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Abstract—The recent advancements in deep learning have
brought about significant changes in various aspects of people’s
lives. Meanwhile, these rapid developments have raised concerns
about the legitimacy of the training process of deep neural
networks. To protect the intellectual properties of AI developers,
directly examining the training process by accessing the model
parameters and training data is often prohibited for verifiers.

In response to this challenge, we present zero-knowledge deep
learning (zkDL), an efficient zero-knowledge proof for deep learn-
ing training. To address the long-standing challenge of verifiable
computations of non-linearities in deep learning training, we
introduce zkReLU, a specialized proof for the ReLU activation
and its backpropagation. zkReL U turns the disadvantage of non-
arithmetic relations into an advantage, leading to the creation of
FAC4DNN, our specialized arithmetic circuit design for modelling
neural networks. This design aggregates the proofs over different
layers and training steps, without being constrained by their
sequential order in the training process.

With our new CUDA implementation that achieves full com-
patibility with the tensor structures and the aggregated proof
design, zkDL enables the generation of complete and sound
proofs in less than a second per batch update for an 8-layer
neural network with 10M parameters and a batch size of 64, while
provably ensuring the privacy of data and model parameters. To
our best knowledge, we are not aware of any existing work on
zero-knowledge proof of deep learning training that is scalable
to million-size networks.

I. INTRODUCTION

The rapid development of deep learning has garnered un-
precedented attention over the past decade. However, with
these advancements, concerns about the legitimacy of deep
learning training have also arisen. In March 2023, Italy
became the first Western country to ban ChatGPT amid an
investigation into potential violations of the European Union’s
General Data Protection Regulation (GDPR). Furthermore, in
January 2023, Stable Diffusion, a prominent image-generative
model, faced accusations from a group of artist representatives
over the infringement of copyrights on millions of images
in its training data. As governments continue to impose
new regulatory requirements on increasingly advanced Al
technologies, there is an urgent need to develop a protocol
that verifies the legitimacy of the training process for deep
learning models. However, due to intellectual property and
business secret concerns, model owners are typically hesitant
to disclose their proprietary training data or model snapshots
for legitimacy investigations.

Despite considerable efforts in verifiable machine learning
to address this dilemma, many fundamental questions remain
unanswered. Currently, cryptography-based approaches have
mainly focused on inference-time verification [21], [8], [20],

[30], [19], [29], [28], leaving training-time verification largely
unexplored because of the significant computational demands
and complex operations involved. Pioneering works in ver-
ifiable training [36], [6], [31] have mostly concentrated on
basic machine learning algorithms, such as linear regression,
logistic regression, and SVMs. The deep learning algorithms
explored are limited by the size of the neural networks that
the proof system backend can efficiently handle, making them
inapplicable to modern deep neural networks.

Additionally, the advancement of verifiable deep learning
is hindered by non-arithmetic operations, notably activation
functions such as ReLU. These functions, although prevalent
in deep learning, are not intrinsically supported by zero-
knowledge proof (ZKP) systems. Early studies in verifiable
deep learning training have explored square activation and
polynomial approximation as arithmetic alternatives to tra-
ditional activation functions [36], [6], [1]. Yet, these alter-
natives diverge from standard deep learning architectures,
raising questions about the effectiveness of such models. In
light of the present state of verifiable deep learning training,
confronting the challenges posed by activation functions such
as ReLU is crucial for practical applications.

Furthermore, the representation of neural networks and their
training process as arithmetic circuits that can accommodate
activation function management is still unclear. Notably, be-
yond the innate layered structure, the training process en-
compasses both forward and backward propagations across
numerous training steps, amplifying the complexity of the
system to be modelled. Thus, a modelling approach for the
training process over the neural network that aligns with not
only the tensor structures but also the layered architecture and
the numerous training steps is pivotal to the formulation of an
efficient ZKP scheme for deep learning training.

In response to these challenges, we introduce zkDL, the
first zero-knowledge proof for deep learning training. Through
zkDL, model developers can provide assurances to regulatory
bodies that the model has undergone proper training in ac-
cordance with the committed training data, consistent with
the specified training logic, thereby addressing concerns about
model legitimacy. Our principal contributions include:

e We present zkReLU, an efficient specialized zero-
knowledge proof designed specifically for the exact
computation of the Rectified Linear Unit (ReLU) and
its backpropagation. This is achieved without the need
for polynomial approximations to manage non-arithmetic
operations. The foundational structure of zkReLU also
facilitates our innovative arithmetic circuit design to
depict the entire training procedure.




o We introduce FAC4DNN, a modelling scheme that rep-
resents the training process over deep neural networks
as arithmetic circuits. FAC4ADNN is acutely aware of the
unique structures inherent in the entire training process,
including both tensor-based and layer-based configura-
tions, as well as the repeated execution of similar opera-
tions across multiple training steps. Astutely, FAC4DNN
leverages the unavoidable alternations made in zkReLU,
turning them into an advantage. This enables proofs
for different layers and training steps to be aggregated,
bypassing the traditional sequential processing as in the
training process. As a result, there are both empirical and
theoretical reductions in computational and communica-
tional overheads when conducting the proof.

o In addition to pioneering zero-knowledge verifiability
for real-world scale neural networks, we have imple-
mented zkDL as the first zero-knowledge deep-learning
framework using CUDA. Benefiting from the combined
strengths of zkDL’s design and implementation, we
markedly advance toward practical zero-knowledge ver-
ifiable deep learning training for real-world industrial
applications. Specifically, on an 8-layer network contain-
ing over 10 million parameters and a batch size of 64
using the CIFAR-10 dataset, we have confined the proof
generation time to less than 1 second per batch update.

A. Overview of zkDL

In this section, we present an overview of zkDL, as
depicted in Figure 1. zkDL, tailored as a Zero-Knowledge
Proof (ZKP) for deep learning training, models both forward
and backward propagations within neural networks (NNs) as
arithmetic circuits (ACs). It adeptly manages non-arithmetic
operations, which inherently resist direct proof. Furthermore,
leveraging the inherent relatedness of tensor-based and layered
structures across all training steps, zkDL effectively batches
and compresses the proof. This strategic approach significantly
diminishes the computational and communicational burdens
for both the prover and verifier.

1) Threat model: We assume the presence of two proba-
bilistic polynomial-time (PPT) parties: a prover P (e.g., an Al
company) and a verifier V (e.g., a government agency). Both
parties concur on a predetermined neural network structure
and training logic, including aspects such as the number of
training steps, optimization algorithms, and learning rates. The
prover’s role is to strictly adhere to the training logic when
training the model and then to demonstrate this adherence to
the verifier. The verifier, while being semi-honest in adhering
to the prescribed protocol for validation, remains interested in
the training data and model parameters privately held by the
prover.

2) Haunt of non-arithmetic and zkReLU: As illustrated in
Figure 1a, training NNs primarily comprises two components:
tensor operations within each layer and the forward and back-
ward propagation through activation functions, exemplified by
ReLU, situated between the layers. In the realm of ZKP, the
intra-layer operations such as matrix multiplications, convo-
lutions, and their backward propagations correspond to arith-
metic operations. These operations are inherently composed of

additions, subtractions, and multiplications, aligning naturally
with ZKP schemes. In contrast, ReL.U, akin to many other
activation functions, is inherently non-arithmetic. This dis-
tinction necessitates dedicated ZKP protocols for its forward
and backward propagations, ensuring they integrate coherently
with the proof mechanisms for the training’s arithmetic-centric
segments.

As depicted in Figure 1b, due to the nature of ReLU
and its backward propagation not establishing input-output
relationships based on any arithmetic operation, the arithmetic
connections between successive NN layers are absent. This
absence necessitates that the dangling inputs and outputs
related to ReL.U’s forward and backward passes—specifically,
the preactivation Z, the activation A, and their respective
gradients Gz and Ga, each of the same dimension D—be
bound by commitments. They cannot merely be considered as
intermediate computational values over AC. Additionally, it is
imperative to reinstate this connection to hinder any potential
deceitful actions by the prover during the ReLU’s forward and
backward computation, all while ensuring that the arithmetic
operations within the layers are computed correctly and pass
the verification process.

