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Abstract. Side-channel attacks against cryptographic implementations
are mitigated by the application of masking and hiding countermeasures.
Hiding countermeasures attempt to reduce the Signal-to-Noise Ratio of
measurements by adding noise or desynchronization effects during the
execution of the cryptographic operations. To bypass these protections,
attackers adopt signal processing techniques such as pattern alignment,
filtering, averaging, or resampling. Convolutional neural networks have
shown the ability to reduce the effect of countermeasures without the
need for trace preprocessing, especially alignment, due to their shift in-
variant property. Data augmentation techniques are also considered to
improve the regularization capacity of the network, which improves gen-
eralization and, consequently, reduces the attack complexity.

In this work, we deploy systematic experiments to investigate the ben-
efits of data augmentation techniques against masked AES implemen-
tations when they are also protected with hiding countermeasures. Our
results show that, for each countermeasure and dataset, a specific neural
network architecture requires a particular data augmentation configura-
tion to achieve significantly improved attack performance. Our results
clearly show that data augmentation should be a standard process when
targeting datasets with hiding countermeasures in deep learning-based
side-channel attacks.

Keywords: Side-channel Attacks, Deep Learning, Data Augmentation, Hiding
Countermeasures

1 Introduction

Side-channel attacks (SCAs) represent a realistic threat to electronic systems
processing confidential information. SCA is a non-invasive attack that targets
assets such as keys from cryptographic modules in software or hardware imple-
mentations. These cryptographic implementations are present in chips applied
to the Internet-of-Things, payment, automotive, and content protection indus-
tries, just to name a few. SCA is conducted by monitoring physical side-channel
information that is unintentionally leaked by electronic circuits, such as power
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consumption, electromagnetic emissions, and execution time. The leaked infor-
mation might be statistically related to the confidential data being processed by
the circuit, such as cryptographic keys.

SCA is divided into two main categories: direct attacks such as differential
power analysis [10] or correlation power analysis [2] that exploit the statistical
relation between side-channel measurements and secret information, and two-
step or profiled attacks [4]. In those attacks, a profiling model is learned from
side-channel information collected from an open target, and this model is later
used to retrieve secret information from a victim’s device. This way, profiled
attacks follow a supervised learning strategy, and for this reason, recently, deep
neural networks have been widely considered for profiled attacks [17] due to
their practical advantages in comparison to previous techniques such as Gaussian
template attacks [4].

To mitigate SCA, manufacturers implement countermeasures that aim at
breaking the statistical relation between side-channel information and secret
keys. Two main types of countermeasures are typically applied: masking and
hiding. Masking countermeasures add random values (i.e., masks) to sensitive
bytes during cryptographic executions. The main goal of hiding countermeasures
is to reduce the Signal-to-Noise Ratio (SNR) of side-channel measurements by
intentionally adding noise to the circuit. The most common hiding countermea-
sures methods are noise generators, e.g., parallel circuits that produce signifi-
cant power consumption to hide the power consumption of sensitive operations,
and desynchronization, e.g., random delays that shift the target operation in
time. Desynchronization efficiently protects cryptographic implementations be-
cause side-channel attack methods such as DPA or template attacks require
side-channel measurements aligned in the time domain.

When dealing with hiding countermeasures, a standard side-channel analysis
procedure is to apply signal processing to remove noise with filtering, averaging,
or resampling. To bypass desynchronization, techniques such as static or dynamic
alignment [24] are common solutions. Although post-signal processing tends to
improve side-channel analysis results, the process faces several limitations, espe-
cially the large time overheads in side-channel evaluations, the requirement for
costly and specialized equipment, and, in some cases, the inability to success-
fully conduct signal processing over raw measurements due to stronger hiding
countermeasures. Convolutional neural networks (CNN) have shown promising
results in bypassing desynchronization protections [3,28]. Convolution blocks,
typically composed of a combination of convolution and pooling layers, provide
a shift-invariant property that makes CNN less sensitive to side-channel trace
misalignment, especially when used as a profiling model. One way to further
improve the robustness of a CNN against trace misalignment is by training the
model with data augmentation. Data augmentation is an explicit regularization
technique that increases training data size by generating additional synthetic
data during training. Essentially, in side-channel analysis, what a data augmen-
tation process does is reproduce the effect of existing hiding countermeasures
from measured side-channel traces. This way, the augmented training set tends
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to represent a better sample of the true (and unknown) leakage distribution of
side-channel traces. This process improves CNN generalization as the model has
fewer chances to overfit the training data.

Although data augmentation is a well-known method to cope with hiding
countermeasures in side-channel measurements [3,19], it is not clearly answered
how to implement data augmentation for specific targets or datasets properly
and what is the best augmentation configuration. For instance, to reduce the
protective effect of desynchronization, one tries to create a data augmentation
process that randomly shifts the training set at each training epoch. Still, know-
ing the ideal amount of trace samples to shift for a certain trace set has been
unanswered so far. Moreover, the required number of augmented data that pro-
vides the best results was never investigated. In this work, we provide results
showing that each specific neural network architecture requires a particular data
augmentation configuration, which makes the problem even more complicated.
The same also applies to hiding countermeasures based on additive (Gaussian)
noise.

In this paper, we focus on profiling SCA and verify to what extent data aug-
mentation suppresses the protective effects of hiding countermeasures. We skip
signal processing and rely solely on the regularization and generalization ability
of convolutional neural networks to deal with noisy datasets. We perform a sys-
tematic data augmentation analysis by deploying an analysis methodology that
identifies the best data augmentation strategy for a given dataset containing spe-
cific hiding countermeasures. Our results demonstrate that each neural network
architecture and dataset require a specific data augmentation strategy. Interest-
ingly, with the correct data augmentation configuration, we can turn an ineffi-
cient CNN that does not recover the key (with a given number of attack traces)
into a successful CNN model that recovers the correct key with state-of-the-art
results. Moreover, the performance of CNN models with the best data augmen-
tation configuration found with our analysis methodology is the best reported in
the literature so far with higher levels of trace desynchronization. For the ASCAD
dataset, we can successfully recover the key with less than 50 attack traces when
the desynchronization level is up to 200 sample points. For the DPAv4.2 dataset,
our best CNN model with the best data augmentation configuration recovers
the key with a single attack trace when the desynchronization level is up to
150 sample points. Our analysis indicates that data augmentation should be a
standard process when evaluating cryptographic implementations with hiding
countermeasures in the context of deep learning-based profiling SCA.

2 Background

2.1 Deep Learning-based Profiling Side-channel Analysis

We define a side-channel trace set as X with size N , where xi is the i-th ob-
servation of X . With an additional under-script term, xi,s, we refer to a feature
(or sample) s in a side-channel observation xi. For each side-channel observation
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xi, we assign a label yi ∈ Y. Each side-channel observation xi represents side-
channel leakages obtained from a target while running a cryptographic operation
such as encryption. The label yi is derived from a selection function that returns
the intermediate variable (in our case, a byte value) associated with the executed
cryptographic operation. For instance, when the cryptographic operation is an
AES encryption function C = E(D,K) with a secret key K and plaintext D,
which returns a ciphertext C, the selection function can be represented as the
output byte of the S-Box in the first encryption round, i.e., yi = S-Box(dj ⊕kj),
where kj ∈ K is the j-th key byte and dj represents the j-th byte from plaintext
D.

In a deep learning-based profiling SCA application, the main goal is to train a
deep neural network f(L, θ, T ), defined by a set of parameters θ, with a training
set T = (Xtrain,Ytrain), to minimize the loss function L. The trained neural
network, or simply model, is validated with a separate validation set of size V ,
V = (Xval,Yval) by measuring the validation loss value.

