decision-making [1, 17]. In addition,
healthcare data can be viewed as a revenue-producing asset that can be monetized. RWD analysis
can save costs to the pharmaceutical industry by improving the identification of target popula-
tions, endpoints, and inclusion criteria, and thereby the overall study design [45]. Some of the
main challenges of using RWD for healthcare decision-making are the facts that healthcare data
are fragmented and originate from multiple sources, and that stakeholders are frequently hesitant
to share or integrate their data, mainly due to trust issues [49].

Generally, patient data may be shared only if the patient’s consent had been obtained for a
given purpose or if the data are anonymized or deidentified [19]. While patients participating
in RCTs can give their consent for data sharing, patients for whom RWD are collected do not
necessarily provide their consent in advance for this purpose. In such cases data anonymization
is required; however, anonymization procedures are recognized as being time-consuming, requiring
manual intervention that can result in human error, difficult to scale, and challenging in terms of
assessing their results [15]. Furthermore, anonymization requires the removal of sufficient patient
data to prevent any possible re-deidentification, many times resulting in the impairment of scientific
analysis and utility [37]. Healthcare data challenges, particularly patient privacy, data ownership,
and data fragmentation, call for a data collaboration technology that, on the one hand, allows
different parties to share their data and analytics, and, on the other hand, protects patient privacy
and data ownership.

The two common cryptographic approaches to share and analyze sensitive data without compro-
mising patient privacy and data ownership are secure MultiParty Computation (MPC) and Fully
Homomorphic Encryption (FHE).1 Both allow performing computations over encrypted data, but
the underlying mechanisms are different. MPC, which was introduced by Yao in the 1980s [51],
uses an approach where each party holds a secret and they perform computations on masked data
using an interactive protocol. MPC is communication-bound and typically based on either garbled
circuits or secret-sharing schemes [39]. FHE, which was first achieved by Gentry in 2008 [25], pro-
vides a non-interactive mechanism for performing computations on encrypted data in an untrusted
environment, without ever decrypting the data or intermediate results. Only once the final com-
putation results are obtained, the decryption of results may be performed by a different party that
has the underlying secret key. FHE is compute-bound and typically based on lattice cryptography,
which is resistant to attacks by quantum computers [13,41].

Notable recent studies on privacy-preserving analysis of individual-level healthcare data using
MPC include Cho et al. [16] and Hie et al. [32]. Cho et al. [16] report on large-scale genome-wide

1Our paper uses a number of specialized terms in cryptography and oncology; for convenience, we provide a
glossary of these terms in Table A21 in the Appendices.
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analysis of genotypic and phenotypic data using MPC. They perform a Genome-Wide Associate
Study (GWAS) by dividing data among multiple servers and computing the GWAS via MPC
among the servers. They demonstrate that their results provide adequate accuracy, and reasonable
runtime (about 37 hours) can be achieved for problem sizes of 100,000 individuals and 500,000 single
nucleotide polymorphisms, enabling real-scale privacy-preserving GWAS. Hie et al. [32] develop a
computational protocol for securely training a predictive model of drug–target interactions on a
pooled data set using MPC. Their protocol for neural network training runs within days on a real
data set of more than one million interactions and is more accurate than state-of-the-art drug-target
interaction prediction methods.

FHE has also seen significant success in performing privacy-preserving analysis for certain
healthcare use cases. Note that almost all FHE results described below are based on the Cheon-Kim-
Kim-Song (CKKS) FHE scheme [14], which is the most efficient scheme for real-number arithmetic
and many machine learning applications [41]. For instance, Blatt et al. [7] demonstrate that FHE
can perform GWAS for 100,000 individuals and 500,000 single nucleotide polymorphisms in less
than 6 hours, hence achieving a better runtime than the prior MPC approach of Cho et al. [16]
while still providing a comparable accuracy. Kim et al. [36] were able to train a logistic regression
model using an encrypted data set for 1,579 individuals with 18 binary genotypes and a binary phe-
notype outcome (cancer/no cancer). Using several aggressive approximations and optimized values
of tunable parameters, the authors were able to perform encrypted logistic regression training in
about 6 minutes on a commodity desktop machine.

However, practical results with FHE can typically be achieved only for relatively shallow
(limited-depth) computations that do not require bootstrapping, a special procedure that refreshes
exhausted ciphertexts to enable more computations. Bootstrapping is a computationally expensive
and memory-intensive procedure that needs to be invoked many times for deep computations such
as logistic regression training or deep neural network inference. In applications with bootstrapping,
the FHE runtimes and memory consumption become much higher. Notable recent studies imple-
menting machine learning capabilities using CKKS bootstrapping are Han et al. [31] and Lee et
al. [38]. Han et al. [31] present a logistic regression training capability based on FHE that can train
a model with 422,108 samples over 200 features in about 17 hours. Lee et al. [38] develop a privacy-
preserving CNN inference solution that can classify with a ResNet-56 model a CIFAR-10 image in
about 2 hours. In both cases, most of the computation time is spent on CKKS bootstrapping.

To minimize the number of CKKS bootstrapping invocations in applications of FHE, researchers
often use hand-tuned low-accuracy–low-degree approximations for nonlinear functions and data-set-
optimized parameters, e.g., learning rate, which allows to significantly improve the efficiency of an
FHE computation for a given data set. But as soon as the FHE solution is applied to other data
sets, the solution stops working correctly or achieving an adequate accuracy. For example, Han
et al. [31] used a degree-3 polynomial approximation of the sigmoid function obtained using the
least squares method for the range of [−8, 8]. Our analysis of polynomial sigmoid approximations
in the Nesterov gradient descent method of logistic regression training (same method as in [31])
for another large data set shows that a Chebyshev interpolation in the range of [−32, 32] using a
polynomial of degree of at least 32 is needed to achieve satisfactory accuracy results (see Appendices
for details). Generally speaking, both the range and polynomial degree may significantly vary from
one data set to another. If a more costly polynomial approximation is used, the bootstrapping
has to be invoked much more frequently. For comparison, the logistic regression solution in [31]
performed bootstrapping every 5 iterations whereas ours calls bootstrapping after each iteration.
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Figure 1: Schematic of multiparty (threshold) FHE. Any party may have a secret share (assignment
of secret shares is determined by the use case). At least two parties have secret shares. First, all
parties with secret shares perform distributed key generation to compute the common public key,
corresponding to the sum of secret shares. Next, the data are encrypted by each Data Owner
(DO) using the common public key. Then, the computation is performed by the Computation
Party (CP). If interactive bootstrapping is needed, the CP interacts with the parties that have
secret shares. Finally, the encrypted result is decrypted using a distributed decryption procedure
involving all parties with secret shares. The Analyzing Party (AP) is the party that gets to see the
result of the computation, and can be the same as one of DOs (multiple DOs may serve as APs in
some use cases). In the setting of multiparty FHE, the CP can be one of the DOs. The DOs, CP,
and AP are separated in the schematic to show all possible roles involved in the multiparty FHE
collaboration model.
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To address the FHE bootstrapping inefficiency, Froelicher et al. [23] present an interactive com-
putation framework based on multiparty FHE (the algorithms were originally introduced in [43]),
which uses FHE for most of the computations and interactive techniques for bootstrapping and
several other operations. In multiparty FHE (typically referred to as threshold FHE in cryptogra-
phy literature [3]), each party may have a secret share (similar to classical MPC based on secret
sharing), and distributed key generation and decryption protocols are executed involving all par-
ties with secret shares (see Figure 1). The main efficiency benefit of this approach as compared to
FHE is that bootstrapping can be done interactively much faster (by two orders of magnitude or
even more) than in the classical FHE setting. The authors demonstrate the use of their privacy-
preserving framework for Kaplan-Meier survival analysis in oncology and genome-wide association
studies in medical genetics. Froelicher et al. [23] consider the federated collaboration model be-
tween data owners, where each party contributes a subset of records to the full data set used for
privacy-preserving analysis (see Figure 2a).

Our work extends and improves the multiparty FHE framework of [23] in several different ways.
First, we add the private join collaboration model where multiple parties can contribute data for

the same records (e.g., individuals) in a way where the data owners do not learn which records match
(with only the computation party learning the intersection size in the case of two data owners),
and this joined data is then used for further analysis using multiparty FHE (see Figure 2b).

Second, we introduce a novel, more efficient interactive bootstrapping procedure for the case
of two parties and improve the more general (for any number of parties) interactive bootstrapping
method used in [23], and initially proposed in [43].

Third, we extend the list of computations to provide a more general toolset for the privacy-
preserving analysis of oncological data. The computations implemented in our work include mean,
median, standard deviation, frequency, χ2 test, t test, survival analysis (Kaplan-Meier plots and
log-rank test), and logistic regression training over encrypted data.

2 Results

We applied our multiparty FHE toolset to two different oncological data sets: a real-world data set
of colorectal cancer patients’ survival data at the Tel Aviv Sourasky Medical Center and a previously
published data set based on two clinical trials of immunotherapy in renal cell carcinoma [9].

The real-world data set of colorectal cancer patients’ survival data includes 623 patients and 24
variables, amounting to 14,952 items of data. The goal of the study was to examine the effect of ox-
aliplatin treatment with and without cannabis for patients with colorectal cancer. Statistical anal-
ysis of key oncological endpoints was blindly performed on both the raw data and FHE-encrypted
data using descriptive statistics and survival analysis with Kaplan-Meier curves and log-rank tests.
The results were then compared with an accuracy goal of two decimals. Early results of this study
(for the single-key FHE setting) are reported in [27]. The study included the following statistical
analyses: mean, median, and standard deviation for the age of cancer onset; frequency analysis for
sex; χ2-test between cannabis indicator (with or without cannabis) and diagnosis, χ2-test between
cannabis indicator and sex; t-test for cannabis indicator by age of onset. Kaplan-Meier and log-rank
survival analysis was performed to examine the effect of the treatment with cannabis on the overall
survival of patients.

All accuracy metrics were found to be within the pre-determined accuracy goal of two decimal
digits. The Kaplan-Meier curves for both the data in the clear and encrypted data are illustrated in
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(a) Federated model: each party contributes a subset of records to the full data set used for privacy-preserving
analysis. This model supports two scenarios: (1) local FHE computations are performed by each DO (similar
to the federated learning setting) and (2) an FHE computation is carried out by CP on the stacked encrypted
data set.
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(b) Private join model: multiple parties contribute features data for the same records in a way where the
parties do not learn which records match. Then an FHE computation is performed on the linked encrypted
data.

Figure 2: Collaboration models for privacy-preserving analysis of data from multiple DOs.
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(a) Kaplan-Meier curves: in the clear vs FHE.
The number of patients at risk:

Time (weeks) 25 75 125 175
With cannabis 239 138 78 58
Without cannabis 180 90 32 18
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(b) FHE approximation error computed as the abso-
lute value of the difference in Overall Survival Proba-
bility (OSP) between the results in the clear and FHE
results. The error in OSP gradually increases with
time as expected, since at each time step the num-
ber of (FHE) computations for that value increases
as well. However, the error is less than 5 × 10−8,
which is negligible for the survival analysis.

Figure 3: Kaplan-Meier survival analysis of the real-world data set for colorectal cancer patients:
results in the clear vs encrypted data (a), FHE approximation error (b). There were two groups
of patients treated with oxaliplatin: first group was taking cannabis and the other was not. The
survival analysis results for the encrypted dataset were found to be accurate up to 7 decimal digits
compared to the results for the unencrypted data set (see also Table A1 in the Appendices for
numerical details). Note that this Kaplan-Meier analysis has no clinical significance and should not
be interpreted as such. The analysis was performed solely for the purpose of testing the proposed
FHE method.

Figure 3. The numerical results of the first 15 weeks out of 141 weeks following the first oxaliplatin
treatment are listed in Table A1 in the Appendices. The runtime of less than half a minute was
observed for descriptive statistics and about three minutes for the survival analysis [27]. Note
that the time of the anonymization and statistical analyses performed on the raw data set by a
statistician, the method commonly used in clinical oncology, is estimated to be about 10 hours,
which is significantly higher than the runtime of FHE computations. As this data set is not publicly
available (see the Data Availability section for more details), we performed a similar analysis for
a publicly available data set so that our results could be independently reproduced. We further
extended the analysis to include logistic regression training, another useful tool for oncological and
broader healthcare studies.

Next, we show an example of applying our multiparty FHE toolset to an analysis of a pre-
viously published data set, providing detailed results for it in the Appendices. Individual-level
data from two clinical trials of immunotherapy in renal cell carcinoma were accessed from prior
publications [9]. In brief, a PD-1 immune checkpoint inhibitor (nivolumab) was evaluated for 1,006
patients with advanced clear-cell renal cell carcinoma (ccRCC) in the CheckMate 025 and Check-
Mate 010 randomized clinical trials, as compared to the standard of care with mTOR inhibitors
(everolimus). Clinical outcomes data included overall survival and progression-free survival as well
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as basic patient demographics, and genomic data included tumor whole exome sequencing. Prior
work had identified a survival benefit for nivolumab as well as improved progression-free survival
for the subset of patients with mutations in PBRM1, and we focused on these positive controls in
our analyses here.

First, we evaluated the accuracy of basic demographic summaries of age, sex, prior treatment,
and objective response rate (ORR) within and across the treatments. More concretely, we computed
the mean, median, and standard deviation for age; performed a χ2-test between ORR and trial
arm, where trial arm was set to 1 for nivolumab and 0 for everolimus; performed t-tests for age by
trial arm (t-test 1) and age by ORR groups (t-test 2); we evaluated the frequency for sex (frequency
1), benefit (frequency 2), PBRM1 (frequency 3), and the number of prior therapies (frequency 4).

Second, we conducted survival analyses where mortality was the end-point and patients were
censored at loss-to-follow-up, with statistical significance assessed by log-rank test and Kaplan-
Meier analysis. For the treatment arm positive control (nivolumab vs other), which corresponds to
Kaplan-Meier and log-rank scenario 1, we observed a significant association, e.g., the p-value for
log-rank test was 0.001. For the sex-stratified negative control, which corresponds to Kaplan-Meier
and log-rank scenario 2, as expected, we observed no significant difference between groups, e.g., the
p-value for the log-rank test was 0.104.

Third, we conducted biomarker survival analyses where progression-free survival was the end-
point and patients were censored at loss-to-follow-up. For the positive control within the nivolumab
arm, which corresponds to Kaplan-Meier and log-rank scenario 3, patients with PBRM1 mutations
exhibited significantly longer survival than non-carriers by long-rank test, e.g., the p-value for the
log-rank test was 0.006.

Fourth, we conducted a logistic regression analysis where ORR was the outcome and age, sex,
and trial arm where independent variables. For this analysis, ORR was defined as 1 for Complete
Response or Partial Response (CR/PR) and 0 for Stable Disease or Progression Disease (SD/PD).
As expected, a significant association was observed with trial arm.

For the multiparty FHE experiments, the full data set was filtered down and broken into dif-
ferent subsets to emulate realistic private join scenarios with two data owners (see Table A2 in
the Appendices for details). Note that the runtime and communication costs for the private join
protocol are negligibly small as the numbers of records and features for the oncological data set are
not high. Hence, the runtimes reported here are determined by the FHE computations performed
after executing the join protocol.

Table 1 shows the relative errors for descriptive statistics and survival analysis, as compared to
the results in the clear. For all computations, accuracy of more than 5 decimal digits (as compared
to the computations in the clear) was achieved. Note that for frequency computations, the error
was zero because we used BFV, an exact homomorphic encryption scheme, for these computations.
Table 2 illustrates the runtime and storage performance. Besides more complex survival analysis,
all computations take less than half a minute. The survival analysis takes up to one minute and a
half. The memory requirements do not exceed a few gigabytes. These results imply that privacy-
preserving descriptive statistics and survival analysis using multiparty FHE are already practical
for typical oncological data sets.