To reestablish this connection, the terms Z, G and A, Gy
can no longer be viewed as the “input” and “output” for
forward and backward propagations. We decompose these
values into an auxiliary input, represented as aux = (Z’, Sz).
Here, Z' denotes the absolute value of Z, and Sz represents
the sign of Z. The design of zkReLU should ensure that these
auxiliary inputs can effectively reconstruct the four tensors,
which are separated due to non-linearity. Given a randomness
r chosen by the verifier, Schwartz—Zippel lemma [24], [37]
guarantees that the verification can be represented by:

Z+Z +rA+1*Gz = (2+71)Z +1°Ga) ®Sz, (1)
or equivalently,

(Z-7 ©(2Sz-1)+(A-2Z' ©Sz)r+(Gz — Ga ©®Sz)r* = 0.
(2)

This ensures that the coefficient of each term is zero, and
therefore the correctness of the ReLU operation.

However, while the incorporation of aux addresses the
gap resulting from the ReLU non-linearity, the original log-
ical orderings between the layers are not retained. Yet, this
seemingly disadvantageous situation opens the door for a
surprising optimization. Specifically, the tensor operations,
including ReLU augmented with aux, from various layers
and training steps can be aggregated regardless of their logical
orderings in training, which has already been disrupted by
zkReL.U.

3) FAC4DNN: Aggregating and compressing proofs of deep
learning training: In Figure lc, a consistent pattern of
tensors—including auxiliary inputs—and their corresponding
arithmetic relations is evident, spanning multiple layers and
training steps. During the training phases, the prover must
adhere to the designated sequence of layers and training steps
to finalize the computations intrinsic to the training process.
However, as the disconnection of the arithmetic circuit and the
commitment to the auxiliary inputs fundamentally rewire the



Layer 1

mépu

(a) Prover executes training: Forward
Propagation (FP, red arrows) & Backward
Propagation (BP, green arrows), and pa-
rameter updates (blue arrows).

ing proof integrity.

(b) Activation functions disrupt arith-
metic relations (black lines), compromis-
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(c) Prover uses auxiliary inputs (absolute
values and signs) to reconnect tensors,
restoring arithmetic relations. Note that the
same pattern is repeated in each cell.
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(d) Due to the repeated pattern, the prover
stacks tensors across layers and steps,
commits to them (represented by the lock),
and batches the arithmetic relations ac-
cordingly.

stacked tensors.

(e) Generating batched proof on arith-
metic relations (highlighted in red) among

(f) Concluding with proof of evaluations
(represented by unlocking) on stacked ten-
sors.

Fig. 1: Overview of zkDL. One of our key contributions is the compressed proof across data batches, DL layers and training
steps, by leveraging the repeated structures in deep learning training for acceleration.

arithmetic circuit, tensors in different NN layers and training
steps reside in the same AC layer for the proof generation.
Therefore, the prover can collectively group the proofs across
these repetitive patterns.

As illustrated in Figure 1d, throughout the proof generation
phase, the prover compiles similar tensors from all repetitive
units and simultaneously amalgamates their arithmetic rela-
tionships. To delve deeper, consider N instances of matrix
multiplication, a common tensor operation in deep learning,
such as Z(™ « XMy (0 <n < N —1). These instances
span several layers and training steps that require verification.
Each matrix is defined as Z(™ ¢ FDlXDS,X(") € FDP1xD2
and Y(") ¢ FP2xDs_ Instead of verifying all N instances
individually, the proof directly addresses the stacked matri-
ces X € FNxDlxD27Y c ]FNXDQXD37Z c FNXDlng,
which are in the form of 3-order tensors. Using random-
ness designated by the verifier, namely w ~ F'°82
Flogz D1 s ~ Flog2 D3 the aggregated proof is represented
as:

N
,yup ~

N Do
Z (Wa u, U.3) = ZE(Wa 1) Z X (17 ulaj) Y (i7j7 ll3) ) (3)
i=0 j=0

where Z (1), X (1), Y (-), B() are multilinear extensions [22]
of Z,X,Y (viewed as a function mapping from binary
representations of indices to values of the corresponding
dimensions) and 8 : {0,1}°82N x {0, 1}l°e= N — 10,1}
where 5(b1,b2) =1 {b1 = bg}

Notably, executing the sumcheck (3) over i, which pertains
to the extra dimension from stacking, compresses the proof of

(3) to:

O[:ﬂ(W,V)ZX(V,ul,j)Y(V,j,llg). (4)
j=0

In this context, the prover’s claim « and randomness v arise
from the compression’s execution. Therefore, validating:

af (w ZX (v,uL) Y (v,jus) (5

revives the sumcheck for singular matrix multiplication.

This technique of aggregation and compression extends to
all tensor operations that can be verified using the sumcheck
protocol individually, regardless of the number of inputs.
Specifically, all IV instances of each input are condensed into
one, contingent upon the randomness of v. This ensures a
seamless transition to the sumcheck for singular operations.
As a result, the original logical ordering of the N operational
instances, whether they belong to consecutive layers or training
phases, becomes inconsequential. From an arithmetic circuit
(AC) perspective, this method effectively “flattens” the circuit,
reducing its depth by a magnitude of O(N). However, this
comes at the cost of expanding the width of each AC layer by
the same magnitude.

Building on zkReLU, it is inescapable that tensor commit-
ments occur at every layer and training step, exemplified by
each repetitive unit in Figure 1c. Hence, there is no asymptotic
overhead in the cumulative tensor size bound by the com-
mitments, nor in the requisite commitment time. Conversely,
assuming the adoption of sub-linear size commitments, such
as Hyrax [27] in this study (whose commitment sizes grow as
fast as the square root of the overall committed value size),



committing to a stack of N tensors could culminate in an
asymptotic reduction in the overall commitment size by an
order of O (VN ).

Similarly, due to the flattened design of the arithmetic circuit
facilitated by FAC4ADNN, there are significant reductions in
both proof sizes and verification times. By aggregating N
instances of the same operation, the proof size does not
increase at a © () rate. Only a single copy of the proof for a
singular tensor operation is needed, instead of N copies, and
the compression steps introduce only an O(log N) overhead.
Additionally, when summing up the components of zkDL,
the proof verification depicted in Figure 1f also witnesses a
reduction by an order of O \/N . Within zkDL, the batched
tensors seamlessly integrate into the parallel computing envi-
ronment of deep learning training, further reducing the total
proof time, especially since there is no need to strictly follow
the original computation sequence throughout training.

II. PRELIMINARIES
A. Notations

In this study, vectors and tensors are denoted using boldface
notation, such as v and S. To ensure compatibility with the
cryptographic tools employed, we adopt a 0-indexing scheme
for these vectors and tensors. Our indexing approach for
multi-dimensional tensors aligns with the PyTorch convention,
exemplified by Sy; j;.;, - Additionally, for any positive integer
N, we employ the shorthand notation [N] to represent the set
{0,1,...,N —1}.

B. Sumcheck and GKR protocols

The sumcheck protocol [5], [22] serves as a fundamental
component in modern proof systems, allowing for the verifi-
cation of the correctness of the summation (o134 f(b)
for a d-variate polynomial f. This protocol offers an efficient
proving time of O(2¢) and a compact proof size of O(d).

Building upon the sumcheck protocol, the GKR protocol
[14] provides an interactive proof for the correct computation
of arithmetic circuits. It leverages the sumcheck protocol
between the layers of the arithmetic circuit, as well as the
Pedersen commitments to the private inputs.

The sumcheck and GKR protocols have found wide ap-
plications in verifying the proper execution of deep learning
models, thanks to their compatibility with tensor structures.
In particular, the tensor operations can often be expressed in
the form of sumchecks, via the multilinear extensions of the
tensors: for each tensor S € FP that is discretized from real
numbers (without loss of generality, assume D is a power of
2, or zero-padding may be applied), its multilinear extension
S () : Floe2D 3 F is a multivariate polynomial defined as

Sw= Y  Sb)BEub), ©6)

be{0,1}los2 D

where b represents the b-th element of S (identifying the index
by the binary string), and 3 (-,-) : Fl°82D x Flog2D 5 T s
a polynomial. When restricted to {0,1}'#27 x {0,1}'%2 P,

~ 1, if by = by; log
B(by,by) = { 0 ifbbéb; for by, by € {0,1}%27.

In the context of multilinear extensions, we use the notation
of indices and their binary representations interchangeably.
Moreover, we use S (uj,us, ..., ux) to denote the evaluation
of S (-) at the concatenation of multiple vectors uy, ug, ..., ux
whose dimensions sum up to log, D.

