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Abstract

A linkable ring signature allows a user to sign anonymously on behalf of a group while
ensuring that multiple signatures from the same user are detected. Applications such as privacy-
preserving e-voting and e-cash can leverage linkable ring signatures to significantly improve
privacy and anonymity guarantees. To scale to systems involving large numbers of users, short
signatures with fast verification are a must. Concretely efficient ring signatures currently rely
on a trusted authority maintaining a master secret, or follow an accumulator-based approach
that requires a trusted setup.

In this work, we construct the first linkable ring signature with both logarithmic signature
size and verification that does not require any trusted mechanism. Our scheme, which relies on
discrete-log type assumptions and bilinear maps, improves upon a recent concise ring signature
called DualRing by integrating improved preprocessing arguments to reduce the verification
time from linear to logarithmic in the size of the ring. Our ring signature allows signatures to
be linked based on what message is signed, ranging from linking signatures on any message to
only signatures on the same message.

We provide benchmarks for our scheme and prove its security under standard assumptions.
The proposed linkable ring signature is particularly relevant to use cases that require privacy-
preserving enforcement of threshold policies in a fully decentralized context, and e-voting.

1 Introduction

Group signatures [17] and ring signatures [19] enable members of a group to sign messages anony-
mously. That is, a verifier of a valid signature only learns that the signature was produced by a
member of the group and nothing else; in particular, the verifier cannot tell if two signatures were
produced by the same party or not. The main difference between group and ring signatures is

*The author was supported by the Swiss National Science Foundation (SNSF) under the AMBIZIONE grant
“Cryptographic Protocols for Human Authentication and the IoT”
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that group signatures rely on a designated group manager to maintain group membership for the
purposes of accountability. More specifically, the group manager is responsible for user enrollment
and revocation so that later it can de-anonymize signatures. On the other hand, ring signatures
allow for a spontaneous group formation, where a user signs anonymously by creating a group that
contains its public key and the public keys of others. The absence of a group manager, ensures that
ring signatures can never be de-anonymized; a property that is crucial in applications where uncon-
ditional anonymity is desired, e.g., whistle blowing and secret ballot. It also allows ring signatures
to be used in decentralized applications without additional setup or assumptions.

A useful extension to ring signatures is linkability, which ensures that a signer cannot sign twice
without being detected. A prominent application of linkability is e-voting where a voter should
not cast a vote more than once, and linkability allows easy detection. Linkability can also be
leveraged to obtain threshold ring signatures by simply concatenating the required threshold of
individual signatures. Threshold ring signatures are useful for regulated and decentralized e-cash
where transactions exceeding a certain amount can only be committed if t independent endorsers
approve the transaction. The identities of the endorsers should not be disclosed as that may leak
information about the origin of the transaction, and thus, calling for privacy-preserving threshold
policy enforcement1.

To scale to applications with large rings, we need linkable ring signatures with fast verifica-
tion. Currently, linkable ring signatures with constant-time verifier [11, 19, 6] require either the
RSA setting or q-type assumptions, and rely hence, on trusted parameter generation. Accord-
ingly, applications depending on these constructions cannot be fully decentralized. In this paper,
we investigate the construction of efficient linkable ring signatures with transparent setup, where
the system parameters are generated without a secret trapdoor, making the scheme amenable to
decentralization. We introduce DualDory, a linkable ring signature with a logarithmic verifier and
transparent setup.

DualDory. DualDory is based on the ring signature scheme DualRing [30] and the preprocessing
argument Dory [22]. DualRing is a ring signature that incorporates discrete-logarithm-based inter-
active arguments building on [12, 14] to obtain logarithmic-size ring signatures, albeit with a linear
verifier. Dory is a pairing-based interactive argument similar to [12, 14] which achieves logarithmic
verifier time thanks to a one-time offline preprocessing phase. DualDory replaces techniques from
[12, 14] with Dory and brings the linear verification cost of DualRing [30] down to logarithmic.
When applied to DualRing, Dory’s preprocessing phase involves computing a succinct commitment
to the ring of users included in the signature. To avoid repeated preprocessing for signatures with
respect to rings which are only used once, we recommend DualDory for rings that are either static,
which are relevant to regulated and decentralized e-cash, or updatable with a subset of signers
joining or leaving, which are well-suited for e-voting. To give a concrete example, DualDory is
well-suited for e-cash transaction audits that require a threshold policy such as, e.g., “a transaction
exceeding 10K USD should be signed by at least two banks before it is confirmed”. The choice
of banks in this scenario may leak information about the origin of the transaction, for example, if
users select always the same banks.

We further enhance DualDory with linkability through deterministic tags. More precisely, we

1Note that multi-signatures [24] cannot be used because they reveal the identity of the signer. Threshold signatures
[28] are not suitable either since they require coordination of key material among voters or auditing authorities.
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combine Pedersen commitments and signatures of knowledge to show that the tag is computed
using one of the secret keys in the ring. As a positive side effect, we are able to precompute the
linear work of signing, leaving only a constant number of operations to be performed when messages
are known.

Contributions. Our contributions can be summarized as follows.

� With DualDory we give the first (linkable) ring signature that combines transparent setup,
logarithmic signature size and logarithmic verification time. We leverage an argument of
knowledge of bilinear pairing products [22], which thanks to a one-time offline preprocessing
phase gives us a logarithmic verifier.

� While signature generation in DualDory is linear in the size of the ring, most of the work can
be precomputed before knowing the message.

� We equip DualDory with “fine-tuned” linkability that allows linkability for signatures on either
arbitrary messages, or on the same messages only, or anything in between. We extend the
security notions of linkable ring signatures from the literature to this configurable linkability
notion, which we call prefix linkability.

� We conduct a performance evaluation that demonstrates the practicality of DualDory.
� We provide a full formal security analysis showing that DualDory is a secure linkable ring
signature under the SXDH assumption, in the random oracle model.

Related Work on Signatures. Group and ring signatures have been extensively studied since
the early nineties [17, 5, 25, 23, 11, 19, 6, 15, 21, 20, 30], with ongoing attempts to reduce signature
sizes and computational complexity. We give an overview in Table 1 of which works offered signif-
icant improvements in these regards. It can be noted that constant size and complexity [29, 6] is
currently only achievable if there is an authority which issues an RSA group setup, which anybody
can use to generate their own keys and form ad-hoc groups referred to as rings [25]. Another line
of work is schemes that maintain their security in the presence of maliciously chosen public keys
[15, 21, 20]2. Recently, research has focused on improving efficiency also for ring signatures based
on discrete-log-type assumptions. These schemes do not rely on any authority and can be deployed
in elliptic curve groups which are about 10 times smaller than RSA groups. Unfortunately, it has
proven to be difficult to achieve competitive signing and verification time for discrete-log-based ring
signatures (see Table 1 for references). Chandran et al. [15] were the first to achieve sublinear signa-
ture sizes, namely O(

√
n). Subsequently, Groth and Kohlweiss [21] achieved logarithmic signature

sizes through concise one-out-of-many proofs, inspiring subsequent works such as DualRing [30],
which we describe in more detail in Section 2.1. Note that while our scheme achieves logarithmic
signature sizes like [21, 30], it does so in the bilinear group setting rather than the standard discrete
logarithm setting, incurring higher concrete costs. However, all of the aforementioned schemes take
linear time to verify a signature. Lastly, we mention that the fine-tuning of linkability has already
been discussed in the group signature setting [31].

2Security against maliciously chosen public keys can be added to schemes such as DualRing or our scheme by
appending a non-interactive proof of correct key computation to the public key, at the cost of increased public key
sizes and verification time. Note that it suffices to verify validity of each public key only once, hence the overhead is
negligible when considering verifications of many signatures under the same public key.
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Ateniese et al. [5] O(1) - O(1) O(1) strong RSA, DDH RO ● ❍ ❍ (●)
Rivest et al. [25] O(n) - O(n) O(n) TD-OWP RO ❍ ● ❍ ❍

Liu et al. [23] O(n) - O(n) O(n) DDH RO ❍ ● ❍ ●

BBS Signatures [11] O(1) - O(1) O(1) q-SDH, DLin RO ● ❍ ❍ (●)
Dodis et al. [19] O(1) - O(1) O(1) strong RSA RO ❍ ❍ ❍ ❍

Au et al. [6] O(1) - O(1) O(1) strong RSA,DDH,LD-RSA RO ❍ ❍ ❍ ●

Chandran et al. [15] O(n) - O(n) O(
√
n) strong DDH, SUB CRS ❍ ❍ ● ❍

Groth et al. [21] O(n log n) - O(n) O(log n) DLOG RO ❍ ● ● ❍

CLSAG [20] O(n) - O(n) O(n) OM-LC-DLOG,DDH RO ❍ ● ● ●

DualRing-EC [30] O(n) - O(n) O(log n) DLOG RO ❍ ● ❍ ❍

DualDory, this work O(n) O(n) O(log n) O(log n) SXDH RO ❍ ● ❍ ●

Table 1: Development of the asymptotic efficiency of practical RSA- and DLOG-based signature schemes that allow
signing on behalf of a group with n members. If applicable, linking costs are negligible. Costs depict exponentiations
in the group for Sign and Verify, and number of group elements for Signature size. In DualDory, verification time
is split into preprocessing effort per group (“offl.”), plus verification effort per signature (“onl.”). ● means applica-
ble/required, ❍ means not applicable/required. (●) means linkable only by the key generation authority.

