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Abstract. Shadow is a lightweight block cipher proposed at IEEE IoT
journal 2021. Shadow’s main design principle is adopting a variant 4-
branch Feistel structure in order to provide a fast diffusion rate. We
define such a structure as Shadow structure and prove that it is al-
most identical to the Generalized Feistel Network, which invalidates the
design principle. Moreover, we give a structural distinguisher that can
distinguish Shadow structure from random permutation with only two
plaintext/ciphertext pairs. By exploiting the key schedule, the distin-
guisher can be extended to key recovery attack with only one plain-
text/ciphertext pair. Furthermore, by considering Shadow’s round func-
tion, only certain forms of monomials can appear in the ciphertext, re-
sulting in an integral distinguisher of four plaintext/ciphertext pairs.
Even more, the algebraic degree does not increase more than 12 for
Shadow-32 and 20 for Shadow-64 regardless of rounds used. Our results
show that Shadow is highly vulnerable to algebraic attacks, and that
algebraic attacks should be carefully considered when designing ciphers
with AND, rotation, and XOR operations.
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1 Introduction

The rapid advancement of digital technology and the internet has ushered in the
era of the Internet of Things (IoT), where various devices are interconnected and
interact with each other. In this IoT environment, security issues are becoming
increasingly important as wireless communication and data exchange become
prevalent. Additionally, traditional encryption techniques are facing challenges
due to their heavy processing tasks and high costs, making them less efficient.
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In response to this situation, numerous lightweight block ciphers are gaining
attention. Lightweight block ciphers offers high security with minimal resources,
ensuring efficient processing speed and low energy consumption compared to
conventional encryption techniques. As a result, it has become even more crit-
ical in the IoT environment to maintain security while efficiently managing re-
sources. A variety of lightweight block ciphers, such as Midori[1], PRESENT[5],
HIGHT[14], GIFT[2], SIMON and SPECK[3], LEA[13], SKINNY[4], PIPO[16],
PRINCE[6], LED[11], have been introduced in the literature and Shadow[12] is
one of them.

Shadow is a lightweight block cipher whose round function consists of AND,
Rotation, and XOR (AND-RX) operations. Shadow uses a variant of the general-
ized Feistel structure and the designers claim that their new logical combination
method of AND-RX operations improves the diffusion rate of AND-RX ciphers.

A well-designed symmetric-key cipher should appear in a large number of
monomials and have a high algebraic degree. Failure to do so makes it vulnerable
to algebraic attacks using Gröbner basis[9], XL algorithms[8], as well as higher-
order differential attacks [17], interpolation attacks [15], cube attacks [10]. In
general, algebraic degree of block size increases with the number of rounds,
reaching a maximum degree of (block size−1) in a given round. The complexity
of an algebraic attack is usually calculated with the assumption that all possible
monomials can appear, so the complexity of the attack increases exponentially
as the degree increases, making the attacks impossible. An upper bound of the
algebraic degree of a block cipher can be computed based on [7].

1.1 Our Contribution

1. Structural Distinguisher for Shadow Structure. We define a Shadow
structure (Figure 1 in Appendix A) which is a generalization of Shadow by
replacing the AND-RX update function (Figure 2 in Appendix A) to an
arbitrary function F . We then show that the Shadow structure is almost
equivalent to the 4-branch Generalized Feistel Network by transforming it,
and shows that Shadow’s main design principle for fast diffusion does not
work and even allows a full-round5 distinguisher. The structural distinguisher
can distinguish Shadow structure from random permutation with only two
plaintext/ciphertext pairs. The distinguisher can be extended to low data key
recovery attack that only needs one plaintext/ciphertext pair by exploiting
the key schedule.

2. Algebraic Weakness on Shadow. Considering Shadow’s AND-RX struc-
ture update function, we prove that only certain forms of monomials can
appear in ciphertext, leading to a very weak algebraic property. This allows
us to find a low data integral distinguisher that only needs four ciphertexts.
Also we theoretically computed upper bounds of the algebraic degree for

5 In this distinguisher, the number of rounds is irrelevant. Therefore, the distiguisher
works for any number of rounds.
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full-round Shadow-32 and Shadow-64; 12 (≤ 31) and 20 (≤ 63), respectively.
This means that the full-round ciphers have the algebraic degree much less
than (block size− 1) giving algebraic weakness. All of the above results are
experimentally verified and especially, the evaluation result that the alge-
braic degree of full-round Shadow-32 can reach up to 12 shows that the
upper bound on the algebraic degree is tight.