Specialized adaptations of the sumcheck protocols cater to
prevalent deep learning operations like matrix multiplication
[26], [13] and convolution [21]. When the sumcheck protocol
is applied to these operations, it yields the proclaimed evalua-
tion S (v) of the multilinear extension for each involved tensor
S, with v being selected due to the inherent randomness of the
protocol. Subsequent verification of these claimed evaluations
employs the proof of evaluations relative to the commitment of
S, as detailed in II-C. Additionally, zero-knowledge variants
of the sumcheck protocol [4], [32], [33] have been developed
with asymptotically negligible overhead, which leaks no in-
formation on the tensors involved once employed.

Historically, representing NNs as ACs has posed challenges
due to the inclusion of non-arithmetic operations, making
it ambiguous and inefficient. In this study, we tackle this
problem by refining and enhancing the modelling approach.
Rather than directly representing NNs as ACs with identical
layer structures and invoking the GKR protocol, we adeptly
aggregate the sumcheck protocols for tensor operations over
different layers and training steps, grounded in our novel AC
design of FAC4ADNN. This leads to improved running times
and more concise proof sizes.

C. Pedersen commitments

The Pedersen commitment is a zero-knowledge commitment
scheme that relies on the hardness of the discrete log problem
(DLP). Specifically, in a finite field F with prime order
p, committing to d-dimensional vectors requires an order-
p cyclic group G (e.g., an elliptic curve) and uniformly
independently sampled values g = (g0, 91,--.,9a-1) ' ~ G,
and h ~ G. This scheme allows any d-dimensional tensor
S =(80,51,...,84-1)" € F? to be committed as:

d—1
comg ¢ Commit(S;r) = hrgs =h" H gfi7
i=0

where r ~ T is uniformly sampled, ensuring zero-
knowledgeness of the committed value S. A complete and
sound proof of evaluation can be conducted for S (v) with
respect to comg for any randomness v chosen by the veri-
fier. This can be utilized as a component of the proofs for
operations on private tensors.

Additionally, the Pedersen commitment scheme exhibits
homomorphic properties. Specifically, for two commitments,
comg, = h™gS and comg, = h"2gS2, corresponding to
tensors S; and So, their multiplied result, comg, - comg, =
hritr2gS1+S2 g a valid commitment to the sum, S; + S,.

Incorporating the Pedersen commitment leads to a O(d)
runtime, both for committing to a tensor and for conducting
a proof of evaluation from the prover’s side. In real-world
applications, several variations of the Pedersen commitment
are utilized to enhance verifier efficiency and curtail commu-
nication demands. For example, Hyrax [27] is a commitment




scheme that does not require a trusted setup, refining the
commitment size, proof of evaluation size, and the time it
takes for a verifier to evaluate the proof to O(v/d), O(log d),
and O(\/&), respectively. These advancements are strategically
integrated into the blueprint of zkDL, particularly FAC4DNN,
aiming to improve the prover time, proof sizes, and verifier
times in the realm of deep learning.

D. Security assumptions

We assume that the commitment scheme employed in our
research offers A-bit security. In line with this, the finite
field F, wherein all computations are discretized, is of size
(2%*). Furthermore, we posit that all aspects of the training
procedure, encompassing the number of training steps, the
number of layers, tensor dimensions, and the complexity of
operations between them, are all polynomial in .

III. ZKRELU: PROOF OF FORWARD AND BACKWARD
PROPAGATIONS THROUGH RELU ACTIVATION

The proper and tailored handling of non-linearities, espe-
cially ReLU, is essential to achieve efficient zero-knowledge
verifiable training on deep neural networks. In this section,
we introduce zkReLU, a zero-knowledge protocol designed
specifically to verify the training of deep neural networks that
incorporate ReLU non-linearity. Our scheme employs auxil-
iary inputs, allowing for the verification of both the forward
and backward propagations involving ReLU. Furthermore,
zkReLU integrates the ReLU function into the FAC4DNN
framework, which is primarily concerned with the arithmetic
operations between tensors. This integration ensures that the
efficiencies brought about by FACADNN extend to the proof
of the entire training process.

When the ReLLU activation function is applied to the output
of layer ¢ (with 1 < ¢ < L — 1 and L representing the
total number of layers), denoted as VAORET pertains to a
linear layer, either fully connected or convolutional. Given that
multiplication operations play a role in computing Z(), Z(®)
undergoes scaling twice by the scaling factor, assumed to be
a power of 2, specifically 2%. Consequently, when dealing
with quantized values, the ReLU operation must also reduce
the input by a factor of 2. This mechanism can be artic-

ulated as the activation function A?) = ReLU ([%D =

) O]

1{|%r| 20} 0 |%% |

To simplify the notation, we introduce the rescaled Z0' =

O]
5
as Z) = 2RZ®" L RY), where R’ denotes the remainder
resulting from rounding. To adequately define the concept of
”non-negative” within the finite field, it becomes necessary to

/! !/
restrict the scale of Z(¥)". We assume each element of Z(*)" is
an Q-bit signed integer, with 29 < |F|. Solely for analytical
/

reasons, we decompose Z®" into its magnitude bits and sign
bits, such that Z®)" = Z?;OZ 2jB§-€) — 2Q*1Bg)_1, with each
By) for 0 < j < @ — 1 being binary. Furthermore, Bg)_l
represents the negativity of each dimension in Z(*) (assigning
1 for negative values and O otherwise). The arithmetic relations

. This representation allows for the expression of Z(%)

between these intermediate values and the input and outputs
of the forward propagation, notably A®) and Z®), can be
captured as:

AO =1-BY oz %
7" = 2Rz L RY. (8)

During the backpropagation phase, the gradient of A (),
denoted as GX), is typically scaled twice by 2% owing to the
multiplication operations involved. As such, it becomes neces-

1 (£)
sary for the prover to rescale this gradient to GX) = {GA -‘ ,

2R
!/
with the resulting remainder being R(é)A Subsequently, GX)

is employed to compute the gradient of Z(), represented
as G(ZIz ), through the Hadamard product ® with 1 — Bg)_l.
Analogous to the forward propagation, the correctness of the
backward propagation can be outlined through the following
arithmetic relations:

!
Gy =(1-BY )oGY, ©)
GY =2"G¥ + RY.. (10)

It is also important to observe that for the intermedi-
ate variables involved in (7), (8), (9) and (10), the val-
ues of the tensors each tensor need to be constrained
so as to prevent malicious maniptl)lations by the prover.
Namely, Z(®' € [—2@-1,2Q—1)D< ., BY) | e {0,1}P",
R(Zf) c [_212—1’23—1)13“’, fo)/ c [_2Q—1’2Q—1)D“),
and R(C?A € [—287, 23_1)D , are bounded and share the
same dimension D). However, in compatibility with our
design of FAC4DNN, which is overviewed in Section I-A2 and
detailed in IV, the proof is aggregated over multiple training
steps and layers. Therefore, in the following discussion, we
use the notations without the superscripts (i.e., A, Z, Gz, Ga
for the input and outputs of both directions of ReLU, and
Z'.Bo_1,Rz,G,,Rg, as the intermediate values intro-
duced) to represent the stacked tensors over multiple layers,
all of which share the same dimension denoted as D.

A. Formulation of zkDL

As an initial step, we presuppose that the proof’s ex-
ecution over other components yields the claimed eval-
uations of the multilinear extensions on A,Z,Gz,Ga.
This is achieved through the aggregated sumchecks on
the other operations in which these tensors participate, as
will be elaborated in Section IV. These are represented as
A(up),Z(uz),Gz(ug,),Ga (ug,). Thus, by commit-
ting to the intermediate values Z',Bg_1, Rz, Gy ,Ra, and
executing the sumcheck protocol on the aggregated versions
of (7), (8), (9), (10), the validity of these four equations can
be verified with overwhelming probability.

Nevertheless, the validity criteria for the intermediate values
also warrant consideration. To ensure complete compatibil-
ity with FAC4DNN, which functions over aggregated tensor
structures, these intermediate values are collectively repre-
sented as a 3D binary tensor— the auxiliary input aux €



{0,1}2*P>x(Q+R) Here, aux)y.; and aux[ ., stand for
binary representations of the (Q + R)-bit integers in Z and
G respectively, given by:

aux . .|SQ+r = £, (11)
aux(; . Sg+r = Ga- (12)
Here, sp = (1,2,22,...,28-2 —2B-1)T facilitates the re-

covery of a B-bit integer from its binary representations.
Using this configuration, the intermediate variables can be
equated as:

auxo . r.Q+RrSQ +auxj; g1 = Z, (13)
auxp . g.o+rSQ +auxp . g1 = Gj, (14)
auxo . 0.r|Sk = Rz, (15)

aux( . o.rSk = Raa, (16)

aux,: o+r-1 = Bg-1- a7

Ensuring (8) and (10) is upheld, while (7) and (9) can be
reframed as:

A =1 —-auxp,gyr-1]) @ (aux[o,;,R:Q+R]SQ + aUX[o,;,R—u) )
(18)

Gz = (1 —auxj,. g+r-1) @ (aux[l,:,R:Q+R]SQ + aux[l,:,Rfl]) .