Related Work on Succinct Arguments. DualRing [30] uses split-and-fold techniques to con-
struct a succinct argument of knowledge which is used to compress signature sizes from O(n) to
O(log n). This is based on techniques first introduced in the discrete logarithm setting in [12, 14],
with succinct proofs but linear verification time. Later, Dory [22] introduced a preprocessing argu-
ment using similar techniques but using a one-time preprocessing phase to reduce verifier complexity
to logarithmic.

Paper Organization. The paper is organized as follows. Section 2 provides an overview of
DualDory and the techniques used to achieve linkability and logarithmic verification. Section 3
introduces the cryptographic assumptions and building blocks. Section 4 formalizes the security of
linkable ring signatures. Section 5 describes DualDory and analyzes its security. Section 6 evaluates
the performance of DualDory. Finally, Section 7 concludes the paper.

2 Technical overview

In this section, we explain our new construction of a linkable ring signature. We obtain our
construction by using the basic DualRing ring signature of [30] as a starting point, and modifying
it in two ways.

1. We make the scheme prefix linkable as described in Section 2.2 by adding tags to signatures
and using extra ‘tag proofs’ to show that the tags were computed correctly.

2. We simultaneously improve the proof size and online signature verification time of the basic
signature scheme in [30] to logarithmic in the number of users using Dory [22].
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2.1 Overview of Dualring

DualRing [30] is a generic ring signature construction with both efficient discrete-logarithm and
lattice-based instantiations. The construction has two parts. The first part is a basic signature
scheme which builds on the classic construction of ring signatures from [4]. For a ring of of n
users, basic signatures have size O(n). The second part is a “sum argument” which compresses
basic signatures to size O(log n), by proving knowledge of values satisfying the basic signature
verification procedure.

In this paper, we focus on the discrete-logarithm instantiation of DualRing, which works over a
group G = ⟨P ⟩ of prime order p, and user public keys pk1, . . . , pkn ∈ G. A basic DualRing signature
is a zero-knowledge proof that the signer knows a private key skj ∈ Zp satisfying pkj = P skj ,
without leaking skj or the index j ∈ [n]. The signature is based on an interactive proof made
non-interactive via the Fiat-Shamir transformation, using a hash function H. Basic signatures on
a message m consist of elements X ∈ G and c1, ..., cn, y ∈ Zp satisfying the following equations:

H(pk1, ..., pkn, X,m) =
n∑

i=1

ci , (1)

P y/X =
n∏

i=1

pkcii . (2)

Details of the signature algorithm and its security and efficiency properties are given in Appendix A.

Checking Equation 1 and Equation 2 involves calculations on all n user public keys pk1, . . . , pkn ∈
G and all n challenges c1, . . . , cn ∈ Zp, leading to signature sizes and verification time of O(n). In
[30], the authors observed that P y/X is a Pedersen commitment to (c1, . . . , cn) under commitment
key (pk1, . . . , pkn), and used a sum argument to prove that Equation 1 was satisfied using the
committed values.

The sum argument is based on split-and-fold zero-knowledge arguments such as [12, 14], which
can prove that Equation 1 is satisfied with proof sizes of O(log n), but still require the verifier to
perform a multi-exponentiation in (pk1, . . . , pkn), which costs at best O(n/ log n) operations using
Pippenger’s algorithm. Further, the construction does not have any linkability properties.

2.2 Adding linkability

In this section, we explain the prefix-linkability notion that our scheme satisfies, and the tagging
technique used to achieve it. The original notion of linkability for ring signature schemes uses a
linking algorithm to determine whether two signatures were created by the same user. We introduce
prefix linkability, where the string to be signed is split into two parts: a prefix prfx and a message
m. Two signatures can be linked if they were created by the same user, and sign messages with
the same prefix prfx. For example, in e-voting, setting prfx to the unique identifier of the bill being
voted on, and m to the value of the vote, the linking algorithm would be able to detect that a user
had tried to vote twice.

To make our construction prefix-linkable, we ask the signer to compute a tag H ′(prfx)sk, based
on the user’s secret key sk, the prefix prfx and a hash function H ′, following a similar strategy to
[23]. The tag is uniquely determined by the user’s secret key sk and the prefix prfx, which allows
an efficient linking algorithm. To ensure that the tag is computed correctly using the same secret
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key as the rest of the signature, we have the signer produce a Pedersen commitment com = P skQr

to their secret key, and use a ‘tag proof’ based on standard sigma protocols to show that com and
tag both use the same secret key. Note that we cannot perform this consistency check on the user’s
public key, since this would leak the identity of the user.

This leaves us with a further problem. A signer can use DualRing to prove that they know
a secret key ski corresponding to public key pki from a list (pk1, . . . , pkn), but this proof is not
connected with tag or com. To solve this problem, we use an idea from [21]. Since the signer knows
an opening sk, r ∈ Zp to com satisfying com = P skQr, they know how to open exactly one of the
commitments (com/pk1, . . . , com/pkn) to zero, i.e. they know a discrete logarithm r ∈ Zp satisfying
com/pki = Qr.

Applying DualRing to com/pk1, . . . , com/pkn and adding the tag proof produces a linkable RS
where the verifier checks the tag proof and the following equations:

H(com/pk1, ..., com/pkn, X,m) =

n∑
i=1

ci , (3)

P y/X =

n∏
i=1

(com/pki)
ci . (4)

The size of this signature could be reduced to O(log n) using the same sum argument as [30].
However, the verification time would still be O(n).

2.3 Reducing signature size and verification time simultaneously

Our ring signatures consist of 7 elements of G1, 2 elements of G2, and 18 log(n) elements of GT .
We can achieve a logarithmic verification time by replacing the sum argument with an argument
with lower verification costs.

The sum argument is based on split-and-fold zero-knowledge arguments such as [12, 14]. Dory
[22] extends [12, 14] to the setting of bilinear pairings. This setting uses a pairing-based commitment
scheme which commits to a message Ω ∈ Gn

1 with commitment key Γ̃ ∈ Gn
2 using the commitment

A =
∏n

i=1 e(Ωi, Γ̃i) (and similarly for messages Ω̃ ∈ Gn
2 and keys in Γ ∈ Gn

1 ). Dory allows the prover
to prove knowledge of Ω ∈ Gn

1 and Ω̃ ∈ Gn
2 satisfying A = e(Ω, Γ̃), B = e(Γ, Ω̃) and C = e(Ω, Ω̃),

for publicly known commitment keys Γ ∈ Gn
1 , Γ̃ ∈ Gn

2 and target values A, B and C ∈ GT .

When proving statements of this form, the verifier must perform operations on each of the
n-dimensional commitment keys, leading to O(n) verification costs. However, unlike [12, 14], in
which calculations on keys must be done online, Dory allows preprocessing of commitment keys
once and for all in an offline phase. Thereafter, the verifier need only use succinct commitments to
these keys and incurs O(log n) costs.

Now, we explain how to apply Dory to Equation 3 and Equation 4. First, we map Equation 3
and Equation 4 to equations over bilinear groups. Imagine that the DualRing scheme has been
executed over G1 of the bilinear group . Consider group element e(P, P̃ ) (where P ∈ G1 and
P̃ ∈ G2). Exponentiate using the left and right hand sides of Equation 3, using the bilinearity of
e, to get

e(PH(com/pk1,...,com/pkn,X,m), P̃ ) =

n∏
i=1

e(P, P̃ ci) . (5)
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In a similar way, Equation 6 can be paired with group element P̃ and rearranged to obtain

e(P y/X, P̃ ) =

n∏
i=1

e(com/pki, P̃
ci) . (6)

Since the exponentiation and pairing maps are injective, Equation 5 and Equation 6 imply Equa-
tion 3 and Equation 4. Thus, given commitments to (P, . . . , P ) ∈ Gn

1 , (P̃
c1 , . . . , P̃ cn) ∈ Gn

2 , and
(com/pki)

n
i=1 ∈ Gn

1 , the signer can apply Dory to prove that Equation 5 and Equation 6 hold with
the left hand side of each equation as target values. Note that the target value from Equation 5
involves n values, so to avoid O(n) verifier costs here, we replace these values with the commit-
ment to (com/pk1, . . . , com/pkn) . This is still sufficient for security of DualRing as long as the
commitment scheme is binding.