Our results for logistic regression training using multiparty FHE suggest that accuracy of at least
6 decimal digits was achieved after 100 iterations (see the Appendices). The performance results
for logistic regression training are illustrated in Table 3. One iteration takes about 5 seconds and
the overall runtime of 500 seconds is observed for 100 iterations. The memory requirements do not
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Table 1: Numerical accuracy for descriptive statistics and survival analysis computed with FHE vs
the computations in the clear using the data published in [9]. The mean, standard deviation, and
median were computed for age; t-test 1 for age by trial arm; t-test 2 for age by ORR groups; χ2-test
for ORR by trial arm; Kaplan-Meier and log-rank 1 for overall survivability by arm (OS, OS CNRS);
Kaplan-Meier and log-rank 2 for overall survivability by sex (OS, OS CNRS); Kaplan-Meier and log-
rank 3 for progression-free survival with somatic mutations by arm (PFS, PFS CNRS); frequency
1 for sex; frequency 2 for benefit; frequency 3 for PBRM1; frequency 4 for the number of prior
therapies. All these computations did not require bootstrapping.

FHE Scheme Computation Statistic Rel Error

CKKS mean average 2.83e-12
standard deviation std dev 1.62e-07
median quantile 0.0e+00
t-test 1 t-score 1.57e-09
t-test 2 t-score 1.60e-09
χ2 χ2 1.91e-09
Kaplan-Meier 1 probability 2.04e-07
Kaplan-Meier 2 probability 7.39e-06
Kaplan-Meier 3 probability 2.08e-07
log-rank 1 χ2 3.21e-08
log-rank 2 χ2 4.92e-08
log-rank 3 χ2 3.80e-08

BFV frequency 1 count 0.0e+00
frequency 2 count 0.0e+00
frequency 3 count 0.0e+00
frequency 4 count 0.0e+00

exceed 9 gigabytes. Both the runtime and memory are significantly smaller than for the scenario
of non-interactive FHE bootstrapping, which makes it possible to run training on a commodity
desktop or server machine. For instance, one non-interactive CKKS bootstrapping operation for
this setting takes at least 24 seconds [5].

To evaluate the scalability of our multiparty FHE framework, we ran the most computationally
intensive capability considered in our work, logistic regression training in the private join collabora-
tion setting, for much larger problem sizes than the oncological data set. We considered the case of
two DOs, where the first DO has the encrypted outcomes data and the second DO has the features
data. In this case, only encrypted outcomes data need to be sent to the party that sees the result
of the private join, which implies that the performance cost of private join is almost negligible as
compared to logistic regression training. We ran performance experiments on a server commodity
system with 72 threads for simulated data sets from 16,384 samples to 1,048,576 samples (doubling
each time), all with 256 features. For the sample sizes from 16,384 to 262,144, the runtime of one
iteration stayed roughly the same at about 60 seconds. For 524,288 and 1,048,576 samples, the
runtime was 98 and 187 seconds, respectively. This implies that our logistic regression solution
scales relatively well with the number of cores of the server system; more concretely, the runtime
degrades only by a factor of 3 when increasing the number of samples by a factor of 64.

10



Table 2: Runtime and storage measurements for computations in Table 1; Kaplan-Meier and log-
rank survival analysis methods are abbreviated as KM and LR, respectively; Keygen and Comp
correspond to key generation and computation.

Peak RAM Keygen Comp Keygen Comp
[GB] [sec] [sec] [MB] [MB]

mean 2.13 1.2 1.6 140 1.0
standard deviation 2.51 6.2 2.5 600 3.0
median 2.17 2.0 21.7 244 108.0
t-test 1 1.97 2.9 3.2 477 1.3
t-test 2 1.99 2.9 3.1 477 1.3
χ2 2.43 9.7 6.7 1,458 1,458.0
KM & LR 1 2.36 3.1 79.3 546 3,030.0
KM & LR 2 2.39 2.7 79.6 546 3,030.0
KM & LR 3 2.43 2.9 20.7 546 727.0

frequency 1 2.03 0.3 1.2 23 0.5
frequency 2 2.06 0.3 1.2 23 0.8
frequency 3 2.03 0.3 1.2 23 0.8
frequency 4 2.13 0.3 1.2 23 1.3

Table 3: Runtime and memory performance for logistic regression training; interactive bootstrap-
ping is performed after every iteration; KeyGen refers to key generation.

Iterations Peak RAM Total Keygen Iteration time
[GB] [sec] [sec] [sec]

10 7.752 83.4 30.6 5.3
20 7.943 128.3 30.7 4.9
30 8.072 175.0 30.5 4.8
40 8.199 222.5 30.8 4.8
50 8.257 264.9 30.7 4.7
60 8.273 314.7 31.2 4.7
70 8.630 362.4 30.6 4.7
80 8.625 414.2 31.4 4.8
90 8.703 450.0 30.7 4.7
100 8.760 500.0 30.7 4.7
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3 Discussion

Our approach enables multiple new analyses of clinical and genetic data.
First, the federated model allows multiple institutions with disjoint clinical and genomic data

to perform secure joint analyses across all patients without decrypting the underlying individual-
level values. Clinical trials conducted across multiple institutions can now evaluate drug efficacy
by computing secure Kaplan-Meier and log-rank analyses. In particular, genomic data, which is
often considered sensitive patient data that may be impossible to de-identify, can be leveraged to
perform biomarker analyses within or across treatment subgroups to identify treatment modifiers.
We demonstrate the feasibility and accuracy of this approach by recapitulating the protective ef-
fect of somatic PBRM1 mutations in patients on immune checkpoint inhibitors [42]. Such genetic
biomarkers can prioritize effective treatments for patients who would not have otherwise received
them and further improve patient outcomes as well as expand our understanding of disease etiology.
In addition to analyses of survival-related outcomes, recent studies have identified novel biomarkers
associated with drug safety outcomes through time-to-event analyses of adverse events [29]. While
overall adverse event rates are reported with clinical trials, individual-level data is typically not
made available. Our methodology would enable secure, large-scale adverse event studies across mul-
tiple trials with the potential of identifying actionable predictors of toxicities that can be mitigated
before they occur.

Second, the private join model allows investigators to conduct secure analyses of clinical and
genomic data when the underlying data reside at different sites and cannot be integrated in the clear.
This is often the case for biobank cohorts, which routinely collect rich genetic/genomic data but
typically only sparse clinical measurements through billing codes; whereas detailed chart review
and clinical records abstraction is typically conducted under strict Institutional Review Board
protocols at medical institutions but which do not conduct routine biobanking. For example, while
the UK Biobank has collected a wide array of omics data including whole-exome and whole-genome
sequencing, it only has rudimentary treatment billing codes and does not report the duration,
dosage, or treatment response [50]. Individual institutions that collect such data but do not conduct
genotyping could thus use our approach to tap into existing genomic resources while retaining
patient confidentiality across both cohorts. While genetic data was used for demonstration in this
study, our approaches would naturally apply to broader classes of omics that can be summarized
as continuous or categorical values, such as magnetic resonance images [47] or structural brain
images [20]. Our approach thus enables privacy-preserving identification of clinical biomarkers
across institutions and data silos.

Our approach has several limitations and areas for future work. First, our private join approach
requires sending the full encrypted DO data sets (the fields to be computed on) to the party
computing the join of the data sets from DOs. This requirement can only be removed if the DOs
are allowed to learn something about the intersection. Second, the extension of private join to more
than two DOs prevents DOs from learning anything about the intersection only if the computing
party performs expensive homomorphic re-arrangement of encrypted data (using many rotations)
or if the DOs are not allowed to collude with each other. Devising a more efficient solution for
extending the private join to more than two DOs is left for future work. Third, while the FHE
scheme we use is plausibly post-quantum secure, the private join protocol in our framework uses a
commutative deterministic cipher based on an elliptic-curve instantiation of the Decisional Diffie-
Hellman (DDH) problem, which is secure against classical computer attacks but is not quantum-
resistant. As future work, we will look into developing a quantum-resistant version of this private
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join protocol based on lattices. See the Appendices for more details on the first three limitations.
Fourth, our multiparty FHE framework is based on the same adversarial model as single-key FHE,
i.e., it is secure against semi-honest adversaries.

4 Materials and Methods

Software Implementation

We implemented our multiparty FHE framework in PALISADE v1.11.9 [46], an open-source lat-
tice cryptography software library that includes all common FHE schemes. For the experiments,
we used full Residue Number System (RNS) variants of the Cheon-Kim-Kim-Song (CKKS) and
Brakerski/Fan-Vercauteren (BFV) FHE schemes [8, 14, 21], which are already available in PAL-
ISADE. The full RNS variants of CKKS and BFV are described in [34] and [35], respectively.

Multiparty FHE

Our implementation is based on the threshold FHE construction proposed in [3]. We consider the
scenario of additive secret sharing where the sum of all secret shares corresponds to the underlying
secret key, but this secret key is never revealed. PALISADE provides threshold FHE extensions
(without interactive bootstrapping) for the CKKS and BFV schemes [46].

Private Join

The private join collaboration model is a generalization of the private intersection-sum-with-
cardinality protocol proposed in [33]. We extend the original protocol from encrypted summation
to arbitrary encrypted computations, and add support for two or more DOs with FHE-encrypted
data. The model includes a CP and multiple DOs. Each DO has a subset of features for common
records (all DO data sets are encrypted using FHE). The purpose of join is to link the data sets
from DOs into a single data set and perform FHE computations on it. The same record identi-
fication scheme is used for all DOs, i.e., each common record is uniquely described by the same
identifier. The join is performed based on exact matches. The CP computes the intersection by
interacting with the DOs, and the DOs also interact with each other. A deterministic commutative
cipher based on an elliptic curve instantiation of the DDH problem is used to compute a common
hash (encryption) for each record. As part of the protocol, the records get randomly shuffled and
random identifiers get inserted. In the case of two DOs, the CP learns the intersection size whereas
the DOs learn nothing about the intersection. The protocol and security proofs for it are described
in detail in the Appendices.

Interactive Bootstrapping

Our multiparty FHE framework includes two interactive bootstrapping procedures. The first algo-
rithm achieves more efficient bootstrapping for two parties, and is a novel contribution of our work.
In contrast to the more general procedure of [43] that requires at least three extra RNS residues,
our algorithm requires only one extra RNS residue, which reduces the computational complexity
of the full FHE workflow (not only the interactive bootstrapping invocations). Our procedure is
based on a technique of distributed rounding. We describe the CKKS instantiation of our 2-party
interactive bootstrapping protocol along with the security proofs in the Appendices. The second
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algorithm supports any number of parties and is an optimized version of the procedure proposed
in [43]. Our variant reduces the computational complexity associated with sampling: one polyno-
mial Gaussian sampling is eliminated because it is not needed for security. We implement both
protocols in PALISADE.

Experimental Test Bed

FHE computations for the oncological data set were performed using a server with Intel(R) Xeon(R)
Platinum 8275CL @ 3.00GHz and 96 GB of RAM. The experiments were run at 16 threads using
the PALISADE multithreading capability based on OMP. The server had Ubuntu 20.04 and g++
(GCC) 9.3.0 installed. All parties were connected via a local area network connection. Note
that interactive computations were needed only for the logistic regression training case, where
the communication requirements for interactive bootstrapping are small (a single ciphertext is
transferred between the interacting parties). The scalability experiments were run on a Ubuntu
20.04 server with Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz (72 threads) and 128 GB
RAM.

Computations

Before running the FHE computations, the source data was pre-processed to normalize the input
data and exclude NA records. Then, analysis in the clear was performed to generate reference
results for evaluating the accuracy of FHE analysis. The FHE computations for mean, standard
deviation, median, χ2-test, t-test, survival analysis (Kaplan-Meier plot and log-rank test), and
logistic regression training were performed using the CKKS scheme. The CKKS in PALISADE
was configured to use hybrid key switching, the scaling factor size was set to 50 bits (55 for stan-
dard deviation), the standard mode without automatic rescaling was used, the ring dimension was
automatically set to the minimum value required for achieving 128 bits of security, and the mul-
tiplicative depth was set to the minimum needed to achieve the correctness. All other parameters
were set to PALISADE defaults for CKKS. For frequency computations, we used the BFV scheme
configured to use the Brakerski-Vaikuntanathan key switching and plaintext modulus of 1032193.
The ring dimension was automatically set to the minimum value required for achieving 128 bits
of security and the multiplicative depth was set to the minimum needed to achieve correctness.
All other parameters were set to PALISADE defaults for BFV. For logistic regression training, we
used the 2-party interactive bootstrapping proposed in this work. For all computations, we used a
2-DO private join setup, i.e., the full data set was filtered down and broken into different subsets
to emulate realistic private join scenarios with two DOs. More details about the computations and
private join setup are provided in the Appendices.

Data Availability

The colorectal cancer patients’s data sets generated and/or analyzed during the current study
are not publicly available due to patient’s privacy. Personal patient information was anonymized
and stored on a password-protected computer. The computer is located in a locked office of the
investigator. The data that support the findings of this study are available from Dr. Ravit Geva
but restrictions apply to the availability of these data, which were used under license for the
current study, and so are not publicly available. The data are, however, available from the authors
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upon reasonable request and with permission of the Tel Aviv Sourasky Medical Center Helsinki
Committee.

Our main experiments used a previously published data set based on two clinical trials of
immunotherapy in renal cell carcinoma [9].

Code Availability

The PALISADE version we used is publicly available in GitLab at https://gitlab.com/palisade/
palisade-releasehttps://gitlab.com/palisade/palisade-release. The code with the FHE compu-
tations, including descriptive statistics, survival analysis, and logistical regression training, is cur-
rently not publicly available as its license does not allow for open-source redistribution. However,
the pseudocode of all new algorithms introduced in our work, namely, private join and interactive
bootstrapping, is provided in the Appendices. Upon request sent to the corresponding author(s),
we can provide binaries that, in combination with open-source resources, can be used for the sole
purpose of verifying and reproducing the experiments in the manuscript.
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Appendices

A Summary

The appendices describe a threshold FHE variant of the CKKS scheme; provide details for in-
teractive 2-party bootstrapping, more general interactive bootstrapping, and interactive private
join-and-compute protocols along with the security proofs; provide numerical survival analysis re-
sults for the colorectal cancer data set; describe the multiparty setup used for the public data
set experiments; provides detailed accuracy results of FHE computations for descriptive statistics,
survival analysis, and logistic regression training using the public data set [9]; and illustrate the
effect of polynomial degree and range in approximating the sigmoid function. A technical overview
of our contributions that complements the higher-level overview and contributions presented in the
main text is given below.