19)

Furthermore, to ensure that aux is genuinely binary, the
auxiliary input validity proof (AIVP) must be conducted on

(20)

aux @ (aux — 1) = 0.

Implementing the sumcheck protocol on (11), (12), (18),
(19), and (20) is sufficient to ascertain the correctness of
the computation for ReLU with respect to Z,Ga, A, and
Gz. Practically, zkReLU combines the sumcheck protocols for
these equations to further diminish the running times and size
of the proof, chiefly by confining the relatively costly proof
of evaluation on aux to a single instance. The full details of
zkReL U, including its optimized sumcheck protocol, are given
in Appendix A.

IV. FAC4DNN: AN ALTERNATIVE ARITHMETIC CIRCUIT
DESIGN FOR MODELLING NEURAL NETWORKS

In Section III, we operate under the assumption that the
sumcheck protocols are executed on the arithmetic components
of each neural network layer using the same randomness.
At first glance, this might suggest potential security vulner-
abilities. In the neural network structure, the output from
one layer serves as the input to the subsequent layer; hence,
employing identical randomness across two such layers might
seemingly compromise security. However, we introduce an
alternative framework, FAC4DNN, which stands for a flat
arithmetic circuit for a deep neural network. The core insight
of FAC4DNN is the inherent separation between consecutive
layers brought about by non-arithmetic operations such as
ReLUs and their backpropagation. Given that tensor data on
either side of this separation is secured through commitments,
FAC4DNN is not constrained to maintain the traditional se-
quence inherent to neural networks. Instead, it can aggregate

proofs across various layers and training steps, leading to
notable optimizations in both the runtime and the proof sizes.

Consider the process of a single training step on a neural
network (NN) using ReLU activations, which entails both a
forward and backward pass. As highlighted in Figure 2, a
break in the arithmetic relations arises at each ReLU activation
and its associated backward propagation. Absent the reinte-
gration provided by zkReLU using auxiliary inputs aux(),
the arithmetic operations corresponding to each NN layer /—
namely the layer’s input A1 (with A(©) defined as the
input data X), the model parameters W), the pre-activation
7" and their respective gradients Gg_l), G(é), and G(Zé _
can be validated separately from operations in other NN layers
using the sumcheck protocol.

For each training step, we operate under the assumption that
both W) and G%@ are bound by commitments. Therefore,
the declared multilinear extension values for these two tensors
can be directly verified through the proof of evaluation. On
the other hand, the declared multilinear extension values
of the remaining four tensors can initiate the proof of the
correctness of ReLU and its backpropagation via zkReLU, as
described in Section III-A. Expanding our view to encompass
all training steps, the proofs validating parameter updates
across varying layers become independent, not only across
different layers but also throughout distinct training steps. This
independence is upheld by commitments that bind both old
and new model parameters and their gradients. Similarly, the
proofs verifying arithmetic operations and zkReLU maintain
their independence across individual training steps.

The crucial insight regarding FAC4DNN is that the tradi-
tionally sequential order of the layers and training steps has
been parallelized, leading to a reduction in the circuit depth
by a factor of O(N), with N representing the product of
the neural network depth and the number of training steps.
Notably, this departure from the original sequential order
allows the prover to execute the sumcheck protocols for all N
parallel components of the circuit using identical randomness,
without any interference between components. This concept
underpins the design of the aggregated proofs over FAC4DNN.

Aggregating the proof. With the non-arithmetic operations
transformed into auxiliary inputs and re-established as arith-
metic operations, the validity of the training process becomes
synonymous with the correctness of all arithmetic tensor
operations across all layers. Given that tensor operations
of similar sizes commonly exist in different layers and are
repeated across multiple steps, proofs of these operations can
be batched across both layers and steps.

Consider N instances of a tensor operation that we want to
aggregate, such that each instance (indexed 0 < n < N — 1)
with K input tensors Xén) for 0 < k < K —1, and one output
tensor Y (™). For each of these K + 1 types of tensors, the N
instances of it are of the same dimensionality. By stacking the
N tensors of each type together, we get X, X1,..., Xxg_1
and YA,/Where using ~the notations of multilinear extensions,
each Xy (n,) and Y (n,-) can be equated with X,(C") and
Y (") correspondingly. Consider any tensor operations that can
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Fig. 2: The configuration of FAC4ADNN for each training step: The entire circuit is anchored by the auxiliary inputs aux(®)
through arithmetic relations represented by the black lines, which replace the non-arithmetic operations depicted by the blue dash
arrows. These non-arithmetic operations include the “comparison-with-0" operation in ReLU and its gradient. The gradients
of the model parameters are highlighted within black bounding boxes. Both the data and model parameters are bound by the
Pederson commitments and are delineated within blue bounding boxes. The tensors pertinent to zkReLU are bound by the
commitment of aux and are enclosed within red bounding boxes.

be expressed as

Din—1
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where 0 <i < Doy —1,0 < j < Dj,—1 are indices expressed
in binary format, f is a known multivariate polynomial, and
I, C [[logy Dout]] and Ji C [[logy Di]] are subsets of the

indices defined by the nature of the operation. For simplicity,
we abbreviate each summand on the right-hand side of (21)

as f (X (n,in. i)
can be formulated as

. The sumcheck protocol for (21)

Doyu—1 Dip—1

~ ~ —~ K-—1
0= Z Bwi) | Y (ni) - Z f (Xk (n, inij)) =0
i=0 j=0 -
(22)
Dou—1Din—1 _ N K-1
= B (u, i) <Di;1Y (nvi) -f (Xk (nvifkvih))kio ) )
i=0  j=0 -
J 23)

for u ~ F'og2 Poul yniformly randomly chosen by the verifier.
Writing n in the binary form n, consider the weighted sum of
(23) indexed by n from 0 to NV — 1,

N—1Dou=1 D=1 _ B . K1
0= Z Z Z B (w,n) S (u,i) <Di;l?(n,i) - f (Xk, (n, iIWij))k:O > )

n=0 i=0 j=0
(24)

where w ~ 182 N1 ig the randomness chosen by the verifier,
such that running the sumcheck protocol on (24) proves all N
instances of (21) simultaneously.

Alternatively, if the preceding execution of the sumcheck
protocol produces a claim on the value of Y (w,u), which
is not necessarily verified against the commitment of Y
through the proof of evaluation, the sumcheck of (21) can
be reformulated as:

N—1Dj—1 K1

Y (wouw) = >3 Blwom) B (wednn) £ (X (uredn))

n=0 j=0 k=0

(25)

where Jg C [[logy Diy ], similar to the Ij and J, is contin-
gent upon the nature of the tensor operations. By executing
the sumcheck protocol on (25), the uncorroborated claim on
the stacked Y is translated to ones on Xjs. These can be
verified either by the proof of evaluation if X} is committed,
or by invoking (25) again if Xy is an intermediate value that
has not been committed. A comprehensive explanation of the
sumcheck protocol’s execution on (24) and (25) is provided
in Appendix B. A crucial observation is that the sequence in
which the operations appear in the original training process is
completely irrelevant in the aggregated proof of them.

Example IV.1. In deep learning, matrix product Y™ =
XWX\ and Hadamard product Y™ = X\ © X" are
two frequently encountered tensor operations. Here, 0 < n <
N — 1 indicates the indices of the operations, and we intend
to batch the proofs of N operations for each type together.

As a simplification from (23), these two operations can be
proved by running the sumcheck protocol on the following



equations:
YO (ug,up) = S X§Y (uo, ) X{™ (1,ur), (26
YO () =Y B (w i) XY @)X (), @)

where ug,uy and u are the random vectors compatible with
the respective tensor dimensions in equations (26) and (27).

Following (25), the sumcheck for proof of the batched forms
of the tensors can then be constructed as:

Y (woug,w) =Y > B (w,n) X (n,u0,1) X; (n,i,uy),
n (28)
Y (wou) = > B (w,n) B (u,i) Xo (n,1) Xy (n,1),
n 29)

where w ~ Fl°%2 N1 s a4 random vector, and can thus be
proved directly without separation into N proof instances,
as long as the batched tensors Xo,X1,Y are bound by
commitments.

