
STAMP-Single Trace Attack on M-LWE
Pointwise Multiplication in Kyber

Bolin Yang1, Prasanna Ravi2, Fan Zhang1, Ao Shen1 and Shivam Bhasin2

1 Zhejiang University, Hangzhou, China,
2 Temasek Laboratories, Nanyang Technological University, Singapore

yangbolin@zju.edu.cn prasanna.ravi@ntu.edu.sg fanzhang@zju.edu.cn

Abstract.
In this work, we propose a novel single-trace key recovery attack targeting side-channel
leakage from the key-generation and encryption procedure of Kyber KEM. Our attack
exploits the inherent nature of the Module-Learning With Errors (Module-LWE)
problem used in Kyber KEM. We demonstrate that the inherent reliance of Kyber
KEM on the Module-LWE problem results in higher number of repeated and secret
key-related computations, referred to as STAMPs appearing on a single side channel
trace, compared to the Ring-LWE problem of similar security level. We exploit leakage
from the pointwise multiplication operation and take advantage of the properties
of the Module-LWE instance to enable a potential single trace key recovery attack.
We validated the efficacy of our attack on both simulated and real traces, and we
performed experiments on both the reference and assembly optimized implementation
of Kyber KEM, taken from the pqm4 library, a well-known benchmarking and testing
framework for PQC schemes on the ARM Cortex-M4 microcontroller. We also analyze
the applicability of our attack on countermeasures against traditional SCA such as
masking and shuffling. We believe our work motivates more research towards SCA
resistant implementation of key-generation and encryption procedure for Kyber KEM.
Keywords: Kyber · Side-Channel Attack · Single-Trace Attack · Post Quantum
Cryptography

1 Introduction
The NIST Post-Quantum Cryptography (PQC) standardization process for post-quantum
cryptography completed its third round in July 2022, and announced the list of algorithms
for Public Key Encryptoin (PKE), Key Encapsulation Mechanisms (KEMs) and Digital
Signatures schemes (DSS) that are intended to be standardized [NIS23] in August 2023.
Among the several categories of PQC schemes that were considered in the NIST PQC
standardization, schemes from lattice-based cryptography dominated the field owing to
its fine balance of security and efficiency guarantees. In particular, NIST selected two
schemes - Kyber KEM [SAB+22] and Dilithium DSS [LDK+22] which are based on the
well-known Module Learning With Error (M-LWE) problem.

The standardization of Kyber and Dilithium in particular, will ensure that they will
be implemented on a wide-range of computational platforms, starting from the low-
end microcontrollers, FPGAs all the way until general purpose PCs and workstations.
More importantly, we will also witness their rapid adoption in embedded devices, which
naturally makes them susceptible to Side-Channel Attacks (SCA). Resistance of PQC
implementations against SCA was also an important point of consideration during the
NIST PQC process [NIS16], and this resulted in a large body of work that studied the
susceptibility of PQC implementations on embedded devices, to SCA.

mailto:yangbolin@zju.edu.cn
mailto:prasanna.ravi@ntu.edu.sg
mailto:fanzhang@zju.edu.cn

2 STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber

In particular, Kyber KEM has been subjected to a wide range of SCA, with most
attacks targeting leakage from the decapsulation procedure, to recover its long term
secret key. Such key recovery attacks can be divided into two categories - (1) Single-trace
attacks [PPM17] [PP19] [HHP+21] [LZH+22] and (2) Multi-trace attacks [MWK+22]
[YWY+23]. Multi-trace attacks targeting the decapsulation procedure are applicable
when Kyber is used in a static-key setting. Multi-trace attacks are easier to mount than
single-trace attacks since they work by recovering incremental information about the secret
key over multiple executions. On the other hand, single-trace attacks attempt to recover
the secret key of the size of a few thousand bits, in a single trace, by combining as much
information as possible from a single trace. Moreover, single-trace attacks are much more
susceptible to noise and jitter in the side-channel measurements compared to multi-trace
attacks.

Thus, it is natural for a designer to consider using Kyber in an ephemeral key setting,
where the secret key is refreshed for every key exchange. This requires to execute both
the key-generation procedure and decapsulation procedure on the target device, for every
key exchange. Thus, using Kyber KEM in an ephemeral setting can serve as an attractive
alternative for a designer, when SCA is considered to be a realistic threat, given that
generic side-channel protection, such as masking, incurs an almost 2-3x overhead in runtime
for Kyber KEM [BGR+21] [HKL+22a].

Using Kyber KEM in an ephemeral setting only makes it susceptible to single-trace
attacks, since the secret key is only manipulated for a single execution. However, the
designer also needs to consider protecting the key-generation procedure against single-trace
attacks, as it needs to be executed for every key-exchange on the target device. In this
respect, the Number Theoretic Transform (NTT) used for polynomial multiplication within
Kyber KEM has been targeted by several single trace attacks like [PPM17] [PP19]. These
attacks are also applicable to the key-generation procedure, as the NTT is also applied over
the secret key polynomial to generate the public key. Thus, it is possible for a designer to
contemplate protecting only the NTT operation using dedicated shuffling and masking
countermeasures against single trace attacks [RPBC20]. This begets the question if "solely
protecting the NTT operation in the key-generation procedure suffices to provide concrete
protection against single-trace attacks. Are there any other vulnerabilities specifically in
the key-generation procedure that make them susceptible to single-trace attacks?"

In this work, we answer this question positively by assessing the possibility of single-
trace attacks, targeting the pointwise multiplication operation between a polynomial matrix
and polynomial vector. We demonstrate that the inherent reliance of Kyber KEM on the
Module-LWE problem results in a higher number of repeated computations with the secret
key, compared to the Ring-LWE problem of the similar security level. Those repeated
and secret key-related computations lead to k times leakages within a single side channel
trace with different time-stamp, which are called as STAMPs in this work. We exploit
leakage from the pointwise multiplication operation in the key-generation (encryption)
procedure, and take advantage of the properties of the Module-LWE instance to enable
potential single trace key (message) recovery attacks. Thus, our work demonstrates an
additional side-channel vulnerability in the key-generation and encryption procedure of
Kyber KEM which should also be protected against single-trace attacks, along with the
NTT operation. Therefore, we believe our work motivates more research towards SCA
resistant implementation of key-generation and encryption procedure for Kyber KEM. The
contributions of our work are manifold:

Contribution
1. We propose a novel single-trace attack targeting the pointwise multiplication opera-

tion within the key-generation and encryption procedure of Kyber KEM. The use of
Module-LWE problem for Kyber KEM ensures that the secret key is manipulated k

Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen and Shivam Bhasin 3

times during the pointwise multiplication operation where k is the dimension of the
module. While the computation is performed in single coefficients and involve very
few operations, we show that there is still enough leakage to perform single trace
attacks.

2. Our work can be divided into two phases. In the first phase, we construct HW
templates exploiting the STAMP behaviour, showing that the attacker can construct
improved templates due to repeated leakage of the secret key. We validate the
efficiency of improved template construction in both the reference and optimized im-
plementations of Kyber KEM from the well known open-source pqm4 library. For the
second and final phase of our attack, we propose a novel key enumeration algorithm,
that is capable of exploiting available leakage from multiple intermediate variables
for practical key recovery. Our approach is simpler than the Belief Propagation
approach, traditionally used for single trace attacks on the polynomial multiplication
operation.

3. The experimental validation of our attack reveals practical key recovery attacks,
particularly on higher parameter sets of Kyber KEM, owing to higher number of
STAMPs for higher security levels. Our attack on the reference implementation of
Kyber1024 results in perfect key recovery and message recovery, while our attack on
the optimized implementation yields a very small brute force complexity of 25 and 0
for key recovery and message recovery respectively. We also report practical attacks
for the other parameter sets of Kyber KEM, and our experiements clearly indicate
higher success rate for higher parameter sets of Kyber KEM.

4. We also analyze the applicability of our attack to masking and shuffling counter-
measures. We show that generalized masking can not be used to defend against our
attack but only increase the offline searching space. Like for all single-trace attacks,
shuffling countermeasure provides concrete protection against our attack.

5. Our work demonstrates an additional side-channel vulnerability in the key-generation
and encryption procedure of Kyber KEM, which should also be protected against
single-trace attacks, along with the NTT operation. Therefore, we believe our work
motivates more research towards SCA resistant implementation of key-generation
procedure for Kyber KEM.

