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Abstract. Physical side-channel attacks exploit a device’s emanations
to compromise the security of cryptographic implementations. Many
countermeasures have been proposed against these attacks, especially
the widely-used and efficient masking countermeasure. While theoretical
models offer formal security proofs, they often rest on unrealistic assump-
tions, leading current approaches to prove the security of masked imple-
mentations to primarily rely on empirical verification. Consequently, the
literature still lacks a well-defined framework for implementing proven
secure constructions on physical devices.
In this paper, we present a comprehensive methodology to transform
an abstract circuit into a physical implementation secure against side-
channel attacks. We introduce new tools for adapting the ideal noisy
leakage model to practical scenarios. We also highlight the design ob-
jectives for embedded devices to achieve high levels of security, while
acknowledging the limitations and challenges in applying leakage models
in practice. Our aim is to demonstrate the possibility of bridging theory
and practice, encouraging further research to achieve practical imple-
mentations proven secure against side-channel attacks without relying
on ideal assumptions about the leakage.

1 Introduction

Cryptographic algorithms’ security is usually studied in the black-box model,
where the adversary is limited to the knowledge of some inputs and outputs.
However, as revealed in the late nineties [52], their implementation on physi-
cal devices can be vulnerable to side-channel attacks. Such attacks exploit the
device’s physical emanations, such as the execution time [52], device tempera-
ture [49], power consumption [53], or electromagnetic radiation [67] during the
algorithm execution.

Since the discovery of side-channel attacks, several countermeasures have
been studied to protect cryptographic algorithms. Among the different approaches,



one of the most widely used is known as masking, simultaneously introduced by
Chari et al. [29], and by Goubin and Patarin [46] in 1999. It consists in splitting
a sensitive variable x into n random shares, among which any combination of
n − 1 shares does not reveal any secret information. This can be achieved by
generating n − 1 shares uniformly at random x1, . . . , xn−1 and computing the
last share xn so that x = x1 ∗ . . . ∗ xn−1 ∗ xn according to some group law ∗.
The motivation is to make it more difficult for an attacker to recover a secret
by manipulating the shares instead of the sensitive value. Indeed, the adversary
must recombine information from all the shares to learn something about the
sensitive value. Assuming that the information gathered through side-channel
observations involves some kind of noise, it has been shown that it becomes ex-
ponentially harder to recover the secret as the number of shares grows [10,23,48].

Meanwhile, proving or validating such security levels in practice is not trivial.
Generally, providing security guarantees against side-channel attacks is tricky,
and several works tackle this issue [40,51,47,23]. The approaches currently found
in the literature range from purely qualitative solutions such as leakage detection
(e.g., ISO17825 [1,75]) or test vector leakage assessment (TVLA) [45], which aim
to detect information leakage using statistical analysis, to more quantitative so-
lutions such as mounting known attacks on the implementation and inferring the
security level from the best attacks. For instance, common-criteria certification
procedures currently follow this empirical approach to validate the security of
implementations for smartcards against side-channel attacks [23,24].

Having more formal and quantified security guarantees would be more sat-
isfying but complicated as it relies on physical assumptions and mathematical
arguments. The community introduced so-called leakage models to theoretically
reason on the security of masked implementations. They aim to define the at-
tacker’s capabilities to counteract the subsequent side-channel attacks formally.
The most famous one is the t-probing model, introduced by Ishai, Sahai, and
Wagner in 2003 [50]. In this model, the leakage is modeled as the exact val-
ues of t intermediate variables chosen by the attacker for t < n, the number of
shares. A circuit is then secure in this model if no such leakage of t variables
reveals information about the sensitive variables. Despite its wide use by the
community [73,68,34,12,35] thanks to its convenience to build security proofs,
the t-probing model sometimes fails to reflect the reality of embedded devices.
For instance, it does not capture horizontal attacks [9], which exploit the re-
peated manipulation of variables within an execution.

These issues motivated the formalization of the noisy leakage model [66].
This model better captures the reality of embedded devices by assuming that
each intermediate variable leaks a noisy function of its value. However, prov-
ing security in the noisy leakage model [11,61] is more complex than in the
t-probing model. In 2014, Duc, Dziembowski, and Faust [38,39] proposed a se-
curity reduction from the noisy model to the t-probing model, relying on an
intermediate model, the random probing model, which benefits from a tighter
reduction with the noisy leakage model. In a nutshell, it assumes that every
wire in the circuit leaks with some constant leakage probability. This leakage
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probability is related to the amount of side-channel noise in practice. The ran-
dom probing model captures horizontal attacks, and has been studied recently
in many works [3,5,4,13,15,16,26].

The noisy leakage, random probing, and t-probing models have proven helpful
for the community to model side-channel attacks theoretically and provide formal
security proofs on masked implementation. Meanwhile, applying these security
proofs to real-world implementations is still challenging.

First, the theoretical literature lacks a proper methodology to implement
proven secure constructions in the leakage models on a physical device while
preserving the proven security levels. Second, these leakage models rely on two
assumptions about the physical device for which a systematic investigation is
lacking: the leakage of an elementary operation only depends on its inputs (i.e.
the data isolation assumption), and the leakage’s noise of an operation is in-
dependent of the previous and following noises (i.e. the noise independence as-
sumption).

The first assumption (data isolation) can be easily broken, for instance, due to
physical effects on a device. In particular, transitions occurring on memory buses
or CPU registers between a previously processed value xi−1 and the current one
xi usually leak some information correlated to xi−1⊕xi, which violates the data
isolation principle [33,6]. On the hardware level, glitches further make the suc-
cessive gates’ leakages mutually dependent on their respective inputs [56,57,58].
On the software level, CPU synchronization limits, but does not eliminate, the
issue of glitches. These issues can be avoided by adding registers and controlling
transitions [43,27] in hardware, and by trying to avoid transitions using assembly
programming tricks in software [44,20,17]. However, these techniques still rely on
abstract models for the leakage, and current techniques in the literature test the
data isolation assumption only indirectly, by estimating the statistical security
order of an implementation [7,71].

As for the second assumption (noise independence), the noise in the side chan-
nel leakage of a device is multivariate, and the noises occurring during successive
operations likely include some dependency. This assumption is only currently
studied at a high level in a few works [48,31].

Contributions. Our contributions can be summarized as follows.

– First, we present a complete methodology to transform abstract circuits
into physical implementations secure against side-channel attacks. For this
purpose, we rely on a random probing compiler and discuss the concrete steps
to use the reduction from the noisy leakage model to the random probing
model on physical implementations. While this reduction is well-studied in
theory, our methodology summarizes all hypotheses that must be met in
practice and identifies technical challenges that must be overcome to achieve
formally secure circuits on physical devices.

– Then, we propose new tools to solve these technical challenges.
• We explain how to enforce the data isolation assumption and introduce

a novel practical test for its validation on a physical implementation.

3



Our test offers a direct approach, contrasting with existing methods in
the literature. We conduct experiments on a real target, an STM32F3
MCU, using NewAE’s ChipWhisperer-Lite CW1173 board. While our
test does not provide a formal proof for the assumption, it stands as
the first literature instance of directly addressing and validating this
hypothesis with a practical, dedicated procedure.

• We offer a method to integrate the noise independence assumption into
the analysis, making it possible to quantify the loss of security implied
by a lack of independence. We specifically discuss a relaxation of the
assumption aiming to split the noise occurring during the execution of
the algorithm into independent noises on each of the operations. We first
show a trivial way of doing the split and then express it as a constrained
optimization problem that better scales with the size of the circuit. We
propose a direct non-optimal solution to the problem and leave the ques-
tion of optimally and efficiently solving it as an open problem.

– Finally, we highlight the design goals that this security reduction involves.
We also exhibit the remaining limitations and open problems of the practical
usability of the leakage models. Our goal is to show that it is possible to
bridge theory and practice and to motivate further research on remaining
issues to fully close the gap, that is to get practical implementations proven
secure against side-channel attacks on a physical device without any ideal
assumption about the leakage. For instance, one could quantify the impact
of a lack of signal independence on security or find an optimal solution for
the noise split relaxation to achieve the best security levels.

The organization of the paper is as follows. In Section 2, we provide back-
ground and formalize key assumptions. Section 3 outlines our methodology with
some details deferred to later sections. In Section 4, we prove our main result: our
methodology outputs practically secure implementations against side-channel at-
tacks. Section 5 details our procedures to relax or enforce the identified assump-
tions. Finally, we conclude with discussions and future directions in Section 6.
We also exhibit an implementation of the different steps of our proposed method-
ology in Supplementary Material (B), on a real target, an STM32F3 MCU, using
NewAE’s ChipWhisperer-Lite CW1173 board.

2 Technical Background

2.1 Notations

We denote by V a finite set called the variable space and by X the input space
for the leakage. We denote by Y the leakage distribution. We use capital letters
to denote random variables over a set or a distribution, e.g., X denotes a random
variable over X , and Y (x) denotes a random variable (or equivalently a leakage
function) over the distribution Y, taking as input x, a value over the input space
X . We denote by y a leakage trace, i.e. a realization of Y (x). Any two probability
distributions D1 and D2 are said ε-close, denoted D1 ≈ε D2, if their statistical
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distance is upper bounded by ε, that is SD(D1;D2) := 1
2

∑
x |pD1

(x)−pD2
(x)| ≤

ε , where pD1
(·) and pD1

(·) denote the probability mass functions of D1 and D2.

2.2 Abstract Circuits

Definition 1 (Abstract Circuit Family). An abstract circuit family is a pair
C = (V,G) such that

– V is the variable space,
– G called the gate family is a set of functions. For each function g ∈ G, there

exists `,m ∈ N such that g : V` → Vm.

An abstract circuit C belonging to the family C = (V,G), which is written
C ∈ C, is defined as an acyclic directed graph whose edges are wires carrying
values over V, and vertices are gates processing operations over V. It is further
formally composed of input gates of fan-in 0 and fan-out 1 and output gates
of fan-in 1 and fan-out 0. Evaluating an `-input m-output circuit C consists in
writing an input x ∈ V` in the ` input gates, processing the gates from input
gates to output gates, then reading the output z ∈ Vm from the m output gates.
This is denoted by z = C(x). During the evaluation process, each wire in the
circuit is assigned with a value on V. We call the tuple of all these wire values a
wire assignment of C (on input x).

The definition of a circuit compiler (CC,Enc,Dec) which turns an abstract
circuit into a randomized circuit is recalled in Supplementary material (A).

2.3 Random-Probing Model

Let p ∈ [0, 1] be some constant leakage probability parameter, usually called
leakage rate. The random probing leakage can be defined in two ways depending
on whether we consider leakage on the wires or the gates of an abstract circuit
C from a family C = (V,G).

In the wire leakage setting, the p-random probing model states that during
the evaluation of a circuit C, each wire leaks its value with probability p (and
leaks nothing otherwise), where all the wire leakage events are mutually indepen-
dent. To formally define this leakage, we consider two probabilistic algorithms:

– The leaking-wires sampler takes as input an abstract circuit C and a prob-
ability p ∈ [0, 1], and outputs a set W , denoted as

W ← LeakingWires(C, p) ,

where W is constructed by including each wire label from the circuit C with
probability p to W (where all the probabilities are mutually independent).

