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Abstract. The edit distance is a metric widely used in genomics to mea-
sure the similarity of two DNA chains. Motivated by privacy concerns,
we propose a 2PC protocol to compute the edit distance while preserv-
ing the privacy of the inputs. Since the edit distance algorithm can be
expressed as a mixed-circuit computation, our approach uses protocols
based on secret-sharing schemes like Tinier and SPDZ2k ; and also daBits
to perform domain conversion and edaBits to perform arithmetic com-
parisons. We modify the Wagner-Fischer edit distance algorithm, aiming
at reducing the number of rounds of the protocol, and achieve a flexible
protocol with a trade-off between rounds and multiplications. We im-
plement our proposal in the MP-SPDZ framework, and our experiments
show that it reduces the execution time respectively by 81% and 54% for
passive and active security with respect to a baseline implementation in a
LAN. The experiments also show that our protocol reduces traffic by two
orders of magnitude compared to a BMR-MASCOT implementation.
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1 Introduction

Given an alphabet of symbols Σ, the edit distance between two strings in Σ∗ is
the minimum cost of a sequence of editing operations (insertions, deletions, or
substitutions) to transform one string into the other [28]. Intuitively, the smaller
the edit distance between two strings, the more similar they are. Algorithms to
compute the edit distance have been studied for many years and the most popular
are based on dynamic programming, such as the Wagner-Fischer algorithm [29].
Such algorithms are useful in genomics, where the similarity between two gene
sequences is used in disease diagnosis and treatment [32]. On a typical scenario,
millions of reads from a subject’s DNA are compared to a reference for alignment,
with read lengths ranging from a few hundred to a few million bases [23].

Despite the benefits of computing similarities in genomic data, there are risks
that come from revealing such information. One of the main risks is called re-
identification, where a subject can be identified from its genomic data [21]. There
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are other concerns like ancestry identification, where an individual can identify
their ancestors from genomic data; and the so-called attribute disclosure attacks
via DNA, where an attacker can detect a sensible attribute about someone from
their DNA sample and a database of attribute-related samples [13].

These concerns motivate the application of privacy-preserving computation
in the following scenario: Alice and Bob are connected via a secure communica-
tion channel and each has a DNA chain represented as a list of nucleotides. They
want to compute the edit distance of both chains, but without revealing their
chain to each other. We will accomplish this task by evaluating the Wagner-
Fischer (WF) algorithm without revealing the inputs. The WF algorithm is a
dynamic programming solution to find the edit distance d(A,B) between two
chains A = (a1, . . . , an) and B = (b1, . . . , bm). The core of the algorithm is to
compute a matrixD for which the recursion holds (for 1 ≤ i ≤ n and 1 ≤ j ≤ m):

D(i, j) = min

D(i− 1, j) + 1,
D(i, j − 1) + 1,
D(i− 1, j − 1) + t(i, j)

, with t(i, j)
def
=

{
1 if ai ̸= bj

0 otherwise
.

In this algorithm, two operations have high relevance for security: (i) the
computation of t requires a secure equality test between a pair of symbols in the
chains; (ii) the computation of the minimum requires secure comparison between
integers, which in turn needs the extraction of their most significant bit.

These challenges can be solved using various cryptographic techniques. Par-
ticularly, we will focus on secure multi-party computation (MPC). In an MPC
protocol, a set of parties, each one holding part of the input of a function, want
to compute such function while preserving the privacy of the inputs. To achieve
their goal, the parties exchange messages and perform local computations. In
the end, the parties may obtain the correct result, and the messages exchanged
between them are guaranteed not to reveal any information about their inputs.

Most previous works in secure computation of edit distance employ garbled
circuits as the MPC protocol because of their good performance in bit-wise
operations [18, 12, 31]. Another class of MPC protocol based on secret-sharing
schemes (SSS) is efficient for arithmetic operations [14], but it was rarely used
for this problem [26]. Since recent advances in protocols based on SSS allow
efficient transformation between an arithmetic and a binary domain [1, 25, 14,
11], and since the WF algorithm has significant mixed computation, designing
an efficient MPC solution based on secret-sharing should be possible.

Related work. Most current and past research in secure computation of edit
distance are based on homomorphic encryption (HE) and garbled circuits (GC)
(see surveys at [12] and [22]). In the case of HE, Zheng et al. [32] propose an
architecture where the data owners outsource the computation of edit distance.
They ensure privacy by using a modified version of the Paillier cryptosystem [5],
but their protocol allows one of the parties to know the DNA chain of the other
party and compute the edit distance between blocks in the clear to improve
performance. For dynamic programming approaches, Rane and Sun [24] compute
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the minimum between three elements using HE. Cheon et al. [7] take the idea
further and compute the minimum of a list of numbers to reduce circuit depth.
However, they do not prove correctness and optimality of all their techniques, and
focus on same-length strings. We extend their strategy to solve both problems.

Another technique actively used to compute edit distance is GC, and proto-
cols derived from Yao’s GC are widely used to implement dynamic programming
approaches [12]. Jha et al. [18] is among the first works, and they use one cir-
cuit for each basic operation in the algorithm: increment, minimum, and equality
test. Further theoretical and practical work in [12, 31] improves security, memory
usage, communication complexity, and specialized hardware to increase paral-
lelism. More recently, Zhu and Huang [33] use GC to compute the edit distance
in both active and passive threat models, and claim to outperform the best pre-
vious GC-based protocols. As in our work, they consider the secure computation
of the WF algorithm and exploit the structure of the minimization problem to
find better bounds to improve performance, but they do not report performance
measurements in the actively secure setting. Other works consider an approxi-
mation version of the edit distance problem to improve performance [3].

