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Abstract. In this paper, we present a new quantum-resistant weak Veri-
fiable Delay Function based on a purely algebraic construction. Its delay
depends on computing a large-degree isogeny between elliptic curves,
whereas its verification relies on the computation of isogenies between
products of two elliptic curves. One of its major advantages is its ex-
pected fast verification time. However, it is important to note that the
practical implementation of our theoretical framework poses significant
challenges. We examine the strengths and weaknesses of our construc-
tion, analyze its security and provide a proof-of-concept implementation.
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1 Introduction

A Verifiable Delay Function (VDF) is a cryptographic primitive designed to take
a prescribed amount of time t to compute, regardless of the parallel computing
power available, while still being easy to verify once the computation is complete.
VDFs are used in various applications, such as random number generation and
blockchain consensus algorithms, where a delay is needed to ensure that certain
operations cannot be performed too quickly. The seminal paper on VDFs, “Ver-
ifiable Delay Functions", was published in 2018 by Boneh, Bonneau, Bünz and
Fisch [9]. In the paper, the authors introduce the concept of a VDF and describe
its potential uses in various applications including auction protocols, proof-of-
work systems, and secure multiparty computation. The first efficient VDFs were
the ones proposed by Pietrzak [42] and Wesolowski [50]; both VDFs are based on
exponentiation in a group of unknown order. We refer to [10] for a survey about
these VDFs. Driven by the open problem of finding a VDF that is also quantum
resistant, De Feo, Masson, Petit and Sanso [25] employed chains of supersingular
isogenies as “sequential slow” functions in order to build their VDF. However,
given the usage of bilinear pairing, this isogeny-based VDF is not quantum resis-
tant but only provides some quantum annoyance. Proving knowledge of isogenies
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has a rich history of research (see for instance [20,7]), but none of the techniques
seem to allow for a natural instantiation of a VDF.

Boneh, Bonneau, Bünz and Fisch [9], and independently Döttling, Garg,
Malavolta, and Vasudevan [28] proposed the usage of SNARGs for constructing
a VDF. In [17], Chavez-Saab, Rodríguez-Henríquez and Tibouchi describe an
isogeny-based VDF that is quantum resistant based on the SNARG approach.
Also, in [47], Tan, Sharma, Li, Szalachowski and Zhou report a VDF built over
a sequential variant of the zero-knowledge proof system ZKBoo [33].

Our contribution. In this paper, we present a quantum-resistant weak VDF,
which is a VDF where a certain amount of parallelism is needed to give an
advantage to the evaluator [9, Definition 5]. Our construction is based upon both
isogenies between supersingular elliptic curves and Kani’s criterion [34]. Kani’s
criterion determines whether isogenies originating from elliptic products have
split codomain. In our case, this criterion is leveraged in a constructive manner, in
contrast to previous attacks [14,37,43] against the Supersingular Isogeny Diffie-
Hellman key exchange protocol (SIDH) [24] and its instantiation SIKE [2]. While
there have been other attempts to build quantum-resistant VDFs [17,47], to the
best of our knowledge, this is the first instance where a quantum-resistant VDF
has been constructed without relying on SNARG.

Our VDF is inherently noninteractive and does not have the limitation present
in [25], where the time required for setting up public parameters is similar to
the time required for evaluating the function.

However, our VDF faces two challenges: its weakness and the need of curves
with unknown endomorphism ring as input. In our case, being weak means that
Eval will require O(t) parallelism to run in parallel time t.

Sampling random supersingular elliptic curves over finite fields of crypto-
graphic size without giving information about the endomorphism ring is nec-
essary to ensure the security of the elliptic curve used in the Eval operation.
Currently, finding a way to do this without relying on a trusted authority is an
open problem in supersingular isogeny-based cryptography [11,40]. In [4], Basso,
Codogni, Connolly, De Feo, Fouotsa, Lido, Morrison, Panny, Patranabis and
Wesolowski suggest methods for creating such curves defined over a finite field
Fp2 through a trusted setup. Nevertheless, engaging in a trusted setup for every
single input is not a practical solution for us. Trusted setups often involve com-
plex procedures and require the involvement of multiple parties or authorities,
making them cumbersome to execute on a regular basis. In summary, the weak-
ness of the VDF is a drawback, while the requirement for curves with unknown
endomorphism rings as input is a significant obstacle.

Technical preview. Let E0/Fp be a supersingular elliptic curve and ℓ an odd
prime, such that there are two horizontal ℓ-isogenies ψ : E0 → E1 and ψ′ :
E0 → E′

1. If the ℓ-torsion of E0 is only defined over Fpℓ−1 , then computing
these isogenies is expensive, even with parallelization, and they will determine
the delay of our weak VDF. On the other hand, one can rapidly verify this
computation in dimension two by asking for the evaluation of ψ and ψ′ on
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E0[N ] for certain smooth N > ℓ (e.g. N is some power of two). By choosing ℓ
and N appropriately, the gap between evaluation and verification is exponential.

Outline. This paper is organized as follows. In Section 2, we give a mathematical
foundation for understanding the concepts employed in the manuscript, as well
as the definition of a weak VDF. Section 3, the main focus of the paper, provides
a detailed description of our weak VDF. Section 4 to Section 6 present thorough
analysis of correctness, soundness and sequentiality. Finally, we draw conclusions
in Section 7.

Notation. We will call a prime ℓ a safe prime if k = ℓ−1
2 is also an (odd) prime.

The prime k is then necessarily a Sophie-Germain prime. The Legendre symbol(
a
b

)
is used to denote whether a is a quadratic residue modulo b or not. Two

prime-field elements a, b ∈ Fp will be compared as a <Z b if their canonical lifts
a, b ∈ Z ∩ [0, p − 1] satisfy a < b, and analogously for >Z. For a point P on
an elliptic curve E, we will denote its x-coordinate (respectively y-coordinate)
by x(P ) (respectively y(P )). We will use the term “taking t time to compute”
when referring to the evaluation of a polynomial-sized arithmetic circuit with a
maximum depth of t, specifying the breadth of the circuit when needed.