Re-indexing. In neural networks, repetitive tensor operations
are common. Nevertheless, not every operation involves the
same set of tensors. As a specific example, consider the
gradient computation process. The gradient of the input to the
first layer, which pertains to the data, remains uncomputed.
Contrastingly, for subsequent layers, specifically for £ > 2,
gradients of the inputs — the activations from the preceding
layer — are computed based on model parameters W () along
with other retained values of the respective layers.

Such an observation implies that, when batching proofs
for these operations across the layers excluding the first,
the multilinear-extension claim relates to the sequence
(W WG W), This differs from the complete se-
quence (WM W@ WG W) which finds applica-
tion during forward propagation encompassing all L layers.

Such a difference highlights the criticality of re-indexing
tensors, particularly when batching proofs over various layers
and operations in the neural network. Appropriate indexing
is imperative for the precise alignment of tensor operations,
which in turn ensures the integrity and efficiency of compu-
tations along with their verifiable assertions.

Considering a stacked tensor comprising N tensors of
dimension D, represented as X = (X X1 XWN-1)
and another set of K tensors, X;(0 < k < K — 1), that
manifest as permutations of X, one can represent Xy, as

(X(jk,0)7 X_(jlc,l)’ o 7X(]’k‘Nk—1))’

where each ji, ; belongs to the range [N]. Assuming the prover
makes a claim on each Xy, denoted as Xy (ug,u), with
different randomness u;, ~ Flog: [Nkl over the added dimen-
sion from stacking, and consistent randomness across other

dimensions as u ~ F°g2 D1 Given randomness coefficients
70,71, ..,TKk—1 ~ [ as determined by the verifier, the relation

=
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is valid, where pi(i,j) equals 1 if the i-th component of
X matches the j-th element of X;, and O otherwise (both
the prover and verifier are privy to pj). Consequently, by
representing ¢ in binary, executing the sumcheck protocol
on (30) verifies the reordering of indices of stacked tensors
from Xys to X, while achieving an O(T' D) proving time and
O(log T') proof size.

Incorporating zkReLU. In Section III, we transform the
correctness verification of ReLU into the validation of a
tensor operation involving Z, A, Ga, Gz, and aux. With
the incorporation of sgipr and sq, this operation can be
verified using the sumcheck protocol. Consequently, zkReLU
seamlessly integrates into the FACADNN framework, enabling
aggregation across layers and training steps.

Another approach to positioning zkReLU within the
FAC4DNN framework is to acknowledge that the stacked
tensors Z, A, Ga, and Gz are anchored by the commitment
of aux, bypassing their individual commitments. However, to
validate the non-arithmetic relations among these tensors, and
upon establishing the claimed evaluations on the multilinear
extension of these four tensors, the proof of evaluations on
aux must be augmented with the zkRelLU sumcheck.

V. PUTTING EVERYTHING TOGETHER

The proof produced by zkDL, employing the zkReLU proto-
col coupled with the compatible circuit design of FAC4DNN,
delivers notable improvements in both computational and
communicational efficiency for the prover and verifier, all
while meeting security and privacy standards.

In this section, we assume that the training process spans 7'
steps and the neural network includes L layers. Theoretically,
maximum proof compression can be attained by amalgamating
all the O(TL) repetitive units throughout the entire train-
ing process. However, such a method would necessitate the
retention of all 7T training checkpoints. Hence, we adopt a
more encompassing premise: proofs from every sequence of
T’ training steps are collectively processed. We proceed with
the assumption that 7" divides T'; if not, zero padding can be
implemented. When T” = T, it signifies that proofs from all
training steps are aggregated, whereas 7” = 1 indicates the
verification of each step separately.

Moreover, in a typical neural network, layers of various
types and sizes coexist, with each type linked to a distinct
set of tensor operations. This diversity in operations poses
challenges when aggregating proofs, even though these proofs



arise from distinct layers and have been rendered independent
by FAC4DNN. As an illustration, the specialized sumcheck
protocols for convolution and matrix multiplication are pro-
foundly different, complicating their aggregation. In the same
vein, aggregating proofs for one large and several smaller
FCs is not efficient, as this results in an undue allocation of
computational resources to padded zeros.

Therefore, in this discussion, we introduce N4 families
of tensor operations, denoted as Ag,.A1,...,An,—1. Each
family, .A;, includes tensor operations of analogous nature and
dimensionality. For instance, matrix multiplications found in
several FC layers of similar sizes or zkReLUs present at the
output of a group of layers with matching dimensions fall
under this category. The term |.A4;| represents the count of
operations within .4; for every training step.

Similarly, we classify all tensors involved in each training
step—including the training data and the auxiliary input in
zkReLU—into Nr families: 7o, 71, ..., Tn,—1. Each family
contains tensors of similar dimensionality and the same nature,
such as the weights of several FC layers of corresponding
sizes. The symbol |7;| denotes the quantity of tensors within
T; during each training step.

The complete zkDL protocol involving both the prover and
verifier is outlined as Protocol 1. The security and overhead
analyses for this protocol are presented in Sections V-A and
V-B, respectively.

Example V.1 (FCNN). We analyze a fully connected neural
network (FCNN) consisting of L layers. We assume the use of
ReLU activation at the output of each hidden layer and the
application of the square loss. For every training step, using
a data batch represented as (X = A))Y), the correctness
of the subsequent tensor operations is both necessary and
sufficient to ensure the correctness of the training:

o Forward propagation through each FC layer:

Z0 = A-DWO, 1<¢<L, (3

o Backward propagation of the square loss function:
G =z v, (32)

o The backward propagation through each FC layer:
GY =GUHIWED T 1 <r<L—1,  (33)
Gl = G(ZNA“—”, 1<¢<L, (34

e ReLU and its backward propagation, as per zkReLU.
o Parameter updates, based on the selected optimizer.

Each type of tensor operation forms its own distinct family
of tensor operations: all instances of (31) constitute one
family, all instances of (33) another, and likewise for (34),
zkReLU, and parameter updates. Similarly, families of ten-
sors can be delineated based on tensors that share inher-
ent characteristics. This applies to tensors signified by the
same notation but differentiated by their superscripts, such
as WO W®R W) which represent the parameters
across all layers. With a consensus on the formation of
families, the prover and verifier can employ Protocol I to gen-
erate proof for the entire training process, consolidating the

proofs for different layers and training steps, thus optimizing
computational and communicational expenses.

A. Security analysis

Protocol 1 achieves perfect completeness and near-certain
soundness, ensuring that the proof’s acceptance by the verifier
is equivalent to the prover’s adherence to the Protocol 1 (the
training process and the proof combined) almost surely.

Theorem V.2 (Completeness). For a neural network em-
ploying the ReLU activation function, where ReLU and its
backpropagation stand as the sole non-arithmetic operations,
and given that the unscaled Z9 and GX) are (Q + R)-
bit integers for the ReLU activation at every layer {, the
verifier, under the semi-honest assumption, accepts the proof
with a probability of 1 provided the prover strictly adheres to
Protocol 1.

In Appendix C-A, the validity of Theorem V.2 is predicated
on the perfect completeness achieved by the sumcheck proto-
cols for zkReLU, the arithmetic operations, and the proofs
of evaluations. This ensures that, for a prover fully adhering
to Protocol 1, all checks are passed. However, establishing
the soundness of Protocol 1 is more intricate. The sound-
ness of zkReLU must capture the actual correctness of the
ReLU non-arithmetic operation. Additionally, the soundness of
FAC4DNN must encompass the correctness of all aggregated
tensor operations.

Theorem V.3 (Soundness). For a neural network employing
the ReLU activation function, where ReLU and its backprop-
agation stand as the sole non-arithmetic operations, if any
tensor operation (including ReLU) is incorrectly computed
by the prover, the verifier, operating under the semi-honest
assumption, accepts the proof produced by Protocol 1 with a
probability of negl (\).

In addition to fulfilling the completeness and sound-
ness requirements, the zkDL protocol also guarantees zero-
knowledge, ensuring that it reveals no information about the
training set and model parameters. This property is formalized
in Appendix C-C.

