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Abstract. Homomorphic encryption (HE) allows for computations over
ciphertexts while they are encrypted. Because of this, HE supports the
outsourcing of computation on private data. Due to the additional risks
caused by data outsourcing, the ability to recover from losses is essen-
tial, but doing so on data encrypted under an HE scheme introduces
additional challenges for recovery and usability. This work introduces X-
Cipher, which aims to make HE ciphertexts resilient by ensuring they
are private and recoverable simultaneously at all stages during data out-
sourcing. X-Cipher allows data recovery without requiring the decryption
of HE ciphertexts and maintains its ability to recover and keep data pri-
vate when a cluster server has been compromised. X-Cipher allows for
reduced ciphertext storage overhead by introducing novel encoding and
leveraging previously introduced ciphertext packing. X-Cipher’s capabil-
ities were evaluated on a synthetic dataset to demonstrate that X-Cipher
enables secure availability capabilities while enabling privacy-preserving
outsourced computations.

Keywords: Homomorphic Encryption · Data Recovery · Applied Cryp-
tography.

1 Introduction

Outsourcing data or computations to the Cloud has become a trend for the
private sector, governments, and non-profits. In 2020, corporations spent 32%
of their IT budget on Cloud services [15]. Despite this, privacy concerns have
limited use of Cloud resources to operate on sensitive (e.g., health and financial
data). To address this concern, Homomorphic Encryption (HE) can produce
ciphertexts that can undergo computations without decryption. After Gentry’s
initial work, several schemes were introduced to support partially homomorphic
schemes (limited additions or multiplications) to fully homomorphic schemes
(addition and multiplication).

In addition to privacy concerns when outsourcing data, there is also a con-
cern about data corruption and loss. Data replication was widely exercised for
fault tolerance in distributed data storage systems [12], but the cost of main-
taining exact replicas or data chunks dramatically increased. Today’s Cloud
systems have moved towards adapting erasure codes to reduce the storage over-
head [8,14]. These systems typically apply the erasure codes over user-supplied
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data. When outsourcing homomorphically encrypted ciphertexts, the erasure
codes are produced at the ciphertext level. This introduces two new problems.
First, HE ciphertexts are malleable by design [3]; thus, codewords generated
through conventional methods must be updated after any computation – even
if the underlying plaintext data is unchanged. Secondly, the overhead induced
by erasure codes is proportional to the size of the input data. Due to the ci-
phertext expansion in fully homomorphic schemes, applying erasure codes over
these ciphertexts will significantly increase the size of the generated codewords,
increasing both the storage and operational overhead.

To combat this problem, one approach is to make use of Encrypt-with-
Redundancy (EwR) [1], which combines an encryption scheme with erasure
codes. However, existing solutions have drawbacks when applying EwR with
HE ciphertexts. For instance, some prior work either assumes the ciphertexts
are stored and not operated on [26], or the system requires only partial homo-
morphic operations [28,20,6]. Although partial homomorphic encryption schemes
(such as Paillier [21]) are effective for systems tasked with data aggregation or
systems equipped with modular multiplication ALUs [28], they are not applica-
ble for a variety of cloud computing operations. In addition, they do not sup-
port optimizations available in fully homomorphic schemes (discussed further in
Sec. 2.1).

To address these challenges, we propose X-Cipher: a system to enable recov-
ery of homomorphic ciphertexts without requiring decryption. X-Cipher lever-
ages an erasure code called X-Code [17] to generate codewords, which can be
subsequently used to recover from data losses. Furthermore, X-Cipher employs
encoding and packing techniques to reduce the storage overhead of storing era-
sure codes. To our knowledge, no previous works have leveraged erasure codes
and HE in the same manner as X-Cipher to provide these security guarantees
together while minimizing storage overhead and maintaining recoverability and
privacy guarantees throughout desired operations on a cloud server.

2 Background

2.1 Homomorphic Encryption

Homomorphic Encryption (HE) describes a class of encryption schemes that en-
ables computations over ciphertexts. Computation under HE produces a cipher-
text that decrypts to the same result obtained when operating on the plaintext
inputs. Modern HE schemes are classified as partially homomorphic (supports
one of addition or multiplication), somewhat homomorphic (supporting addition
and a limited number of multiplications), and fully homomorphic (supporting
addition and multiplications). Our proposed solutions are designed on the BGV
HE scheme [5], a fully homomorphic encryption scheme bases its security on the
Ring-LWE (Learning-with-Error) problem [19]:

Ring-LWE: Given a modulus q, assume elements a and s are obtained by
sampling polynomial ring Rq = Zq[x]/(Φ(X)). Assume noise e is sampled from a
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Gaussian distribution (χ). Given (a, s, e) and b obtained by b = as+ e, the value
b is computationally indistinguishable from elements randomly sampled from Rq.

Given the underlying hardness from Ring-LWE, the following set of probabilistic-
polynomial-time BGV algorithms are significant to X-Cipher:
- BGV.KeyGen() −→ (pk, sk): Assume plaintext modulus t and ciphertext modulus
q establish ppolynomial rings Rt = Zt[x]/(Φ(x)) and Rq = Zq[x]/(Φ(x)),
respectively. Uniformly sample a ← Rq, s ← Rq, and e ← χ. Given these
elements, set the secret key as sk = s and the public key as pk = (b, a) with
b = −as+ te (mod q) according to the Ring-LWE assumption.

- BGV.Enc(pk,m) −→ c: Given a plaintext message m ∈ Rt, a public key pk =
(b, a), uniformly sample a random r ← χ and errors e0, e1 ← χ. Encrypt the
message m as c = (c0, c1) ∈ R2

q where c0 = rb+m+ te0 and c1 = ra+ te1.
- BGV.Dec(sk, c) −→ m: Given a ciphertext c = (c0, c1) ∈ R2

q sk, set s′ = (1, sk) ∈
R2
q and decrypt by computing m = (〈c, s′〉 mod q) mod t.

