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Abstract

Anonymous tokens are digital signature schemes that enable an issuer to provider users with signa-
tures without learning the input message or the resulting signature received by the user. These primitives
allow applications to propagate trust while simultaneously protecting the identity of the user. Anony-
mous tokens have become a core component for improving the privacy of several real-world applications
including ad measurements, authorization protocols, spam detection and VPNs.

In certain applications, it is natural to associate signatures with specific public metadata ensuring
that signatures only propagate trust with respect to only a certain set of scenarios. To solve this, we study
the notion of anonymous tokens with public metadata in this work. We present a variant of RSA blind
signatures with public metadata such that issuers may only generate signatures that verify for a certain
choice of public metadata. We prove the security of our protocol under one-more RSA assumptions
with multiple exponents that we introduce. Furthermore, we provide evidence that the concrete security
bounds should be nearly identical to standard RSA blind signatures. The protocols in this paper have
been proposed as a technical specification in an IRTF internet draft.1

1 Introduction

Anonymous tokens are a powerful primitive that have been studied for decades under various names including
anonymous credentials and blind signatures. Throughout our work, we will use anonymous tokens and blind
signatures interchangeably. They were first introduced by Chaum [15, 16] in the context electronic cash that
would be untraceable. At a high level, the idea was that any bank or treasury would be able to attest the
validity of money. By using anonymous tokens, the guarantee is that no one would ever be able to trace the
usage of the money even if the bank knows the identity of the user that was originally granted the money. This
is just one example that exhibits the usefulness of anonymous tokens. In recent years, anonymous tokens
have become a core component of many real-world applications including private click measurement [5],
privacy-preserving telemetry [23], fraud detection [3], avoiding repeated CAPTCHA solving [19] and web
browsing [4, 6] to list some examples.

There are typically three different roles for participants in anonymous token schemes. The user (also
commonly referred to as the signature recipient or receiver) is the party that is requesting and receiving
the signature. The signer (or issuer) is the party that receives a blind signing request and is responsible
for issuing a response that enables the user to recover the final signature. Finally, the last party is the
verifier whose responsibility is to check whether a signature is one that was correctly signed by the signer.
Anonymous token schemes may be split into two types: designated or public verifiability. In the designated
setting, verification requires the usage of the private key and certain parties must be explicitly assigned the
role of verifier by being given the private key. In the public verifiability case, anyone can perform verification
given they have access to the public key. In our work, we will exclusively focus on public verification. We
note that a party may take on more than one role in various applications. For example, a party may be
responsible for both issuing signatures as well as verifying their validity.

Anonymous tokens are required to satisfy three important properties: correctness, unforgeability and
unlinkability. For correctness, it must be the case that a signature will be successfully accepted by a verifier
as long as all parties involved were acting honestly (that is, following the algorithm correctly). Unforgeability

1For the accompanying CFRG specification in the IRTF, we point readers to [10].
Google, {gamjad,kwlyeo,moti}@google.com.
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describes the property that an adversary should not be able to create valid signatures without interacting
with an signer. For example, an adversarial user that performs ℓ blind signing protocols with an signer should
not be able to create ℓ+1 distinct pairs of message and valid signatures of the corresponding message. Both
correctness and unforgeability are properties required from any digital signature scheme. The last property
of unlinkability formally describes the notion of anonymity with respect to an untrusted signer. In particular,
the signer should be unable to link any blind signing request with any final signature. Suppose that the
signer answers ℓ blind signing requests. Afterwards, the signer receives the ℓ resulting signatures that are
randomly permuted. Then, the signer is unable to link any request with a specific signature with probability
better than randomly guessing. In other words, a signature remains anonymous in the view of the adversarial
signer that may have maliciously chosen the system’s parameters.

In this work, we study a variant of anonymous tokens with public metadata (or partially blind signatures)
where each signature will be tied to a specific piece of public metadata. This allows the user and signer to
jointly agree on explicitly encoding necessary information into the final signatures. Additionally, the verifier
will need to specify the public metadata for which the signature is being verified against. These primitives
guarantee that a signature will only be accepted if the verification algorithm is using the public metadata
that was originally used to create the signature. The ability to augment signatures with public metadata
serves as a way to only propagate trust for a specific subset of settings. As an example, we can consider a
product with localization that requires purchasing for each different country and needs to create signatures
tied to the purchase country of the user. Anonymous tokens with public metadata would allow tying each
signature to the purchase country guaranteeing that signatures are only valid in the country of purchase.

IRTF Draft. The protocols in this paper have already been proposed in an CFRG specification in the IRTF
by Amjad, Hendrickson, Wood and Yeo [10] due to its potential for real-world impact. By enabling practical
anonymous tokens with public metadata, this work unblocks a significant number of new applications. For
example, there are already work streams to build real-world architectures relying on anonymous tokens with
public metadata in the IETF Privacy Pass working group (such as [22]). One can view this work as the
accompanying academic paper proving formal cryptographic guarantees for the usage of these protocols in
real-world applications.

1.1 Technical Overview

Before we present our protocol for RSA blind signatures with public metadata, we first show two failed
approaches that provide insights into the design choices of our final algorithm. In each of these approaches,
we take an underlying anonymous token scheme and aim to enable public metadata.

One Key for Each Public Metadata. The first idea is to provide isolation between the different choices
of public metadata using different keys. Formally, for each potential option of public metadata D, we can
generate a new RSA key pair (pkD, skD). This is equivalent to having a separate anonymous token system
for each choice of public metadata. As the public metadata D is known to the signer and users, each party
can use the appropriate keys corresponding to D to performing blind signing and verification.

While the above approach would work, there are several drawbacks to this approach. First, the number
of keys that needs to be stored by all parties must be on the order on the number of different choices of
public metadata. This is not realistic when the universe of public metadata is very large. Even if the
public metadata universe is reasonably sized, the task of key management becomes less than ideal due to the
existence of multiple keys at once. The other disadvantage of this approach is that the universe of possible
public metadata must be fixed ahead of time as a new key pair must be generated for each choice of public
metadata. If the universe of public metadata changes, all parties in the system must also update their key
sets to include the new public and private keys associated with the new public metadata.

Given the above, we want an anonymous token with public metadata scheme that does not require
multiple keys while still providing the flexibility of a potentially changing set of public metadata.

Combining Public Metadata and Message. Another approach may be to try and use the message to
encode the public metadata. For example, the public metadata D can be appended to the message M that
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needs to be signed to obtain the new message M ′ = M || D. Afterwards, the anonymous token scheme
remains identical with using the new message M ′.

At first, this seems to achieve the desired goal as the privacy of the signature and message follows
directly from the underlying anonymous token scheme. Furthermore, if one attempts to use the wrong
public metadata, verification will clearly fail as the input message is incorrect. Unfortunately, this approach
would only work in the case that we are considering signature schemes that do not provide anonymity. In
particular, the metadata must be publicly known to the signer during the signature process. For the setting
without anonymity, the user can simply upload the augmented message M ′ = M || D to the signer where
the signer can check that the public metadata D before signing the message M ′. As the signer views the
message in plaintext, it will be impossible to obtain anonymity.

If we wish to maintain anonymity, then the message M ′ = M || D cannot be sent to the signer in
plaintext. Therefore, the signer can no longer verify that they are signing with respect to a specific piece
of public metadata D. As an example, consider an application that requires associating each signature to a
specific area using public metadata. Even if the signer wishes to only create signatures for a specific public
metadata D (such as a specific country), the signer is unable to check the public metadata for the specific
blind signing request. Therefore, this approach fails to satisfy the necessary unforgeability requirements for
adversarial users.

Our Protocol. Using the above two failed approaches, we can determine some requirements necessary
for our construction. First, we should only use a single key independent of the public metadata universe.
Additionally, we still need the public metadata to be viewable by the signer during blind signing. To achieve
both of these goals, we will build upon standard RSA blind signatures.

We first revisit the original RSA blind signature protocol. Recall that standard RSA blind signatures
utilize a modulus that is the product of two primes N = pq along with a public exponent e and a private
exponent d such that d = e−1 mod ϕ(N).2 The signer’s private key consists of d while the public key
is (N, e). In the rest of the description, all operations are done in Z∗

N . To perform blind signing for a
message M , the user computes A = HM(M) · Re where HM(M) hashes the message M to an element
of Z∗

N and R is a uniformly random element of Z∗
N . This is sent to the signer who signs by computing

B = Ad = HM(M)d ·Red = HM(M)d ·R. Finally, the user computes B ·R−1 = HM(M)d ·R·R−1 = HM(M)d

that is the final signature. To verify any signature S for message M using public key (e,N), one simply
computes Sd and checks if it equals to HM(M).3

We take insight from the first failed approach that used different keys for each metadata. Rather than
using different keys, we can try to use a hash function to enable generating keys for each metadata. For RSA
blind signatures, we will use a hash function HMD to generate public and private exponents that are specific
to some public metadata D. In more detail, we will set eMD = HMD(D) as the public exponent. Blind signing
for the user remains similar using eMD as opposed to e to obtain A = HM(M || D) ·ReMD with the exception
that we also put the public metadata D into the hash now. Now, the signer receives both the blind signing
request A as well as the public metadata D. First, the signer computes eMD = HMD(D). We augment
the private key to contain ϕ(N) allowing the signer to compute the inverse dMD = (eMD)

−1 mod ϕ(N).
Afterwards, the signer uses dMD as the private exponent to return B = HM(M || D)dMD · R to the user.
Finally, the user removes R to obtain HM(M || D)dMD that is the final signature.

Unfortunately, the above construction has a slight problem. In particular, we assumed that the output
eMD = HMD(D) is always invertible modulo ϕ(N) and, thus, co-prime to ϕ(N). For standard RSA modulus
N = pq where p and q are distinct primes, it is not necessarily the case that a random element would be
invertible modulo ϕ(N) = (p − 1) · (q − 1). To solve this problem, we can use strong RSA moduli where
we require that N = pq such that both p and q are safe primes meaning that p = 2p′ + 1 and q = 2q′ + 1
such that both p′ and q′ are also prime numbers. If N is a strong RSA modulus, then we know that
ϕ(N) = (p − 1) · (q − 1) = 4p′q′. Therefore, an element x ∈ Zϕ(N) has an inverse as long as x is odd and
not divisible by p′ and q′. If we assume that both p and q are λ-bit prime numbers, then we can guarantee

2Euler’s totient function ϕ(N) counts the positive integers up to the given integer N that are relatively prime to N.
3For sake of simple exposition, we assumed that HM is deterministic. However, there exists other message encodings that

are randomized with more complex verification algorithms. See Section 5.1 for more details.
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that the output of HMD is always invertible in Zϕ(N) using the following modifications. First, we ensure that
HMD always outputs an odd number. Next, we make sure that HMD always outputs elements of length at
most λ− 3 bits. As p and q are λ bits, we know that both p′ and q′ are at least λ− 2 bits. As a result, we
can guarantee that HMD is always invertible modulo ϕ(N) as it is odd and always smaller than both p′ and
q′. We note that similar ideas were previously presented in [9, 8]. However, to our knowledge, no formal
security proofs have been provided for these constructions.