Compared to HE and GC, protocols based on secret-sharing techniques are
less common for edit distance. Rane and Sun [24] use additive secret-sharing
alongside HE, but they do not rely on secret-sharing to perform the operations.
EPISODE by Schneider et al. [26] is the closest to our techniques. They use
ideas from [2] to compute an approximation of the edit distance using the ABY
framework [11]. ABY allows designing protocols using mixed-circuit computation
against passive adversaries, so they can compute parts of their protocol in binary
or arithmetic domains, moving secrets from one domain to another. There are
significant differences between this and our work: (i) they only consider security
against passive adversaries, while we also explore active adversaries; (ii) they
improve performance by approximating the edit distance, while we focus on the
exact problem; (iii) they consider a different security setup, aligning multiple
sequences to a publicly known reference genome.

Contributions. We propose a 2PC protocol to compute the edit distance pri-
vately. More parties are possible, but the scenario naturally suggests two parties.
We apply recently developed MPC protocols based on secret-sharing schemes
such as SPDZ2k [9] and Tinier [15], and protocols such as daBits [25] and ed-
aBits [14]. To the best of our knowledge, we are the first to propose a solution
to secure edit distance using these techniques. We divide the WF algorithm into
two parts: the preamble in charge of computing the matrix t, and the arithmetic
section to compute the matrix D. We optimize each part separately.

For the computation of t, we encode the nucleotides using a binary represen-
tation, and we propose a protocol to compute the equality test between a pair
of nucleotides through bit-wise operations using Tinier. Once we compute t, we
obtain binary shares of each possible value of the function, and we use daBits to
transform such binary shares into arithmetic shares for the arithmetic section.

For the arithmetic part, we generalize the ideas presented by Cheon et al. [7]
in two directions. First, we expand the recursions from the WF algorithm to
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compute D not as the minimum of three numbers, but of a longer list of num-
bers. This allows us to divide D into sub-boxes, such that it takes fewer rounds
to compute them. However, this strategy also increases the number of multipli-
cations and comparisons in the protocol, raising a trade-off between execution
time and communication. This trade-off is studied both theoretically and empir-
ically. For comparison, Cheon et al. consider a sub-box that matches the size of
D and focus only on equal-length chains. We generalize their work for sub-boxes
of arbitrary size, which works for DNA chains with different lengths.

As part of this generalization, we propose an algorithm to automatically
generate the equations to compute each sub-box. This algorithm arises from
representing the recursions of the WF algorithm as a graph. Using this represen-
tation, we prove both the correctness and the optimality of the generation. We
must point out that Cheon et al. use a different graphical method to compute
their own equations, for which they do not prove correctness or optimality.

We perform experimental evaluations of our method using the MP-SPDZ
framework, and analyze the performance trade-off as the size of the sub-box in-
creases. We show that our algorithm has a significant reduction in the execution
time in a LAN compared to a naive implementation of the WF algorithm. Addi-
tionally, we find that our protocol is competitive with the techniques currently
used to solve the edit distance problem, like Yao’s garbled circuits, and out-
performs techniques like HE and BMR [4]. Moreover, we empirically show that
protocols in Z2k are best-suited for our implementation and we give supporting
arguments. Our complete source code can be found in a GitHub repository3.

Organization. Section 2 covers a formal definition of edit distance, the WF
algorithm, a background on MPC and other building blocks. In Section 3, we
compute edit distance using MPC protocols based on secret-sharing and perform
complexity analysis. In Section 4, we show an algorithm based on graph theory to
obtain the minimal number of terms as parameters of the minimum function to
compute edit distance correctly. Finally, in Section 5, we present a performance
evaluation of our solution and compare it with the current state-of-the-art.

2 Preliminaries

2.1 The edit distance problem

The edit distance is the minimum-weight series of operations that transforms

one string into the other. Formally, let A
def
= (a1, . . . , an) be a string over an

alphabet Σ. We define the possible editing operations on A:

1. delete the i-th position to obtain (a1, . . . , ai−1, ai+1, . . . , an).
2. insert b ∈ Σ at position (i+ 1) to obtain (a1, . . . , ai, b, ai+1, . . . , an).
3. change position i to b ∈ Σ to obtain (a1, . . . , ai−1, b, ai+1, . . . , an).

3 https://github.com/hdvanegasm/sec-edit-distance

https://github.com/hdvanegasm/sec-edit-distance


Privacy-preserving edit distance computation using secret-sharing 2PC 5

Given A,B ∈ Σ∗, the edit distance problem consists in finding the sequence of
editing operations to transform A into B that minimizes the sum of the costs of
the operations. We assume that each editing operation costs 1, and we are only
interested in computing the minimum cost, and not in the operations.

To solve this problem, Wagner and Fischer propose a dynamic programming

algorithm [29]. Let A
def
= (a1, . . . , an) and B

def
= (b1, . . . , bm) be two strings in

Σ∗. For i ∈ [n] the set {1, 2, . . . , n}, denote the sub-string A(i) def
= (a1, a2, . . . , ai)

and the edit distance between A(i) and B(j) by D(i, j)4. The goal is thus to find
D(n,m). Wagner and Fischer propose Algorithm 1 and prove its correctness.

Algorithm 1 Edit distance algorithm

Input: two chains A = (a1, · · · , an) and B = (b1, · · · , bm).
Output: an integer value with the edit distance between the chains A and B.