Organization of the Paper
In Section. 2, the notations used in this paper, the introduction of LWE, Kyber and prior
works are provided. In Section. 3, we provide a concise overview of the two stages involved
in the proposed attack. In Section. 4, we demonstrate the first phase of our attack for
evaluating the side channel leakages from STAMPs. In Section. 5, we provide the novel
Key enumeration method as our second phase to recover the secret key. In Section. 6, we
discuss the applicability of our attack to implementations protected with countermeasures
such as masking and shuffling. Conclusion and future works are listed in Section. 7.

2 Preliminaries
2.1 Notation
In this paper, we denote the polynomial ring Zq[x]/φ(x) as Rq, where φ(x) = xn + 1. The
variables and functions are written in italic style. A polynomial in Rq is denoted with
regular letters as a ∈ Rq, and the ith coefficient of this polynomial can be denoted as a[i].
A vector of polynomials in Rq is represented by lowercase bold letters (i.e.) a ∈ Rk

q . A

4 STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber

matrix of polynomials in Rq is denoted by italicizes bold uppercase letters as A ∈ Rk×k
q ,

with each polynomial in the ith row and jth column of the matrix denoted as Ai,j . The
expression A ◦ s represents the pointwise multiplication of a polynomial with a polynomial
vector.

2.2 M-LWE Problem
Majority of the Lattice-based schemes including the NIST PQC Standard Kyber KEM
is based on variants of the Learning With Error (LWE) problem. In a standard LWE
problem, a matrix A is sampled uniformly at random in Zm×n

q and the secret s ∈ Zn
q and

error e ∈ Zm
q are sampled from a narrow Gaussian distribution respectively. Subsequently,

a vector b ∈ Zm
q is computed as b = As + e (mod q). The search LWE problem requires

the attacker to recover s from the LWE instance (A, b). However, it should be noted that
performing operations on matrices require significant memory resources due to security
requirements in large dimensions.

Structured variants of the LWE problem such as Ring LWE (R-LWE) and Module LWE
(M-LWE) problem were proposed to enhance the performance of LWE based cryptographic
schemes. In structured LWE problems, the fundamental element is the polynomial ring
as Rq = Zq[x]/φ(x). We focus on the M-LWE problem as Kyber is based on the M-LWE
problem. In the M-LWE problem, s, e are polynomial vectors sampled from Rk

q with small
coefficients, where k denotes the number of polynomials in a single vector. The polynomial
matrix A is uniformly sampled from Rk×k

q . The security level of the M-LWE problem can
be modified simply by changing value of k, while retaining the same underlying polynomial
arithmetic operations performed over Rq. While the theoretical security of the M-LWE
problem increases with increasing k, our research demonstrates that larger values for k
may leak additional side channel information and lead to insecure implementations.

2.3 Kyber
Kyber is an IND-CCA2 secure key encapsulation mechanism (KEM), based on the M-LWE
problem. In its core, it contains an IND-CPA-secure public key encryption (PKE) scheme
that can encrypt messages of a fixed length of n = 256 bits. It employs the well-known
Fujisaki-Okamoto (FO) transform, to convert the IND-CPA secure Kyber PKE scheme
into an IND-CCA secure KEM, that is used to establish a shared session key between two
parties. The polynomial ring underlying Kyber is Rk

q = Zq[x]/(xn + 1), with q = 3329 and
n = 256. Kyber has three security levels, Kyber-512 (NIST Level 1), Kyber-768 (NIST
Level 3) and Kyber-1024 (NIST Level 5), each associated with a parameter k = 2, 3, 4,
respectively. The simplified version of IND-CPA secure PKE scheme of Kyber is described
in Algorithm. 1. We do not describe IND-CCA secure Kyber KEM, as it is not the focus
of our attack.

In Algorithm. 1, the function Parse,XOF,CBD, and PRF functions are used to sample
random polynomials. The functions Encode and Decode are used to transform the rep-
resentation of variables in Rq or Rk

q into binary data (without any data loss). However,
the functions Compress (resp. Decompress) are used to lossily compress (decompress) a
given polynomial from a given modulus p to another modulus q, one coefficient at a time.
While we do not provide in-depth description of these functions, we refer the reader to the
specification document in [SAB+22].

2.3.1 Number Theoretic Transform(NTT)

This paper primarily focuses on the pointwise multiplication operation performed in the key
generation procedure and encryption procedure of IND-CPA secure Kyber PKE scheme.
The polynomial multiplication operation in Kyber KEM is carried out using the Number

Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen and Shivam Bhasin 5

Algorithm 1 Simplified Kyber.CPA.PKE
1: procedure CPAPKE.KeyGen

Input: None
Output: Public Key pk, Secret Key sk

2: (ρ, σ) = G(d) . randomly sampled d
3: Â = Parse(XOF(ρ))
4: (s, e) = CBD(PRF(σ))
5: ŝ = NTT(s), ê = NTT(e)
6: ŵ = Â ◦ ŝ
7: t̂ = ŵ + ê
8: (pk, sk) = Encode(t̂||ρ),Encode(ŝ)
9: end procedure

10:
11: procedure CPAPKE.Encrypt
Input: Public Key pk, Message m ∈ {0, 1}∗, Random Seed r ∈ {0, 1}∗
Output: Ciphertext ct
12: Â = Parse(XOF(ρ)) . ρ← pk
13: r, e1, e2 = CBD(PRF(r)),r̂ = NTT(r)
14: ŵ′ = Â ◦ r̂
15: ŵ′′ = t̂ ◦ r̂ . t̂← pk
16: u = NTT−1(ŵ′) + e1
17: v = NTT−1(ŵ′′) + e2 + Decompress(m)
18: ct = (c1||c2) = Encode(Compress(u, v))
19: end procedure
20:
21: procedure CPAPKE.Decrypt
Input: Secret key sk, Ciphertext ct
Output: Message m
22: (u, v)← Decode(ct)
23: û = NTT(u)
24: m = Compress(v − NTT−1(ŝ ◦ û))
25: end procedure

Theoretic Transform (NTT), which is an integer variant of the well-known Discrete Fourier
Transform (DFT) over a prime field. Within the key generation procedure, we target
leakage from the pointwise multiplication operation of Â ∈ Rk×k

q and ŝ ∈ Rk
q in the NTT

domain (Line 6 in CPAPKE.KeyGen). Within the encryption procedure, we target leakage
from the pointwise multiplication operation between Â ∈ Rk×k

q , t̂ ∈ Rk
q and r̂ ∈ Rk

q in
the NTT domain (Line 14 and 15 in CPAPKE.Encrypt), respectively. In the following, we
will cover background on the NTT operation. In Kyber, NTT of a polynomial f in Rq is
represented as:

NTT (f) = f̂ = (f̂0 + f̂1X, f̂2 + f̂3X, ..., ˆf254 + ˆf255X)

When multiplying polynomials f and g, both of them are converted into the NTT domain
as f̂ and ĝ respectively, and they are then pointwise multiplied as ĥ = f̂ ◦ ĝ in the following
manner:

ĥ2i + ĥ2i+1X = (f̂2i + f̂2i+1X)(ĝ2i + ĝ2i+1X)modX2 − ζ2br(i)+1

for i ∈ {0, (n/2−1)}. Consequently, the product of h = f ·g can be obtained by computing
the inverse NTT on ĥ.

6 STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber

2.4 Prior Work
Lattice-based schemes have been subjected to a wide-variety of side-channel attacks,
intended to perform message recovery and key recovery attacks. These attacks have
targeted several operations within the different procedures of Kyber KEM. Refer to
[RCDB23] for a detailed survey on the various SCA performed on Kyber KEM. The
polynomial multiplication operation has been the main target for several side-channel
attacks, and on a high level, these attacks can be split into two categories - (1) Multi-trace
attacks and (2) Single-trace attacks. We will now look into attacks targeting the polynomial
multiplication reported in literature.