One-More RSA Inversion with Multiple Exponents. Before proving security of our protocol, we
first need to define an extension of the RSA assumption using the “one-more” style techniques of Bellare,
Namprempre, Pointcheval and Semanko [12]. We explore several natural ways to define RSA assumptions
with respect to multiple exponents before arriving at the weakest form that may be used to prove security
of our protocol. To our knowledge, this is the first exploration of one-more RSA inversion assumptions with
multiple exponents. Finally, we also explore connections with various natural definitions of one-more strong4

RSA type assumptions.

Security of Our Protocol. Finally, we prove the security of our new protocol with public metadata. We
start by considering a non-blind variant that may be used as a standard signature scheme. We are able to
prove the concrete security of our new protocol from the RSA assumption. In particular, we show that our
new protocol has almost identical concrete security guarantees for unforgeability as standard RSA signatures.
The only security loss is an additive factor of approximately 2O(−λ) depending on the output length λ of
an underlying hash function. We note that our subtle modification where the underlying hash HM(M || D)
includes both the message M and the public metadata D is integral in our security proof.

Next, we move onto proving the security of our main protocol of RSA blind signatures with public
metadata protocol. Using the one-more multi-exponent RSA inversion assumptions, we are able to prove
the unforgeability of our protocol. For anonymity, we adapt the techniques introduced by Lysyanskaya [25]
to ensure and prove that our protocols satisfy unlinkability even in the presence of keys that are generated
by a malicious party.

1.2 Related Work

BLS with Public Metadata. We note that a prior work of Silde and Strand [32] also studied the notion
of anonymous tokens with public metadata where several constructions were presented. For the setting
of public verifiability, the authors presented a construction from pairings based on the Boneh, Lynn and
Shacham (BLS) signature scheme [14] along with ideas from other works including [33, 19]. There are several
differences between our construction and this one. First, our construction uses RSA-based cryptography
while the BLS-based scheme uses pairing-based cryptography. In general, RSA-based cryptography is more
readily available on all platforms compared to pairing-based cryptography (for example, this is a core reason
why VPN by GoogleOne [6] chose RSA blind signatures). In terms of efficiency, our RSA blind signature
with public metadata scheme will incur smaller computation, but larger signatures and more communication
during blind signing compared to the BLS-based scheme. For cases when computation may be limited (such
as devices with limited computational power), our schemes may be the better option.

RSA Blind Signatures with Strong Moduli. We note that similar variants of RSA blind signatures
has appeared in the past by Abe and Fujisaki [9] as well as Abe and Camenisch [8]. However, the security
was proven heuristically and predated the standard definitions used in anonymous tokens. In our work, we
formally prove the security of our protocols along with concrete security bounds. We also note that other
works also used strong RSA modulus such as threshold signatures [30] and integer commitments [18].

Anonymous Tokens with Private Metadata. Recent work [24] has also studied the case where anony-
mous tokens are augmented with a single private metadata bit. In this case, the metadata bit is explicitly
specified only by the signer during the blind signing process. Furthermore, the verifier is also able to view
the metadata bit. In particular, the goal is to hide the metadata bit from the user.

4In the strong RSA assumption, the adversary gets to pick its own public exponent (Section 4.3). This is unrelated to a
strong RSA modulus that is the product of two safe primes.
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2 Anonymous Tokens

We present the formal definitions for anonymous token schemes. Our definitions will work for both anony-
mous and non-anonymous protocols with small modifications. We will solely focus on the settings of public
metadata and public verifiability (that is, verification only requires the public key). We chose this definition
to be compatible with RSA signatures as well as the blind version. Other variants of anonymous token
schemes exist such as those only allowing verification using the private key (such as [19, 32]) as well as
enabling private metadata (see [24]).

Definition 1. A token scheme with public metadata Tok that is publicly verifiable is a tuple of efficient
algorithms Tok = (Setup,Blind,Sign,Finalize,Verify).

1. (pk, sk)← Tok.Setup(1λ): The setup algorithm receives the security parameter λ as input and outputs
a pair of public and private keys (pk, sk).

2. (st, BM ) ← Tok.Blind(M,D, pk): The blinding protocol is run by the user who receives the plaintext
message M , public metadata D and public key pk. The output BM is a blinded version of the message
M under public metadata D and some state st.

3. S′ ← Tok.Sign(BM , D, pk, sk): The signing protocol is run by the signer who receives the blinded mes-
sage BM , public metadata D and both public and private keys (pk, sk). The output S′ is a signature on
the blinded message BM under public metadata D which needs to be finalized by the user.

4. S ← Tok.Finalize(st, S′,M,D, pk): The user runs the Finalize protocol on the user state st, the signer’s
response S′, plaintext message M , public metadata D and public key pk. The output S is a signature
of the message M under public metadata D.

5. b← Tok.Verify(S,M,D, pk): The verification algorithm receives the signature S, the plaintext message
M , public metadata D and public key pk and outputs a bit b ∈ {0, 1}.

The token scheme Tok satisfies the correctness properties if, for all choices of messages M and public meta-
data D, the following holds:

Pr

 Tok.Verify(S,M,D, pk) = 1 :

(pk, sk)← Tok.Setup(1λ)
(st, BM )← Tok.Blind(M,D, pk)
S′ ← Tok.Sign(BM , D, pk, sk)
S ← Tok.Finalize(st, S′,M,D, pk)

 ≥ 1− negl(λ).

We note that the Blind,Sign,Finalize protocols can be viewed as a single round-trip protocol between
the user and signer. One could generalize the above definition to encompass multiple round, interactive
protocols. However, the structure of the Blind,Sign,Finalize protocol will be useful for proving unforgeability
of our schemes. Therefore, we only focus on this structure throughout our work.

Definition for Non-Anonymous Tokens. To obtain the standard definition of non-anonymous tokens,
we note that we can simply restrict the functionality of Blind and Finalize to perform no operations. We will
use this when evaluating the concrete security of RSA signatures with public metadata.

1. Tok.Blind(M,D, pk):

(a) Return (st←⊥, BM ←M).

2. Tok.Finalize(st, S′,M,D, pk):

(a) Return S ← S′.
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Game GSOMUF
Tok,A (λ): Oracle OSign(M,D):

(pk, sk)← Tok.Setup(1λ) cntD ← cntD + 1
Initialize cntD ← 0 for all choices of public metadata D. Return Tok.Sign(M,D, pk, sk).

D, (Si,Mi)i∈[x] ← AOSign

(pk)
Return 1 if and only if all the following hold:
- cntD < x
- ∀i ̸= j ∈ [x], Si ̸= Sj ∨Mi ̸= Mj

- ∀i ∈ [x],Tok.Verify(Si,Mi, D, pk) = 1

Figure 1: Strong One-More Unforgeability (SOMUF) Game with Public Metadata.

2.1 Unforgeability

We start with the first cryptographic guarantee provided by tokens known as unforgeability. At a high level,
unforgeability guarantees that no party is able to generate signatures that will correctly verify unless they
have access to the private signing key. For our work, we will consider a modification of the standard definition
of unforgeability for blind signatures introduced by Schröder and Unruh [28]. This standard definition is
known as strong one-more unforgeability as it was a strengthening of previous definitions such as those
introduced in [27, 12].

We modify the definition of unforgeability to enable public metadata in the following way. In the prior
definitions (without public metadata), the adversary wins if it can construct ℓ+ 1 signatures using at most
ℓ signing oracle queries. In our game to incorporate public metadata, the adversary succeeds if it is able to
construct at least cntD +1 signatures for any choice of public metadata D using at most cntD signing oracle
queries with public metadata D. For example, this covers the case even when an adversarial user can forge
a signature for some metadata D without ever sending a signing oracle query with D.

The security game can be found in Figure 1 and we present the formal definition below. We present our
definition using concrete parameters for adversarial advantage ϵ, adversary running time t and number of
oracle queries ℓ. This enables us to prove concrete security bounds throughout our paper.

Definition 2 ((ϵ, t, ℓ)-Strong One-More Unforgeableability). Let λ be the security parameter and consider the
game GSOMUF

Tok,A in Figure 1. A token scheme Tok is (ϵ, t, ℓ)-strong one-more unforgeable if, for any adversary
A that runs in probabilistic time t and makes at most ℓ signing queries, the following holds

Pr[GSOMUF
Tok,A (λ) = 1] ≤ ϵ.

Difference with Previous Definition. A slightly different definition of unforgeability for public metadata
was introduced in [32]. For this game, the adversary is able to make at most ℓ signing queries for any fixed
metadata. Then, the adversary wins the game if they pick some metadata D and can create ℓ + 1 valid
signatures for D. In our work, we instead bound the total number of signing queries by ℓ and the adversary
wins the game if they are able to generate cntD + 1 valid signatures for any metadata D while making at
most cntD oracle queries for metadata D. The reason we do this is to be able to derive concrete security
bounds with respect to ℓ. Using the prior definitions with public metadata in [32], we are unable to derive
an upper bound on the number of signing queries beyond the running time of the adversary as the adversary
may continue to make ℓ oracle queries for new choices of public metadata D. In other words, we can only
guarantee that the adversary executes a probabilistically polynomial number of queries when considering
probabilistically polynomial time adversaries.

Furthermore, we note that our definition is no weaker than the prior definition. If any adversary can
produce ℓ+1 signatures using at most ℓ oracle queries, then there must exist some public metadata D such
that the adversary has more valid signatures than oracle signing queries. We point readers to Appendix B
for more details and showing the equivalence between the prior definition and our current definition.

Multiple Signers. The above definition of unforgeability only considers a single signer whereas general
settings would consider multiple signers. Therefore, it may be natural and important to extend the definition
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Game GUNLINK
Tok,A (λ, b):

Adversary A outputs (pk,M0,M1, D)← A(1λ).
For i ∈ {0, 1}:
Challenger C computes (Bi, sti)← Tok.Blind(pk,Mi, D).
C samples uniformly random bit b←R {0, 1}.
A receives Bb, B1−b and computes S′

b, S
′
1−b.

For i ∈ {0, 1}:
C computes Si ← Tok.Finalize(pk, sti, S

′
i,Mi, D).

If Tok.Verify(M0, S0, D, pk) = 1 and Tok.Verify(M1, S1, D, pk) = 1:
C sends (M0, S0), (M1, S1) to A.

Else:
C sends ⊥ to A.
A outputs a bit b′.

Figure 2: Unlinkability (UNLINK) Game.

for multiple signers. However, it turns out that the single and multiple signers are equivalent up to some
factors that depend only on the number of signers. Furthermore, the strong one-more unforgebility is identical
in either the single or multiple signer settings for two-move protocols (as studied in this paper). So, it is
sufficient to focus security proofs with respect to a single signer. For more details, we point readers to [25].

Anonymous vs. Non-Anonymous Tokens. We will use the same definition for both anonymous and
non-anonymous tokens and slightly overload notation for convenience. For non-anonymous tokens, we will
assume that the input to the signing oracle will be the plaintext message that needs to be signed. In the
case of anonymous tokens, the input to the signing oracle will be the blinded (i.e., encrypted) message where
the signing oracle will perform the signer’s actions to manipulate the blinded message such that the querier
can retrieve the signed message.

Verification Oracles. In past definitions, an oracle for verification was also provided to the adversary.
Although, this is only needed for the designated verifier setting where only certain parties can perform
verification. For the case of RSA (blind) signatures, verification may be performed to anyone with access to
public keys (that is, RSA signatures enable public verifiability). In other words, any adversary can simply
execute the verification algorithm without the usage of an oracle. Therefore, there is no need for a verification
oracle when considering publicly verifiable schemes.