1: Let t be an n×m matrix with indexes starting from one.
2: for (i, j) ∈ [n]× [m] do
3: if ai ̸= bj then t(i, j) = 1
4: else t(i, j) = 0

5: Let D be an (n+ 1)× (m+ 1) zero-initialized matrix, indexes starting from zero.
6: for i = 0 to n do D(i, 0) = i

7: for j = 0 to m do D(0, j) = j

8: for i = 1 to n do
9: for j = 1 to m do
10:

D(i, j) = min


D(i− 1, j) + 1,
D(i, j − 1) + 1,
D(i− 1, j − 1) + t(i, j)

(1)

11: return D(n,m)

2.2 Multi-party computation and secret-sharing schemes

In a secure multi-party computation (MPC) protocol, parties P1, . . . , Pn jointly
compute the value of f(x1, . . . , xn), where f is a fixed publicly known function
and Pi holds the value xi. During the computation, parties exchange messages
and perform local computations such that there is no leakage of information
about the parties’ inputs, except for the function output.

The security of an MPC protocol can be stated and proven using techniques
like universal composability (UC) [6]. One assumes the existence of an adversary
that corrupts a subset of parties. An adversary can be passive or active. In the
former, it tries to learn information from the exchanged messages but it does not
deviate from the protocol specification. In the latter, the adversary can deviate
from the protocol to obtain information about the parties’ inputs or to prevent
the honest parties from learning the correct output of the function.

4 We will occasionally replace the parentheses with a subscript for the matrices D and
t. That is, D(i, j) will be written as Di,j and t(i, j) as ti,j .
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A particular type of MPC protocols are those based on SSS, where a secret
s is split into n parts, called shares, such that any subset of at most t shares
reveal no information about s, but s can be completely reconstructed from any
set of at least t+1 shares [8]. If s is secret-shared among the parties using shares

s(1), . . . , s(n), where Pi holds s
(i), we denote this by JsK def

=
(
s(1), . . . , s(n)

)
.

Even though our edit distance solution can be instantiated in various ways5,
we concretely consider two particular SSS-based MPC protocols: SPDZ2k [9]
with algebraic domain Z2k , and Tinier [15] with algebraic domain Z2. To make
clear the domain of computation in which the shares live, we distinguish shares
of SPDZ2k from those of Tinier by respectively denoting them as JsK2k and JsK2.
Both secret-sharing schemes are linear, meaning that additions and multiplica-
tions by public constants can be done without communication. However, the
product of secret values is more involved, requiring communication among the
parties and calls to subprotocols (like Open to reveal values to other parties).
For security against active adversaries, both protocols use information-theoretic
MACs to authenticate secret-shared values.

To securely compute a function f using a protocol based on an SSS, the func-
tion is considered as an arithmetic circuit. Initially, the parties distribute shares
of their inputs. Then, using the protocols mentioned above, the parties evaluate
the circuit so that each party holds a secret-shared value of the intermediate
steps. At the end, the parties reconstruct the final result of the computation.

2.3 Domain conversions and comparisons

In our protocol for the edit distance, we need to compute two main operations
securely: domain conversion and integer comparisons. These two operations can
be done efficiently using daBits and edaBits. In the domain conversion, the goal
is to convert binary Tinier shares JxK2 into arithmetic SPDZ2k shares JxK2k ,
where x ∈ {0, 1}. For that case, we use a daBit, which is a tuple (JrK2, JrK2k),
where r ∈ Z2 is chosen at random. In [25], they propose a protocol to generate
daBits that is secure against malicious adversaries, which is improved later in [1].
We can perform a domain conversion using techniques presented in [10] which
can be adapted to the case where daBits are generated in a pre-processing phase.

To compute integer comparisons efficiently, we use edaBits. An edaBit is
a tuple of m binary secret-shared random bits (Jrm−1K2, . . . , Jr0K2) along with

shares JrK2k , such that r =
∑m−1

i=0 ri·2i. In [14], a protocol is proposed to generate
edaBits that is secure against active adversaries. Also, a protocol is presented
to compare integers using edaBits by expressing comparisons in terms of the
extraction of the most significant bit of their binary representation.

It is worth mentioning that although SPDZ2k and Tinier are different proto-
cols, they are compatible to compute domain conversions and comparisons using
daBits and edaBits. This is because the protocols used to generate such random
material model the MPC protocols as an arithmetic black box. Also, the proto-
cols to generate daBits and edaBits are independent of the methods used by the
MPC protocols based on secret-sharing schemes to authenticate shared values.

5 Any MPC protocol that implements an FedaBits functionality as described in [14].
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3 A privacy-preserving solution using secret sharing

In this section, we present an efficient strategy to compute the edit distance us-
ing an SSS-based MPC protocol. Although the strategy works for any protocol
based on linear secret-sharing schemes, we will aim at schemes whose computa-
tion domain is Z2k . We build our protocol upon MPC schemes that implement
an FedaBits functionality, thus, its security follows from the security of the under-
lying scheme. We divide the task into two distinctive parts of the Algorithm 1,
the preamble (lines 1–4), and the arithmetic part (lines 5–10).