2.4.1 Multi-Trace Attacks on Polynomial Multiplication

Multi-trace attacks are only applicable to the decapsulation procedure of Kyber KEM,
since the attacker can observe manipulation of the same secret key for multiple executions.
In this respect, Hamburg et al. [HHP+21] exploited leakage from the NTT operation in
a chosen-ciphertext setting, and showed that an attacker can craft invalid ciphertexts,
which amplifies leakage information about the secret key from the INTT operation in the
decryption procedure (Line 22 in CPAPKE.Decrypt procedure in Alg.1). They demonstrated
the possibility to perform full key recovery (in simulations) with only k ∈ [2, 4] traces. Apart
from the NTT operation, Mujdei et al. [MWK+22] proposed a Correlation Power Analysis
(CPA) targeting the pointwise multiplication operation between the NTT transformed
secret ŝ and the NTT transformed ciphertext component û (Line 23 in CPAPKE.Decrypt).
They were able to perform full key recovery in about 200 traces using their proposed CPA
approach. Recently, Yang et al. [YWY+23] also proposed a CPA style attack targeting the
pointwise multiplication operation in a chosen-ciphertext setting, requiring a few hundred
traces to perform full key recovery.

2.4.2 Single-Trace Attacks on Polynomial Multiplication

Kyber KEM received more attention from single trace attacks compared to multi-trace
attacks. One reason is that many sensitive variables are generated randomly and used only
once, which indicates that the attacker cannot obtain enough traces. This particularly
applies to the key-generation and encryption procedure, which are probabilistic in nature.
Single-trace attacks aim to exploit maximum available information corresponding to
multiple variables from a single side-channel trace, while multi-trace attacks exploit
leakage corresponding to a single variables over multiple traces.

In 2017, Primas et al. [PPM17] proposed the first single trace attack based on the Soft
Analytical Side-Channel Attack (SASCA) strategy, targeting the inverse NTT operation
in the decryption procedure to recover its input (i.e.) ŝ · û, whose knowledge can be
used to recover the secret key s (Line 23). They build templates using leakage from all
intermediate variables computed in the INTT operation, and then they build a factor
graph for the INTT operation in which the obtained leakage information is integrated,
and solved using the Belief Propagation (BP) algorithm to find the input to the INTT
operation. While this attack required 100 million traces to build the required templates for
the attack, the same authors in [PP19] subsequently improved the attack to only utilizing
a few hundred templates, and also an improved BP algorithm for key recovery. They also
expanded the attack surface to exploit leakage from the NTT operations on the secret
s in the key generation procedure (Line 5) and the ephemeral secret key r (Line 13) in
the encryption procedure. Recently, Li et al. [LZH+22] extended SASCA to Toom-Cook
multiplication in Saber. They utilized deep neural networks to enhance the template phase
and optimized the factor graph by merging tracks based on Bayes’ algorithm.

There have also been single trace attacks targeting other types of polynomial multi-
plication and in this respect, Aysu et al. [AAT+21] demonstrated a single trace attack

Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen and Shivam Bhasin 7

exploiting horizontal leakage from the school-book multiplication operation in FrodoKEM.
More recently, Bock et al. [BBB+23] proposed a template attack targeting the pointwise
multiplication operation from the decryption procedure for key recovery. However, their
attack requires either q = 3329 or q2 ≈ 11 million templates to perform full key recovery,
and utilization of such high number of templates for a single trace attack, questions the
applicability of their attack in a practical setting.

Those prior works are tabulated and categorized in Table. 1, and the target procedures
decryption, encryption and key generation are denoted as Dec, Enc, KeyGen respectively.

Table 1: Summary of Prior Works According to Attack Target and Number of Required
Traces

Target Function No.Traces
[PPM17] NTT (CPAPKE.Dec) 1
[PP19] NTT (CPAPKE.KeyGen & CPAPKE.Enc) 1

[HHP+21] NTT (CPAPKE.Dec) k
[LZH+22] Toom-Cook Based (CPAPKE.Dec) 1
[AAT+21] Matrix Multiplication (KeyExchange) 1

[MWK+22] [YWY+23] Pointwise Multiplication (CPAPKE.Dec) 20-200
[BBB+23] Pointwise Multiplication (CPAPKE.Dec) 1
Our work Pointwise Multiplication (CPAPKE.KeyGen & Enc) 1

2.5 Motivation
From Table. 1, we observe that there are several works targeting the NTT in the Decryption
or Encryption procedure with single trace, while leakage from the pointwise multiplication
operation has been exploited by multiple trace attacks. A natural question that arises
is whether there are any additional vulnerabilities from the pointwise multiplication
operation in the key generation or encryption procedure. So in this paper, we investigate
the susceptibility of key generation and encryption procedure to single-trace attacks.

In this work, we bridge this gap by demonstrating the feasibility of single-trace attacks
targeting the pointwise multiplication in the key generation and encryption procedure in
Kyber KEM. Due to the M-LWE structure of Kyber KEM, we observe that the secret key
is manipulated multiple times (i.e.) k times within a single execution of the key generation
procedure and encryption procedure. We demonstrate that an attacker can exploit this
inherent behaviour of the M-LWE problem, and exploit multiple repeated leakages of the
sensitive variables, to perform efficient key recovery attacks. As a result, we show that
Kyber at higher theoretical security levels with a higher value of k exhibits more leakage
compared to Kyber at lower theoretical security levels. Throughout this work, we refer to
these repeated key-dependent computations with different time-stamp, which are called as
STAMPs in this work.

3 Side-Channel Attack on STAMPs
In this work, we start by demonstrating the inherent behaviour of the M-LWE problem
that results in the existence of STAMPs (i.e.) repeated leakage of sensitive key-dependent
variables within the pointwise multiplication operation. Subsequently, we demonstrate
our novel attack methodology that can exploit the obtained leakage information from the
STAMPs, to perform key recovery and message recovery attacks. Refer to Algorithm 2 for
the pseudo-code of our proposed attack. Our attack works in two phases.

8 STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber

Phase 1: Building Side-Channel Templates for STAMPs: In the first phase of our
attack, we use the classical template matching technique to exploit repeated leakage of
the input variables of the pointwise polynomial multiplication operation. This enables us
to build templates with higher accuracy on the secret coefficient s, compared to templates
from a single operation. Moreover, we also exploit leakage from several other intermediate
variables within the pointwise multiplication, to maximize the leakage information available
for key recovery.

Phase 2: Key Enumeration: In the second phase of our attack, we employ a novel
key enumeration technique that combines the available leakage information from multiple
repeated operations in a simpler manner compared to the traditional BP algorithm, to
perform key recovery. We show that the success rate of our attack can be enhanced with
higher security levels of Kyber KEM, since the higher dimension of the M-LWE problem
results in more side-channel leakage and constraints of the secret key.

Adversary Model

The attacker targets the key-generation procedure of Kyber KEM to recover the secret
key sk, or targets the encryption procedure of Kyber KEM to recover the message m from
the ciphertext ct. We assume the following attacker capabilities:

• Physical access to DUT performing key-generation and encryption procedure for
power/EM measurements.

• Access to a clone device that runs the key-generation and encryption procedure of
Kyber KEM, and also obtain access to any intermediate variable within the target
procedure.

Algorithm 2 Simplified Description of Our Attack (STAMP)
Input: Side Channel Leakage l, Public Key Matrix A
Output: Secret Key s

1: Fl = Rank of probabilities for HW(s) ← Template attack on STAMPs(l) . Phase 1
2: ↪→ Template Matching on Collected Traces from Targeted Device
3: ↪→ Increasing the accuracy of Fl by leveraging leakage from STAMPs
4: Specific value of s← Key Enumeration(Fl,A) . Phase 2
5: ↪→ Use Factor Graph to search the Correct Value of s within Fl

6: ↪→ Decreasing the Searching Space by additional information (multiple A)

We first explain the first phase of our attack below, which involves building side-channel
templates for the STAMPs, followed by the second phase of our attack, in which we use our
novel key enumeration algorithm for practical key recovery and message recovery attacks.

4 Phase 1: Building Side-Channel Templates for STAMPs

4.1 Analyzing PointWise-Multiplication for Repeated Secret Leakage
In this work, we utilize Kyber-1024 (k = 4) as a representative parameter set of Kyber for
our analysis. Each row i of matrix A consists of k polynomials represented by Ai, and the
polynomial in row i and column j is denoted as Ai,j . The result of multiplication between
a polynomial matrix A ∈ Rk×k

q and a polynomial vector s ∈ Rk
q is indicated as p ∈ Rk

q .

Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen and Shivam Bhasin 9

This multiplication operation between the A and s is implemented in k steps using the
polyvec_basemul function as follows:

polyvec_basemul(A0, s) = A0,0 ◦ s0 +A0,1 ◦ s1 +A0,2 ◦ s2 +A0,3 ◦ s3 = p0 (1)
polyvec_basemul(A1, s) = A1,0 ◦ s0 +A1,1 ◦ s1 +A1,2 ◦ s2 +A1,3 ◦ s3 = p1 (2)
polyvec_basemul(A2, s) = A2,0 ◦ s0 +A2,1 ◦ s1 +A2,2 ◦ s2 +A2,3 ◦ s3 = p2 (3)
polyvec_basemul(A3, s) = A3,0 ◦ s0 +A3,1 ◦ s1 +A3,2 ◦ s2 +A3,3 ◦ s3 = p3 (4)

Due to the nature of the M-LWE problem, we observe that every polynomial of s
is involved in the computation k times. The coefficients of each polynomial of s are
loaded from memory k times during the pointwise polynomial multiplication operation
(highlighted in red). These four loading operations, which we refer to as STAMPs, can
be observed at independent time instances in a single execution. We can combine this
repeated leakage to reduce the effect of noise and improve the success rate of template
matching of the STAMPs.

Applicability of Analysis to Encryption Procedure: While the attacker can observe
leakage from STAMPs for k manipulations of the secret key in the key-generation procedure,
the same analysis can also be applied to the encryption procedure. In this respect, the
attacker can target the pointwise multiplication operations within the encryption procedure
to recover the ephemeral secret r ∈ Rk

q , which enables trivial recovery of the message
from the ciphertext. The attacker can observe leakage from two pointwise multiplication
operations that manipulate the NTT of the ephemeral secret r ∈ Rk

q : (1) ŵ′ = Â ◦ r̂ (Line
14 of CPAPKE.Encrypt procedure in Alg.1) and (2) ŵ′′ = t̂ ◦ r̂ (Line 15 of CPAPKE.Encrypt
procedure in Alg.1), where t̂ ∈ Rk

q . Compared to the key-generation procedure that leaks
through k pointwise multiplication operations, the attacker can observe leakage from
an additional pointwise multiplication operation. Taking advantage of this additional
information, this ensures that attacking the encryption procedure for message recovery for
k = k0, is equivalent to attacking the key-generation procedure for k = k0 + 1.

4.1.1 Analysing the Operation of BaseMul Function

Each of the pointwise multiplication operations between the single polynomials, is computed
using multiple applications of the BaseMul function, on pairs of coefficients of the input
polynomials. We now perform a detailed analysis of the BaseMul function. The BaseMul
function takes the following inputs: two coefficients together denoted as A[2] from A0,0
and two coefficients together denoted as s[2] from s0 that have the same index as A[2]
are given as input to the BaseMul function. It generates two coefficients together denoted
as r[2] (i.e.) r[0], r[1] of the output polynomial r. Within the BaseMul function, another
function called FqMul is used to compute the product of two coefficients and subsequently
compute the montgonmery reduction to obtain the final product. The pseudo-code of the
BaseMul function is shown in Algorithm. 3.

We will first start with the analysis of the reference implementation, after which we
will separately analyse the assembly optimized implementation in Section 4.2.2. A closer
observation of the BaseMul function reveals that, every secret coefficient (i.e.) s[0] and s[1]
is utilized by two FqMul functions (i.e.) s[0] is manipulated by FqMul functions in Lines 6
and 9, and s[1] is manipulated by FqMul functions in Lines 4 and 7 (highlighted in red in
Algorithm 3). Despite being contained within a single instance of the BaseMul function,
two distinct loading operations for s0 exist for two FqMul when compiled at the -O3
optimization level. In a single pointwise multiplication operation between Â ∈ Rk×k

q and
ŝ ∈ Rk

q , a single secret polynomial is involved in k polynomial multiplication operations
(BaseMul). However, in every BaseMul function, every secret coefficient is manipulated two

10 STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber

Algorithm 3 Pseudo Code of BaseMul and FqMul Function
1: procedure basemul(&r[2],&A[2],&s[2], zeta) . &A[2] represents address of two

coefficients from A
2: Input: First two coefficients of A0,0(A[2]), s0(s[2]) and a constant(zeta)
3: Output: The result of basemul function(r[2])
4: r[0]1 = FqMul(A[1], s[1]) . load s[1], store r[0]1
5: r[0]2 = FqMul(r[0]1, zeta) . store r[0]2
6: r[0]3 = r[0]2 + FqMul(A[0], s[0]) . load s[0], store r[0]3
7: r[1]1 = FqMul(A[0], s[1]) . load s[1], store r[1]
8: r[1]2+ = FqMul(A[1], s[0]) . load s[0], store r[1]
9: Return r[0], r[1]

10: end procedure
11: procedure FqMul(a, b)
12: m = montgomery_reduce(a ∗ b)
13: Return m
14: end procedure

times. Thus, in total, every secret coefficient is manipulated 2 ∗ k times. For Kyber1024, it
totals upto 8 times for a single pointwise polynomial multiplication operation. Thus, we
can build templates on these 8 loading operations for more accurate templates with lower
noise.

Apart from building templates for loading of the secret coefficients due to STAMPs,
we also observe storage of the final output of the BaseMul function r[0]3 (Line 6) and
r[1]2 (Line 8), which are highlighted in blue. Moreover, we can also observe storage of
the intermediate variables r[0]1 (Line 4), r[0]2 (Line 5) and r[1]1 (Line 7), which are also
dependent on the secret coefficients, that are highlighted in green. The CPA values of these
intermediate variables also exhibit a comparable level of significance as loading operations.
Thus, we can also build templates for all these intermediate and output variables of the
BaseMul function, to enhance the success rate for practical attacks. We remark that the
compiler could have optimized some of these repeated memory load and store operations
of the intermediate variables, but we observed that the compiler did not optimize them
out, and this enabled us to leverage the leakage of these intermediate variables.

4.1.2 Evaluating Impact of STAMPs on Simulated Leakage

We start by validating the presence of additional leakage due to STAMPs, using ELMO
[MOW17], which simulates leakage for an ARM Cortex-M0 processor. We generate noise-
free simulated traces for the BaseMul function from the reference implementation of Kyber
KEM, compiled based on the O3 optimization level.

In order to limit the number of templates, we choose to build templates on the Hamming
Weight (HW) of the data rather than its specific value. This is also because we only target
leakage from the loading and storing of the sensitive variables within the target operation,
rather than the whole computation.

We now analyze four BaseMul functions (k = 4) that manipulate the same secret
coefficients s[2] (corresponding to the first two coefficients of secret polynomial s0), but
different coefficients of A, corresponding to the first two coefficients of A0,0, A1,0, A2,0
and A3,0 respectively. The generated simulated trace for these four basemul operations
is shown in Figure 1, where each point on the trace corresponds to a single assembly
instruction. In this figure, each BaseMul function is framed in red. The upward peaks
represent the memory load operations while the downward peaks represent the memory
store operations.

Those simulation results preliminarily demonstrate existence of the leakage targets.

Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen and Shivam Bhasin 11

0 50 100 150 200 250 300

Time

-30

-20

-10

0

10

20

S
m

ul
at

ed
 V

al
ue

Simulated Trace

Basemul(A0[0],A0[1],s[0],s[1]) Basemul(A1[0],A1[1],s[0],s[1]) Basemul(A2[0],A2[1],s[0],s[1]) Basemul(A3[0],A3[1],s[0],s[1])

Figure 1: The Simulated Trace for Four Basemul Function

We then build templates on those simulated traces to verify the success rate of template
matching on the 2 ∗ k loading operations corresponding to the secret key coefficients. We
add Gaussian noise with an incremental standard deviation σ to imitate the real traces
and then build templates for the Hamming Weight of the secret coefficients in the NTT
domain (i.e.) for values between [0, 3329], using leakage from the memory load operation
of the secret coefficients.

Refer to Table 2 for the matching accuracy of our template attack, utilizing leakage
from different number of BaseMul operations, and different noise levels. The results
clearly demonstrate increased success rate for the HW templates, with increasing number
of BaseMul functions. These observations can also be reasoned from a more theoretical
perspective, wherein targeting on multiple points results in a more solid noise covariance
matrix, used for building templates, than that on a single point.