– The assign-wires sampler takes as input an abstract circuit C, a set of wire
labelsW (subset of the wire labels of C), and an input x ∈ V`, and it outputs
a |W |-tuple w ∈ V |W |, denoted as

w ← AssignWires(C,W,x) ,
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where w corresponds to the assignments of the wires of C with label in W
for an evaluation on input x.

By convention, we do not consider leakage on the output wires (i.e. input wires
of the output gate) of a circuit, since when composing several circuits, these
wires become input wires to the next circuit.

We can analogously define the gate leakage setting with similar probabilis-
tic procedures LeakingGates and AssignGates. For the sake of completeness, a
detailed description is given in Supplementary material (A).

Based on these notions, we now formally define the (wire or gate) random
probing leakage of a circuit.

Definition 2 (Random Probing Leakage). The p-random probing wire leak-
age of an abstract circuit C with ` inputs, on input x ∈ V` is the distribution
Lwire
p (C,x) obtained by composing the leaking-wires and assign-wires samplers

as
Lwire
p (C,x)

id
= AssignWires(C, LeakingWires(C, p),x) .

For the p-random probing gate leakage, Lgate
p (C,x) is obtained as

Lgate
p (C,x)

id
= AssignGates(C, LeakingGates(C, p),x) .

We can define the random probing security of an abstract circuit C.

Definition 3 (Random Probing Security). An abstract circuit C with `
inputs, from a family of circuits C = (V,G), is (p, ε)-random probing secure
(RPS) in the wire leakage setting with respect to encoding Enc if there exists a
simulator Sim such that for every x ∈ V`:

Sim(C) ≈ε Lwire
p (C,Enc(x)) . (1)

A circuit compiler (CC,Enc,Dec) is (p, ε)-random probing secure in the wire
leakage setting if for every circuit C the compiled circuit Ĉ = CC(C) is (p, |C|·ε)-
random probing secure in the wire leakage setting where |C| is the size of the
original circuit.

We equivalently define (p, ε)-random probing security for a circuit and a
circuit compiler in the gate leakage setting, where we use Lgate

p instead of Lwire
p .

We have the following reduction of security, which states that if a circuit is
random probing secure in the wire leakage setting, then it is secure in the gate
leakage setting. Our proof is given in Supplementary material (A).

Lemma 1. Let C be an abstract circuit with ` inputs from a family of circuits
C = (V,G) such that each gate g ∈ G has at most two input wires. If C is (p, ε)-
random probing secure with respect to encoding Enc in the wire leakage setting,
then C is (p′, ε′)-random probing secure in the gate leakage setting, with p′ = p2

and ε′ = ε.
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2.4 Noisy Leakage Model

The noisy leakage model was formalized in [66]. In this model, a leaking com-
putation is modeled by a sequence of elementary operations (gi)i accessing a
common memory called internal state. Each elementary operation reads its in-
put and writes its output on the internal state. When processed on some input x,
an elementary operation gi reveals fi(x) to the adversary for some noisy leakage
function fi. A noisy leakage function takes two arguments: the value x held by
the accessed part of the internal state (data isolation assumption) and a ran-
dom string ρ long enough to model the leakage noise. Each execution leaks the
values

(
fi(xi, ρi)

)
i
where the xi’s are the successive intermediate values (from

the internal state) in input of the elementary operations gi’s and ρi’s are fresh
random strings. We stress that all the ρi’s involved in successive executions are
uniformly and independently drawn (independent noise assumption).

We note that from a formal point of view, there is an equivalence between the
circuit model used by the gate-leakage random probing model and the internal
state model used by the noisy leakage model. In both cases the computation
is divided into sub-computations (either gates or elementary operations) and
the full leakage is composed of the outputs of leakage functions (either random
probing functions or noisy functions) applied to all the sub-computations input.
The internal state model has the advantage of being cosmetically closer to a real
software implementation, moreover it is useful to consider the order of opera-
tions while relaxing the data isolation and noise independence assumptions (as
discussed later).

For the sake of simplicity, we shall omit the random string parameter, which
leads to the notation fi(x) where x is the accessed value. Note that fi(x) can
be seen as the output of a probabilistic algorithm. In particular, fi(x) can take
several values with a given probability distribution, and can therefore be consid-
ered as a random variable. The noisy property of f is captured by assuming that
the bias introduced in the distribution of a uniform random variable X given
the leakage f(X) is bounded. This is formalized in the next definition:

Definition 4 (Noisy Function). Let X be a finite set and let δ ∈ R. A δ-noisy
leakage function f on X is a function of domain X × {0, 1}|ρ| for some |ρ| ∈ N
such that

β(X|Y ) ··=
∑

y∈Range(f)

Pr(Y = y) ·∆((X | Y = y);X) ≤ δ , (2)

where ∆ is a statistical distance measure, X is a uniform random variable over
X and where Y = f(X,R) for a uniform random variable R over {0, 1}|ρ|.

The above definition depends on the notion of statistical distance. In the original
definition from [66], the authors use the L2 norm. The authors of [38] then
suggested to use the L1 norm (normalized by 1

2 ). It was later suggested in [65]
to use a statistical distance notion based on the relative error. Noisy functions
based on this distance are referred to as average relative error (ARE) noisy
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leakage functions in [65] since the relative error is averaged over the distribution
of the leakage Y in Equation 2.

As recalled hereafter, the noisy leakage metrics based on the L1 statistical
distance (SD) and the ARE enjoy useful security reductions to the random prob-
ing model. We recall the definition of these two metrics based on the pointwise
mutual information.

Definition 5 (Pointwise Mutual Information). Let X,Y be random vari-
ables over X ,Y respectively. For any x ∈ X , y ∈ Y, the exponential form of the
pointwise mutual information (PMI) is defined as:

PMIX,Y (x, y) =
P [X = x, Y = y]

P [X = x] · P [Y = y]
− 1 .

Definition 6. Let X,Y be random variables over X ,Y respectively. We can
define the L1 statistical distance (SD) as follows:

SD(X|Y ) =
1

2
EY=yEX=x

[
|PMIX,Y (x, y)|

]
.

The average relative error (ARE) can also be expressed as:

ARE(X|Y ) = EY=y

[
max
x
|PMIX,Y (x, y)|

]
.

From random probing to noisy leakage security. In [38], Duc, Dziem-
bowski, and Faust show the following security reduction: any circuit which is
(p, ε)-secure in the random probing model is also (δ, ε)-secure in the noisy leakage
model (for the same parameter ε) defined w.r.t. the metric β(X|Y ) = SD(X|Y )
and for any δ ≤ p/|X |, where X is the input space of the abstract gates / ele-
mentary operations.7 This result was later extended to the noisy leakage model
defined w.r.t. the metric β(X|Y ) = ARE(X|Y ) in the work of Prest et al. [65].
Those security reductions directly hold from the following key lemma.

Lemma 2 ([38,65]). Let φp : X → X ∪ {⊥} the randomized function defined
for every p ∈ [0, 1] as

φp(x) =

{
⊥ with probability 1− p
x with probability p

(3)

Let f : X → Y be a δ-noisy leakage function (w.r.t. SD or ARE). There exists a
randomized function f ′ : X ∪ {⊥} → Y such that for every x ∈ X we have

f(x) = f ′(φp(x)) with

{
p ≤ δ · |X | if SD(X|f(X)) ≤ δ
p ≤ δ if ARE(X|f(X)) ≤ δ

(4)

7 The input space X is different than the variable space V for the variables in a circuit.
Typically, when the leakage is defined on the internal state of the gate, the latter
can be described by both its input wires, and hence the input space is X = V2.
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We recall that the ARE is a worst-case metric, contrary to the SD, which is
an average-case metric. This explains the tighter reduction (i.e. no loss induced
by the size of the input space) using the ARE from the noisy model to the
random probing model since the latter is also a worst-case model.

Besides this worst-case vs. average-case question, we note that the SD and
ARE can be connected to metrics that are used in practice to evaluate the
security of a leaking implementation. For example, the SD can be expressed
using Mutual Information (MI) thanks to [37] and the Mutual Information can
(under some conditions) be expressed using the Signal-to-Noise Ratio (SNR) [54]
and the correlation coefficient [19] thanks to [55]. The MI is a standard metric
to analyze multivariate leakages while the SNR and correlation coefficient are
among the most popular tools for univariate security assessments.

In the following, we shall refer to the reduction from [38] using the SD metric
as the DDF reduction, and to that from [65] using the ARE metric as the PGMP
reduction.

2.5 Physical Assumptions

The noisy leakage model has been argued to capture well power and electro-
magnetic leakages. In all generality, an elementary operation processing a value
x gives rise to a leakage trace Y (x) which is a multivariate random variable
(a.k.a random vector) following a distribution whose parameters depend on x. In
most practical contexts, this distribution is well approximated by a multivariate
Gaussian N (mx, Σ) for some parameters mx (mean vector) and Σ (covariance
matrix), see e.g. [30,69]. Such parameters can be inferred in practice through
a profiling of the device, from which we obtain the noisy leakage metric δ by
evaluating Equation 2.

We still need to stress that, as is, the noisy leakage model relies on two
assumptions about the underlying physical device which might not be verified
in practice without further care.

Assumption 1 (Data isolation) A leakage function fi corresponding to the
elementary operation gi(xi) only depends on the current state xi and not on
previously accessed parts of the state: xi−1, xi−2, . . .The leakage is then assumed
to respect some data isolation between successive elementary operations.

However, as mentioned in the introduction, physical effects such as glitches and
transitions will likely break this implicit assumption. Hence, one should take
special care and enforce data isolation for the model to be valid.

Assumption 2 (Noise independence) The leakage noises from the succes-
sive elementary operations are independent from each other. Formally, the ran-
dom tape ρi in each fi(xi, ρi) is sampled as a fresh uniform string.

In practice, this assumption does not easily hold: if one cuts a leakage trace into
several sub-traces corresponding to successive elementary operations, the noises

9



in the successive sub-traces would likely include some part of dependency. Indeed,
a correlation exists between successive leakage points, which makes multivariate
statistics particularly useful for side-channel attacks [30].

In the following, we shall refer to the original noisy leakage model, which relies
on the two aforementioned assumptions as the idealized noisy leakage model. We
will explore how to relax or enforce those physical assumptions to reduce the
security of a physical implementation to that of an abstract implementation in
the idealized noisy leakage model, which subsequently reduces to the random
probing security.

3 Methodology

The theoretical community introduced many constructions proven secure in the
(random) probing and noisy leakage models with a quantified security level.
Meanwhile, it is unclear how to implement such constructions on physical devices
while preserving the proven security. Indeed, the existing literature does not
explain all the steps nor states all the hypotheses required for preserving proven
security claims in practice. In this section, we rigorously exhibit all the steps
to turn an abstract circuit into a physical implementation satisfying provable
security against side-channel attacks8. As illustrated in Figure 1, these steps can
be split into two phases:

(i) a characterization phase which only depends on the device and the side-
channel acquisition tool (i.e., without any knowledge of the abstract circuit).
It includes the implementation of specific gates (Step 1), the analysis of As-
sumption 1 (data isolation) to exhibit a relevant whitening procedure (Step
2), the characterization of the leakage (Step 3), the enforcement and relax-
ation of Assumption 2 (noise independence) (Step 4), and the estimation of
the noisy leakage parameter (Step 5),

(ii) a compilation phase using the outputs of the characterization phase to turn
an abstract circuit C ∈ C, with C = (V,G) an abstract circuit family, into a
practically secure implementation for a given security level λ (Step 6). This
phase relies on the usage of a secure random probing compiler.