- BGV.Add(c, c′) −→ cadd: Adding two ciphertexts c = (c0, c1), c′ = (c′0, c
′
1) results

in cadd = (c0 + c′0, c1 + c′1) ∈ R2
q .

- BGV.Mult(c, c′) −→ c̃mult: Given two ciphertexts c and c′ ∈ R2
q , their homo-

morphic multiplication yields an extended ciphertext c̃mult = (c̃0, c̃1, c̃2) that
is encrypted under the element s2.

- BGV.Relinearize(c̃mult) −→ cmult: Given a long ciphertext c̃mult obtained
from multiplication, perform a relinearization step to change ciphertext from
an encryption of s2 to s. Due to the lack of space, we refer readers to [5] for
further details of this algorithm.
In general, homomorphically encrypted ciphertexts are large due to com-

plex lattice elements. Due to this significant ciphertext expansion, HE has been
considered impractical for many applications. To address this problem, the ci-
phertext packing technique [4] was introduced. This allows for encoding multiple
plaintext messages into one polynomial and encrypting a plaintext polynomial
into a single ciphertext. Compared to individually encrypting each plaintext
message for the same amount of plaintext values, ciphertext packing reduces
the number of required ciphertexts. It also speeds up the homomorphic com-
putations because operations are performed on plaintext values simultaneously
in an element-wise and SIMD (Single-Instruction-Multiple-Data) manner [27].
X-Cipher utilizes ciphertext packing for these efficiency gains.

Given a vector of plaintext values M = {m0, ..,mk−1}; k ≤ d and a polyno-
mial ring Rt of degree d, ciphertext packing encodes all plaintext values into a
single polynomial that is expanded from Φ(x) to its roots [27] using the Chinese
Remainder Theorem (CRT). This method assumes Φ(x) of degree d can be fac-
torized into exactly r polynomials of degree k; such that, Φ(x) :=

∏r
i=1 Φi(x).

Because Φ(x) and Φi(x) are isomorphic, operations performed on them achieve
the same effect [27]. Given this property, each plaintext message mi ∈M can be
encoded into an arbitrary polynomial f(x) (mod Φi(x)). The plaintext capacity
of these polynomials is referred to as the slot count (%). With packing, a %-length
plaintext vector can be encrypted into a single ciphertext.
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Fig. 1: An example of X-Code setup (n = 5).

The CRT-based ciphertext packing technique allows useful homomorphic op-
erations on ciphertexts, such as element-wise addition/multiplication, shifting,
and rotation. Element-wise addition and multiplication are somewhat straight-
forward, but shifting and rotation are not due to changing the order of data in the
plaintext vector. Rotation and shifting is possible by modifying the polynomial
[11]. Each slot in a packed ciphertext holds a polynomial f(x) (mod Φi(x)). Ro-
tation and shifting can take place by modifying x with xα for some exponent α. A
new polynomial f (α)(x) = f(xα) (mod Φi(x)) will have all the same coefficients
as f(x) but at different slot locations; this technique is called automorphism.
X-Cipher makes use of rotation and shifting for its recovery algorithm.

2.2 Erasure Codes

Erasure codes are used to achieve fault tolerance ability in systems [22]. As an
alternate solution to data replication, erasure codes require less storage over-
head. The codewords generated from an erasure code are less than the original
data symbols in size and can be used with partial data to regenerate any lost
data. Reed-Solomon codes [24] is a widely used code for detecting and correcting
erasures in data storage [26]. The Reed-Solomon codes use Galois Field GF (2w)
multiplication and maintain a Vandermonde matrix. This solution would drasti-
cally increase the computational overhead for homomorphically encrypted data
that expands beyond the size of unencrypted plaintext. Erasure codes based on
RAID-6 algorithms [23] provide dual-parity and require only the XOR opera-
tions. This style of code can be computationally efficient and easily implemented
homomorphically. As demonstrated in Sec. 2.1, XOR for binary integers is simply
addition, which is an efficient homomorphic operation.

Our work is based on X-Code [17], which can recover up to two full columns
erasures in an n×n structure where n is a prime. Figure 1 shows an example of an
X-Code setup with n=5. As illustrated, data symbols di,j are organized into the
first n− 2 rows of the structure, and codewords pi,j make up the final two rows;
where i is row, j is column. In X-Code, both data symbols and codewords are in
Z2. Codewords in the last two rows are generated by XOR-ing (or homomorphi-
cally adding) data symbols along the diagonal that connects them, as illustrated
in Fig. 1. These diagonals have slopes ±1 and cross each other when overlayed,
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Fig. 2: System Model: User (U) outsources its encrypted dataset to a Cloud
Evaluator (E) for computations.

hence the name X-Code. For diagonals with slope=+1, each codeword pn−2,j in
the (n−2)-th row is computed by pn−2,j =

∑n−3
k=0 dk,(j−k−2%n). For the example

in Fig. 1, we calculate the first codeword in the first row as p3,0 = d2,1⊕d1,2⊕d0,3.
Likewise, each codeword along the diagonals with slope=−1, pn−1,j in the (n−1)-
th row is computed by pn−1,j =

∑n−3
k=0 dk,(j+k+2%n). In X-Code, each data sym-

bol is cross-checked by exactly two codewords. Hence, it can recover up to two
full-column losses.