B. Overhead analysis

Prover time. Compared to general-purpose ZKP backends,
zkDL does not necessitate alterations to the original structure
of neural networks to accommodate the internal framework
of the ZKP backends. Instead, zkDL aligns seamlessly with
the inherent tensor-based architectures of the computations
intrinsic to deep learning training. This alignment enables the
effective utilization of the pre-existing computational environ-
ment tailored for parallel tensor computations. Furthermore,
the aggregation methodologies introduced by the design of
FAC4DNN overcome the limitations imposed by the sequential
arrangement of neural network layers and training phases.
This innovation yields a more pronounced parallelism in proof
generation than in the training procedure itself. These factors
combined contribute to zkDL being the first viable work on
verifiable training for large neural networks.



Protocol 1 zkDL

1: for t < 0,7,27",..., T —T' do

2 Prover executes training steps ¢,¢ +1,...,t+ 71" — 1.

3 for: < 0,1,...Nr —1do > SZ(-t) is the stack of all tensors in 7; and in training steps ¢ to ¢t + 7" — 1.
4: Prover computes commitment comgt) < Commit (Sgt)), and sends comgt) to verifier.

5 end for

6 for j <~ 0,1,..., Ny—1do » f;t) is the aggregation of all operations in A; and in training steps ¢ to t + 7 — 1.
7 Prover and verifier execute the sumcheck protocol (24) for the zig\g/regated tensor operation f](t).

8: Prover and verifier execute the sumcheck protocol (30), output SZ(-t) (uz(-t)) for each 0 <7 < Np — 1.

9: end for

10: for i < 0,1,... Ny — 1 do -

11: Prover and verifier executes the proof of evaluations for S,(;t) (ugt)> with respect to comgt).

12: end for
13: end for

Proof size. There are two primary components influencing the
proof size of zkDL as delineated in Protocol 1: the commit-
ment size in Line 4 and the sizes of the sumcheck-based proofs
in Lines 7 and 8. For each tensor class, 7;, we assume that the
size of every tensor within 7; is O(o;). Given the square-root
growth of the commitment size in Hyrax, the commitment size
emfloying the traditional sequential generation of the proof is

o(T Zi]\fgl |7 \/07> Conversely, the commitment size for
the aggregated tensors is O (% Zij\fo_l VT T ai), which
simplifies to O (\/% Zil\fo_l vaen Ui)-

On the other hand, for the sumcheck protocols, proof sizes
are generally logarithmic with respect to the complexity of
the operation. We represent the complexity of a singular
operation in each A; as O(4;), rendering the proof size of
one operation as O(logt;). With the traditional sequential
proof, the cumulative verification cost would, in a straight-
forward manner, accumulate to O (T N4 | A;|log wiz.
However, when using FAC4DNN for proof aggregation, the
multiplicative factor of the total aggregated proof instances
is replaced by a nearly negligible additive term that is log-
arithmic in this number. Hence, the refined Sroof size is

O (F (NalogT" + XX (log | A +log 11)) )

Verifier time. The analysis of the verifier’s time closely
mirrors the analysis of the proof size. With Hyrax [27],
the verifier’s time in the proof of evaluation scales as the
square root of the committed tensor’s size. Consequently, the
verifier’s time for each tensor class 7; is reduced by a factor of
0 (\ /T \7;\) On the other hand, given the logarithmic nature
of the verifier’s time in the sumcheck protocol, the verifier’s

time for each tensor class .A4; experiences a reduction almost
by a factor of O (T"|.A;]).

VI. EXPERIMENTS

We developed zkDL in CUDA. Our open-source im-
plementation of zkDL is available at https://github.com/
jvhs0706/zkdl-train. To ensure seamless interfacing with ten-
sor structures and their respective specialized aggregated
proofs, our approach entailed creating customized CUDA

kernels. These kernels cater to tensors, deep learning layers,
and the novel cryptographic protocols presented in this re-
search. Our framework builds upon ec—gpu [9], which is a
CUDA implementation of the BLS12-381 curve, guaranteeing
128-bit security. The efficacy of zkDL was assessed using
Example V.1. Given the challenges posed by quantization-
induced rounding errors, we implemented a scaling factor of
216, This assured that every real-number computation within
the system was encapsulated in the interval [—21%, 21%). Con-
sequently, these numbers were aptly scaled as 32-bit integers.
It is pivotal to highlight that throughout our experimental
iterations, overflow incidents were conspicuously absent. Our
experimental evaluations were orchestrated on a computing
node nestled within a cluster, equipped with a Tesla A100
GPU.

Baselines. Earlier research on zero-knowledge verifiable in-
ference did not offer ample techniques to incorporate veri-
fiability into the training phase. In contrast, groundbreaking
studies on zero-knowledge verifiable training, such as [36],
[6], [31], predominantly concentrated on classical machine
learning models, leaving real-world scale deep neural networks
untouched. Nevertheless, for a comprehensive illustration of
the benefits of aggregating proofs across multiple layers and
training steps, we positioned zkDL against the traditional
sequential proof generation found in the GKR protocol, which
fully adheres to the reverse sequence of training steps, as
well as the order of layers navigated throughout the training
procedure.

Power of FAC4DNN. To showcase the efficiency of
FAC4DNN, which liberates us from the mandate of strictly
adhering to the sequential order of computations during proof
generation, we embarked on a comparative analysis between
zkDL and less compact proof variations. Specifically, we
juxtaposed it against 1) the proof that unwaveringly conforms
to a reverse computation sequence, and 2) a proof that only
undergoes aggregation within individual training steps.

The experimental trials were executed on the CIFAR-10
dataset, utilizing an 8-hidden-layer perceptron, activated by
ReLU, comprising 1,024 neurons in each layer. Notably, the
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Fig. 3: zkDL’s performance under different NN sizes: OP (order of proving), PT (proving time), CS (commitment size), PS
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TABLE I: Per-step computational and communicational costs
of zkDL: T" (number of aggregated training steps; seq = no
aggregation, 1 = within-step aggregation), PT (proving time),
CS (commitment size), PS (proof size), VT (verifying time).

77 BS DPr(s CS&B) PSEB) VI®)
16 5 510 78 5
seq 32 47 610 82 46
64 49 750 85 46
16 60 230 11 6.0
1 32 61 260 11 6.2
64 62 270 12 6.3
16 1.8 110 31 1.8
4 32 1.8 120 33 1.9
64 1.9 120 34 1.9
16 083 56 0.81 0.80
16 32 083 60 0.86 0.82
64  0.84 61 0.88 0.84
6 034 28 031 0.53
64 32 0.83 30 0.32 0.52
64  0.85 30 0.34 0.56
16 084 4 0.085 0.30
256 32 0.84 15 0.089 0.33
64  0.84 15 0.091 0.33
16 085 32 0.030 0.18
1,024 32 085 8.6 0.032 0.19
64  0.86 8.7 0.033 0.19

input and output layers diverged in size, hosting 3,072 and
10 neurons, respectively. Therefore, the number of parameters
in the neural network is as large as 10 millions. For the
sake of comprehensiveness, our approach was to modify
the aggregation span across different numbers of steps and
subsequently record the findings, as tabulated in Table I.

It is pertinent to highlight that in a bid to provide a more lu-
cid perspective on the superiority of zkDL, we have presented
the computational and communication expenditures averaged
per-step, as opposed to the cumulative costs associated with
aggregated units of diverse step counts.

The data presented in Table I reveals a discernible trend: as
the number of aggregated training steps increases, various per-
formance metrics of zkDL generally improve. Notably, while
FAC4DNN does not offer improvements in the theoretical
complexity concerning proving time, the parallel processing
capabilities of CUDA still manage to deliver a marked re-
duction in real-world proving durations. This improvement

continues until it plateaus in less than 1 second. This lim-
itation is due to CUDA’s memory constraints, after which
point data transfers become necessary within every aggregated
proof. Furthermore, with sound theoretical underpinnings, as
the number of aggregated steps increases, the sizes of the
commitments and proofs, as well as the verifier times, decrease
significantly, thanks to the design of FAC4DNN.

Further experimental results. In Figure 3, we evaluate
the efficiency of zkDL when applied to neural networks of
different dimensions. Keeping the number of aggregated steps
constant at 1,024 and the batch size at 64, which is consistent
with the largest experimental setting shown in Table I, we
modify the neural network’s width and depth. The outcomes
are then contrasted with the fully sequential proof.

In alignment with the data in Table I, zkDL consistently
outperforms the sequential proof in all facets. An unusual
observation from both Table I and Figure 3 is that the verifying
time is not considerably shorter than the proving time, a
deviation from what is typically observed in most generic ZKP
frameworks. This anomaly can be explained by the verification
protocol’s predominantly sequential nature, preventing it from
fully harnessing the parallel computational capabilities of
CUDA. Hence, the development of verification algorithms
that are both theoretically and empirically expedient, partic-
ularly those optimized for parallel computing environments
like CUDA, may forge the path for future advancements in
specialized ZKPs for deep learning training.