2.2 Unlinkability

The second important cryptographic guarantee is anonymity that is typically referred to formally as unlink-
ability. In an anonymous token scheme, it must be impossible to determine the blind signing request that
was utilized to create any signature even from the view of a signer that views the signing interactions, the
final signatures as well as the corresponding input message of each signature.

We use the definition of unlinkability following the work from [7] for single-round schemes that we focus
on throughout our work. We modify the definitions to encompass public metadata. In this game-based
definition, the adversary picks the public key, two messages M0 and M1 as well as its choice of public
metadata D. The challenger will first blind both messages and randomly permute the blinded messages.
The blinded messages are submitted to the adversary in the randomly permuted order that will return
signatures on the blinded messages. Finally, the challenge finalizes the adversary’s responses to obtain the
final signatures for both messages that are given to the adversary according to the original message order.
The goal of the adversary is to guess the correct permutation of the original blinded messages. This security
game is formally presented in Figure 2 and we present our definition of unlinkability below:

Definition 3 ((ϵ, t)-Unlinkability). Let λ be the security parameter and consider the game GUNLINK
Tok,A,q in Fig-

ure 2. A token scheme Tok satisfies (ϵ, t)-unlinkability if, for any adversary A running in time t, the following
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holds: ∣∣Pr[GUNLINK
Tok,A (λ, 0) = 1]− Pr[GUNLINK

Tok,A (λ, 1) = 1]
∣∣ ≤ ϵ.

Discussion about Public Metadata. In our definition, the adversary is able to choose any choice of
public metadata. However, the same public metadata must be used for signing both messages. This is
necessary as if the adversary may pick different public metadata for each message then it can trivially win
the game just by attempting to verify signatures with the two different public metadata. In practice, this
implies that anonymity or unlinkability only applies to all groups of messages signed with the same public
metadata. For real-world applications, it is important that the possible choices of public metadata is not
too large to ensure anonymity is maintained. In an extreme case, if each message is signed with a unique
choice of public metadata, then there are no anonymity guarantees anymore.

Adversarial Signer. Our choice of unlinkability definitions requires anonymity even against adversarial
signers. In particular, we note that the adversary is able to choose the public key arbitrarily. Furthermore,
the adversary is free to compute signatures on the blinded messages arbitrarily. Therefore, this encompasses
all malicious signers that try to compromise anonymity.

Necessity of Successful Verification. In our definition, we note that the adversary is only permitted to
see the resulting signatures if both signatures successfully verified. This is necessary to rule out one naive
strategy for the adversary where it would issue a valid signature in response to one of the queries but not the
other. In order to rule out this strategy, the challenger allows the adversary to see the resulting signatures
only if both of them verify. If one (or both) of the signatures do not verify, the adversary will have to guess
the ordering without seeing the finalized signatures.

3 Prior RSA Assumptions

In this section, we outline prior RSA assumptions that are relevant to our work. In particular, we present
the standard RSA assumption as well as one-more RSA inversion assumptions.

3.1 Strong RSA Modulus

We start by discussing the RSA group structure. In our work, we will focus on a special subset of RSA
modulus that are strong RSA modulus. All strong RSA modulus N = pq are the product of two safe primes
that enables structure to the multiplicative group modulo ϕ(N).

Definition 4 (Strong RSA Modulus). An integer N is a strong RSA modulus N = p · q where each of p and
q are distinct safe primes. In other words, p = 2p′ + 1 and q = 2q′ + 1 where all of p, p′, q, q′ are distinct
prime numbers. Therefore, ϕ(N) = 4p′q′.

As a side note, a key property of strong RSA modulus it that it provides significant structure to the
group Z∗

ϕ(N). One observation that we will rely upon throughout out work is that a random odd number

from the set [1, 2λ−3] will be co-prime to ϕ(N). This is because ϕ(N) = 4p′q′. Therefore, any odd number
strictly smaller than both p′ and q′ is co-prime to ϕ(N). Since each of p′ and q′ are at least λ− 2 bits as p
and q are λ bits, any odd number no larger than 2λ−3 is co-prime to ϕ(N).

3.2 RSA Assumption

We denote the probabilistic efficient algorithm Gen(1λ) that generates a RSA modulus N and secret pa-
rameters (p, q) that are the prime factors of N . We will denote generating a random modulus, the public
exponent distribution and secret parameters by (N,DN , p, q)←R Gen(1λ).

We move onto defining the RSA assumption. At a high level, the RSA assumption assumes that any
probabilistically polynomial time (PPT) adversary A given a RSA modulus N and public exponent e coprime
to ϕ(N) is unable to compute the e-th root modulo N for a random element X ←R Z∗

N drawn from the
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Game GRSA
Gen,A(λ):

(N,DN , (p, q))←R Gen(1λ)
e←R DN

X ←R Z∗
N

Y ← A(N, e,X)
Return 1 if and only if Y e = X mod N .

Figure 3: RSA Game.

multiplicative group modulo N . In other words, the PPT adversary A is unable to compute Xd mod N
where d = e−1 mod ϕ(N). In general, the RSA assumption is a class of assumptions that is parameterized
by some distribution DN determining how to pick the public exponent e. Thus, the Gen algorithm also
outputs a distribution DN to sample e. Furthermore, for concrete security bounds that may be used for
guiding practical implementations, we consider a more fine-grained version of the RSA assumption that is
additionally parameterized by the running time t and advantage ϵ of the adversary. Throughout the rest of
this paper, we will present all security with respect to concrete parameters. As a result, all our definitions
will always have fine-grained parameters.

Definition 5 ((ϵ, t)-RSA Assumption). Let λ be the security parameter and consider the game GRSA
Gen,A(λ) in

Figure 3. The (ϵ, t)-RSA assumption is true for Gen if for any PPT adversary A that runs in time t,

Pr[GRSA
Gen,A(λ) = 1] ≤ ϵ.

In our work, we will focus on the setting when Gen always outputs strong RSA modulus N that is the
product of two safe primes. We do not use the safe primes for reasons related to strengthening the RSA
assumption. Instead, we use safe primes to utilize the additional structure in the multiplicative group Z∗

ϕ(N).
In particular, we show that safe primes enable an efficient and simple method of hashing public metadata to
a large subset of elements in Z∗

ϕ(N) without requiring knowledge of ϕ(N). We point readers to Section 5.2
for more details on our usage of the strong RSA modulus. We present our definition of the RSA assumption
restricted to strong RSA modulus below.

Definition 6 ((ϵ, t)-RSA Assumption for Strong Modulus). Let λ be the security parameter and consider
the game GRSA

Gen,A(λ) in Figure 3. The (ϵ, t)-RSA assumption is true for Gen such that Gen only outputs strong
RSA modulus and, if for any PPT adversary A that runs in time t,

Pr[GRSA
Gen,A(λ) = 1] ≤ ϵ.

As the RSA assumption for strong modulus considers only a subset of possible modulus, it seems natural
that it is no weaker than the standard RSA assumption. We formally prove this relation in the next theorem
that utilizes prime number densities and the conjectured densities of safe prime numbers. We only assume
that Gen generates N as the product of two uniformly random λ-bit primes, which is common practice (see
BoringSSL [2] for example). See Appendix A for the proof and further details.

Theorem 1. If the (ϵ, t)-RSA Assumption (Definition 5) is true and Gen generates modulus N as the
product of two uniformly random λ-bit primes, then the (O(ϵ · λ2), t)-RSA Assumption for Strong Modulus
(Definition 6) is also true.

In our proofs, we will prove the unforgeability of our RSA (non-blind) signatures with public metadata
using the RSA assumption for strong modulus. Using Theorem 1, one can then re-interpret all our results
as assuming the standard RSA assumption.

Finally, we note that the above reduction works for all of the assumptions in our paper. In particular,
we can interchangeably use various RSA assumptions for arbitrary modulus as well as strong modulus.
Throughout the rest of our work, we will use these assumptions interchangeably at the costs of an O(ϵλ2)
multiplicative factor to the security parameter.
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Game GCT-RSA
Gen,A (λ): Oracle ORSA(X): Oracle OX ():

(N,DN , (p, q))←R Gen(1λ) cnt← cnt+ 1 X ←R Z∗
N

e←R DN d← e−1 mod ϕ(N) SX ← SX ∪ {X}
ϕ(N)← (p− 1)(q − 1) Y ← Xd mod N Return X
cnt← 0, SX ← ∅ Return Y

(Xi, Yi)i∈[cnt+1] ← AORSA,OX
(N, e)

Return 1 if and only if all the following hold:
- ∀i ̸= j ∈ [cnt+ 1], Xi ̸= Xj

- ∀i ∈ [cnt+ 1], Xi ∈ SX
- ∀i ∈ [cnt+ 1], Y e

i = Xi mod N

Figure 4: Chosen-Target RSA Inversion Game.

Discussion about DN . In practical implementations, the distribution DN is typically a singleton fixed for
all modulus N . The most common public exponents used in RSA implementations are 3 and 65537. On the
other hand, theoretical works will typically consider DN to be non-trivial distributions such as uniform from
Z∗
ϕ(N) or some subset of Z∗

ϕ(N) (such as [17]). In our work, we will prove our construction to be secure for
generic DN with minimal assumptions. In general, we will only restrict the output size to be at most emax.
In other words, DN will pick a random element from [1, emax] that is co-prime with ϕ(N). For our practical
implementations, we fix DN to be the small commonly used exponent as done in prior RSA implementations.

Discussion about Gen Trapdoor. In our definition of Gen, the trapdoor output is essentially two prime
factors p and q of the RSA modulus N . Prior works defined Gen to return the decryption exponent d =
e−1 mod ϕ(N) as opposed to the prime factorization of N . We note the two outputs are equivalent. Given
the prime factors p and q of N , one can easily compute ϕ(N) and thus invert e modulo ϕ(N). In fact, we
could also choose to define Gen to simply return ϕ(N) that is sufficient for our work. On the other hand, it is
well known that one can also compute the prime factors of N using only d (see [17] for example). Therefore,
the definitions are equivalent and we choose to return p and q for convenience.

3.3 One-More RSA Inversion Assumption

Security of RSA blind signature schemes have been proven by using of a class of computational prob-
lems known as one-more RSA inversion problems introduced by Bellare, Namprempre, Pointcheval and
Semanko [12]. In these problems, the adversary is given access to a decryption oracle ORSA and a challenge
oracle OX . The decryption oracle takes as input X ∈ Z∗

N and returns ORSA(X) = Y where Y e = X mod N .
The challenge oracle OX will return random elements from Z∗

N as random challenge targets. The adversary
only succeeds if it inverts ℓ + 1 challenge targets while making at most ℓ queries to the decryption oracle
ORSA. That is, it computes at least one more RSA decryption than the number of oracle queries. We define
chosen-target RSA inversion game in Figure 4 along with the following definition that were both introduced
in [12]. In this definition, chosen-target implies that the adversary may choose to invert any of the targets
output by the oracle OX .

Definition 7 ((ϵ, t, ℓ)-Chosen-Target RSA Inversion Assumption). Let λ be the security parameter and
consider the game GCT-RSA

Gen,A (λ) in Figure 4. The (ϵ, t, ℓ)-chosen-target RSA inversion assumption is true for
Gen if, for any adversary A that runs in time t and makes at most ℓ decryption queries, the following holds

Pr[GCT-RSA
Gen,A (λ) = 1] ≤ ϵ.