Dory relies on the SXDH assumption for security, which implies the hardness of the discrete
logarithm assumption over G1, and therefore the security of DualRing over G1.

Fast online verification time relies on the verifier being able to compute a commitment to
(com/pk1, . . . , com/pkn) ∈ Gn

1 using O(n) offline operations and O(log n) online operations. Since
com depends on randomness r, it is different for every signature, so it is impossible for the verifier
to compute this commitment once and for all independently of any signatures. Instead, the verifier
computes Γ̃ :=

∏n
i=1 Γ̃i, and a commitment A0 :=

∏n
i=1 e(pki, Γ̃i) to (pk1, . . . , pkn) offline, which

costs O(n) operations. Unlike in [30], this does not depend on any part of the signature and can
be computed once “offline” for each ring and then reused in “online” signature verification. Note
that the length n of the commitment keys gives an upper bound on the number of user public keys
that can be committed to. When verifying a signature, the verifier can compute a commitment to
(com/pk1, . . . , com/pkn) as e(com, Γ̃)/A0.

On logarithmic verification time. The construction described above achieves logarithmic on-
line verification time when the list of user public keys in the ring signature is read just once and
used to compute a succinct commitment. Logarithmic verification time is achieved in an amortised
sense, when verifying many signatures with respect to the same set of users. This is the best one
can hope for, as verifying signatures with respect to many different sets of users requires the verifier
to read the set of users each time, and perform operations on each user public key. If not, and it was
possible to verify a signature without reading every public key, then a signature might verify with
respect to a different, unintended group of users in which some of the unread public keys had been
replaced by others, facilitating forgeries. Our construction avoids this issue as the commitment
acts as a succinct representation of the user public keys, and binds a signature to that collection
of users.

Since the commitment to the set of user public keys is of the form
∏n

i=1 e(pki, Γ̃i), given a
commitment to a large group of users, it is also easy to update the commitment to include new
users by multiplying the commitment by e(pkn+1, Γ̃n+1), or remove existing users by dividing by
a suitable value. This means that logarithmic verifier complexity can be maintained up to small
changes in the set of users.

Comparison with accumulator-based approaches In our construction, the commitment
to the set of public keys related to a given signature acts like an accumulator for those public
keys. However, prior accumulator-based approaches rely on either q-type assumptions over bilinear
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groups, or RSA groups. Both approaches have trapdoors. This means that the public parameters
for group and ring signature schemes based on these approaches must be generated by a trusted
party or via a secure multiparty computation protocol. By contrast, the public parameters for our
scheme can be generated without a trusted setup.

3 Preliminaries

On input the security parameter 1λ, a group generator G.Gen(1λ) produces public parameters
Gpp = (p,G, P ), where p is a prime of bitlength λ, and G is a cyclic group of order p with gen-
erator P . Similarly, a bilinear group generator BG.Gen(1λ) produces public parameters BGpp =
(p,G1,G2,GT , e, P, P̃ ) whereG1 = ⟨P ⟩, G2 = ⟨P̃ ⟩, GT are groups of order p. The map e : G1×G2 →
GT is bilinear (for all u, v ∈ Zp, e(P

u, P̃ v) = e(P, P̃ )uv and non-degenerate (for all generators P of
G1, P̃ of G2, GT = ⟨e(P, P̃ )⟩). For P ∈ Gn

1 and P̃ ∈ Gn
2 , let e(P , P̃ ) :=

∏n
i=1 e(Pi, P̃i).

Notations.We refer to group elements with upper-case letters. Elements in Zp are referred to
using lower-case letters. We use ⋆̃ to denote elements in G2 and bold font to denote elements in
GT . Vectors are denoted by ⋆.

Definition 3.1 (DDH assumption). Let (p,G, P ) ← G.Gen(1λ) be a group generator. The DDH
assumption holds for G.Gen if the following distributions are indistinguishable:

{P,U = P u, V = P v,W = P uv : u, v ← Zp} , and

{P,U = P u, V = P v,W = Pw : u, v, w ← Zp} .

Definition 3.2 (DLOG assumption). Let (p,G, P )← G.Gen(1λ) be a group generator. The DLOG
assumption holds for G.Gen if for all p.p.t. adversaries A, we have

Pr

 A(p,G, P, U) = u
(p,G, P )← G.Gen(1λ)

u← Zp

U = P u

 ≈ 0 .

Definition 3.3 (SXDH assumption). Let (p,G1,G2,GT , e, P, P̃ )← BG.Gen(1λ) be a bilinear group
generator. The SXDH assumption holds for BG.Gen if the DDH assumption holds for G1 and G2

(replacing G.Gen and tuple (p,G, P ) with BG.Gen and tuple (p,G1,G2,GT , e, P, P̃ )).

Definition 3.4 (DPair assumption). Let (p,G1,G2,GT , e, P, P̃ )← BG.Gen(1λ) be a bilinear group
generator, and let n = poly(λ). The double-pairing (DPair) assumption holds for BG.Gen if for
all probabilistic polynomial time adversaries A, for P ← Gn

1 , the probability that A can produce
P̃ ∈ Gn

2 such that e(P , P̃ ) = 1 is negligible.

The DPair assumption is first introduced in [3], where it is shown to be implied by the SXDH
assumption.

3.1 Arguments of knowledge

Definition 3.5. A relation R is a set of tuples (pp,x,w) where pp is called the public parameters,
x is called the instance and w is called the witness. The language LR corresponding to R is the set
of pairs (pp,x) such that there exists a witness w with (pp,x,w) ∈ R.

8



Definition 3.6. An interactive argument is a tuple of three algorithms (G,P,V) with the following
syntax.

� G(1λ, n) → pp. The generator G is a p.p.t. algorithm which takes the security parameter λ
and instance size n as input and outputs public parameters pp.

� The prover P and verifier V are p.p.t. interactive algorithms. The prover takes pp, x and w
as inputs. The verifier takes pp and x as inputs. An interaction between P and V on inputs
s and t, producing transcript tr is denoted by tr← ⟨P(s),V(t)⟩. The output of V at the end of
an interaction is denoted by ⟨P(s),V(t)⟩ = b. If b = 1, we say that the transcript is accepted
by the verifier, and if b = 0, it is rejected.

We say that (G,P,V) is an argument of knowledge for a relation R if it satisfies the following
completeness and knowledge soundness definitions.

� Completeness. For all λ, n ∈ N and all adversaries A,

Pr

 (pp,x,w) ∈ R
∧

⟨P(pp,x,w),V(pp,x)⟩ = 1

pp← G(1λ, n)
(x,w)← A(pp)

 = 1 .

� Knowledge soundness. For all λ, n ∈ N, there exists an expected polynomial time emulator
E such that for all efficient adversaries A, we have

Pr

A(st, tr) = 1
pp← G(1λ, n)

(x, st)← A(pp)
tr← ⟨A(st),V(pp,x)⟩


≈Pr

 A(st, tr) = 1 ∧
(tr is accepting→ (pp,x,w) ∈ R)

pp← G(1λ, n)
(x, st)← A(pp)

(tr,w)← EA(st)(pp,x)

 .

3.1.1 Argument of knowledge for pairing products

Definition 3.7. Define the relation Rn
PProd as the set of tuples (pp,x,w) satisfying A = e(Ω, Γ̃),

B = e(Γ, Ω̃) and C = e(Ω, Ω̃), where

� pp = ((p,G1,G2,GT , e, P, P̃ ), (Γ, Γ̃)) where (p,G1,G2,GT , e, P, P̃ ) ← BG.Gen(1λ), Γ ∈ Gn
1

and Γ̃ ∈ Gn
2 ;

� x = (A,B,C) ∈ G3
T ; and

� w = (Ω, Ω̃) where Ω ∈ Gn
1 , Ω̃ ∈ Gn

2 .

Theorem 3.8 ([22]). Assuming that SXDH holds for BG.Gen, then there is a preprocessing ar-
gument of knowledge (GPProd,PPProd,VPProd) for Rn

PProd, for every n ∈ N, with the following
performance parameters:

� communication complexity dominated by O(log n) elements of GT ;
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� prover time dominated by O(n) pairing operations and G1, G2 and GT operations;

� offline verifier time dominated by O(n) pairing operations and GT operations in a one-time
preprocessing phase; and

� online verifier time dominated by O(log n) pairing operations and GT operations.