Although minimizing validation loss is an efficient validation metric, the best
way to verify the performance of a model in the SCA context is by computing
SCA metrics such as key rank with the given validation set. By predicting a
trained model f(L, θ, T ) with V, we obtain a set of class probabilities P , where
pi,y ∈ P indicates the probability of observing label y for a given side-channel
observation xi ∈ V. Because labels y depend on the key byte ki from the val-
idation set V, the key rank is a process that returns the most likely key byte
candidate or hypothesis kh among all possible key values, which includes the
256 possible byte values. This way, we compute the likelihood gh for each key
candidate kh as follows:

gh =

V−1∑
i=0

log pi,y. (1)

By repeating this process for h = 1 . . . 256, we obtain a vector of sorted
key likelihoods g = {gh}, h ∈ [1, 256], by order of magnitude of gh values. The
position of the correct key candidate inside sorted g gives the key rank for the
validation set. The guessing entropy [22,18] of the correct key is given by an
empirical process in which we repeat the key rank process multiple times (each
time with a different and randomly selected subset from V), and we obtain an
average key likelihood or key guessing vector g and get the average position of
the correct key k∗ inside g.

In this paper, we refer to the guessing entropy of the correct key byte can-
didate as ge∗. Another metric to verify the performance of a trained model
f(L, θ, T ) against a validation set V is by obtaining the minimum size of V (i.e.,
the minimum number of validation traces) that are necessary to achieve ge∗ = 1
(which means that the correct key byte candidate has the lowest guessing entropy
among all key byte candidates), which we refer as Nge∗=1.
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2.2 Data Augmentation

In the deep learning community, data augmentation is considered in state-of-the-
art applications, such as image classification [7,23,12]. It refers to the process of
increasing the size of the training set by artificially generating additional train-
ing data with dynamic changes during the training of a model. These changes
must preserve the class properties of the training set. The training set represents
an approximate distribution, given by a finite set T , from a true and unknown
distribution R. By augmenting the training set T , one expects that the T be-
comes a better representation of R. A deep neural network becomes less prone
to overfit the training data by following a data augmentation process. Among
other regularization techniques such as weight decay, dropout, batch normal-
ization, and transfer learning [21,23], data augmentation is an alternative and
efficient way to reduce overfitting.

To achieve this goal, data augmentation settings need to be carefully chosen.
However, conventionally data augmentation involves many manual or random
choices. The main idea is to improve class representation inside of a dataset. For
that, it is important to understand what kind of effect the augmentation process
needs to develop. For instance, when training a convolution neural network to be
as shift-invariant as much as possible concerning images, adding rotation, shifts,
resizing, or re-scaling improves the number of examples with image variations.
On the other hand, inappropriate choices of data augmentation settings probably
lead to no effect or even detrimental effect [7,5]. To skip the manual augmenta-
tion process, different techniques have been proposed in deep learning literature.
In [5], the authors proposed a procedure called AutoAugment to automatically
search for the best data augmentation setting from training data properties.
Later, the authors proposed a new strategy called Randaugment [6]. Randaug-
ment greatly reduces the computational expense of automated augmentation by
simplifying the search space. Ultimately, these automated data augmentation
processes require optimization algorithms such as reinforcement learning.

2.3 Datasets

In our experiments, we consider two publicly available software masked AES
datasets.

ASCADr ASCAD database [1] provides side-channel measurements collected from
different software AES implementations: AES protected with first-order Boolean
masking running on an 8-bit Atmega device 3, and AES protected with Boolean,
affine, and shuffling running on a 32-bit STM32 platform 4. The former is consid-
ered in our experiments, and it contains two main trace sets: (1) trace set with
60 000 traces, where each power measurement contains 100 000 samples points,
and all traces contains the same fixed key, and (2) trace set with 300 000 traces,

3 https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
4 https://github.com/ANSSI-FR/ASCAD/tree/master/STM32_AES_v2

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://github.com/ANSSI-FR/ASCAD/tree/master/STM32_AES_v2
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each measurement containing 250 000 sample points, with first 200 000 contain-
ing random keys and the remainder 100 000 containing a fixed key. We consider
this last dataset with 300 000 measurements, hereby called ASCADr. In our ex-
periments, we take the trimmed version of ASCADr, which contains 1 400 sample
points per trace and represents the power consumption of the third key byte j
(j ∈ [0, 15]) of the S-Box output in the first encryption round. Therefore, each
trace xi is labeled according to yi = S-Box(d2 ⊕ k2) when we consider the Iden-
tity leakage model or yi = HW (S-Box(d2 ⊕ k2)) when we apply the Hamming
weight leakage model. We use 200 000 traces for training, 5 000 for validation,
and another 5 000 as the attack set.

DPAv4.2 The DPAcontest v4.2 dataset (DPAv4.2) 5 is the second implementa-
tion available in the DPAcontest v4. It is an improved version implemented in
software on an 8-bit Atmel ATMega-163 smart card and corrects several leaks
identified in its previous generation. This dataset represents the power consump-
tion of the first AES encryption round, and the AES implementation is protected
with RSM (Rotate S-box Masking). The dataset contains a total of 80 000 traces,
and each of them contains 1 704 402 sample points. In our experiments, we trim
the dataset to the interval representing the processing of the twelfth S-box byte
j (j ∈ [0, 15]), resulting in 2 000 samples per trace. We use 70 000 traces for train-
ing (which contains 14 different keys), 5 000 for validation, and another 5 000 as
the attack set. Each trace xi is labeled according to yi = S-Box(d11 ⊕ k11) when
we consider the Identity leakage model or yi = HW (S-Box(d11 ⊕ k11)) when we
apply the Hamming weight leakage model.

3 Related Works

Data augmentation has been widely applied to the SCA context. In [3], data
augmentation was considered to mitigate trace desynchronization effects caused
by jitter effects. The results showed significant improvements in profiling attacks
when compared to Gaussian template attacks. In that case, the authors applied
two customized data augmentation techniques based on shift deformation and
add-remove deformation of side-channel measurements. In [9], the authors con-
sidered a regularization technique that artificially adds Gaussian noise to the
training set. Results showed significant key recovery improvements in the attack
phase. Although this process only modifies the existing training set without aug-
menting the training set during model training, we still consider this work as
data augmentation due to the modifications applied to input traces. In [16], the
authors applied SMOTE, a data augmentation technique to suppress imbalanced
dataset limitations. The authors of [11] applied mixup [27] technique for data
augmentation. Mukhtar et al. [13] considered Generative Adversarial Networks
(GANs) and Siamese networks to generate new side-channel traces for data aug-
mentation. While this approach works well, due to its black-box character, it

5 https://www.dpacontest.org/v4/42_doc.php

https://www.dpacontest.org/v4/42_doc.php
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becomes more difficult to evaluate the effect of a specific change. In [14], the
authors demonstrated that data augmentation based on random shifts could act
as a strong regularizer for label correction in an iterative framework.

In the context of SCA, data augmentation essentially solves three main prob-
lems: (1) it suppresses the lack of training data for better class representations
(also to suppress class imbalance) [13], (2) it augments the training set to cover
the effects of existing hiding countermeasures better (e.g., cover a wider range of
trace shift positions due to misalignment or jitter) [3], and (3) it regularizes the
model to prevent overfitting [15]. For SCA, data augmentation also creates an
adversarial training effect [8] on the model [20]. Indeed, hiding countermeasures
that are expected to be presented in side-channel measurements collected from
the target device contain modifications (e.g., desynchronization, additive noise)
that aim at perturbing the prediction of the trained model. Training with data
augmentation leads to a model that is more robust to unseen modifications that
can exist in measurements from different targets.

However, it is still an open question of how to customize a data augmentation
for a specific dataset. More specifically, for each considered hiding countermea-
sure, data augmentation requires defining optimal configuration hyperparam-
eters. In Section 4, we provide an analysis methodology to evaluate this open
question, and in Section 5, we provide experimental results for different datasets.