1.2 Organization

Section 2 introduces block cipher Shadow, Shadow structure, and notations
needed. In Section 3, we give a structural distinguisher and extend it to key
recovery attacks by exploiting the key schedule. In Section 4, we show the al-
gebraic weakness of Shadow, present integral distinguisher, and provide upper
bound of algebraic degree of shadow. We conclude the paper in Section 5

2 Preliminary

This chapter introduces the block cipher Shadow and defines the Shadow struc-
ture.

2.1 Boolean Functions and Vectorial Boolean Functions

A Boolean function f on n variables is a function from Fn
2 to F2. f can be

represented by a polynomial on n variables over F2, called algebraic normal
form(ANF). The algebraic degree of f ,denoted by deg(f), is defined as the
degree of its ANF. f is called linear if deg(f) ≤ 1. A (m,n)-vectorial Boolean
function F is a function from Fm

2 to Fn
2 and algebraic degree of F is defined

as the highest degree of its coordinates. For vectorial Boolean function F =
(f0, f1, ..., fn−1), G = (g0, g1, ..., gn−1), we write F |G if there exist a Boolean
function hi s.t hifi = gi for all 0 ≤ i < n

2.2 Cube Attack

let k = (k1, ..., kn) and v = (v1, ..., vm) be a n secret variable and m public
variables, respectively. Then each bit of symmetric-key cryptosystem can be
represented as Boolean function f(k, v) . In our case, k will denote masterkey
of block cipher and v will denote plaintext and f(k, v) will denote each bit of
ciphertext.

Let a set of public variables I = {vi1 , vi1 , ..., vid} be a set of cube variables.
Then f(k, v) can be rewritten as

f(k, v) = tI · pI(k, v)⊕ qI(k, v)

where tI =
∏

v∈I v and pI does not contain any variable in I, and each term in
qI is not divisible by tI .
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Let CI , which is referred as a cube, be a set of 2|I| values where variables in
I are taking all possible combinations of values, and all remaining variables are
fixed to some arbitrary vales. Then following equation holds.⊕

(vi1 ,vi1 ,...,vid )∈{0,1}d

f(k, v) = pI(k, v)

We will mainly use the fact that if f(x, v) does not contain a multiple of tI ,
then p(x, v) = 0 which is usually called integral distinguisher.

2.3 Notations

& : bitwise AND (can be omitted)

⊕ : bitwise XOR

Sj(x) : j-bit left rotation of x

SI(x) :=
∏
j∈I

Sj(x)

x[n] : n-th bit of x (counted from 0)

2.4 Specification of Block Cipher Shadow

Shadow is a block cipher suggested in [12] which is based on variant of 4-branch
generalized Feistel structure. Shadow-32 uses 32-bit block size and 64-bit key,
and Shadow-64 uses 64-bit block size and 128-bit key. Round number (RN) is
16 and 32, respectively.

Shadow Structure Before defining block cipher Shadow, we first define the
Shadow structure (Figure 1 in Appendix A) that restricts the Shadow’s update
function to an arbitrary function F . For round key K0,K1,K2,K3 ∈ {0, 1}n and
update function F : {0, 1}n → {0, 1}n, Round function for Shadow structure is
R0 ◦R1 where

R0, R1 : {0, 1}n×4 → {0, 1}n×4

R0(A,B,C,D) = (B ⊕ F (A)⊕K0, B,D ⊕ F (C)⊕K1, C)

R1(A,B,C,D) = (C,B ⊕ F (A)⊕K2, A,D ⊕ F (C)⊕K3)