The preamble of Algorithm 1 computes matrix t by comparing every pair
of nucleotides. We propose to compare nucleotides in an efficient way using
a binary domain. We will encode the nucleotides of a DNA chain using two
elements of Z2 as A 7→ 00, C 7→ 01, G 7→ 10, and T 7→ 11. We denote the

sharing of the nucleotide N = ⟨b0, b1⟩ ∈ Z2
2 as JNK2

def
= ⟨Jb0K2, Jb1K2⟩. We extend

the XOR operations to nucleotides N = ⟨b0, b1⟩ and N ′ = ⟨b′0, b′1⟩ by N ⊕N ′ def
=

⟨b0⊕b′0, b1⊕b′1⟩, and extend it to shares in a natural way. Notice that N = N ′ iff
N ⊕N ′ = 0. To determine if a nucleotide is zero, we use the logical OR among

its components. Denoting by S(N)
def
= b0 ∨ b1 = (b0+ b1+ b0b1) mod 2, we have

that N = N ′ iff S(N ⊕N ′) = 0. Hence, denoting by N
?
= N ′ a bit that indicates

whether N = N ′ or not, we can obtain a Boolean share of the assertion as

r
N

?
= N ′

z

2
= 1− [(Jb0K2 + Jb′0K2) + (Jb1K2 + Jb′1K2)

+ (Jb0K2 + Jb′0K2) (Jb1K2 + Jb′1K2)].

Using this approach, we can compute the matrix t using mn multiplications
in Z2. In total, we need to transmit 4nm bits through invocations of the Open
protocol. Since the computation of each entry of t is independent of all other
entries, we can compute them in parallel and the computation of the matrix only
costs one round. Once the matrix t is computed, each entry is a binary share, so
we will have to transform it to an arithmetic share for the next part.

3.1 Arithmetic part

After computing the matrix t, we use daBits to transform its entries into arith-
metic shares. For the arithmetic part, we thus assume that the parties hold
shares Jt(i, j)K2k for each index (i, j). Also, following Algorithm 1, D(i, 0) = i,
for all i ∈ [n], and D(0, j) = j, for all j ∈ [m]. Our goal is to compute shares of
the bottom-right corner of the matrix D, namely, JD(n,m)K2k .

It is possible to compute the entries of D using well-known protocols to
compute comparisons between two signed integers (c.f [10]). The problem of
this approach is the sequential dependency between the positions of the matrix.
This dependency prevents us from parallelizing the process, which increases the
number of rounds. To overcome this limitation we compute only some selected
entries of the matrix. Our approach builds upon the ideas in [7] to compute the
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edit distance using homomorphic encryption. We generalize their idea, fixing
some issues, and we apply it to secret-sharing based protocols.

Let A and B be two DNA chains with lengths n and m, respectively. The
matrix D will then have n+ 1 rows and m+ 1 columns. Applying Equation (1)
from Algorithm 1 recursively for D(i− 1, j), D(i, j− 1), and D(i− 1, j− 1), and
removing identical formulas, we obtain that D(i, j) is equal to the minimum of

D(i− 2, j) + 2, D(i− 2, j − 1) + t(i− 1, j) + 1,
D(i− 2, j − 1) + 3, D(i− 1, j − 2) + 3,
D(i− 2, j − 2) + t(i− 1, j − 1) + 2, D(i, j − 2) + 2,
D(i− 1, j − 2) + t(i, j − 1) + 1, D(i− 2, j − 1) + t(i, j) + 1,
D(i− 1, j − 2) + t(i, j) + 1, D(i− 2, j − 2) + t(i, j) + t(i− 1, j − 1).

We can then remove some redundant formulas, which can be proven to be greater
or equal to some other formula in the set. After systematically removing all of
them, we obtain that D(i, j) is equal to the minimum of the following list:

D(i− 2, j) + 2, D(i− 2, j − 1) + t(i− 1, j) + 1,
D(i− 2, j − 1) + t(i, j) + 1, D(i− 2, j − 2) + t(i− 1, j − 1) + t(i, j),
D(i, j − 2) + 2, D(i− 1, j − 2) + t(i, j − 1) + 1,
D(i− 1, j − 2) + t(i, j) + 1.

We will explain this process further in Section 4. Notice that by systematically
substituting occurrences of D(i − 1, j − 1), we completely removed it from the
equation. We can repeat recursively to write D(i, j) in terms of formulas that
include the value of positions of the matrix that lie on the border of a rectangle
inside the matrix which bottom right corner is D(i, j). More specifically and
following the notation of [7, Section 4.3], define the (τ +1)-box for D(i, j) as the
set comprised of the union of the following sets, with τ a positive integer:

T def
= {Di−τ,j−τ , Di−τ,j−τ+1, . . . , Di−τ,j} , B

def
= {Di,j−τ , Di,j−τ+1, . . . , Di,j} ,

L def
= {Di−τ,j−τ , Di−τ+1,j−τ , . . . , Di,j−τ} , R

def
= {Di−τ,j , Di−τ+1,j , . . . , Di,j} .

With these definitions, not just D(i, j) but all the elements in B ∪ R can be
written as the minimum of formulas that depend on positions in T ∪L. Figure 1a
shows the positions in the (τ +1)-box, with the sets T , R, B and L highlighted.

Continuing with the example for τ = 2 and using the new notation for the
borders of the box, we can compute positions D(i− 1, j) and D(i, j − 1) as for
D(i, j) using the following equations in terms of the positions in T ∪ L:

D(i− 1, j) = min


D(i− 2, j) + 1
D(i− 2, j − 1) + t(i− 1, j)
D(i− 2, j − 2) + t(i− 1, j − 1) + 1
D(i− 1, j − 2) + 2

, (2)

D(i, j − 1) = min


D(i, j − 2) + 1
D(i− 1, j − 2) + t(i, j − 1)
D(i− 2, j − 2) + t(i− 1, j − 1) + 1
D(i− 2, j − 1) + 2

. (3)
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(a) Positions inside a (τ + 1)-box.
(b) Division of the edit distance matrix
into boxes.