2.3 System and Threat Model

System Model: X-Cipher assumes a data and computation outsourcing setup,
as illustrated in Fig. 2 in which a user U wants to delegate a private dataset
D to a cloud evaluator E for outsourced computations (e.g, document analysis,
machine learning). Modern distributed filesystems [12,8] typically allow users to
divide the dataset into multiple partitions, D = {d1, ..,d`} and store these data
partitions into a set of available chunk servers assigned by the master, as shown
in Fig. 2. The user homomorphically encrypts these data partitions: given a
public key pk, cj = Enc(pk, dj); dj ∈ di, before sending them to the cloud eval-
uator. Clients interact with the Controller for metadata operations but with
the chunk servers directly for data operations [12]. Leveraging the capability of
homomorphic encryption, the cloud evaluator will perform the requested compu-
tations while data stays encrypted. X-Cipher proposes methods to recover from
losses of homomorphically encrypted ciphertext. In addition, we design example
homomorphic algorithms to demonstrate how computing tasks can be securely
evaluated while maintaining recoverability.

Threat Model: In this work, we consider an adversary (A) who is primarily
motivated to affect the operational capacity of a chunk server. Therefore, they
take actions to shut down the server or make it fail, leading to data loss. If A
cannot cause the server to fail, they act in a semi-honest manner until they can
cause the server to fail. Therefore, while the server is operating, A aims to leak
information about the data while following the protocol specification. They can
only learn about the data by observing stages of the computation (as input,
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Table 1: Notation Table
Symbol Description Symbol Description
U , E User and Cloud Evaluator σ Codewords of erasure codes

a, a, A, Ai, ai Element, vector, matrix, submatrix, i-th column n Dimension of each X-Code block; prime, n× n
ci ∈ c The i-th ciphertext in a collection c m Multiples of X-Code blocks
(pk, sk) Public and secret keys for HE ω Slope in X-Code, where ω = ±1

[·] HE encrypted data; or as c interchangeably θ Number of ciphertext rotation
% Plaintext slot count Ξ A vector acting as mask; Ξ ∈ {0, 1}`

intermediate results, and outputs). With the information it observes, A aims to
leak data or learn the secret key (sk).

3 X-Cipher

Figure 3 shows an overview of the X-Cipher phases, and common notation used
for the remaining sections are shown in Table 1. At the base of our X-Cipher de-
sign is X-Code, as introduced in Sec. 2.2. The original X-Code scheme [17] was de-
signed for storing bits; thus, the codewords were calculated with simple XOR-ing.
X-Cipher design can inherit this setting (arithmetic modulo prime 2), and it gen-
eralizes the scheme to support integer arithmetic modulo a prime p. This change
from Z2 to Zp allows our X-Cipher to store more information per data cell and al-
lows for a more general solution that can be applied to various applications. Quite
simply, X-Cipher uses of addition and subtraction to replace XOR-ing when cal-
culating the codewords and recovering from loss, respectively. These arithmetic
operations map to homomorphic addition and subtraction over ciphertexts for
efficient evaluation and allow codeword generation and data recovery to stay the
same. For all codewords along the slope ω = +1 as example, they can still be
computed by pn−2,j =

∑n−3
k=0 dk,(j−k−2 (mod n)). Recovering any lost data in the

general setting is achieved by subtraction. For instance, recovering dr,c connected
to pn−2,j is completed by dr,c = pn−2,j −

∑n−2
k=0,k 6=r dk,(j−k−2 (mod n)). Another

important characteristic to be maintained is the maximum distance separable
(MDS) property of X-Code. Xu et al. [17] presents an extensive proof of how the
original X-Code achieves the MDS property. The MDS property is dependent
upon the dimension of the array n being a prime number and is independent of
the data within the array. Because of this, the integer space changing from Z2

to Zp does not affect the MDS property.
Once the X-Cipher structure is instantiated, the first n−2 rows are filled with

plaintext data and the last two rows are filled with codewords. Then, the n× n
structure is partitioned into columns di; i = (0, .., n − 1), encrypt each column
into a ciphertext ci = Enc(pk,di) using the packing techniques described in
Sec. 2.1. Then, each packed and encrypted column ci is distributed to chunk
servers so that each chunk server csi stores ciphertext ci, as illustrated in Fig. 2.

Packing n elements along the column into one ciphertext improves space effi-
ciency and allows element-wise operations to be carried out in a SIMD manner.
However, there are two observations regarding spatial efficiency. First, the ratio
of codewords to data is 2

n−2 which decreases as n increases. Because the X-Code
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Fig. 3: Tasks by U and E during each phase with X-Cipher

structure is a square, increasing the value of n increases the data rows (packed
ciphertext slots) and the number of columns (ciphertexts). Consequently, rep-
resenting the data in an unmodified X-Code structure will require more cipher-
texts; thus, more servers will be needed to store the distributed ciphertexts as
the total data increases. This can cause a problem because more data pieces
distributed over a network not only increases the storage cost but also incurs
high data movement overheads when recovery and integrity checking occurs.
Secondly, if n is small, additional chunk servers and extra ciphertexts no longer
support the X-Code structure; consequently, only n of the plaintext slots within
the packed ciphertext are utilized. Ideally, the number of plaintext slots should
be maximized for efficiency. In this scenario, the number of plaintext slots will
likely be significantly underutilized since there are typically thousands of slots
for properly selected set of security parameters.

Given these observations, X-Cipher’s internal structure comprises one larger
vertical rectangle structure abstracted asm copies of the n×n X-Code structures
stacking on each other, as illustrated in Fig. 4. Each of these n × n X-Code
structures can store different data and codewords. This design allows us to reduce
the codewords-to-data ratio and to increase the utilization of the plaintext slots
in the packed ciphertext without increasing the number of chunk servers. In X-
Cipher, the value of n is a fixed value and depends on the number of chunk servers
to be used for storing the packed ciphertext ci. The value of m is determined by
the total number of plaintext slots dividing n.