Discussion about Challenge Oracle. In the formulation of the chosen-target RSA inversion game, the
adversary has access to a target oracle OX that it can use to get a set of potential targets to invert. Another
definition may be to suppose that the set of possible targets is provided to the adversary as input instead.
It turns out that the two definitions are equivalent as shown in [12]. Throughout the rest of the work, we
will consider this formulation where the adversary will have access to a challenge oracle.

10



Game GME-RSA
Gen,A,ℓ (λ):

(N,DN , (p, q))←R Gen(1λ)
(e1, . . . , eℓ)←R DN

X ←R Z∗
N

(i, Y )← A(N, e1, . . . , eℓ, X)
Return 1 if and only if i ∈ [l] and Y ei = X mod N .

Figure 5: Multi-Exponent RSA Game. All differences with the RSA game, GRSA
Gen,A(λ), are highlighted in

blue.

4 RSA Assumptions with Multiple Exponents

In this section, we introduce and explore various generalizations of the RSA assumption with multiple
exponents. Afterwards, we further extend them to one-more variants (following the definitional extensions
for the RSA assumption in [12]). To our knowledge, we are unaware of prior works that formally defined
multi-exponent variants of the RSA assumption. In our work, we will explore various natural generalizations
and analyze them carefully.

4.1 Multi-Exponent RSA Assumption

We start by extending the standard RSA assumption from one challenge exponent e to a set of ℓ exponents,
e1, . . . , eℓ. The adversary wins the game if it can decrypt a random target for any of the ℓ exponents provided
in the challenge. We formally present this game in Figure 5 that we denote as the multi-exponent RSA game.

Definition 8 ((ϵ, t, ℓ)-Multi-Exponent RSA Assumption). Let λ be the security parameter and consider
the game GME-RSA

Gen,A,ℓ (λ) in Figure 5. The (ϵ, t, ℓ)-multi-exponent RSA assumption is true for Gen, if for any
adversary A that runs in time t, the following holds

Pr[GME-RSA
Gen,A,ℓ (λ) = 1] ≤ ϵ.

As this provides more flexibility for the adversary, it is a stronger assumption than the standard RSA
assumption with a single exponent. However, we can show that the two assumptions differ by at most an
additive factor that is exponentially smaller in λ for reasonable choices of emax.

Theorem 2. If the (ϵ, t)-RSA assumption for strong modulus (Definition 6) is true with exponents from
[1, emax], then the (ϵ + ℓ · (emax/e

′
max), t − O(ℓ), ℓ)-multi-exponent RSA assumption (Definition 8) is true

with exponents from [1, e′max] where emax < e′max ≤ 2λ−2.

Proof. Towards a contradiction, suppose that there exists an adversary A′ that wins the multi-exponent RSA
game with probability ϵ′ with running time t′ when given ℓ challenge exponents. We build an adversary A
for the RSA game that wins with probability ϵ′ with the running time t = t′ +O(ℓ).

Recall thatA is given an exponent e and random targetX and must produce Y satisfying Y e = X modN .
To do this, A will pick ℓ random odd numbers from the set [1, e′max/e] that we denote as z1, . . . , zℓ. We
choose the ℓ challenge exponents as ei = e · zi for all i ∈ [ℓ]. As we assume N is a strong RSA modulus and
the product of two λ-bit primes, we know that ϕ(N) = 4p′q′ for some primes p′ and q′ of length at least
λ − 2. Therefore, odd numbers from [1, 2λ−2] will be co-prime with ϕ(N) and, thus, valid exponents. As
each zi are chosen such that ei = e · zi ≤ e′max ≤ 2λ−2, we know that each ei is a valid exponent. Finally, A
passes the modulus N , the ℓ exponents as well as the random target X to A′(N, e1, . . . , eℓ, X).

First, we present a hybrid game between the real and simulated view of A′. Note that A′ receives
random exponents from [1, e′max] in the real game. In the simulated game, A′ receives random exponents
from [emax, e

′
max]. As each exponent is generated at random from [1, e′max], we note that A′ can only

distinguish the two views with probability at most ℓ · ((emax/2)/(e
′
max/2)) = ℓ · (emax/e

′
max).

Next, we assume that A′ cannot distinguish between the two views. In the simulated view, A′ receives
ℓ challenge exponents from [emax, e

′
max] that are co-prime to ϕ(N). Note that A′ returns i and a valid
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Game GCT-RE-RSA
Gen,A (λ): Oracle ORSA(X, e): Oracle OX (): Oracle Oexp():

(N,DN , (p, q))←R Gen(1λ) If e /∈ Sexp: X ←R Z∗
N e←R DN

SX ← ∅, Sexp ← ∅ Return ⊥ SX ← SX ∪ {X} Sexp ← Sexp ∪ {e}
ϕ(N)← (p− 1)(q − 1) cnte ← cnte + 1 Return X Return e
cnte ← 0,∀e ∈ Z∗

ϕ(N) d← e−1 mod ϕ(N)

e, (Xi, Yi)i∈[x] ← AORSA,OX ,Oexp

(N) Y ← Xd mod N
Return 1 if and only if all the following hold: Return Y
- cnte < x
- e ∈ Sexp
- ∀i ̸= j ∈ [x], Xi ̸= Xj

- ∀i ∈ [x], Xi ∈ SX
- ∀i ∈ [x], Y e

i = Xi mod N

Figure 6: Chosen-Target, Restricted-Exponent RSA Inversion Game. All differences with the chosen-target
RSA inversion game, GCT-RSA

Gen,A (λ), are highlighted in blue.

decryption of X under ei with probability ϵ′. In other words, A′ outputs Y satisfying Y = X1/ei = X1/(e·zi).
Therefore, A can output Y zi = X1/e to win the RSA game. So, A wins this game with probability ϵ′

assuming the simulated and real views are indistinguishable. Altogether, A wins the game with probability
ϵ′ − ℓ · (emax/e

′
max).

For the running time, note that A required an additional O(ℓ) time to generate random exponents. If
A′ runs in time t′, then A runs in time t′ +O(ℓ).

Note, we can set emax ≤ 2λ/2 to obtain that the difference between the standard and multi-exponent
RSA game is at most an additive factor of 2−λ/2+log ℓ+2.

We build upon the above ideas to obtain our one-more extension of the multi-exponent RSA assumption
that we will use to prove security of our blind signature protocol.

4.2 One-More Multi-Exponent RSA Assumption

We start from the chosen-target variant of the one-more RSA assumption from [12] (we refer readers back
to Figure 4 for full details). We will modify this game to obtain a one-more variant of the multi-exponent
RSA assumption from the prior section. As the first step, we will also create an exponent oracle Oexp that
will output challenge exponents (analogous to the oracle OX for challenge targets). Next, we generalize
the decryption oracle, ORSA, to receive both an element X and an exponent e. However, ORSA makes the
restriction that the input exponent e must be a challenge exponent output by Oexp. In other words, the
decryption oracle only works for the exponents output by Oexp.

This immediately leads to the first natural definition of a one-more multi-exponent RSA assumption
where an adversary makes at most cnte decryption oracle queries for some exponent e and must output
cnte+1 valid decryptions of the form (Xi, Yi)i∈[cnte+1] satisfying that Y e

i = Xi mod N where e must be some
challenge exponent output by Oexp. We keep the same restriction as the one-more RSA assumption that the
targets Xi must be valid outputs from the message oracle OX (satisfying the chosen-target property).

We formally define this game in Figure 6 that we denote as the chosen-target, restricted-exponent RSA
inversion game. In this definition, we use restricted-exponent to denote the fact that the decryption oracle
ORSA restricts the adversary to only pick exponents output by Oexp.

Definition 9 ((ϵ, t, ℓ)-Chosen-Target, Restricted-Exponent RSA Inversion Assumption). Let λ be the se-
curity parameter and consider the game GCT-RE-RSA

Gen,A (λ) in Figure 6. The (ϵ, t, ℓ)-chosen-target, restricted-
exponent RSA inversion assumption is true for Gen, if for any adversary A that runs in time t and makes
at most ℓ decryption queries, the following holds

Pr[GCT-RE-RSA
Gen,A (λ) = 1] ≤ ϵ.
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Game GSRSA
Gen,A(λ):

(N, (p, q))←R Gen(1λ)
X ←R Z∗

N

(e, Y )← A(crs, N,X)
Return 1 if and only if e ≥ 3 and Y e = X mod N .

Figure 7: Strong RSA Game.

Relation to Chosen-Target RSA Inversion Assumption. In the prior section, we showed that extend-
ing the standard RSA assumption from one exponent to ℓ exponents only affected the adversarial advantage
by an additive factor exponentially small in λ. In other words, the assumptions are essentially identical when
considering polynomial time adversaries.

One could attempt to try and prove a similar equivalence between the chosen-target, restricted-exponent
RSA inversion assumption (Definition 9) and the original chosen-target RSA inversion assumption (Defini-
tion 7) from [12]. Clearly, the chosen-target, restricted-exponent variant is a no weaker assumption than
the original chosen-target variant. Recall that, in the proof of Theorem 2, it was required to generate fake
challenge exponents co-prime to ϕ(N). This can be easily done when N is a strong RSA modulus. For this
reduction, we would need to additionally be able to produce decryptions with respect to the fake challenge
exponents. Unfortunately, this seems quite challenging. For example, suppose an adversary tried to produce
pairs (e′, d′) such that e′d′ = 1 mod ϕ(N). Then, the adversary could submit e′ as a challenge exponent and
use d′ to answer decryption queries. It is well known that producing a pair (e′, d′) satisfying this property is
equivalent to factoring N and, thus, breaking any RSA assumption immediately. Therefore, this seems like
a very challenging task for an adversary without knowledge of ϕ(N).

We leave it as an open problem to determine the relationship between the chosen-target, restricted-
exponent inversion assumption and the original chosen-target inversion assumption.

4.3 Connections to Strong RSA Assumption

Finally, we make connections between the above multi-exponent RSA assumptions and the strong RSA
assumption introduced in [11, 21]. We emphasize that the assumptions in this section that will not be used
for proving security of any of our protocols. We will only rely on the multi-exponent variants from Section 4.2
for our security proofs. Instead, we perform an exploration to see the connections between the assumptions
from our prior section and its relation to the strong RSA assumption.

Strong RSA Assumption. In comparison with the standard RSA assumption, the strong RSA assumption
provides more flexibility to the adversary to choose its own public exponent. The strong RSA problem states
that the original RSA problem is intractable even when A is allowed to choose the public exponent e ≥ 3.
More specifically, given a RSA modulus N , and a random target X, it is infeasible to find any pair (Y, e)
such that X = Y e mod N and e ≥ 3. We provide the formal definition of the strong RSA assumption below:

Definition 10 ((ϵ, t)-Strong RSA Assumption). Let λ be the security parameter and consider the game
GSRSA
Gen,A(λ) in Figure 7. The (ϵ, t)-strong RSA assumption is true for Gen, if for any PPT adversary A that

runs in time t, the following holds
Pr[GSRSA

Gen,A(λ) = 1] ≤ ϵ.

Extending towards One-More Strong RSA Type Assumptions. A natural next step is to extend the
strong RSA assumption using the one-more style definitions. To our knowledge, we are unaware of prior work
that has formally defined this notion. We will present two natural definitions that seem to be reasonable.
We show that one such definition seems plausible while the other can be broken by an adversary.