Acknowledgments. We would like to thank the CRYPTO 2023 and LATIN-
CRYPT 2023 anonymous reviewers; in particular the CRYPTO reviewer point-
ing out the attack described in Subsection 3.2. We would also like to thank
Wouter Castryck, Chloe Martindale and Frederik Vercauteren for fruitful dis-
cussions and feedback on a previous version of this manuscript. This work was
supported in part by CyberSecurity Research Flanders with reference number
VR20192203, by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement
ISOCRYPT - No. 101020788) and by the UK Engineering and Physical Sci-
ences Research Council (EPSRC) Centre for Doctoral Training (CDT) in Trust,
Identity, Privacy and Security in Large-scale Infrastructures (TIPS-at-Scale) at
the Universities of Bristol and Bath.

2 Preliminaries

In this section, we will discuss some properties related to isogenies and weak
VDFs. In general, we will assume the characteristic of the field we work over to
be a prime p > 3, although certain results generalize beyond this restriction.

2.1 Elliptic Curves and Their Representation

Elliptic curves are smooth projective algebraic curves of genus one with a fixed
given point O. Any such curve can be written in long Weierstraß form and then
O is the (only) point at infinity. Often, the curve is given as an affine equation
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without explicit mention of O; e.g. the Montgomery form of an elliptic curve EA
is given by

EA/K : y2 = x3 +Ax2 + x,

where K is the field we work over and A is an element of this field. An elliptic
curve comes equipped with a natural group law and the point at infinity OE is
the neutral element of this group. The K-rational points of E (which include
OE) are denoted by E(K).

In isogeny-based cryptographic settings, elliptic curves are typically only con-
sidered up to isomorphism. Two elliptic curves are isomorphic over K if and only
if they have the same j-invariant j ∈ K. The j-invariant of an elliptic curve E
in Montgomery form is denoted by j(EA) and given by

j(EA) =
(A2 − 3)3

A2 − 4
.

Given a j-invariant j ̸= 1728, we will define the Weierstraß form

E(j) : y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728

as the canonical representation of E in the isomorphism class of E. The canon-
ical representation isomorphism ιj : E → E(j) is easy to compute for any
elliptic curve E. An elliptic curve is in canonical form if E = E(j(E)). Other
forms of elliptic curves than E(j) are often preferred for computational purposes.
For instance, the Montgomery form EA allows efficient x-only arithmetic in the
group by means of the Montgomery ladder [6]. From the expression j(EA) above
though, it is clear that for any given j-invariant there may be up to six distinct
Montgomery coefficients A. Additionally, one cannot represent every j-invariant
as an elliptic curve in Montgomery form without using field extensions, hence
the Montgomery coefficient is less useful from a representational point of view.
For more information about elliptic curves in general, the book by Silverman is
a staple reference [44].

2.2 Isogenies

An isogeny ϕ : E → E′ between elliptic curves is a surjective morphism with
finite kernel. In this paper, we will restrict ourselves mostly to separable isoge-
nies. Assuming kernel points are considered over the algebraic closure, it holds
that deg ϕ = #kerϕ for all separable isogenies. An example of an isogeny is the
multiplication-by-n map, given by [n] : E → E, P 7→ [n]P . This isogeny is of
degree n2 and its kernel is denoted by E[n]. An endomorphism is a homomor-
phism from an elliptic curve to itself. The endomorphism ring EndK(E) of an
elliptic curve is the ring of all endomorphisms of E defined over the field K.

There are two options for the group structure of E[p], namely E[p] ∼= {0}
or E[p] ∼= Z/pZ. In the former case, the elliptic curves are called supersingular,
whereas in the latter case, they are called ordinary. We will restrict ourselves to



Towards a Quantum-resistant Weak Verifiable Delay Function 5

supersingular elliptic curves and isogenies between them, since it is significantly
easier to generate supersingular elliptic curves with certain given orders. For
instance, a supersingular elliptic curve has order p+ 1 over Fp.

For a supersingular elliptic curve E/Fp, either EndFp(E) equals Z[
√
−p] or

Z[(1 +
√
−p)/2]. In the former case, the elliptic curve E is said to be on the

floor, whereas in the latter case, the elliptic curve is said to be on the surface.
An isogeny ϕ : E → E′ is said to be horizontal in this context if EndFp

(E) =
EndFp

(E′) (i.e. E and E′ need to either be both on the floor, or both on the
surface). We will make use of the following theorem, where two isogenies are
considered distinct if they have different kernel.

Theorem 1. Let p > 3 be a prime such that p ≡ 3 mod 4, and ℓ an odd prime
such that

(−p
ℓ

)
= 1. If E/Fp is a supersingular elliptic curve, then there are

exactly two distinct Fp-rational horizontal isogenies of degree ℓ with E as domain.

Proof. This is part of [26, Theorem 2.7]. ⊓⊔

In CSIDH [16], they choose p such that #E(Fp) = p+1 has many small odd
prime factors ℓi. For each ℓi, the two horizontal ℓi-isogenies are then not only Fp-
rational, but they are cyclic with kernel generators in Fp and Fp2 . With a good
choice of representation, both isogenies can be computed from the x-coordinate
of their respective kernel generator using arithmetic over Fp only. Generically,
however, these two Fp-rational horizontal isogenies have kernel generators in
E(Fpe), for some e ≤ ℓ− 1.

In our protocol, we will post-compose Fp-rational horizontal isogenies with
an isomorphism onto the canonical form of the image curve. Technically, the
resulting isogenies are not Fp-rational anymore because of this isomorphism.
However, since we work with curves of unknown endomorphism ring, we can
discard the case where the j-invariant of the starting curve is either 0 or 1728.
As a result, the two horizontal isogenies are still distinct [1, Lemma 3.11]. For
more general background regarding isogenies in a cryptographic setting, we refer
the reader to the notes by De Feo [23].

2.3 Isogenies between Abelian Surfaces

Abelian surfaces are abelian varieties of dimension two, which can be seen as
a generalization of (necessarily one-dimensional) elliptic curves. In the context
of isogeny-based cryptography, it is necessary to equip them with a principal
polarization (abbreviated as p.p. from now on). We will not elaborate on the
notion of polarizations, but refer the interested reader to [45, Section 2.2] for
more details.