3.1 Setup Phase:

To initiate X-Cipher, the user instantiates the BGV HE scheme by selecting the
initial parameters. Firstly, the plaintext modulus t is selected, and it should be
greater than the maximum individual value in the dataset. Next, the plaintext
slot count % is calculated, which determines the number of plaintext integers
packed into a single ciphertext. These parameters are then used to generate the
keys.

Next, the value of n must be selected. In X-Cipher, the upper limit of n is
based on the total chunk servers that are available/required. There are some
additional constraints on n based on the data structure. First, X-Code requires
that n is both a prime number and n > 3 [17]. Next, the slot count % and
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n determine the number of copies m of the n × n X-Code structures that are
required; that is m = %

n . A matrix D is split it into a set of column vectors di for
distributed storage and parallel tasks. Hence, the user must select the smallest n
such that ||di|| ≥ m ·n. The dimensions of X-Cipher are (m×n, n), as illustrated
in Fig. 4.

The U then encodes the data into the structure. For multidimensional data,
the data is flattened by applying a dimension reduction technique that is most
suitable for the intended computations. Figure 5 illustrates four different dimen-
sion reduction techniques (also referred to as space-filling curves [10]). Users can
use any dimension-reduction technique to convert their data into vectors. After
reducing the dimension of the input data into a set of one-dimensional vectors,
X-Cipher treats the data as a stream, and the data is encoded into the X-Cipher
structure in a column-major fashion. Data is filled into every n − 2 row within
each of the n× n X-Code blocks, skipping the last two rows of each block since
they are reserved for codewords computed based on the filled data.

Finally, the n columns of partitioned data vectors are encrypted, and the
ciphertexts {ci} are uploaded to E , which stores them among its n chunk servers.
After this, each chunk server is ready to perform homomorphic computations.

3.2 Recovery Phase:

The X-Cipher structure is reassembled before the recovery starts by collecting
the distributed ciphertexts from the remaining online chunk servers. Recovery
in X-Cipher can be performed similarly to X-Code since the data in the un-
derlying column structure is preserved in the packed ciphertexts. As illustrated
in Fig. 1, recovering lost data requires computation on data along the same
slope line. Since homomorphic ciphertexts operate on their underlying vectors
using component-wise operations, transformation is required before the recov-
ery operations to align data associated with the same codewords within each
n ciphertexts. To complete recovery, data aligned diagonally in the plaintext
structure must be aligned horizontally in ciphertext (i.e., aligned in the same
plaintext slot). This alignment is achieved by performing homomorphic rotation
on ciphertexts.

Associated data and codewords are illustrated in Fig. 6 (a)(b) with the same
colored diagonal line. In this Figure, the last two rows are for codewords; each
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Algorithm 1: Column rotation, RotCols(c, ω).
Input : c := {c0, ...cn}, ω := {+1,−1}
Output: c := {cω0 , ...c

ω
n}

for i ∈ [0, n) do
if ω = +1 then

θup = n− 1− i . Calculate rotation count;
else if ω = −1 then

θup = i
θdown = n− θup . Calculate rotation count for the other half;
Ξtop = {0, 1}m×n, Ξtop[i] = 1; i (mod n) < θup,
Ξbottom = {0, 1}m×n, Ξbottom[i] = 1; i (mod n) ≥ θup,
cωbottom = rotate(ci ·Ξbottom,−1 · θup)
cωtop = rotate(ci ·Ξtop, θdown)
ci = cωtop + cωbottom . Reassemble the ciphertext;

end

Fig. 6: Column rotation aligns sloped (colored) lines.

subfigure corresponds to one of the two slopes ((a) ω = +1, (b) ω = −1). The
effect of rotation is demonstrated in both in Fig. 6(a)(b). The BGV rotation
action (rotate) moves data within the ciphertext along its plaintext slots. One
left rotation moves the first data element to the last slot. Hence, directly rotating
to ciphertexts will be incorrect: the X-Code block boundaries will be violated.

To address this problem, the X-Cipher algorithm RotCols rotates columns
for data recovery. Algorithm 1 shows steps of this function, which complete
extraction by masking and swapping. The effect of RotCols on one column is
demonstrated in Fig. 6 (c). The algorithm extracts the values to be rotated
(highlighted with solid color) by applying a mask Ξtop and the rest of the val-
ues by another mask Ξbottom, and then rotate them into position by calculat-
ing cωtop =rotate(ci · Ξtop,−1 · θup) where θup = 1 and cωbottom =rotate(ci ·
Ξbottom, θdown) where θdown = n − 1. Both Ξtop and Ξbottom are plaintext
vectors that have the dimension ρ and have values set to 1 at the appropriate
indexes. Finally, the two ciphertexts are combined ci = cωtop+ c

ω
bottom to produce

the rotated column.
X-Cipher can recover up to two failed chunk servers (two columns). For il-

lustration, Alg. 2 shows steps to recover from losing one column. To recover the
lost column, the column rotation (Alg. 1) transforms the input according to two
slope configurations, as shown in Fig. 6. Next, recovery computations take place
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Algorithm 2: One-Column Recovery.
Input : Lost column index idx, remaining columns c = {ci}n−1 for i ∈ [0, n) s.t. i 6= idx
Output: Recovered Column cidx
for i ∈ [0, n), i 6= idx do

for j ∈ [0,m× n) do
u[j]← 1 if cid[j] is σ OR if cid,j is data & ci,j is σω=+1

u[j]← 0 if ci,j is σω=−1

u[j]← −1 if cid,j is data & ci,j is σω=+1

end
cid += u · ci

end
RotCols(c, ω = 1, d = 1) RotCols(c, ω = −1, d = −1)
RotCols(cid, ω = 1, d = 1) RotCols(cid, ω = −1)
for i ∈ [0, n), i 6= id do

for j ∈ [0,m× n) do
u[j]← 1 if cid,j is σω=−1

u[j]← 0 if else
end
cid += u · ci

end

Fig. 7: Illustration of one column recovery.

on the two resulting structures. The shaded cells contain codewords calculated
by the other slope line configuration and are not in use. For example, when slope
ω = +1, the shaded cells refer to the ω = −1 configuration codewords; thus, they
are ignored since they are unused by the ω = +1 configuration.