We define the input of the i-round R0, R1 as Li−1
0 ∥Li−1

1 ∥Ri−1
0 ∥Ri−1

1 and
M i−1

0 ∥M i−1
1 ∥N i−1

0 ∥N i−1
1 , divided into four n-bit branches, respectively. We also

define i-round roundkey for R0,R1 as Ki−1
L ,Ki−1

R and Ki−1
M ,Ki−1

N respectively.
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Block Cipher Shadow Shadow uses the AND-RX update function F (x) =
Sa(x)&Sb(x) ⊕ Sc(x) where a = 1, b = 7, c = 2 and n = 8 for Shadow-32 and
n = 16 for Shadow-64 (Figure 2 in Appendix A). Shadow-32 and Shadow-64 use
generator 1 and generator 2 as their key schedules respectively and consist of
Addroundconstant, NX, and permutation. Masterkey K is represented by
k0∥k1∥k2∥ · · · ∥k62∥k63 or k0∥k1∥ · · · ∥k126∥k127 and the round number r is used as
the round constant and are represented by c0∥c1∥c2∥c3∥c4 or c0∥c1∥c2∥c3∥c4∥c5.

1. generator 1
Round function of generator 1 consist of the following operations and uses
the upper 32 bits after the round function as the round key.

(a) Addroundconstant
Addroundconstant XORs 5-bit k3∥k4∥k5∥k6∥k7 with round constant
c0∥c1∥c2∥c3∥c4.

(b) NX
NX is an operation applied to 8-bit k56∥k57∥ · · · ∥k62∥k63 and is repre-
sented as follows.

k′56 = k56&(k56 ⊕ k62)

k′57 = k57&(k57 ⊕ k63)

k′58 = k58&(k58 ⊕ k56 ⊕ k62)

k′59 = k59&(k59 ⊕ k57 ⊕ k63)

k′60 = k60&(k60 ⊕ k58 ⊕ k56 ⊕ k62)

k′61 = k61&(k61 ⊕ k59 ⊕ k57 ⊕ k63)

k′62 = k62&(k62 ⊕ k60 ⊕ k58 ⊕ k56 ⊕ k62)

k′63 = k63&(k63 ⊕ k61 ⊕ k59 ⊕ k57 ⊕ k63)

(c) permutation
This operation is the permutation according to Table 4 in Appendix A.

2. generator 2 Round function of generator 2 consists of the following opera-
tions and uses the upper 64 bits after the round function as the round key.

(a) Addroundconstant
Addroundconstant XORs 6-bit k2∥k3∥k4∥k5∥k6∥k7 with round constant
c0∥c1∥c2∥c3∥c4∥c5.

(b) NX
NX is an operation applied to 24-bit k104∥k105∥ · · · ∥k126∥k127 and is
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represented as follows.

k′104 = k104&(k104 ⊕ k126)

k′105 = k105&(k105 ⊕ k127)

k′106 = k106&(k106 ⊕ k104 ⊕ k126)

k′107 = k107&(k107 ⊕ k105 ⊕ k127)

k′108 = k108&(k108 ⊕ k106 ⊕ k104 ⊕ k126)

k′109 = k109&(k109 ⊕ k107 ⊕ k105 ⊕ k127)

k′110 = k110&(k110 ⊕ k108 ⊕ k106 ⊕ k104 ⊕ k126)

...

k′127 = k127&(k127 ⊕ k125 ⊕ k123 ⊕ · · · ⊕ k105 ⊕ k127)

(c) permutation
This operation is the permutation according to Table 5 in Appendix A.

3 Structural Attack on Shadow Structure

3.1 Practical Distinguisher of Shadow Structure with Probability 1

Shadow’s encryption function can be re-expressed as (R0 ◦ R1)n = R0 ◦ (R1 ◦
R0)n−1 ◦R1. If we expand R1 ◦R0, we get

R1 ◦R0(M i
0,M

i
1, N

i
0, N

i
1) = (M i

1 ⊕ F (M i
0)⊕ F (N i

0)⊕Ki+1
L ⊕

Ki
M , N i

0, N
i
1 ⊕ F (M i

0)⊕ f(N i
0)⊕Ki+1

R ⊕Ki
N ,M i

0) (1)

Thus, contrary to the author’s claim that using two F functions per round
in both directions makes fast diffusion, Shadow structure is just a branch per-
mutation of the GFN type 2 except for the first and last rounds. We can also
see from the equality (1) that

M i+1
0 ⊕N i+1

0 = M i
1 ⊕N i

1 ⊕Ki
M ⊕Ki

N ⊕Ki+1
L ⊕Ki+1

R

M i+1
1 ⊕N i+1

1 = M i
0 ⊕N i

0 (2)

Applying the equality (2) iteratively, we get

M i
i−1 mod 2 ⊕N i

i−1 mod 2 = M0
1 ⊕N0

1 ⊕Ai

M i
i mod 2 ⊕N i

i mod 2 = M0
0 ⊕N0

0 ⊕Bi

where Ai =

⌊(i−1)/2⌋∑
j=0

K2j
M ⊕K2j

N ⊕K2j+1
L ⊕K2j+1

R

and Bi =

⌊i/2⌋∑
j=1

K2j−1
M ⊕K2j−1

N ⊕K2j
L ⊕K2j

R (3)
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Substituting the equality 3 for L,R, we get following equalities.