Fig. 1: Positions in a (τ +1)-box relative to D(i, j) and its use to divide the edit
distance matrix into boxes.

In [7], the authors use only one (τ +1)-box, with τ = n, to compute the edit
distance of two chains of the same length. Going beyond the ideas in [7] we leave
τ as a hyperparameter that can be specified by the user allowing a trade-off
between the number of rounds and the data sent during the secure computa-
tion. Figure 1b shows an example of the complete matrix D divided into boxes.
The green position corresponds to D(0, 0) and the blue position corresponds to
D(n,m). The light red positions are the positions that are needed to compute
the position D(n,m), and the dark red positions are the most expensive position
to compute inside each (τ + 1)-box. Our approach also allow us to compute the
edit distance between two DNA chains that do not have the same length.

To compute each minimum, we use the protocol Minq proposed in [10, 27]. It
computes the minimum of a list of q numbers in O(log2 q) ·(cr+2) rounds, where
cr is the number of rounds of a comparison. It requires q − 1 comparisons and
2q−2 multiplications. As an example, for τ = 2, we can compute securely a share
of the position D(i, j) by executing Min7 with the following list of arguments:

JD(i− 2, j)K2k + 2, JD(i− 2, j − 1)K2k + Jt(i− 1, j)K2k + 1
JD(i− 2, j − 1)K2k + Jt(i, j)K2k + 1, JD(i− 2, j − 2)K2k + Jt(i− 1, j − 1)K2k + Jt(i, j)K2k
JD(i, j − 2)K2k + 2, JD(i− 1, j − 2)K2k + Jt(i, j − 1)K2k + 1
JD(i− 1, j − 2)K + Jt(i, j)K2k + 1

The shares JD(i− 1, j)K2k and JD(i, j − 1)K2k can be written similarly fol-
lowing the Equations (2) and (3), and using the protocol Min4.

Our method traverses left-to-right and top-to-down the (τ + 1)-boxes, com-
puting, for each box, the positions in B ∪R from the positions in T ∪ L. At the
end of the protocol, the parties will hold shares JD(n,m)K2k , which is the share
of the edit distance. They can then reveal it using the Open protocol.

We analyze the complexity of the arithmetic part of the protocol, assuming
the stated complexity of the Minq functionality [27, Section 13.1.1]. In Section 4,
we will present a method to calculate the formulas in each minimum computation
and we will prove that the number of formulas in the minimum computation is
bounded by O(τ · 23τ ). Assuming that τ divides both m and n, we need to
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compute nm/τ2 boxes. Given that we need to compute 2τ − 1 positions in each
(τ +1)-box, we are required to compute nm

τ2 · (2τ − 1) positions from D in total.

Note that all the positions in B∪R within one box can be computed in parallel
since there is no dependency between them. This makes the term 2τ−1 disappear
from the round count. For two DNA chains of lengths n and m, we compute the
edit distance in O

(
nm
τ2 · (3τ + log2 τ) · (cr + 2)

)
rounds, O

(
nm
τ2 · (τ2 · 23τ − τ)

)
comparisons, and O

(
nm
τ2 · (τ2 · 23τ+1 − 2τ)

)
multiplications.

In comparison with a straightforward implementation of the arithmetic part,
we find that our method reduces the number of rounds by a factor of τ . However,
the higher the τ , the higher the number of multiplications and comparisons,
which increases the data sent in the protocol execution. This is a trade-off that
should be considered according to the specific protocol and the network speed.

4 Automatic generation of formulas for edit distance

In this section, we present an algorithm to produce a correct and minimal set
of formulas necessary to compute any positions in B ∪ R of the (τ + 1)-box in
terms of the positions in the sets T ∪ L. For example, with τ = 2, applying
Equation (1) recursively without removing any formula inside the minimum, we
obtain Equation (3.1), which contains the formulas

D(i− 2, j − 1) + t(i− 1, j) + 1 and D(i− 2, j − 1) + 3.

Since t(i− 1, j) ∈ {0, 1}, for any D(i− 2, j − 1) and t(i− 1, j), it holds that

D(i− 2, j − 1) + t(i− 1, j) + 1 ≤ D(i− 2, j − 1) + 3.

Hence, we can removeD(i−2, j−1)+3 from the set of formulas without changing
the overall result of the minimum function.

We use a directed labeled graph with colored edges to represent the direct
dependencies among the entries of the matrix D as shown in Figure 2a. The
vertices are the entries of the matrix and each edge represents the dependency
given by Equation (1), labeled by the term to add in the formula. We color an
edge black if the label is 1, and red otherwise. We will refer to the graph G
constructed in this way for a (τ + 1)-box as the dependency graph. A similar
abstraction was considered by Ukkonen in [28, Section 2] without colors.

The formulas inside a minimum to compute one entry of B ∪ R in terms of
one in T ∪ L correspond to paths in the dependency graph.

Definition 1. Let V ∈ B ∪ R, W ∈ T ∪ L and P a path from W to V . The

formula induced by P , is fP
def
= W +a, where a is the sum of all the labels of the

edges in the path P . Each formula fP will be called an unrolled formula from W
to V and the set of all such formulas will be called the set of unrolled formulas
from W to V .
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(a) Dependency graph for τ = 2. (b) Delanoy graph.

Fig. 2: Graphs used in the automatic generation of formulas.

We can compute the position V ∈ B ∪R in the matrix D as

V = min{fP | P is a path from W to V in G, ∀W ∈ T ∪ L},

which gives an equivalent representation of the unrolled formulas.

We now define the quantities that are key for removing redundant formulas.