While we demonstrated construction of improved templates for the loading operation of
secret coefficients, the other intermediate variables r[0]1, r[0]2, r[1]1 (highlighted in green
in Algorithm.3) and the final results r[0]3 and r[1]2 of the BaseMul operation (highlighted
in blue in Algorithm.3) are only manipulated once, and thus the accuracy for storing these
variables corresponds to the result for a single BaseMul function in Table.2.

Table 2: Template Matching accuracy for k Loading Operations in Simulation

σ of Noise SR of 4 basemul SR of 3 basemul SR of 2 basemul SR of 1 basemul
0.1 100.00% 99.87% 98.49% 96.28%
0.2 99.26% 98.21% 95.13% 89.56%
0.3 96.33% 93.77% 89.64% 83.08%
0.4 92.64% 88.54% 85.18% 76.56%
0.5 88.51% 83.97% 80.41% 71.64%

4.2 Practical Side-Channel Leakage Experiments

In this section, we perform experimental validation of our proposed attack using real side-
channel leakage, obtained from the reference implementation and optimized implementation
of Kyber KEM.

12 STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber

Experiment Setup

We choose the ChipWhisperer CW308-STM32F3 based on the STM32F3 microcontroller
as our target board, and rely on power side-channel measurements for our experiments.
We perform experiments on the reference and assembly optimized implementations of
Kyber KEM (Kyber1024 parameter set) from the well known pqm4 [KPR+] open-source
library for benchmarking PQC on ARM Cortex-M4 microcontrollers. A +20dB amplifier
is used to amplify the power side-channel traces, and we use a KeySight DSOX3034T
oscilloscope to capture the power traces. We will first detail our experiments on the
reference implementation of Kyber KEM in section 4.2.1, followed by our analysis of the
assembly optimized implementation of Kyber KEM in section 4.2.2.

4.2.1 Leakage Analysis of Reference Implementation

Refer to Figure 2(a) for a sample trace corresponding to the target k BaseMul functions
corresponding to a single pair of secret coefficients s[0] and s[1].

real trace

0

0.5

1

0

0.5

1

0.5 1 1.5 2 2.5 3 3.5 4

104

0

0.5

1

Time

Correlation Value for Loading s[1]

Correlation Value for Storing r[0]
1

Correlation Value for Storing Intermediate Variables

(a)

(d)

(c)

(b)

r[0]
2

r[1]
1

r[0]
1

Figure 2: Correlation Location of Loading/Storing VS. Real Trace for Ref Implementation

Firstly, we observe that the repeating patterns of instructions in the power trace (gray)
are not as distinct as those in the simulated trace (Figure 1). However, we can utilize
Simple Power Analysis (SPA), to divide the trace into k = 4 (four) segments, highlighted
in red. Each segment enclosed by a red rectangle represents one instance of the BaseMul
function.

To locate the points corresponding to the different target variables, we utilize Correlation
Power Analysis on the template traces and choose those points with the highest correlation
value above a certain empirical threshold (parameter of the experimental setup). The
correlation plots for the different targeted variables within the BaseMul function is shown
in Figure 2. Firstly, Figure 2(b) indicates the correlation plot for loading of the secret
coefficient s[1], where we can clearly observe two load operations within a single BaseMul
function. Apart from leakage due to the memory load operations, we also observe leakage
corresponding to the computations. However, we observe that the correlation peaks
diminish in height with increasing number of BaseMul functions. Similarly, Fig.2(c) shows
the overlaid correlation plots of the intermediate variables r[0]1, r[0]2 and r[1]1, that are
stored in memory during the BaseMul computation. Fig.2(d) shows the correlation plot
for the final output r[0]3 of the BaseMul computation.

Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen and Shivam Bhasin 13

Accuracy of HW Template Matching

A higher dimension of the module k for parameter sets of Kyber with higher security, results
in more side-channel leakage for the secret coefficients, which has been verified through
simulations in Table 2. In the following, we validate the same using real side-channel
leakage experiments on the reference implementation of Kyber KEM compiled with the O3
optimization level. We then demonstrate the ability to recover the HW of the targeted
variables for different parameter sets (i.e.) k = 2 to k = 4. We use a set of 500 traces to
bulid templates for each HW and assess the matching accuracy on 1000 traces.

We use the notation HWGE = 0 to indicate the likelihood that the correct HW has
a Guessing Entropy (GE) of 0 (i.e.) first rank among all HW candidates. We use the
notation HWGE < 5 to indicate the likelihood that the correct HW has a Guessing entropy
of less than 5 (i.e.) among top five candidates. In this way, we consider the candidates
whose HW is ±2 of the correct HW. Table 3 shows HWGE = 0 and HWGE < 5 for different
parameter sets of Kyber KEM, for a single BaseMul function (indicated as k = 1) up to
four BaseMul functions for k = 4. We observe that HWGE = 0 starts from 84% for k = 1
and increases upto 96% for k = 4. However, HWGE < 5 is already at a high 98% for k = 1
and increases up to 99.92% for k = 4. Thus, we can clearly see that a large value of k
significantly increases the success rate of template matching. While this demonstrates the
improved leakage of the secret coefficients (due to multiple load instructions), the success
rate for the other target variables which are manipulated only once, corresponds to that
shown for k = 1.

Table 3: Template Matching Results for Real Traces

k 4 3 2 11

HWGE = 0 96.39% 95.41% 93.35% 83.93%
HWGE < 5 99.92% 99.02% 98.86% 98.39%

4.2.2 Leakage Analysis of Optimized Implementation

We also studied leakage from the assembly optimized implementation of Kyber KEM,
based on the implementations reported in [KPR+]2. Refer to Algorithm 4 which shows
the assembly code snippet corresponding to the target BaseMul function.

We observed that the reference implementation involves multiple loading operations of
the secret coefficients and they are manipulated one coefficient at a time. However, the
assembly optimized implementation takes advantage of the 32-bit registers, and loads two
secret coefficients (signed 16-bit integers) into a single register in a single load instruction
(Line 2 in Algorithm 4). Moreover, the output r[0]3 is computed using a single assembly
instruction (smulwt instruction in Line 5), instead of multiple FqMul functions as in the
reference implementation. Thus, we observe that a pair of secret coefficients are only
loaded once within the BaseMul function, and both coefficients are also loaded together.
This reduces the number of leaky operations by half (i.e.) k compared to 2 · k leakages for
the reference implementation. Refer to Figure 3(b) for the correlation plot corresponding
to the combined loading of the two secret coefficients s[0] and s[1]. It can be seen that
there exists a more pronounced pattern in the optimized implementation, compared to
the reference implementation. However, we can only observe the combined HW of the
two secret coefficients. We list the HWGE = 0 and HWGE < 5 of our template attack on
optimized implementation in Table 4. In this experiment, we use 900 traces for each HW
and test the success rate on 1000 traces.

1Only take points for one basemul to build templates and test the success rate.
2Our analysis and experiments were carried out on the implementation of Kyber-1024 corresponding to

the commit hash 1eeb74e4106a80e26a9452e4793acd6f191fe413 in the pqm4 library

14 STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber

Algorithm 4 Assembly optimized Basemul Function
1: procedure basemul_asm_cache_16_32
2: ldr \poly0, [\aptr], #4 . Load (s[1]||s[0])
3: ldr \poly1, [\bptr] . Load A[0]||A[1]
4: ldr \zeta, [\zetaptr], #4 . Load ζ
5: smulwt \tmp, \zeta, \poly0 . Compute s[1] · ζ
6: smlabb \tmp, \tmp, \q, \qa . Reduce s[1] · ζ
7: pkhbt \tmp, \poly0, \tmp . Pack (s[1] ∗ ζ)||s[0]
8: str \tmp, [\aprimeptr], #4 . Store (s[1] ∗ ζ)||s[0])
9: smultt \tmp2, \tmp, \poly1 . Compute s[1] · ζ ·A[1]

10: smlabb \tmp2, \poly0, \poly1, \tmp2 . Compute r[0] = s[1] · ζ ·A[1] + s[0] ·A[0]
11: smuadx \tmp, \poly0, \poly1 . Compute r[1] = s[1] ·A[0] + s[0] ·A[1]
12: str.w \tmp, [\rptr_tmp, #4] . Store r[1]
13: str \tmp2, [\rptr_tmp], #8 . Store r[0]
14: end procedure