Li
0 ⊕Ri

0 ⊕ L0
0 ⊕R0

0 = Ai if i is even,

Li
0 ⊕Ri

0 ⊕ F (L0
0)⊕ F (R0

0)⊕ L0
1 ⊕R0

1 = Bi ⊕K0
L ⊕K0

R (4)

Li
1 ⊕Ri

1 ⊕ F (Li
0)⊕ F (Ri

0)⊕ L0
0 ⊕R0

0 = Ai ⊕Ki−1
M ⊕Ki−1

N if i is odd,

Li
1 ⊕Ri

1 ⊕ L0
1 ⊕R0

1 ⊕ F (Li
0)⊕ F (Ri

0)⊕ F (L0
0)⊕ F (R0

0)

= Bi ⊕K0
L ⊕K0

R ⊕Ki−1
M ⊕Ki−1

N (5)

Thus, given only 2 plaintext and ciphertext pairs, we can distinguish a ran-
dom permutation from a Shadow structure with advantage 1−2−2n by checking
that the left-hand side of the equation (4) or (5) matches according to the par-
ity of i. However, even if we guess the round keys of the first or last rounds,
right-side of the equation (4) or (5) only gives us the information of sum of the
round keys. So it is not trivial to extend the above distinguisher to key recovery
attacks.

3.2 Key recovery Attack on Shadow Structure

If the keyschedule is known, the master key can be recovered with only sin-
gle ciphertext/plaintext pair by first filtering out possible keys based on the
keyschedule, and then exhaustively searching the remaining keys. The attack
Procedure and its complexity is as follows(k denotes the length of masterkey).

1. checking keyschedule Compute the right-hand side of the equation (4)
or (5) through the given ciphertext/plaintext pair. Then filter out only the
master keys that can generate it. There are two ways to filter out the master
key depending on the (non-)linearity of the keyschedule.

(a) nonlinear keyschedule
Just bruteforce the masterkey on the keyschedule. If we define the com-
plexity of computing a keyschedule once as Cks, the complexity is Cks×
2k.

(b) linear keyschedule
Represent the right-side of the equation (4) or (5) as an equation of the
master key, and solve the equation. Since the complexity of solving linear
equations is relatively negligible, we ignore this complexity.

2. Bruteforce remaining masterkeys Since the expected number of remain-
ing masterkey is 2k−2n, the complexity is Cenc× 2k−2n if we define the com-
plexity of one encryption as Cenc

If Cenc ≫ Cks, which is the majority case, we can recover masterkey with
lower complexity than exhaustive search. In particular, if the keyschedule is
linear, we can recover the master key with much low complexity Cenc × 2k−2n.
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4 Algebraic Weakness on Shadow

Shadow ciphers have the additional weakness that only certain forms of mono-
mials can appear on the ANF of ciphertext due to the AND-RX structure of
F function. In this chapter, we present a theoretical proof and experimental re-
sults for this. Throughout this chapter, we assume that key is fixed and regard
each branch as a vectorial Boolean function of plaintext only. Also, we assume
that n = 16 and a, b are odd, which coincides to the parameter of Shadow-32.
However, n can be easily generalized to any even number.

4.1 Possible Monomials on Shadow

Define X0 and X1 as follows

X0 = M0
0 ⊕N0

0

X1 = M0
1 ⊕N0

1

By modifying the equality (2), we can get following equation

M i
0 ⊕N i

0 = Xi mod 2 ⊕ Ci

(6)

where Ci =

{
Bi if i is even

Ai if i is odd
.

Using the equality (6), we can expand first element of equality (1) as follows.