Before presenting these definitions, we quickly overview why the prior chosen-target, restricted-exponent
RSA assumption (Definition 9) from Section 4.2 seems significantly weaker. Recall that, in the strong
RSA assumption, the adversary is able to choose any exponent e ≥ 3. In contrast, for the chosen-target,
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Game GCT-CE-RSA
Gen,A (λ): Oracle ORSA(X, e): Oracle OX (): Oracle Oexp():

(N, DN , (p, q))←R Gen(1λ) If e /∈ Z∗
ϕ(N): X ←R Z∗

N e←R DN

SX ← ∅, Sexp ← ∅ Return ⊥ SX ← SX ∪ {X} Sexp ← Sexp ∪ {e}
ϕ(N)← (p− 1)(q − 1) cnte ← cnte + 1 Return X Return e
cnte ← 0,∀e ∈ Z∗

ϕ(N) d← e−1 mod ϕ(N)

e, (Xi, Yi)i∈[x] ← AORSA,OX ,Oe

(N) Y ← Xd mod N
Return 1 if and only if all the following hold: Return Y
- cnte < x
- e ∈ Sexp
- ∀i ̸= j ∈ [x], Xi ̸= Xj

- ∀i ∈ [x], Xi ∈ SX
- ∀i ∈ [x], Y e

i = Xi mod N

Figure 8: Chosen-Target, Chosen-Exponent RSA Inversion Game. All differences with the chosen-target,
restricted-exponent RSA inversion game, GCT-RE-RSA

Gen,A (λ), are highlighted in blue.

restricted-exponent game, GCT-RE-RSA
Gen,A,ℓ (λ), the adversary is significantly restricted in the exponents of choice.

The chosen-target, restricted-exponent definition places two requirements on the adversaries that seem more
stringent than the strong RSA assumption. First, the output exponent must be one of the outputs of the
challenge oracle Oexp. Secondly, the adversary is not able to submit any decryption requests for exponents
except for those output by Oexp. Therefore, in our opinion, the chosen-target, restricted-exponent assumption
is weaker and not a truly natural extension of the strong RSA assumption. Intuitively, the chosen-target,
restricted-exponent assumption seems significantly weaker than any true one-more strong RSA assumption.

Next, we will consider assumptions that are (seemingly) stronger than the chosen-target, restricted-
exponent game that get closer to the spirit of an one-more strong RSA assumption.

One-More RSA with Chosen Exponents. As our first attempt to consider stronger assumptions, we will
consider a new game where the decryption oracle, ORSA, allows the adversary to submit arbitrary exponents
for decryption. In particular, we no longer restrict queries to the decryption oracle to consist of exponents
output by the challenge oracle Oexp. As a technical detail, we do require queried exponents to be co-prime to
ϕ(N) to enable decryption. In the case that the input exponent is not co-prime to ϕ(N), ORSA will output
⊥. Note, we will still require the adversary to output exponents from Oexp to win the game though. Clearly,
this is a stronger assumption compared to the chosen-target, restricted-exponent assumption (Definition 9)
as the adversary has significantly more freedom when choosing decryption oracle queries.

We formally present this game in Figure 8 that we denote as the chosen-target, chosen-exponent RSA
inversion game. We use the notion chosen-exponent to denote that the adversary is now free to pick any
exponents to submit to the decryption oracle ORSA.

Definition 11 ((ϵ, t, ℓ)-Chosen-Target, Chosen-Exponent RSA Inversion Assumption). Let λ be the security
parameter and consider the game GCT-CE-RSA

Gen,A (λ) in Figure 8. The (ϵ, t, ℓ)-chosen-target, chosen-exponent
RSA inversion assumption is true for Gen if, for any adversary A that runs in time t and makes at most ℓ
decryption queries, the following holds

Pr[GCT-CE-RSA
Gen,A (λ) = 1] ≤ ϵ.

While this seems like a reasonable assumption, it still limits the adversary’s abilities to pick exponents e.
In particular, the adversary is forced to use one of the outputs of the challenge oracle Oexp. In contrast, the
strong RSA assumption enables the adversry to pick any e ≥ 3 and produce a decryption with respect to e.

One-More RSA with Arbitrary Exponents. As the final assumption, we remove the above restriction
and enable the adversary to pick arbitrary exponents identical to the strong RSA assumption. We no longer
provide a challenge exponent oracle, Oexp, to the adversary. Instead, the adversary is free to choose any
exponent e ≥ 3 and produce a decryption with respect to e. We formally present this game in Figure 9
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Game GCT-AE-RSA
Gen,A (λ): Oracle ORSA(X, e): Oracle OX ():

(N, (p, q))←R Gen(1λ) If e /∈ Z∗
ϕ(N): X ←R Z∗

N

SX ← ∅ Return ⊥ SX ← SX ∪ {X}
ϕ(N)← (p− 1)(q − 1) cnte ← cnte + 1 Return X
cnte ← 0,∀e ∈ Z∗

ϕ(N) d← e−1 mod ϕ(N)

e, (Xi, Yi)i∈[x] ← AORSA,OX
(N) Y ← Xd mod N

Return 1 if and only if all the following hold: Return Y
- cnte < x
- ∀i ̸= j ∈ [x], Xi ̸= Xj

- ∀i ∈ [x], Xi ∈ SX
- ∀i ∈ [x], Y e

i = Xi mod N

Figure 9: Chosen-Target, Arbitrary-Exponent RSA Inversion Game.

that we denote as the chosen-target, arbitrary-exponent RSA inversion game. We denote this game with the
notion of arbitrary-exponent as the adversary is free to output any exponent e ≥ 3.

While this seems like a natural extension, we can show that arbitrary exponents provide far too much
power to an adversary. In fact, we can present a simple polynomial time adversary that can break this game.

Theorem 3. There exists a polynomial time adversary A that wins the chosen-target, arbitrary-exponent
RSA inversion game in Figure 9.

Proof. We present a simple adversary A as follows. First, A gets a target X ← OX (). Next, the A
picks two different numbers e and e′ that are co-prime to ϕ(N). To find these, A can submit decryption
oracles with random odd numbers as exponents that only returns ⊥ when the submitted exponent is not
co-prime to ϕ(N). Without loss of generality, let e′ > e. The adversary calls the decryption oracle to receive
Y ← ORSA(Xe′ , e · e′). Then, we note that Y = (Xe′)1/(e·e

′) = X1/e. Finally, A outputs e, (X,Y ) and wins
the game as the adversary never made a single decryption oracle call for e.

Interestingly, the ability for the adversary to choose arbitrary exponents without a challenge exponent
oracle Oexp enables far too much adversarial power. The same reasoning was used in prior RSA assumptions
where the target was given at random to the adversary. If the adversary is able to pick arbitrary messages
to decrypt, then the adversary can easily break prior RSA assumptions as well. While this does not occur
for exponents in the standard assumptions without decryption oracles, it ends up being the case once you
provide decryption oracles to the adversary. Therefore, the challenge exponent oracle Oexp seems necessary
for any of these one-more RSA assumptions.

Inability to Extend Attack. One could try to extend these attacks to our other assumptions such
as the chosen-target, chosen-exponent assumption (Definition 11) or the chosen-target, restricted-exponent
assumption (Definition 9). In the attack, the adversary is required to find two exponents e and e′ such that
e | e′. In the chosen-exponent game, it is unlikely the adversary will ever receive such a pair of exponents
from the oracle Oexp. For example, if N is a strong RSA modulus such that N = pq where p = 2p′ + 1
and q = 2q′ + 1 are safe primes, then ϕ(N) = 4p′q′. Assuming that p′ and q′ are sufficiently large, then it
is very unlikely for an adversary to receive to random elements e, e′ from Z∗

ϕ(N) (via the exponent oracle,

Oexp) satisfying e | e′. Therefore, we were unable to extend this attack to any of the prior games due to the
requirement that the adversary must use exponents output by oracle Oexp.

5 RSA Signatures with Public Metadata

In this section, we start by presenting a protocol for RSA (non-blind) signatures with public metadata. The
goal is to show that our protocol augmentation for public metadata does not degrade concrete security in
any meaningful way compared to the original protocol without public metadata.
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5.1 Preliminaries

Before we present our protocol, we start by presenting various preliminaries and building blocks that we
will utilize throughout our protocols. We will use these primitives in our RSA blind signature protocol in
Section 6 as well.

Unique Concatenation. Throughout our work, we will utilize concatenation of multiple values where each
unique tuple should result in a unique concatenation. Formally, we may consider tuples (A,B) such that
the concatenation A || B must be unique. That is, for any pair of tuples, (A,B) and (A′, B′), it must be
that A || B is identical to A′ || B′ if and only if A = A′ and B = B′. This could also extend to tuples of
size larger than two. A straightforward way to do this is to encode tuples (A,B) as |A| || A || B where |A| is
the length of A stored in some fixed-length integer (such as 64 bits). This may be extended to longer tuples
naturally as (X1, X2, . . . , Xn) may be concatenated as |X1| || |X2| || . . . || |Xn−1| || X1 || X2 || . . . || Xn. For
the rest of the work, we will assume that when we concatenate any tuple of values X1 || X2 || . . . || Xn, we
are using the unique version with length prepending.

Message Encoding. In our protocols, we will utilize standard encoding algorithms for messages used in
RSA signatures. Formally, we will assume that the message encoding consists of two algorithms: HM and
VerifyM. The hash function HM(X) : {0, 1}∗ → Z∗

N maps strings to elements in the multiplicative group
modulo the RSA modulus N . The verification algorithm VerifyM(X,Y ) : {0, 1}∗ × Z∗

N → {0, 1} checks and
returns 1 if and only if Y corresponds to the output of HM(X).

In our work, we will consider two different encodings: full domain hash (FDH) and probabilistic signature
scheme (PSS). At a high level, FDH is a determinsitic encoding algorithm that maps each message to a
random element. In contrast, PSS is a randomized encoding algorithm that will map the same message to
different outputs when evoked multiple times. Bellare and Rogaway [13] showed that the concrete security
of PSS encodings was stronger than FDH encodings when applied to standard RSA signatures (without
public metadata). In our implementations, we use PSS encodings due to its superior concrete security and
randomized properties. Furthermore, we wish to align our implementation with current IRTF specifications
for RSA blind signatures [20] that do not consider public metadata. The version of PSS encodings that
we rely upon are those from prior specifications [26] that essentially uses a variant of PSS encodings with
message recovery presented in [13].

For our proofs, we will prove security of our schemes assuming the usage of the FDH encoding. We chose
this approach as to not over-complicate our proof with PSS encoding techniques that are directly borrowed
from prior work [13]. Instead, we wish to focus our proof on the new techniques required to prove security
with respect to the additional public metadata functionality. Although, one can directly apply the proof
techniques for PSS encodings from [13] to our security proofs. As we will use FDH, we present it formally.

Definition 12 (Full Domain Hash). The full domain hash (FDH) message encoding consists of two deter-
ministic algorithms HM : {0, 1}∗ → Z∗

N and VerifyM : {0, 1}∗ × Z∗
N → {0, 1} as follows:

• For each string X, HM(X) is a random element from Z∗
N .

• For a string X and Y ∈ Z∗
N , VerifyM(X,Y ) = 1 if and only if Y = HM(X).