VII. RELATED WORK

Verifiable machine learning inference. Zero-knowledge
proof (ZKP) systems have emerged as important solutions to
address security and privacy concerns in machine learning.
These systems enable the verification of machine learning
inference correctness without disclosing the underlying data
or model. Notably, zkCNN [21] introduced an interactive
proof protocol for convolutional layers, based on the GKR
protocol [14] and its refinements [32], [34], [33]. This solution
provides zero-knowledge verifiable inference for VGG-scale
convolutional neural networks, expanding verifiable computa-
tions to modern deep learning. Meanwhile, zk-SNARK-based



inference, represented by ZEN [8], vCNN [20], pvCNN [30],
and ZKML [19], Mystique [29], ezDPS [28], focuses on
enhancing the compatibility of neural networks with the zk-
SNARK backend [23], [15], [10], [3], [27], [2], scaling up
non-interactive zero-knowledge inference. Once the committed
model is verified to be correctly trained using this work, the
verifiable inference can serve as a downstream application.

Verifiable machine learning training. VeriML [36] serves as
an initial endeavour in zero-knowledge verifiable training for
core machine learning algorithms. Building upon this, works
on provable unlearning [6], [31] offer proofs of correct training
execution and updates in machine unlearning, advancing past
the probabilistic verifications in [11], [25], [16]. Their method-
ology, however, is restricted to instances where users provide
data and fully govern data changes via explicit requests. This
restricts proof generation to only data points involved in the
aforementioned requests, leaving it ill-suited for our setting
where the training data is also considered the intellectual prop-
erty of the prover. Additionally, the models they support are
constrained to limited-scale neural networks while bypassing
certain non-arithmetic operations, like replacing ReLU with
square activation. Another noteworthy contribution is zkPoT
[12], which, based on MPC-in-the-head [17], offers zero-
knowledge verifiable logistic regression.

Proof of learning (PoL) [18]. PoL serves as a non-
cryptographic-based alternative to verifiable training. How-
ever, its probabilistic guarantees render it unsuitable for
legitimacy-related settings like zkDL [7], [35]. Additionally, its
threat model assumes adversaries to forge proofs by expending
less computation resources than training, which does not deter
dedicated malicious prover capable of deviating from the
prescribed training logic (e.g., planting backdoors) at the cost
of equivalent or additional computational power.

VIII. CONCLUSION

This paper introduces zkDL, the inaugural specialized zero-
knowledge proof system tailored for deep learning training. By
harnessing the unique computational structure of deep neural
networks that enables a compressed proof across data batch,
training step and neural network layers, zkDL substantially
diminishes the time and communication overheads involved
in verifying the genuine execution of deep learning training.
Complemented by our pioneering CUDA-based implementa-
tion for verifiable deep learning, zkDL adeptly addresses the
authenticity concerns related to trained neural networks with
provable security guarantees. Experimentally, zkDL enables
the generation of complete and sound proofs in less than
a second per batch update for an 8-layer neural network
with 10M parameters and a batch size of 64, while provably
ensuring the privacy of data and model parameters. To our best
knowledge, we are not aware of any existing work on zero-
knowledge proof of deep learning training that is scalable to
million-size networks.
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APPENDIX A
ZKRELU

In this appendix, we delve into the specifics of
zkReLU. The foundational requirement of zkReLU, stem-
ming from the sumcheck-protocol-based tensor operations
discussed in Section IV, encompasses the declared eval-
uations on both the input and output of ReLU’s for-
ward and backward propagations. Specifically, these are
A(ua),Z(uz),Gz (ug,) Ga (ug,).

The sumcheck protocol for the forward propagation, de-
noted as (11) and (18), is given by

D—-1Q+R-1
=Y > B(ugi)aux(0,i,j)sgir (), 35)
i=0 j=0
_ D-1Q+R-1 _
Awa)=) > Bluai)(l-amx(0,i,Q+ R—1)aux(0,ij)s (),
i=0 j=0
(36)
where
7= (0,0,0,...,1,1,2,4,...2972 —9@-1)T
Additionally, the AIVP is expressed as
D71Q+R71~
0=>" > Buyni®j) (aux(0,i,j)° - awx (0,ij)),
i=0  j=0

(37

with up, ~ Fllog2 P1+ogz(Q+ M) peing uniformly randomly
drawn by the prover.

Analogously, mirroring the construction above for back-
propagation:

- D—-1Q+R-1
Ga (ug,) = Z B (ug,,i)aux (1,1,j) sqrr ()
i=0 j=0
(38)
D— +R— ~
C;Z uGz Z Z usti) (173’1?6((0,i,Q+R71))a’ﬁ§((l7i7j)sl (j)~

(39)

&)
o
+
=}

B (i, 1) (a0 (1,1,§)° — awx (L,1.) ).

(40)

To optimize the verification process, the verifier introduces
randomness 7,7’ ~ [F to compress the six sumcheck equations,
from (35) to (40). Each equation is multiplied by weights
r2,r, 1,772, 7'r, and ' respectively, and subsequently aggre-
gated. This compression technique leads to a succinct proof
representation requiring only 3log, (D(Q + R)) + O(1) field
elements.

This procedure creates three intermediate claims about aux:
aux (0,v,w), aux (1,v,w), and aux (0,v,Q + R — 1) for
v ~ [Flog: D wlog:(Q+R) chosen due to the randomness during
the execution of the sumcheck. However, they can be merged
into a singular claim, further reducing the proof size to
2log,(Q+ R)+O(1). Consequently, the entire zkReLU proof
compression is succinctly captured as 3log, D + 5log,(Q +
R) + O(1) field elements, with one additional proof of eval-
uation on aux.



APPENDIX B
FAC4DNN

The aggregated proof for tensor operations, specifically
the sumcheck on Equation (24), follows Protocol 2. In the
same vein, the aggregation of specialized optimized sumcheck
protocols, as given by Equation (25), adheres to Protocol 3.
In both instances, compression begins over the additional axis
resulting from stacking. This process methodically whittles
down the proof over the stacked tensor to a singular ten-
sor as shown in (43) and (46). Subsequently, the sumcheck
protocol designed for individual tensor operations is directly
implemented.

APPENDIX C
SECURITY ANALYSIS

A. Completeness

Proof sketch of Theorem V.2. Note that there are three scenar-
ios in which a semi-honest verifier might reject a proof: the
sumchecks in Lines 7, 8, and the proof of evaluations in Line
11.

For the sumcheck concerning aggregated tensor operations
in Line 7, as specified in Protocol 2 or 3, regardless of which
is invoked, the polynomials f;, extended by the verifier to g,
ensure that the sum g;(0)+g:(1) comprehensively retrieves the
sum from the preceding round. As such, given that the prover
adheres to the protocol, it consistently stands that g¢(0)+g¢(1)
matches the preceding claim. This ensures that f; is accepted
by the verifier in round ¢ with probability 1. Lastly, owing to
the perfect completeness of the sumchecks for singular tensor
operations, the verifier will also unconditionally accept the
proof presented by an honest prover. Once an honest prover
has successfully navigated the prior n rounds and reduced
the N operations to one, the probability that the sumcheck
protocol for this isolated operation also fails is zero.

Moreover, Equation (30) presents as the inner product of
two vectors with length N — 1, speciﬁcj‘\';ﬂl%/ the public in-

put (15, 2% 1B (e, 1) ol ) )

input (f( (z,u))N 1. As a result, the completeness in this
phase arises frorrll:t?le perfect completeness of the sumcheck
for vector inner-products.

Finally, due to the perfect completeness of the proof of
evaluations, and given the declared evaluations — that is,

S (uf?

7 )

_ and the private

) — are correct, the semi-honest verifier accepts the

proof of evaluations on all stacked tensors with certainty in
Line 11. O

B. Soundness

The proof of soundness (Theorem V.3) relies on Lemma
C.1 that captures the soundness of zkReL.U:

Lemma C.1 (Soundness of zkReLU). If the equalities (11),
(12), (18), (19) and (20) hold, then the forward and backward
propagation of the ReLU activation is correctly computed as:

1{Z >0} ©Z
A:{ﬁw, 7)
1{Z>0}0G
GZ:{{ —213@ A] (48)

Proof of Lemma C.1. Consider first the correctness of (20).
This ensures that aux € {0, 1}2*P*(@+F) Following from
(11), we derive

Q+R-2
> Yauxq, ;- 29" aux gir1 = Z, (49)
j=0

where the first term on the left-hand side of (49) has a
bound between 0 and 297~ — 1. Consequently, the sec-
ond term defines the sign of Z, giving 1{Z >0} = 1 —
auxg,g+r—1,]- Applying a similar logic to (12), we deduce
that 1 {Ga >0} =1-— aux[;,Q+R-1,]

For the rescaling of Z, we can represent it as:

12]- F?J 2”}

+ Z 2jauX[0,;?R+]‘] - 2QauX[0’:,Q+R_1].