To elaborate on the recovery process, assume column (ciphertext) c0 is lost,
as illustrated by Fig. 7 (Step 1). Column rotation for slope ω = +1 occurs and
results in Step 2. Then n− 1 cells are recovered. A lost data cell is recovered by
subtracting the remaining data from the codeword. This can be made efficient by
constructing a mask u for each column and homomorphically accumulating the
masked columns. The correct sign in the bit mask is based on what is required
for the cell: 1 to add a data cell, −1 to subtract a codeword, or 0 to ignore. All
rows can be updated simultaneously with a vector-wise addition, as shown in
(Step 3).

To recover the last cell c0,n−1, a column rotation si performed for slope
ω = −1 to get a transformed structure shown in (Step 4). The same masking
and accumulation process is performed to recover the final cell. After computing
the final sum in Step 5, the lost row has been successfully recovered. Note this
illustration shows the recovery algorithm using one of the m X-Code blocks.
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Since the X-Cipher structure is organized as m X-Code blocks stacked on top of
each other , the recovery algorithm acts on all m X-Code blocks.

Two-column recovery is executed in a similar manner to the one-column re-
covery. Due to space limitations, the algorithm specification is omitted from this
paper. The first five steps are identically similar to the single-column recovery
algorithm. As a result, the two-column recovery is implemented as multiple it-
erations while masking the expected rows. As long as the column numbers are
known the order of recovery is known. Then, the order of masks is determined
at run-time based on the lost columns’ IDs and the iteration.

3.3 Computation Phase

This section presents how commonly used operations over one or two datasets
as building blocks can occur over ciphertexts in X-Cipher.

Over One Dataset. The total sum of all elements in the structure can be
computed by naively adding all elements sequentially. But in X-Cipher, there is
a more efficient way. As discussed in Sec. 2.2, each codeword contains the sum of
all data elements along its respective slope line. As a result, the overall sum in
the structure can be computed by adding all codewords along one of the slopes,
followed by summing the resulting codewords from each X-Code block. Alg. 3
presents this idea, which is efficient for using component-wise homomorphic ad-
dition over the packed ciphertexts. It achieves O(log2m) complexity by simulta-
neously adding values across multiple X-Code blocks. The final result csum is a
ciphertext that encrypts a vector containing the sum in both the (n− 2)th and
(n − 1)th slots. The result is recoverable by redistributing the resulting cipher-
text csum. The codewords are additively homomorphic, so a total sum avoids the
need to regenerate the codewords. In the final result, the first n−2 rows contain
partial sums of the dataset. In other words, the first n − 2 rows add up to the
codewords in the final two rows. In order to construct a recoverable structure,
each slope requires elements in the first n−2 rows that add up to the codeword.
Therefore, this requirement is met by simply creating n duplicates of csum, and
a valid X-Cipher structure is created.

Over Two Datasets. Component-wise operations over two datasets can
be supported by operating on the corresponding ciphertexts. In addition, dot-
product is supported with these basic component-wise operations. Given two
vectors encoded and encrypted into their corresponding ciphertexts cA and cB ,
the dot-product is cprodi = cAi × cBi for i = (0, .., n − 1). Then,the sum over all
cprodi is determined using Alg. 3.

A good example of demonstrating operations over vectors is the private set
intersection (PSI) problem. Given two sets x ∈ Rι,y ∈ Rζ which have lengths ι
and ζ respectively and typically ι >> ζ, PSI determines the common elements
in these two sets, x

⋂
y, for all set elements xj ∈ x and yi ∈ y. This protocol

occurs between a sender US who owns x and a receiver UR who owns y. Using
X-Cipher, the users can generate an encrypted, packed, and recoverable PSI
result.
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Algorithm 3: Summation with O(log2m) complexity.
Input : Encrypted columns, c := {c0, ...cn−1}
Output: Sum of all data elements, csum
mask = {0, 1}m×n;maski = 1; i < n;maski = 0; i ≥ n
csum =

∑n
i=0 ci; . Component-wise addition of encrypted columns.

if m%2 6= 0 then
m = m −−

end
for α = 2j ;α <= m/2; j = {0, .., log2(m)− 1} do

c′sum =shift(csum,−α · n) . Move by block, padding by 0.
csum += c′sum

end
if m%2 6= 0 then

c′sum = shift(csum,−(m+ 1) · n)
csum += c′sum . Add the last element.

end
csum = csum.multByConst(mask) . Mask out unwanted data.

A fast PSI protocol using HE [7] defines a basic protocol in which UR sends
[yi] = Enc(pk, yi) to US and US computes and returns ĉi = ri ·

∏
j([xj ] − [yi]),

expecting an encryption of zero when there exists xj = yi for any j or a random
value masked by the uniformly sampled random number ri. Since homomorphic
subtraction is required for all xj with yi, these values are packed X-Cipher
ciphertexts. Once packed, these operations are performed simultaneously in a
SIMD manner.

PSI can be further optimized as proposed in [7]. Expanding the basic PSI
definition results in the following: ĉi = ri ·

∏
j([xj ] − [yi]) = ri · (x1 − yi) · ... ·

(xι− yi) = riy
ι
i + raι−1y

ι−1
i + ...+ ra0 for some combinations of xj storing in ai.