0

0.5

1

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

104

0

0.5

1

s[1]* ||s[0] s[1]*

Store r[0] Store r[1]

(a)

(b)

(c)

(d)

Time

Real Trace

Correlation Value for Loading s[1]||s[0]

Correlation Value for Storing r[0] and r[1] for first basemul

Correlation Value for s[1]* and s[1]* ||s[0]

Figure 3: Correlation Location of Loading Secret Key VS. Real Trace for Optimized
Implementation

Table 4: Accuracy of Template Matching for pqm4 Traces

k 4 3 2 1
HWGE = 0 91.93% 87.26% 81.60% 75.45%
HWGE < 5 99.95% 99.04% 98.83% 97.48%

Apart from the combined HW leakage of secret key coefficients s[0] and s[1], we also
observe leakage of intermediate variable s[1] · ζ (Line 5) and storing (s[1] ∗ ζ)||s[0]) (Line
8) in the first BaseMul, where ζ is a public constant known to the attacker. The variable
(s[1] ∗ ζ)||s[0]) then will be loaded every time in later BaseMul. We observe a correlation of
≈ 0.85 for s[1] · ζ||s[0] in each BaseMul function, and also obtain a HWGE < 5 ≈ 99%, clearly
indicating leakage of this intermediate variable. Combing these two additional leakages,
we can get side channel information equivalent to targeting reference implementation but
without r[0]1, r[0]2 and r[1]1. Moreover, we also observe leakage due to storing the final
outputs of the BaseMul function r[0] and r[1] (i.e.) r[0]3 and r[1]2. Here we only plot r[0]
and r[1] for first BaseMul.

We have thus demonstrated the leakage from the different types of intermediate vari-

Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen and Shivam Bhasin 15

ables the attack can obtain for key recovery in the second phase of our attack. More
importantly, we observe more leakage of intermediate variables in the reference implemen-
tation, compared to the optimized implementation. However, in the following section, we
show that there is enough leakage available that allows for practical key recovery and
message recovery attacks on both of these implementations.

5 Phase 2: Key Enumeration
In this section, we explain our novel key enumeration approach, which can be used to
recover the value of the secret key coefficients, and in particular, increased number of
STAMPs, reduces the searching space of the secret key coefficients significantly.

Several works have attempted to utilize the BP algorithm in the second phase of
the attack to combine the leakage information to identify the key with the highest rank.
However, using BP algorithm comes with several practical problems, e.g., the convergence
of the BP algorithm, careful choice of parameters and the large memory usage. It is
known that imperfect factor graphs will make BP harder to converge. Considering the
aforementioned issues, we attempt to provide a more simpler key enumeration algorithm
to recover the secret coefficients.

5.1 Factor Graph for BaseMul Function
The factor Graph is the fundamental part of Belief Propagation and the detailed description
of BP can be found in [Mac03]. In a factor graph, the variables are represented by circles,
and we call those circles as variable nodes. The relationships among those variables are
represented by squares, named as factor nodes.

The factor graph we use for our attack is represented in Figure 4, and it shows the
relation between the different variables whose leakage is observed using side-channels.
Since one of the inputs to the pointwise multiplication operation Â is part of the public
key, we assume the attacker’s knowledge of the same. There are two kinds of factor nodes
in this figure, Fl indicates the side channel leakage of the connected variable. As stated
earlier, our templates are built on the HW of data, so Fl indicates the rank of possible HW
of the connected variable nodes. Every possible candidate for this coefficient with the same
HW will have the same initial probability. Our factor graph contains another factor node
FB , which is explained in Equation. 5, where i indicates the index of multiple STAMPs.

F i
B =

{
p(s[0], s[1], A[0], A[1], r[0], r[1]|Fl) r[0], r[1] = basemul(s[0], s[1], A[0], A[1])
0, else

(5)

s[0]s[1]Fl Fl

r[0]3
i

r[1]2
i

FlFl

FB
i

A[0]
i
A[1]

i

FB
i

A[0]
i
A[1]

i

r[0]1
i Fl

r[0]2
i Fl

r[1]1
iFl

(a) Factor Graph for one basemul

s[0]s[1]Fl Fl

r[0]3
1

r[1]2
1

r[0]3
2

r[1]2
2

r[0]3
3

r[1]2
3

FlFlFlFlFlFl

FB
1

A[0]
1
A[1]

1

FB
1

A[0]
1
A[1]

1

FB
2

A[0]
2
A[1]

2

FB
2

A[0]
2
A[1]

2

FB
3

A[0]
3
A[1]

3

FB
3

A[0]
3
A[1]

3

r[0]3
0r[1]2

0

FlFl

FB
0

A[0]
0
A[1]

0

FB
0

A[0]
0
A[1]

0

(b) Factor Graph for k basemul

Figure 4: Factor Graph for one basemul and k basemul

16 STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber

When the inputs and outputs of the BaseMul function satisfy the computation, then the
side-channel related posterior joint probability distribution is assigned for these candidates.
A value of 0 is assigned to that candidate that does not satisfy this relation.

As can be seen in our factor graph in Figure 4, the variable nodes are highlighted in
different colors in the following manner. We remark that we utilize the same notations as
used in the pseudo-code in Algorithm 3. The input coefficients s[0] and s[1] are marked in
red, indicating leakage from their multiple memory load operations. The outputs r[0]3 and
r[1]2 of the BaseMul operation are marked in blue. The intermediate variables r[0]1, r[0]2
and r[1]1 are marked in green. We mark the FB in green to represent these intermediate
variables for conciseness in Figure 4(b). Despite being stored only once, we aim to recover
their HW values, through template attack on the storing operation. The coefficients of A
relevant to the factor nodes FB are marked appropriately, and these values are assumed to
be known to the attacker.

5.2 Attack Methodology
Belief Propagation can quickly eliminate incorrect candidates through its message updating
scheme, particularly when dealing with large-scale factor graphs like those corresponding
to a complete NTT function. We remark that the number of iterations required for
convergence of the BP algorithm also depends on the structure of the factor graph.

In contrast to the complexity of NTT, which contains n · logn interconnected butterfly
units, our target factor graph corresponding to the BaseMul function is relatively simple
and only consists of k connected FB functions. Consequently, there is no need to utilize
message scheduling in Belief Propagation for this scenario. Instead, the joint probability
distribution of candidates can be directly deduced using Equation 5. In the following, we
explain the detailed steps of our key enumeration algorithm to recover a pair of secret
coefficients, combining leakage from k BaseMul functions, and the same process can be
repeated to recover the full secret key ŝ in the NTT domain two coefficients at a time.
Once the attacker recovers ŝ, the secret key s can be easily computed by simply computing
the inverse NTT operation over ŝ. The detailed steps of our key enumeration algorithm
are listed below:

1. Reserve the top five most probable HW values in Fl for later enumeration, and we
denote this set as HW5, and one set each is generated for every targeted sensitive
variable in the BaseMul function. The choice of top five values is motivated by our
side-channel experiments shown in Section 4.2.1, where we observe that the correct
HW value is present in the top five possible candidates with a very high probability.
The initial probability of HW has been assigned in Phase 1, and all the candidate
values with same HW will share the same initial probability.

2. Examine every possible value of the tuple (s[0], s[1]) that satisfies the set HW5 and
compute the output tuple (r[0], r[1]) for the k BaseMul functions. Assign the initial
probabilities of those outputs based on information from Fl, that is connected to the
output variable node.

3. Update the probabilities of s[0] and s[1] by multiplying the joint probabilities for

the k BaseMul functions based on Equation 5 as:
k∏

i=1
p(F i

B).

4. Identify the correct candidate according to the largest updated probabilities.

Considering more computations for FB results in a decrease in the number of incorrect
candidates for the tuple (s[0], s[1]), since each additional computation imposes constraints
on the input value. Based on Step 3, the probabilities for the candidates for the tuple
(s[0], s[1]) are updated only when all of the k p(F i

B) are non-zero, because only those

Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen and Shivam Bhasin 17

variable tuples that satisfy all k F i
B conditions in Figure 4(b) can be considered as potential

candidate. We can adopt a greedy approach, where in upon observance of p(F i
B) = 0 for

a given candidate tuple, we disregard leakage information from the subsequent BaseMul
functions (i+ 1 to k) to reduce the amount of calculation.