2R 2R
=0

(50)
For each dimension denoted by i, the first term on the right-
hand side is 1 precisely when aux|y; r—1; = 1. Thus, it is
valid that b%] = aux[o,; r.Q+R|SQ t+ aux|.r_1). From

(18), we derive:

Z 1{Z>0}0Z

A:IL{Z>O}®{2R-‘={2R w (D
which leads to (47). Using the same reasoning on (19) con-
firms the validity of (48). O]

Lemma C.1 asserts that, through the integration of aux
and its corresponding auxiliary components, the correctness
of ReLU can be equated to the correctness of conventional
arithmetic tensor operations. This enables aggregation across
layers and training iterations within Protocol 1. Consequently,
for soundness, it is only necessary to ensure the correctness
of all tensor operations.

Proof of Theorem V.3. A malicious prover may attempt to
cheat in Protocol 1 specifically at Lines 7, 8, and 11. We
investigate the implications in the reverse order of these steps.

Beginning with the proof of evaluation in Line 11, the
commitment scheme’s binding properties ensure a soundness
error of negl (). Thus, if the prover attempts to falsely claim
that v is equivalent to SZ@ (ugt)) for any v # Sgt) (ugt)>,
the verification passes with a probability no greater than
negl ().

Next, focusing on Line 7, we consider the case where the
prover begins with a false assertion regarding at least one
X (ug,u) in the sumcheck of (30) but ultimately claims
accuracy for the stacked tensor X. Here, the randomness of
r,s implies that (30) is likely not satisfied with a probability
of 1 — ﬁ. Given this, the failure probability of the sumcheck



Protocol 2 Sumcheck on Equation (24)

Require: Prover P, verifier V, N, Di,, Doy are powers of 2 (zero-padding may be applied otherwise)

1: Denote n := logy N, din := logy Din, dout := 1085 Dout
2: P sends to verifier the uni-variate polynomial

Dou—1 Dip—1 N . o1
fO(’U) = Z Z Z 6 Wii:n], 11 B(ua i) (D;lY (’U,I’l/,i) _f (Xk (Uan/ai1k7ij))k=0 ) (41)
n’€{0,1}n-1 i=0 j=0
3.V computes go(v) < B (wig, v) fo(v), and checks go(0) + go(1) = 0
4: 'V sends to P a uniform random vy ~ [
5: fort«+ 1,2,...,n—1do > Denote vy := (vo,vl,...,vt_l)T
6: ‘P sends to V the uni-variate polynomial
ou—1 Dip—1 N - K1
flw)= Y Z > B (Wi ') B(w, i) (Dle (vi,o 0, 1) = f (Xi (vevon'inedn)) ) “2)
n’e{0,1}7—t=1 i=0 j=0
7: V computes g(v) « 3 (Wi, v) fi(v), and checks g¢(0) + g:(1) = fi—1(ve—1)
8: V sends to P a uniform random v; ~ F
9: end for
10: P and V execute the sumcheck protocol on
out 1Dm_1 . K—1
fn-1 Un 1 Z Z 6 u,i <D Y(Vn 151 ) f(Xk (Vn—lvifkaij))k()) (43)
i=0 j=0 -

(loﬁ‘ ‘N ), making the overall deceptive success

on (30)is 1-0O
probability negl (A).

Lastly, for any incorrectly computed tensor operation, con-
sider its contribution to the sumcheck protocol (24) observed

in Line 7. Consequently, a pair of indices n, i exists for which

- D1 K-1
Yni)# Y B f(Xeminjs) - 6
j=0 B
By applying the Schwartz-Zippel Lemma, it is deduced that
the equality in (24) cannot be maintained with a probability
of1-0 (%). In such scenarios, the sumcheck has an

upper bound success rate of O (W . Thus, the prob-

ability that a deceitful prover triumphs during the sumcheck
for combined tensor operations is similarly negl (\). O

C. Zero-knowledge

Theorem C.2 captures the zero-knowledge properties of
zkDL, i.e., the execution of zkDL leaks no information about
the training data and model parameters:

Theorem C.2 (Zero-knowledge). Assuming the implementa-
tion of the zero-knowledge Pedersen commitment scheme and
the zero-knowledge variant of the sumcheck protocol [4], [32],
[33], Protocol 1 is zero-knowledge. Specifically, there exists
a simulator S = (81,82) for which the ensuing two views
are computationally indistinguishable by any probabilistic
polynomial-time (PPT) algorithm, given the public parameters
pp (the generators used in the commitment scheme within the
context of zkDL):

Real:

1: com < zkDL—-Commit (X||y|Winir; PP)
2: w4 zkDL-Prove(com; pp)
3: return com,T

Ideal:

I: com + &1 (lA;pp)

2: ™ + Ss(com; pp), with oracle access to the cor-
rectness of the training procedure

3: return com,T

In the aforementioned setting,
zkDL-Commit (X||y||Wir; o) pertains to the steps
of training (Line 2) and making commitments to the tensors
(Line 4) in Protocol 1. Meanwhile, zkDL—Prove(com; pp)
refers to the processes of the sumcheck protocols (Lines 7 and
8) and the proof of evaluations relative to the commitments
(Line 11).

Proof sketch of Theorem C.2. Firstly, by leveraging the zero-
knowledge sumcheck protocols, for each tensor operation A,
there is a simulator S* that indistinguishably simulates the
execution of the sumcheck protocol with sole reliance on
oracle access to validate the correctness of the aggregated
operations among them. In contrast, for each tensor class

Ti, there exists a pair of simulators, denoted as (817—7827)

Specifically, ST" is tasked with simulating the generation of
the commitment, while S;* simulates the proof of evaluation,
contingent on oracle access to ascertain the evaluation at the
precise point the committed tensor is assessed.

Building on this, given that the randomness across all



Protocol 3 Sumcheck on Equation (25)

Require: Prover P, verifier V, N, Di,, Doy are powers of 2 (zero-padding may be applied otherwise)
1: Denote n := logy N, din := logy Din, dout := 1085 Dout
2: P sends to verifier the uni-variate polynomial

Din*1 . . __ K—1
fO(U) = Z Z ﬁ (W[l:n]7n/) ﬁ (nguiJg) f (Xk (Ua Il/7 ufkhiJk))k:O
n’€{0,1}n—1 j=0
3: V computes go(v) < B(W[O],U) fo(v), and checks go(0) + go(1) = Y (w,u)
4: VY sends to P a uniform random vy ~ IF
5: fort«+ 1,2,...,n—1do > Denote vy := (vg, vy, .. .
6: P sends to V the uni-variate polynomial
Din*1 - - __ K—1
.ft(v) = Z Z ﬁ (W[l:n]7n/) ﬁ (uJ57jJ5) f (Xk (Vta v, n/a ujk’jjk))kzo
n’€{0,1}n—t=1 j=0
7: V computes g;(v) « 3 (Wi, v) fi(v), and checks g¢(0) + g:(1) = fi—1(ve—1)
8: V sends to P a uniform random v; ~ F

9: end for
10: P and V execute the sumcheck protocol on

Di,—1

_ K1
fr—1(vn—1) = B(wsy,ja,) f (Xk (Vn—1,u1k,ij))

k=0

[
Il
o

(44)

7vt—1)T

(45)

(46)

aforementioned simulators remains independent, the overall
simulator for zkDL can be architected in the following manner:

1) &1, realized as a composite of all SlTi s, is responsible
for simulating the creation of commitments.

2) With oracle access to the integrity of the comprehensive
training process, that is, the correctness of all aggregated
tensor operations, Sy emerges as a combined entity of
both S4is and S]s. Its role is to simulate proofs of
tensor operations’ correctness through sumchecks and
the subsequent proofs of evaluations.

As a consequence, the composite simulated transcript, ow-
ing to the inherent independence between the components
generated by these simulators, remains computationally indis-
tinguishable from an authentic transcript. O