4 Analysis Methodology

In this section, we describe the analysis methodology applied in our experiments.
The proposed methodology defines a grid search to identify what is the best
data augmentation setting for specific countermeasures present in side-channel
measurements.

The analysis starts by taking clean side-channel traces, i.e., raw side-channel
measurements, where we assume hiding countermeasures such as noise and desyn-
chronization are not active to protect the underlying device under test. Ob-
viously, as we are dealing with real side-channel measurements, some level of
noise is still present. However, the Signal-to-Noise Ratio (SNR) is sufficiently
high to assume that side-channel measurements contain irrelevant noise. Hid-
ing countermeasures are artificially emulated by adding either Gaussian noise
or desynchronization to the raw measurements. This is done by choosing dif-
ferent hiding countermeasures hyperparameters such as standard deviation for
the added Gaussian distribution and the maximum number of shifted samples
in side-channel traces in case of desynchronization.

Next, we perform the hyperparameter search to find the best possible CNN
models that can recover the target key in a profiling attack scenario, even in the
presence of added hiding countermeasures. Table 1 shows the hyperparameter
options from where each CNNmodel is randomly configured during the search. In
case when the best-found neural network is not capable of successfully retrieving
the key (i.e., Nge∗=1 > V ), the best model will be the one that presents lower
guessing entropy ge∗. This analysis will serve as a baseline comparison for the
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experiments with data augmentation. Note that the early stopping process is not
considered during the hyperparameter search process. To eventually implement
early stopping, we would have to set an early stopping metric such as guessing
entropy, which would add significant overheads to the search process. Therefore,
every model is trained for a total of 100 epochs, as this number of epochs is in
accordance with related works [1,25,26] and, for a majority of cases, enough to
find a CNN model with Nge∗=1 ≤ V .

After the random search process, we search for the best data augmenta-
tion configuration. We start from the best-found CNN models obtained with
the hyperparameter search, and we train these models from scratch with data
augmentation by considering a grid of different hyperparameters. For that, we
consider the data augmentation that implements the same effects provided by
the given hiding countermeasure. This way, data augmentation involves apply-
ing Gaussian noise to training data or desynchronization. For the Gaussian noise
case, we test different standard deviations to see if there is an optimal value that
provides better performance. In the same scope, we test different desynchroniza-
tion levels, i.e., the maximum number of randomly selected shifted samples in
side-channel traces during model training. The idea is again to identify if, for a
given desynchronization provided by hiding countermeasures, there is an opti-
mal range of sample shifts for data augmentation. We also evaluate if there is a
minimum number of augmented traces that provide better results. For that, we
train the best-found CNN models with different numbers of augmented traces
added to the original training set.

To summarize, our methodology implements four main steps:

1. Add hiding countermeasures to the raw side-channel measurements.
2. Deploy random hyperparameter search to identify the best CNN model for

each hiding countermeasure scenario (the hyperparameter range is in Ta-
ble 1).

3. Investigate the best data augmentation hyperparameters (e.g., standard de-
viation or maximum trace shifts) through a grid search.

4. Investigate the minimum number of augmented side-channel traces during
neural network training that improves CNN performance.

4.1 Adding Hiding Countermeasures

We emulate hiding countermeasures on raw side-channel traces. We explore two
cases: desynchronization and Gaussian noise. Desynchronization emulates the
effect of hiding countermeasures aimed at providing trace misalignment. The
Gaussian noise emulates the effect of additive noise provided by the target to
reduce the SNR of measurements. For that, we define the following hyperparam-
eters:

– δhid: maximum number of trace sample shifts. The shifts that are applied to
each measurement are drawn from a normal distribution with a mean equal
to δhid/2. The blue lines in Figures 1a and 1b refer to the distribution of
shifts when δhid = 25 and δhid = 200, respectively.
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– σhid: standard deviation considered to define a Gaussian distribution from
where we obtain a noise trace that is added to raw measurements. The
mean of the distribution is zero. Figures 2a and 2b show the SNR analysis
for the ASCADr and DPAv4_2 datasets without adding Gaussian noise. We
can see that the max value for the ASCADr dataset is 1.52 when SNR is
computed for the intermediate v = S-Box(d2 ⊕ k2) ⊕ m2. The max value
for the DPAv4_2 dataset is 4.14 when the intermediate is v = S-Box(d12 ⊕
k12)⊕m12. When the Gaussian noise countermeasure is added to these two
datasets, and the standard deviation σhid changes from 1 to 6, the max values
reduce accordingly in Table 2. Note that SNR or intermediate variables are
significantly reduced.

Table 1: Hyperparameter variations in the CNN architecture.

Hyperparameters Options

neurons {20, 40, 50, 100, 150, 200, 300, 400}

batch size {100, 200, 400}

layers {1, 2}

filters {4, 8, 12, 16}

kernel size {10, 20, 30, 40}

strides {5, 10, 15, 20}

pool type {”Average”, ”Max”}

pool size 2

conv layers {1, 2, 3, 4}

activation {”elu”, ”selu”, ”relu”}

learning rate
{0.005, 0.0025, 0.001, 0.0005, 0.00025,

0.0001, 0.00005, 0.000025, 0.00001}

weight init

{”random uniform”, ”he uniform”,

”glorot uniform”, ”random normal”,

”he normal”, ”glorot normal”}
optimizer {”Adam”, ”RMSprop”}

4.2 Data Augmentation Hyperparameters

For our analysis, the data augmentation strategy requires the definition of the
following hyperparameters:
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(a) Trace desynchronization distribution
for different values of δaug when measure-
ments contain desynchronization of δhid =
25.

(b) Trace desynchronization distribution
for different values of δaug when measure-
ments contain desynchronization of δhid =
200.

Fig. 1: Trace desynchronization distribution for different values of augmentation
shifts [−δaug, δaug].

(a) SNR analysis for the ASCADr dataset
without countermeasure for masked S-Box

output and corresponding mask.

(b) SNR analysis for the DPAv4_2 dataset
without countermeasure for masked S-Box

output and corresponding mask.

Fig. 2: SNR analysis without countermeasure

– Augmented hyperparameter: this hyperparameter refers to the data aug-
mentation type that is applied to training data. If the data augmentation
type is Gaussian noise, the statistical hyperparameter to be tuned is the stan-
dard deviation, σaug, of the applied normal distribution with zero mean. In
case the data augmentation type is desynchronization, the statistical hyper-
parameter is the range of shifts, [−δaug, δaug], applied to the training data.
We randomly shift each trace to the left and to the right by randomly tak-
ing the shift value from a normal distribution with mean zero and minimum
value being −δaug and maximum value being δaug. Note that random shifts
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Table 2: The max values change in SNR analysis for two datasets with Gaus-
sian noise countermeasure. The mean of the distribution is zero. The standard
deviation σhid changing from 1 to 6.

σhid = 0 1 2 3 4 5 6

ASCADr

v = S-Box(d2 ⊕ k2) ⊕m2 1.52 1.21 0.79 0.51 0.38 0.30 0.25

v = m2 1.13 1.07 0.94 0.78 0.64 0.50 0.41

DPAv4.2

v = S-Box(d12 ⊕ k12 ⊕m12) 4.14 3.74 2.89 2.13 1.55 1.15 0.87

v = m12 4.40 3.92 2.97 2.21 1.66 1.26 0.98

during data augmentation are always selected from a normal distribution,
and the mean of the distribution is zero. Figures 1a and 1b illustrate the
final desynchronization distributions after we apply the data augmentation
shifts to trace sets containing δhid = 25 and δhid = 200, respectively. Note
how the final distribution, given by δhid + [−δaug, δaug], provides a larger
range of possible trace shifts during the training phase. This larger range is
more salient when δhid = 25 than δhid = 200.