We provide a private, accurate and efficient solution for collaborative analysis of healthcare
data using a synergy of the main cryptographic tools for privacy-preserving computation: fully
homomorphic encryption and secure multiparty computation. Fully homomorphic encryption en-
ables the non-interactive evaluation of polynomials over encrypted data. While the evaluation of
fixed-degree polynomials (arithmetic circuits of fixed depth) is efficient, the bootstrapping operation
which enables further encrypted computations after exhausting the initial fixed depth is memory-
and compute-intensive. Alternatively, multiparty computation enables the interactive evaluation
of polynomials over secret-shared data. The local computations are efficient, but parties need to
use an all-to-all communication pattern to jointly evaluate multiplications and decryption. We
use a threshold version of fully homomorphic encryption, such that multiple data owners can non-
interactively encrypt and compute over their data, limiting the interaction only to distributed key
generation, bootstrapping, and decryption. In this context, we build on the general multiparty
interactive bootstrapping protocol proposed in [48], where parties add a Gaussian noise sample
to each ciphertext component and a statistical additive mask. We observe that privacy for the
intermediate partial decryptions can be ensured using a single smaller noise sample, and suggest
an optimization for the general bootstrapping procedure based on this. For the two-party case,
we propose a novel optimized two-party bootstrapping protocol, where the parties jointly perform
a distributed rounding step that ensures the obtained shares add up to the correct message over
the integers rather than with modular reduction; our two-party method does not require a statis-
tical mask. This novel protocol achieves smaller parameters compared to the general multiparty
bootstrapping protocol instantiated for two parties, which reduces the cost of the whole encrypted
computation (of which the interactive bootstrapping is a step). We formally prove the security of
this protocol via the ideal/real-world paradigm.

To address scenarios where data owners can hold records for common individuals, we propose a
privacy-preserving solution for the private join collaboration model. Concretely, we aim to obtain
the encrypted data records corresponding to the identifiers in the intersection of all data sets at a
computing party, which then homomorphically evaluates the desired computation. The main idea
of the solution is that data owners permute and hash their (padded) identifiers and transmit these
hashes to the other data owners, each of which repeatedly applies a commutative cipher. After as
many communication rounds as the number of the data owners, the computing party can identify
which hashes belong to all sets, but cannot retrieve which identifiers these hashes correspond to. For
the last step where the computing party should obtain the encrypted records corresponding to the
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intersection, we describe different versions that trade the privacy of the intersection identifiers with
respect to the data owners (but they are never revealed to the computing party) with the overall
communication and computation efficiency. The first version, which returns the hashed identifiers
in the intersection to the data owners, leads to a more efficient compute part, while the second
version hides the intersection identifiers from the data owners but requires more homomorphic
computations by the computing party in the subsequent compute part. Intermediate versions are
also possible. Our protocol extends the solution in [33], where the computation happens between
only one data owner (which has the data records corresponding to the identifiers) and a computing
party (that has some identifiers).

Finally, due to the restrictions on the computation types allowed by fully homomorphic en-
cryption (arithmetic circuits or polynomials) and for efficiency purposes, we have to approximate
the desired functionality. In particular, there are two major changes that need to be performed
compared to the cleartext computations: (i) approximate the nonlinear functions via polynomials,
which we do via Chebyshev interpolation and which requires fixing a degree of the approximation
polynomial and an interval on which to evaluate the approximation, and (ii) fix an optimization
algorithm and a number of iterations (testing convergence would leak information about the pri-
vate data). Apart from the approximation errors introduced by these two changes, the CKKS
fully homomorphic encryption scheme is approximate, meaning that deep computations can intro-
duce errors in the least significant bits. We discuss and justify our choices for the algorithms and
parameters mentioned above and describe in depth the differences between the results obtained
after decryption and the cleartext results. We emphasize that we preferred generality—obtaining
accuracy with the same parameters on multiple data sets and not overfitting the choices on each
data set—at the expense of a larger approximation degree and interval, and more iterations in
optimization algorithms.

B Background

We denote scalars as lowercase letters, vectors as lowercase boldface letters, and matrices as up-
percase boldface letters. A function f : N → [0, 1] is negligible if for every polynomial p, there
exists a positive scalar m such that f(n) < 1/p(n) for all n ≥ m. We abuse notation and write
f(κ) < negl(κ) when it is in the set of negligible functions, where κ denotes the computational se-
curity parameter. Similarly, we let poly(κ) denote a function which is bounded by some polynomial
in κ. For a finite set S, sampling it uniformly at random is denoted as s← S. We denote general
sampling as x ← Xκ where Xκ is a distribution parameterized by κ. We say two distribution en-
sembles, {Xκ}, {Yκ}, are computationally indistinguishable, denoted Xκ ≈c Yκ, if for all sufficiently
large security parameters, κ > 0, for all non-uniform probabilistic polynomial time distinguishers,
D, it holds that |Prx←Xκ(D(1κ, x) = 1)− Pry←Yκ(D(1κ, y) = 1)| < negl(κ).

We will use the Decisional-Diffie-Hellman (DDH) assumption, defined below. The assumption
depends on the representation of the group. For example, we will use elliptic curve groups.

Definition 1 (DDH). Let G be a finite (multiplicative) cyclic group of order p with generator
g. The DDH assumption states that: {(g, ga, gb, gab)| g ← G, a, b ← Zp} ≈c {(g, ga, gb, gc)| g ←
G, a, b, c← Zp}.

We now recall the multiparty security definition. We consider a semi-honest adversarial model,
which means that the parties controlled by the adversary follow the protocol steps honestly, but
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can process and log the transcript (all the messages received and used in the execution) of the
protocol in order to try to extract more information than specified by the protocol.

Informally, a protocol is said to be secure in the semi-honest model if no information is leaked
to a party participating in the protocol apart from what can be obtained solely from that party’s
prescribed input and prescribed output. In other words, all information arising from the interme-
diate computations is being concealed from any participating party. The same intuition can be
extend to coalitions of colluding parties.

Definition 2 (Protocol security [28]). Let f : ({0, 1}∗)k → ({0, 1}∗)k be a k-ary (potentially
randomized) functionality where fi(x) is party Pi’s output, for i ∈ {1, . . . , k}, xi is party Pi’s input,
and x = (x1, . . . , xk) denotes all the parties’ inputs. For I = {i1, . . . , it} ⊂ {1, . . . , k}, which models
a coalition of parties, we let fI(x) denote the subsequence (fi1(x), . . . , fit(x)). Let Π be an k-party
protocol computing the ideal functionality f . Let Viewi denote party Pi’s view in the real execution of
the protocol Π, consisting of its inputs, messages received in the protocol and randomness sampled.
The view of the coalition is denoted as ViewI := (I,Viewi1 , . . . ,Viewit). Let output(x) denote the
output of the real execution of Π on the parties’ inputs x.

The protocol Π computing f is said to be secure in the semi-honest model if for all sufficiently
large security parameters κ > 0, and for any allowed set of parties I ⊂ {1, . . . , k}, there exists a
simulator SimI such that:

{(SimI(xI , fI(x)), f(x))}x ≈c {(ViewI(x), output(x))}x,

for all x1, . . . , xk ∈ {0, 1}poly(κ).

A common specialization of this definition is the two-party case, where a simulator is built for
each party and there are no collusions.

C Threshold CKKS Encryption

The first scheme we describe is the single-key CKKS encryption scheme and then its threshold
version [3, 14].

Cheon-Kim-Kim-Song Homomorphic Encryption Our solution is based on the CKKS ap-
proximate FHE scheme [14]. CKKS is an RLWE-based scheme which supports floating point-like
Single Instruction Multiple Data (SIMD) multiplication. Let N be a power two (often between
8192 and 131072). Then, the polynomial ring R := Z[X]/(XN + 1) is the 2N -th cyclotomic field’s
ring of integers. Let RQ := R/QR be the ring with coefficients reduced modulo Q. We use a
modulus which supports the number theoretic transform (NTT), where RQi := R/QiR is the ring
with coefficients reduced modulo Qi = q0q1 · · · qi, QL = q0q1 · · · qL is the largest modulus, with L
multiplicative levels available, and qi = 1 (mod 2N) for all i = 0, . . . , L. Secret keys are s ∈ R with
balanced, ternary coefficients, s ∈ {0,±1}N ⊂ R. We denote the uniform distribution over ternary
polynomials as χs. Further, χDG denotes the discrete Gaussian over R with coefficients sampled
independently with standard deviation 3.19 [2]. Distributed decryption uses a noise-flooding distri-
bution χfld, which is 20 bits larger than the expected ciphertext error. The CKKS scheme encodes
messages with a scaling factor, together with a packing over the real numbers: m = encode(m)
where encode first scales up the message by a scaling factor ∆, computes the inverse discrete Fourier
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transform (DFT), then rounds to the integers modulo QL. This packing allows us to perform ho-
momorphic SIMD addition, SIMD multiplication with rescaling (floating point-like multiplication),
and rotation of the vector of scalars packed in the plaintexts/ciphertexts. Our solution is based on
an optimized variant by Kim et al. [34] of the Residue Number System (RNS) representation, also
called the double Chinese Remainder Theorem (CRT) from Gentry et al. [26].

The main algorithms of the CKKS scheme are:

• Setup(1κ, L). For an input level L, set the ring dimension N , scaling factor ∆, RNS modulus
QL = q0 · · · qL with qi = 1 (mod 2N) prime, and the distributions χs and χDG. Return
these parameters pp = (L,∆, N,QL, {qi}, χs, χDG). (We assume all remaining algorithms
have access to pp.)

• Keygen(pp). Sample a secret key s← χs, a uniformly random a ∈ RQL
, and an error e← χDG.

Return sk := s and pk := (a, b) = (a,−as+ e) ∈ R2
QL

.

• KSGen(sk, sk′). This algorithm generates key-switching keys from sk′ = s′ to sk = s. These
keys are given as polynomials in a larger modulus PQL where P is an NTT friendly integer
the same bit-length of QL. Sample a′ ← RPQL

uniformly at random, e ← χDG, return
swk := (a′, b′) = (a′,−a′s′ + e + Ps′) ∈ R2

PQL
. This algorithm is used to compute the

relinearization key evk← KSGen(s, s2) and the rotation keys rk(σ) ← KSGen(s, σ(s)) where σ
is a rotation (automorphism).

• Encpk(m). For a message polynomial m = M(X) ∈ R, sample v ← χs, e0, e1 ← χDG, and
return ct := v · pk+ (e0, e1 +m) ∈ R2

QL
.

• encode(∆,v). Given a real vector v ∈ RN/2, compute m = M(X) :=
⌈
τ−1(∆ · v)

⌋
∈ R where

τ is the canonical embedding on R (see Lyubashevsky et al. [40]).

• decode(∆,m). Given a message m = M(X) ∈ R, compute v := τ(M(X))/∆ ∈ RN/2.

• Decsk(ct). Given ct = (a, b) ∈ R2
Qi
, return m̂ := as+ b (mod Qi).

• CAdd(ct, α). Given a constant α ∈ R and a ciphertext ct, return ct+ (0, α).

• CMult(ct, α). Given a constant α ∈ R and a ciphertext ct, return α · ct.

• Add(ct1, ct2). Given two ciphertexts at the same level, ct1, ct2 ∈ R2
Qi
, return ct1 + ct2.

• Multevk(ct1, ct2). For cti = (ai, bi) ∈ R2
Qj

, let (d0, d1, d2) = (a1a2, a1b2 + a2b1, b1b2) ∈ R3
Qj

.

Return ct× = (d0, d1) +
⌈
Q̃−1d2 · evk

⌋
where Q̃ = PQ′ is such that Qj = QL/Q

′.

• Rotaterk(σ)(ct, σ). For ct = (a, b) ∈ R2
Qj

and rotation σ, output ctrotate ← (0, σ(b)) +⌈
Q̃−1 · σ(a) · rk(σ)

⌋
(mod Qj) where Q̃ = PQ′ is such that Qj = QL/Q

′.

• Rescale(ct). For a ciphertext ct ∈ R2
QL

, Qj = qjqj−1 · · · q0, and an integer k, output ct′ ←⌈
q−1j · ct

⌋
(mod Qj−1) for Qj−1 = Qj/qj .
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Secret-Shared Threshold CKKS We use distributed key generation in the threshold FHE
setting where sk := s = s0 + · · ·+ sk−1 and party Pi holds secret share si ← χs [3, 43].

• DKeygen(pp, a, {si}). Each party Pi has a secret share si ← χs together with a common
random polynomial a ∈ RQL

. They each sample ei ← χDG. Send bi = −asi + ei ∈ RQL
to

some aggregating party. This party returns pk = (a,
∑

i bi).

• DKSGen(pp, a, σ, {si}). Given a common random polynomial a ∈ RPQL
and a rotation σ,

each party Pi samples ei ← χs and sends bi = −asi + ei + σ(s)P . An aggregating party
returns rk := (a,

∑
i bi) ∈ R2

PQL
as the key-switching key for σ.

• DRelinGen(pp, a, {si}). On input RLWE parameters, a common random polynomial a ∈ RQL
,

and a secret share si, party Pi does the following in two rounds:

1. Samples ei ← χDG and sends h1,i := −asi + Psi + ei ∈ RPQL
to an aggregating party.

This party computes (a, b) = (a, h1) := (a,
∑

h1,i) then sends it back to Pi. Notice that
(a, b) is an encryption of P

∑
si under s =

∑
si.

2. Given (a, b), Pi samples e0i , e
1
i ← χDG, then returns (ai, bi) := (sia+ e0i , sib+ e1i ) to the

aggregating party. The aggregating party returns evk :=
∑

i(ai, bi). The output evk is
an encryption of

∑
i sisP = s2P for s =

∑
i si under the joint key s =

∑
i si.

• DDec(ct, {si}): Given a ct ∈ R2
Q0

(rescale if needed), each party besides some aggregating
party, say P0, samples a flooding error ei ← χfld and generates its partial decryption share
pi := asi + ei. It sends its share to the aggregator P0. Then, the aggregating party returns
b+ as0 +

∑
pi (mod Q0).

The distributed key generation, key-switching key generation, relinearization key generation, and
the distributed decryption protocols were initially developed and proved for the LWE setting by
Asharov et al. [3]. The RLWE versions were given by [43, 48] with security from RLWE together
with statistical noise flooding in distributed decryption.

We will also use an exact (leveled) fully homomorphic encryption scheme for integer compu-
tations such as frequency computation. In particular, we use the BFV scheme [21], which is also
lattice-based, supports SIMD packing and its security is based on the RLWE hardness assump-
tion. Given the similarity to the CKKS scheme, we only mention the encryption and decryption
algorithms here. Here, t denotes the plaintext modulus.

• BFV.Encpk(m). For a message polynomial m = M(X) ∈ R, sample v ← χs, e0, e1 ← χDG,
and return ct := v · pk+ (e0, e1 + ⌊q/t⌋m) ∈ R2

QL
.

• BFV.Decsk(ct). Given ct = (a, b) ∈ R2
Qi
, return m̂ := ⌊(t/Qi) · (as+ b (mod Q)i)⌋ (mod t).

D Two-Party Interactive Bootstrapping

In order to continue computations over exhausted ciphertexts (ciphertexts that have accumulated
too much noise from previous computations), a bootstrapping procedure needs to be performed,
which refreshes the ciphertexts. However, classical FHE (single-party) bootstrapping implies a
substantial computational and memory overhead, as described in the main paper.
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To avoid this overhead, we propose a novel protocol for two-party interactive bootstrapping for
the threshold CKKS scheme. We remark that this protocol can be slightly modified to support
other RLWE-based threshold FHE schemes such as threshold BFV. The goal is for two parties, a
Client and a Server, to jointly bootstrap an exhausted ciphertext that has a large noise component
and generate an equivalent ciphertext that is encrypting the same plaintext message, with a much
smaller noise. More exactly, the Server is given a CKKS ciphertext (a′, b′) ∈ R2

q encrypting an
encoded message c = Decsk(a

′, b′) = a′(s0 + s1) + b′ such that ∥c∥∞ < β, and it should compute
a fresh CKKS encryption Encpk(c) of the same (encoded) message c under public key pk with the
help of the Client. The ideal functionality of the two-party interactive bootstrapping is given in
Functionality 1.