3.2 Signatures of knowledge

We describe here signatures of knowledge following the definitions in [16]. In a nutshell, a signature
of knowledge generalizes the concept of public key signatures to NP statements. Such a signature
proves that “a person holding a witness w to a statement x has signed a message m”.

Definition 3.9. A signature of knowledge (SoK) is a tuple of three algorithms (G,S,V) with the
following syntax.

� G(1λ) → pp. The generator G is a p.p.t. algorithm which takes the security parameter λ as
input and produces public parameters pp as output.

� The signer S is a p.p.t. algorithm that takes pp, x, w and a message m as inputs and produces
a signature σ.

� The verifier V is a p.p.t. algorithm that takes as input pp, x, message m and signature σ,
and outputs a bit b. If b = 1, we say that σ is a valid signature on message m relative to pp
and x.

We say that (G, S,V) is a signature of knowledge for a relation R if it satisfies the following
properties.

� Completeness. For all λ, n ∈ N, m ∈ {0, 1}∗ and all adversaries A

Pr

 (pp,x,w) ∈ R ∧
σ ← S(pp,x,w,m) ∧
V(pp,x,m, σ) = 1

pp← G(1λ, n)
(x,w)← A(pp)

 = 1 .

� Simulatability. There exists a polynomial-time simulator Sim that runs two algorithms

– SimG(1λ) → (pp, τ): The generator SimG is a p.p.t. algorithm which takes the security
parameter λ as input and produces public parameters pp and trapdoor τ as output.

– SimS is a p.p.t. algorithm that takes pp, trapdoor τ , x and a message m as inputs and
produces a simulated signature σ.

such that Sim receives values (x,w,m) as inputs, checks whether w is valid and outputs
SimS(pp, τ,x,m), and for all p.p.t. adversaries A with oracle access to simulator Sim and
SoK signer S

Pr
[
1← ASim(pp) (pp, τ)← SimG(1λ, n)

]
≈ Pr

[
1← AS(pp) pp← G(1λ, n)

]
.

10



� Simulation Extractability. These exists a polynomial time extractor Extractor such that
for all p.p.t adversaries A

Pr

 (pp,x,w) ∈ R ∨
(x,w,m) ∈ Queries ∨

V(pp,x,w,m) = 0

(pp, τ)← SimG(1λ)
(x,m, σ)← ASim(pp)

w← Extractor(pp, τ,x,m, σ)

 ≈ 1 .

where Queries denotes all queries (x,w,m) that Sim receives from A.

4 Prefix-linkable Ring Signature Schemes

We now give a definition of prefix-linkable ring signatures. We follow [6] and [7], and modify their
definitions by splitting strings to be signed into message and prefix3, and link only with respect to
the prefix (but not the message).

Definition 4.1 (Prefix-linkable ring signature scheme). A prefix-linkable ring signature (PLRS)
scheme is a tuple of algorithms RS = (Gen,KeyGen,Sign,Verify, Link) with message space M and
prefix space P where

� pp ← RS.Gen(1λ) produces public parameters pp, which we assume to be available to all the
algorithms below.

� (sk, pk)← RS.KeyGen(pp) produces a key pair.

� σ ← RS.Sign(pk, sk,m, prfx), where m is a message, prfx is a prefix, and pk is a vector of
public keys produced by RS.KeyGen that includes the public key pk corresponding to secret key
sk.

� 0/1← RS.Verify(pk,m, prfx, σ).

� 0/1← RS.Link(pk, σ,m, σ′,m′, prfx).

We require that the scheme is correct; that is, for any m, m′ ∈M, any prfx ∈ P, any (sk, pk), (sk′, pk′)
produced by RS.Gen(1λ) with pk ̸= pk′ and any pk of public keys produced by RS.KeyGen that in-
cludes pk and pk′:

� RS.Verify(pk,m, prfx,RS.Sign(pk, sk,m, prfx)) = 1.

� RS.Link(pk,RS.Sign(pk, sk,m, prfx),m,RS.Sign(pk, sk,m′, prfx),m′, prfx) = 1.

� RS.Link(pk,m,RS.Sign(pk, sk,m, prfx),m′,RS.Sign(pk, sk′,m′, prfx), prfx) = 0 except with neg-
ligible probability.

We now define various security properties. First, unforgeability demands that an adversary
cannot produce a valid signature for any message-prefix pair, for a ring for which the adversary
does not know any secret key, even when equipped with a signing oracle for that ring. Forgeries
need to verify with respect to the ring generated by the experiment. All our notions below are in
the “honest ring with insider corruption” setting [10], i.e., all the games sample pp← RS.Gen(1λ),
(ski, pki)← RS.KeyGen(pp), i ∈ [n] and set pk := (pk1, . . . , pkn).

3A synonym for prefix used in the literature is event identity [18]. We use the term prefix for brevity.
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Definition 4.2 (Corruption oracle). Given a well-formed public key pk produced by RS.KeyGen,
the corruption oracle CO returns the corresponding sk.

Definition 4.3 (Signing oracle). Given a well-formed set of public keys pk, on input pk ∈ pk, a
message m, and a prefix prfx, the signing oracle SOpk returns a signature σ whose distribution is
comp. indistinguishable from the output of RS.Sign(pp, pk, sk,m, prfx), where sk corresponds to pk.

Definition 4.4 (Unforgeability). A PLRS is unforgeable if for all efficient adversaries ASOpk(pp, pk)
outputting (m, prfx, σ), the probability that σ was not produced by SOpk on any input (m, prfx) and
RS.Verify(pp, pk,m, prfx, σ) = 1 is negligible.

Next, we define anonymity, which demands that an adversary cannot tell which of a ring’s secret
keys was used to produce a signature. A notable difference to anonymity of ring signature schemes
with “standard”, i.e., full-message linkability is that we can grant the adversary access to a signing
oracle even for the two challenge public keys. In standard linkable ring signature schemes, such an
oracle would let the adversary win trivially, by producing a signature on another message under
these public keys, and test which one the challenge signature links to. In case of prefix linkable
schemes, such trivial wins are only possible if the adversary can use the same prefix in the signing
oracle, and hence we can formulate a strong anonymity game by allowing access to a signing oracle
with respect to prefixes that differ from the challenge prefix.

Definition 4.5 (Anonymity). A PLRS is anonymous if for all efficient stateful adversaries A, the
probability of winning the following game is negligibly close to 1/2.

Anonymity game:

- (m, prfx, pk0, pk1)← ACO,SOpk(pp, pk)
- b← {0, 1};
- σ ← RS.Sign(pp, pk, skb,m, prfx);
- b′ ← A(σ).

A wins if all of the following hold:
- b = b′;
- pk0, pk1 ∈ pk and pk0 ̸= pk1;
- pk0, pk1 were never queried to CO;
- (pk0, prfx) and (pk1, prfx) were never
used in any SOpk query.

Next, we demand that it must be hard to bypass the linking property of the signature scheme.
For standard linkable ring signatures, i.e., ones that link with respect to any message, this property
simply ensures that it is hard to create two signatures from the same secret key that do not link with
each other. Here, we additionally require the adversary to create such non-linking signatures with
respect to the same prefix, as otherwise the game would be trivial to win. As in [7], the adversary
can use all of the secret keys in the ring to achieve this goal. Our definition differs from [7] in that
we fix the ring pk, i.e., we do not allow the adversary to introduce adversarially-generated public
keys into the ring, or drop some of the public keys from it.

Definition 4.6 (Prefix linkability). A PLRS is prefix-linkable if for all efficient adversaries A,
the probability of winning the following game is negligible.

Prefix linkability game:

- (mi, prfx, σi)i∈[n+1] ← ACO,SOpk(pp, pk)

A wins if all of the following hold:
- RS.Verify(pp, pk,mi, prfx, σi) = 1 for all
i ∈ [n+ 1];
- RS.Link(pp, pk, σi,mi, σj ,mj , prfx) = 0
for all i, j ∈ [n+ 1], i ̸= j.
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Finally, we demand that it must be hard to create a signature that links to one of the honest
signers. We follow the 2-staged definition of [7] and grant the adversary access to all of secret keys
in the ring only after producing the “slandering” signature σ′.

Definition 4.7 (Non-slanderability). A PLRS is non-slanderable if for all efficient adversaries A,
the probability of winning the following game is negligible.

Non-slanderability game:

- (m′, prfx′, σ′)← ASOpk(pp, pk)
- (m,σ)← ACO,SOpk

A wins if all of the following hold:
- RS.Verify(pp, pk,m, prfx′, σ) = 1;
- RS.Verify(pp, pk,m′, prfx′, σ′) = 1;
- RS.Link(pk, σ,m, σ′,m′, prfx′) = 1;
- σ′ was not received from SOpk.