This shows the PSI is the sum of elements which are the product of 1) the UR’s
data raised to some degree (yιi , y

ι−1
i , ..., 1) and 2) coefficients (ri, riaι−1, ..., a0)

which depend only on the US ’s data. Assembling these elements into two vectors
y′
i = {yιi , y

ι−1
i , ..., 1} and a = {ri, riaι−1, ..., a0}, the PSI can be evaluated by

simply computing dot-product: y′
i ·a. When encoding and packing data into the

X-Cipher, the optimized PSI protocol can be completed efficiently using the dot-
product algorithm discussed earlier. Of course, data packed into our X-Cipher
is recoverable.

Additionally, matrix addition and multiplication are building blocks of many
cloud-computing tasks for which X-Cipher may be desirable. By enabling matrix
addition and multiplication on data in the structure, X-Cipher allows for data to
remain encrypted and recoverable. A matrix can be encoded into the X-Cipher
structure in many ways, as discussed in Sec. 3.1. For addition and multiplication,
it may be most useful to traverse the matrix using a row-major curve to fill a
single column. By using this encoding and fine-tuning the parameters n,m, it
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can be ensured that a single ciphertext contains entire matrices, which can be
most efficient for distributed tasks.

Once a matrix is encoded, matrix addition is completed through component-
wise addition. As described in Sec. 2.1, operations on packed ciphertexts act in
a component-wise manner; thus matrix addition is completed by simply execut-
ing a homomorphic addition of two ciphertexts which encode the matrices. For
instance, given matrices A,B are encoded and encrypted into ciphertexts cA, cB
respectively, the matrix addition A+B is completed by cA ⊕ cB .

Matrix multiplication on the other hand is not component-wise, and thus
homomorphic multiplication of the ciphertexts encoding matrices cannot be di-
rectly used. Jiang et al. [16] proposed four different matrix permutations that
lower the complexity of homomorphic matrix multiplication to just a depth
of one. Given a matrix A and its data element at the i-th row and j-th col-
umn indicated as ai,j ∈ A, the four permutations are diagonal column rotation
S(A)i,j = ai,i+j , diagonal row rotation T (A)i,j = ai+j,j , column rotation by k
spaces φk(A)i,j = ai,j+k, and row rotation by k spaces γk(A)i,j = ai+k,j . Given
two square matrices A,B ∈ Zd×d, the matrix product can be expressed by the
following sum:

∑d−1
k=0 φ

k(S(A)) · (γkT (B)). In their design transformations occur
on the ciphertext in order to reduce the number of ciphertexts. Because our de-
sign assumes multiple ciphertexts to compose the internal structure, X-Cipher
has the advantage to pre-computed the transformations on the plaintext and
can store each transformed version required in the structure. Because of this
approach, matrix multiplication is simply a matter of fetching the 2 · d trans-
formed matrices from the extended structure, and only performing homomorphic
multiplication and addition as described in the previously expressed equation.

4 Evaluation

Space Complexity One of the main advantages of X-Cipher is its capability
to significantly lower the overheads incurred when using erasure codes for recov-
erability. When using X-Cipher, user data is encoded into a (m×n, n) structure
and each of the n columns is packed into a ciphertext ci that has % ≥ m × n
plaintext slots determining by the security parameter selection. As discussed in
Sec. 3.1, this is to abstract the m multiples of the X-Code n × n block stacked
vertically, so that each ciphertext is a column of the extended structure. Since
each X-Code block can contain n× (n− 2) plaintext data and 2n codewords, a
single X-Cipher structure can store m× n× (n− 2) plaintext integers from the
user as input. Using the ciphertext packing technique, the entire m×n data and
codewords within a column fit into a ciphertext. Table 2 provides statistics to
demonstrate the space efficiency of X-Cipher. For a given plaintext slot count
% = 64, we vary the dimension of each X-Code block n = {5, 7, 11, 13} and the
multiples of X-Code blocks m = {12, 9, 5, 4} to evaluate the space complexity,
with or without using X-Cipher. As demonstrated, an X-Cipher ciphertext can
store the provided plaintext data and codewords without incurring a significant
overhead. It is almost the same as the plaintext data size, but it is significantly
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Table 2: Space complexity for X-Cipher structure
Parameters Size (KB)

Dimension (n) Multiples (m) Data Cells Plaintext Ciphertext (X-Cipher) Ciphertext (without)
5 7 180 0.72 0.93 55.8
7 9 315 1.26 1.30 82.1
11 5 495 1.98 2.05 112.5
13 4 572 2.28 2.42 125.7

Fig. 8: Running time of primitive functions.

smaller than individually encrypting the provided plaintext data. Finally, our de-
sign is based decentralized erasure codes [9]. Storing ciphertexts on independent
chunk servers enhances recoverability, load-balancing, and accessibility.

Computational Complexity The computational complexity of X-Cipher
algorithms is based on the number of consecutive homomorphic multiplications;
this is also called the multiplicative depth. After every homomorphic multipli-
cation, noise reduction and linearization are required. The depth of RotCols is
determined by: n to rotate one column, times n columns, times 2 rotations per
recovery - 2 × n × n = 2n2. One-column recovery adds one additional rotation
for the ω = +1 and ω = −1 states of the recovered structure to update each
other as described in Sec. 3.2. This results in a total depth of 2n2 +1. Similarly,
two-column recovery has the same limitation to a factor of n, resulting in a total
depth of 2n2 + n. However, because of the approach to use two separate states
of the structure during recovery, the depth for both recovery algorithms is one
factor of n lower than what they would be in an approach without the separate
structure.