Functionality 1 Ideal Functionality for 2-party (Client and Server) interactive
bootstrapping protocol Π: FIB
Input: A ciphertext ct′ = (a′, b′) ∈ R2

q encrypted under a pk (with secret key
sk = s0 + s1), and each party’s secret share si ∈ Rq.
Output: A fresh encryption ĉt under a public key pk, output to the Server.

1: Assemble the joint secret key from the inputs sk = s0 + s1.
2: Decrypt m← Decsk(ct

′).
3: Sample encryption randomness r and encrypt ĉt← Encpk(m; r).
4: return ĉt to the Server and nothing to the Client.

Our proposed protocol is given in Protocol 2. The main idea underlying the protocol is dis-
tributed rounding, where each party uses its secret key share to compute a partial decryption
modulo q, then with high probability, they coordinate in adding (subtracting) q/2. This ensures
that the rounded partial decryptions add up to the correct message over the integers without taking
the sum modulo q. The intuition behind the interactive rounding is that, if the encrypted value
is much smaller than q, the unmasked decryption shares are close to the negations of each other.
Therefore, they are close to being symmetric around 0 in {−(q− 1)/2, . . . , 0, . . . , (q− 1)/2}. In the
case that they are closer to 0 than q/2, addition can be done without reducing modulo q. If not,
then one modular reduction is needed and we can compute this locally. The parties avoid further
modular reduction in both cases.

We use a hash function H : R2
Q ×Rq → Rq modeled as a random oracle (RO). We remark that

random oracles are not needed for security, but for correctness. What we require is that H(pk, a)
is distributed uniformly at random over Rq for statistical purposes.

Further, note that Encpk may be a CKKS encryption using a larger modulus Q or any other
linearly homomorphic public key encryption scheme, as the computation performed by the parties
uses Encpk as a black box. In particular, the method can be used not only to increase the plaintext
modulus of a ciphertext, but also to switch between different encryption keys, or even between
different schemes. The latter operation may require some additional operations to take into account
different encodings used by CKKS and other schemes. We use the same CKKS public key for the
input and output ciphertext in the following.
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Protocol 2 2-Party Interactive Bootstrapping Protocol ΠIB
Input: Each party has a secret key share si ∈ Rq. The Server additionally has a
ciphertext ct′ = (a′, b′) ∈ R2

q encrypted under a pk (with secret key sk = s0+s1)
encrypting m.
Output: A fresh encryption ĉt ∈ R2

Q under a pk, potentially unrelated to sk,
encrypting m.

1: The Server samples and adds a public-key encryption of 0: (a, b) = (a′, b′)+
Encpk(0) ∈ R2

q . Server sends a to the Client.
2: Both parties compute ρ← H(pk, a).
3: Server computes c0 = as0 + b+ ρ (mod q) and the rounding: If |c0| > q/4,

then c0 ← c0+(q/2) (mod q). The operation is performed coordinate-wise,
on each coefficient of c0 independently.

4: Client computes c1 = as1 − ρ mod q and the rounding: If |c1| > q/4, then
c1 ← c1 + (q/2) (mod q). The operation is performed coordinate-wise, on
each coefficient of c1 independently.

5: Client then encrypts c1 as ctC ← Encpk(c1) ∈ R2
Q, and sends it to the Server.

6: Server computes ctS ← Encpk(c0) ∈ R2
Q and returns ct = ctC + ctS ∈ R2

Q.

In order to achieve overwhelming correctness according to Theorem 1, interactive bootstrapping
should be performed before the encrypted message gets too large relative to the current level’s
modulus q. This can be easily achieved by increasing the ciphertext modulus q by an RNS limb or
two. Note that the only non-arithmetic operation performed by the protocol is the check |ci| > q/4
in step 5, and it is performed in the clear. Therefore, we can implement a correct interactive
bootstrapping protocol very efficiently in CRT representation, by simply adding a limb to the
modulus q.

We compare the ciphertext modulus q required in this novel two-party interactive bootstrapping
protocol with the modulus required in a general multiparty interactive bootstrapping protocol,
presented subsequently. We note that this comparison holds for the RNS representation using 64-
bit native words, which offers the best performance in practice (in PALISADE and other common
FHE libraries). In the latter protocol, for two parties and a statistical security parameter of 128
bits, we obtain that interactive bootstrapping requires the ciphertext modulus q to increase by
three extra CRT limbs, i.e., by 180-bits. On the other hand, for the current two-party interactive
bootstrapping protocol, for a correctness probability of 2−50, and for the range of ring modulus
dimensions of interest we obtain that the ciphertext modulus q increases only by one CRT limb,
i.e., by 60 bits.

We now formally state and prove the correctness and the security of Protocol 2 with respect to
Definition 2.

Theorem 1. Let ct′ = (a′, b′) ∈ R2
q be a CKKS ciphertext with ∥a′(s0 + s1) + b′ = c∥∞ ≤ β ≪ q.

The above protocol is correct except with probability at most 2Nβ/q over the randomness of H,
modeled as a random oracle.

Proof. We claim that if each coefficient of ci satisfies |ci| /∈ (q/4± β), then the protocol is correct.
To see this, compute

c0 + c1 = (as0 + b+ ρ) + as1 − ρ = a(s0 + s1) + b = c (mod q).
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We know that ∥c∥∞ < β by assumption, so, the two values c0,−c1 are within distance β from each
other. Assuming they are not in [−q/4−β,−q/4+β] or in [q/4−β, q/4+β], they will both satisfy
the condition |ci| > q/4 or they will both violate the condition |ci| > q/4. It follows that in steps
3 and 4, the value (q/2) is added to both of them, or to neither of them. In either of these cases,
the sum c0 + c1 (mod q) does not change, and in particular c0 + c1 = c (mod q).

Moreover, we also know that (before step 3) |ci| < q/2 because ci is reduced modulo q. Therefore,
after step 4, it will satisfy |ci| < q/4. So, the sum |c0 + c1| < q/2 is already reduced modulo q after
step 4, and we have c0 + c1 = c over the integers. Since Encpk is linearly homomorphic, the final
output satisfies

Encpk(c0) + Encpk(c1) = Encpk(c0 + c1) = Encpk(c)

and the protocol is correct.
It remains to bound the failure probability. Each coefficient of ci is distributed uniformly at

random over Zq because ρ← H(pk, a) was added to it. Therefore,

Pr [ ci ∈ [−q/4− β,−q/4 + β] ∪ [q/4− β, q/4 + β] ] ≤ 4β/q.

Taking a union bound over all N coefficients, we get that the probability of any of them being too
close to ±q/4 is at most 4βN/q.

We can be reduce the failure probability to 2βN/q in a straightforward manner, by considering
the sign of c, and analyzing the cases c > 0 and c < 0 separately.

Theorem 2. The protocol ΠIB is secure in the semi-honest model assuming that RLWE ciphertexts
are pseudorandom under secret-shared secret keys, given all but one share, achieving the function-
ality described in Functionality 1.

Proof. The adversary is given oracle access to the random oracle by mimicking an RO with a
randomly computed function from R2

Q × Rq to Rq. Every time the adversary queries H(x, y) on

(x, y) ∈ R2
Q × Rq, we look up the table to see if (x, y) has a value in the table. If so, return this

value. Otherwise, compute a random ρ ∈ Rq, store it in an entry labeled by (x, y) in the table, and
return ρ to the adversary.

We first specify the inputs, outputs and views of the Client and the Server.
InputΠC : s1.
OutputΠC : ∅.
ViewΠ

C : (s1, coinsC ; a).
In the Client’s view, a is received from the Server and the random coinsC are the sampled random-
ness used by the Client (to encrypt Encpk(c1) in line 6).

InputΠS : s0, (a
′, b′).

OutputΠS : ct.
ViewΠ

S : (s0, (a
′, b′), coinsS ;Encpk(c1)).

In the Server’s view, b and Encpk(c1) are received from the Client, while coinsS are the sampled
randomness used by the Server (to create (a, b) in line 1 and to encrypt Encpk(c0) in line 7).

Both the Client and Server also receive as public input the public key pk (RLWE encryption
of 0) corresponding to the joint secret key sk = s0 + s1. Note that the Client does not receive the
output ciphertext.

The simulator for the Server is as follows:
SimS((s0, ct

′), ĉt):

28



1. Sample coinsS = (r̂0S , r̂
1
S).

2. (â, b̂)← ct′ + Encpk(0; r̂
0
S).

3. ρ̂← H(pk, â).

4. Compute ĉ0 ←
⌈
b̂+ âs0 + ρ̂

⌋
dist

.

5. ĉtC ← ĉt− Encpk(ĉ0; r̂
1
S).

6. Return
(
s0, ct

′, (r̂0S , r̂
1
S), ĉtC

)
.

The joint transcript from the simulated view and the ideal functionality is

((s0, ct
′, (r̂0S , r̂

1
S), ĉt− Encpk(ĉ0; r̂

1
S)), ĉt), for ĉt← FIB(s0, s1, ct′).

We construct a sequence of hybrids to prove indistinguishability between the ideal-world distri-
bution and the real-world distribution.

Assuming the hardness of RLWE for joint keys in the theorem’s statement (see Lemma 4 in [3]
proved in [4]), the ciphertext ĉt is indistinguishable from random and is also indistiguishable from
Encpk(⌈âs1 − ρ⌋dist ; rC) for some uncorrelated encryption randomness rC . To see why an encryption
of a message depending on a secret key share s1 still looks pseudorandom to a distinguisher who
knows the other share s0, perform the following computations. Recall that for a ciphertext (d0, d1)
under the joint secret key (s0 + s1), the encrypted message is obtained as d1 + d0(s0 + s1). Note
that (â, 0) is an encryption of â(s0 + s1) and (0, âs0) is an encryption of âs0. Therefore, starting
from an encryption of zero, we can write

Encpk(âs1; rC) = Encpk(0; rC) + (â, 0) + (0, âs0).

The above shows that Encpk(âs1; rC) is sampleable given s0. Since Encpk(0; rC) is indistinguishable
from random, then Encpk(âs1; rC) is also indistinguishable from random, for an unknown rC . Fur-
thermore, this is also indistinguishable from Encpk(⌈âs1 − ρ̂⌋dist ; rC) and thus, it can replace ĉt in
the view.

The hybrids are:

{((s0, ct′, (r̂0S , r̂1S), ĉt− Encpk(ĉ0; r̂
1
S)), ĉt)} ≈c

{((s0, ct′, (r̂0S , r̂1S),Encpk(⌈âs1 − ρ̂⌋dist ; rC)− Encpk(ĉ0; r̂
1
S)),Encpk(⌈âs1 − ρ̂⌋dist ; rC))} ≈c

{((s0, ct′, (r̂0S , r̂1S),Encpk(⌈âs1 − ρ̂⌋dist ; rC)),Encpk(⌈âs1 − ρ̂⌋dist ; rC) + Encpk(ĉ0; r̂
1
S))} ≈c

{((s0, ct′, (r0S , r1S),Encpk(⌈as1 − ρ⌋dist ; rC)),Encpk(⌈as1 − ρ⌋dist ; rC) + Encpk(c0; r
1
S))}.

Note that the last distribution is the actual view of the Server with the real output of the protocol,
for the real randomness used by the Server (r0S , r

1
S) and the real values a obtained at the Server,

which have the same distribution as (r̂0S , r̂
1
S) and â. The indistinguishability holds for all values of

inputs.

The simulator for the Client is as follows:
SimC(s1):

1. Sample r̂C .
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2. â← Rq.

3. Return (s1, r̂C , â).

The joint distribution of the simulator and the ideal functionality is

((s1, r̂C , â), ĉt), for ĉt← FIB(s0, s1, ct′).

Note that for an uncorrelated, random r′, it holds that:

{((s1, r̂C , â), ĉt)} = {((s1, r̂C , â),Encpk(m; r′))}.

Further note that for ρ̂← H(pk, â), and another uncorrelated rS , it also holds that

Encpk(m; r′) ≈c Encpk(⌈b+ âs0 + ρ̂⌋dist ; rS) + Encpk(⌈âs1 − ρ̂⌋dist ; r̂C),

and Encpk(m; r′) is the real output to the protocol. Therefore it holds that the distributions are
computationally indistinguishable:

{((s1, r̂C , â), ĉt)} = {((s1, r̂C , â),Encpk(m; r′))}
≈c {((s1, r̂C , â),Encpk(⌈b+ âs0 + ρ̂⌋dist ; rS) + Encpk(⌈âs1 + ρ̂⌋dist ; r̂C))}
≈c {((s1, rC , a),Encpk(⌈b+ as0 + ρ⌋dist ; rS) + Encpk(⌈as1 − ρ⌋dist ; rC))}.

The last distribution is the actual view of the Client with the real output of the protocol and for
the real randomness used by the Client rC and for the real a sampled from the same distributions
as r̂C and a. The indistinguishability holds for all values of inputs.

Practical considerations. For clarity of presentation, we described the interactive bootstrap-
ping protocol for the case where we represent integers modulo q in the balanced form: {−(q −
1)/2, . . . , (q − 1)/2}. On the other hand, our implementation represents integers modulo q in the
positive representation: {0, 1, . . . , q − 1}. This changes the protocol to add q/2 (mod q) when
ci ∈ (q/4, 3q/4].

We note that in practice, a fresh encryption of zero, Encpk(0) is pseudorandom, hence compu-
tationally close to a tuple of uniformly random polynomials. This ensures that the coefficients of
c0 = as0 + b and c1 = as1 have a distribution observably close to the uniform distribution over
Zq. Therefore, correctness holds with almost the same success probability even if the parties do
not use a uniformly random polynomial ρ ← H(pk, a), assuming the pseudorandomness of RLWE
ciphertexts.

The interactive bootstrapping protocol in Protocol 2 is intended to be used in a scenario where
the Server performs encrypted computations and obtains an exhausted ciphertext (a′, b′), but still
needs to perform further computations on that ciphertext. The interaction with the Client helps
the Server obtain a fresh ciphertext on which the Server can then continue computations. This
is the use case described in the main paper. The security proof given for Theorem 2 is for a
stand-alone interactive bootstrapping protocol. In the case where the interactive bootstrapping is
a subprotocol of a larger protocol where there are subsequent computations at the Server on the
refreshed ciphertext, we can further optimize Protocol 2 by having the Server return ctC +(0, c0) in
line 6, and still achieve the security of the full protocol. The reason for this is that before the final
decryption, secure flooding is always performed (as described in the threshold CKKS decryption),

30



and moreover, the distinguisher in Definition 2 is not given the intermediate output ciphertext of
the interactive bootstrapping.

Finally, we remark that the interactive bootstrapping protocol in Protocol 2 can be immediately
modified to a symmetric version with two servers that both receive as input the exhausted ciphertext
and output a fresh ciphertext of the same underlying message.

E More General Interactive Boostrapping

We now describe a protocol for multiparty interactive bootstrapping for the CKKS scheme in
Protocol 3. The goal is as above, for multiple servers to collectively refresh an exhausted ciphertext.
This protocol is based on the interactive bootstrapping protocol in [43, 48] and the security proof
for threshold FHE in [3].

Consider k servers, S0, . . . , Sk−1. The collective secret key sk, which is associated to the collec-
tive public key pk, is additively secret-shared among the servers so that each server has access to
its own secret key share si and the public key pk.