All the intermediate steps are described at a high level in the next sub-sections.
In Section 3.7, we briefly describe the experiments that we did to validate our
methodology, which are detailed in Supplementary Materiel (B). Finally, some
dedicated procedures are further developed in Sections 5.1 and 5.2.

3.1 Step 1: Implementing Abstract Gates

The first step of our methodology consists in implementing abstract gates as
software routines. A physical elementary operation abstracted as a gate by the
8 We describe our methodology in the context a of software implementation, where
elementary calculations align with software routines. We discuss a generalization to
the case of hardware implementations in Section 6.
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Fig. 1: Illustration of our methodology

noisy leakage model (see Section 2.4) first looks up its operands from memory
(the computation state), then executes a sequence of arithmetic instructions
(implementing the gate functionality g ∈ G), and finally writes back the result
to memory. This process generates some side-channel leakage depending on the
executed instructions and the processed data, which is the leakage of the physical
elementary operation abstracted by the noisy leakage model. A developer must
first translate this behavior into a software routine on a physical device. We
propose to implement such a routine in ARM assembly as follows (with the xor
operation as an example):

operation_xor:
ldr r0, [r0]
ldr r1, [r1]
eor r0, r1, r0 // For other operations , change instruction
str r0, [r2]

with the following C signature:

void operation_xor(const uint32* aPtr , const uint32* bPtr ,
uint32* cPtr);

We define a routine for each abstract gate g ∈ G which, when executed on
the target device, behaves as a physical elementary operation abstracted by
the noisy model. From these implementations of the abstract gates, any circuit
C ∈ C can be compiled into a physical implementation on the target device.
This implementation takes the form of a sequence of calls to the elementary
operations, looking like the following C-syntax example:

operation1(a1Ptr , b1Ptr , c1Ptr);
operation2(a2Ptr , b2Ptr , c2Ptr);
...

The routines operation1, operation2, . . . are all among the implemented gate
routines which are mapped from the gates of the circuit. The pointer arguments
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(a1Ptr, b1Ptr, c1Ptr), (a2Ptr, b2Ptr, c2Ptr), . . . are constant addresses triplets
which encode the data dependency of the implementation, i.e., the wires in the
abstract circuit.9

3.2 Step 2: Enforcing / Relaxing Data Isolation

Once the syntax of elementary operations is fixed, the physical assumptions
made in the noisy leakage model must be satisfied by the implementations in
order to use the security reduction. Our methodology first focuses on the data
isolation assumption (i.e., Assumption 1), which requires that the leakage of an
elementary operation only depends on its inputs, i.e., is independent of the in-
puts of the previous and the following operations. This assumption rarely holds
in practice, since elementary operations executed successively might leak jointly
on their manipulated data. Indeed, after the execution of an elementary opera-
tion, the data it has processed might be stored in the physical state of the CPU.
The leakage of the following elementary operation will then be a (probabilistic)
function of the data it processes and of the physical state of the CPU, hence
of the previously processed data. This is a well-known issue in the side-channel
literature. In particular, this data non-isolation includes the so-called transition
leakage observed and analyzed in many works [62,59,63]. These pitfalls have a
direct practical impact, typically leading to losing security orders in the masking
scheme [6]. In the provable security setting, this translates to breaking the data
isolation assumption: assuming that each elementary operation leaks a (proba-
bilistic) function of the accessed part of the state is incorrect: the leakage also
depends on the state’s previously accessed part(s). Hence, a developer can not
simply implement a circuit as a sequence of the routines introduced in Sec-
tion 3.1, as the side-channel security can no longer be reduced to the random
probing model.

As data isolation plays a crucial role in upholding security proofs and stands
as a critical step in our methodology, we introduce a method to enforce it,
inspired by prior works (e.g., [20,28]). Additionally, we design a dedicated test
to validate data isolation on a target device.

Enforcing data isolation. We use data whitening to enforce the data isolation
assumption in our methodology. The principle is to call a routine on constant or
random data whose sole purpose is to clean the CPU state from any dependency
on the previously processed data. Specifically, after each call to an elementary
operation routine, we insert one or more calls for which the arguments point
to random or constant data in memory. The intuition is that by relying on a
call to a similar elementary operation routine, we expect to clean the data path,
namely to write random or constant data in any hardware register containing
data-dependent information from the previous call. Nevertheless, although nat-
ural, this solution might not suffice to ensure data isolation on some devices.
9 The proposed implementation style is admittedly not very efficient. This paper
mainly targets security and simplicity, leaving optimization to future works.
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The effectiveness of a whitening routine depends on the microarchitecture of
the device’s CPU. Therefore, a developer might have to empirically test several
approaches before reaching successful and efficient isolation.

Even with an isolation that avoids all transition and glitches effects across
operations, it might not be possible to partition the leakage trace in time intervals
whose leakage corresponds to only a single operation. Indeed, the leakage is often
subject to low-pass filtering inside the target chip or the measurement chain. As
a result, the independent intrinsic leakage of many operations will be linearly
combined in the measured trace. We propose to relax the noisy leakage model
to allow the leakage to be composed of linear combinations of independent noisy
leakage functions. In this case, we aim at ensuring that a leakage function fi
corresponding to the elementary operation gi(xi) does not jointly depend on the
current state xi and previously accessed parts of the state: xi−1, xi−2, ... In other
words, fi depends on the current state and has at most linear dependencies on the
previous parts xi−1, xi−2, ... With this relaxation, we still provide independence
between the inputs of the different operations, i.e., data isolation.

Testing data isolation. In Section 5.1, we introduce a novel way to test the
effectiveness of a data whitening routine. The idea is to suppose that the leakage
distribution can be modeled as a sum of a deterministic function of the first
operation’s inputs, a deterministic function of the second operation’s inputs, and
some noise value. In other words, we test that the leakage can be decomposed
in additive parts that to not jointly depend on the inputs of both operations.

3.3 Step 3: Characterizing the Leakage

Once data isolation is enforced and tested, one can safely infer the leakage dis-
tribution of each physical elementary operation. This is a classical problem in
the side-channel literature, and we can rely on a solid theoretical and practical
ground for this step. We rely on the common assumption [32,69] that the leakage
distribution Y of an elementary operation with inputs x ∈ V` takes the form of
a deterministic function of x plus an additive Gaussian noise:

Yx = d(x) +N (0, Σ) , (5)

where the deterministic part of the leakage can be written as a linear combination
of a predetermined basis of functions H = {h1, . . . , hm}, i.e.:

d(x) =

m∑
i=1

αihi(x) . (6)

The choice of the basis of functions H is determined for each elementary opera-
tion routine depending on its internal variables. The basis should at least contain
one function for each internal variable bit but might also include monomials of
higher degrees due to possible coupling effects [43].

In our methodology, we suggest relying on linear regression in order to es-
timate the deterministic leakage d(·). It involves acquiring an initial set of `1
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traces, which measure the leakage while executing the operation on `1 inputs
generated uniformly at random. We then use this set to infer the coefficients
{αi}i=1,...,m. Subsequently, we can compute the covariance matrix using a new
set of `2 traces on uniform random inputs, allowing us to recover (an estimation
of) the covariance matrix Σ.

It’s worth emphasizing that while we propose linear regression for leakage
estimation, our methodology remains adaptable to other estimation methods.
Techniques such as template attacks [30], combined with dimensionality reduc-
tion [74,25], and the emerging use of machine learning for side-channel analy-
sis [60,64], all offer viable alternatives.

3.4 Step 4: Enforcing / Relaxing Noise Independence

Next, we consider the noise independence assumption (Assumption 2) needed for
the reduction from the noisy leakage to the random probing model. Namely, in
the idealized noisy leakage model, the noise that occurs during the execution of
an elementary operation is drawn independently of the noise that occurs during
the execution of the previous ones. Hence, this assumption must be satisfied in
practice. Meanwhile, it is hard to enforce and test since no clear separation of
the noise occurs during a leakage trace. In our methodology, we propose a novel
way to relax this assumption. Namely, we keep the Gaussianity hypothesis, but
we allow the leakage of the different operations to overlap. We characterize this
relaxation and directly reflect it on the security level by providing a reduction
from the noisy leakage model with potential noise dependence to the idealized
noisy leakage model.

In our methodology, we propose relaxing the assumption of noise indepen-
dence by partitioning the noise distribution into multiple distributions, all while
minimizing leakage during each operation. In simpler terms, given k consecu-
tive elementary operations of inputs {(xi)}1≤i≤k, we can represent the overall
leakage distribution as

Y =

k∑
i=1

di(xi) +N (0, Σ) (7)

where di(xi) are the different deterministic signals of the operations, and the
noise drawn from N (0, Σ) is the global noise. Thanks to the data isolation en-
forcement and test from Section 3.2, the deterministic signals are mutually data
independent. Specifically, while the di’s might overlap on some time samples,
they independently apply to the inputs xi. This ensures that the global deter-
ministic leakage can be expressed as a sum in Equation 7.

In order to relax the noise independence, our approach consists in finding a
set of covariance matrices {Σi}i∈[k] such that

∑
iΣi = Σ. This way, we can split

the Gaussian noise distribution N (0, Σ) into k independent Gaussian distribu-
tions N (0, Σ1), . . . , N (0, Σk). This representation enables us to split the leakage
distribution into several functions Yi = di(xi)+N (0, Σi) for every i ∈ {1, . . . , k}.
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An adversary given a leakage sample of each Yi is more powerful than an adver-
sary given a sample of the global leakage Y because the former can always sum
the Yi samples to get a Y sample.

Instantiation. Section 5.2 introduces several methods to define such matrices
Σi, which sum to the original covariance matrix Σ while minimizing the mutual
information between the leakage and the signals.

3.5 Step 5: Estimating the Noisy Leakage Parameter

Recall that once data isolation is enforced and tested as described in Section 3.2,
we can empirically characterize the leakage distribution of each elementary op-
eration as described in Section 3.3. Assuming that the leakage takes the form
of Equation 5, we compute the coefficients in the deterministic function for each
elementary operation (as defined in Equation 6). Then, we can apply the noise
relaxation described in Section 3.4 to get the covariance matrix of the Gaussian
noise, which we suppose is the same for each elementary operation, following the
representation in our optimization problem.