M i+1
0 ⊕Ki+1

L ⊕Ki
M

= f(M i
0)⊕ f(N i

0)⊕M i
1

= Sa(M i
0)S

b(M i
0)⊕ Sa(N i

0)S
b(N i

0)⊕ Sc(M i
0)⊕ Sc(N i

0)⊕M i
1

= Sa(M i
0)S

b(M i
0)⊕ Sa(Xi mod 2 ⊕M i

0 ⊕ Ci)Sb(Xi mod 2 ⊕M i
0 ⊕ Ci)

⊕ Sc(Xi mod 2 ⊕ Ci)⊕N i−1
0

= Sa(M i
0)S

b(Xi mod 2)⊕ Sa(Xi mod 2)S
b(M i

0)⊕ Sa(Ci)Sb(M i
0)

⊕ Sa(M i
0)S

a(Ci)⊕M i−1
0 ⊕ Sa(Xi mod 2)S

b(Ximod 2)⊕ Sa(Ci)Sb(Xi mod 2)

⊕ Sa(Xi mod 2)S
a(Ci)⊕ Sc(Xi mod 2)

⊕Xi−1 mod 2 ⊕ Sa(Ci)Sb(Ci)⊕ Sc(Ci)⊕ Ci−1 (7)

Note that we can make similar equality for M i
0.
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Theorem 1. Let

P0 = {l&S{0,2,4,6}(X0)S
{1,3,5,7}(X1) : l is linear over M

0
0 , N

0
0 ,M

0
1 , N

0
1 }

P1 = {l&S{1,3,5,7}(X0)S
{0,2,4,6}(X1) : l is linear over M

0
0 , N

0
0 ,M

0
1 , N

0
1 }

and define

span(S) := {
k∑

i=1

λi&vi : k ∈ N, vi ∈ S, λi ∈ Fn
2},

where S is a set of (m,n-vectorial Boolean functions), and

L(S) := span({p : ∃s ∈ S s.t p|s}),

where S is a set of vectorial Boolean functions. Then M i
0, N

i
0 ∈ L(Pi mod 2) if

a, b are odd.

Proof. without loss of generality, we will prove for M i
0. First we define following

two properties.

1. interchangeability : Sa, Sb will move the elements of Pi to Pi+1 mod 2

2. closedness : L(Pi) is closed for the multiplication of Sa(Xi+1 mod 2) and

Sb(Xi+1 mod 2) since a, b are both odd

Based on the above properties, our proof proceeds with mathematical induc-

tion.

1. Base condition(i = 0) Trivially holds since M0
0 itself is linear.

2. Base condition(i = 1) Holds if we put i = 0 on the equality (7)

3. Inductive Step Assume that hypothesis holds for i ≤ k. Then for i = k+1,

it is enough to show that every term in (7) are in L(Pk+1 mod 2).

(a) Sa(Mk
0 )S

b(Xk mod 2) and Sa(Xk mod 2)S
b(Mk

0 )

By induction hypothesis Mk
0 ∈ L(Pk mod 2) and thus both term are in

L(Pk+1 mod 2) by the closedness and interchangeability.

(b) Sa(Ck)Sa(Mk
0 ) and Sa(Mk

0 )S
a(Ck)

By induction hypothesis Mk
0 ∈ L(Pk mod 2). Thus both terms are in

L(Pk+1 mod 2) since Ck is constant and interchangeability.

(c) Mk−1
0

Mk−1
0 ∈ L(Pk+1 mod 2) by the induction hypothesis

(d) Sa(Xk mod 2)S
b(Xk mod 2)

Sa(Xk mod 2)S
b(Xk mod 2) ∈ L(Pk+1 mod 2) since Sa(Xk mod 2) is a lin-

ear term.
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(e) extra terms

They are all in L(Pk+1 mod 2) since they are all linear or constant term.

■
From theorem 1, we can see the vulnerability that only elements of L(P0) or

L(P1) can appear on the ciphertext. This vulnerability allows us to derive the
following low data integral distinguisher.