All p.p. abelian surfaces (up to K-isomorphism) are either products of two
elliptic curves or Jacobians of genus-2 curves. Arithmetic on a product of el-
liptic curves (E1, E2) is simply arithmetic on the two curves componentwise;
e.g. for (P1, P2) ∈ (E1, E2) we can compute the multiplication-by-n map as
([n]P1, [n]P2) ∈ (E1, E2). A genus-2 curve C is a smooth projective algebraic
curve of genus two. Over a field of positive odd characteristic p, such a curve
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can be given by an affine equation of the form C : y2 = F (x), where F (x) is
a degree-six polynomial, together with two points at infinity (which may only
exist over a quadratic field extension). From the points on this curve, one can
also construct a group called the Jacobian of the genus-2 curve. Remark that
to construct all K-rational elements of this Jacobian, one needs to consider all
K ′-rational points on C for a quadratic extension K ′ ⊇ K. For an explicit con-
struction of this group law, see for example [19].

Just as in the case of elliptic curves, isogenies between p.p. abelian surfaces
are surjective morphisms with finite kernel. In order to ensure that the isogeny
is compatible with the chosen polarizations of the domain and codomain, this
finite kernel will have to satisfy certain conditions. A sufficient condition is that
the kernel of the isogeny has to be maximal isotropic with regards to the Weil
pairing. For instance, if Ψ : A → A′ is an isogeny between p.p. abelian surfaces
with kernel isomorphic to Z/3⊕Z/3, then for any two elements D1, D2 in kerΨ
it must hold that e3(D1, D2) = 1. A group satisfying these conditions is called
a (3, 3)-subgroup and the associated isogeny a (3, 3)-isogeny.

A theorem by Kani proves under which specific conditions an isogeny Φ with
domain E1×E2 has a codomain which is again a product of elliptic curves. These
conditions connect E1 and E2 by means of another (one-dimensional) isogeny.
This criterion underlies Theorem 2 formulated in Section 4, which we use to
prove correctness of our protocol. If F1 × F2 is the codomain of Φ, then we say
that Φ has product codomain passing through Fi. For an introductory framework
with regards to higher-dimensional isogenies in a cryptographic setting, see for
example [15].

2.4 Weak VDFs

For the sake of being self-contained, we briefly recall the notion of weak VDF
introduced by Boneh, Bonneau, Bünz and Fisch [9]. The main difference between
a VDF and a weak VDF lies in the parallelization capabilities given to evaluators:
in a weak VDF, an evaluator needs arithmetic circuits of breadth O(poly(t)) to
achieve the best strategy, where t indicates the delay expected.

Definition 1. A weak VDF V = (Setup,Eval,Verify) consists of a triple of al-
gorithms as follows:

– (ek, vk) ← Setup(λ, t) : is a randomized algorithm that takes a security pa-
rameter λ and a delay parameter t as input, and outputs an evaluation key
ek and a verification key vk. The input (λ, t) also defines a domain X and a
codomain Z. Also, Setup should run in O(poly(λ)).

– (z ∈ Z, π) ← Eval(ek, x ← X ) : on input the evaluation key ek and x ∈ X ,
returns z ∈ Z and a proof π. This algorithm must run in time t on an
arithmetic circuit of breadth O(poly(t, λ)).

– {True,False} ← Verify(vk, x, z, π) : checks whether the output z corresponds
to the input x. This algorithm must run in O(poly(log t, λ)) time.

Furthermore, V must satisfy the following properties:
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– Correctness: A weak VDF is correct if, for all parameters λ, t, an honest
evaluation of Eval always passes the check made by Verify.

– Soundness: A weak VDF is sound if the probability of marking a wrong
evaluation as correct is negligible in the security parameter λ.

– Sequentiality: To define sequentiality, we need to introduce the following
game applied to the adversary A = (A0,A1):

(ek, vk)← Setup(λ, t)

L← A0(ek, vk)

x←$ X
zA ←$ A1(L, ek, vk, x)

The adversary A wins the game if zA = z, where (z, π) = Eval(ek, x). Given
σ(t) and p(t), the weak VDF V is (p, σ)−sequential if no pair of randomized
algorithms A0, which runs in time O(poly(λ, t)), and A1, which runs in time
strictly less than σ(t) on an arithmetic circuit of breadth p(t), can win the
security game above with probability greater than negl(λ).

3 The VDF

In this section, we give a high-level description of our weak VDF. Once the eval-
uation key ek and verification key vk have been sampled, the input space consists
of Eℓℓp, the set of all j-invariants corresponding to supersingular elliptic curves
over Fp whose Fp2-endomorphism ring is unknown. Currently, finding a way to
sample such curves at random is an open problem in supersingular isogeny-based
cryptography [11,40]. We define Gen2b to be a deterministic algorithm that, on
input a supersingular elliptic curve and a positive integer b, outputs a basis of
the 2b-torsion.

We recall that λ is a security parameter, t is a delay parameter, z is the
output and π is the proof of the output.

(ek, vk)← Setup(λ, t) :
1. Sample a random safe prime ℓ ∼ t and define k = (ℓ− 1)/2.
2. Let b > λ such that 2b = c2ℓ + d2 for some coprime positive integers
c, d ∈ N.

3. Construct a random λ log3(t)/2-bit prime p such that
(a) p ≡ −1 mod 2bcd;
(b) p ≡ 1 mod k and 2

p−1
k ̸≡ 1 mod p.

(c) the order of −p in F∗
ℓ equals k;

(d)
(−p
ℓ

)
= 1;

4. ek = (p, b, ℓ), vk = (p, b, ℓ, c, d).

(z, π)← Eval(j ←$ Eℓℓp, ek) :
1. E0 ← E(j), P0, Q0 ← Gen2b(E0, b).
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2. Compute the two (distinct) horizontal ℓ-isogenies ψ : E0 → E1/Fp and
ψ′ : E0 → E′

1/Fp, where E1 and E′
1 are in canonical form, as well as

P1 = ψ(P0), Q1 = ψ(Q0), P ′
1 = ψ′(P0) and Q′

1 = ψ′(Q0).
3. If j(E1) >Z j(E

′
1), then swap (E1, P1, Q1)↔ (E′

1, P
′
1, Q

′
1).