Definition 2. Let P and Q be two paths in the dependency graph G. We define
rP,Q as the number of red edges in P that are not in Q. Also, we define bP as
the number of black edges in the path P .

The following proposition states a criterion for removing redundant formulas.

Proposition 1. Let U ∈ T ∪ L, W ∈ B ∪ R, let PU,W be the set of all paths
form U to W in a dependency graph G, and let P be any path in PU,W . We can
remove the formula induced by P from the set of unrolled formulas from U to
W without changing the overall value of the minimum, if rQ,P + bQ ≤ bP , for
some Q ∈ PU,W \ {P}.

Proof. Let P ∈ PU,W be any path, and suppose there exists someQ ∈ PU,W \{P}
such that rQ,P + bQ ≤ bP . We can write the formula induced by P as

fP
def
= DU +

∑
i

ti +

rP,Q∑
i=1

t
(P )
i + bP .

The terms denoted by ti are the red labels shared by both P and Q, and the

terms denoted by t
(P )
i are the red labels that are in P but not in Q. Similarly,

denoting by t
(Q)
i the terms that are in Q but not in P , we can write the formula

induced by Q, and it follows that:
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fQ
def
= DU +

∑
i

ti +

rQ,P∑
i=1

t
(Q)
i + bQ ≤ DU +

∑
i

ti + rQ,P + bQ

≤ DU +
∑
i

ti +

rP,Q∑
i=1

t
(P )
i + rQ,P + bQ

≤ DU +
∑
i

ti +

rP,Q∑
i=1

t
(P )
i + bP = fP .

Hence, we can remove the formula induced by P without changing the overall
value of the minimum over the set of unrolled formulas.

Using Proposition 1, we can formulate an algorithm to produce a subset of
the set of unrolled formulas for W ∈ B ∪ R without changing the result of the
minimum. The details of the algorithm are presented in Algorithm 2.

Algorithm 2 Optimal set of paths

Input: a dependency graph G, two endpoints U ∈ T ∪ L and W ∈ B ∪R.
Output: a reduced set of paths S such that the minimum over all the formulas induced
by paths in S is equal to the minimum over all the formulas induced by paths in PU,W .

1: Generate the set PU,W .
2: S ← ∅.
3: for P ∈ PU,W do
4: r ← True
5: for Q ∈ PU,W \ {P} do
6: if rQ,P + bQ ≤ bP then
7: r ← False
8: break
9: if r = True then Append P to S
10: return S

To generate the expression to compute D(i′, j′) ∈ B ∪R in a (τ +1)-box, we
run the algorithm several times, with D(i′, j′) fixed as the end point and for each
of the vertices in T ∪L as end points, and then we take the union of the resulting
formulas as argument of the minimum function. Note that when we change the
starting point of the paths, the induced formulas are not comparable, because
they depend on different entries of the matrix D that can take any value.

We prove that Algorithm 2 is optimal with respect to the following definition.

Definition 3. (Optimality). Let U,W ∈ V (G). A set S ⊆ PU,W is optimal if,
for all P ∈ S, there exists an assignment of the red variables (ti,j) such that, for
all Q ∈ S \ {P}, it holds that fP < fQ.
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Proposition 2. (Optimality of Algorithm 2). Let U,W ∈ V (G) be such that
U ∈ T ∪ L and W ∈ B ∪ R. Algorithm 2 returns an optimal set of paths S ⊆
PU,W (in the sense of Definition 3) such that the minimum over all the formulas
induced by paths in S is the same as the minimum over all the formulas in the
set of unrolled formulas from U to W .

Proof. From Proposition 1, we know that the algorithm returns a set of paths
whose induced formulas does not change the result of the minimum function. It
remains to show that this set is optimal6.

Let S ⊆ PU,W be the set of paths returned by Algorithm 2. Let P ∈ S be an
arbitrary path. We can write fP as

fP = DU +
∑
i

t
(P )
i + bP , (4)

where t
(P )
i are the labels of the red edges in P . Let us consider the following

assignment of the red variables (tk) ∈ {0, 1}∗ for the dependency graph G: if the
edge labeled as tk is in the path P , set tk = 0, and otherwise set tk = 1. Given
this assignment, it holds that

fP = DU +
∑
i

t
(P )
i + bP = DU + bP . (5)

Now, let Q ∈ S \ {P}. We can similarly expand fQ with ti being the labels of

the red edges that are in both P and Q, and t
(Q)
i the labels of the red edges that

are in Q but not in P . It follows that

fQ = DU +
∑
i

ti +

rQ,P∑
i=1

t
(Q)
i + bQ = DU + rQ,P + bQ > DU + bP = fP . (6)

The last inequality follows since both P and Q are paths returned by the al-
gorithm, when the paths P and Q were selected in the iterations, the path P
was not removed. Therefore, it holds that rQ,P + bQ > bP .This shows that the
algorithm is optimal in the sense of Definition 3. ⊓⊔

To compute an upper bound for the number of formulas generated by our
approach, we consider the graph presented in Figure 2b. This graph is similar
to the dependency graph in a (τ +1)-box, but it has some additional edges. The
number of all paths from the top-left corner to the bottom-right corner of this
graph is given by the Delanoy number [30, Definition 1.2.8]:

D(l, s) =

min{l,s}∑
i=0

(
l

i

)(
s

i

)
· 2i. (7)