Corollary 1. For even r, e0, e1 and odd o, Lr
0[o] does not contain L0

1[e0]L
0
1[e1]

or it’s multiples. Therefore for a cube variables I = {L0
1[e0], L

0
1[e1]},⊕

CI

Lr
0[o] = 0

i.e, I forms a integral distinguisher

Proof. By Theorem 1, Lr
0 = Nr−1

0 ∈ L(P1) and remember that

P1 = {l&S{1,3,5,7}(X0)S
{0,2,4,6}(X1) : l is linear over M

0
0 , N

0
0 ,M

0
1 , N

0
1 }

X0 = N0
0 ⊕M0

0 = L0
1 ⊕R0

1 ⊕ F (L0
0)⊕ F (R0

0)⊕K0
L ⊕K0

R

X1 = N0
1 ⊕M0

1 = L0
0 ⊕R0

0

Therefore except the arbitrary linear term l, L0
1 can only lies on

S1(X0)S
3(X0)S

5(X0)S
7(X0). Since a, b are both odd, the odd bits of L0

1 cannot

affect the odd bits of S1(X0)S
3(X0)S

5(X0)S
7(X0). Thus, even if we consider l,

L0
r does not include L0

1[e0]L
0
1[e1] and its multiples. Other cases when the parity

of the round and cube indices is changed are listed in Table 1.

■

Table 1. Cube variables with integral bits

Round Cube variables for L0
1, R

0
1 Integral bits for Lr

0, R
r
0

even any two even bits odd

even any two odd bits even

odd any two even bits even

odd any two odd bits odd

From theorem 1, we can also derive the non-trivial upper bound of algebraic
degree for each branch of Shadow.
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Corollary 2. For arbitrary round r, upper bound of algebraic degree of each
branch can computed as follows if a, b are odd.

deg(Lr
0), deg(R

r
0) ≤ 2 + deg(S{1,3,5,7}(X0)S

{0,2,4,6}(X1))

deg(Lr
1), deg(R

r
1) ≤ 4 + deg(S{1,3,5,7}(X0)S

{0,2,4,6}(X1))

Proof. We will assume that r is even and give proofs for Lr
0, L

r
1. Other cases can

also be proved similarly.

1. proof for Lr
0

By Theorem 1, Lr
0 = Nr−1

0 ∈ L(Pr−1 mod 2) = P1. Thus

deg(Lr
0) ≤ deg(l&S{1,3,5,7}(X0)S

{0,2,4,6}(X1))

≤ deg(l) + deg(S{1,3,5,7}(X0)S
{0,2,4,6}(X1))

≤ 2 + deg(S{1,3,5,7}(X0)S
{0,2,4,6}(X1))

Note that deg(l) = 2 since we consider it as a variable of L0
0, L

0
1, R

0
0, R

0
1.

2. proof for Lr
1

since

Lr
1 = Mr−1

1 ⊕ F (Mr−1
0 )⊕Kr−1

L

= Nr−2
0 ⊕ Sa(Mr−1

0 )Sb(Mr−1
0 )⊕ Sc(Mr−1

0 )⊕Kr−1
L

We will compute the upper bound of degree part by part.

(a) deg(Nr−2
0 )

since Nr−2
0 ∈ L(Pr mod 2) = P0,

deg(Nr−2
0 ) ≤ 2 + deg(S{0,2,4,6}(X0)S

{1,3,5,7}(X1))

= 2 + deg(S{1,3,5,7}(X0)S
{0,2,4,6}(X1))

(b) deg(Sa(Mr−1
0 )Sb(Mr−1

0 ))

since Mr−1
0 ∈ L(P1),

Sa(Mr−1
0 )Sb(Mr−1

0 ) ∈ L({l1l2&S{1,3,5,7}(X0)S
{0,2,4,6}(X1) : l1, l2

are linear over M0
0 , N

0
0 ,M

0
1 , N

0
1 })

→ deg(Sa(Mr−1
0 )Sb(Mr−1

0 ) ≤ deg(l1l2) + deg(S{1,3,5,7}(X0)S
{0,2,4,6}(X1))

≤ 4 + deg(S{1,3,5,7}(X0)S
{0,2,4,6}(X1))
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Table 2. upper bound of algebraic degree for each branch of Shadow-32,64.