4. z ← x(P1) || x(Q1) || x(P ′
1) || x(Q′

1).
5. π ← j(E1) || j(E′

1) || y(P1) || y(Q1) || y(P ′
1) || y(Q′

1).

{True,False} ← Verify(j, z, π, vk) :

1. E0 ← E(j), P0, Q0 ← Gen2b(E0, b).
2. Verify that j(E1) <Z j(E

′
1).4

3. E1 ← E(j(E1)), E′
1 ← E(j(E′

1)).
4. Verify that P1, Q1 ∈ E1(Fp2), and P ′

1, Q
′
1 ∈ E′

1(Fp2).
5. Verify that the subgroups ⟨([d]P1, [cℓ]P0), ([d]Q1, [cℓ]Q0)⟩ ⊂ E1 × E0

and ⟨([d]P ′
1, [cℓ]P0), ([d]Q

′
1, [cℓ]Q0)⟩ ⊂ E′

1 × E0 define two kernels of
(2b, 2b)-isogenies Φ and Φ′, respectively, having product codomain pass-
ing through E0.

5. Verify that, for all S ∈ E1[c], the projections of Φ(S, 0) and Φ′(S, 0) onto
E0 are equal to the identity.

6. Verify that, for all S ∈ E0[d], the projections of Φ(0, S) and Φ′(0, S) onto
E0 are equal to the identity.

For now, we will assume that the evaluation of an ℓ-isogeny in this setting is
expensive, even with access to a large amount of parallel processors. We will
elaborate on this in Section 6 when discussing sequentiality but will explain the
choices in the protocol first.

Remark 1. Remark that ek, vk, z, π can be noticeably compressed in bitsize; e.g.
the y-coordinates of P1, Q1, P

′
1 and Q′

1 can be compressed to four bits in the clas-
sical way. 5 For the clarity of exposition, we elect to omit these details involving
bandwidth requirements.

3.1 The Conditions in Setup

The condition
(−p
ℓ

)
= 1 ensures that there exist two horizontal ℓ-isogenies, see

Theorem 1. The condition −p having order k in F∗
ℓ implies that the minimal

field extension over which an ℓ-torsion point is defined is Fpk . Indeed, if E0 is a
supersingular elliptic curve defined over Fp, then #E0(Fpk) = pk + 1. Since −p
has order k in F∗

ℓ , we have that ℓ | (pk + 1). The field Fpk is the minimal field
extension since it is an extension of prime degree of Fp and ℓ ∤ (p + 1). Finally,
the form of p implies that all 2b-, c- and d-torsion is Fp2-rational, which will
allow fast verification.
4 Checking if j(E1) is smaller than j(E′

1) implicitly verifies that j(E1), j(E
′
1) ∈ Fp.

5 Given that they serve as part of kernel generators for verifying a two-dimensional
isogeny, they can actually be compressed to a combined two bits.
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The conditions k | p − 1 and 2
p−1
k ̸≡ 1 mod p are needed to ensure that

the polynomial xk + 2 is irreducible over Fp[x]. Since 2
p−1
k ̸≡ 1 mod p, 2 does

not admit a k-th root over Fp, which in turn proves that xk + 2 is irreducible
over Fp[x]. The polynomial xk + 2 is then used to define the field Fpk , i.e.
Fpk = Fp[x]/(xk + 2). This condition is technically not needed but ensures that
we do not need to waste time searching for irreducible polynomials to define Fpk .

3.2 The Size of p

The computation of the horizontal ℓ-isogenies correspond to the action of l =
(ℓ, πk − 1) and l̄ = (ℓ, πk + 1) in the class group Cl(O) of the Fp-endomorphism
ring O of E0. We will focus on l, the other case is completely analogously. As-
suming access to a sufficiently large quantum computer, the relation lattice for
a given set of generators - say l, l1, . . . , ld−1 - of Cl(O) can be computed. This
means that an adversary could try to simplify the computation of the ℓ-isogeny
by means of finding an equivalent element l = le11 ·. . .·l

ed−1

d−1 when seen as elements
in Cl(O). Each li in this product corresponds to a prime-degree isogeny, such
that ideally the ei are as small as possible. This is exactly how the CSI-FiSh
signature scheme is made efficient [8].

To combat this, we can choose p to be large enough, such that any of the
known lattice reduction algorithms takes time at least 2λ to find a short vector
of L1-norm less than t. This implies that no reasonable lattice reduction can
find an equivalent smooth-norm ideal corresponding to less than t sequential
isogenies.

Following the argument of Panny [41], the standard lattice reduction algo-
rithm which gives a trade-off between time spent reducing the lattice and the
quality (read: norm) of the output vector is the BKZ algorithm. Assuming p is
a µ-bit prime, our lattice has dimension d and covolume 2µ/2, since the class
group has order O(√p). If we are looking for vectors bounded in L1-norm by
t = 2τ , we can deduce that the optimal trade-off happens for dimension d ≈ µ/τ .
The total runtime of the BKZ algorithm is then 2O(2µ/τ2) ≈ 22µ/τ

2

. Assuming
BKZ is fully parallelizable, with access to arithmetic circuits of breadth t = 2τ ,
it runs in time 22µ/τ

3

. To ensure that this is still more than 2λ, we must have
that 2µ/τ3 ≥ λ, or µ ≥ λ log(t)3/2.

Remark that this approach would lead a dishonest evaluator only to the
codomain curve E1, but this can be extended to also compute the images of P0

and Q0 as follows.
Write R0 = P0 +Q0, such that ⟨R0⟩ is a cyclic group defining a descending

2b-isogeny to a curve E′/Fp2 . This curve is oriented by an order O′ of conductor
2b inside End(E0); in particular its group action is compatible with the one
at the surface. The class group relations can be obtained as well, and hence
le11 · . . . · l

ed−1

d−1 ∩O′ can be rewritten as an equivalent ideal of smooth norm, say m.
The image curve mE′ is then equivalent to E1/⟨R1⟩, with R1 the image of R0

under the isogeny ψ defined by l.
Furthermore, E1[2

b] contains two distinguished cyclic subgroups correspond-
ing to the two eigenvalues of Frobenius. This means that on the level of sub-
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groups, we can distinguish ⟨ψ(P0)⟩ and ⟨ψ(Q0)⟩ easily. Adding our cyclic sub-
group ⟨ψ(R0)⟩ as third piece of information, one can use the Weil-pairing and
some linear algebra as in [31] to recover the exact images of P0 and Q0.