Let λ denote the statistical security level. In this protocol, we will make use of statistical masks,
sampled uniformly from RP , where P ≥ |m|2λ, for the message sizes |m| supported. Adding such a
mask to a message m ensures λ bits of statistical security. For correctness, the ciphertext modulus
at which the interactive bootstrapping is initiated has to satisfy q > kP , in order to ensure the sum
of masks does not overflow. Moreover, the ciphertext modulus q should also ensure that correct
decryption of the masked value is possible. Finally, we specify χDG the Gaussian distribution over
R with σ = 3.19 and maximum bound ⌊6σ⌋.

Protocol 3 Interactive Multiparty Bootstrapping Protocol ΠMIB
Input: Each party has a secret key share si ∈ R, a common random polynomial
a← RQ, and a ciphertext ct′ = (a′, b′) ∈ R2

q encrypted under a pk (with secret

key sk =
∑k−1

i=0 si) encrypting m.
Output: A fresh encryption ct ∈ R2

Q under a pk, encrypting m.

1: for server Si, i = 0, . . . , k − 1 do ▷ Each server computes the following:
2: Mi ← RP , e1,i ← χDG

3: h0,i ← sia
′ +Mi

4: h1,i ← −sia−Mi + e1,i
5: end for
6: h0 ←

∑k−1
i=0 h0,i ▷ Only lead server computes the following:

7: h1 ←
∑k−1

i=0 h1,i
8: b← b′ + h0 mod q
9: b← b+ h1 mod Q

10: return ct = (a, b) ∈ R2
Q to all servers

Theorem 3. The protocol ΠMIB in Protocol 3 is correct as long as q ≥ k|m|2λ + 2|m|.

Proof. We have correctness if ct decrypts to the same message m as ct′: a′(
∑k−1

i=0 si) + b′ = m+ e′
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(mod q). Let us compute:

a

k−1∑
i=0

si + b = a

k−1∑
i=0

si + (b′ + h1 (mod q)) + h0 (mod Q)

= a
k−1∑
i=0

si +

(
b′ + a′

k−1∑
i=0

si +
k−1∑
i=0

Mi (mod q)

)
− a

k−1∑
i=0

si −
k−1∑
i=0

Mi +
k−1∑
i=0

e1,i (mod Q)

=

(
m+ e′ +

k−1∑
i=0

Mi (mod q)

)
−

k−1∑
i=0

Mi +
k−1∑
i=0

e1,i (mod Q)

(∗)
=
(
m+ e′ (mod q)

)
+

k−1∑
i=0

e1,i (mod Q) = m+ e′ +

k−1∑
i=0

e1,i (mod Q),

where the equality (∗) happens under the assumption there is no overflow over q of
∑n−1

i=0 Mi and
of the parenthesis, which holds under the assumption in the theorem statement.

The ideal functionality of the multiparty interactive protocol takes as input the exhausted
ciphertext and all the servers’ secret key shares, computes the joint secret key and decrypts the
ciphertexts, then computes a fresh encryption of the obtained message and outputs it to all servers.

Theorem 4. The protocol ΠMIB in Protocol 3 is secure in the semi-honest model assuming that
RLWE ciphertexts are pseudorandom under secret-shared secret keys, given all but one share,
achieving the ideal functionality described above.

Proof sketch. The arguments for security follow the proof in [48] on the backbone of [43]. The
only difference is that the protocol in [48] samples an additional Gaussian noise to add to h0,i.
However, it is sufficient to add an extra Gaussian noise apart from masking in only one of the
partial decryption terms, and still guarantee that no information is leaked by processing h0 and h1.
Masking h0,i by a large uniformly random mask Mi still guarantees statistical security of sia

′ and
their sum, and security of sia and their sum can still be argued via multi-secret RLWE.

Practical considerations. In the multi-precision representation, the minimum ciphertext modu-
lus can be chosen from the statement of Theorem 3, and for 2 servers and λ = 128 bits, it results
in requiring 180 bits for plaintexts up to 50 bits. However, in the RNS representation, which is
the preferred representation in practice, the minimum ciphertext modulus needs to be chosen as
follows. In the case of 64-bit native integer size (where one RNS limb can be at most 60 bits), the
mask modulus P has to have three limbs, and we need to save one limb for correct decryption.
Therefore, RNS-friendliness trade-offs speed for requiring three extra limbs, whereas the multi-
precision representation corresponds to only two extra limbs for the interactive bootstrapping. In
the 128-bit RNS version, only two extra limbs are required as well.

The multiparty interactive bootstrapping protocol is also amenable to the variant of server–
multi-client where there is only one lead server starting with the ciphertext and which aggregates
the partial decryptions to obtain the refreshed ciphertext, without outputting it to the others.

F Private Join-and-Compute

In this section, we describe a multiparty private join-and-compute protocol that allows a set of Data
Owners (DOs) to compute the join (intersection) of their data sets and perform a computation on
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the result, with the help of a Computation Party (CP). Each DO’s data set is comprised of identifiers
and features records. We emphasize that the join is performed only over the identifiers, i.e., the
goal is to obtain the list of identifiers that are in all the data sets, and to perform computations
over the features records corresponding to the identifiers in the intersection.

We will describe different protocol versions for the join and the compute parts of the protocol
that trade privacy at the DOs with the overall communication and computation efficiency. For the
join part, the first protocol we describe returns the identifiers in the intersection to the DOs. The
second protocol hides the intersection indices from the DOs. The former leads to a more efficient
compute part but reveals more information to the DOs while the latter has more privacy but
requires more homomorphic computations by the CP in the compute part. Both protocol versions
achieve semi-honest security (Definition 2) when all but one DOs collude; the first version, where
the DOs learn the intersection, can also tolerate all but one DO and the CP collude. We note that
here, the same party cannot be both a DO and a CP.

Our protocols extend a solution proposed by Ion et al. [33], where there are only two DOs and
one of them also serves as the CP, only one of the two DOs has data to be computed upon after the
intersection of identifiers, and the only supported computation is encrypted addition. As in [33],
we target a simple protocol, based on well-studied cryptographic primitives, that is appealing to
be used by both the DOs and the CP.

We assume the same record identification scheme is used for all the Data Owners, i.e., each
common record is uniquely described by the same identifier. To conceal the private data, the
records get randomly shuffled and random identifiers get inserted. The join is performed based
on exact matches and uses commutative ciphers. A deterministic commutative cipher based on an
elliptic curve instantiation of the DDH problem is used to compute a common hash (encryption)
for each record. The CP learns the intersection size (along with the sizes of the possible subset-
intersections of the data sets). The subsequent computations performed at the CP will be performed
over homomorphically encrypted records in the intersection and is independent of the private join
protocol.

Commutative ciphers The join protocol is based on exponentiation in a finite (multiplicative)
group G, where the Decisional Diffie-Hellman (DDH) problem is believed to be hard. The group is
used to implement a commutative cipher, i.e., Es(g) = gs, a form of deterministic encryption such
that

Ez(Es(g)) = Es(Ez(g))

for any two keys s, z and group element g. The keys s ∈ Z∗p are integers that are invertible modulo
the size of the group p = |G|. For simplicity of the analysis, we may assume p is prime, so that
s ∈ {1, . . . , p−1}. Encryption also requires a hash function H : X → G from the set of (application
dependent) identifier values to group elements, modeled as a random oracle.

For implementation, we use elliptic curve groups, such as Curve25519 [6], implemented in the
OpenSSL library (https://www.openssl.org/). SHA-256 is used for the random oracle, and is run
until the result lies on the curve (we do not consider timing attacks in this paper, but there are
methods to avoid such attacks if desired).

Matrix DDH We will use the following extended version of DDH (Definition 3), which can be
reduced to the standard DDH assumption (Definition 1).
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Definition 3 (Matrix DDH). The (n,m)-DDH problem asks to distinguish between [gxiyj : i, j] ∈
Gn×m for x0 = y0 = 1, xi, yj ∼ U(Z∗p) and a uniformly random matrix over Gn×m.

The standard DDH problem is just a special case: (2, 2)-DDH. We claim that under DDH, the
(n,m)-DDH problem is hard for any polynomially-bounded n,m.

Looking ahead, when analyzing security against a corrupt CP, it is in fact enough to use (2, n)-
DDH. The (2, n)-DDH problem has a very simple proof under the DDH assumption, so we present
this result separately as it also helps build intuition for the general result.

Lemma 1. DDH implies (2, n)-DDH for any n > 2.

Proof. For any integer matrix X, we write gX for the matrix of group elements [gxi,j : i, j]. Let gX

be an input to the DDH problem, with X ∈ (Z∗p)2×2. We can build a larger matrix Y ∈ (Z∗p)2×n as
follows. Each column of Y is computed as X · zi, where zi ∈ (Z∗p)2 is a uniformly random vector.

It is easy to see that gY can be easily computed from gX by performing the operations in the
exponent. Moreover, if gX is a DDH matrix, then gY is a (2, n)-DDH matrix. Similarly, assuming
X is invertible (which is true with high probability when X is uniformly random) then Y is also
uniformly random.

The following is a special case of Bresson et al.’s main result [10].

Lemma 2. DDH implies (n,m)-DDH.

Proof. We first prove that (n, n)-DDH implies (n+1, n+1)-DDH. Consider the matrix of exponents,
An, of an (n, n)-DDH instance: An = abt where a = (1, a1, . . . , an−1) and b = (1, b1, . . . , bn−1)
where ai, bi ← Z∗p. If we sample uniformly at random x,y← (Z∗p)n, then for xn = Anx, yn = At

ny,

and an+1 = ytAnx, An+1 :=

(
An xn

yt
n an+1

)
is the (n + 1, n + 1)-DDH distribution, since An+1 =[

a
yta

] [
bt btx

]
. On the other hand, xn and yn are distributed uniformly at random as long as

the matrix An is uniformly random and invertible (which happens with overwhelming probability).
Then, we can replace an+1 with a uniformly random exponent an+1 ← Z∗p. The exact hybrids are
as follows:

{An+1|An ← (n, n)-DDH,x← (Z∗p)n,y← (Z∗p)n,xn = Anx,yn = At
ny, an+1 = ytAnx} ≈c

{An+1|An ← (Z∗p)n×n,x← (Z∗p)n,y← (Z∗p)n,xn = Anx,yn = At
ny, an+1 = ytAnx} ≈s

{An+1|An ← (Z∗p)n×n,x← (Z∗p)n,y← (Z∗p)n,xn ← (Z∗p)n,yn ← (Z∗p)n, an+1 = ytAnx} ≈c

{An+1|An ← (Z∗p)n×n,xn ← (Z∗p)n,yn ← (Z∗p)n, an+1 ← Z∗p}.

The first hybrid is from the pseudorandomness of (n, n)-DDH. The last hybrid is from DDH. For
m > n, the same technique applies from Lemma 1’s proof.

Protocol ΠPJ We first describe the flow of the protocol, sketched in Figure 4, and provide a
concise description in Protocol 4. Each DOi has a key si ∈ Z∗p, and a list of data set identifiers
X ′i ⊂ X. As part of the pre-processing described in the main paper, each DO pads its set of record
identifiers in the data set up to a size nmax ≥ max{|X ′1|, . . . , |X ′k|}. We denote the padded data
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Figure 4: Diagrams of the steps of the private join protocol ΠPJ for k = 3 data owners (DO).
Each DO randomly permutes their identifiers lists and stores this permutation as a secret. It
also generates a random si ∈ Z∗p as a secret exponent. In the figure, we use the multiplicative
notation. DOi hashes its padded identifier list Xi to the DDH group G and exponentiates the
hashed result, entry-wise: (H(x′)si : x′ ∈ S′i = πi(Xi)) ∈ Gnmax , where πi is the aforementioned
private permutation. This corresponds to si ∗ P listi in the diagram, for DOi. Then, each party
passes their exponentiated group elements to the next DO, which raises the received list to their
secret exponent. Finally, the lists are sent to the Computation Party (CP) which computes the
intersection and the corresponding indices in each permuted data set. The last diagram corresponds
to step (vi*) in the description. There, we depict the CP sending back a permuted list of indices
(corresponding to perm map listi for DOi in the figure) that captures both the case where the CP
sends back the exact intersection list and the case where the CP adds more random indices and
scrambles the order to reduce the information leaked about the intersection records to the DOs.

set of DOi as Xi, each of length nmax. The padding is done via hash functions with outputs in
different domains, such that we do not introduce false intersecting identifiers (the values in the data
set corresponding to the padded identifiers can be zeroes). The protocol proceeds as follows:

(i) Each DOi, i ∈ {1, . . . , k}, randomly permutes the set S′i = πi(Xi), and hashes the elements of
the permuted set to obtain a vector of random group elements:

m′[i, i] = (H(x′) : x′ ∈ S′i) ∈ Gnmax

(ii) During the execution of the protocol, the parties compute and transmit a collection of mes-
sages

m[i, j] ∈ Gnmax

indexed by i, j ∈ {1, . . . , k}, and each consisting of vectors of nmax group elements.
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(iii) Messages m[i, j] are transmitted in k rounds, with message m[i, j] sent in round j−i (mod k)
from DOj−1 to DOj .

(iv) Each DOi computes the messages as follows:

m[j, i+ 1] = m[j, i]si

where the exponentiation is applied entry-wise. Message m[j, i+1] is computed by DOi, who
knows si and receives m[j, i] from DOi−1. All DOi indexes computed modulo k. As a special
case, the first message m[i, i + 1] is computed using the vector m′[i, i] locally computed by
DOi from its input. Also, the last message m[i, i] computed by DOi is sent to CP rather than
DOi+1.

(v) CP receives a set of messages
m[i, i] = πi(H(Xi))

s

containing the permuted identifier sets Xi encrypted under s =
∏

i si the product of all
keys. Since exponentiation is commutative and deterministic, this allows to compute the
set intersection on the ciphertexts, and determine for each i a set of indexes Ji such that
Xi[π

−1
i (Ji)] = S =

⋂
j Xj .

(vi*) DOi receives the indices Ji of its portion of the intersection from CP and computes its local
output Xi[π

−1
i (Ji)].

To clarify each of the DO’s steps, in Protocol 4, we use an “input port,” from which the DO
reads the message to update, updates it, and writes it for the future round.

Protocol 4 Interactive protocol for private join ΠPJ
Input: Each DOi’s input set of padded identifiers Xi.
Output:

⋂
iXi to each DOi.

1: Each DOi samples si ← Z∗p and a permutation πi : [nmax] → [nmax]. It
then computes m′[i, i] := (H(x′) : x′ ∈ S′i = πi(Xi)) ∈ Gnmax . Place
gin := m′[i, i] to its own input port.

2: For j = 1, . . . , k, each DOi:

• Read in gin from the input port.

• Compute g′ := gsi
in.

• Send g′ to DO(i+1)%k’s input port if j < k and send g′ to CP otherwise.

3: CP gets πi(H(Xi))
s, s =

∏
j sj , from DOi−1. Then, it computes the inter-

section from these lists.
4*: CP sends the indices Ji to DOi, which computes π−1i (Ji).

After step (v) of the private join (line 3 in Protocol 4), the CP has the lists of indices Ji
corresponding to the intersection under permutation πi. The next step is for the CP to obtain the
encrypted records corresponding to the intersection from the DOs. There are several options to get
to this result, offering a compromise between computation and communication efficiency and the
amount of information revealed to the Data Owners.
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One option is for the CP to send back Ji to DOi at the end of the private join protocol (as
depicted in step (vi*) or line 4* in Protocol 4). Then, each DOi applies its local π−1i to recover
the intersection indices in its data set, encrypts only the records corresponding to the intersection
using the joint public key of the threshold FHE scheme, and sends the ciphertexts to the CP. This
solution corresponds to the minimum amount of communication from the DOs to the CP, as well
as the minimum amount of computation at the CP for aligning the records in the intersection, but
it reveals the intersection identifiers to the DOs.