We can then compute the noisy leakage parameter δ related to the δ-noisy
leakage model. As explained in Section 2.4, reducing the idealized noisy leak-
age model to the random probing model provides the leakage probability in the
latter. More precisely, in order to achieve (δ, ε)-security in the idealized noisy
leakage model, an abstract circuit should achieve (p, ε)-security in the random
probing model with p = γ · δ for some constant factor γ depending on the noisy
leakage metric (γ = |X | for the SD metric, γ = 1 for the ARE metric). The factor
γ depends on the chosen noisy leakage metric. There are different options avail-
able. The original security reduction [38] (DDF reduction) relies on the statistical
distance between a (uniform) variable X and the same variable conditioned on
its leakage Y : δ = Ey[SD((X|Y = y);X)]. When reducing to the random prob-
ing model, this value is multiplied by the size of the input space X (i.e., the
definition set of inputs x of an elementary operation), hence losing tightness
in the tolerated leakage rate through the reduction. In a more recent work [65]
(PGMP reduction), the authors express δ using different noisiness metrics from
the pointwise mutual information. The most interesting metric is the average
relative error (ARE), a worst-case metric (just like the random probing model),
contrary to the statistical distance, which is an average-case metric. When com-
puting δ = ARE(X;X|Y ), the reduction to the random probing model thus
yields tighter results with p = δ.

In order to estimate the noisy leakage parameter in our methodology, we
compute both ARE and SD metrics using the inferred leakage model to com-
pare both reductions to the random probing model. Using the pointwise mutual
information (Definition 6), we have
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ARE = EY max
X=x

∣∣∣ P [X = x, Y = y]

P [X = x] · P [Y = y]
− 1
∣∣∣

= EY max
X=x

∣∣∣ P [Y = y|X = x]∑
X=x′ P [Y = y|X = x′]

· 1

P [X = x]
− 1
∣∣∣ (8)

and
SD = EY

1

2

∑
X=x

∣∣∣ P [Y = y|X = x]∑
X=x′ P [Y = y|X = x′]

· 1

P [X = x]
− 1
∣∣∣ (9)

From the equations above, we need to compute the sum of the conditional prob-
abilities P [Y = y|X = x′] for x′ ∈ X for ARE and SD estimations. Then, in
the case of ARE estimation, we need to find the maximal value of the expression
given between | · | in Equation 8 over the values taken by X. While in the case
of the SD estimation, we compute a sum over the expression given between | · |
in Equation 9. Finally, we must compute the expected value for ARE and SD
for Y .

Computing the conditional distribution. In order to estimate the conditional
distribution P [Y = y|X = x] given a leakage trace and x, we can use the
leakage characterization computed earlier, since the conditional distribution is
known to be expressed as

P [Y = y|X = x] =
1√

(2π)n
∣∣∣Σ∣∣∣ exp

(
− 1

2
(y − d(x))TΣ−1(y − d(x))

)
(10)

where n is the number of samples in y [30].

Estimating the expected value. Each sample point in the leakage distribution Y is
a continuous random variable over R. Hence, the expected value EY is computed
as an integral. Instead of computing the integral, we use a Monte Carlo integra-
tion method to estimate the expected value. Namely, we draw several random
leakage values to estimate the expected value. The ARE is then computed as

ARE =
1

k

∑
Y=y

max
X=x

∣∣∣ P [Y = y|X = x]∑
X=x′ P [Y = y|X = x′]

· 1

P [X = x]
− 1
∣∣∣ , (11)

and the SD is computed as

SD =
1

2 · k
∑
Y=y

∑
X=x

∣∣∣ P [Y = y|X = x]∑
X=x′ P [Y = y|X = x′]

· 1

P [X = x]
− 1
∣∣∣ . (12)

In both equations, k denotes the number of leakage vectors y drawn from the
leakage distribution Y. Each leakage vector y is generated as y = d(x)+ϕ, where
x is an input generated uniformly at random, d(·) is the deterministic function
for an elementary operation, and ϕ is generated from the Gaussian distribution
N (0, Σ) following the noise covariance Σ.
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Thanks to the law of large numbers, we know that as k approaches infinity,
this estimation converges to the expected value EY . We show in Supplementary
Material (B) in our experimental results that the convergence curve reaches a
plateau after some number of samples, which corresponds to the value of EY .

3.6 Step 6: Compiling the Cryptographic Implementation

At this stage, we have estimated the leakage parameter of each isolated noise-
independent elementary operation. As defined in Section 3.5, this parameter can
be computed using the SD or ARE metric. We obtain an equivalent leakage prob-
ability p in the random probing model in both cases by applying the reduction.
The reduction is tighter in the case of ARE, where the same leakage parameter
is the leakage probability in the random probing model.

Different vs. maximum leakage probabilities. As we might obtain different noisy
leakage parameters δi for the different elementary operations, leading to different
leakage probabilities in the random probing model, we consider that all the gates
leak with the maximum probability corresponding to maximum noisy metric
δ = maxi δi. A random probing secure circuit with maximum leakage probability
is straightforwardly random probing secure with different leakage probabilities.

Gate vs. wire leakage model. In our characterization, we rely on the leakage of the
elementary operations abstracted as gates in a circuit. Meanwhile, most random
probing secure constructions suppose leakage on wires instead. Our methodol-
ogy applies an additional transition from the gate to the wire leakage model to
circumvent this issue. As proved in Lemma 1, we can reduce the security of a
circuit in the gate random probing model with leakage probability p, to the wire
random probing model with leakage probability √p, assuming that each gate
has at most two inputs.

Compiling a cryptographic implementation. The final step consists of a two-stage
compilation process applied to the input abstract circuit C ∈ C representing the
target cryptographic implementation.

– One first applies the random probing secure compiler which, for the obtained
leakage probability p and the target security level ε = 2−λ, transforms C
into a functionally equivalent randomized circuit Ĉ achieving (p, ε)-random
probing security.

– One then serializes Ĉ into a physical implementation, making a sequence of
calls to the (whitened) elementary operation routines on the target device.
Each elementary operation in the sequence corresponds to a gate in Ĉ whose
output is written in a fresh memory cell. The circuit wiring is hardcoded
in the pointer arguments passed to the successive calls to the elementary
operation routines.
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The obtained physical implementation achieves λ bits of side-channel security for
the target side-channel acquisition tool and physical device, and under relaxed
or empirically verified physical assumptions. The overall process and provable
security guaranty are wrapped up in Section 4.

3.7 Experimental Validation

In order to validate our methodology, we conducted tests on an STM32F3 MCU
using NewAE’s ChipWhisperer-Lite CW1173 board, which is based on an ARM
Cortex-M4 processor. Detailed experimental validation is provided in Supple-
mentary Material (B). This includes a description of how we implemented el-
ementary operations, our whitening approach, and the application of our data
isolation test, later discussed in Section 5.1, along with practical results. Further-
more, we conducted a leakage characterization for the operations, computed the
device’s noise covariance, and estimated the noisy leakage parameters. Our find-
ings revealed low noise levels on the device, rendering it unsuitable for masking
purposes, thus highlighting the need for secure hardware offering sufficient noise
levels to attain robust provable security. Finally, we showcase an application of
our methodology on a masked AES implementation.

4 Security Proof

After describing our methodology, we aim to prove our main result.

Theorem 1. Let C be an abstract circuit in the abstract circuit family C with
C = (V,G). Let D be a target device, A a target side-channel acquisition tool,
and λ a security level in bits. At the end of the six-step methodology described
in Section 3, the resulting physical implementation achieves ε = 2−λ security
against side-channel attacks under the following assumptions:

1. The data isolation effectively ensures that the deterministic signal can be
expressed as a sum

∑k
i=1 di(ai, bi);

2. The leakage characterization yields the exact leakage distribution (i.e., the
exact deterministic functions {di} and covariance matrix Σ),

While those ideal assumptions might not be perfectly met in practice, they
can be naturally relaxed. We thus assume that an adversary cannot effectively
exploit the approximation error between this ideal world and the actual leakage
to increase the advantage beyond ε = 2−λ.

Proof. Figure 2 gives a specific view of our characterization phase with the leak-
age assumptions. We assume that each elementary operation has at most two
inputs and denote such inputs as (ai, bi). After we implement the abstract gates
(Step 1) and enforce and test data isolation (Step 2), we can characterize the
leakage for each elementary operation (Step 3). We thus get a global leakage
model Y for any sequence of elementary operations. Next, we can apply the
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noise-splitting strategy to obtain separated leakages Yi with independent noises
for the different elementary operations (Step 4). We can then estimate the noisy
leakage metrics δi of the different elementary operations (Step 5) and apply the
DDF/PGMP reduction which yields a leakage probability pGL = γ · maxi δi in
the gate-leakage random probing model. Finally, we get a leakage probability
pWL =

√
pGL in the wire-leakage random probing model.

Fig. 2: Illustration of the characterization phase with the leakage assumptions

We can go up the methodology path from Figure 2 to formally prove the secu-
rity of the compiled physical implementation. Consider Ĉ the randomized circuit
output by the RPS compiler and which achieves (pWL, ε)-security in the wire-
leakage random probing model. From the argument given above, we have that Ĉ
achieves (pGL, ε)-security in the gate-leakage random probing model. Then, let
us consider the abstract physical implementation (API) corresponding to Ĉ in
the idealized noisy leakage model with operation leakage {Yi} and corresponding
noisy metrics {δi}. By application of the DDF/PGMP reduction, we get that this
API achieves ({δi}, ε)-security in this idealized noisy leakage model. This further
translates to the security of the API with global leakage Y thanks to the noise
splitting reduction. The physical implementation, which is an instantiation of the
API on the target device, thus achieves ε = 2−λ security against side-channel
attacks under the two assumptions expressed in the theorem statement. �

5 Dedicated Procedures for Assumptions 1 and 2

Our methodology relies on tests and procedures to enforce or relax Assump-
tions 1 and 2. In this section, we introduce a test of data isolation (Step 2)
given a whitening procedure, and showcase various noise splitting implemen-
tations (Step 4). Although some proposals are basic proof-of-concept versions
that require further refinement, when considered alongside our contributions
in Section 3, they collectively enable the successful completion of our overall
methodology.
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5.1 Step 2: Testing Data Isolation

Masking security proofs require independence between the leakage of all opera-
tions. However, enforcing and testing this independence assumption is challeng-
ing, leading to another approach in practice based on the test vector leakage
assessment (TVLA) [72]. This approach verifies the statistical security order
(i.e. the smallest statistical moment that leaks) of a masked implementation
by detecting secret-dependencies in the statistical moments of the leakage [41].
While dependence in the moment corresponding to the security order is expected
due to dependence in inputs of the leakage functions (e.g., all the shares of a
value), lower-order moments in a threshold-probing secure implementation with
independent leakage functions are independent of the secret. This test can in-
deed detect typical leakage independence violations due to physical defaults like
glitches [57,58] or transitions [33,6] when they lead to a security order reduction.
Due to the difficulty in enforcing strict independence in the implementation
and to verify it, a commonly accepted relaxation is to ensure that if there are
detectable lower-order leakages, they are of significantly lower amplitude than
those at the target security order [41].

While this heuristic works reasonably well in practice, it has two significant
limitations. First, by verifying only a security order, it cannot detect leakage
dependence issues that would result in other kinds of weaknesses than security
order reductions, e.g., easing horizontal attacks. Second, while this approach
is always applicable in theory, it requires testing all the mixed statistical mo-
ments corresponding to all the tuples of leakage points in the traces of a masked
implementation [8], and it is therefore computationally impractical (it scales ex-
ponentially with the length of the trace) at large security orders (even the second
order can be challenging).

Therefore, we propose another approach with much improved practical effi-
ciency, which can detect leakage dependencies that do not reduce the security
order. Our approach is based on testing the independence between the leakage
of two consecutive operations. Then, we use an argument based on physics to
extend the result of this test to long sequences of operations. We recall that we
provide an implementation of this test in Supplementary material (Section B)
on a STM32F3 MCU.