5 Experimental Results

We prototype the proposed X-Cipher structure using the HElib library [13],
which implements the BGV HE scheme [5] (see Sec. 2.1). Based on this proto-
type, we conduct experiments multiple times on a CloudLab machine that has
Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz. For parameter selection of the
BGV scheme, we set the security parameter λ to 128 bits, which corresponds to a
3072-bit asymmetric key [2]. We choose the plaintext modulus t = 131 as a value
large enough for our experiments. The rest of the BGV scheme parameters are
set to the defaults [13]. The multiplicative depth L of is configured according to
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Table 3: Application Computation Running Time Statistics
PSI (s) Matrix Operations (ms)

ι ζ = ι/8 ζ = ι/4 ζ = ι/2 Dim + ×
25 28.1 54.4 109 3 24.05 278.5
50 54.5 109 225 4 52.25 364.6
75 81.3 162 332 5 50.50 450.8
100 111 224 444 6 54.20 541.5

what is required by the evaluated circuits in our protocol, for which we derived
according to the complexity analysis discussed in Sec. 5.

Figure 8 shows the run-time for X-Cipher core primitive functions with
% = 64, n = (5, 7, 11, 13), and m = (12, 9, 5, 4). Results demonstrate the effi-
cient execution of many of the primitives. For instance, all primitive functions
whose times are in the top graph in Fig. 8 execute with tolerable run times for
homomorphic operations. Functions such as codewords refreshing, dot product,
and two-column recovery are the slower functions, and their running times grow
as the dimension n grows. These functions rely most heavily on ciphertext rota-
tions and multiplications. This current run-time minimizes data duplication and
does not implement parallel execution. This is the trade-off that must be con-
sidered on implementation since performance improvements could be observed
by duplicating data in order to leverage parallel computing.

An empirical study was conducted by executing the PSI of synthetic datasets
encoded into an X-cipher structure. Datasets of varying sizes were used to test
PSI. The encoding is subject to the slot count (ρ), the size of the Receiver’s set
(ζ), and the size of the Sender’s set (ι). Execution times of the PSI are shown
in Table 3 . The times reported represent the time for the Sender and Receiver
to preprocess their data, encode into the X-Cipher structure, homomorphically
compute the PSI, and return and decrypt the result. Given a constant slot count
for experiments ρ = 64, the Sender’s set was tested at values ι = (25, 50, 75, 100)
and the values ζ = (ι/8, ι/4, ι/2) were tested. The results demonstrate the execu-
tion time increases linearly as the Receiver or Sender set increases. This demon-
strates that with additional parallelization, the execution time can be decreased
further.

6 Security Analysis

Considering the adversary described in Sec. 2.3, we analyze the security of X-
Cipher in two scenarios: before and after A compromises a chunk server (i.e.,
causes shutdown/failure). BeforeA causes the chunk server (csi) to fail, the setup
and computation phases take place. During the setup phase, U is responsible for
encoding the data, generating the codewords, and producing the ciphertexts.
Because of this, A only sees ciphertexts after they are sent by U . A controls csi
and obtains a ciphertext ci from U . Given the use of BGV scheme in X-Cipher
and a public key pk = (a, b = −as+ te), ci is of the following form (see Sec. 2.1):

ci = (rb+ di + te0, ra+ te1)
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ci = (r(−as+ te) + di + te0, ra+ te1)
ci = (−ras+ rte+ di + te0, ra+ te1)

A learns a through knowing pk, but r, e0, e1, e are randomly sampled Gaussian
values and thus unknown. Therefore, A can only learn di if it learns the poly-
nomial modulus t or secret key sk = s. Since A cannot determine these values
as provided by Ring-LWE indistinguishability, A cannot learn di from ci in
X-Cipher. During the computation phase, a homomorphic function f might op-
erate over ci and produce a known ciphertext f(ci). However, the same reasoning
makes determining f(di) impossible. Therefore, A cannot learn di by observing
any homomorphic function f during the computation phase. As a result, U will
always successfully recover ci when lost.

Given A has already caused csi to go offline, ci will be lost. However, A can-
not prevent E from completing the X-Cipher recovery phase using the remaining
chunk servers. If A causes the server to fail in the middle of some operations, it
can resume from the point the codewords were last regenerated. In addition, as-
suming another cluster server csj has gone offline due to non-adversarial actions
and cj becomes lost, A cannot prevent the recovery of dj even if it causes csi to
lose ci.

For this initial work, we do not consider the colluding adversaries or a ma-
licious adversary that mutates ci without shutting down csi. Thus, these op-
portunities open avenues for potential future work. For colluding adversaries,
future work can include distributing multiple ciphertexts to each cluster server
and new encoding algorithms to reduce the additional overhead of doing so. For
a malicious adversary, future work is a method to track the operations that oc-
curred as a part of the ciphertext. Then, a subsequent verification algorithm
can be developed to detect malicious actions for future work. This verification
could detect malicious actions by matching the component in the ciphertext that
describes the list of operations to a polynomial representation of the expected
operations.

7 Related Work

Whole (or partial) data replication was deployed in earlier distributed file sys-
tems, such as HDFS and GFS [12]. However, replication substantially increases
the storage overheads, translating to higher operational costs for service providers.
Modern distributed file systems, such as Google Colossus [8] and Windows Azure
Storage [14], use erasure codes such as Reed-Solomon to reduce the storage over-
heads. This might work well for data in the clear, but applying erasure codes
directly over HE ciphertext will increase the size of the generated codewords.