At the other extreme, the CP does not send back the intersection indices Ji to the DOi (the
protocol ends after step (v) or line 3 in Protocol 4), and each DOi encrypts their whole data
set of records (permuted by π) and sends them to the CP, which needs to perform homomorphic
computations to align the encrypted records in the intersection. The CP uses the lists (Ji)i∈{1,...,k}
to multiplicatively mask the encrypted slots corresponding to the indices not in the intersection, in
order to obtain the merged encrypted data set. This solution corresponds to the maximum amount
of communication from the DOs to the CP and maximum amount of computation at the CP, but
the DOs do not learn anything about the intersection.

In the implementation, we take a middle approach, which has the same communication as the
latter version but substantially saves on computation, at the cost of some privacy leakage. The CP
will send to each DOi a (different) list Ki of size of nmax, containing the (permuted) indices in Ji
but also random indices. Importantly, the positions of the indices in the intersection will be the
same over all lists sent by the CP, such that they are already aligned in the final encrypted data
sets. The DOs will apply the inverse of their local permutation they used in the commutative cipher
phase, to reorder their local records according to the list received from the CP, then encrypt their
data sets in this order. The advantage of this approach is that it saves substantial computation
at the CP, i.e., the computation necessary to align the encrypted values. In more detail, when
constructing the lists of indices for each DO, the CP will try to maximize the number of positions
of the indices in the pairwise intersections πi(Xi) ∩ πj(Xj) that are on the same position in the
list Ki for DOi and list Kj for DOj . When there are no collusions between the corrupted parties,
this protocol retains the security guarantee that no party learns the identifiers in the intersection.
When there are collusions, the corrupted parties might learn more than their pairwise intersection,
and privacy could default to the case where the indices in the intersection are revealed (but never
the indices that are not in the intersection or the values of the records).

In the following, we present the security proofs for the extreme cases of private join with respect
to Definition 2. Then, we analyze the security of the intermediate version.

Security Proofs We start with the private join protocol that returns output to the data owners,
i.e., line 4* is executed. The ideal functionality for the protocol is given in Functionality 5. Every
party knows the size nmax of each DO’s padded identifier lists. Define wS := |

⋂
j∈S Xj |. For k

data sets, there are 2k − 1 such non-trivial intersections. The CP will learn this information, but
nothing more about the indices in the intersection.
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Functionality 5 Ideal Functionality FPJ for private join protocol ΠPJ
Input: Each DOi’s input set of identifiers Xi.
Output: (

⋂
iXi) to each DOi and ((wS)S⊆{1,...,k}) to CP.

1: Compute the intersection
⋂

iXi.
2: Compute all intersection sizes, wS for S ⊆ {1, . . . , k}.
3: return (

⋂
iXi) to each DOi and (wS)S⊆{1,...,k} to CP.

Theorem 5 shows semi-honest security against a corrupted CP. The simulator in the proof is
exponential-time in the number of parties. Therefore, the protocol is secure when k = O(log(κ)).
This is not a limition for our application since the number of parties we consider is small.

Theorem 5. Protocol 4 with output returned to the DOs is secure against a corrupted CP.

Proof. The input, output and view of the CP are:

InputΠCP : ∅.
OutputΠCP : (wS)S⊆{1,...,k}.

ViewΠ
CP :

(
(m[j, j], Jj)j∈{1,...,k}, (wS)S⊆{1,...,k}

)
.

The view of CP consists of a collection of messages

m[j, j] = H(πj(Xj))
s = πj(H(Xj)

s)

where s =
∏

j sj is the product of all secret keys, and πj is a random permutation.

SimCP((wS)S⊆{1,...,k}):

1. For S = {1, . . . , k}, set zS ← wS .

2. For i = k − 1 : 1, for each S ⊆ {1, . . . , k} of size |S| = i, do:

set zS ← wS −
∑S̄

T ̸=∅ zS∪T , where S̄ is the complement of S in {1, . . . , k}.

3. For each S ⊆ {1, . . . , k}, sample zS uniformly random group elements without replacement
and include them in a set Bj , for each j ∈ S.

4. For each j ∈ {1, . . . , k}, set m̂[j, j] = π̂j(Bj), where π̂j is a uniformly random permutation.

5. Compute Ĵj according to the intersection indices in Bj and π̂j and output(
(m̂[j, j], Ĵj)j∈{1,...,k}, (wS)S⊆{1,...,k}

)
.

Note that the simulator computes the size zS = |ZS | of the sets

ZS =
⋂
i∈S

Xi \
⋃
j /∈S

Xj .

The sets ZS represent the elements that belong precisely to each subset S of data owners. Moreover,
the sets ZS are disjoint and their union equals

⋃
j Xj . The sampling in step 4 happens without

replacement across elements of S and across the values of S. Notice that by construction, the final
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size of the (multi)sets Bj is |Bj | = nmax, and the construction in step 4 ensures that the intersection
sizes are satisfied.

We want to prove indistinguishability between:(
(m̂[j, j], Ĵj)j ,∩jXj , (wS)S⊆{1,...,k}

)
≈c

(
(m[j, j], Jj)j ,∩jXj , (wS)S⊆{1,...,k}

)
.

In order to prove that the simulated view is indistinguishable from a real execution, we consider
the following experiment. The experiment uses a list of pairs (gi, hi) where the gi’s are chosen
uniformly at random, and the hi’s are either set to hi = gsi for a fixed random value s, or they are
chosen uniformly, independently at random. Notice that, by Lemma 2, these two distributions are
computationally indistinguishable under the DDH assumption on G.

Whenever an adversary queries the hash function, H(xi) for xi ∈ Xi, search in the lookup table
to see if xi was queried before. If so, return the value in the table, if not, sample a uniformly
random group element gi ← G, store it in the table indexed by i and return H(xi) = gi. It is easy
to see that when hi = gsi , then this has the same distribution as the real execution of the protocol.
On the other hand, when the his are chosen independently at random, the final output has the
same distribution as the view output by the simulator. Therefore, by Lemma 2, the real view and
the simulated view are computationally indistinguishable.

Theorem 6. Protocol 4 with output returned to the DOs is secure against a corrupted DO assuming
(n×m)-DDH.

Proof. Without loss of generality, let DOk be the corrupted party. Let Lk denote the indices of the
intersection

⋂
j Xj within Xk. All indices are modulo k.

InputΠDOk
: Xk.

OutputΠDOk
:
⋂

j Xj .

ViewΠ
DOk

:
(
Xk, coinsDOk

,
⋂

j Xj ;m[k − 1, k],m[k − 2, k], . . . ,m[1, k], πk(Lk)
)
.

SimDOk
(Xk, (

⋂
j Xj)):

1. Sample ĉoinsDOk
= (ŝk, π̂k), where ŝk ← Z∗p is a random element and π̂k a random permuta-

tion.

2. For round l ∈ {1, . . . , k − 1}, sample nmax random elements in G, ĝl ← Gnmax uniformly at
random (corresponding to m[k − l, k] in the real protocol).

3. Compute π̂k(Lk) using
⋂

j Xj and Xk.

4. Output
(
Xk, ĉoinsDOk

,
⋂

j Xj ; ĝ1, ĝ2, . . . , ĝk−1, π̂k(Lk)
)
.

Whenever the adversary queries the hash function, H(yj), search the lookup table to see if yj
was queried before. If so, return the value in the table. If not, sample a uniformly random group
element gyj ← G, store it in the table indexed by yj , and return gyj .

Note that the real output and ideal output of CP, (wS)S , are the same given the same input data
sets, so as long as the simulated view is consistent with the inputs Xi, it will also be consistent with
(wS)S . Now we show that the simulated view is computationally indistinguishable from the real
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view assuming (n×m)-DDH. For simplicity, first assume that any element in a pairwise intersection
is in all the sets: x ∈ Xi ∩Xj =⇒ x ∈

⋂
j Xj . Fix N elements in the intersection xi ∈

⋂
j Xj for

i ∈ {1, 2, . . . , k}. Then, let g := H(x1). There exists an ri such that gri = H(xi) for i ≥ 2. Let
gi := H(xi). The adversary gets to see the following matrix of group elements in the real protocol
up to permutations: 

g gsk−1 gsk−1sk−2 . . . gsk−1sk−2···s1

gr2 gr2sk−1 gr2sk−1sk−2 . . . gr2sk−1sk−2···s1

...
...

...
...

...
grN grNsk−1 grNsk−1sk−2 . . . grNsk−1sk−2···s1


which is exactly the (N × k)-DDH distribution, up to permutations. Column i = 0, 1, 2, . . . , k − 1
in the matrix corresponds to what elements DOk sees in round i that are in the intersection. The
round i = 0 corresponds to DOk hashing these elements.

All elements not in the intersection are truly uniformly random since we are hashing onto the
group in the random oracle model and exponentiation is an invertible function on G \ {e} where
e is the group identity. At the same time, note that the simulated messages (ĝ1, . . . , ĝk−1) form a
matrix uniformly distributed, hence, by the DDH problem (Lemma 2), the ideal and real views are
computationally indistinguishable.

In the case where some pairwise-non-distinct elements are not in
⋂

j Xj , then this is the above
distribution with entries missing.

Theorem 7. Protocol 4 with output returned to the DOs is secure against up to k − 1 colluding
DOs assuming (n×m)-DDH.

Proof. We write the simulator for the case where there are k − 1 colluding parties and argue the
more general case. Without loss of generality, assume DO1 is the only honest party. We abbreviate
{DOi}i≥2 (and {Xi}i≥2) with {DOi} (and {Xi}) below. Let Li denote the indices of the intersection⋂

j Xj within Xi.

InputΠ{DOi} : {Xi}.
OutputΠ{DOi} :

⋂
j Xj .

ViewΠ
{DOi} :

(
{Xi}, {coinsDOi

},
⋂

j Xj ; (m[k− i, k])k−1i=1 , (m[k− 1− i, k− 1])k−1i=1 , . . . , (m[2− i, 2])k−1i=1 ,

πi(Li)
)
.

SimDO1(X1, (
⋂

j Xj)): For i ≥ 2 repeat the following:

1. Sample {ĉoinsDOi
} = {(ŝi, π̂i)}, where ŝi ← Z∗p is a random element and π̂i is a random

permutation.

2. For round l ∈ {1, . . . , k − 1}, sample nmax random elements in G, ĝi
l ← Gnmax uniformly at

random (corresponding to m[i− l, i] in the real protocol).

3. Compute π̂i(Li) using
⋂

j Xj and Xi.

4. Append to the output
(
Xi, ĉoinsDOi

,
⋂

j Xj ; ĝ
i
1, . . . , ĝ

i
i−1, ĝ

i
i+1, . . . , ĝ

i
k, π̂i(Li)

)
.
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Whenever the adversary queries the hash function, H(yj), search the lookup table to see if yj
was queried before. If so, return the value in the table. If not, sample a uniformly random group
element gyj ← G, store it in the table indexed by yj , and return gyj .

When the only honest party is DO1, consider the set Y = X1
⋂
(
⋃

i≥2Xi). Fix some y0 in this
set which hashes to g := H(y0). Then, all other yi for i ≥ 1 in the set hash to gri := H(yi) and the
view of the corrupted parties is some permutation of the matrix:

g gs1

gr2 gr2s1

gr3 gr3s1

...
...

grM grMs1


where M = |X1

⋂
(
⋃

i≥2Xi)|. This is the (2 ×M)-DDH distribution. The remaining transcript is
made up of uniformly random elements in G.

Now, assume there are l ≤ k − 1 honest parties and they are X1, X2, . . . , Xl. Consider the set
of elements in the union of the corrupt parties intersect with the union of the non-corrupt parties:
(
⋃

j≤l Xj)
⋂
(
⋃

i>l Xi). Further, assume that if x ∈ (
⋃

j≤l Xj)
⋂
(
⋃

i>l Xi), then it is in each honest
Xj for simplicity. Then, the view of the corrupted parties is

g gsl gslsl−1 . . . gslsl−1···s1

gr2 gr2sl gr2slsl−1 . . . gr2slsl−1···s1

...
...

...
...

grM grMsl grMslsl−1 . . . grMslsl−1···s1


This is the (M × (l+1))-DDH distribution. The general case for the intersections has elements

of this matrix missing. Further, the general case of l honest parties is the same since the cipher is
commutative and exponentiation is an invertible function on G.

Theorem 8. Protocol 4 with output returned to the DOs is secure against up to k − 2 colluding
DOs and the CP assuming (nmax × (k + 1))-DDH.

Proof. We start with the case where only one Data Owner, without loss of generality DOk, colludes
with the CP. Let Jk be the set of indices of the intersection sent by the CP to DOk. Simulation
is going to be backwards; first we construct the view of CP, then we construct the messages seen
between the DO’s with the correct dependency in the exponent with the CP’s view. The view of
this coalition is

ViewΠ
CP,DOk

:
(
Xk, coinsDOk

,
⋂

j Xj ;m[k − 1, k],m[k − 2, k], . . . ,m[1, k], (m[j, j], Jj)j∈{1,...,k}

)
.

The simulator for this coalitions is:
SimCP,DOk

(Xk,
⋂

j Xj , (wS)S⊆{1,...,k}):

1. Sample ĉoinsDOk
= (ŝk, π̂k), where ŝk ← Z∗p is a random element and π̂k a random permuta-

tion.

2. For S = {1, . . . , k}, set zS ← wS .

41



3. For i = k − 1 : 1, for each S ⊆ {1, . . . , k} of size |S| = i, do:

set zS ← wS −
∑S̄

T ̸=∅ zS∪T , where S̄ is the complement of S in {1, . . . , k}.

4. For each S ⊆ {1, . . . , k}, sample zS uniformly random group elements without replacement
and include them in a set Bj , for each {1, . . . , k}.

5. For each j ∈ {1, . . . , k−1}, set m̂[j, j] = π̂j(Bj), where π̂j is a uniformly random permutation.
Set m̂[k, k] = π̂k(Bk).

6. Compute Ĵj according to the intersection indices in Bj and π̂j and output (m̂[j, j], Ĵj)j∈{1,...,k}.

7. Compute m̂[1, k] = m̂[k, k]ŝ
−1
k , then m̂[2, k], . . . , m̂[k−1, k] as uniformly random lists of group

elements ĝl ← Gnmax for l ≥ 2.

8. Output
(
Xk, ĉoinsDOk

,
⋂

j Xj ; m̂[k − 1, k], m̂[k − 2, k], . . . , m̂[1, k], (m̂[j, j], Ĵj)j∈{1,...,k}

)
.

For simplicity, first assume that any element in Xk and another Xj is in the intersection (x ∈
Xk ∩ Xj =⇒ x ∈

⋂
Xj) and that there are M ≤ nmax of these elements. The view of the

corrupted parties CP and DOk in the real protocol in this simplified case includes the following
matrix: 

g gsk−1 gsk−1sk−2 . . . gsk−1sk−2···s1 gs

gr2 gr2sk−1 gr2sk−1sk−2 . . . gr2sk−1sk−2···s1 gr2s

...
...

...
...

...
grM grMsk−1 grMsk−1sk−2 . . . grMsk−1sk−2···s1 grMs

 .

Note that this is the same matrix in the proof of Theorem 6 plus an extra column which is its
predecessor raised to the corrupt party’s secret, sk. Therefore, the view of DOk is indistinguishable
from random assuming (M × k)-DDH and the view of the corrupt CP is indistinguishable from
random besides on the intersections of size zS which match. Assuming matrix DDH, the view is
indistinguishable from the real view of the corrupted parties in the protocol.