Leakage independence for adjacent operations. Let us consider two operations
op1 and op2 with their respective inputs x1 and x2. We assume that these two
operations are executed sequentially, giving rise to a leakage trace Y .

We say that the operations have independent leakage if

Y (x1,x2) = d1(x1) + d2(x2) +N (13)

where d1 and d2 are the deterministic functions (like in [70]) and N follows a
Gaussian noise distribution N . This definition indeed ensures independence, as
it is possible to decompose N into two independent Gaussian noises N1 and N2,
giving Y = (d1(x1) + N1) + (d2(x2) + N2). Despite the sequential execution
context, we cannot assume that the leakage is a sequential combination of the
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leakage of the operations (e.g., Y = (d1(x1) + N1, d2(x2) + N2)) due to data
dependency effect between successive operations (e.g. transitions in CPU bus-
es/registers) and low-pass filtering in the measured circuit or acquisition chain.

We use the following statistical test to verify that Equation 13 holds:
1. Generate uniformly at random two pairs α and β of inputs (xα1 ,x

α
2 ) and

(xβ1 ,x
β
2 ) (similarly to fixed-vs-fixed leakage assessment).

2. Acquire a set T(α,0) of ` traces corresponding to executing the operations
with the inputs set to (xα1 ,0) and compute the average trace T (α,0).

3. Do the same thing for T(β,0) with inputs (xβ1 ,0), T(0,α) with inputs (0,xα2 ),
T(0,β) with inputs (0,xβ2 ), T(α,α) with inputs (xα1 ,x

α
2 ) and T(β,β) with inputs

(xβ1 ,x
β
2 ). We hence acquire in total 6 · ` traces.

4. Compute the following

T ′(α,α) = T(α,α) − T (α,0) − T (0,α) T ′(β,β) = T(β,β) − T (β,0) − T (0,β)

(i.e., from each trace in T(α,α) (resp.T(β,β)) , we subtract T (α,0) + T (0,α)

(resp. T (β,0) + T (0,β))).
5. Compute the statistical mean equality test on the sets T ′(α,α) and T ′(β,β) as

t =
T ′(α,α) − T ′(β,β)√

s2
(α,α)

+s2
(0,α)

+s2
(α,0)

+s2
(β,β)

+s2
(β,0)

+s2
(0,β)

`

(14)

where s2
(i,j) is the unbiased estimator for the population variance of T(i,j). If

no significant difference pops up (e.g., |t| < 4.510), conclude that Equation 13
holds (at least, we could not contradict it).
The motivation for this test is that under the null hypothesis (i.e., Equa-

tion 13 holds), T (α,0) converges to d1(xα1 ) + d2(0) and T (0,α) to d1(0) + d2(xα2 ).
Therefore, the distribution of T ′(α,α) converges to the distribution ofN+d1(0,0)+

d2(0,0), and likewise for T ′(β,β). We finally compute t such that, under the null
hypothesis, it follows a standard normal distribution.

Since the noise comes from physical, electronic phenomena, its Gaussian dis-
tribution and independence on the data is a reasonable assumption. However,
in case of doubt, further statistical tests can be performed. For instance, a test
of Gaussianity of Y (x1,x2) can be performed for fixed (x1,x2), as well as an
equality test for the (co)variance of Y (x1,x2) across different (x1,x2).

Finally, it is worth clarifying that a statistical test can demonstrate the in-
ability to detect dependencies with a specific number of measurements but does
not prove independence. Nonetheless, if the test fails to identify a dependency for
` traces, it reasonably suggests that this dependency is unlikely to be exploited
for an attack with significantly fewer than ` traces. In contrast to traditional
higher-order TVLA, our test offers greater statistical power: being a first-order
test, it exhibits lower sensitivity to noise, regardless of the masking order under
consideration.
10 The 4.5 threshold is given for simplicity, a better approach would be to adapt the
t-score threshold with respect to the length of the traces (e.g. as proposed in [36]).
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Independence in longer operation sequences. We argue that, based on knowledge
of the structure of the evaluated processor and under some reasonable physical
assumptions, the absence of dependency for adjacent operations guarantees that
non-adjacent operations have independent leakage. Concrete justifications are
provided in Supplementary Material (Section B.1).

5.2 Step 4: Implementing Noise Splitting

A necessary physical assumption in the noisy leakage model is noise independence
as described in Assumption 2. Since enforcing this assumption is hard to achieve,
we propose a way to relax it instead, as discussed in Section 3.4.

Consider a sequence of k operations and the corresponding leakage trace Y .
Assuming that the noise is additive, we have the decomposition Y = S+N where
S is the signal (typically a deterministic function of the input data as presented
in the previous sections), and N is the data-independent noise. Further, thanks
to the data isolation test of the previous section, we know that the signal can
be rewritten as S =

∑k
i=1 Si, where Si is the leakage caused by operation i.

We aim to decompose the noise into a sum of k + 1 independent contributions
(one for each operation and a “leftover” one) N =

∑k
i=0Ni. Assuming that the

noise contributions Ni are Gaussian, we only have to ensure that they are not
correlated to ensure independence. This gives us a decomposition of the leakage
signal Y =

∑k
i=0 Yi where Y0 = N0 and Yi = Si + Ni for i 6= 0, which ensures

signal and noise independence between the components.
We argue that an implementation secure against an adversary with access to

{Yi}i∈{0,...,k} is also secure against an adversary with access to the global leakage
trace Y . The former is stronger than the latter adversary since each sample in Y
can be obtained by the sum of the corresponding samples in {Yi}i∈{0,...,k}. In our
methodology, we suggest computing the noisy leakage parameter based on the
split leakages Yi, which is weaker than the noisy leakage parameter computed
from Y since we split the noise N into k + 1 smaller ones, which necessarily
induces more information leakage on each independent operation. Hence, an
abstract circuit secure against an adversary with access to the split leakage is
also secure against an adversary with access to the global leakage Y .

We will present two solutions to the above decomposition problem in the
following. We first discuss a trivial solution, which has the advantage of be-
ing easily applicable but induces a loss in the security level as the size of the
implementation grows. Then, we express the decomposition as an optimization
problem that better scales with the size of the circuit but is more challenging to
solve. We propose a direct solution to the optimization and leave the question
of optimally solving it as an open problem.

Trivial Solution. We can perform a trivial split of the noise described above.
Namely, for a sequence of k operations, we can split the Gaussian noise N =
N (0, Σ) such that N0 = 0 and Ni = N

(
0, (1/k) · Σ

)
for i ∈ {1, . . . , k}. This

decomposition ensures that the leakage Y can be expressed as a sum of Yi with
Y0 = 0 and Yi = Si +N

(
0, (1/k) ·Σ

)
, with noise and signal independence.
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Meanwhile, the above decomposition scales poorly with the size of the cir-
cuit. As the number of operations grows, the noise occurring on each operation
decreases, leading to lower security in the noisy leakage model when applying
the reduction after the relaxation (i.e. increasing the ARE leakage).

Hence, the noise decomposition, in addition to ensuring the independence
of the components, should minimize this leakage. As explained in Section 3.6,
the chosen ARE (or SD) metric for the noisy leakage model is the maximum
among all operations executed. Hence, the chosen decomposition should balance
the noise on all operations and scale with the number of operations executed.

Better Noise Splitting. We propose a better way to split the noise taking ad-
vantage of a relaxed noise independence assumption. For a sequence of k ele-
mentary operations, we can split the leakage trace into k sub-traces, all of the
same size and including the time samples of one elementary operation each. We
call distance d between two sub-traces the number of operations (or sub-traces)
between them during the computation’s sequence (for example, two consecutive
sub-traces have distance d = 1). For the sake of simplicity, we assume that all the
sub-traces have identical noise distributions and that the dependence (i.e. the
covariance matrix) between the noises of two sub-traces solely depend on their
distance d.11 This means that each operation’s noise covariance matrix is the
same denoted Σ′0, and that the covariance matrix between two sub-traces with
distance d is the same along the computation denoted Σ′d. We then formulate
the following relaxed noise-independence assumption.

Assumption 3 (Relaxed noise independence assumption) There exists
dmax ∈ [0, k) such that the sub-traces with a distance d > dmax have null covari-
ance: Σ′d = 0 ∀d > dmax.

Intuitively, the above assumption captures the expectation that, after some delay,
the noise in an operation sub-trace is fully independent of the noise in an earlier
operation sub-trace. While we introduce it as a “relaxed assumption”, we stress
that it is without loss of generality since there always exists such a dmax. In
particular, the case dmax = k − 1 captures that the independence between the
noise of two operations is never reached.

Under this relaxed noise independence assumption, the global covariance
matrix for k operations has the following structure (assuming dmax = 1):

Σ =


Σ′0 Σ

′
1

Σ′1 Σ
′
0 Σ
′
1

Σ′1 Σ
′
0 Σ
′
1

. . . . . . . . .

 (15)

We introduce another parameter, which we call the data-dependency depth,
`max. This is the number of sub-traces over which the data dependency of an
11 This assumption is not strictly necessary to the application of our method but makes

the presentation much simpler.
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elementary operation spans. Specifically, the deterministic part of the leakage di
of the i-th operation is non-zero for samples spanning on sub-traces i, i+ 1, . . . ,
i+ `max. This is represented in Figure 3 for `max = 1.

Fig. 3: Data dependency spanning.

We now explain how a better splitting of the noise can be achieved, first by
assuming dmax = `max = 1 (and generalize later). Consider a split of the leakage
in three as: 

L1 := (S1 + S4 + . . .) +N1

L2 := (S2 + S5 + . . .) +N2

L3 := (S3 + S6 + . . .) +N3

where Si = di(xi) denotes the signal of the i-th operation, which spans over
time samples as represented on Figure 3, and with Ni ∼ N

(
0, (1/3)Σ

)
so that

N1 + N2 + N3 = N ∼ N (0, Σ). We have that (L1 + L2 + L3) ∼ Y , the global
leakage. Let us now consider (1/3)Σ = AAT the Cholesky decomposition of
the global covariance matrix (scaled by 1/3), so that the Ni noises follow a
distribution Ni ∼ A ·Xi with Xi ∼ N (0, I), for I the identity matrix. We have
that A−1 has the same zero matrix blocks as Σ (see Equation 15). Namely, it
can be written as:

A−1 =


B0 B

T
1

B1 B0 B
T
1

B1 B0 B
T
1

. . . . . . . . .

 (16)

for some matrices B0, B1 (with B0 being symmetric). Then we get
A−1 · L1 := (S′1 + S′4 + . . .) +X1

A−1 · L2 := (S′2 + S′5 + . . .) +X2

A−1 · L3 := (S′3 + S′6 + . . .) +X3

(17)

with S′i = A−1 · Si. One can then check that for each of the three leakages, L1,
L2, and L3, the successive signals S′i, S′i+3, . . . are strictly disjoint (meaning that
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they are non-zero over disjoint time samples). This is due to the structure of A−1

(see Equation 16) and the fact that each Si spans over two sub-traces. Then the
S′i span over three sub-traces so that S′i and S′i+3 are disjoint. Moreover, the
normalized noises A−1 ·Ni = Xi ∼ N (0, I) can be trivially separated as

X1 = X ′1 +X ′4 + . . .