Remark 2. The aforementioned derivation of the size of p is extremely conserva-
tive. Not only does it assume full parallelizability of BKZ with no overhead, but
it also assumes a dishonest evaluator can compute ℓi-isogenies in time O(1) for
d distinct primes ℓi. In practice this will also come with a huge overhead, since
our parameters are not set up such that both the ℓi and the field extension over
which the ℓi-torsion is defined are simultaneously small.

3.3 Curves with Unknown Endomorphism Ring

If the endomorphism ring of the curve E given as input is known, there exists a
polynomial-time algorithm that allows one to compute ℓ-isogenies without using
the arithmetic on extension fields [37]: an attacker could extend (ℓ, πk ± 1) to a
fractional ideal I± in the maximal order End(E0). Then, computing an isogeny
associated with I± has complexity O(poly(log p + C)), where C is the bit-size
of the representation of End(E0) [36, Propositon 5].

To avoid this, it is needed to employ elliptic curves where the endomorphism
ring remains unknown. Currently, one strategy is to depend on a “trusted party”
to generate a random curve and then eliminate any sensitive information con-
nected to it. Another option is to consider a distributed trusted-setup ceremony,
as described in [4], which outlines a procedure for obtaining supersingular elliptic
curves with an unknown endomorphism ring.

However, having a trusted setup for every single input is not a practical so-
lution in this context. Indeed performing a trusted setup for each input would
introduce significant overhead in terms of time, resources, and complexity. Addi-
tionally, frequent trusted setups can become prohibitively expensive, especially
in scenarios where a large number of inputs need to be processed. Given these
challenges, it becomes crucial to explore alternative methods that do not rely on
a trusted setup as in [11,40].

3.4 The Role of the Security Parameter

The condition on b is needed to avoid that an attacker having access to the
ℓ-modular polynomial Φℓ(X,Y ) can break sequentiality with probability greater
than negl(λ). The classical modular polynomial Φℓ(X,Y ) ∈ Z[X,Y ] is a polyno-
mial which vanishes on the j-invariants of every pair of elliptic curves which are
ℓ-isogenous. The polynomial can be precomputed and stored in space O(ℓ log p)
since it is a symmetric polynomial with bidegree ℓ + 1. For any given j(E),
the univariate polynomial Φℓ(X, j(E)) can be computed in parallel by using the
Chinese remainder theorem, see for example [46].

The polynomial Φℓ(X, j(E)) splits into linear factors over Fp2 , and the Fp-
rational roots correspond to the Fp-rational ℓ-isogenous curves. However, having
the j-invariants of the two curves is not enough to pass Verify. Starting from
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E0/Fp, once an ℓ-isogenous elliptic curve E1/Fp has been computed via the
evaluation of roots in classical modular polynomials, an attacker has to guess the
image of the 2b-torsion under the Fp-rational isogeny. For instance, the attacker
could proceed in the following way.

Let ⟨P0, Q0⟩ = E0[2
b] be a basis of eigenvectors for the p-Frobenious en-

domorphism π. Since the eigenspaces are preserved by horizontal isogenies ψ,
we know ⟨ψ(P0)⟩ and ⟨ψ(Q0)⟩. Since e2b(ψ(P0), ψ(Q0)) = e2b(P0, Q0)

degψ, each
guess of ψ(P0) corresponds to a unique guess of ψ(Q0). That is, given a P1 ∈
⟨ψ(P0)⟩ and Q1 ∈ ⟨ψ(Q0)⟩, for each sp ∈ [0, 2b − 1], an attacker will compute
sQ ∈ [0, 2b − 1] such that e2b(P1, Q1)

sP sQ = e2b(P0, Q0)
degψ. Then, for each

([sP ]P1, [sQ]Q1), he can check that it is the correct image of the (P0, Q0) under
ψ running Verify. Since b > λ, the probability of guessing the right image is neg-
ligible in λ. We highlight that even if (P0, Q0) is not the basis provided as input,
an attacker can perform computations with a basis of eigenvectors and then re-
construct the image of the provided basis via a discrete logarithm computation
in Z/2bZ, which is extremely efficient.

Remark 3. We stress that it is not clear exactly how well the parallelization
of [46] performs in practice compared to the work we let our evaluator do. It may
thus seem overly cautious to assume that an attacker has early access to j(E1).
However, from pushing points through an isogeny, one can easily reconstruct
the codomain curve as well (see for example [5]), which makes the evaluation of
points a problem that is at least as hard as finding the codomain curve. Since
the image points are needed to make use of Kani’s criterion anyway, we thus
see no argument to not put j(E1) as part of the proof, since other algorithms
to compute it may be faster by a small constant factor. Additionally, Elkies
algorithm to reconstruct the ℓ-isogeny from just j(E0) and j(E1) involves a
recurrence relation of length O(ℓ2) (see [29]), which will be outperformed by our
approach outlined in Section 6.

4 Correctness

The correctness of the scheme depends on the following result.

Theorem 2. Let φN1
: E0 → E1 and φN2

: E0 → E2 be two isogenies of coprime
degrees deg(φN1) = N1 and deg(φN2) = N2, and let ⟨P,Q⟩ be a basis of E0[N1+
N2]. Then, the subgroup

⟨([N2]φN1(P ), [N1]φN2(P )), ([N2]φN1(Q), [N1]φN2(Q))⟩ ⊂ E1 × E2,

is the kernel of an (N1+N2, N1+N2)-polarized isogeny Φ having product codomain
endowed with the product polarization. Moreover, the isogeny Φ has matrix form(

φ̂N1
−φ̂N2

fN2
f̂N1

)
,

where the fNi ’s are Ni-isogenies such that φN2 ◦ φ̂N1 = fN1 ◦ fN2 .
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Proof. This result is a consequence of Kani’s criterion [34]. We refer to [37,
Theorem 1] for a description of how the result is derived from [34]. ⊓⊔

In Verify, one has to check that the subgroups ⟨([d]P1, [cℓ]P0), ([d]Q1, [cℓ]Q0)⟩
and ⟨([d]P ′

1, [cℓ]P0), ([d]Q
′
1, [cℓ]Q0)⟩ define two kernels of (2b, 2b)-isogenies having

product codomains passing through E0 and that the projections onto E1 and
E′

1 contain the scalar multiplication [c]. Since the two checks are independent,
let us focus uniquely on K := ⟨([d]P1, [cℓ]P0), ([d]Q1, [cℓ]Q0)⟩.