Block size
Upper bound of algebraic degree

Lr
0 Lr

1 Rr
0 Rr

1

32 10∗ 12∗ 10∗ 12∗

64 18 20 18 20
∗ means bound is tight

(c) deg(Sc(Mr−1
0 ))

since Sc(Mr−1
0 ) ∈ L(Pc+1 mod 2),

deg(Sc(Mr−1
0 )) ≤ 2 + deg(S{1,3,5,7}(X0)S

{0,2,4,6}(X1))

in summary,

deg(Lr
1) ≤ max(deg(Nr−2

0 ), deg(Sa(Mr−1
0 )Sb(Mr−1

0 )), deg(Sc(Mr−1
0 ))

≤ 4 + deg(S{1,3,5,7}(X0)S
{0,2,4,6}(X1))

■

4.2 Results and Experimental Verification

Shadow-32 We computed each cubesum corresponding to Corollary 1 and
checked the validity. Also, We computed the upper bound of algebraic degree
according to Corollary 1. The results are given in table 2. Table 3 shows the
maximum algebraic degree each round of Shadow-32 computed experimentally.
From round 8, the degree stops growing at 10,12, showing that the upper bound
of Corollary 2 is tight.

Shadow-64 We also computed the upper bound algebraic degree for Shadow-
64. Since n = 16 for Shadow-64, Corollary 2 should be modified as follows.

deg(Lr
0), deg(R

r
0) ≤ 2 + deg(S{1,3,5,7,9,11,13,15}(X0)S

{0,2,4,6,8,10,12,14}(X1))

deg(Lr
1), deg(R

r
1) ≤ 4 + deg(S{1,3,5,7,9,11,13,15}(X0)S

{0,2,4,6,8,10,12,14}(X1))

The result is also given in table 2.

4.3 On the Key Recovery Attack

Through the above analysis, we confirmed that Shadow has an algebraic vul-
nerability and attempted a key recovery attack using the integral distinguisher
of corollary 1 and guessing the first or last round key. However, due to the ex-
istence of distinguishers in all rounds, the equality of the corollary holds for
all guessed keys, making the key recovery attack impossible. We leave the key
recovery attack as a future work.
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Table 3. Experimental result of algebraic degree of Shadow-32 for each branch

Round(r)
Maximum algebraic degree

Lr
0 Lr

1 Rr
0 Rr

1

1 2 3 2 3

2 3 6 3 6

3 4 8 4 8

4 6 11 6 11

5 7 11 7 11

6 8 12 8 12

7 9 12 9 12

8 10 12 10 12

9 10 12 10 12

10 10 12 10 12

11 10 12 10 12

12 10 12 10 12

13 10 12 10 12

5 Conclusion

In this paper, we define the Shadow structure, a generalization of Shadow, and
show that the structure is almost equivalent to the 4-branch Gerenalized Feis-
tel Network. Moreover, we give a low data structural distinguisher that can
distinguish Shadow structure from random permutation with only two plain-
text/ciphertext pairs. The distinguisher can be extended to key recovery attack
with only one plaintext/ciphertext pair by exploiting the key schedule. We also
prove that Shadow’s AND-RX update function leads to an algebraic weakness
that only certain forms of monomials appear. Based on that, we show that there
is an integral distinguisher of cube size 2 and that algebraic degree cannot in-
crease beyond 12 for Shadow-32 and 20 for Shadow-64, regardless of the number
of rounds. These strong algebraic vulnerabilities are thought to be due to the
cancellation of higher-order monomials, and must be considered carefully when
designing AND-RX structured ciphers. Since these properties are not easily iden-
tified at first glance, we would like to highlight that they might be negatively
used as a backdoor for a block cipher.
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A Appendix

Table 4. Permutation for generator 1

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 56 57 58 59 16 17 18 19 20 21 22 23 24 25 26 27

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 60 61 62 63 28 29 30 31 32 33 34 35 36 37 38 39

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i) 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P (i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Table 5. Permutation for generator 2

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 104 105 106 107 32 33 34 35 36 37 38 39 40 41 42 43

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 108 109 110 111 44 45 46 47 48 49 50 51 52 53 54 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i) 112 113 114 115 48 49 50 51 52 53 54 55 56 57 58 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P (i) 116 117 118 119 60 61 62 63 64 65 66 67 68 69 70 71

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

P (i) 120 121 122 123 80 81 82 83 84 85 86 87 88 89 90 91

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

P (i) 124 125 126 127 92 93 94 95 96 97 98 99 100 101 102 103

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

P (i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

P (i) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Fig. 1. Shadow Structure
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