6 We will not consider here the case |PU,W | = 1, since Algorithm 2 returns the only
path in PU,W , which is trivial. Henceforth, we will consider only |PU,W | > 1. The
case PU,W = ∅ is also not considered due to the definition of optimality.
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This is an upper bound on the number of paths from the top-left corner to the
bottom-right corner of the dependency graph because the dependency graph is
a subgraph of the graph in Figure 2b. Since the number of paths is maximum for
bottom-right corner of the box, it follows that an upper bound for the number
of formulas inside the minimum function to compute D(i, j) in a (τ + 1)-box is

τ∑
k=1

[D(τ, τ − k) +D(τ − k, τ)] +D(τ, τ). (8)

Furthermore, it can be proven that

τ∑
k=1

[D(τ, τ − k) +D(τ − k, τ)] +D(τ, τ) = O(τ · 23τ ). (9)

5 Experiments

We now evaluate the performance of our private edit-distance solution. All the
experiments were implemented in the MP-SPDZ framework [19] and were exe-
cuted on a single AWS EC2 instance of type c6a.4xlarge7, which has an AMD
EPYC 7R13 Processor with 16 virtual cores and 32 GB of RAM. Some of the
experiments were run without network limitation, so the communication speed
is close to running the processes in the same machine. In order to measure the
impact of the network, we simulate a local area network (LAN) architecture with
1.6 GBps of bandwidth and 0.3 milliseconds of latency, using the tc8 command
from the Linux operating system. For all of our experiments, we consider a bit-
length of 16, which allows 16-bit integer computations. We select such number of
bits because the edit distance between two chains of length n is upper-bounded
by n. Hence, 16 bits is the least number of bits multiple of 8 that allows us to rep-
resent the integer numbers needed for the computation. Additional results can
be found in the full version of the paper available on the IACR ePrint Archive.

We also compared the performance of the computation of the preamble in a
binary domain with respect to a traditional implementation using an arithmetic
domain. For two DNA chains of length 1,000, using Semi2k for passive security,
it reduces the data sent by approximately 18.68%, and using SPDZ2k for active
security, it reduces the data sent by approximately 18.48%. These are percentages
of the total data sent of the whole algorithm, including the arithmetic part.

We compared the performance of our solution on a field-domain protocol
and a ring-domain protocol. For the ring-domain, we use SPDZ2k which has
active security, and Semi2k as its corresponding passive secure version. For the
field-domain, we use MASCOT [20] to guarantee active security and Semi as its
corresponding passive secure version. As an example, on a 1020 long DNA-chain
Semi2k sends 85% less data than Semi and SPDZ2k sends 86% less data than

7 https://aws.amazon.com/ec2/instance-types/c6a/
8 https://man7.org/linux/man-pages/man8/tc.8.html

https://aws.amazon.com/ec2/instance-types/c6a/
https://man7.org/linux/man-pages/man8/tc.8.html
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MASCOT.9 This improvement is explained by the advantages of Z2k protocols
to perform operations like truncations and reductions modulo 2k.

5.1 The Effect of the Box Size, τ

As we saw in Section 3.1, the size of the (τ+1)-box affects the number of rounds,
multiplications, and comparisons. We evaluate this trade-off by measuring data
sent and the execution time of the protocol. We tested for DNA chains of length
1,020, on the passively secure protocol Semi2k and on the actively secure one
SPDZ2k . We execute each protocol for τ ∈ {1, 2, 3, 4, 5}. We report performance
of the whole protocol (including pre-processing) and of the online phase alone.

Table 1 and Figure 3a present the results. Since MPC protocols are sensitive
to the network speed, we repeated the box size experiments simulating a LAN
network as discussed at the beginning of this section. Table 2 shows the results of
the LAN experiments and Figure 3b the corresponding graphical representation.

Table 1: Effect of changing τ on our solution without any network limitations.

Preprocessing+online Online phase only

Security τ Data [MB] Time [s] Data [MB] Time [s]

Passive
(Semi2k)

1 1,214.0 389.5 54.4 338.0
2 1,794.3 186.1 60.7 144.2
3 2,641.2 113.3 78.9 97.2
4 4,207.0 154.6 106.7 90.4
5 7,110.3 172.0 167.6 83.6

Active
(SPDZ2k )

1 166,629 3,114.9 695.5 821.4
2 241,689 3,407.9 348.8 391.3
3 350,062 4,474.0 309.9 285.5
4 551,783 6,366.6 389.3 275.8
5 924,881 9,665.0 546.4 269.7

The results confirm the analysis in Section 3. The number of rounds de-
creases as an inverse linear function of τ , while the number of multiplications
increases exponentially as a function of τ . The execution time is thus the sum
of two functions of τ , an inverse linear induced by the number of rounds, and
an exponential induced by the number of multiplications. The specific constants
depend on the protocol and on the network, and they affect differently the of-
fline and the online phase. For example, for the actively secure protocol, if we
consider the offline phase (Figure 3a), the exponential term dominates the ex-
ecution time, suggesting no benefit for increasing τ . However, looking only at
the online phase (Figure 3a), as τ increases, the execution time decreases and
eventually seems to flatten. The effect of the rounds in the total time is even

9 All these experiments use daBits and edaBits and box-size τ = 3.
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Fig. 3: Effect of the box size τ .

Table 2: Effect of τ on our solution on a LAN.