Recall that P1 = ψ(P0), Q1 = ψ(Q0), where ψ : E0 → E1 is a horizontal
ℓ-isogeny. Applying Theorem 2 with φN1 = [c] ◦ ψ and φN2 = [d], we have that
the (2b, 2b)-isogeny Φ having kernel K has matrix form(

[c] ◦ ψ̂ −[d]
[d] [c] ◦ ψ

)
: E1 × E0 → E0 × E1.

The isogeny Φ clearly passes through E0. Moreover, it is easy to check that,
for all S ∈ E1[c], Φ(S, 0) = (0, [d]S), which means that the projection onto
E1 contains the scalar multiplication [c]. Similarly, for S ∈ E0[d], Φ(0, S) =
(0, [c]ψ(S)). Evaluating a (2b, 2b)-isogeny from a given kernel can be done in
O(b log b) Fp-operations using the optimal strategies described in [2].

5 Soundness

In this section, we prove soundness assuming that d2 > ℓ, where d and ℓ are as in
the verification key vk in Section 3. In practice, the condition d2 > ℓ is trivially
satisfied.

Theorem 3. Let d2 > ℓ. The weak VDF described in Section 3 is sound.

Proof. Let ek, vk be the evaluation and verification keys, respectively, obtained
via Setup(λ, t) on input some parameters λ and t. Given j ∈ Eℓℓp, let (z, π)
be any data such that Verify(j, z, π, vk) = True. We will prove that z has been
honestly generated with overwhelming probability.

In what follows, we abide to notation used in Section 3. The first four lines in
Verify ensure that any adversary cannot swap the points on E1 and E′

1 around
and produce other valid outputs. Also, note that Verify performs two independent
checks on the triples (E1, P1, Q1) and (E′

1, P
′
1, Q

′
1). Hence, we will uniquely focus

on the triple (E1, P1, Q1); the other triple is analogous. Observe that the ker-
nel ⟨([d]P1, [cℓ]P0), ([d]Q1, [cℓ]Q0)⟩ defines a (2b, 2b)-polarized isogeny Φ having
product codomain E0×F (up to polarized isomorphisms), for some supersingular
elliptic curve F . In particular, we can write Φ in its matrix form(

α1,1 α1,2

α2,1 α2,2

)
: E1 × E0 → E0 × F,

where the αi,j are isogenies making the matrix meaningful.
Since Φ◦Φ̂ = [2b], deg(α1,1)+deg(α1,2) = 2b. Additionally, α1,1 = [c]◦µ1 and

α1,2 = [d] ◦ µ2, which implies c2 deg(µ1) + d2 deg(µ2) = 2b. Since c2ℓ+ d2 = 2b,



Towards a Quantum-resistant Weak Verifiable Delay Function 13

we have deg(µ1) = ℓ (mod d2). As a consequence of d2 > ℓ, we have that
deg(µ1) = ℓ and deg(µ2) = 1, that is α1,1 = [c] ◦ µ1 and α1,2 = [d] up to
isomorphism.

In particular, the isogeny µ̂1 : E0 → E1 is an ℓ-isogeny between supersingular
elliptic curves defined over Fp. The codomains of nonhorizontal ℓ-isogenies are
defined over Fp2 \ Fp with overwhelming probability. To be more precise, the
amount of supersingular elliptic curves over Fp is O(√p), while the number
of those over Fp2 is O(p). Therefore, the probability of E1 being defined over
Fp when µ̂1 does not correspond to a horizontal isogeny is O(1/√p), which is
negligible in λ. ⊓⊔

6 Sequentiality

The sequentiality of the weak VDF relies on the following assumption.

Assumption 1 Let ℓ be a prime and p a λ log(ℓ)3/2-bit prime, where λ is a
security parameter. Let E0/Fp be a supersingular elliptic curve with unknown
endomorphism ring such that the minimal extension for an ℓ-torsion point of
E0 to be defined over is Fpk , where k = (ℓ − 1)/2 is a prime. Then, the best
technique to evaluate a horizontal ℓ-isogeny with domain E0 requires O(ℓ log ℓ)
Fp-operations, even with access to a quantum computer and arithmetic circuits
of breadth O(poly(ℓ)).

Accurately defining wall-clock time in formal terms is a difficult task. For
a thorough formal definition of a computational model of real-world time, we
refer to [50, Section 3.1]. In what follows, we will argue why Assumption 1 is
meaningful providing a strategy that achieves that asymptotic complexity – con-
cretely, we will prove that our weak VDF is (O(poly(ℓ)),O(ℓ log ℓ))−sequential.
Throughout this section, we will assume (time) complexity to be the number of
arithmetic operations in Fp, unless stated otherwise.

First note that there are many ways to compute an isogeny in this setting.
In Subsection 3.2, we argued that this cannot be done efficiently by means of an
equivalent smooth-norm ideal in the class group due to the size of p. Given that
we work with a supersingular elliptic curve with unknown endomorphism ring, we
can also not use a maximal order in End(E0) as discussed in Subsection 3.3. Using
classical modular polynomials is an option, but regardless of their efficiency, they
only provide the codomain curve and do not allow us to evaluate the isogeny on
points (see Subsection 3.4).

To the best of our knowledge, all other known ways of evaluating such iso-
genies require using its kernel polynomial in some way. This polynomial can be
constructed from an ℓ-torsion kernel generator by means of Vélu-style formu-
lae, or it can be found as a factor from the ℓ-division polynomial. The latter
is a degree-(ℓ2 − 1)/2 polynomial which over Fp[x] factors into two irreducible
polynomials of degree (ℓ− 1)/2 and (ℓ− 1)/2 irreducible polynomials of degree
ℓ − 1. These two factors of degree (ℓ − 1)/2 correspond exactly to the kernel
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polynomials of the horizontal isogenies, so the correct factors are easy to dis-
tinguish. Note that the ℓ-division polynomial is of degree O(ℓ2) however, such
that it is infeasible to try to factor this in time O(ℓ log ℓ). For a more elaborate
argumentation of this statement, we refer to Appendix A. We will now discuss
how to compute this kernel polynomial from a kernel generator, starting with
the Fast Fourier Transform (FFT) for arithmetic in Fpk .