– Augmented traces per epoch: this hyperparameter refers to the number
of augmented training side-channel measurements that are generated for each
epoch. In this case, augmented traces are different as they are randomly
generated for each epoch. Note that the resulting training set consists of
original traces plus augmented ones.

5 Experimental Results

In this section, we provide experimental results by applying our analysis method-
ology to the two datasets described in Section 2.3.

5.1 Desynchronization Countermeasure

ASCADr Tables 3 and 4 provide results for the ASCADr dataset labeled with the
Identity leakage model and Hamming weight leakage model, respectively. As
specified by the table’s header, the training is always conducted for the 200 000
traces plus the augmented traces. When the augmented traces are denoted by
0 (third column of the table), we indicate the Nge∗=1 value (i.e., the number of
attack traces required to reach ge∗ = 1) for the baseline model trained without
data augmentation.

Note that for each different δhid value, the CNN architecture is different, and
it is obtained from a random search. Then we deploy a new training for this CNN
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model by considering data augmentation with a different number of augmented
traces (from 20 000 to 200 000 augmented traces - from 10% of the number of
the original traces up to 100%). For each number of these augmented traces, the
model is trained with a different range of shifts [−δaug, δaug]. We always set this
value to ensure that 2× δaug ≤ δhid.

Results shown in Table 3 demonstrate the efficiency of data augmentation for
different CNN architectures with the ASCADr dataset and the Identity leakage
model. The Nge∗=1 value obtained for the baseline model (third table column)
is always higher than the lowest value obtained with the best Nge∗=1 when data
augmentation is active during training. Specifically, the case when δhid = 25 is
very representative. When this CNN model is trained without data augmenta-
tion, we obtain Nge∗=1 > 3 000, indicating that this model cannot successfully
recover the key with less than 3 000 traces. When data augmentation with 120 000
augmented traces is applied during training (these traces are randomly gener-
ated for each epoch), with δaug = 25, the correct key candidate is recovered
with only 39 traces. Moreover, when δhid = 175, which indicates a more aggres-
sive desynchronization level, the baseline model without data augmentation still
successfully recovers the correct key with 2 195 traces. However, after applying
data augmentation with 180 000 augmented traces at each training epoch and
[−δaug, δaug] = [−87, 87], the correct key is recovered with only 76 traces, which
is a significant improvement. Finally, when δhid equals 200, at the highest level
of trace desynchronization in our experiments, we get Nge∗=1 = 304 for the base-
line model and Nge∗=1 = 44 for augmentation with [−δaug, δaug] = [−12, 12] and
180 000 augmented traces.

The results in Table 4 show the performance of different CNN models with
different data augmentation configurations when the ASCADr dataset is labeled
with the Hamming weight leakage model. We also first choose the best CNN
model through a random search under different δhid without augmentation.
Then, for each δhid, we use the same CNN model to conduct the training process
with 200 000 raw traces plus a different number of augmented traces. We can see
the improvement from data augmentation since theNge∗=1 value obtained for the
baseline model is higher than the lowest value obtained with the best Nge∗=1 for
different δaug in most cases. Take δhid = 100 for example. We get Nge∗=1 = 1898
when the CNN model is trained without augmentation. When augmentation is
implemented, the correct key candidate is recovered with fewer traces in each
δaug when the augmented trace number is greater than 40 000. For δhid = 125, we
often use fewer traces for every δaug than the baseline model when the augmented
trace number is greater than 80 000. Moreover, we can see that augmentation
works with even higher desynchronization levels. When δhid = 200, the baseline
model recovers the correct key candidate with 2 677 traces. By adding 120 000
traces at each training epoch and [−δaug, δaug] = [−50, 50], we can recover the
correct key with only 533 traces.

DPAv4.2 Tables 5 and 6 demonstrate results for the DPAv4.2 dataset with desyn-
chronization countermeasure adopted with the Identity leakage model and the
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Table 3: Number of attack traces to reach guessing entropy equal to 1. Results
obtained with the ASCADr dataset and the Identity leakage model. Neural net-
works are trained with data augmentation by generating different augmented
traces at each epoch.

200k original traces +

δhid [−δaug, δaug ] 0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

25

[-6, 6]

> 3000

- - 444 94 623 84 97 1477 73 68

[-12, 12] - - 181 268 49 90 80 82 49 57

[-25, 25] - - 1952 62 - 39 59 77 59 54

50

[-6, 6]

114

- - - 96 377 77 44 64 51 55

[-12, 12] - 105 - 152 107 58 64 55 53 33

[-25, 25] - - - 119 - 74 41 62 113 92

[-37, 37] - - - - - 215 92 - 81 69

75

[-6, 6]

317

- 549 208 89 111 65 72 116 92 71

[-12, 12] - 271 157 120 76 66 86 103 103 90

[-25, 25] - 815 229 139 86 115 101 58 69 59

[-37, 37] - 302 286 179 116 121 51 71 71 100

[-50, 50] - 980 230 224 140 84 64 56 92 100

100

[-6, 6]

774

- - - - 1090 1172 859 358 481 251

[-12, 12] - - - - 350 362 317 553 370 305

[-25, 25] - - - - 825 370 479 275 351 378

[-37, 37] - - - 876 624 598 667 368 353 498

[-50, 50] - - - 1741 642 423 346 509 484 472

[-62, 62] - - - 761 634 333 496 645 254 688

125

[-6, 6]

252

228 148 124 149 119 160 104 121 143 118

[-12, 12] 183 143 129 80 50 88 104 120 100 58

[-25, 25] 182 84 75 105 91 65 89 84 97 112

[-37, 37] 175 122 79 122 55 139 122 109 64 87

[-50, 50] 447 158 97 95 63 91 73 82 66 98

[-62, 62] 327 182 88 123 64 80 107 92 70 48

[-75, 75] 162 249 82 97 83 75 106 99 75 78

150

[-6, 6]

1615

- 1002 738 378 903 339 230 335 462 378

[-12, 12] - 719 462 551 264 442 322 489 276 246

[-25, 25] - 1202 508 318 243 272 306 302 252 255

[-37, 37] - 1374 526 339 280 223 335 204 311 156

[-50, 50] - - 254 337 405 254 427 281 187 286

[-62, 62] - 653 322 277 248 354 197 276 248 286

[-75, 75] - 2117 861 302 273 229 355 184 162 238

[-87, 87] - 1008 - 345 279 195 298 396 218 173

175

[-6, 6]

2195

2168 412 491 244 286 248 293 602 300 228

[-12, 12] 1117 923 1136 324 234 183 284 319 157 198

[-25, 25] 1310 970 694 220 226 184 159 150 266 137

[-37, 37] 2068 894 978 333 199 173 127 146 131 162

[-50, 50] 2986 1167 1289 291 335 197 117 120 108 132

[-62, 62] 2787 1785 1365 161 254 202 260 183 237 107

[-75, 75] 2638 1802 662 462 279 248 114 129 103 86

[-87, 87] 1393 2995 698 673 213 217 175 128 76 104

[-100, 100] 2546 - 847 453 191 202 153 80 219 126

200

[-6, 6]

304

- - - - 282 176 222 87 69 107

[-12, 12] - - - - 220 246 106 54 44 74

[-25, 25] - - - 211 143 153 239 698 57 75

[-37, 37] - - - - 365 201 255 97 107 50

[-50, 50] - - - - 265 129 111 120 85 88

[-62, 62] - - - - - 165 203 106 69 68

[-75, 75] - - - - - - 179 68 94 73

[-87, 87] - - - - - 296 180 52 109 79

[-100, 100] - - - - - 176 146 371 59 -
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Table 4: Number of attack traces to reach guessing entropy equal to 1. Results ob-
tained with the ASCADr dataset and the Hamming weight leakage model. Neural
networks are trained with data augmentation by generating different augmented
traces at each epoch.