Instantiations of Hash Functions. Throughout the rest of this section and our proofs, we will assume
that all hash functions are modeled as random oracles unless otherwise specified. In practice, we will
instantiate these hash function using a variety of different approaches depending on prior standards or the
specific requirements. We defer to prior specifications including [20, 10] for recommendations on specific
instantiations of each hash function.

5.2 Protocol for RSA Signatures with Public Metadata

In this section, we formally present the protocol for RSA signatures with public metadata. Our goal of
starting with the non-blind version is to show that our public metadata augmentation does not degrade the
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concrete security compared to the standard RSA signature scheme without public metadata. In particular,
we will show that concrete security degrades by an additive factor of 2O(−λ) where λ is the length of the
prime factors of the strong RSA modulus. In practice, this is essentially negligible. We believe this provides
evidence that our new protocol with public metadata augmentation has similar security as the prior RSA
blind signature without public metadata.

Setup. For the reader’s convenience, we quickly summarize our setup. We will denote the strong RSA
modulus by N of bit length 2λ such that the two safe primes p, q (factors of N) are both of bit length λ.
The public key will be pk ← N which is the strong RSA modulus. The private key will be sk ← ϕ(N).
As p = 2p′ + 1 and q = 2q′ + 1 are safe primes, we know that both p′ and q′ are also primes. Therefore,
ϕ(N) = (p− 1) · (q − 1) = 4p′q′.

Public Metadata Hash Function. Next, we define our hash function that is used to map public metadata
to values in the group of RSA exponents Z∗

ϕ(N). Recall that these are all elements that are invertible modulo

ϕ(N). This is a straightforward task if ϕ(N) was publicly known by all parties. However, it is critical that
ϕ(N) is hidden to all parties except the signer. Therefore, we must come up a way to perform this mapping
for users that do not know the value of ϕ(N). We present a simple way to do this below that relies on the
structure of Z∗

ϕ(N) and the fact that N is a strong RSA modulus.

HMD(D): Let G be a hash function.

1. Compute G(D) of length γ bits.

2. Return 1 || G(D). In other words, we are returning 2 ·G(D) + 1.

In words, the above function simply returns a random odd number of length γ + 1 bits. Picking γ
correctly, we can guarantee that the output of HMD will always be smaller than the prime values p′ and q′

such that ϕ(N) = 4p′q′. This turns out to be sufficient to guarantee that outputs of HMD will always be
elements from Z∗

ϕ(N).

Lemma 1. Suppose N is a strong RSA modulus such that N = pq where p = 2p′ + 1 and q = 2q′ + 1 are
safe primes each of length λ and γ ≤ λ− 4. Then, for all D ∈ {0, 1}∗, HMD(D) is co-prime to ϕ(N).

Proof. Fix any x ∈ {0, 1}∗. First, we note that the output of HMD(x) is always odd. Therefore, we know
that if HMD(x) is not co-prime to ϕ(N), then it must be that either p′ | HMD(x) or q

′ | HMD(x). We know
that the bit length of p′ and q′ is at least λ − 2 given that p = 2p′ + 1 and q = 2q′ + 1 and both p and q
are λ bit long primes. Note that the bit length of HMD(x) is γ + 1 ≤ λ− 3. As p and q are bit length λ, we
know that both p′ and q′ have bit length at least λ− 2. Thus, we know that HMD(x) < p′ and HMD(x) < q′.
Therefore, HMD(x) is always co-prime to ϕ(N).

RSA Signatures with Public Metadata. Using the public metadata hash function HMD, we are ready
to present a description of our RSA signatures with public metadata. We will assume that HM and VerifyM
correspond to some message encoding algorithm (such as FDH in Definition 12). We note that the Setup
algorithm is essentially identical to the standard RSA signatures without public metadata protocols. The
signing algorithm is modified to use eMD ← HMD(D) where D is the public metadata. As the signer
knows ϕ(N), it can compute dMD ← (eMD)

−1 mod ϕ(N) efficiently to produce a signature. The verification
algorithm is identical when using eMD as the public exponent. As we are considering non-blind signatures
(i.e., non-anonymous tokens), the Blind and Finalize algorithms are trivial and, thus, omitted (see Section 2
for definitions). We present the formal algorithms for all of the necessary algorithms below.

RSAMD.Setup(1
λ):

1. Randomly generate (N, p, q)←R Gen(1λ).

2. Compute ϕ(N)← (p− 1)(q − 1).
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3. Return pk← N, sk← ϕ(N).

RSAMD.Sign(M,D, pk← N, sk← ϕ(N)):

1. Compute eMD ← HMD(D).

2. Compute dMD ← (eMD)
−1 mod ϕ(N).

3. Compute MMD ← HM(M || D).

4. Return signature S ← (MMD)
dMD mod N .

RSAMD.Verify(S,M,D, pk← N):

1. Compute eMD ← HMD(D).

2. Compute X ← SeMD mod N .

3. Return VerifyM(M || D,X).

Correctness. First, we show our above protocols are well-defined. In particular, we need to show that
dMD ← (eMD)

−1 mod ϕ(N) is actually computable. We will rely on Lemma 1 stating that all outputs of
HMD are co-prime with ϕ(N). Therefore, eMD has a valid inverse modulo ϕ(N) and the signing algorithm is
always well-defined.

Next, we will show that the verification succeeds for well-formed signatures. Let S be a signature that
is produced by following the Setup and Sign algorithms properly for input message M and public metadata
D. Then, we know that the signature satisfies:

S = (HM(M || D))1/HMD(D) mod N.

Then, the verification algorithm will return the following result

VerifyM(M || D,S·HMD(D)) = VerifyM(M || D,HM(M || D)) = 1

as we know that SHMD(D) = HM(M || D) mod N and VerifyM(X,HM(X)) = 1. Therefore, a well-formed
signature will always be verified correctly.

5.3 Unforgeability

In this section, we prove the concrete security of our RSA signature with public metadata from the RSA
assumption. In particular, we aim to answer the question of whether our new public metadata variant may
have weaker security compared to standard RSA signatures. We essentially show that this is not the case as
we show that the concrete security bounds are nearly identical to those proven by Bellare and Rogaway [13]
with FDH message encodings except for an additive factor exponentially small in the security parameter λ.

At a high level, our security proof will construct an adversary A for the multi-exponent RSA game given
exponents from [1, 2λ−3]. Afterwards, we can apply Theorem 2 to obtain security based on the standard
RSA assumption. However, we require that emax ≤ 2λ/2 to ensure that the additive factor is exponentially
small in λ. We start with the first step reducing security to the multi-exponent RSA assumption:

Lemma 2. Suppose that (HM,VerifyM) correspond to full domain hash (FDH) message encoding. Assuming
the (ϵ, t, qMD)-multi-exponent RSA assumption (Definition 8) with exponents in [1, 2λ−3] and the random
oracle model, then RSAMD is (ϵF , tF , ℓF )-strong one-more unforgeable (Definition 2) where

• tF = t−O(qM + qMD + ℓF )

• ϵF = qM · ϵ
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and the adversary A runs in time at most tF and makes at most ℓF , qM and qMD queries to the signing
oracle and hash functions HM and HMD respectively.

Proof. Let AF be an adversary that can break the (ϵF , tF , ℓF )-SOMUF of RSAMD with at most ℓF , qM and
qMD queries to the signing oracle, HM and HMD. That is, AF can forge a signature with success probability of
ϵF with running time of tF . To complete the proof, we show that one can use AF to construct an adversary
A that can break the multi-exponent RSA game with exponents from [1, 2λ−3] using O(qM + qMD + ℓF )
additional running time and wins the game with probability at least ϵF /qM.

For any adversary A trying to solve the multi-exponent RSA problem, A receives as input the challenge
RSA exponents (e1, . . . , eqMD

), strong RSA modulus N and a challenge target X that is chosen uniformly at
random Z∗

N . Recall that the goal is to pick any i ∈ [qMD] and output the ei-th root of X modulo N . In other
words, compute Y such that Y ei = X mod N .
A will execute the adversary AF that outputs a forgery of the form D, (Si,Mi)i∈[x]. Without loss of

generality, we will assume the following. First, x ≤ ℓF + 1. As AF makes at most ℓF signing oracle queries,
A will only need to produce at most ℓF +1 valid signatures to win the strong one-more unforgeability game.
Secondly, we will assume that AF will have queried HM(Mi) on all output messages. Again, this is without
loss of generality as it will only increase the running time of AF by at most ℓF + 1 hash function queries.
Furthermore, we will suppose that AF will have queried both HM(M) and HMD(D) before submitting a
signing query for M and D. Again, this is without loss of generality, as it only increases the running time of
AF by at most 2ℓF hash queries.

During the execution of AF , A must successfully simulate queries for signing as well as the message
encoding hash function HM and the public metadata hash function HMD. Before doing so, A keeps track of
a count of the number of unique inputs to the message oracle HM. We know that at most qM queries are
made to HM. A will pick a random integer z ←R [qM] and will embed the challenge X as the output of
the z-th query to HM. To keep track, A keeps counter cntM to count the number of unique inputs to HM
where cntM is initialized to zero. Similarly, A uses cntMD to count the number of unique inputs to HMD

with cntMD also initialized to zero. Finally, A keeps a map of inputs to important information for the hash
function HMD and HM denoted by MMD and MM. A will simulate each of these queries as follows.

For any query to HMD(D):

1. If MMD[D] is set, return MMD[D].

2. Increment cntMD ← cntMD + 1.

3. Set MMD[D]← ecntMD
.

4. Return MMD[D].

For any query to HM(M,D):

1. Compute eMD ← HMD(D).

2. If MM[M,D] is set, return first value of tuple MM[M,D].

3. Increment cntM ← cntM + 1.

4. If cntM = z:

(a) Set MM[M,D]← (X,⊥).

5. Otherwise when cntM ̸= z:

(a) Generate random A←R Z∗
N .

(b) Compute B = AeMD mod N .

(c) Set MM[M,D]← (B,A).
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6. Return first value of tuple MM[M,D].

For any query to OSign(M,D):

1. Retrieve (B,A)←MM[M,D].

2. If A = ⊥, abort.

3. Return A.

Finally, we will suppose that A does not abort and AF outputs some forgery D, (Si,Mi)i∈[x] while making
strictly less than x signing queries for metadata D. If HM(Mi || D) = X for any i ∈ [x], then we know the
following holds:

HM(Mi || D) = X = S
HMD(D)
i

assuming that AF is successful at forging. Re-writing the above, we get that

Si = X1/HMD(D) = X1/ej

for some j ∈ [qMD] and ej is the j-th challenge exponent. In other words, this is a successfully decryption
of the ciphertext X that would win the multi-exponent RSA game. Therefore, A will simply return (j, Si)
that would win the multi-exponent RSA game.

Adversarial Advantage. First, we show that the simulated view and real view of AF are identical. In the real
game, AF receives random exponents from [1, 2λ−3]. In the simulated game, AF receives random challenge
exponents e1, . . . , eqMD

that are also random exponents from [1, 2λ−3]. The view from HM and the signing
oracle are also identical as long as A does not abort.

To upper bound the aborting probability, we first note that AF must return at least one message Mi

such that (Mi, D) was never sent to the signing oracle. Assuming that A successfully executed AF without
aborting, the probability that public metadataD and messageMi are output byAF whereHM(Mi || D) = X
such that (Mi, D) was not a signing oracle query by AF is at least 1/qM. This is because AF makes at most
qM queries to HM and must output at least one message. In this case, it is clear that A will not abort when
executing AF . Finally, we note that A produces a forgery with probability at most ϵF meaning that A wins
the RSA game with probability at least ϵF /qM.