5.2.1 Accelerating Key Enumeration using GPU

We observe that leakage from four BaseMul functions are used to recover the corresponding
secret tuple (s[0], s[1]), and these tuples can be recovered in an independent manner, in a
divide and conquer approach for full key recovery. This therefore enables parallelization
to accelerate our attack and in this section, we explain our implementation of the key
enumeration phase using the NVIDIA GPU based on the CUDA toolkit.

The NVIDIA CUDA (Compute Unified Device Architecture) Toolkit is a computing
platform and programming model that leverages the parallel computing resources in
NVIDIA GPU. In CUDA, a specific function called kernel can be defined to be executed
N times in parallel by N independent threads. Threads form thread blocks within the GPU
framework, with each block accommodating up to 1024 individual threads. These blocks
can also serve as units within a larger cluster. The architecture of GPU can be depicted
as Figure 5(a).

GPU
CLUSTER CLUSTER

BLOCK BLOCK BLOCK BLOCK

T
H

R
E

A
D

T
H

R
E

A
D

T
H

R
E

A
D

T
H

R
E

A
D

(a) Architecture of GPU Unit

M-LWE
Polynomial Vector Polynomial Vector

Polynomial Polynomial Polynomial Polynomial

B
as

em
u

l

B
as

em
u

l

B
as

em
u

l

B
as

em
u

l

(b) Architecture of M-LWE

Figure 5: Structure Comparison of GPU and M-LWE Problem

Acceleration Methodology: We observe that the M-LWE problem can be described in
the same manner as the GPU architecture, as shown in Figure. 5(b). We can assign each
block to recover one polynomial containing 256 coefficients, with 128 threads operating in
parallel, each used to recover a corresponding tuple of the secret coefficients. Additionally,
GPU can also be utilized to eliminate wrong candidates, in case the attack requires offline
key search. The possible guesses for a secret polynomial can be loaded into separate
threads to run the inverse NTT on each polynomial to check the distribution of coefficients
in the secret key.

One primary advantage of our approach is that the time required for key recovery
is not affected by the security level of the M-LWE problem. This is because a higher
security level simply indicates more polynomials in the secret key. With the help of GPU,
additional polynomials can be recovered by simply configuring more blocks in parallel.

Our parallelized implementation of the key-enumeration algorithm only takes two
minutes for a single polynomial with 256 coefficients. For comparison, [PP19] reported a
time of 8 minutes for a single iteration of the Belief Propagation algorithm. This clearly
demonstrates the improved speed of our attack, compared to the BP algorithm.

5.3 Experimental Evaluation of Key Recovery
In order to test the effectiveness of our approach, we performed experiments on set of four
BaseMul functions, to recover the corresponding coefficient tuple (s[0], s[1]). The attacker
can independently target sets of four BaseMul functions to recover the entire secret key

18 STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber

two coefficients at a time, in a divide and conquer approach. We analyze the possibility
of recovering a single coefficient tuple (s[0], s[1]), for random values of the input A[0],
A[1]. We observed that even after incorporating leakage information from all the targeted
intermediate variables, we were not able to distinguish between certain candidates for s[0]
and s[1], as they all satisfied the obtained conditions in the factor graph. We refer to
the set of candidates for (s[0], s[1]), which cannot be distinguished as Collision_Set. The
presence of Collision_Set for the secret coefficient tuples denotes that the attacker has to
perform offline brute-force key search to recover the correct key.

Table 5: Brute-Force Complexity for Key Search for the reference and assembly optimized
Implementations for all parameter sets of Kyber KEM

Implementation Reference Optimized
Kyber Parameter Set 1024 768 512 1024 768 512

Total Searching Space CPAPKE.KeyGen 0 23 230 25 240 ∼
CPAPKE.Encrypt 0 0 23 0 25 240

We ran our attack to recover 50 random secret key polynomials of Kyber with different
parameter sets, and since all the secret polynomials of Kyber can be recovered independently,
we evaluated the offline brute-force search required to recover a single secret key polynomial,
whose results are shown in Table 5 for different parameter sets of Kyber KEM. This number
can then be used to evaluate the key search complexity to recover the entire secret key of
Kyber.

We separate discuss our results for the reference as well as optimized implementations.

Reference Implementation: Referring to results for the key generation procedure in
Table 5, we observe that the brute-force search for Kyber512 is about 230 for a single
polynomial, and hence recovering the entire secret key amounts to 260, which is still within
the brute-force capability of 264, which is considered to be practical. However, for the
higher parameter sets of Kyber768 and Kyber1024, we observe only a negligible brute-force
complexity for the secret key polynomial, which clearly demonstrates the ability of our
attack to exploit leakage from STAMPs involving repeated manipulation of the secret
key. The results for the encryption procedure are better compared to the key generation
procedure for every parameter set of Kyber, and this is primarily due to existence of
additional leakage corresponding to the ephemeral secret in the encryption procedure.

Optimized Implementation: Referring to results for the key generation procedure in
Table 5, the total searching space for Kyber512 is too large, and so it is not listed here.
However, the searching space reduces significantly for higher values of k, with 240 for
Kyber768, and only 25 for Kyber1024. Similar to the case for the reference implementation,
our attack on the encryption procedure is better for all parameter sets of Kyber, compared
to the key generation procedure.

Thus, we can clearly observe that the attack on the reference implementation remains
practical for all parameter sets of Kyber, except for Kyber512, primarily due to exploitation
of leakage of multiple intermediate variables within the target BaseMul computation.
However, in case of the optimized implementation, the reduced number of intermediate
variables for exploitation results in a larger brute-force complexity for key search, for the
optimized implementation.

Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen and Shivam Bhasin 19

6 Applicability to SCA Countermeasures
Thus, we have clearly demonstrated the ability of our attack exploiting leakage from
STAMPs, for key recovery and message recovery attacks. In the following, we discuss the
applicability of our attack to the masking and shuffling countermeasures for Kyber KEM.

6.1 Masking
Masking is widely used for mitigating the threat from SCA attacks. In the masked
implementation, secret variables are partitioned into multiple shares and processed by
carefully devised functions, respectively. These shares will be re-combined together to
compute the actual output after the masked domain. The attackers will do not have
sufficient side channel information to recover every share on the masked implementation
in the traditional SCA methods, especially for CPA and DPA.

6.1.1 Generalized Masking

In lattice-based cryptography, masking gadgets are commonly designed for compress/de-
compress, sampling and polynomial comparison functions. As both NTT and pointwise
multiplication are linear functions, they can be directly applied to each share. In this
section, we explore whether our attack remains effective when this masking technique is
employed during Key Generation or Encryption procedures.

We note that the side channel information still exist if the shares of one polynomial
are not changed and regenerated for different BaseMul. For example, if one coefficient
si is divided into two shares s′i and s′′i , for the first-level masking, then basemul (s′i, Ai)
and basemul (s′′i , Ai) will leak the side channel information of s′i and s′′i . The recovery
of these two shares can proceed in the same manner as the attack on si in an unmasked
implementation, which means we can recover the coefficients of s′i and s′′i separately.

Whereas, for attacking masked version, the searching space for one coefficient equals to
the product of the searching spaces for s′i and s′′i . We conducted 50 tests on the masked
Kyber-768 implementation[HKL+], an open source library for [HKL+22b], using the same
method as described in section 4.2.2 to evaluate its searching space. However, the assembly
implementation of BaseMul from mkm4 [HKL+] has fewer leakage than the implementation
from pqm4 [KPR+], they use pkhtb instruction to combined the r[0] and r[1] and only use
one storing instruction, which caused an exponential increasing number of searching space.
The average searching space required to attack the encryption procedure in Kyber-768
equals to 219.6 on this masked and optimized implementation. In terms of the success rate,
we get an overall success rate as 90% for recovering a complete polynomial, influenced
by individual success rates on each share. However, for key generation in [HKL+], the
running time required for searching would be impractical, since the effectiveness of our
attack on the unmasked assembly version of key generation in Kyber-768 has already been
quite weak.