200k original traces +

δhid [−δaug, δaug ] 0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

25

[-6, 6]

1053

2288 - 1495 - 936 490 970 722 634 666

[-12, 12] 2166 - - 598 1317 1185 609 792 - -

[-25, 25] - - - - - - 2470 - - -

50

[-6, 6]

> 3000

- 2621 2454 2016 2020 2097 1260 1775 1344 -

[-12, 12] - - 2576 1897 2771 - 2809 - - -

[-25, 25] - - - - - - - - - -

[-37, 37] - - - - - - - - - -

75

[-6, 6]

1238

2599 2384 1562 1495 1608 1490 1627 1688 1913 2670

[-12, 12] 1928 2512 1482 1740 2029 1887 2145 1406 2331 1804

[-25, 25] 2972 2402 1750 566 2232 1426 1275 1957 1442 1419

[-37, 37] 2599 1997 1577 1471 1255 802 1921 1019 989 1414

[-50, 50] 2375 - 1414 1278 1192 1489 1215 747 1358 1194

100

[-6, 6]

1898

2818 2372 988 789 758 590 762 504 629 500

[-12, 12] - 676 1017 810 666 749 604 680 654 583

[-25, 25] 1614 686 1090 537 775 759 499 607 658 522

[-37, 37] - 1775 754 1170 499 681 780 545 303 427

[-50, 50] - 1534 691 938 737 889 683 727 464 797

[-62, 62] 1192 2596 1134 1036 810 1145 836 757 930 692

125

[-6, 6]

2509

- - 1175 1564 1438 1018 660 1475 1518 1211

[-12, 12] 2007 2007 1764 1706 836 1885 1404 1675 705 721

[-25, 25] 2259 1067 1613 2555 936 993 1201 1016 742 820

[-37, 37] 1389 - 1417 866 1225 788 603 823 841 869

[-50, 50] - 1504 2565 1460 1096 1593 1264 660 787 842

[-62, 62] 2139 920 1557 903 - 648 1787 971 904 810

[-75, 75] - 2239 1359 - 1299 2495 1063 - 1207 1569

150

[-6, 6]

851

2036 2138 1000 945 590 889 925 908 625 564

[-12, 12] 1254 1782 683 690 707 661 717 691 474 571

[-25, 25] 821 1427 922 645 929 568 540 595 584 729

[-37, 37] 1485 1077 895 458 571 512 357 693 641 515

[-50, 50] 1081 1132 617 739 791 406 586 716 322 465

[-62, 62] 1875 1140 727 850 445 613 521 948 561 689

[-75, 75] 1041 1526 486 718 1187 565 678 531 1197 596

[-87, 87] 982 1163 794 962 844 702 914 709 2771 748

175

[-6, 6]

592

679 723 460 496 568 564 484 465 521 319

[-12, 12] 639 639 492 527 592 429 446 508 400 459

[-25, 25] 621 598 552 376 515 429 745 405 419 420

[-37, 37] 686 422 486 633 516 416 443 407 465 554

[-50, 50] 677 426 546 660 395 586 384 450 408 466

[-62, 62] 705 574 651 843 494 495 689 - 433 549

[-75, 75] 674 800 471 665 736 580 - 397 554 404

[-87, 87] 1142 362 534 323 586 635 487 391 597 318

[-100, 100] 1025 837 645 774 434 537 597 470 599 412

200

[-6, 6]

2677

- 2067 1009 1413 1030 737 712 804 687 569

[-12, 12] - - 2068 829 994 1139 892 719 771 669

[-25, 25] 1056 - 2151 810 1537 730 818 677 1052 541

[-37, 37] - 2157 2053 1347 1098 1185 1327 703 846 1058

[-50, 50] 1007 - 1058 943 - 533 658 860 913 1038

[-62, 62] - 1469 1203 2098 - 709 899 876 830 887

[-75, 75] 1617 1480 - 890 984 1099 576 952 839 829

[-87, 87] - 924 2263 1508 1461 2018 865 999 636 1006

[-100, 100] - 1436 - - 1088 1246 1629 844 1010 709
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Hamming weight leakage model, respectively. The training is always conducted
for 70 000 traces plus the augmented traces. The augmented traces denoted by
0 indicate the number of attack traces required to reach ge∗ = 1 for the base-
line model trained without data augmentation. For each different δhid value, the
CNN architecture is obtained from a random search with 70 000 traces. Later,
new training is adopted for this CNN model with data augmentation for different
δaug with 70 000 original traces plus 7 000 to 70 000 augmented traces (from 10%
of the number of original traces to 100%). The desynchronization levels δaug is
also set to 2× δaug ≤ δhid.

Table 5 gives results for the DPAv4.2 dataset with the Identity leakage model.
For δhid = {25, 50, 75, 125, 150}, we observe that the Nge∗=1 value of the base-
line model is often higher than the lowest value obtained with the best Nge∗=1

when data augmentation is active during training. However, there are also some
cases where we get Nge∗=1 > 3 000 when the CNN model is trained with data
augmentation. The case when δhid = 150 shows how data augmentation im-
proves a CNN that, without data augmentation, requires 141 attack traces to
reach ge∗ = 1. After augmentation is applied, it requires a single attack trace
when at least 35 000 augmented traces are considered. When δhid = {175, 200},
we cannot get the correct key using the chosen model under 3 000 traces with-
out augmentation. We also cannot recover the correct key using augmentation
techniques. This means that when desynchronization is at a high level for this
dataset and leakage model, it is not easy to recover the correct key successfully,
whether or not augmentation is adopted.

The results in Table 6 illustrate the performance of different CNN models
with different data augmentation configurations for the DPAv4.2 dataset labeled
with the Hamming weight leakage model. We also observe that the Nge∗=1 value
obtained for the baseline model is always higher than the lowest value obtained
with the best Nge∗=1 when data augmentation is adopted during training. This is
even true for δhid = 200, the highest level of Gaussian noise. The baseline model
without data augmentation gets the correct key successfully with 1 371 traces.
However, after applying data augmentation with [−δaug, δaug] = [−100, 100] and
using 63 000 augmented traces at each training epoch, the correct key is recovered
with only 21 traces.

5.2 Gaussian Noise Countermeasure

ASCADr Tables 7 and 8 provide results for the ASCADr dataset for Gaussian
noise countermeasure with the Identity leakage model and the Hamming weight
leakage model, respectively. The term σhid refers to the standard deviation in
Gaussian noise (with zero mean) applied to the raw traces for a hiding counter-
measure. The term σaug denotes the standard deviation in Gaussian noise applied
to the augmented traces. The training is always conducted for the 200 000 traces
plus the augmented traces. The augmented traces denoted by 0 indicate the
number of attack traces required to reach ge∗ = 1 for the baseline model trained
without data augmentation. Again, for each different σhid value, the CNN archi-
tecture is different, and it is obtained from the best one from a random search.
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Table 5: Number of attack traces to reach guessing entropy equal to 1. Results
obtained with the DPAv4.2 dataset and the Identity leakage model. Neural net-
works are trained with data augmentation by generating different augmented
traces at each epoch.