Adversarial Running Time. Suppose that AF runs in time tF . By our assumptions, we note that we increase
the running time of AF by at most O(ℓF ) hash queries. For each signing query, A must perform a single
exponentiation. For each query to HM and HMD, A requires O(1) time to simulate each answer correctly.
Therefore, A requires tF +O(qM + qMD + ℓF ) time.

Using the above lemma, we can apply Theorem 2 to reduce security to standard RSA.

Theorem 4. Suppose that (HM,VerifyM) correspond to full domain hash (FDH) message encoding. Assum-
ing the (ϵ, t)-RSA assumption (Definition 6) with exponents in [1, emax] with emax ≤ 2λ/2 and the random
oracle model, then RSAMD is (ϵF , tF , ℓF )-strong one-more unforgeable (Definition 2) where

• tF = t−O(qM + qMD + ℓF )

• ϵF = qM · ϵ+ qM·qMD·emax

2λ−3 ≤ qM · ϵ+ 2−λ/2+log qM+log qMD+3

and the adversary A runs in time at most tF and makes at most ℓF , qM and qMD queries to the signing
oracle and hash functions HM and HMD respectively.

Proof. First, we apply Lemma 2 to reduce security to the (ϵF /qM, t−O(qM+qMD+ℓF ), qMD)-multi-exponent
RSA assumption with exponents from [1, 2λ−3]. By applying Theorem 2, we obtain that this is equivalent to
the (ϵF /qM − qMD · (emax/2

λ−3), tF +O(qM + qMD + ℓF ))-RSA assumption with exponents from [1, emax].
By plugging in the appropriate emax ≤ 2λ/2, we can complete the proof.
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Smaller Choices of emax. The above theorem makes the very loose restriction that emax ≤ 2λ/2. In
practice, emax is typically much smaller. For example, implementations of RSA typically use e = 3 or
e = 65537. In this case, we can set emax = 3 or emax = 65537 to get much tighter security bounds. For
emax = 3 < 22, we can get the bound on ϵF = tF · ϵ + 2−λ+log qM+log qMD+5. Similarly, for emax = 65537 =
216 + 1 < 217, we can get ϵF = tF · ϵ+ 2−λ+log qM+log qMD+20.

Comparison with Standard RSA Signatures. We note that the concrete security of our variant with
public metadata has almost identical bounds as those proven in [13] for RSA signatures. Re-formulating
their analysis into our terminology, they showed that RSA signatures with FDH encoding has ϵF = qM · ϵ
assuming the (ϵ, t)-RSA assumption with at most qM queries to HM. For our version with public metadata,
we lose an additive factor of 2−λ/2+log qM+log qMD+3 when assuming emax ≤ 2λ/2. In other words, this provides
evidence that our public metadata variant of RSA signatures provides similar unforgeability guarantees as
standard RSA signatures.

Encoding of Message and Public Metadata. We note that our proof critically uses the fact that we pass
both the message and public metadata into the FDH encoding algorithm. When A programs the random
oracle for HM, A exponentiates according to HMD(D). This is only possible because D is also passed as an
input to HM. If, instead, we only passed the message M into HM, then the best that A can do is simply aim
to guess the public metadata that will be later sent with M to the signing oracle. As there is no requirement
that AF has even picked D yet, it is impossible for A to guess this correctly. Therefore, it is integral that
our algorithm passes the public metadata D into HM for security.

Extension to PSS Encoding. Finally, we note that our proof can be modified when using PSS message
encoding. In particular, the random oracle HM is currently programmed in a trivial way to output random
elements that is indistinguishable from FDH encodings. Instead, we can follow the identical proof techniques
of Bellare and Rogaway [13] to program HM to follow the PSS encoding. The main difference is the following.
In the FDH proof, the adversary had to pick one of the query to HM to choose to embed the random input
target. By using the structure of PSS encoding, the adversary can instead embed the random input target
into every query to HM. This significantly improves the ability of the adversary to win the game. As a
result, we can obtain identical concrete security when using PSS encoding as those proved in [13] except for
a similar additive factor exponentially small in λ when simulating the public metadata hash function HMD.

6 RSA Blind Signatures with Public Metadata

In this section, we present our main protocol for RSA blind signatures with public metadata BlindRSAMD.
We also prove the unlinkability and unforgeability of our scheme.

6.1 Protocol

We will present our RSA blind signature with public metadata formally. We will use the same public
metadata hash function HMD from Section 5.2. Additionally, we will assume some message encoding protocol
defined by HM and VerifyM. We point readers back to Section 5.1 for more details on various options such
as the FDH and PSS algorithms. As a note, we will utilize a modification presented by Lysyanskaya [25] that
enables providing unlinkability even against malicious signers. In particular, it was shown that appending
a random string to the message of bit length κ is sufficient to provide anonymity against even adversarially
chosen RSA modulus. We incorporate this technique into our protocol as well.

RSAMD.Setup(1
λ):

1. Randomly generate (N, p, q)←R Gen(1λ).

2. Compute ϕ(N)← (p− 1)(q − 1).

3. Return pk← N, sk← ϕ(N).
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BlindRSAMD.Blind(M,D, pk← N):

1. Pick a random string rand of length κ.

2. Set M ′ ←M || rand.

3. Compute eMD ← HMD(D).

4. Pick R uniformly at random from Z∗
N .

5. Set state st← (rand, R).

6. Compute blinded message BM ← ReMD ·HM(M ′ || D) mod N .

7. Return (st, BM ).

BlindRSAMD.Sign(BM , D, pk← N, sk← ϕ(N)):

1. Compute eMD ← HMD(D).

2. Compute dMD ← (eMD)
−1 mod ϕ(N).

3. Return S′ ← (BM )dMD mod N .

BlindRSAMD.Finalize(st← (rand, R), S′,M,D, pk← N):

1. Compute S ← S′ ·R−1 mod N .

2. If BlindRSAMD.Verify((S, rand),M,D, pk) = 0, return ⊥.5

3. Return signature (S, rand).

BlindRSAMD.Verify((S, rand),M,D, pk← N):

1. Compute M ′ ←M || rand.

2. Compute eMD ← HMD(D).

3. Compute X ← SeMD mod N .

4. Return VerifyM(M ′ || D,X).

Correctness. By Lemma 1, we know that the algorithm above is well-defined as the signer can always
compute an inverse of eMD = HMD(D). To show that the above protocol correctly verifies well-formed
signatures, we can consider an execution of the blind signing protocol. The blinded message output by Blind
will be

ReMD ·HM(M ′ || D).

The output of Sign will be

(ReMD ·HM(M ′ || D))(eMD)
−1

= R ·HM(M ′ || D)(eMD)
−1

.

Finally, the output of Finalize is

HM(M ′ || D)(eMD)
−1

.

Consider a final execution of Verify that will output

VerifyM(M ′ || D,HM(M ′ || D)(eMD)
−1·eMD) = VerifyM(M ′ || D,HM(M ′ || D)) = 1.

Therefore, a well-formed signature will always be verified correctly.

5This is optional for correctness but should be done to check that the server signed with the correct key.
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6.2 Unforgeability

Next, we prove the unforgeability of BlindRSAMD. To do this, we will show that any adversary that can forge
signatures in BlindRSAMD is able to break the chosen-target, restricted-exponent RSA inversion assumption.
At a high level, we show that one can simulate signing oracle queries using the RSA decryption oracle in the
chosen-target, restricted-exponent RSA inversion game.

Theorem 5. Suppose that (HM,VerifyM) correspond to full domain hash (FDH) message encoding. Assum-
ing the (ϵ, t, ℓ)-chosen-target, restricted-exponent RSA inversion assumption (Definition 9) with exponents
in [1, emax] such that emax = 2λ−3 and the random oracle model, then BlindRSAMD is (ϵF , tF , ℓF )-strong
one-more unforgeable (Definition 2) where

• ϵF = ϵ+ 2−λ+2 log qM

• tF = t−O(qM + qMD + ℓF )

• ℓF = ℓ

and the adversary A runs in time at most tF and makes at most ℓF , qM and qMD queries to the signing
oracle and hash functions HM and HMD respectively.

Proof. To prove this, we will show that if there exists some adversary AF that successfully forges signatures
for BlindRSAMD to win the strong one-more unforgeability game, then we can use AF to construct an
adversary A to break the chosen-target, restricted-exponent RSA inversion assumption. The forger AF runs
in time tF , wins the game with probability ϵF and uses at most ℓF signing queries. Our reduction will
only increase the running time of the adversary A by a factor of O(qM + qMD + ℓF ), reduces the winning
probability by at most 2−λ+2 log qM and maintains the same number of oracle queries between signing and
RSA decryption.

Our adversary A will simulate AF to break the chosen-target, restricted-exponent RSA game. Note that
A needs to be able to successfully simulate all hash and signing oracle queries performed by AF . A simulates
these queries as follows:

For any query to HMD(D):

1. If MMD[D] is set, return MMD[D].

2. Compute MMD[D]← Oexp().

3. Return MMD[D].

For any query to HM(M,D):

1. If MM[M,D] is set, return MM[M,D].

2. Compute MM[M,D]← OX ().

3. Return MM[M,D].

For any query to OSign(X,D):

1. Compute eMD ← HMD(D).

2. Return ORSA(X, eMD).
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Adversarial Advantage. First, we note that the simulated outputs of Oexp and the real outputs of HMD are
identical as emax = 2λ−3. Similarly, OX returns random elements identical to the FDH encoding. Finally,
we note that signing always returns a valid signature as ORSA only receives exponents that are output by
Oexp.

Finally, AF will output the values D, (Si,Mi)i∈[x] where x ≥ cntD + 1 such that cntD is the maximum
number of signing oracles performed with public metadata D. If AF successfully forges, then we know that

S
HMD(D)
i = HM(Mi || D) for all i ∈ [x]. Then, A will output HMD(D), (Si, HM(Mi || D))i∈[x] as its output

to the chosen-target, restricted-exponent RSA inversion game. Note, A wins the game as long as they are
all valid decryptions and there are no collisions in the output of HM(Mi || D). As there are at most qM
queries to HM, we know the collision probability is at most q2M/2−λ = 2−λ+2 log qM since |Z∗

N | ≥ 2−λ.
Therefore, we know that A wins the game if AF wins the unforgeability game and there are no collisions

in the outputs of HM. So, the probability that A wins is ϵF − 2−λ+2 log qM .

Running Time. Next, we analyze the running time of A. We know that AF runs time at most tF . For each
hash and signing oracle query, A performs O(1) additional operations to correctly simulate responses. As
there are most qM + qMD + ℓF queries overall, we see that A requires O(qM + qMD + ℓF ) additional time.
Furthermore, we note that each signing query results in exactly one decryption oracle query. Therefore, we
know that at most ℓF decryption oracle queries are made.

Message Encoding Discussion. In Section 5.3, we mentioned that using the PSS message encoding as
opposed to FDH message encoding would improve concrete security (see Section 5.1 for details on message
encoding). To our knowledge, there is no benefit to concrete security when plugging in PSS for the security
proof (Theorem 5) of our RSA blind signatures with public metadata. It is possible to program HM such
that its output will simulate PSS encodings (using the techniques from [12]), but the resulting reduction
would have identical parameters. This phenomenon also exists in standard RSA blind signatures as the
original work [12] proved security using only FDH as PSS did not provide any security improvements.