6.1.2 Specific Masking

There is an alternative masking technique proposed by Ravi et al.[RPBC20] in 2020, specif-
ically designed to address single trace attacks on NTT such as SASCA. The fundamental
operation, known as the butterfly unit, within the NTT framework involves taking two
inputs (a, b) ∈ R2

q and a twiddle constant ω, resulting in two outputs (c, d) ∈ R2
q. The

operation of one butterfly unit can be represented as:

c = a+ b · ω (6)
d = a− b · ω (7)

20 STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber

In that work, the butterfly unit of NTT is masked by adding a random mask ωs on the
twiddle constant like:

c′ = c · ωs (8)
= (a+ b · ω) · ωs (9)
= a · ωs + b · ω · ωs (10)

Refer to line 3 in Algorithm. 3, the zeta also represents the twiddle constant used
in NTT. In our attack on optimized version, we only build the templates on loading
s[1]||s[0], computing s[1] ∗ ζ and storing s[1] ∗ ζ||s[0] on line 2,5,8 in Algorithm. 4. So if
the ζ is masked in line 5 as ζ · ωs, the intermediate variable s[1] ∗ ζ will also be masked
and we can not run the Key Enumeration just according to FB as Equation 5. That
means this masking method could defend against our single trace attack on optimized
implementations.

6.2 Shuffling

Shuffling is also a commonly used countermeasure against SCA. In cryptographic algorithms,
plenty of tiny operations are the same functions but processing different data. Shuffling
means shuffling the order of those operations randomly so the attackers can not match the
known information with collected traces.

In [RPBC20], Ravi et al. also proposed several shuffling methods for NTT. If those
methods are applied on the basemul, the order of loading operation or the order of basemul
in the whole polynomial multiplication may be shuffled. Under this countermeasure, it is
not possible to build templates on several locations of loading operation directly, so our
attack will also be mitigated by this kind of shuffling.

However, the attack against shuffling is also possible with more side channel information.
Note that even though the order of operations is changed, the corresponding constant Ai,j

remains unchanged. So if the loading operation of Ai,j can also be located and utilized by
more templates or Deep Learning-based analysis as in [LZH+22], it may still be possible
to locate the loading operation of secret key correctly.

7 Conclusion and Future Work

In conclusion, we propose a single trace attack on the key generation and encryption
procedure in Kyber KEM as key recovery and message recovery attack. Our attack mainly
targets the BaseMul function, which is used for the polynomial multiplication in NTT
domain. Our target operations, referred to as STAMPs, repeat k times caused by the
structured M-LWE problem. We validate our attack on simulated traces by ELMO, and
real traces of reference implementation and pqm4 implementation collected from STM32F3
board. The experimental results of our attack demonstrate that Kyber at higher theoretical
security levels with a higher value of k exhibits more leakage compared to Kyber at lower
theoretical security levels. Due to the parallelization of BaseMul, we can utilize GPU to
accelerate the key enumeration phase of the attack. Furthermore, we also investigate the
applicability of our attack on the traditional countermeasures against side channel attack,
such as masking and shuffling.

As the future works, first, we could optimize our accelerated attack by better assignment
of the shared memory. Second, this attack may lead to the consideration that whether the
structured LWE problem have more unnoticed leakages in the implementation.

Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen and Shivam Bhasin 21

References
[AAT+21] Furkan Aydin, Aydin Aysu, Mohit Tiwari, Andreas Gerstlauer, and Michael

Orshansky. Horizontal side-channel vulnerabilities of post-quantum key ex-
change and encapsulation protocols. ACM Trans. Embed. Comput. Syst.,
20(6):110:1–110:22, 2021.

[BBB+23] Estuardo Alpirez Bock, Gustavo Banegas, Chris Brzuska, Łukasz Chmielewski,
Kirthivaasan Puniamurthy, and Milan Šorf. Breaking dpa-protected kyber via
the pair-pointwise multiplication. Cryptology ePrint Archive, Paper 2023/551,
2023. https://eprint.iacr.org/2023/551.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking kyber: First- and higher-order implementations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):173–214, 2021.

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van
Vredendaal. Chosen ciphertext k-trace attacks on masked CCA2 secure kyber.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):88–113, 2021.

[HKL+] Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann,
Peter Schwabe, and Daan Sprenkels. First-order masked kyber on ARM
Cortex-M4. https://github.com/masked-kyber-m4/mkm4.

[HKL+22a] Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann,
Peter Schwabe, and Amber Sprenkels. First-order masked kyber on ARM
cortex-m4. IACR Cryptol. ePrint Arch., page 58, 2022.

[HKL+22b] Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann,
Peter Schwabe, and Daan Sprenkels. First-order masked kyber on arm cortex-
m4. Cryptology ePrint Archive, Paper 2022/058, 2022. https://eprint.
iacr.org/2022/058.

[KPR+] Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen. PQM4: Post-quantum crypto library for the ARM Cortex-M4.
https://github.com/mupq/pqm4.

[LDK+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech-
nical report, National Institute of Standards and Technology, 2022. avail-
able at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[LZH+22] Yanbin Li, Jiajie Zhu, Yuxin Huang, Zhe Liu, and Ming Tang. Single-trace
side-channel attacks on the toom-cook: The case study of saber. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2022(4):285–310, 2022.

[Mac03] David J. C. MacKay. Information theory, inference, and learning algorithms.
Cambridge University Press, 2003.

[MOW17] David McCann, Elisabeth Oswald, and Carolyn Whitnall. ELMO: Evaluating
Leaks for the ARM Cortex-M0. https://github.com/sca-research/ELMO,
2017.

https://eprint.iacr.org/2023/551
https://github.com/masked-kyber-m4/mkm4
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://github.com/mupq/pqm4
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://github.com/sca-research/ELMO

22 STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber

[MWK+22] Catinca Mujdei, Lennert Wouters, Angshuman Karmakar, Arthur Beckers,
Jose Maria Bermudo Mera, and Ingrid Verbauwhede. Side-channel analysis of
lattice-based post-quantum cryptography: Exploiting polynomial multiplica-
tion. ACM Trans. Embed. Comput. Syst., nov 2022.

[NIS16] NIST. Post-quantum cryptography standardization. https:
//csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization, 2016.

[NIS23] NIST. Post-quantum cryptography standardization. https://csrc.nist.
gov/News/2023/three-draft-fips-for-post-quantum-cryptography,
2023.

[PP19] Peter Pessl and Robert Primas. More practical single-trace attacks on the
number theoretic transform. In Peter Schwabe and Nicolas Thériault, editors,
Progress in Cryptology - LATINCRYPT 2019 - 6th International Conference
on Cryptology and Information Security in Latin America, Santiago de Chile,
Chile, October 2-4, 2019, Proceedings, volume 11774 of Lecture Notes in
Computer Science, pages 130–149. Springer, 2019.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages 513–
533. Springer, 2017.

[RCDB23] Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab
Baksi. Side-channel and fault-injection attacks over lattice-based post-quantum
schemes (kyber, dilithium): Survey and new results. ACM Trans. Embed.
Comput. Syst., jun 2023. Just Accepted.

[RPBC20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopadhyay.
On Configurable SCA Countermeasures Against Single Trace Attacks for the
NTT. In Lejla Batina, Stjepan Picek, and Mainack Mondal, editors, Security,
Privacy, and Applied Cryptography Engineering, Lecture Notes in Computer
Science, pages 123–146, Cham, 2020. Springer International Publishing.

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé,
and Jintai Ding. CRYSTALS-KYBER. Technical report, National Institute
of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022.

[YWY+23] Yipei Yang, Zongyue Wang, Jing Ye, Junfeng Fan, Shuai Chen, Huawei Li,
Xiaowei Li, and Yuan Cao. Chosen ciphertext correlation power analysis on
Kyber. Integration, February 2023.

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/News/2023/three-draft-fips-for-post-quantum-cryptography
https://csrc.nist.gov/News/2023/three-draft-fips-for-post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

	Introduction
	Preliminaries
	Notation
	M-LWE Problem
	Kyber
	Prior Work
	Motivation

	Side-Channel Attack on STAMPs
	Phase 1: Building Side-Channel Templates for STAMPs
	Analyzing PointWise-Multiplication for Repeated Secret Leakage
	Practical Side-Channel Leakage Experiments

	Phase 2: Key Enumeration
	Factor Graph for BaseMul Function
	Attack Methodology
	Experimental Evaluation of Key Recovery

	Applicability to SCA Countermeasures
	Masking
	Shuffling

	Conclusion and Future Work