70k original traces +

δhid [−δaug, δaug ] 0 7k 14k 21k 28k 35k 42k 49k 56k 63k 70k

25

[-6, 6]

2712

- 276 478 362 335 147 315 261 170 220

[-12, 12] - 522 1233 1025 - - - - - -

[-25, 25] - 1383 1312 - - - - - - -

50

[-6, 6]

991

- 2174 252 - 548 - 679 - - -

[-12, 12] - - 138 - - - 201 - 188 440

[-25, 25] - - - 98 - 70 107 372 116 241

[-37, 37] - - - - - 55 225 131 56 199

75

[-6, 6]

108

141 47 31 32 9 6 8 4 4 4

[-12, 12] 112 29 6 3 3 7 3 11 23 4

[-25, 25] 96 44 21 4 4 3 2 1 5 5

[-37, 37] 159 45 23 7 3 2 1 8 2 28

[-50, 50] 114 36 5 5 4 9 2 25 4 2

100

[-6, 6]

317

640 300 141 124 97 92 145 45 56 94

[-12, 12] 607 204 118 68 59 59 20 22 27 28

[-25, 25] 680 86 61 25 36 6 47 17 12 51

[-37, 37] 353 178 75 16 18 5 11 15 33 23

[-50, 50] 657 192 58 98 15 17 13 34 45 9

[-62, 62] 387 276 82 126 22 16 5 6 24 71

125

[-6, 6]

223

1598 437 820 263 328 400 241 153 213 141

[-12, 12] 964 568 160 386 285 215 236 118 205 153

[-25, 25] 1585 1043 564 638 438 271 262 255 429 733

[-37, 37] 1212 2253 838 1132 782 454 178 287 214 492

[-50, 50] 1650 399 1076 515 292 236 303 209 912 613

[-62, 62] 1479 664 341 657 373 528 294 1004 655 559

[-75, 75] 1033 492 574 1750 463 745 275 886 341 1336

150

[-6, 6]

141

32 101 - 27 - 3 13 - - 1

[-12, 12] - - 107 - 3 19 2 8 3 2

[-25, 25] - - - - 21 2 1 1 1 1

[-37, 37] 41 - - 19 - - 1 2 2 1

[-50, 50] 1330 - - 2 - 2 3 1 2 1

[-62, 62] - - - 156 12 - 1 1 1 1

[-75, 75] - - 23 - 3 41 1 1 1 1

[-87, 87] - - - - 1 14 - 59 15 1

175

[-6, 6]

> 3000

- - - - - - - - - -

[-12, 12] - - - - - - - - - -

[-25, 25] - - - - - - - - - -

[-37, 37] - - - - - - - - - -

[-50, 50] - - - - - - - - - -

[-62, 62] - - - - - - - - - -

[-75, 75] - - - - - - - - - -

[-87, 87] - - - - - - - - - -

[-100, 100] - - - - - - - - - -

200

[-6, 6]

> 3000

- - - - - - - - - -

[-12, 12] - - - - - - - - - -

[-25, 25] - - - - - - - - - -

[-37, 37] - - - - - - - - - -

[-50, 50] - - - - - - - - - -

[-62, 62] - - - - - - - - - -

[-75, 75] - - - - - - - - - -

[-87, 87] - - - - - - - - - -

[-100, 100] - - - - - - - - - -
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Table 6: Number of attack traces to reach guessing entropy equal to 1. Results
obtained with the DPAv4.2 dataset and the Hamming weight leakage model.
Neural networks are trained with data augmentation by generating different
augmented traces at each epoch.

70k original traces +

δhid [−δaug, δaug ] 0 7k 14k 21k 28k 35k 42k 49k 56k 63k 70k

25

[-6, 6]

714

760 747 673 439 203 589 393 216 286 316

[-12, 12] 563 486 398 741 484 467 637 460 - 2515

[-25, 25] 481 519 654 420 352 158 551 582 478 2032

50

[-6, 6]

411

359 367 403 375 197 187 244 222 219 297

[-12, 12] 538 145 237 206 161 164 351 184 214 275

[-25, 25] 366 273 188 207 341 204 160 426 211 293

[-37, 37] 410 199 213 182 195 180 150 343 180 195

75

[-6, 6]

417

1587 782 13 961 - - 659 - - 2557

[-12, 12] 1778 1329 - 462 - 762 - - - 1229

[-25, 25] 1436 1315 9 64 33 - 303 - - -

[-37, 37] 1031 426 - - - 178 - - - -

[-50, 50] 1811 481 - 254 545 13 - - - -

100

[-6, 6]

394

462 401 180 36 379 299 39 - - 25

[-12, 12] 700 640 355 25 - 127 40 154 - 352

[-25, 25] 162 159 19 145 240 141 - - - 11

[-37, 37] 497 225 149 - 45 31 16 - - 20

[-50, 50] 144 240 219 36 175 - 53 - - 12

[-62, 62] 606 314 188 1713 419 31 - - - 73

125

[-6, 6]

460

492 188 140 28 53 64 54 76 64 253

[-12, 12] 199 42 49 71 37 62 49 17 22 18

[-25, 25] 105 48 18 31 15 17 169 28 18 15

[-37, 37] 237 27 38 51 36 27 15 22 20 19

[-50, 50] 478 21 27 16 10 16 15 15 20 31

[-62, 62] 834 69 51 15 19 23 14 12 18 15

[-75, 75] 434 24 20 16 15 15 9 21 10 12

150

[-6, 6]

452

853 351 16 13 - 15 12 - - -

[-12, 12] 634 264 14 10 196 23 - 10 23 -

[-25, 25] 390 10 - - - - 10 - - 8

[-37, 37] 495 10 - - - - - - - -

[-50, 50] 24 - 16 12 12 - - - - -

[-62, 62] 35 14 12 - - - - - - -

[-75, 75] 224 16 - - - - - - - -

[-87, 87] 26 164 - 32 - - - - - -

175

[-6, 6]

1746

1501 1264 1131 943 1310 1185 852 629 1033 555

[-12, 12] 1858 1307 732 606 1131 697 766 698 314 574

[-25, 25] 1009 617 988 462 439 460 296 305 662 332

[-37, 37] 1134 684 608 399 556 672 271 250 529 273

[-50, 50] 1177 875 465 464 405 322 746 371 174 333

[-62, 62] 1150 638 571 446 337 316 284 361 260 314

[-75, 75] 492 709 677 497 379 181 253 315 140 271

[-87, 87] 1134 599 529 277 293 391 265 246 264 206

[-100, 100] 500 866 619 475 382 273 291 203 283 196

200

[-6, 6]

1371

- 1621 1501 1961 1379 993 1283 1113 1415 1433

[-12, 12] 1738 2731 1366 1576 645 1036 1149 1228 550 1151

[-25, 25] 1193 930 2038 858 679 752 1066 1215 763 702

[-37, 37] 1674 674 979 757 718 689 490 702 276 235

[-50, 50] 1983 1004 778 531 486 371 569 795 60 50

[-62, 62] 1507 1124 1329 1374 204 485 446 102 422 123

[-75, 75] 1484 1108 1872 500 191 86 347 59 76 87

[-87, 87] 1451 633 877 738 562 135 61 200 34 38

[-100, 100] 1634 1242 640 849 997 338 24 35 21 22
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Then a new training is deployed for this CNN model with the data augmentation
and different numbers of augmented traces. For each number of the augmented
traces, the model is trained with Gaussian noise with different standard devi-
ations σaug. We set this value to ensure 0.5 ≤ σaug ≤ σhid + 1. The minimum
value of 0.5 for σaug is to ensure that σaug is tested at least for a value that is
lower than the minimum value considered for σhid, which is 1.0.

Table 7 presents the efficiency of data augmentation for different CNN ar-
chitectures with the Identity leakage model. When σhid = {1.0, 2.0, 3.0}, the
Nge∗=1 value obtained for the baseline model is always higher than the lowest
value obtained with the best Nge∗=1 when data augmentation is active during
training. Take σhid = 1.0 for example. When the CNN model is trained with-
out data augmentation, the baseline model can successfully recover the key with
514 traces. When data augmentation with 100 000 augmented traces is applied
during training and σaug = 0.5, the correct key is recovered with 200 traces.
However, if Nge∗=1 > 3 000 is obtained for the baseline model, we observe dif-
ferent scenarios. When σhid = {4.0, 6.0}, the baseline model cannot successfully
recover the key with less than 3 000 traces, and neither can the CNN model do
when data augmentation is applied. This suggests that random search should be
applied again to return another best CNN model. When σhid = 5.0, the baseline
model cannot successfully recover the key with less than 3 000 traces. However,
when σaug = {1.0, 2.0} is adopted, the key can be recovered.