Discussion. In case prfx is the empty string, the definitions in this section define a linkable ring
signature with message space M. Dropping prfx from them leads the anonymity game (Theo-
rem 4.5) to forbid usage of signing oracles with respect to pk0, pk1 completely. The definitions then
become equivalent to the definition of Au et al.[6]. In case m is the empty string, the definitions in
this section define a “same-message” linkable RS with message space P, where linking of signatures
is only possible if a signer signs the same message more than once. Hence, our notion of prefix
linkability is a generalization that allows fine-tuned linkability for ring signatures.

5 Our Construction

We are now ready to present our new ring signature scheme which allows signatures to be linked
via message prefixes, and where verification time for re-used rings can be compressed to logarithmic
at the cost of one-time linear-time preprocessing of rings.

5.1 Tag Proof

We start by giving a “tag proof” scheme, which allows to prove knowledge of a secret key that was
used to create both a linking tag and a commitment. For efficiency purposes, we link this proof
with a message m, making it a signature of knowledge.

Definition 5.1. The relation RTag consists of tuples

(ppTag,x,w) =
(
(p,G, P,Q,H,H ′), (prfx, tag, com), (sk, r)

)
,

such that G is a group of prime order p with generators P and Q, H : {0, 1}∗ → Zp and H ′ : {0, 1}∗ →
G are two hash functions, com, tag ∈ G, prfx ∈ {0, 1}∗, and sk, r ∈ Zp, satisfy com = P skQr and
tag = H ′(prfx)sk.

Construction 1. Let λ ∈ N be a security parameter and G.Gen be a group generator. Our tag
proof scheme is a tuple of algorithms (GTag,STag,VTag) defined as follows.
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ppTag ← GTag(1
λ):

(p,G, P )← G.Gen(1λ)
Q← G
define hash functions

H : {0, 1}∗ → Zp and
H ′ : {0, 1}∗ → G

output ppTag := (p,G, P,Q,H,H ′).

σTag ← STag(ppTag,x,w,m):

(prfx, tag, com) := x and (sk, r) := w

a, b←$ Zp

A := H ′(prfx)a ∈ G, B := P aQb ∈ G
c = H(prfx, com, tag, A,B,m) ∈ Zp

ā := a+ c · sk ∈ Zp, b̄ := b+ c · r ∈ Zp

output σTag := (A,B, ā, b̄) ∈ G2 × Z2
p.

b← VTag(ppTag,x, σTag,m):

(prfx, tag, com) := x, (A,B, ā, b̄) := σTag ∈ G2 × Z2
p

c = H(prfx, com, tag, A,B,m) ∈ Zp

if H ′(prfx)ā = A · tagc and P āQb̄ = B · comc then output 1, else output 0.

Theorem 5.2. Tag proof (Construction 1) is a signature of knowledge for RTag.

Sketch. Tag proof is a non-interactive zero-knowledge proof of knowledge for RTag made up of two
simple zero-knowledge proofs:

� one Schnorr proof-of-knowledge of the discrete logarithm sk of A to base H ′(prfx) (see e.g.
[27, Fig. 4.3]); and

� one Okamoto proof of knowledge of exponents sk, r such that com = P skQr for P,Q, com ∈ G
(see e.g. [27, Fig. 4.5]).

The proofs are combined using an EQ transformation in which parts of the Schnorr proof (such
as a, ā) are reused in the Okamoto proof (see [27, Section 5.2.2]), before making the result-
ing proof non-interactive using the Fiat-Shamir heuristic (i.e., using hash H to generate the
challenge). If H takes also message m as input, this results in a signature of knowledge for
(x,w) = ((prfx, tag, com), (sk, r)). First, given that Schnorr and Okamoto proofs are simulat-
able [26], the corresponding signature is also simulatable in the random oracle model [9]. Second,
applying the forking lemma to H, one can successfully extract a valid witness from a valid forgery
[9].

5.2 DualDory

In this section, we give our main ring signature construction.

Construction 2. Let λ ∈ N denote a security parameter and n ∈ N an upper bound on the ring size.
Let BG.Gen a bilinear group generator, (GTag, STag,VTag) the tag proof scheme of Construction 1,
Rn

PProd the relation w.r.t BG.Gen as in Definition 3.7, and (GPProd,PPProd,VPProd) a preprocessing
argument of knowledge for Rn

PProd.

Then DualDory is defined by the set of procedures in Figure 1.

Theorem 5.3. DualDory (Construction 2) is an unforgeable, anonymous, prefix-linkable and non-
slanderable PLRS scheme with the following complexity parameters:

� public parameter size O(n) elements of G1 and G2;

� signature size O(log n) GT -elements, O(1) G1-elements and O(1) Zp-elements;
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Setup RS.Gen(1λ, n):

BGpp = (p,G1,G2,GT , e, P, P̃ )← BG.Gen(1λ)
Q←$ G1, Γ←$ Gn

1 , Γ̃←$ Gn
2

define hash functions
H ′ : {0, 1}∗ → G1 and H : {0, 1}∗ → Zp

ppTag := (G1, p, P,Q,H,H ′), ppPProd := (BGpp, (Γ, Γ̃))
output pp := (ppPProd, ppTag)

Key Generation RS.KeyGen(pp):
sk ←$ Zp

output (sk, pk := P sk)

Preprocessing per ring:
A0 ← e(pk, Γ̃), D← e(P , Γ̃)
Γ̃←

∏n
i=1 Γ̃i

output aux := (A0,D, Γ̃)

Signing RS.Sign(pp, aux, pk, skj ,m, prfx):

pk := (pki)
n
i=1 ∈ Gn

1 , parse m in {0, 1}∗
r ←$ Zp, com← P skjQr

pk′ := (pk′1, ..., pk
′
n)

with pk′i = com/pki (i.e., pk
′
j = Qr)

(1) Commitment to pk′:

A← e(com, Γ̃)/A0

(2) DualRing, applied to ∃ j ∈ [n], r ∈ Zp s.t. pk′j = Qr:

x, c1, ..., cj−1, cj+1, ..., cn ←$ Zp

X ← Qx
∏

i∈[n]\{j}

pk′
−ci
i ∈ G1

cj ← H(A, X)−
∑

i∈[n]\j ci ∈ Zp

y ← x+ cjr ∈ Zp

(3) Arg. of knowledge of pairing products:
c := (c1, . . . , cn) ∈ Zn

p

P̃ c := (P̃ c1 , . . . , P̃ cn) ∈ Gn
2

P := (P, . . . , P ) ∈ Gn
1

B← e(Γ, P̃ c), C← e(Qy/X, P̃ ),
E← e(PH(A,X), P̃ )
π1 ← PPProd(ppPProd, (A,B,C), (pk′, P̃ c))
π2 ← PPProd(ppPProd, (D,B,E), (P , P̃ c))

(4) Signature of knowledge/tag proof:

tag = H ′(prfx)sk

x := (prfx, tag, com)
σTag ← STag(ppTag,x, (sk, r),m||π1||π2)a
output σ := (X, y,B, π1, π2, σTag, tag, com).

aIncluding m in the tag proof allows DualDory to offload most
of the cost of the ring signature generation to an offline phase
that produces π1 and π2 before knowing the message to be signed.

Verification RS.Verify(pp, aux, pk,m, prfx, σ):

aux := (A0,D, Γ̃), parse m in {0, 1}∗
(X, y,B, π1, π2, σTag, tag, com) := σ
A← e(com, Γ̃)/A0, C← e(Qy/X, P̃ ), E← e(PH(A,X), P̃ )
run VPProd(ppPProd, (A,B,C), π1)
run VPProd(ppPProd, (D,B,E), π2)
output VTag(ppTag, (prfx, tag, com), σTag,m||π1||π2)

Linking RS.Link(pp, pk, σ,m, σ′,m′, prfx):

(X, y,B, π1, π2, σTag, tag, com) := σ
(X ′, y′,B′, π′

1, π
′
2, σ

′
Tag, tag

′, com′) := σ′

output 1 if tag = tag′ and 0 otherwise.

Figure 1: The DualDory linkable ring signature scheme. Note that the parameter generation GTag

is not used, and instead tag proof is run on the pairing source group G1 produced by BG.Gen.

� signing complexity dominated by O(n) pairing operations;

� online verification complexity dominated by O(log n) pairing operations;

� offline verification complexity dominated by O(n) pairing operations;

Proof. The proof follows from a straightforward inspection of the complexity of the procedures,
and from Theorems 5.4-5.7.