6.3 Unlinkability

To prove that BlindRSAMD provides unlinkability, we will rely on prior results in [25] that show that appending
random strings to the message is sufficient to provide protections against maliciously generated parameters.
At a high level, the work in [25] shows that for any maliciously chosen RSA modulus N and public exponent
e, unlinkability for standard RSA blind signatures with appended random strings of bit length κ holds with
probability except t · 2−κ for adversaries running in time t.

For our case, the adversary is able to choose the public metadata D. However, this ends up being a more
restrictive way for the adversary to choose as the final exponent eMD = HMD(D). Clearly, it is an easier
setting for the adversary to choose eMD directly as opposed to D. As a result, we can rely on the results
from [25] almost immediately as follows.

Theorem 6. Assuming the random oracle model, BlindRSAMD satisfies (t·2−κ, t)-unlinkability (Definition 3).

Proof. Consider the unlinkability games for BlindRSAMD with public metadata and the standard RSA blind
signatures in [25]. We note there is only one difference between the two settings. In the former, the adversary
must choose D. The final RSA public exponent becomes eMD = HMD(D). In the latter, the adversary is able
to directly choose the final public exponent. Note, we can do this because BlindRSAMD is nearly identical to
standard RSA blind signatures after augmented the public exponent to be HMD(D). Clearly, the scenarios
studied in [25] is more favorable for the adversary.

Suppose there exists an adversary A that can compromise the unlinkability of BlindRSAMD with proba-
bility ϵ and running time t. Note, A outputs values public key N , messages M0 and M1 and public metadata
D in the first step. We construct A′ that instead outputs e = HMD(D) as the public exponent while keeping
the RSA modulus N and messages M0,M1 identical. As the remainder of the games are identical, A′ also
wins with probability ϵ and running time t.
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Modulus
Bit Length

Algorithm
Public

Metadata
No Public
Metadata

2048 Blind 1.10 0.03

2048 Sign 3.19 1.06

2048 Finalize 1.08 0.02

2048 Verify 1.08 0.02

3072 Blind 3.48 0.05

3072 Sign 10.19 2.73

3072 Finalize 3.47 0.05

3072 Verify 3.45 0.05

4096 Blind 8.14 0.09

4096 Sign 23.70 6.18

4096 Finalize 7.98 0.08

4096 Verify 7.92 0.09

Figure 10: A comparison table of RSA blind signature protocols with and without public metadata. All
computational costs are presented in milliseconds (ms).

7 Experimental Evaluation

In this section, we present an experimental evaluation of our RSA blind signatures with public metadata.
In particular, we show that our protocol has similar performance to RSA blind signatures without public
metadata augmentation.

Our Implementation. Our open-source code can be found at [1] containing an implementation of RSA
blind signatures with and without public metadata. Both implementations utilize PSS message encodings
and follow their respective specifications [10, 26] for other details such as instantiating hash functions and
ensuring domain separation. Our implementations rely on BoringSSL for many underlying cryptographic
primitives such as basic RSA functionality.

Experimental Setup. We conducted our experiments using Ubuntu PCs with 12 cores, 3.7 GHz Intel Xeon
W-2135 and 64 GB of RAM. Our experiments are all executed using a single thread. All reported results
are the average of at least 10 experimental trials with standard deviation less than 10% of the averages. In
our experiments, we instantiate both implementations with RSA modulus of bit-length 2048 and 4096. The
appended random string to the message for unlinkabiity will be κ = 256 bits. Finally, we use SHA384 as the
underlying hash function with 384-bit salts.

Comparison. We report all our results of the computational costs for the sub-routines Blind, Sign, Finalize
and Verify in Figure 10. In general, we note that the protocol with public metadata is slower. We attribute
this to two reasons. First, Sign requires an additional inverse operation modulo ϕ(N) to compute the private
exponent. The other main reason is that the RSA functionalities in BoringSSL are optimized for small
RSA exponents. For the public metadata protocol, the output of HMD can be quite large that is needed for
security. Therefore, it is not surprising that the public metadata variant is slower. Nevertheless, the RSA
blind signatures with public metadata are still more than sufficiently fast enough for real-world applications.
For example, the public metadata protocol with a 2048-bit modulus requires approximately 1 millisecond
for Blind, Finalize and Verify and approximately 3 milliseconds for Sign.

For communication, we note that both protocols have identical signature sizes that only depends on the
length of the modulus. Therefore, we omit presenting these results.

8 Conclusion and Open Problems

In this paper, we present a new protocol for RSA blind signatures that enables augmentation with public
metadata. We provide strong evidence that the concrete security of our scheme is nearly identical to standard
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RSA blind signatures and prove security of our schemes. Furthermore, we show that our public metadata
protocol is concretely efficient with comparable overhead as standard RSA blind signatures. We leave the
following open questions:

• Can one prove security of our variant of RSA blind signatures with public metadata from the chosen-
target RSA inversion assumption (Definition 7) instead of the chosen-target, restricted-exponent RSA
inversion assumption (Definition 9) that we introduced? This seems possible since we are able to prove
the non-blind version of RSA signatures with public metadata directly from the RSA assumption.

• What is the relationship between the chosen-target (Definition 7) and chosen-target, restricted-exponent
(Definition 9) variants of the RSA inversion assumption?

• What is the relationship between the chosen-target, restricted-exponent (Definition 9) and chosen-
target, chosen-exponent (Definition 11) variants of the RSA inversion assumption?
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A Discussion about Strong RSA Modulus

In practice today, the Gen algorithm is used to generate only the RSA modulus N . The distribution DN to
generate the public exponent is typically a singleton element. To generate the RSA modulus N , the standard
approach is to pick two random prime numbers of length λ that are sufficiently large. To be sufficiently large,
the prime numbers must be at least ⌊2λ−1/2⌋. For more details, we point to the RSA modulus generation
algorithm within BoringSSL [2].

Generating Strong RSA Modulus. For our new protocol, we need to modify the Gen algorithm to always
output strong RSA modulus N = pq where p and q are safe primes. The straightforward approach is to use
the same Gen algorithm of generating random primes and simply check whether the chosen primes are safe.
For any prime p, one can simply using primality testing algorithms to check whether (p − 1)/2 is prime to
see if p is a safe prime. As safe primes are more scarce than primes, this algorithm will be slower. However,
we can estimate the asymptotic additional time needed to generate safe primes compared to normal primes.
By the prime number theorem [29], we know that the density of prime numbers is O(1/λ) for numbers at
most 2λ. For safe primes, we can rely on one of several conjectures such as Dickson’s conjecture or the twin
prime conjecture (see [31]) that state the density of safe primes is O(1/λ2). Therefore, we could expect that
the Gen algorithm finds a safe prime after generating O(λ) random primes.

Comparing Assumptions. In Section 3.2, we present two RSA assumptions: the standard one and one
restricted to only strong RSA modulus. We now prove the relation of these two assumptions that was
formally presented in Theorem 1. At a high level, we will use the same ideas as the prior section comparing
the densities of primes and safe primes.

Proof of Theorem 1. First, we will assume there is an adversary A that breaks the strong modulus version
of the assumption with probability ϵ and running time t. We show that A will also break the standard RSA
game with probability O(ϵ/λ2) and running time t to prove the statement. Recall that λ is the length of the
prime factors of the RSA modulus.

To prove this, we simply analyze the probability that a randomly generated RSA modulus is a strong
RSA modulus. Assuming Dickson’s conjecture [31], the probability that a randomly generated prime number
of length λ is also a safe prime is Θ(1/λ). For a RSA modulus to be strong, both prime factors must be
safe. Therefore, this occurs with probability Θ(1/λ2). Conditioned on the RSA modulus being strong, the
adversary A wins the standard RSA game with probability ϵ. Therefore, A wins the game with probability
at least O(ϵ/λ2).

To our knowledge, there is no straightforward relation in the opposite direction. In particular, it is
possible that the RSA assumption for strong modulus is true while the standard RSA assumption is false.
This could be possible if there exists an attack that targets specifically non-strong RSA modulus. We leave
it as an open question to determine the relation in this direction.

B Equivalence of Unforgeability Definitions

In this section, we consider the alternative definition of unforgeability with public metadata that was intro-
duced in [32]. At a high level, the difference is that this alternative definition does not limit the total number
of queries explicitly. Instead, the adversary is limited to at most q oracle signing queries for each choice of
public metadata D. We present the security game in Figure 11 and the formal definition below:

Definition 13 ((ϵ, t, ℓ)-Alternative Strong One-More Unforgeableability with Public Metadata). Let λ be the
security parameter and consider the game GASOMUF

Tok,A,ℓ in Figure 11. A token scheme Tok is (ϵ, t, ℓ)-alternative
strong one-more unforgeable if, for any adversary A that runs in probabilistic time t and for any ℓ ≥ 0,

Pr[GASOMUF
Tok,A,ℓ (λ) = 1] ≤ ϵ.
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Game GASOMUF
Tok,A,ℓ (λ): Oracle OSign(msg, D):

(pk, sk)← Tok.Setup(1λ) If cntD ≥ ℓ:
Initialize cntD ← 0 for all choices of public metadata D. Return ⊥.
D, (Si,Mi)i∈[ℓ+1] ← AOSign

(crs, pk) cntD ← cntD + 1
Return 1 if and only if all the following hold: Return Tok.Sign(msg, D, pk, sk).
- ∀i ̸= j ∈ [ℓ+ 1], Si ̸= Sj ∨Mi ̸= Mj

- ∀i ∈ [ℓ+ 1],Tok.Verify(Si,Mi, D, pk) = 1

Figure 11: Alternative Strong One-More Unforgeability (ASOMUF) Game with Public Metadata.

We show that the two definitions are essentially equivalent up to some loss in the number of oracle queries
due to being unable to bound the total number of queries executed by the adversary in the alternative
definition.

Theorem 7. A token scheme Tok satisfies alternative strong one-more unforgeability (Definition 13) if and
only if the token scheme Tok also satisfies strong ome-more unforgeability (Definition 2). The reductions
only lose up to O(t+ℓ) additive factors in the adversary’s running time and number of oracle signing queries.

Proof. Assume Tok does not satisfy (ϵ, t, ℓ)-alternative strong one-more unforgeability and there exists an
adversary A that wins the game GASOMUF. The same adversary also wins the game GSOMUF meaning Tok is
not (ϵ, t, t)-strong one-more unforgeable as the maximum number of oracle queries sent by the adversary is
at most its running time.

For the other direction, assume that Tok is not (ϵ, t, ℓ)-strong one-more unforgeable. Suppose adversary
A wins the game GSOMUF. If the output of A consists of ℓ+ 1 tuples, then it also wins GASOMUF. Otherwise,
we can afford to use additional queries to the signing oracle in GASOMUF. Suppose that A outputs cntD + 1
tuples using at most cntD signing oracle queries for public metadata D. Then, we can win GSOMUF by the
adversary making an additional ℓ − cntD − 1 signing oracle queries for different messages. Therefore, Tok
is not (ϵ, t + O(ℓ), 2ℓ)-alternative strong one-more unforgeable as we bound the additional running time by
O(ℓ) and the additional number of signing oracle queries by at most ℓ.
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