X2 = X ′2 +X ′5 + . . .

X3 = X ′3 +X ′6 + . . .

(18)

such that the X ′i span the same time samples as the S′i. We finally split the
leakage in variables Yi = A · (S′i + X ′i) which satisfy Y =

∑k
i=1 Yi. In this

splitted leakage, the amount of noise is scaled by a factor 1/3 compared to the
factor 1/k of the trivial solution.

The same reasoning applies to higher values of dmax and `max. But instead of
dividing the noise in 3 and scaling the covariance by factor 1/3, one has to divide
it in dmax+`max+1 and hence scale the covariance by a factor 1/(dmax+`max+1).
Depending on the noise dependency depth and data dependency depth, this
might still be way better than a factor 1/k.

Towards Optimal Noise Splitting. While better than the trivial solution, the
above method is non-optimal since it roughly splits the noise in dmax + `max + 1
regardless of the signals Si. While the signal Si may span over the (i + 1)-th
sub-trace, it might be much weaker than on the i-th sub-trace and should receive
a smaller amount of noise than the signal Si+1 on these time samples.

Once again, we state our optimization problem for dmax = `max = 1 but
stress that it can be generalized to higher depths. Recall that we want to split
the global covariance matrix into k+1 covariance matrices Σ0, . . . , Σk such that

Σ = Σ0 +Σ1 + · · ·+Σk (19)

to split the leakage into n leakages: Yi := Si +Ni with Ni ∼ N (0, Σi).
Given the data-dependency spanning (c.f. Figure 3), Σi is only required to

span the same leakage samples as di. Then the (lowered) global covariance matrix
Σ has the following structure:

From this structure, we observe that for an operation, say the i-th one, we need
to split the covariance matrix Σ′0 between Yi and Yi−1 (since di−1 spans over
time samples of the i-th operation). On the other hand, Σ′1 does not need to be
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split. Namely, defining Σi, for every i ∈ {1, . . . , n}, as the symmetric positive
semi-definite matrix

Σi :=

(
Σ̄

(0)
0 Σ̄1

Σ̄1 Σ̄
(1)
0

)
(20)

with
Σ̄

(0)
0 + Σ̄

(1)
0 ≤ Σ′0 and Σ̄1 ≤ Σ′1 , (21)

we ensure Equation 19, where by Σ′ ≤ Σ we mean that there exists a positive
semi-definite matrix Σ′′ (i.e. Σ′′ is a covariance matrix) such that Σ′+Σ′′ = Σ.

Let δi be a leakage metric corresponding to Yi. Our optimization goal is

min
Σ̄

(0)
0 ,Σ̄

(1)
0 ,Σ̄1

max {δi}i

under the constraints of Equation 21, and for Σi symmetric and positive semi-
definite.

To sum up, under the assumptions stated above, we infer the leakage param-
eters which are the functions di, and the covariance matrices Σ′0 and Σ′1 and we
look for a matrix Σi as defined in Equation 20 (in particular, a split of the Σ′0
matrix into Σ̄(0)

0 + Σ̄
(1)
0 ) for which the maximal δi is minimized.

Choosing δi. Ideally, we would find the decomposition as the one that minimizes
the SD or ARE leakage metric. Meanwhile, choosing metrics simpler to express
can lead to optimization problems with simpler constraints, theoretically and
efficiently solvable with current tools. For instance, we can choose our metric
to be the multivariate SNR denoted SNRi for the leakage Yi, defined as the
maximal eigenvalue of the matrix ΣdiΣ̃

−1
i , where Σdi is the covariance matrix

of di(X), for X uniform over X . Then, our optimization goal becomes

min
Σ̄

(0)
0 ,Σ̄

(1)
0 ,Σ̄1

max {SNRi}i

under the same constraints as earlier, which leads to a convex optimization prob-
lem. Minimizing the SNR ultimately leads to low the SD or ARE and therefore
appears as a natural first step before solving the more general case. It is in line
with our goal to exhibit a first complete connection between the theory and
practice of the masking countermeasure, leaving the question of an optimized
methodology relying on the best combination of metrics and proofs as an inter-
esting direction for further research.

6 Discussions and Perspectives

This paper proposes the first complete methodology to connect the theory and
practice of provably secure masked implementations. The main goal of this ap-
proach is to obtain higher confidence security guarantees than with the current
heuristic. Our methodology combines models and metrics from the literature
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in a principled manner to transfer formal security claims into concrete security
levels that rely on hypotheses that can be validated experimentally. The main
technical novelty is the relaxation of the ideal assumptions of the noisy leakage
model (data and noise independence) to more realistic requirements, which still
implies the ideal hypotheses without a large tightness gap. We also propose and
demonstrate an experimental methodology to validate the relaxed hypotheses.

When applying our methodology “end-to-end” to an AES implementation on
a commercial off-the-shelf (COTS) Cortex-M4 microcontroller, we identify two
main issues: the lack of noise on this device and the non-tightness of the overall
masking security proof.

The lack of noise of COTS microcontrollers is already a security issue in the
practical software masking literature [25,22,21] and is therefore not one specific
to our methodology. It is hard to find simple COTS microcontrollers with high
noise levels. More complex MCUs are generally noisier, but studying and ensur-
ing isolation on these is more challenging (at least when treating them as black
boxes). The noise level is then a difficulty for research but not a fundamental
one since it is possible to manufacture simple microcontrollers with higher noise
levels (e.g. by adding noise engines). For more complex microcontrollers, working
in a more open setting helps ensure isolation with high confidence and reason-
able effort, for example, using instruction-set power leakage contracts [17]. Let
us note that our methodology also applies to hardware implementations that
are typically noisier and perform operations in parallel, although the approach
for ensuring isolation (i.e. avoiding glitches, transitions, and couplings) will be
different [43,27].

Regarding the tightness of the security proof, we have high noise requirements
and need many shares for a given security level (Table 4). These requirements
may seem excessive to practitioners, and the given security levels seem far from
what the state-of-the-art attacks can achieve, or even from the security level
recently proven for a single sharing [11]. Let us discuss some of the sources of
the non-tightness in our security bounds and directions for improving them.

First, in our experiments, we consider the masking scheme based on the
expansion technique [13]. While this scheme has the state-of-the-art minimum
noise level requirement, the scaling of the security level with the leakage pa-
rameter p is sub-optimal: an optimal masking scheme with n shares would scale
as O(pn), while ours has a lower exponent [15,26]. This issue can be solved by
using tighter random probing security proofs such as the ones based on probe
distribution tables [26], but this approach requires more work to scale with large
circuits.

The next step in the proof is the reduction of noisy leakage to random prob-
ing. Using the ARE metric over the SD metric is already a significant gain as
it avoids a field-size loss in the proof. On our test device, the ARE worst-case
metric is much larger than the SD, canceling part of the gain, but it may be
due to the low noise level, as adding noise reduces the ARE vs. SD gap. If the
use of worst-case leakage metric remains an issue on noisy devices, a possibility
is to use the reduction to the average random probing model [42], which would
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relax the noise requirements at the cost of a stronger security model (hence more
complex masked circuit).

Finally, reducing gate-probing to wire-probing involves a square loss in the
random probing parameter. It appears as a proof artifact that could be improved.

On the practical side, our methodology relies on well-defined and realistic
physical assumptions. We propose concrete tests for some of these assumptions,
while others are assumed to hold using physics-based arguments. While our
methodology makes a significant step towards experimentally validated hypothe-
ses, there is still a place for improvement to replace the remaining assumptions
by experimental tests, even though these assumptions may appear sound in the
first place (e.g. noise Gaussianity, isolation of consecutive operations implying
isolation of non-consecutive ones). Further, due to the nature of statistical tests,
quantitative assumptions (e.g. independence, isolation) can never be proven, only
invalidated. A fully-proven approach would instead rely on quantitative variants
of these assumptions, which can be proven with high confidence using statistical
tests (e.g. using statistical power and effect size [76]). Finally, there is room for
efficiency improvements, such as optimizing the noise splitting or reducing the
data isolation performance overhead.

In conclusion, we have shown how to achieve provable side-channel security
in practice under relaxed leakage assumptions, although the current state of the
art gives rise to constructions that are inefficient for the noise levels currently
available on COTS devices. Promising directions to fully close the gap are the
design of chips embedding noise engines, achieving much higher noise levels, and
improving masking schemes and their security proofs. In particular, we have
identified several concrete directions to improve the tightness of security proofs
from both the theoretical and practical sides.
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A Preliminaries

A.1 Circuit Compiler

Definition 7 (Circuit Compiler). A circuit compiler is a triplet of algorithms
(CC,Enc,Dec) defined as follows:

– CC (circuit compilation) is a deterministic algorithm that takes as input
an abstract circuit C from a family of circuits C = (V,G) and outputs a
randomized circuit Ĉ.

– Enc (input encoding) is a probabilistic algorithm that maps an input x ∈ V`
to an encoded input x̂ ∈ V`′ .

– Dec (output decoding) is a deterministic algorithm that maps an encoded
output ẑ ∈ Vm′

to a plain output z ∈ Vm.

These three algorithms satisfy the following properties:

– Correctness: For every circuit C of input length `, and for every x ∈ V`,
we have

P
[
Dec

(
Ĉ(x̂)

)
= C(x)

∣∣ x̂← Enc(x)
]

= 1 ,

where Ĉ = CC(C).
– Efficiency: For some security parameter λ ∈ N, the running time of CC(C)

is poly(λ, |C|), the running time of Enc(x) is poly(λ, |x|) and the running
time of Dec

(
ẑ
)
is poly(λ, |ẑ|), where poly(λ, q) = O(λk1qk2) for some con-

stants k1, k2.

A.2 Wire Vs. Gate Random Probing Leakage

We define the gate leakage procedures in the random probing model, analogously
to the wire leakage procedures from Section 2.3. In other words, in the gate
leakage setting, each gate leaks its internal state with probability p during the
evaluation of a circuit C from a family C = (V,G), where all the gate leakage
events are mutually independent. The internal state of the gate can be seen as
a function which depends on its inputs. Similarly to the wire leakage setting, we
define the following leaking-gates sampler

G← LeakingGates(C, p) ,

which outputs a set G of gate labels instead of wire labels. We also define the
following assign-gates sampler

g ← AssignGates(C,G,x) ,

which assigns to each gate of label in G, its internal state during the evaluation
of C (i.e. g is the assignment of the internal states of the gates of C with label
in G for an evaluation on input x).

By convention, we do not consider leakage on the output gates of a circuit,
since when composing several circuits, these gates become input gates to the
next circuit.

Figure 4 illustrates the difference between both leakages on a toy circuit.
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Fig. 4: Toy circuit illustrating random probing leakage. Dashed circles (a, b, c) are
input gates, while the dotted circle (d) is the output gate. In the wire leakage
setting, each wire leaks with probability p, while in the gate leakage setting,
each gate leaks its internal state with probability p2. Lemma 1 states that if the
circuit is (p, ε)-RP secure in the wire setting, then it is (p2, ε)-RP secure in the
gate setting.