Table 8 presents the efficiency of data augmentation for different CNN archi-
tectures with the Hamming weight leakage model. When σhid = 1.0, we do not
see the performance improvement from data augmentation except in one case
with σaug = 0.5 and 200 000 augmented traces. When σhid = 2.0, there is not
a single case where data augmentation can reduce the traces needed to recover
the key successfully. We see the improvement from augmentation for σhid = 3.0.
For example, we obtain Nge∗=1 = 2136 from the baseline model without data
augmentation. When data augmentation with 200 000 augmented traces with
σaug = 0.5 is applied during training, the correct key candidate is recovered
with 1 431 traces. For σhid = 4.0, the Nge∗=1 value obtained for the baseline
model is always higher than the lowest value obtained with the best Nge∗=1

when data augmentation with σaug = {0.5, 1.0} is applied during training. when
σhid = {5.0, 6.0}, the baseline model cannot successfully recover the key with
less than 3 000 traces, and neither can the CNN model do when augmentation
is applied. This indicates that when Gaussian noise is at a high level, and the
SNR is low, it is not easy to recover the correct key successfully, regardless of
the fact that data augmentation is used.

DPAv4.2 Tables 9 and 10 illustrate results for the DPAv4.2 dataset with Gaussian
noise countermeasure applied with the Identity leakage model and the Hamming
weight leakage model, respectively. The mean value of Gaussian noise is fixed
at 0. The term σhid refers to the standard deviation in Gaussian noise used to
the raw traces for a hiding countermeasure. The term σaug indicates the stan-
dard deviation in Gaussian noise applied to the augmented traces. The training



19

Table 7: Number of attack traces to reach guessing entropy equal to 1. Results
obtained with the ASCADr dataset and the Identity leakage model. Neural net-
works are trained with data augmentation by generating different augmented
traces at each epoch.

70k original traces +

σhid σaug 0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

1.0

0.5

514

642 345 311 598 200 350 304 258 203 288

1.0 556 416 376 592 336 318 218 351 274 233

2.0 736 476 376 495 330 273 544 391 304 306

2.0

0.5

1821

- 1393 964 - - 860 396 560 - 449

1.0 - - - 776 424 344 692 702 577 710

2.0 - 1976 2673 850 - - 622 279 - -

3.0 - - - - - - - - - -

3.0

0.5

828

- - - - - 819 - - - 1148

1.0 - - - - - - 665 525 317 604

2.0 - - - - - - - 818 277 751

3.0 - - - - - - - - 1822 -

4.0 - - - - - - - - - -

4.0

0.5

> 3000

- - - - - - - - - -

1.0 - - - - - - - - - -

2.0 - - - - - - - - - -

3.0 - - - - - - - - - -

4.0 - - - - - - - - - -

5.0 - - - - - - - - - -

5.0

0.5

> 3000

- - - - - - - - - -

1.0 - - - 2544 - - 868 2478 2938 1950

2.0 - - - 2663 - 2952 2412 2998 - 2169

3.0 - - - - - - - - - -

4.0 - - - - - - - - - -

5.0 - - - - - - - - - -

6.0 - - - - - - - - - -

6.0

0.5

> 3000

- - - - - - - - - -

1.0 - - - - - - - - - -

2.0 - - - - - - - - - -

3.0 - - - - - - - - - -

4.0 - - - - - - - - - -

5.0 - - - - - - - - - -

6.0 - - - - - - - - - -

7.0 - - - - - - - - - -
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Table 8: Number of attack traces to reach guessing entropy equal to 1. Results ob-
tained with the ASCADr dataset and the Hamming weight leakage model. Neural
networks are trained with data augmentation by generating different augmented
traces at each epoch.

70k original traces +

σhid σaug 0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

1.0

0.5

610

1149 698 839 1221 823 908 1112 1174 860 606

1.0 865 789 1775 1091 928 1001 899 979 1476 1060

2.0 1265 1334 1874 1528 2004 1958 1977 2212 2041 1946

2.0

0.5

1357

1547 1555 2114 1867 1964 2075 1650 2172 1946 2425

1.0 1900 1370 2275 1950 1864 2196 1994 1914 1695 1842

2.0 1460 1686 1653 1924 1682 2561 2512 2208 2683 2397

3.0 2513 2469 2359 2215 2852 2797 2840 - - -

3.0

0.5

2136

1774 2015 2062 2149 1859 1698 1869 1576 1915 1431

1.0 2338 2153 1949 2255 1952 2451 1946 2103 1889 2068

2.0 1775 2746 2284 2438 - - - - - -

3.0 2798 2799 - 2989 - - - - - -

4.0 2844 - - - - - - - - -

4.0

0.5

2953

2034 2413 2698 2398 1608 2403 2111 2548 2662 2594

1.0 2993 - 2319 2370 2788 2544 2971 2654 2891 2709

2.0 - 2630 - - - - - - - -

3.0 - - - - - - - - - -

4.0 - - - - - - - - - -

5.0 - - - - - - - - - -

5.0

0.5

2758

- - - - - - - - - -

1.0 - - - - - - - - - -

2.0 - - - - - - - - - -

3.0 - - - - - - - - - -

4.0 - - - - - - - - - -

5.0 - - - - - - - - - -

6.0 - - - - - - - - - -

6.0

0.5

> 3000

- - - - - - - - - -

1.0 - - - - - - - - - -

2.0 - - - - - - - - - -

3.0 - - - - - - - - - -

4.0 - - - - - - - - - -

5.0 - - - - - - - - - -

6.0 - - - - - - - - - -

7.0 - - - - - - - - - -
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is always conducted for the 70 000 traces plus the augmented traces. The aug-
mented traces denoted by 0 indicate the number of attack traces required to
reach ge∗ = 1 for the baseline model trained without data augmentation. For
each different σhid value, the CNN architecture is obtained from a random search.
Later, a new training is adopted for this CNN model with data augmentation.
For each of these augmented traces, the model is trained with Gaussian noise
with different standard deviations σaug, which is set to 0.5 ≤ σaug ≤ σhid + 1.

Table 9 illustrates the efficiency of data augmentation for the DPAv4.2 dataset
with the Identity leakage model. When σhid = {1.0, 2.0, 3.0}, the Nge∗=1 value
obtained for the baseline model is always higher than the lowest value obtained
with the best Nge∗=1 when data augmentation is active during training. Take
σhid = 1.0 for example. When the CNN model is trained without data aug-
mentation, the model can successfully recover the key with 54 traces. When
data augmentation with 42 000 augmented traces is applied during training and
σaug = 0.5, the correct key candidate is recovered with 24 traces. However, if
Nge∗=1 > 3 000 is obtained from the baseline model, we can see different cases.
When σhid = {4.0, 6.0}, the baseline model cannot successfully recover the key
with less than 3 000 traces, and neither can the CNN model when augmentation
is applied. When σhid = 5.0, the baseline model cannot successfully recover the
key with less than 3 000 traces. We obtain Nge∗=1 = 1884, 1 794 when 42 000
training augmented trace and σaug = 0.5, and 63 000 training augmented trace
and σaug = 0.1 are applied, respectively.