Preprocessing+online Online phase only

Security τ Data [MB] Time [s] Data[MB] Time[s]

Passive
(Semi2k)

1 1,214.0 9,941.0 54.4 9,923.5
2 1,794.3 3,891.9 60.7 3,837.8
3 2,641.2 2,429.5 78.9 2,342.2
4 4,207.0 2,155.8 106.7 2,008.3
5 7,110.3 1,813.7 167.6 1,552.7

Active
(SPDZ2k )

1 166,629 22,552.1 695.5 18,298.5
2 241,689 11,925.8 348.8 7,044.2
3 350,062 10,300.2 309.9 4,300.1
4 551,783 12,474.0 389.3 3,689.2
5 924,881 16,482.1 546.4 2,864.7

more acute for the passively secure protocol (Figure 3a), where the execution
time first decreases and then increases with an optimal value on τ = 3. This is
because multiplications are relatively cheap for such protocol, yet we expect the
graph to eventually increase because the effect of the exponential part induced
by the number of multiplications dominates asymptotically. The positive effect
of increasing τ is also enhanced on a slower network, as shown on the simulated
LAN results in Figure 3b.

Considering both the online and offline phases together, selecting the best
value of τ for the passive and active security setting in the LAN configuration
respectively reduces the execution time by 81% and 54% in comparison with a
baseline implementation using τ = 1.
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5.2 Comparison between garbled circuits and secret-sharing

We compare the performance of our implementation using garbled circuits and
using protocols based on secret-sharing schemes with Z2k domain. Due to the
constraints of the AWS EC2 instance, we use DNA chains of length 210 for this
experiment. As previously, we use a bit-length of 16 and we consider both a
network with no limitations and a simulated LAN. We set τ = 1 for garbled
circuits and τ = 3 for the protocols based on secret-sharing schemes, because
garbled circuits have better performance when τ = 1, as observed in a prelim-
inary exploration. As τ increases, the number of formulas inside the minimum
function grows exponentially and the number of addition gates increases too,
which is specially costly for GC-based protocols.

Table 3 presents the results of the experiment. Notice that the secret-sharing
based protocols perform better than the GC protocols regarding the data sent.
In particular, they send approximately 67-99% less data than the GC protocols.
This is due to the high number of arithmetic operations of the algorithm, which
implies a high number of gates to garble and send through the network.

For passively secure protocols, the higher data sent of the GC protocols is
compensated by their constant-round communication. This can be observed in
the similar execution time without network limitations, and even more acutely
in the faster execution on LAN.

Table 3: Performance of our solution using GC and SSS-based protocols.

Network Security Protocol Time [s] Data sent [MB]

No limit
Passive

Yao’s GC 2.6 345.8

Semi2k 4.9 113.1

Active
BMR-MASCOT 5,968.6 2.09× 106

SPDZ2k 140.1 14,893.8

LAN
Passive

Yao’s GC 2.7 345.8

Semi2k 103.0 113.1

Active
BMR-MASCOT 9, 034.0 2.09× 106

SPDZ2k 368.5 14,893.8

For actively secure protocols, GC is one order of magnitude slower than the
protocols based on secret-sharing schemes, and the former sends two orders of
magnitude more data than the latter. This can be explained by the edit distance
algorithm and by the mechanism to provide active security in BMR10. The edit
distance algorithm has a heavy arithmetic component and many additions that
require AND gates. In the case of BMR, the underlying MPC protocol to com-
pute the offline phase is MASCOT [20], which uses MACs to ensure security

10 Although there are other alternatives for actively secure GC protocols, we choose
BMR because it is the only available GC-based protocol for malicious adversaries in
MP-SDPZ. This allows us to make comparisons in the same “ground”.
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against malicious adversaries. So, garbling an AND gate needs to compute mul-
tiplications with the assistance of MASCOT which requires the generation of
multiplication triples and puts an additional overhead. This overhead does not
appear in protocols based on secret-sharing schemes because additions do not
need communication.

5.3 Comparison with protocols based on homomorphic encryption

We compare the results of our experiments with a relevant homomorphic encryp-
tion (HE) solution. In [7], Cheon et al consider experiments with DNA chains
of length 8 at 80 bits of security. According to the results in Table 6 in that pa-
per, their method spends 27.54 seconds on key generation and 16.45 seconds on
encryption on an Intel Xeon i7 2.3GHz, 192GB. In their report, they state that
it takes 27.5 seconds to obtain the edit distance using the Halevi-Shoup library
(HElib) [17] along with the techniques presented in [16]. In our case, considering
both the pre-processing and the online phase on a LAN, using τ = 2, we can
compute the edit distance of two chains of length 8 in 0.3 seconds using Semi2k

protocol for passive security and in 5.92 seconds using the SPDZ2k protocol for
active security. Furthermore, Cheon et al. estimate that their method for DNA
chains of length 100 with a security parameter of 62 bits, computes the edit
distance in 1 day and 5 hours. Our method computes the edit distance of two
chains of length 100 in 96.69 seconds on a LAN using the SPDZ2k protocol. In
terms of security, a 62 bits for HE is insufficient for the current recommended
security levels in cryptography.

6 Conclusion

We presented an MPC approach based on secret sharing to securely compute
the edit distance via the Wagner-Fischer algorithm. Our method leverages the
equations in the algorithm to compute selected positions of the edit distance
matrix as minimum of several integers. This modification reduces the number of
rounds but increases the number of multiplications and comparisons, inducing a
performance trade-off. Using graph theory, we develop an algorithm to automat-
ically generate all the equations needed to compute the required positions in the
matrix. We prove that the algorithm returns correct and optimal equations. Our
solution is competitive with GC-based solutions on a passive security model, and
much faster if active security is required, demonstrating the effectiveness of the
secret-sharing approach for bit-wise computations.

We identify two research problems for future work. The first is to find an op-
timal box size, given environment parameters such as bandwidth, latency, chain
lengths, and local computational power. The second is to generalize the graph
theory techniques from Section 4 to other dynamic programming problems.
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