Theorem 5.4 (Correctness). DualDory satisfies correctness (Theorem 4.1).
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Proof. We show that RS.Verify(pk,m, prfx,RS.Sign(pk, sk,m, prfx)) = 1. Let pk′ = (com/pki)
n
i=1

and recall that A = e(com, Γ̃)/A0 = e(pk′, Γ̃), B = e(Γ, P̃ c), C = e(Qy/X, P̃ ), D = e(P , Γ̃) and
E = e(PH(A,X), P̃ ). Parse the last input element RS.Sign(sk, pk,m, prfx) as (X, y,B, π1, π2, σTag, tag, com).
Following DualRing: Qy/X =

∏n
i=1 pk

′ci
i and

∑n
i=1 ci = H(A, X). Therefore, C = e(pk′, P̃ c) and

E = e(P , P̃ c).

VPProd(ppPProd, (A,B,C), π1) = 1 because π1 ← PPProd(ppPProd, (A,B,C), (pk′, P̃ c)). Sim-
ilarly, π2 ← PPProd(ppPProd, (D,B,E), (P , P̃ c)) and VPProd(ppPProd, (D,B,E), π2) = 1. Finally,
σTag ← STag(ppTag, (prfx, tag, com), (sk, r),m||π1||π2), which means that
VTag(ppTag, (prfx, tag, com), σTag,m||π1||π2) = 1.

RS.Link(pk,RS.Sign(pk, sk,m, prfx),m,RS.Sign(pk, sk,m′, prfx),m′, prfx) = 1: Two signatures gen-
erated using the same prefix prfx and secret key sk will always yield the same tag H ′(prfx)sk, leading
RS.Link to output 1.

RS.Link(pk,m,RS.Sign(pk, sk,m, prfx),m′,RS.Sign(pk, sk′,m′, prfx), prfx) = 0: Two signatures gen-
erated using the same prefix prfx and two different secret keys sk and sk′ will always yield two
distinct tags H ′(prfx)sk and H ′(prfx)sk

′
, leading RS.Link to output 0.

Theorem 5.5. DualDory is anonymous (Theorem 4.5) in the random oracle model under the DDH
assumption.

Proof. Suppose that there is an adversary A which wins the anonymity game (Theorem 4.5) with
non-negligible advantage. We show that there is a distinguisher D which leverages A to break the
DDH assumption in G1 in the random oracle model.

Let BGpp := (p,G1,G2,GT , e, P, P̃ ) ← BG.Gen(1λ), and let (U, V,W ) ∈ G3
1 be sampled either

as a DDH tuple or uniformly at random, as in Theorem 3.1. The distinguisher D receives BGpp
and (U, V,W ) as input. The distinguisher D simulates the anonymity game for A as follows. First,
D samples public parameters exactly as RS.Gen would. D produces group elements Q ← G1,
Γ ← Gn

1 and Γ̃ ← Gn
2 , sets ppTag := (G1, p, P,Q,H,H ′) and ppPProd := (BGpp, (Γ, Γ̃)), and

outputs pp := (ppPProd, ppTag). Next, D simulates RS.KeyGen. D samples j ← [n]. Then, for each

i ∈ [n] \ {j}, D samples secret key ski ← Zp and computes corresponding public key pki := P ski .
Then, D sets pkj := U .

Next, D simulates the anonymity game for A. When A makes a corruption query pki, D checks
whether i = j, and if so, aborts. If not, D outputs secret key ski. For simplicity purposes, we
assume that A issues n − 2 corruption queries for distinct indices. Consequently, the probability
that D aborts is equal to 2/n.
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Algorithm 1 Simulating H : {0, 1}∗ → Zp.

if H[Q] is undefined then
c← Zp

if Q = ⟨prfx, com, H ′(prfx), tag,m, r, pk, ā, b̄⟩ then
A← H ′(prfx)ātag−c

B ← P āpk−cQb̄−rc

H[prfx, com, tag, A,B,m]← c
Output c

else
H[Q] := c
Output c

end if
else

Output H[Q]
end if

On receiving signing query (m, prfx, pki), D computes the response by simulating random oracles
H ′ : {0, 1}∗ → G andH : {0, 1}∗ → Zp according to Algorithm 1 and Algorithm 2 respectively. More
precisely:

� If i ̸= j, then D outputs a signature according to RS.Sign from Construction 2, making calls
to H and H ′ as needed.

� If i = j, then D computes commitment com = UQr and calls DualRing randomness r, index
j and the vector pk′ = (pk′1, ..., pk

′
n) = (com/pk1, ..., com/pkn). This results in tuple (X, c, y).

Next, given pk′, X, y and P̃ c, D calls PPProd to produce proofs π1 and π2.

D calls H ′ to compute H ′(prfx) = V r′ . D afterwards retrieves randomness r′ from table
H ′ and computes tag as W r′ . It then randomly picks (ā, b̄) ∈ Z2

p and invokes H with tu-
ple ⟨prfx, com, H ′(prfx), tag,m||π1||π2, r, pkj , ā, b̄⟩. H outputs hash value c which D uses to
compute pair

(A,B) = (H ′(prfx)ātag−c, P āpk−c
j Qb̄−rc) .

Using notations from Construction 2, (A,B, ā, b̄) corresponds to tag proof σTag.

D finally outputs signature σ = (X, y,B, π1, π2, σTag, tag, com), where B = e(Γ, P̃ c).

Observe that if (U, V,W ) is a DDH tuple, signature σ is statistically indistinguishable from a
signature output by RS.Sign. Otherwise, tag is not computed correctly. Yet, under the DDH
assumption, A cannot tell the difference, given that RS.Verify(pk,m, prfx, σ) = 1.

Algorithm 2 Simulating H ′ : {0, 1}∗ → G1.

if H ′[Q] is undefined then
r′ ← Zp

H ′[Q]← ⟨r′, V r′⟩
Output V r′

else
⟨r′, hash⟩ := H ′[Q]
Output hash

end if

17



At some point of the experiment, A outputs a pair of public keys (pk∗0, pk
∗
1) and pair (m, prfx).

Since D has not aborted, pkj ∈ {pk∗0, pk∗1}. Without loss of generality, we assume that pkj = pk∗0.
Then, D simulates a signature for public key pkj as described previously and returns the result,
and A outputs her guess b. To break DDH, D outputs bit 1 − b, with 1 indicating that (U, V,W )
is a DDH tuple, and 0 indicating otherwise. If (U, V,W ) is a DDH tuple, then A will have a
non-negligible advantage ϵ in outputting the correct guess b = 0. Namely, if D does not abort
the experiment, then it will be able to to break DDH with the non-negligible advantage of 2ϵ/n,
where 2/n is the probability that D aborts. Else if (U, V,W ) is not a DDH tuple, then A will
not perform better than a random guess, and neither will D. Actually, tuple (com, tag, σTag) in
the signature leaks no information whatsoever about the underlying secret key – com is perfectly
hiding, tag = W r is a random group element and σTag is computed without using any secret keys.

Theorem 5.6. DualDory is prefix linkable (Theorem 4.6) in the random oracle model under the
SXDH assumption.

Proof. Assume there is an adversary A which breaks the prefix linkability of DualDory. We con-
struct an adversary B which uses A to break the DPair assumption with two generators. Let
BGpp := (p,G1,G2,GT , e, P, P̃ ) ← BG.Gen(1λ), and let (P1, P2) be two additional generators of
G1. Adversary B receives BGpp and (P1, P2) as input. B’s goal is to output two generators
(P̃1, P̃2) ∈ G2

2 such that e(P1, P̃1)e(P2, P̃2) = 1. Note that the SXDH assumption implies the
DPair assumption with two generators [3], as well as the knowledge soundness of the tag proof,
Dory, and DualRing. To simulate the prefix linkability experiment, B first produces group ele-
ments Γ← Gn

1 and Γ̃← Gn
2 , sets ppTag := (G1, p, P1, P2, H,H ′) and ppPProd := (BGpp, (Γ, Γ̃)), and

outputs pp := (ppPProd, ppTag). B then uses RS.KeyGen(pp) to generate n key-pairs {(ski, pki)}ni=1

with pki := P ski
1 . During the experiment, B returns honest answers to A’s queries to signing or-

acle SOpk and corruption oracle CO. At the end of the experiment A outputs n + 1 signatures
(mi, prfx, σi) for i ∈ [n + 1]. We parse σi as (Xi, yi,Bi, π1,i, π2,i, σTag,i, tagi, comi). Note that if
A is able to break prefix linkability then RS.Verify(pp, pk,mi, prfx, σi) = 1 for all i ∈ [n + 1], and
RS.Link(pp, pk, σi,mi, σj ,mj , prfx) = 0 for all i ̸= j ∈ [n + 1]. This implies that tagi ̸= tagj for all
i ̸= j ∈ [n+1]. Thanks to the extractability property of tag proof (Theorem 5.2), we can efficiently
extract witnesses sk′i, r

′
i ∈ Zp such that

∀i ∈ [n+ 1], comi = P
sk′i
1 P

r′i
2 ∧ tagi = H ′(prfx)sk

′
i . (7)