A.3 Proof of Lemma 1

Proof. Let C be an abstract circuit with ` inputs and suppose that C is (p, ε)-
random probing secure in the wire leakage setting. Then, there exists a simulator
that we shall denote Simwire such that Simwire(C) ≈ε Lwire

p (C,Enc(x)). We now
construct another simulator Simgate as follows. Simgate starts by running Simwire,
and if Simwire fails (or aborts), then Simgate aborts too. Otherwise, for each gate
g in C, if all input wires to g are simulated and output by Simwire, we let Simgate
output a simulation of the inner state of g using the simulation of its input wires
by Simwire. Note that this is possible since the inner state of g only depends on its
input wires. Since we have that Simwire(C) ≈ε Lwire

p (C,Enc(x)), then each wire in
C is simulated by Simwire with probability p independently of all the other wires.
Consequently, each gate in C is simulated by Simgate with probability at least
p2 independently of all the other gates. Finally, since Simgate aborts if and only
if Simwire aborts with probability ε, we get that Simgate(C) ≈ε Lgate

p (C,Enc(x)).
Hence, C is (p2, ε)-random probing secure in the gate leakage setting, which
concludes the proof.

B Procedures Proposals and Practical Experiments

B.1 Step 2: Testing Data Isolation

Independence in longer operation sequences. Let us now discuss the de-
pendencies between operations that are not adjacent. In this section, we argue
that, given an understanding of the evaluated processor’s architecture and within
reasonable physical assumptions, the absence of dependency between adjacent
operations ensures the independence of leakage for non-adjacent operations.

Considering the processor (excluding the memory), we first assume that the
“core” leakage for any clock cycle is a function of all the state stored in the
processor (and the input data, e.g., on the memory bus). This “core” leakage
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may then get filtered (i.e., undergo a linear transformation) before it is mea-
sured (linear physics hypothesis, denoted LP). Next, given a sufficiently simple
processor, we may assume that when the processor executes m identical non-
branching/conditional instructions, the microarchitectural state of the processor
does not depend on the state computed by the first of these operations (provided
that the other operations do not also compute this state, and a few cycles after
the last instruction retires) — m-state-erasing (denoted m-SE) hypothesis. Con-
cretely, for an elementary processor whose state is only the architectural state,
the 2-SE hypothesis is satisfied. For more complex processors, m might be larger
(or even not exist). For a simple in-order processor, m-SE with m close to the
pipeline depth appears as a reasonable assumption.

Our operations all follow the same structure: load the operands in two reg-
isters, perform a logic instruction, and store the result (always using the same
registers). Then, between two operations, we execute several “cleaning” opera-
tions that operate on constant public data (i.e. whitening operations). Them-SE
hypothesis, combined with LP, implies independent leakage when m − 1 clean-
ings separate the operations. Our two operations test presented in the previous
section is a way to validate the hypotheses (and the m parameter).

Finally, regarding the memory leakage, it is reasonable to assume LP for the
static leakage from the memory cells and m-SE for the remaining logic. Let us
conclude this section by remarking that if an open-source processor is used, the
analysis of leakage independence is greatly simplified. Indeed, as the hardware is
known, we may apply the robust-probing leakage model to instructions sequences
(or to verify the m-SC hypothesis).

Practical Experiments We perform the data isolation test on a real target,
a STM32F3 MCU based on an ARM Cortex-M4. Such targets are cheap and
readily available. For the side-channel acquisition setup, we use the NewAE’s
ChipWhisperer-Lite CW1173 board together with a CW308 UFO board to con-
nect an NAE-CW308T-STM32F3 target board (embedding the STM32F3). The
STM32F3 clock frequency is set to 7.37MHz. A simple way to set up the acquisi-
tion is to follow the NewAE tutorial12.

Thanks to ChipWhisperer-Lite, one can easily acquire the power consumption
of the target board with an ADC synchronized with the STM32F3 clock. That
way, the acquisition sampling rate can be as low as four samples per CPU cycle
and capture informative side-channel traces. To ease the acquisition and trace
processing, we use the NewAE’s trigger mechanism.

We implement operations as routines described in Section 3.1. Since the cost
of the data isolation test is quadratic in the number of elementary operations,
we limit ourselves to four elementary operations for this proof-of-concept: 8-
bit XOR, 8-bit AND, 8-bit Right Shift, and 8-bit Left Shift. Note that these
operations would be enough to implement a masked bit-sliced AES at any cho-
sen order for instance. Of course, more elementary operations would make the

12 e.g. https://wiki.newae.com/Tutorial_A8_32bit_AES
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implementation more efficient but would imply a higher cost in side-channel
characterization.

In our example, each elementary operation relates to a single ARM-CortexM4
instruction, simplifying the analysis (listing the intermediate variables of each
operation is trivial) while not mandatory for the methodology. We implement
the four operations in assembly as shown in Figure 5.

xor_func:
ldr r0, [r0
]

ldr r1, [r1
]

eor r0, r1
r0

str r0, [r2
]

and_func:
ldr r0, [r0
]

ldr r1, [r1
]

and r0, r1
r0

str r0, [r2
]

left_shift_func
:

ldr r0, [r0]
mov r0, r0,
LSL 1

str r0, [r1]

right_shift_func
:

ldr r0, [r0]
mov r0, r0,
LSR 1

str r0, [r1]

void whitening(void) {
xor_func(a1Ptr , b1Ptr ,

c1Ptr);
xor_func(a2Ptr , b2Ptr ,

c2Ptr);
xor_func(a3Ptr , b3Ptr ,

c3Ptr);
}

Fig. 5: Elementary Operations (xor, and, left shift, right shift) and whitening as
implemented on the STM32F3 MCU.

To perform our data isolation test, we need to capture the side-channel exe-
cution traces of two consecutive elementary operations separated by a whitening
process and use the test to validate or not data isolation between the two oper-
ations. This approach must be re-iterated for all combinations of two successive
elementary operations.

The whitening process does not have to be the same for all pairs of elemen-
tary operations, but for our operations selection, the acquisition setup, and the
chip, a single whitening process allows us to pass all tests: three consecutive xor
operations with constant public inputs13. The corresponding assembly code is
shown in Figure 5, where {aiPtr, biPtr, ciPtr} for i ∈ {1, 2, 3} are memory point-
ers to the two constant operands {ai, bi} and the memory location to store the
result ci.

The test procedure is applied as follows:
13 Using only two consecutive xor operations was not enough to pass all tests for all

pairs of elementary operations.
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– For each pair of elementary operations, the target code is the following se-
quence of calls:

whitening ();
operation1(a1Ptr , b1Ptr , c1Ptr);
whitening ();
operation2(a2Ptr , b2Ptr , c2Ptr);

The inputs are pre-generated and loaded in memory once for all before iter-
ating on the target code.

– Triggers surround the target code to ease the trace acquisition.
– For randomly chosen values (xα1 ,x

α
2 ), (xβ1 ,x

β
2 )14 we collect 106 traces for each

set T(α,α), T(α,0), T(0,α), T(β,β), T(β,0), T(0,β), for a total of 6×106 traces.
– From the sets of traces, we test if Equation (13) holds.

The above process is applied for each pair of elementary operations and iter-
ated 2-3 times for different values of (xα1 ,x

α
2 ), (xβ1 ,x

β
2 ). Figure 6 illustrates the

test result for the pair of operations (xor, and) and a single choice of fixed inputs.
Figure 6b (resp. Figure 6c) illustrates the captured leakage (through the T-Test)
of the computation of xor (resp. and) and the manipulation of its inputs/outputs.
Namely, Figure 6b shows high T-test values at the moment of the execution of
xor with a residual leakage slowly decreasing afterward. While Figure 6c shows
high T-test values later at the moment of the execution and, and no leakage is
detected before, ensuring that the inputs of and were not manipulated before
the execution of the operation. Then, Figure 6d illustrates the captured leakage
of both xor and and simultaneously, including the individual leakages of xor and
and. Figure 6e is the result of our proposed test: it represents the captured leak-
age of both xor and and simultaneously while individual leakages of xor and and
are removed. The T-Test results show that the data isolation process (whitening
function) successfully removes the combined leakage of xor and and.

B.2 Steps 3 and 4: Computing the Leakage Function and Relaxing
Noise Independence

We use the experimental setting described in Section 3.7, where we consider
operations with at most 2 inputs of 8 bits. We start by inferring each elementary
operation’s deterministic part of the leakage function separately. We use the
linear regression with a specific choice of basis of functions H = {h1, . . . , hm}.
The result of the linear regression is the set of {αi}i such that, for all inputs
(a, b) of the selected elementary operation,

d(a, b) =

m∑
i=1

αihi(a, b) (22)

holds. In order to capture the leakage function fully, we construct the basis of
functions as follows (where n is the bit-length of the inputs a and b, here n = 8):
14 where xi (resp. x′i) contains the two inputs of operationi
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(a) Average trace (b) T(1,0) vs T(2,0)

(c) T(0,1) vs T(0,2) (d) T(1,1) vs T(2,2)

(e) Proposed T-Test

Fig. 6: Data Isolation Test. Blue (with whitening). Orange (without whitening).
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– h0(a, b) = 1
– for all i ∈ [1 · · ·n], hi(a, b) returns the ith bit of a
– for all i ∈ [1 · · ·n], hn+i(a, b) returns the ith bit of b
– for all (i, j) ∈ [1 · · · 2n]2, with i < j, hi,j(a, b) returns hi(a, b)⊕ hj(a, b)

This gives a total of m = 1 + 2 · n+ n · (2 · n− 1) = 2 · n2 + n+ 1 functions in
the function basis H.

For each elementary operation, the target code is the following concatenation

operation(aPtr , bPtr , cPtr);
whitening ();

surrounded by triggers to ease the trace acquisition (similarly to Section B.1).
The inputs to the operations are randomly generated (using a Mersenne Twister
RNG) on the chip before each execution of the target code. Then, we collect 106

traces in a single set and apply linear regression over the function basis H on
each independent time sample. The output is the set of vectors {αi}i.

Figure 7a illustrates the convergence of the L2 norm of the coefficient vectors
at two different time samples for the xor operation. We consider one vector
where the SNR ratio is high (i.e., more information leakage) and one where the
ratio is low. We can see that for both vectors, the L2 norm converges from a
few hundred traces, meaning that the linear regression can quickly estimate the
coefficients of the deterministic part of the function. This behavior can further be
explained by the low noise in the leakage depicted through the covariance matrix
in Figure 7b. We compute this covariance matrix on the same time samples of the
operation as for the deterministic function. The covariance matrix clearly shows
low noise levels, which implies more information leakage. We can also observe
through Figure 7a that for a sample with high SNR, the coefficients converge
to more significant values than for a sample with low SNR, which gives more
confidence about the results, since for samples with more information leakage,
the deterministic functions should have more weight than when there is not much
information leakage.

(a) Leakage Function – Deterministic Part (b) Leakage Function – Noise Part, Σ

Fig. 7: Linear Regression of the Leakage Function.
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Next, we must infer the noise covariance following the relaxation from Sec-
tion 5.2. Our experimental results on the chipwhisperer show that the noise
levels on the chipwhisperer we use are very low. Namely, Figure 7b shows the
noise covariance matrix computed from a set of traces with fixed input value for
the same operation. This low noise failed our attempts to apply the optimization
problem of Section 5.2. In this case, we can apply the trivial noise decomposition
from Section 5.2, making the security reduction work at the cost of decreasing
the noise levels even further as the size of the circuit grows.