Second, assume that there is only one honest party, DO1. We construct the view of CP as above.
The messages are pseudorandom conditioned on relations in the exponents with the messages seen
by the CP. We align these dependencies as follows: first, note that m̂[2, 2] = m̂[3, 2]ŝ2 where m̂[2, 2]
is sent to the CP by DO2 and DO1 sends m̂[3, 2] to DO2 in round 2− 3 mod k = k − 1. Next, see
that m̂[3, 3] = m̂[4, 2]ŝ2ŝ3 where m̂[4, 2] is sent from DO1 to DO2 in round 2 − 4 mod k = k − 2.
Continuing this way, we see that m̂[α, α] = m̂[α+ 1, 2]ŝ2···ŝα where m̂[α+ 1, 2] is the message sent
from DO1 to DO2 in round k − (α− 1).

In other words, we set

m̂[3, 2] = m̂[2, 2]1/ŝ2

m̂[4, 2] = m̂[3, 3]1/(ŝ2ŝ3)

...

m̂[α+ 1, 2] = m̂[α, α]1/(ŝ2···ŝα)

...

m̂[1, 2] = m̂[k, k]1/(ŝ2···ŝk)
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and the rest of DO1’s messages as random elements in Gnmax . The proof follows as above (the DDH
matrix has two rows).

Finally, consider the general case where the honest parties are DO1, . . . ,DOl−1 without loss of
generality. Just as before, we construct the CP’s view as in the simulator above.

m̂[l + 1, l] = m̂[l, l]1/ŝl

m̂[l + 2, l] = m̂[l + 1, l + 1]1/(ŝlŝl+1)

...

m̂[1, l] = m̂[k, k]1/(ŝl···ŝk).

The rest proof follows as above from matrix DDH.

We now analyze the security of the private join protocol in Protocol 4 which does not return
output to the DOs (line 4* is not executed). The ideal functionality changes from the one in
Protocol 5 only by not returning

⋂
iXi to the DOs. In the security proofs, not having the intersection

as output means that neither the simulators for the DOs nor the distinguisher that has to distinguish
between the ideal distribution and the joint distribution have access to

⋂
iXi (since a coalition of

all the Data Owners is not allowed).
We note that in this case, we do not allow a coalition between the CP and any DO, since it

would reveal the intersection indices to this coalition. In more detail, when DOk and CP collude,
this coalition can look at the permuted indices which collide under the DDH encodings and the
set Xk to compute the intersection. This would be more than what the ideal functionality would
allow: only the CP gets the {wS} indices and the DOs get nothing. Hence, Theorem 8’s analog in
this case does not hold.

Theorem 9. Protocol 4 without output to the DOs is secure against a corrupted CP.

The proof of Theorem 9 follows immediately from the proof of Theorem 5, where the simulator
SimCP uses the output list of indices to construct the sets Bi in line 3, and line 5 is not executed.

Theorem 10. Protocol 4 without output to the DOs is secure against a corrupted DO assuming
(n×m)-DDH.

The proof of Theorem 10 follows immediately from the proof of Theorem 6, where the simulator
SimDOk

(Xk) is the same as the simulator in the proof of Theorem 6 but without performing step
3, and the argument for security follows the same as before by the generalized DDH problem.

Theorem 11. Protocol 4 without output to the DOs is secure against up to k − 1 colluding DOs
assuming (n×m)-DDH.

Theorem 11’s proof follows immediately from Theorem 7’s proof since the proof is the same
without the simulator’s third step (computing π̂i(Li)).

For the intermediate version, the security against a corrupted CP or against a corrupted DO (or
when multiple DOs do not collude with each other) is the same as in Theorem 9 and Theorem 10.
Since it only makes sense to tolerate up to k− 1 colluding DOs (otherwise they trivially obtain the
intersection), the implemented protocol is fully secure in the case of 2 DOs.
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However, for k > 2 and colluding DOs, there is no algorithm for constructing k lists of indices
at the CP that guarantees that, for any size of the input data sets nmax and any size of the
intersection |

⋂
iXi|, the lists of indices sent to the DOs will be such that all elements in every

pairwise intersection will be on the same positions. This means that a set of colluding DOs could
potentially learn more than allowed (i.e., what they can obtain by comparing their local data sets)
about the identifiers in the intersection, by comparing the intersections of their local identifiers with
the indices that are on the same positions in the received lists. Quantifying the size of the leaked
set is data-dependent and will be a function of the size of the intersection set, the size and the
distribution of pairwise intersections at the DOs. In other words, security against colluding DOs
can in the worst case default to Theorem 7, in the best case achieve Theorem 11, and in practice,
be in-between.

Encrypted Computations The steps of the private compute part executed after the private
join are sketched in Figure 5. After the private join, the data owners encrypt (some of) their
features records using threshold FHE and send them to the CP, which might need to first perform
computations to obtain the ciphertexts of the joined data, before proceeding with the rest of
the computation. In the first case where the DOi receives the indices Ji from CP, it encrypts
via threshold FHE the records from its database with the indices corresponding to π−1i (Ji) and
sends the ciphertext(s) to the CP. The ciphertext(s) the CP collects are already aligned. In the
second case where the DOi does not receive an output from the CP, it encrypts via FHE all of
its features records permuted by πi. The CP masks (multiplicatively via zeros-ones masks) the
received ciphertext(s) such that only the slots in the intersection, indicated by Ji, are multiplied
by ones, and the rest of the slots are multiplied by zeros. A further post-processing step is required
in order to align the ciphertexts coming from different DOs, and the CP achieves this by using
homomorphic rotations corresponding to the indices in (Jj)j∈{1,...,k}, homomorphic additions and
more homomorphic multiplicative masks. In the implemented version, the only difference from the
latter case is that the DOs send the encrypted records with indices π−1i (Ki), where Ki is the list of
indices received from the CP, and that the CP only needs to perform the multiplicative masks to
zero out the records that are not in the intersection.

Once the aligned ciphertexts are obtained, the CP proceeds with the desired computations.
When the depth of the computations is larger than the allowed depth by the parameter, the parties
will perform interactive bootstrapping: multiparty bootstrapping when the number of data owners
k > 1 and two-party bootstrapping when there is only one data owner. Finally, the CP and DOs
perform joint decryptions on the result ciphertext(s) at the CP such that the cleartext result is
obtained.

Note that in neither version of the private compute protocol, the CP does not learn any more
information about the data sets of the DOs or about their intersection, since it purely post-processes
encrypted data. The security of the combined protocol (private join and private compute) follows
from the security of private join, the semantic security of the threshold FHE scheme and the security
of the interactive bootstrapping protocols.
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Figure 5: Diagram of the private compute. The Data Owners (DOs) encrypt (using the joint
threshold FHE public key) and send their sorted data records (the sort corresponds to the index
list received from the CP in the private join protocol) to the Computation Party (CP). CP extracts
the encrypted intersection of the records and performs computations over it. The last step of the
private computation (not depicted) involves the CP decrypting the obtained encrypted result with
the help of the DOs, who hold the secret key shares.
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Table A1: Kaplan-Meier analysis results for the first 15 weeks following initial oxaliplatin treatment
for the data set of colorectal cancer patients; SD denotes survival data.

Time Patients Treated with Cannabis Patients Treated without Cannabis
(weeks) SD in the clear encrypted SD SD in the clear encrypted SD

0 0.997 0.997 1.000 1.000
1 0.985 0.985 0.990 0.99
2 0.967 0.967 0.969 0.969
3 0.952 0.952 0.962 0.962
4 0.937 0.937 0.944 0.944
5 0.922 0.922 0.916 0.916
6 0.919 0.919 0.913 0.913
7 0.907 0.907 0.885 0.885
8 0.889 0.889 0.878 0.878
9 0.88 0.880 0.868 0.868
10 0.871 0.871 0.840 0.840
11 0.862 0.862 0.826 0.826
12 0.853 0.853 0.812 0.812
13 0.841 0.841 0.801 0.801
14 0.823 0.823 0.784 0.784
15 0.802 0.802 0.774 0.774

Note that this Kaplan-Meier analysis has no clinical significance and should not be interpreted as such. The analysis was performed

solely for the purpose of testing the proposed FHE method.
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G Multiparty Setup

Although all of the computations are based on the same public data set, several different filters are
applied depending on the data owner/computation. To simplify the process, we provide the tables
that would be produced by each data owner after filtering in the clear (without any knowledge
of the second data set). The actual data on which the statistics are performed come from the
matches obtained using the private join and compute protocol. The computation is performed
using multiparty FHE ensuring the confidentiality of the information provided by each data owner.

The use case we address is when one owner has the patient/genetic data and the other owner
has the outcomes data; both parties are interested in analyzing the relative effectiveness of the
treatment. To simulate it, the reference data set data /S1_Clinical_and_Immune_Data.csv is
used to generate two data sets that represent the patient/genetic data, and the second one the
treatment outcome, called Data Owner 1 (DO1) and called Data Owner 2 (DO2), respectively.

The splitting of the data between the data owners and the fields used for each computation is
described in Table A2.
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Data sets

DO1 filters out all the rows in which any of the following attributes are not available: SUBJID, Age,
Sex, Arm. DO2 keeps only complete rows (where there are no missing values). The results corre-
spond to the data sets DO_1.csv and DO_2.csv. The number of rows for each of them are 985 and
979, respectively. The size of the intersection is 958. The column used to identify each patient is
SUBJID.

To emulate the real scenario, the rows of each data set were randomly permuted. Column
normalization was also performed and added to the corresponding table.

Additional two tables are DO_1B.csv and DO_2C.csv. The former corresponds to the cases in
which Arm is equal to NIVOLUMAB and PBRM1 equal to 1. The latter is obtained by retaining the rows
of DO2 where ORR is available. The numbers of rows in each of them are 255 and 898, respectively.

For conciseness, the following tables are introduced

• table A: inner-join of DO_1.csv and DO_2.csv of size 958

• table B: inner-join of DO_1B.csv and DO_2.csv of size 230

• table C: inner-join of DO_1.csv and DO_2C.csv of size 883

In the multiparty FHE computation, the inner-join is replaced by the private join and compute
protocol.

Computations

Table A3 shows the tables, the field(s) computed on, and the plaintext results for all computation
scenarios.
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Computation table_A table_B table_C Result

Mean age 61.279
Median age 62
Standard deviation age 10.179
Frequency 1 sex 243, 715
Frequency 2 benefit 278, 383, 297
Frequency 3 PBRM1 130, 324, 552
Frequency 4 # prior therapies 10, 559, 297, 90, 2
χ2 ORR & arm 1.062e-13
t-test 1 age & arm 0.048
t-test 2 age & ORR 0.371

KM & LR 1 OS, OS_CNSR, arm 0.001
KM & LR 2 OS, OS_CNSR, sex 0.104
KM & LR 3 PFS,PFS_CNSR, PBRM1 0.006

Log Reg target: ORR 7.287e-09
age, sex, arm 0.145

0.074
1.186e-11

Table A3: Summary of joined tables, fields the computations were performed on, and plaintext
results.

FHE Reference Abs Error Rel Error

mean 61.2787056369 61.2787056367 1.74e-10 2.83e-12
median 62.0000000000 62.0000000000 0.00e+00 0.00e+00
standard deviation 10.1793009606 10.1792993071 1.65e-06 1.62e-07

Table A4: Relative and absolute error of mean, median and standard deviation

H Accuracy of Descriptive Statistical Computations

In this section we compare the accuracty of FHE results vs results in the clear.
Since the number of multiplication levels required by the statistical computations discussed in

this section is relatively low, we use leveled FHE (without bootstrapping). All of the computations,
except the quantile (for the median) and Kaplan-Meier survival analysis, are computed as described
by the standard textbooks. Most of the computations are implemented using CKKS; the only
exceptions are the frequencies, which are implemented with BFV.

Number of prior therapies FHE Reference error

0 10 10 0
1 559 559 0
2 297 297 0
3 90 90 0
4 2 2 0

Table A5: Frequency analysis for the number of prior therapies
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Sex FHE Reference error

F 243 243 0
M 715 715 0

Table A6: Number of rows per sex

Benefit FHE Reference error

CB 278 278 0
ICB 383 383 0
NCB 297 297 0

Table A7: Number of rows per clinical benefit type

PBRM1 FHE Reference error

MUT 116 116 0
WT 304 304 0

538 538 0

Table A8: Number of rows per somatic mutation

FHE Reference Abs Error Rel Error

statistic 5.524964962e+01 5.524964951e+01 1.05e-07 1.91e-09
p-value 1.061532267e-13 1.061532324e-13 5.70e-21 5.37e-08

Table A9: Pearson’s χ2 test

FHE Reference Abs Error Rel Error

average 0 62.05655528 62.0565552700 1.26e-08 2.03e-10
average 1 60.75503357 60.7550335600 1.00e-08 1.65e-10
p-value 0.047107877 0.0471078780 3.46e-10 7.35e-09
t-score 1.988205929 1.9882059260 3.13e-09 1.57e-09

Table A10: t-test of Age by trial arm

FHE Reference Abs Error Rel Error

average 0 61.05570653 61.0557065200 1.04e-08 1.71e-10
average 1 61.87074831 61.8707483000 1.21e-08 1.95e-10
p-value 0.370745113 0.3707451140 7.63e-10 2.06e-09
t-score -0.896996543 -0.8969965410 1.44e-09 -1.60e-09

Table A11: t-test of Age by ORR groups
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Figure 6: Survival Associated with Treatment (NIVOLUMAB: arm = 1 vs EVEROLIMUS: arm
= 0). Note that there are four curves displayed, the thick ones correspond to computation in the
clear and the thin ones to the FHE case.

I Accuracy of Survival Analysis computations

Kaplan-Meier and log-rank analyses are performed for Arm and Sex for overall survivability
and PBRM1 for progression-free survival. The corresponding time & censor columns are (OS,
OS CNRS) and (PFS, PFS CNRS), respectively.

Survival 1: OS associated with Arm treatment

This section presents the Kaplan-Meier plot of survival probability per arm over time OS. The
corresponding log-rank test is subsequently presented.

Figure 6 presents two pairs of Kaplan-Meier plots. This graph depicts the superposition of the
results in the clear with lines in red and blue along with the computed using FHE, represented
with thick lines in pink and salmon.

An alternative way to examine the accuracy is to plot the FHE result as a function of the
expected result (the computation in the clear), which is illustrated in figure 7.

FHE Reference Abs Error Rel Error

χ2 10.5979814473 10.5979815589 1.12e-07 1.05e-08
p-value 0.0011321119 0.0011321118 6.84e-11 5.37e-08

Table A12: log-rank test of survival probability per arm over time OS
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Figure 7: FHE-computed survival Survival Associated with NIVOLUMAB (on the left) and
EVEROLIMUS (on the right) treatment as a function of the expected result. The maximal differ-
ences between the two curves are 2.19× 10−7 and 3.76× 10−7, respectively

Survival 2: OS associated with Sex

This section presents the Kaplan-Meier plot of survival probability per Sex over time OS. The
corresponding log-rank test is subsequently presented.

FHE Reference Abs Error Rel Error

χ2 2.6357065143 2.6357063963 1.18e-07 4.48e-08
p-value 0.1044855720 0.1044855798 7.43e-08 5.37e-08

Table A13: log-rank test of survival probability per Sex over time OS

Figure 8 presents two pairs of Kaplan-Meier plots. This graph depicts the superposition of the
results in the clear with lines in red and blue along with the computed using FHE represented
with thick lines in pink and salmon.