Since all of the tags tagi are pairwise distinct, and each value sk′i is uniquely determined
by tagi according to Equation 7, we conclude that the n + 1 commitments comi open to n + 1
distinct values sk′i ∈ Zp. Without loss of generality, we assume that sk′n+1 ̸∈ {sk1, ..., skn}. The
knowledge soundness property of arguments of knowledge of bilinear pairing products (Theorem 3.8)

allows us to extract Ω̃ such that e(( comn+1

pki
)ni=1, Ω̃) = e(

P
yn+1
2
Xn+1

, P̃ ) and e(P , Ω̃) = e(P, P̃ c) with c =

H(A, Xn+1). Now to break the DPair assumption, we use the forking lemma on hash H(A, Xn+1).
This yields another forgery

σ′
n+1 = (Xn+1, y

′
n+1,B

′
n+1, π

′
n+1,1, π

′
n+1,2, π

′
Tag,n+1, tagn+1, comn+1) .
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Using the knowledge soundness property of arguments of knowledge of bilinear pairing products on

the new forgery enables us to extract Ω̃′ such that e(( comn+1

pki
)ni=1, Ω̃

′) = e(
P

y′n+1
2
Xn+1

, P̃ ) and e(P , Ω̃′) =

e(P, P̃ c′) with c′ = H(A, Xn+1). We have therefore:

e((
comn+1

pki
)ni=1,

Ω̃

Ω̃′ ) =
n∏

i=1

e(
comn+1

pki
,
Ω̃i

Ω̃′
i

) = e(
P

yn+1

2

P
y′n+1

2

, P̃ ) .

Replacing comn+1 with P
sk′n+1

1 P
rn+1

2 and pki with P ski , and using the bilinearity of e, we get:

e(P1,
∏n

i=1(
Ω̃i

Ω̃′
i

)(sk
′
n+1−ski))e(P2,

∏n
i=1(

Ω̃i

Ω̃′
i

)rn+1) = e(P2,
P̃ yn+1

P̃
y′n+1

). It follows that:

e(P1,
n∏

i=1

(
Ω̃i

Ω̃′
i

)(sk
′
n+1−ski))e(P2,

P̃ y′n+1

P̃ yn+1

n∏
i=1

(
Ω̃i

Ω̃′
i

)rn+1) = 1 . (8)

B breaks the DPair assumption by outputting

P̃1 =
n∏

i=1

(
Ω̃i

Ω̃′
i

)(sk
′
n+1−ski) ; P̃2 =

P̃ y′n+1

P̃ yn+1

n∏
i=1

(
Ω̃i

Ω̃′
i

)rn+1 =
P̃ y′n+1

P̃ yn+1
P̃ (c−c′)rn+1 .

What remains now is to show that P̃1 ̸= 1 and P̃2 ̸= 1. Let ωi denote logP̃ (Ω̃i) and ω′
i

denote logP̃ (Ω̃
′
i). Accordingly, logP̃ (P̃1) =

∑n
i=1(ωi − ω′

i)(ski − skn+1). Let δ(x1, x2, ..., xn) =∑n
i=1(ωi − ω′

i)(xi − skn+1). Note that since c =
∑n

i=1 ωi ̸= c′ =
∑n

i=1 ω
′
i, there exists i ∈ [n] such

that ωi ̸= ω′
i. This means that polynomial δ is not a zero polynomial. Applying the Schwartz-

Zippel lemma to δ(sk1, ..., skn), we have Pr[logP̃ (P̃1) = 0] ≤ 1/p. Recall that ski is sampled

randomly in Zp. Given Equation 8, if logP̃ (P̃1) ̸= 0, then so is logP̃ (P̃2). Therefore, Pr[logP̃ (P̃1) ̸=
0 ∧ logP̃ (P̃2) ̸= 0] ≥ 1 − 1/p. Consequently, P̃1 and P̃2 are two generators of G2 with probability
1− 1/p.

Theorem 5.7. DualDory is prefix non-slanderable (Theorem 4.7) in the random oracle model under
the SXDH assumption.

Proof. Suppose there is an adversary A that breaks the prefix non-slanderability of DualDory. We
construct, in the random oracle model, an adversary B which uses A to break either CDH in G1

or the discrete logarithm in G1, both of which are implied by the SXDH assumption. Recall that
in the non-slanderability experiment, A outputs two tuples (m′, prfx′, σ′) and (m, prfx′, σ), and the
first tuple is produced before any call to the corruption oracle CO. We distinguish between two
cases depending on whether prfx′ was queried to the signing oracle SOpk before outputting σ′ or
not.

Case 1: prfx′ was queried before. In this case, we show that B is able to break the discrete
logarithm in G1 under the simulation extractability of tag proof. We assume that B would like to
compute u = logP (U). B simulates the prefix non-slanderability experiment as follows. First, B
computes pp← RS.Gen(1λ, n). Next, B samples j ∈ [n] and sets pkj = U . B then randomly selects
ski ∈ Z∗

p and defines pki = P ski for i ∈ [n], i ̸= j. On a corruption query pki, B returns ski if
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i ̸= j; otherwise, B aborts. On a signing query (pki,m, prfx), B responds with a signature σi ←
RS.Sign(pp, pk, ski,m, prfx), if i ̸= j. Else, B computes tuple (comi, Xi, ci, yi) and the argument
of knowledge of bilinear pairing products correctly, then calls random oracle H ′ (Algorithm 3) to
get H ′(prfx) = P r′ . Next, B computes tag = pkr

′
j , then simulates the corresponding tag proof by

leveraging random oracle H (Algorithm 1). Notice that this signature verifies correctly.

Algorithm 3 Simulating H ′ : {0, 1}∗ → G1.

if H ′[Q] is undefined then
r′ ← Zp

H ′[Q]← ⟨r′, P r′⟩
Output P r′

else
⟨r′, hash⟩ := H ′[Q]
Output hash

end if

Before any corruption query, A outputs forgery (m′, prfx′, σ′), B retrieves tag′ from σ′ and
checks whether tag′ = H ′(prfx′)ski for some i ̸= j. If that’s the case, then B aborts. If B does
not abort, then tag′ = H ′(prfx′)skj where skj is defined by pkj = U = P skj . In fact, given the
soundness of DualRing and argument of knowledge of bilinear pairing products: ∃ i ∈ [n] : com′ =
P skiQr ∧ pki = P ski , and by the soundness of tag proof, tag′ = H ′(prfx′)ski ∧ com′ = P skiQr,
whereas the binding property of Pedersen commitment ensures that tag′ = H ′(prfx′)ski with i ∈ [n].
Hence, if tag′ ̸= H ′(prfx′)ski∀i ∈ [n] : i ̸= j, then tag′ = H ′(prfx′)skj .

Moreover, σ′ contains a signature of knowledge σTag that is valid with respect to statement
∃(skj , r) : com′ = P skjQr ∧ tag′ = H ′(prfx′)skj . Thanks to the extractability of tag proof, B
extracts witness (skj , r). By outputting skj = logP (U), B breaks the discrete logarithm assumption
in G1. Notice that B could stop the game before any corruption query and still breaks the discrete
logarithm assumption.

Algorithm 4 Simulating H ′ : {0, 1}∗ → G1.

Let qH denote an upper bound of the number of hash queries.
if H ′[Q] is undefined then

r′ ← Zp

hash := P r′ with probability 1− 1/qH

hash := V r′ with probability 1/qH
H ′[Q] := ⟨r′, hash⟩
Output hash

else
⟨r′, hash⟩ := H ′[Q]
Output hash

end if

Case 2: prfx′ was not queried before. In this case, we show that B is able to break the CDH
assumption. The adversary B is given pair (U, V ) = (P u, P v) for u, v ← Zp, and must output
W = P uv. B simulates the prefix non-slanderability experiment as follows. First, B computes
pp ← RS.Gen(1λ, n). Next, B samples j ∈ [n] and sets pkj = U (implying that skj = u). B then
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randomly selects ski ∈ Z∗
p and defines pki = P ski for i ∈ [n], i ̸= j. On a corruption query pki,

B returns the matching ski if i ̸= j; otherwise, B aborts. On a signing query (pki,m, prfx) for
i ̸= j, B responds with a signature σ ← RS.Sign(pp, pk, ski,m, prfx). On receiving a signing query
(pkj ,m, prfx), B calls random oracle H ′ (cf. Algorithm 4) to compute hash = H ′(prfx). B then
retrieves from H ′ table randomness r′ and checks if hash = V r′ . If so, then B aborts. Note that
the probability of this event is 1/qH with qH being the total number of hash queries. If hash ̸= V r′ ,
then hash = P r′ . Accordingly, B computes tag = U r′ = pkr

′
j , which corresponds to H ′(prfx)skj , and

computes the signature by leveraging random oracle H as described in Algorithm 1. Note that this
signature verifies correctly.