B.3 Step 4: Estimating the Noisy Leakage Parameter

We use the same experimental setting from Section B.1, where we consider oper-
ations with at most 2 inputs of 8 bits. Then, iterating through all possible values
in X for a given y amounts to performing 216 iterations. An extra 216 iterations
are performed to compute the max for ARE or the sum for SD. Indeed, iterating
over all possible values in X does not scale well when considering larger inputs.
In such a case, other methods can be applied to make the computation tractable.
For instance, one can use the nearest-neighbor-based approach from [25] to ef-
ficiently and quickly compute the conditional probabilities and to find the max
over x ∈ X in the case of ARE. We leave the computation of the noisiness metric
for larger inputs as an open research question.

(a) SD (b) ARE

Fig. 8: ARE and SD Monte-Carlo convergence as described in Section 3.5.

To simplify our analysis, and since we already observe inefficient noise levels
on the chipwhisperer, we estimate the ARE and SD metrics using the original
covariance matrix from Figure 7b to exhibit the noisiness levels achievable on
this device in the best cases. We end our estimations by discussing the challenge
of designing hardware that generates enough noise to implement circuits secure
in the noisy leakage mode with reasonable security levels and finding optimal
ways to solve the relaxation on such a device.

Figure 8 shows the convergence of the Monte Carlo estimation of ARE and
SD metrics for the four operations as considered in Section B.1. The curves show
that both metrics converge to a stable value after around 4000 samples for each
operation. For the ARE metric, it converges to a maximal value of ≈ 213.4 for
the xor operation, which is enormous as this value is the same as the leakage
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probability in the random probing model (c.f. Section 2). Recall that the final
ARE value in the noisy leakage model is the maximal ARE among all operations.
This result means no constructions secure in the random probing model can be
used on this device. We compare this value to the SD metric, which converges
to a maximal value of ≈ 2−0.0093 for the xor operation. While this value is much
lower, we recall that the reduction to the random probing model with the SD
metric (c.f. Section 2) induces a factor of 216, equal to the size of the input space
(2 inputs of 8 bits each). In other words, the leakage probability in the random
probing model using the SD reduction would be almost 216, which is even higher
than with the ARE reduction. We observe that the values of the SD and ARE
metrics are smaller for the shift operations than for the xor and and operations.
We argue that this comes from the fact that the xor and and operations have
two operands of 8 bits and perform an additional instruction between registers,
contrary to the shift operations, leading to more information leakage and hence
higher values for the noisiness metrics.

Such values for the ARE and SD noisiness metrics imply critical leakage levels
on this component, making attacks most likely possible with very few traces. It
also matches the conclusions of previous works (e.g. [25]) on this component. In
addition, such levels of noisiness metrics make it challenging to have provably
secure implementations on the device. To show the amount of noise that needs
to be added to this component to be able to use secure constructions from the
literature, we present in the following section concrete results on the AES cipher
and use artificial noise that we add to the samples to demonstrate the obtained
security levels.

B.4 Step 5: Applying a Random Probing Secure Compiler

To achieve arbitrary levels of security in the random probing model, current liter-
ature proposes using an expanding compiler [13,15,16]. We recall that the latter
consists of recursively applying some base gadgets to the original circuit until
achieving the desired security level. After k applications, the achieved random
probing security is ε = fk(pWL) where pWL is the random probing wire-leakage
probability and f is the simulation failure function achieved by the set of gad-
gets. The maximal tolerated leakage probability for current 3-share and 5-share
constructions is around pWL ≈ 2−7.5 [15]. In our context, pWL is the square root
of the maximal ARE metric over the different operations, meaning that the max-
imum tolerated ARE is of ARE ≈ 2−15. This value is very far from what we
estimate in Section B.3 on the chipwhisperer.

Adding artificial noise and impact on ARE / SD. We illustrate the impact
of noise on security in the noisy leakage model by adding artificial noise to the
traces acquired with the chipwhisperer. For simplicity, we add noise to each time
sample of each trace, drawn from a univariate Gaussian distribution of mean 0
and standard deviation σ. We illustrate the evaluation of the ARE value for the
xor operation, which showed the highest ARE and SD values in Section B.3. This
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operation’s signal variance is about σ2
signal ≈ 10−5 at the leakiest point during

the execution of the operation. Table 1 shows the values of convergence for the
SD and ARE metrics as done in Section B.3, after adding different amounts of
noise to the traces (i.e. different σ values). The table shows that the ARE value
reaches 2−7 when adding a univariate Gaussian noise of mean 0 and standard
deviation σ = 5 to each sample in the traces. Recall that this corresponds to a
leakage probability of 2−3.5 in the random probing model. Meanwhile, the SD
value reaches 2−10, which must then be multiplied by 216 to obtain the leakage
probability in the random probing model (because we consider 2-input 8-bit xor
operation), making the reduction still not usable. These results showcase the
difference in the tightness of the reduction from the noisy leakage to the random
probing model using the SD and ARE metrics on this device. We also recall
that the reduction using the ARE metric is theoretically tighter (c.f. Section 2)
because the latter is a worst-case metric, matching the definition of the random
probing model, a worst-case model. We then remark that the values of the ARE
and SD metrics decrease as the σ value increases by the same factor. For instance,
the ARE and SD values are halved whenever the σ is doubled.

To use random probing secure gadgets from the literature, as mentioned
above, we need to tolerate a leakage probability of almost 2−7.5, translating to
an ARE value of 2−15. This value is reached when adding Gaussian noise with
a significant standard deviation σ ≈ 1280.

Table 1: ARE and SD values after adding noise to the leakage traces on the
chipwhisperer.

σ ARE SD
5 2−7 2−10

10 2−8 2−11

20 2−9 2−12

40 2−10 2−13

1280 2−15 2−18

Application to AES. We now illustrate the impact of the implementation’s
noise level on the complexity of the expanding compiler in the random probing
model. We choose a provably secure implementation of AES as in [13], under the
verified and relaxed leakage assumptions. We consider a bitslice implementation
of AES using the 8-bit bitwise operations (xor, and, left shift logical). Table 2 gives
the operation counts for such an implementation. The copy operation outputs
two values equal to the single input value, and the rnd operation outputs a fresh
uniform random value. Ng denotes the number of operations for the operation
g in the circuit.
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Table 2: AES operations complexity.

AES Operation
Complexity

(Nxor, Nlsl, Ncopy, Nand, Nrnd)

AddRoundKey (16, 0, 0, 0, 0)

SubBytes (174, 0, 111, 64, 0)

Linear layer (54, 16, 46, 0, 0)

AES-128 (10 rounds) (2440 , 160 , 1570 , 640 , 0 )

For the s-box, we use the optimized Boolean circuit from [18]. This circuit
computes the AES s-box with 32 ANDs, 83 XORs and 4 NOTs. Moreover, it
involves 111 copies. In our context, NOTs are computed as XORs with a constant
operand, which makes 32 ANDs + 87 XORs + 111 copies. For a full SubBytes
layer, composed of 16 bitsliced s-boxes, this makes 32 ANDs + 87 XORs + 111
copies in terms of 16-bit operations, which is 64 ANDs + 174 XORs + 222 copies
in terms of 8-bit operations.

For the linear layer, we rely on the fixslicing approach proposed in [2]. For
the linear layer in one round, this approach requires 27 32-bit XORs, 16 word-
wise rotations, 16 byte-wise rotations and 23 copies. In our context, word-wise
rotations are free since they are by multiples of 8. A byte-wise rotation requires
2 LSHs (one left shift, one right shift). This makes a total of 108 XORs + 32
LSH + 92 copies in terms of 8-bit operations for the MixColumn layer for two
blocks, which is 54 XORs + 16 LSH + 46 copies per block.15

We apply the expanding compiler proposed in [13] with the 3-share gadgets
proposed in [15]. The LSL gadget applies the LSL operation to each input share
before refreshing the sharing using a refresh gadget. Table 3 summarizes the
complexities of these gadgets. As for the failure functions for the set of gadgets,
we compute them using the verification tool IronMask [14].

The operation counts after k applications of the expanding compiler is given
by Nk ·

−→
N aes (c.f. [13]) where N is the gadget gate-count matrix defined as

N = (
−→
N xor |

−→
N lsh |

−→
N copy |

−→
N and |

−→
N rnd) , (23)

and
−→
N aes is the gate-count vector for AES given by the last row of Table 2.
Table 4 summarizes the complexities of the obtained masked AES with ex-

pansion levels k ∈ {1, 2, 3, 4}. For each expansion level, it further gives the
maximal value of the ARE in order to reach a provable security of ε = 2−λ,
for λ ∈ {32, 64, 128}. In order to compute the ARE value, we use the failure
functions computed with IronMask and numerically estimate the required leak-
age probability p to achieve the security level given the expansion level k. This
translates to the required noise level (or ARE) on the physical device to achieve

15 We note that this is for the even rounds, while odd rounds are further optimized
in [2] but we consider the same count for all the rounds.
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Table 3: Complexities for the 3-share gadgets from [15] achieving (t = 1, f)-RPE.

Gadget
Complexity

(Nxor, Nlsh, Ncopy, Nand, Nrnd)

Grefresh (4, 0, 2, 0, 2)

Gxor (11, 0, 4, 0, 4)

Glsl (4, 3, 2, 0, 2)

Gcopy (8, 0, 7, 0, 4)

Gand (40, 0, 29, 9, 17)

the proven security level. We also recall that the ARE value is then obtained as
p2.

Table 4 shows that by doing one level of expansion, which consists of replacing
each gate of the circuit with the corresponding gadget, the required levels of
ARE are very high and reach 2−136 for 128-bit security. As we further apply the
expansion, this required level decreases to almost 2−30 for 128-bit security, but
the complexity of the circuit becomes quickly impractical (4.33×109 operations).
Meanwhile, to have an ARE value of 2−30 on the chip we use for our tests, for
example, huge amounts of noise must be added (σ ≈ 5 · 223, c.f. Table 1).

Our results emphasize the trade-off between the physical noise on a device
and the complexity of circuit implementation on this device with proven security.
Higher noise levels lead to less complex constructions while achieving such noise
requires specialized hardware that enables considerable noise independent of the
operations. This also emphasizes the challenge of constructing such hardware,
taking provable security into account and the limitations of the noise levels that
can be achieved in practice. We recall that the chipwhisperer we use is far from
suitable for such a case, and the question of having adapted hardware needs to
be studied further in the literature.

While the complexities obtained through our results are yet to be practical,
they show that it is possible to obtain physical implementations with provable
security and that the noisy leakage security of the considered device highly in-
fluences the complexity of the constructions.
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Table 4: Masked AES for different levels of expansion.

Expansion Masked AES ARE for 2−λ security
level k Complexity λ = 32 λ = 64 λ = 128

1 0.24 Mop 2−40 2−72 2−136

2 6.14 Mop 2−28 2−44 2−76

3 163 Mop 2−22 2−30 2−46

4 4.33 Gop 2−18 2−22 2−30
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