Table 10 presents the efficiency of data augmentation for the DPAv4.2 dataset
with the Hamming weight leakage model. When σhid = {1.0, 4.0}, we do not
observe the performance improvement from data augmentation. When σhid =
{2.0, 3.0}, the Nge∗=1 value obtained for the baseline model is always higher than
the lowest value obtained with the best Nge∗=1 when data augmentation is active
during training. When σhid = 5.0, the CNN model can successfully recover the
key with 2 025 traces. When data augmentation with 21 000 augmented traces
and σaug = 0.5 is applied during training, the correct key candidate is recovered
with only 1 273 traces. For σhid = 6.0, we obtain Nge∗=1 > 3 000, and get
Nge∗=1 = 2479 when data augmentation is applied with 35 000 augmented traces
with σaug = 1.0.

5.3 Discussion

Based on the obtained results, some general guidelines can be given:

– Is there a single best data augmentation setting for all cases?
We see that different settings (datasets, neural network architectures, leakage
models) require different data augmentation settings, making the hyperpa-
rameter tuning even more complex. At the same time, we deem this effort
well spent as the attack performance can improve significantly when careful
data augmentation is conducted.

– What countermeasure is more difficult?
We observe that the Gaussian noise countermeasure is more difficult to break
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Table 9: Number of attack traces to reach guessing entropy equal to 1. Results
obtained with the DPAv4.2 dataset and the Identity leakage model. Neural net-
works are trained with data augmentation by generating different augmented
traces at each epoch.

70k original traces +

σhid σaug 0 7k 14k 21k 28k 35k 42k 49k 56k 63k 70k

1.0

0.5

54

33 43 38 46 47 24 29 33 44 42

1.0 38 30 44 43 49 42 49 63 42 60

2.0 39 54 - - 113 109 67 105 93 -

2.0

0.5

99

95 87 69 66 46 6 29 8 6 8

1.0 69 66 95 43 45 7 22 11 10 7

2.0 142 174 119 221 116 197 219 - 329 -

3.0 249 519 456 - 208 - - - - -

3.0

0.5

2426

1671 1149 878 756 983 895 617 392 672 299

1.0 1594 - - 1642 - 1765 972 821 868 411

2.0 - 2192 - - 2443 - - - - -

3.0 - - - - - - - - - -

4.0 - - - - - - - - - -

4.0

0.5

> 3000

- - - - - - - - - -

1.0 - - - - - - - - - -

2.0 - - - - - - - - - -

3.0 - - - - - - - - - -

4.0 - - - - - - - - - -

5.0 - - - - - - - - - -

5.0

0.5

> 3000

- - - - - 1884 - - - -

1.0 - - - - - - - - 1794 -

2.0 - - - - - - - - - -

3.0 - - - - - - - - - -

4.0 - - - - - - - - - -

5.0 - - - - - - - - - -

6.0 - - - - - - - - - -

6.0

0.5

> 3000

- - - - - - - - - -

1.0 - - - - - - - - - -

2.0 - - - - - - - - - -

3.0 - - - - - - - - - -

4.0 - - - - - - - - - -

5.0 - - - - - - - - - -

6.0 - - - - - - - - - -

7.0 - - - - - - - - - -
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Table 10: Number of attack traces to reach guessing entropy equal to 1. Results
obtained with the DPAv4.2 dataset and the Hamming weight leakage model.
Neural networks are trained with data augmentation by generating different
augmented traces at each epoch.

70k original traces +

σhid σaug 0 7k 14k 21k 28k 35k 42k 49k 56k 63k 70k

1.0

0.5

15

601 - 70 80 - 101 42 29 52 -

1.0 - - 60 - 334 786 196 59 - 98

2.0 - - 160 577 - - - - - -

2.0

0.5

64

541 31 42 75 90 39 41 47 38 54

1.0 59 68 75 46 46 82 92 70 76 54

2.0 138 64 114 879 318 264 275 439 593 343

3.0 831 1431 674 1987 2991 - - - 1149 2408

3.0

0.5

719

2085 2206 1948 2084 1701 2024 805 1086 696 1076

1.0 2752 1282 2686 992 2490 1129 1122 1511 1187 833

2.0 2758 1944 - 2225 - 1875 1281 - - -

3.0 - - 2079 - - - - - - -

4.0 1827 - - 2989 - - - - - -

4.0

0.5

961

- - 1452 - 1810 - 1396 1392 1128 1215

1.0 - - - 1844 - - 1794 - - -

2.0 - - - - - - - - - -

3.0 - - - - - - - - - -

4.0 - - - - - - - - - -

5.0 - - - - - - - - - -

5.0

0.5

2025

- - 1273 - 2691 - - - 2107 2778

1.0 - - - - - - - - - -

2.0 - - - - - - - - - -

3.0 - - - - - - - - - -

4.0 - - - - - - - - - -

5.0 - - - - - - - - - -

6.0 - - - - - - - - - -

6.0

0.5

> 3000

- - - - - - - - - -

1.0 - - - - 2479 - - - - -

2.0 - - - - - - - - - -

3.0 - - - - - - - - - -

4.0 - - - - - - - - - -

5.0 - - - - - - - - - -

6.0 - - - - - - - - - -

7.0 - - - - - - - - - -
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using data augmentation.
For both datasets, we can use data augmentation to get significant improve-
ment for recovering the correct key under desynchronization countermeasure,
even when δhid is at a high level, such as 175 or 200. This is because of the
shift-invariant property of CNN, which can extract the points of interest in
traces even when the misalignment of traces is large.
When the Gaussian noise countermeasure is applied, usually, we can see some
improvement when using data augmentation for σhid < 5. When increasing
the σhid to 5 or 6, we often cannot recover the correct key using the baseline
model or data augmentation techniques because of the low SNR level and
the shift-invariant property of CNN, which cannot contribute to the reduc-
tion of noise.

– Is there a range for the efficiency of data augmentation?
For the desynchronization countermeasure, we often observe the performance
improvement from data augmentation when the number of augmented traces
is above some value. Take the ASCAD dataset with δhid = 100, for example.
The Nge∗=1 from data augmentation is always lower than that from the
baseline model when the number of augmented traces is larger than 120 000
and 40 000 for the Identity and Hamming weight leakage model, respectively.
For the DPAv4.2 dataset with δhid = 100, the data augmented trace range
is greater than 7 000 and 28 000 for the two leakage models.
At the same time, for the Gaussian noise countermeasure, we do not observe
this phenomenon.

6 Conclusions and Future Work

In this paper, we evaluated the influence of data augmentation on deep learning-
based SCA and verified to what extent it can reduce the protective effect of hiding
countermeasures. We applied our analysis to two public datasets with masked
AES implementations. We apply desynchronization and Gaussian noise to the
original measurements to create a hiding countermeasure effect. We first add the
hiding countermeasure to the chosen datasets and then deploy a hyperparameter
random search to obtain the best CNN model for each hiding countermeasure
case. Later, to investigate how to properly implement data augmentation for spe-
cific models, we deploy new training for each CNN model by considering data
augmentation with different numbers of augmented traces and different data
augmentation hyperparameters, such as range of trace shifts and standard devi-
ations. Our results show that data augmentation can decrease the efficiency of
hiding countermeasures to protect the secret key for different datasets. In partic-
ular, we can improve a CNN model generalization by making the model trained
with data augmentation to recover the key with less than 50 attacked traces for
the ASCADr dataset and a single attack trace for the DPAv4.2 dataset. These
are the best results against trace desynchronization reported in the literature so
far for these datasets. However, different data augmentation configurations are
required for specific neural network architectures to provide the best behavior.
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More datasets and different neural network architectures will be studied in
future work. Additionally, more countermeasures and augmentation techniques,
such as time warping and SMOTE, can be adopted. Here, we investigated hiding
countermeasures techniques separately. We will also investigate how combined
data augmentation strategies could defeat the combination of multiple hiding
countermeasures.
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