An alternative way to examine the accuracy is to plot the FHE result as a function of the
expected result (the computation in the clear), which is illustrated in figure 9.

Survival 3: PFS associated with PBRM1 somatic mutation

This section presents the Kaplan-Meier plot of survival probability per somatic mutation pbrm1

over time PFS. The corresponding log-rank test is subsequently presented.
Figure 10 presents two pairs of Kaplan-Meier plots. This graph depicts the superposition of

the results in the clear with lines in red and blue along with the computed using FHE represented
with thick lines in pink and salmon.

An alternative way to examine the accuracy is to plot the FHE result as a function of the
expected result (the computation in the clear), which is illustrated in figure 11.
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Figure 8: Survival Associated with Sex. Note that there are four curves displayed; the thick ones
correspond to computation in the clear and the thin ones to the FHE case.
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Figure 9: FHE-computed Survival Associated with F (on the left) and M (on the right) as a
function of the expected result. The maximal differences between the two curves are 8.39 × 10−8

and 4.76× 10−7, respectively

FHE Reference Abs Error Rel Error

χ2 7.6306513414 7.6306512305 1.11e-07 1.45e-08
p-value 0.0057384575 0.0057384579 3.53e-10 6.15e-08

Table A14: log-rank test of survival probability per pbrm1 over time PFS
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Figure 10: Survival with Somatic Mutation after immunotherapy. Note that there are four curves
displayed, the thick ones correspond to computation in the clear and the thin ones to the FHE
case.
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Figure 11: FHE-computed Survival Associated with MUT (on the left) and WT (on the right)
treatment as a function of the expected result. The maximal differences between the two curves
are 1.73× 10−8 and 2.68× 10−7, respectively
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Iters Intercept Abs Error Rel Error pvalue Abs Error Rel Error

10 -3.5605359970 0.1573837130 4.23e-02 1.74e-08 1.01e-08 1.38e+00
20 -3.6994260920 0.0184936180 4.97e-03 8.06e-09 7.70e-10 1.06e-01
30 -3.7155884840 0.0023312260 6.27e-04 7.38e-09 9.27e-11 1.27e-02
40 -3.7176235140 0.0002961960 7.97e-05 7.30e-09 1.17e-11 1.61e-03
50 -3.7178820390 0.0000377000 1.01e-05 7.29e-09 1.48e-12 2.04e-04
60 -3.7179149290 0.0000047800 1.29e-06 7.29e-09 1.89e-13 2.59e-05
70 -3.7179191140 0.0000005970 1.60e-07 7.29e-09 1.89e-14 2.60e-06
80 -3.7179196480 0.0000000621 1.67e-08 7.29e-09 2.64e-16 3.62e-08
90 -3.7179197250 0.0000000146 3.92e-09 7.29e-09 4.27e-15 5.86e-07

100 -3.7179197330 0.0000000229 6.16e-09 7.29e-09 1.46e-15 2.00e-07

Table A15: Evolution of Intercept with the number of iterations

J Logistic Regression Training

The parameters for the logistic regression are obtained by the maximization of the likelihood
function. As there is no analytic solution for it, a numerical approach is used in practice. We used
a fixed-Hessian Newton-Raphson method, which avoids matrix inversion (performs it only once at
the beginning) and does not require a tunable parameter. The fixed-Hessian method was proposed
in [11], where it was referred to as the lower-bound method, based on convergence analysis of the
Newton-Raphson algorithm.

We used the following approximation and FHE parameters:

• Sigmoid function approximation: Chebyshev polynomial of degree 64, for the range [-4,4].

• Multiplication depth: 14 levels per iteration.

– Polynomial evaluation: 8 levels.

– Matrix multiplication: 4 levels corresponding to two matrix multiplications

– Interactive bootstrapping: 1 level (performed at the end of each iteration).

– 1 level for final rescaling of the coefficients.

The FHE scheme was CKKS with at least 128 bits of security (ring dimension N = 216).

Numerical Accuracy

The tables below illustrate the performance measurements (numerical accuracy and computational)
after every 10 iterations (up to 100 iterations). For each measurement, the coefficients, p-values,
and their errors with respect to statsmodels results are provided.
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Iters Age Abs Error Rel Error pvalue Abs Error Rel Error

10 0.0132689580 0.0004115500 3.01e-02 1.53e-01 8.56e-03 5.92e-02
20 0.0136372780 0.0000432000 3.16e-03 1.45e-01 8.40e-04 5.81e-03
30 0.0136751220 0.0000053900 3.94e-04 1.45e-01 1.04e-04 7.19e-04
40 0.0136798240 0.0000006840 5.00e-05 1.45e-01 1.32e-05 9.13e-05
50 0.0136804220 0.0000000859 6.28e-06 1.45e-01 1.64e-06 1.13e-05
60 0.0136804970 0.0000000108 7.89e-07 1.45e-01 2.06e-07 1.43e-06
70 0.0136805080 0.0000000002 1.29e-08 1.45e-01 2.05e-08 1.42e-07
80 0.0136805090 0.0000000007 5.15e-08 1.45e-01 2.49e-08 1.72e-07
90 0.0136805090 0.0000000013 9.63e-08 1.45e-01 4.33e-08 3.00e-07
100 0.0136805080 0.0000000001 9.89e-09 1.45e-01 8.70e-09 6.02e-08

Table A16: Evolution of Age with the number of iterations

Iters Genter Abs Error Rel Error pvalue Abs Error Rel Error

10 -0.4061559100 0.0158741150 3.76e-02 8.13e-02 7.74e-03 1.05e-01
20 -0.4203994540 0.0016305710 3.86e-03 7.43e-02 7.25e-04 9.85e-03
30 -0.4218277280 0.0002022970 4.79e-04 7.37e-02 8.91e-05 1.21e-03
40 -0.4220043630 0.0000257000 6.08e-05 7.36e-02 1.13e-05 1.53e-04
50 -0.4220267570 0.0000032700 7.74e-06 7.36e-02 1.43e-06 1.95e-05
60 -0.4220296040 0.0000004210 9.97e-07 7.36e-02 1.87e-07 2.54e-06
70 -0.4220299680 0.0000000568 1.35e-07 7.36e-02 2.00e-08 2.72e-07
80 -0.4220300150 0.0000000099 2.34e-08 7.36e-02 2.58e-09 3.50e-08
90 -0.4220300230 0.0000000025 6.03e-09 7.36e-02 2.74e-09 3.72e-08

100 -0.4220300160 0.0000000089 2.10e-08 7.36e-02 9.45e-09 1.28e-07

Table A17: Evolution of gender with the number of iterations

Iters Arm Abs Error Rel Error pvalue Abs Error Rel Error

10 -0.4061559100 0.0158741150 3.76e-02 8.13e-02 7.74e-03 1.05e-01
20 -0.4203994540 0.0016305710 3.86e-03 7.43e-02 7.25e-04 9.85e-03
30 -0.4218277280 0.0002022970 4.79e-04 7.37e-02 8.91e-05 1.21e-03
40 -0.4220043630 0.0000257000 6.08e-05 7.36e-02 1.13e-05 1.53e-04
50 -0.4220267570 0.0000032700 7.74e-06 7.36e-02 1.43e-06 1.95e-05
60 -0.4220296040 0.0000004210 9.97e-07 7.36e-02 1.87e-07 2.54e-06
70 -0.4220299680 0.0000000568 1.35e-07 7.36e-02 2.00e-08 2.72e-07
80 -0.4220300150 0.0000000099 2.34e-08 7.36e-02 2.58e-09 3.50e-08
90 -0.4220300230 0.0000000025 6.03e-09 7.36e-02 2.74e-09 3.72e-08

100 -0.4220300160 0.0000000089 2.10e-08 7.36e-02 9.45e-09 1.28e-07

Table A18: Evolution of Arm with the number of iterations
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section.
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Approach AUC -log-likelihood sigmoid range

GLM 0.95978 0.2236 37
GLMNET 0.95976 0.2237 111

Table A19: Performance results for standard R packages

Effect of polynomial degree and range in sigmoid approximation on accuracy of
logistic regression training

We illustrate that relatively high polynomial degrees and ranges in approximating the sigmoid
function using the Chebyshev interpolation are needed to achieve satisfactory accuracy results for
logistic regression training. We use the CDC 2014 infant mortality data to perform this analysis.
We chose this data set instead of the oncological [9], in order to work with larger numbers of samples
and features, i.e., the scenarios in which logistic regression is typically used.

To prepare for the analysis, we performed the following pre-processing steps. All positive cases
were kept and an equal number of randomly selected negative cases were selected, giving a data
set of 46,594 points. From this, 80% were used for training (37,265 rows) and the remaining 20%
(9,319 rows) were used for testing. The target variable is IMORT and the independent variables
are: BWTR14, RECWT, APGAR5R, BFEDN, AB NICUN, APGAR5, CIG RECN, CA CCHDY
and BFEDU.

As a reference, we trained a logistic regression on this data using two standard R packages:
GLM and GLMNET (Table A19). We recorded the Area Under Curve (AUC), negative (-) log-
likelihood, and maximum range of the input to the sigmoid function for both cases (range for the
sigmoid function corresponds to [-range/2,range/2]).

Note that although the AUC and the negative log-likelihood are the same from the statistical
point of view, the ranges (the maximal argument that the sigmoid function may get) are significantly
different between the packages.

Next, we examined three different methods for logistic regression training for the actual sigmoid
function (without any approximation): Newton-Raphson, fixed-Hessian (what we used for the
experiments in this paper), and Nesterov Accelerated Gradient (NAG) descent (used in [31]).
The results are illustrated in Table A20. We see that while the number of iterations can vary
significantly, the AUC and negative log-likelihood are reasonably close to the results achieved with
standard packages. The parameters for the NAG method were tuned to minimize the number of
iterations for this scenario. For the stopping criteria we used the variation of the average log-
likelihood between two successive iterations becoming less than 10−4.

To determine the optimal parameters when using the fixed-Hessian approach, we generated a
grid of parameters as displayed in Figure 13. We observe that out of the 144 possible combinations,
the fixed-Hessian method converged in 79 cases, diverged in 52 and failed to reach the convergence
criterion in 13 cases. The lowest polynomial degree at which the benchmark AUC was achieved
was 32 and range was 64. The number of necessary iterations to reach the convergence criteria was
117.

The same setup was used to find the optimal parameters for the NAG method. The results are
illustrated in Figure 14. We observe that out of 144 possible combinations, the NAG iterations
converged in 74 cases, diverged in 52 and did not reach the convergence criterion in 18 cases. The
lowest polynomial degree for which the benchmark AUC was achieved was 32 and range was 128.
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Approach Number of iterations AUC -log-likelihood sigmoid range

Newton 14 0.95984 0.2234 560
Fixed-Hessian 308 0.95969 0.2328 73
NAG 124 0.95913 0.2316 125

Table A20: Performance results for three common logistic regression training methods.

The number of necessary iterations was 75 (using the same convergence criteria as the previous
case). The NAG momentum and learning rate parameters were optimized to minimize the number
of iterations.

The above analysis implies that a degree-3 polynomial approximation, such as the one used
in [31], is not expected to satisfy accuracy requirements for many practical scenarios as polynomial
degrees for other data sets may be much larger, e.g., 32 for the infant mortality data set.
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Figure 13: Results for the fixed-Hessian method with the sigmoid function approximated using a
Chebyshev interpolation. The x axis indicates the sigmoid approximation polynomial degree 2 to
512 and the y axis indicates the input range of 2 to 65,536, using powers of two in both cases. The
graph uses a color code to indicate the exit status (converged, diverged, or terminated by reaching
the maximal number of iterations), and the size of the point is related to the AUC of the resulting
model (bigger is better)
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Figure 14: Results for the NAG method with the sigmoid function approximated using a Chebyshev
interpolation. The x axis indicates the sigmoid approximation polynomial degree 2 to 512 and the
y axis indicates the input range of 2 to 65,536, using powers of two in both cases. The graph uses a
color code to indicate the exit status (converged, diverged, or terminated by reaching the maximal
number of iterations), and the size of the point is related to the AUC of the resulting model (bigger
is better)
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K Glossary of Terms

Term Definition
Biomarker A biological indicator of a normal or abnormal process, or of a condition or disease.
Chebyshev Interpolation A numerical method of approximating a (possibly non-polynomial) function using a poly-

nomial.
CheckMate x Clinical trials that compared the efficacy and safety of different cancer treatments in

patients with advanced renal cell carcinoma (RCC).
Chi-Squared Test A statistical test that can be used to determine whether there is a significant difference

between the expected and observed frequencies in one or more categories of a contingency
table.

Data Anonymization The process of removing or altering personal identifying information from data so that
individuals cannot be identified.

Exhausted Ciphertext A ciphertext that has been subjected to so many homomorphic operations that it can no
longer be used for further computation without refreshing.

Federated Collaboration
Model

A learning technique that trains a model on multiple data sets that remain on the devices
where they were collected or generated.

Fully Homomorphic En-
cryption

An encryption scheme that allows arbitrary computations to be performed on encrypted
data without decryption.

Garbled circuit A computation circuit with randomly masked inputs that can only be evaluated by an
interactive protocol among the participants without a trusted party.

Interactive Bootstrap-
ping

A technique used in multiparty fully homomorphic encryption schemes to refresh the
ciphertexts to allow further computation.

Kaplan-Meier Survival
Analysis

A non-parametric statistic used to measure the fraction of patients living for a certain
amount of time after a certain treatment.

Learning Rate A hyperparameter that is used in machine learning to control the size of the steps taken
by an optimization algorithm during the training phase.

Logistic Regression A statistical model that is used to predict the probability of a binary response variable,
such as a variable taking the values yes or no, given a set of predictor variables.

Log-Rank Test A statistical test that is used to compare the survival distributions of two or more groups.
mTor inhibitors A class of drugs that target the mammalian target of rapamycin (mTOR), a protein that

plays a role in cell growth and division.
MultiParty Computation A cryptographic technique that allows multiple parties to jointly compute a function on

their private data without revealing their individual data to each other nor to a trusted
party.

Nesterov Gradient De-
scent

An optimization algorithm that uses momentum to accelerate convergence to optimal
points and prevent getting trapped in local minima.

Nivolumab A drug that attaches to the protein PD-1 to help the immune system fight cancer cells
more effectively and it is used to treat many different types of cancer.

Objective Response Rate A measure of how well a cancer treatment works.
Oxaliplatin A chemotherapy-based medical drug.
Programmed Death 1
(PD-1)

A protein that is present on T immune cells that helps to regulate the body’s immune
responses.

Randomized Controlled
Trial

Type of scientific experiment in which participants are randomly assigned to a number
of groups. One group receives the treatment being tested, while the other groups receive
either a placebo (fake treatment) or an alternative treatment.

Renal Cell Carcinoma A common type of kidney cancer in adults.
Secret Sharing A cryptographic technique that allows a secret to be divided into multiple portions

(shares), such that only a designated number of shares are needed to reconstruct the
secret.

Single Nucleotide Poly-
morphisms

Variations in DNA that occur at specific locations in the genome.

Student’s T Test A statistical test that can be used to compare the means of two groups or populations.
Survival Analysis A statistical method for analyzing the expected time to an event. The event can be death

or disease progression.
Threshold Fully Homo-
morphic Encryption

A fully homomorphic encryption scheme that allows multiple parties to contribute en-
crypted private data for homomorphic computation, with the ability of decrypting the
ciphertext results collectively by a designated group of users.

Table A21: Glossary of terms.
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