There are recent works that followed the EwR design to protect data confi-
dentiality while achieving recoverability and integrity. One closely related work
is by Lin and Tzeng [18], who proposed a framework to support secure data stor-
age, forwarding, and retrieval on the Cloud. Given a messagem, their framework
splitsm into κ blocks such thatm = {m1,m2, ..,mκ} and encrypts these κ blocks
individually into ciphertexts ci = Enc(mi) using a bilinear map with a prime or-
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der p. For two cyclic multiplicative groups G1, G2 and a generator g ∈ G1, there
is a bilinear map ε : G1 × G1 −→ G2. For any x, y ∈ Z∗p, the following multi-
plicative homomorphism property holds: ε(gx, gy) = ε(g, g)xy. Users will upload
these κ ciphertexts to the matching number of storage servers. Once completed,
the server will sample a generator matrix G = [gi,j ] for 1 ≤ i ≤ κ, 1 ≤ j ≤ n and
compute codewords as σj = c

g1,j
1 , c

g2,j
2 , .., c

gκ,j
κ for 1 ≤ j ≤ n. In this way, they

distribute the codewords to n servers, also called decentralized erasure codes [9]
in the literature. Ciphertexts are stored on κ < n servers, but the codewords
are spared across all n servers. The recovery process is similar to Reed-Solomon,
which requires finding a multiplicative inverse of a κ×κ submatrix K of G. They
also proposed the use of (t, n)-Shamir-secret-sharing [25] to protect the secret
key and modified their encryption to a threshold version. As discussed, data is
broken into κ blocks before it is individually encrypted and stored on κ storage
servers. Retrieving this data requires a distributed decryption and reconstruc-
tion protocol. Each of the κ blocks is individually encrypted, which means there
will be a large number of ciphertexts. Also, this framework was designed as a
Cloud storage solution; how these encrypted and encoded data can be used in
various applications is unknown. Complex multi-party computation (MPC) pro-
tocols may be needed to support the limited homomorphic multiplication due to
the chosen algebraic setting.

Building on [18], Shen et al. [26] extended the scheme to support data in-
tegrity checking. Based on the same algebraic setting, the authors proposed a
tag generation algorithm that produces tags for each of the κ blocks of cipher-
texts. These tags can be used for recovery due to loss of data and for checking
data integrity. More importantly, these tags are homomorphic in the data for-
warding and recovery processes. Although this extension achieves recoverability
and integrity simultaneously, it inherits all the drawbacks we discussed earlier.
In addition, the generated tags are multiplicatively homomorphic to the data
forwarding and recovery, but they are not fully homomorphic in computations
due to the multiplicative bilinear map foundation. This means we need to update
these tags after homomorphic computations. This process is expensive because
it requires reshuffling many shares of the ciphertext blocks.

For integrity, Tsoutsos et al. [28] proposed a protocol that extends the Paillier
HE scheme [21] to ensure the correctness of homomorphic ciphertexts after com-
putations. The authors used a Mersenne prime p = 2d − 1 for some integer d to
compute the codewords from the ciphertexts to perform efficient residue-based
checks. Given a ciphertext c, the corresponding codeword is generated as σc = c
(mod p). The Mersenne prime is multiplied by the other two primes to generate
the modulo n in the Paillier scheme. The idea for having p is that we can make
it public for codeword generation and verification, and we can mix it within
the modulo n so that the generated codeword is associated with the ciphertexts.
This is because of the following theorem: (x (mod n)) (mod p) = x (mod p) if p
dividing n and x is a non-negative integer. Another important advantage of this
protocol is that the codeword is additively homomorphic through computations.
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More specifically, given two cipertexts a, b we compute c = a · b (mod n2) and c
(mod p) = σa · σb (mod p).

Note that the homomorphic multiplication of two ciphertexts in Paillier maps
to adding two plaintexts. This protocol was designed based on Paillier for effi-
cient evaluation of homomorphic computations, but it inherits the limitation of
only supporting additively homomorphic computations. This protocol also only
supports individually encrypted ciphertexts; hence, the codewords are generated
for each of these ciphertexts. Our proposed protocol differs fundamentally from
the use of Ring-LWE HE schemes (see Sec. 2), which support ciphertext pack-
ing to reduce the codeword overheads significantly. Of course, our ciphertexts
support both additively and multiplicatively homomorphic computations.

Compared to closely related works by Tsoutsos et al. [28] and Shen et al. [26],
our work has a number of advantages. Firstly, when considering the plaintext
to ciphertext ratio (number of integers that can be put inside a ciphertext),
our work utilizes ciphertext packing (as mentioned in Sec. 2.1) to store many
plaintext values into a single ciphertext. This leads to lower space complexity
compared to individually encrypting one plaintext value into a ciphertext. Sim-
ilarly, the computational complexity is reduced because operations applied on
the packed ciphertexts are carried out on all underlying plaintext simultaneously.
Secondly, previous works were based on partial HE, supporting either addition
or multiplication but not both. Our work is based on somewhat or fully HE,
which means both addition and multiplication are supported when designing
functions to operate on data encoded into the X-Cipher structure. Thirdly, like
Shen et al. [26], ciphertexts are distributed but each ciphertext in our work con-
tains a list of plaintext values. If we encode input data using column-major,
many applications can operate on the plaintext values on a column-by-column
(or ciphertext-by-ciphertext) basis without interaction between chunk server.
Fourthly, the codewords in our work are partially homomorphic through addi-
tion since only addition is required for recovery and verification. Because they are
not fully homomorphic, the codewords can be regenerated after multiplication
operations.

8 Conclusion

We introduce X-Cipher, which makes data recoverable and private in all phases
of its use. We introduce an approach of encrypting encoded plaintext alongside
codewords for homomorphic recovery capabilities. X-Cipher’s use of encoding
and ciphertext packing reduces the cost of storing data and codewords. Exper-
iments are conducted to demonstrate that standard building blocks of cloud
operations, such as matrix operations and PSI, are possible in X-Cipher while
maintaining the ability to recover the data at any point during its use. In fu-
ture work, we aim to add a detection capability for interference by a stronger
adversary and aim to add support for multiple colluding corrupted chunk servers.
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