6.1 The Parallel FFT

Elements in Fpk in our setting can be represented as polynomials modulo an
irreducible polynomial of degree k = O(ℓ). Hence, multiplying two elements in
Fpk is equivalent to multiplying two polynomials of degree k − 1 over Fp. The
naive algorithm to multiply such polynomials requiresO(ℓ2) Fp-operations. How-
ever, it is possible to lower it down to O(ℓ log ℓ) via the Fast Fourier transform
(FFT) [18]. It is worth mentioning that this asymptotic complexity is theoretical
and could be difficult to reach in practical applications. In what follows, we will
uniquely discuss the best theoretical complexity ignoring engineering challenges.
For the sake of designing a VDF, we are only interested in the best case scenario
for our delay. In practice, given our choice of k, FFT may perform slightly worse.

One of the main advantages of FFT algorithms is that they can be paral-
lelized. For instance, in [22], Cui-xiang, Guo-qiang and Ming-he describe a par-
allel FFT algorithm. Assuming one has access to arithmetic circuits of breadth
m, this algorithm has complexity O((ℓ/m) log ℓ) with a communication cost of
O(logm). In particular, for ℓ = m, the complexity becomes O(log ℓ) and the
communication cost becomes O(log ℓ). FFT can also be used for multiplying
two elements in Fp, but this speed-up is only asymptotic. In practice, even for p
thousands of bits, the FFT does not outperform plain Montgomery multiplica-
tion. We refer the reader to [18] for further background on FFT.

Other algorithms for multiplying polynomials exist, such as the Toom-Cook
multiplication [48,21]. To the best of our knowledge, none of these can be par-
allelized faster than the FFT. While addition of two polynomials can be done
componentwise on all the coefficients with enough separate processors, we do
not see how this can happen for multiplication.

6.2 Computing a Point of Order ℓ

An ℓ-torsion point is generated by sampling a random point and multiplying
it by its cofactor; i.e. for each P ∈ E0(Fpk) and c = #E(Fpk)/ℓ we have that
[c]P ∈ E0[ℓ]. In practice, we can restrict ourselves to computing x([c]P ) since
x-only arithmetic can be used to compute isogenies (see for instance [16]). This
may require an isomorphism from E0/Fp to a curve in Montgomery form, but
this comes at negligible cost. Writing c as

∑k−1
i=0 aip

i, we can use the following
strategy to obtain [c]P .

First, for all i ∈ {0, . . . , k−1}, we compute and store [ai]P . This can be done
in parallel in O(log p) Fpk -operations, which corresponds to O((ℓ/m) log p log ℓ)



Towards a Quantum-resistant Weak Verifiable Delay Function 15

Fp-operations using arithmetic circuits of breadth m for each of the arithmetic
circuits of breadth k = O(ℓ) we are using to compute the [ai]P ’s. This implies
we should use arithmetic circuits of breadth mk just for this step.

We observe that

[c]P = [a0]P + [p]([a1]P + [p]([a2]P + . . .+ [p]([ak−2]P + [p][ak−1]P ))).

Since E is supersingular, π2 = [−p]. Hence, to compute [p]Q for any Q ∈ E,
we need to apply the p-Frobenius twice. Each Frobenius costsO(ℓ) Fp-operations,
which can be reduced to O(1) Fp-multiplications using arithmetic circuits of
breadth k. Summing two points P1, P2 ∈ E(Fpk) requires O(1) Fpk -operations,
which amounts to O(log ℓ) Fp-operations using parallel FFT with arithmetic
circuits of breadth k. Therefore, each sum of the form [ai−1]P + [p][ai]Q can be
done in O(log ℓ) Fp-operations using parallel FFT.

To compute [c]P , we need to perform O(ℓ) operations of the form [ai−1]P +
[p][ai]Q, which amounts toO(ℓ log ℓ) Fp-operations. Therefore, having arithmetic
circuits of breadth mk, the asymptotic cost of computing a point of order ℓ is

O(max{ℓ log ℓ, (ℓ/m) log p log ℓ})

Fp-operations. Therefore, taking m ≈ log p, computing a point of order ℓ takes
O(ℓ log ℓ) Fp-operations with arithmetic circuits of breadth 2k log p.

Remark 4. Note that in our weak VDF protocol one needs to sample two ℓ-
torsion points corresponding to two horizontal ℓ-isogenies; one is on the curve
itself and one is on the twist. In protocols such as CSIDH, this is typically done
by using x-only arithmetic as described here, followed by a square check for the
y-coordinate to see on which curve the point is. Given that a square check is
much more expensive over Fpk than over Fp for large k, one can instead opt to
use the Elligator point sampling method (see for example [38,3]). Indeed, as our
protocol does not need to differentiate between the ℓ-torsion point on the curve
and the one on the twist, we can simply compute both simultaneously.

6.3 Computing the Kernel Polynomial

There are several ways of constructing the kernel polynomial given a kernel
generator. For instance, in [5], they provide an asymptotic speed-up over the
classical Vélu formulae by a square-root factor. In [30], a new algorithm to
compute the kernel polynomials from irrational points is also provided. While
these works may be of interest, they all assume the knowledge of the x-coordinate
of an ℓ-torsion point, which we argued has already complexity O(ℓ log ℓ). So it
suffices for us to provide a way of computing the kernel polynomial in this time
complexity.

Let P ∈ E(Fpℓ−1) be a point of order ℓ such that x(P ) ∈ Fpk . Our goal is
to compute the isogeny having kernel ⟨P ⟩ only utilising the x-coordinate of P .
We will show a strategy to do so having arithmetic circuits of breadth O(ℓ). To
obtain the set P := {x([s]P ) | s = 1, . . . , k}, using arithmetic circuits of breadth
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k = (ℓ − 1)/2, each of the arithmetic circuits of breadth k will compute one of
the elements in P at the same time. The most demanding task is to compute
x([k]P ), which requires O(log ℓ) Fpk -operations. Equivalently, O(ℓ/m′(log ℓ)2)
Fp-operations employing parallel FFT with arithmetic circuits of breadth m′. As
a result, computing P takes O(ℓ log ℓ) Fp-operations using arithmetic circuits of
breadth m′k.