Before any corruption query, A outputs (m′, prfx′, σ′). B checks whether H ′(prfx′) = V r′ for
some r′ ∈ Zp. If not, then B aborts. The probability that B aborts here is 1 − 1/qH . Else, B
retrieves tag′ from σ′ and checks whether tag′ = H ′(prfx′)ski for some i ̸= j ∈ [n]. If so, then B
aborts. If not, B checks if r′ ̸= 0 and outputs W = tag′1/r

′
. The probability that r′ = 0 is 1/p. Note

that by the soundness properties of DualRing, argument of knowledge of bilinear pairing products,
and tag proof, we have tag′1/r

′
= (H ′(prfx′)skj )1/r

′
= (P uvr)1/r. It should be noted that B could

stop the game before any corruption query and still break CDH.

Theorem 5.8. If a ring signature RS is prefix-linkable (Theorem 4.6) and non-slanderable (Theo-
rem 4.7), then it is also unforgeable (Theorem 4.4).

Proof. Assume there is an adversary A which is breaks the unforgeability of RS. We construct an
adversary B0 (B1 resp.), which uses A to break prefix linkability (non-slanderability resp.).

B0 breaks prefix-linkability. To break prefix-linkability of RS, B0 first simulates the unforge-
ability experiment for A. This is achieved by forwarding A’s signing queries to oracle SOpk in
the prefix linkability experiment. At the end of the simulated experiment, A outputs a forgery
(mn+1, prfx, σn+1). On seeing this forgery, B0 continues its prefix-linkability experiment by calling
SO with n signing queries (mi, prfx, pki) for 1 ≤ i ≤ n. Let σi denote SOpk’s response to query
(mi, prfx, pki). By construction RS.Link(pk,mi, σi,mj , σj , prfx) = 0 for all i ̸= j ∈ [n]. Now B0
checks if there exists 1 ≤ k ≤ n such that

RS.Link(pk,mk, σk,mn+1, σn+1, prfx) = 1 .

In that case, B0 aborts. Assuming non-slanderability of RS, the probability of such an event is
negligible. Therefore, for all i ̸= j ∈ [n+1], RS.Link(pk,mi, σi,mj , σj , prfx) = 0. This breaks prefix
linkability.

B1 breaks non-slanderability. To break non-slanderability of RS, B1 simulates the unforgeabil-
ity experiment for A by forwarding A’s signing queries to oracle SOpk in the non-slanderability
experiment. At the end of the simulated experiment, A returns a forgery (mn+1, prfx, σn+1). On
seeing this forgery, B1 continues its non-slanderability experiment by calling SOpk with n signing
queries (mi, prfx, pki) for 1 ≤ i ≤ n. Let σi denote SO’s response to query (mi, prfx, pki). B1 then
checks if for all i ̸= j ∈ [n + 1], RS.Link(pk,mi, σi,mj , σj) = 0. If so, then B1 aborts. Assuming
prefix-linkability of RS, the probability of abort is negligible. Therefore:

∃1 ≤ i, j ≤ n+ 1 : RS.Link(pk,mi, σi,mj , σj , prfx) = 1 .
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Figure 2: Performance evaluation of DualDory (DD) vs DualRing (DR)
We have by construction, ∀ 1 ≤ i ̸= j ≤ n : RS.Link(pk,mi, σi,mj , σj , prfx) = 0. Hence, there exists
1 ≤ k ≤ n such that RS.Link(pk,mk, σk,mn+1, σn+1, prfx) = 1. Now to break non-slanderability, B1
produces first (mn+1, prfx, σn+1) which was output by A as a forgery, and then (mk, σk) where σk
is the result of signing query (mk, prfx, pkk) to SOpk.

6 Evaluation

We implement our linkable ring signature in ≈1,500 lines of Go. Our implementation is publicly
available [1] and open source. We use the BN254 [8] elliptic curve implementation of gnark-crypto
[13]. We evaluate the performance by running 100 independent trials for each measured operation
on an Ubuntu 22.04 AWS c5a.xlarge machine equipped with 4 2.8Ghz CPUs with 8GB RAM. We
compare our results with the implementation [2] of DualRing [30] evaluated on the same machine.

Figure 2 shows the time it takes to produce and verify a DualDory signature and a DualRing
signature and the cost of the DualDory offline preprocessing in relation to the size of the ring.
We note that although DualDory appears to be faster than DualRing, one needs to take into
consideration that DualRing [2] is a single-threaded Python program while Dory is a Go program
which runs each argument of knowledge of pairing products (π1, π2) in a different thread. We
draw three conclusions from the empirical results of DualDuary: (1) As expected, the verification
speed of our linkable ring signature is logarithmic in the size of the ring, and scales well even
for large rings. (2) The time it takes to generate a ring signature is linear in the size of the
ring. For a ring of size 1024, signing takes 3.53s. Fortunately, most of the signature work, which
corresponds to the prover computation of DualRing and the argument of knowledge of bilinear
pairing products, can be precomputed by the signer before knowing either the message or the
prefix. This leaves only the tag proof to be generated online (i.e., when the message and the
prefix are known). Our benchmarks show that the time it takes to compute the tag proof is less
than 1ms for a ring of size 1024. The cost of tag proof generation can be made constant by
precomputing the hash of the arguments of knowledge of pairing products π1 and π2 and including
the result in the tag proof instead of π1||π2. This would slightly increase the cost of verification
(one additional hash). (3) The offline preprocessing, which is performed once per ring, grows
linearly with the size of the ring. Furthermore, for small-sized rings ≤ 8, the preprocessing is

22



cheaper than the verification, which probably indicates that there is no tangible gain yet and that
DualDory is ill-suited for rings ≤ 8. When the size of the ring increases ≥ 16, the preprocessing
overtakes signature verification. In particular, for a ring of size 1024, verification takes 74ms,
whereas preprocessing takes 3.31s. Although the offline preprocessing is not too expensive, it is
desirable to amortize its cost over multiple verifications. Thus, we recommend DualDory for settings
with static or incrementally-updatable rings.

7 Conclusion

We introduced DualDory, a prefix-linkable ring signature with logarithmic verification and trans-
parent setup. We proved its security under SXDH assumption and benchmarked its performances.
The benchmarks, as expected, show that the verifier performs logarithmic work at the expense of
a linear offline preprocessing operation. Assuming static rings or ones that are updated incremen-
tally, the cost of preprocessing can be amortized over an unlimited number of verifications. This
makes DualDory a suitable candidate for threshold ring signatures or e-voting applications.
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A The DualRing Construction of [30]

This section describes the discrete-logarithm instantiation of the basic DualRing signature con-
struction of [30]; that is, before applying the sum argument to reduce the signature size.

Definition A.1. The relation RDR consists of tuples

(ppDR,x,w) = ((p,G, P ), pk, (skj , j)) ,

such that G = ⟨P ⟩ is a group of prime order p, pk ∈ Gn, skj ∈ Zp and pkj = P skj .

Theorem A.2. Construction 3 is a secure ring signature scheme, with the following complexity
parameters:

� signature size 1 element of G and n+ 1 elements of Zp;

� signing complexity 1 multi-exponentiation of length n in G and n+ 1 operations in Zp;

� verification complexity 1 multi-exponentiation of length n + 1 in G and n − 1 operations in
Zp.

Moreover, the signing algorithm DR.Sign is a signature of knowledge for relation RDR.

Construction 3. We describe the ring signature construction of [30].

� ppDR ← DR.Gen(1λ): runs G.Gen(1λ) to obtain Gpp = (p,G, P ) and outputs ppDR := Gpp.

� (sk, pk)← DR.KeyGen(ppDR): sample sk ← Zp and output (sk, pk := P sk).

� σDR ← DR.Sign(ppDR, skj , pk,m): Parse pk as (pki)
n
i=1 ∈ Gn and m ∈ Zp.

– sample c1, ..., cj−1, cj+1, ..., cn, x← Zp;

– set X := P x
∏

i∈[n]\j

pk−ci
i
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– set cj := H(pk1, ..., pkn, X,m)−
∑

i∈[n]\j ci
– set y := x+ cjskj
– output σDR := (X, c1, ..., cn, y)

� DR.Verify(ppDR, pk,m, σDR): Parse pk as (pkj)
n
j=1 ∈ Gn and m ∈ Zp.

H(pk1, ..., pkn, X,m) =
n∑

i=1

ci , (9)

P y/X =
n∏

i=1

pkcii . (10)

If Equation 9 and Equation 10 above both hold then output 1, else output 0.
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