The kernel polynomial is given precisely by

P (x) =
∏
xi∈P

(x− xi).

This product can be computed pairwise in a (binary) tree of height log(k), where
each step requires some multiplications over Fpk . More precisely, using arithmetic
circuits of breadth m′, we can use parallel FFT such that it takes O((ℓ/m′) log ℓ)
Fp-operations. The computation of P (x) will thus take O((ℓ/m′)(log ℓ)2) Fp-
operations. Taking arithmetic circuits of breadth m′ = ⌈log ℓ⌉, we then have that
computing this kernel polynomial requires at mostO(ℓ log ℓ) Fp-operations. From
this degree-k kernel polynomial P (x) ∈ Fp[x], one can evaluate the corresponding
isogeny in time O(ℓ) with well-known formulae such as those in [35].

7 Conclusion

In this paper, we have introduced a novel weak Verifiable Delay Function (VDF)
that is resistant to quantum attacks. Our construction is based on isogenies,
which are mappings between elliptic curves, and leverages the strengths of el-
liptic curves and elliptic products to enable efficient verification of slow one-
dimensional isogenies. The slowness of these isogenies arises from the fact that
their kernel generators are defined over large extension fields. This feature con-
tributes to their resistance against quantum attacks. Our weak VDF incorporates
two horizontal delay-generating isogenies, and their computation is verified in
dimension two through the reconstruction of these isogenies.

We implemented the weak VDF described in Section 3 in SageMath. The
source code is freely available at https://github.com/pq-vdf-isogeny/pq-
vdf-isogeny. The purpose of this implementation is to demonstrate the correct-
ness of the algorithm. It is important to note that this implementation should
be considered as a proof-of-concept (the size of p in the default parameters is
256 bits and does not meet the security requirements), and there is room for
optimizing several subroutines. Notably, the parallel algorithms outlined in Sub-
sections 6.3 and 6.2 have not been included in the provided source code.

Additionally, to enhance performance, lower-level languages such as C and
leveraging platform-specific instructions such as AVX could be utilized. By adopt-
ing these techniques, it is possible to significantly reduce the running time of the
implementation. Ideally, when evaluating isogeny-based delay functions, the uti-
lization of specialized hardware or Field-Programmable Gate Arrays (FPGAs)
would be beneficial.

https://github.com/pq-vdf-isogeny/pq-vdf-isogeny
https://github.com/pq-vdf-isogeny/pq-vdf-isogeny
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Throughout the paper, we have identified and discussed several open prob-
lems in this area. One such problem is the requirement for curves with an un-
known endomorphism ring as input without the ability to rely on a trusted setup.
This issue has been a persistent challenge in various isogeny-based protocols and
continues to be an active area of research.
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A Factoring the ℓ-division Polynomial

The ℓ-division polynomial in our setting is a degree-(ℓ2 − 1)/2 polynomial in
Fp[x]. The fastest way to construct this polynomial is by a recurrence relationship
taking O(ℓ2 log ℓ) multiplications. Remark that the ℓ-division polynomial can be
precomputed from a specific form of elliptic curves (e.g. based on a Montgomery
coefficient A). Both the degree of the ℓ-division polynomial as well as the degree
ofA in this precomputation areO(ℓ2). Hence, using arithmetic circuits of breadth
m = O(ℓ4), one can evaluate the expression in A by means of square-and-
multiply in time O(log ℓ).

The ℓ-division polynomial factors in ℓ+1 factors of degree (ℓ−1)/2 in Fp2 [x],
where each factor determines a kernel polynomial of an ℓ-isogeny. In [49], von
zur Gathen and Panario survey some algorithms to factor polynomials over fi-
nite field. Even though in our case we could use the more efficient equal-degree
factorization algorithms, their complexity is not competitive with the strategy
we described in Section 6. However, it is worth noting that this survey does not
consider parallel versions of these algorithms. In [32], Gathen describes a paral-
lel version of the Cantor-Zassenhaus’s algorithm [13]. Adapting the complexity
in [32, Theorem 4.1] to our setting, factoring the ℓ-division over Fp2 requires
O(log2 ℓ log p) Fp-operations utilising arithmetic circuits of breadthO(poly(ℓ2)).

Despite being polynomial in ℓ2, and in turn allowed by the definition of weak
VDF, the exponent of poly(ℓ2) is likely to be huge. For instance, one of the
steps of Cantor-Zassenhaus parallel algorithm relies on the computation of the
quotient and reminder of two polynomials. As explained in [12, Remark 2], this
step itself reaches complexity O(log2 n) when O(n3.5) parallel processors are
employed, where n is the degree of the two polynomials.6 This essential step is
required for poly(n) parallel steps, further increasing the breadth of arithmetic
circuits required by Cantor-Zassenhaus parallel algorithm. A brief discussion on
the exponent of the polynomial describing the breadth of arithmetic circuits
required by this algorithm is contained in [39], where the authors estimate the
exponent to be 13. Thus, one would need arithmetic circuits of breadth O(ℓ26) to
apply this algorithm in our case. For instance, if the delay parameter t provided
as input in Setup is as small as 25, one already needs arithmetic circuits of
breadth ∼ 2130, which is an unrealistic requirement. On top of this analysis,
we shall also mention that the algorithm is theoretical and does not take into
account communication costs. A real-world implementation of this algorithm
would be a major breakthrough on its own.

Finally, to the best of our knowledge, no known quantum algorithm can
help us factor polynomials over finite fields faster. Doliskani gives a quantum
algorithm that can factor a degree-n polynomial over Fq in O(n1+o(1) log2+o(1) q)
bit operations [27]. In our case however, this reduces to O(ℓ2+o(1) log2+o(1) p) for
factoring the ℓ-division polynomial, and hence provides no speed-up.

6 It is possible to have complexity O(logn) if arithmetic circuits of breadth O(n15)
are used.
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