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Abstract

This work focuses on the parallel broadcast primitive, where each of the n parties wish to broadcast
their ℓ-bit input in parallel. We consider the authenticated model with PKI and digital signatures that
is secure against t < n/2 Byzantine faults under a synchronous network.

We show a generic reduction from parallel broadcast to a new primitive called graded parallel broad-
cast and a single instance of validated Byzantine agreement. Using our reduction, we obtain parallel
broadcast protocols with O(n2ℓ + κn3) communication (κ denotes a security parameter) and expected
constant rounds. Thus, for inputs of size ℓ = Ω(n) bits, our protocols are asymptotically free.

Our graded parallel broadcast uses a novel gradecast protocol with multiple grades with asymptot-
ically optimal communication complexity of O(nℓ + κn2) for inputs of size ℓ bits. We also present a
multi-valued validated Byzantine agreement protocol with asymptotically optimal communication com-
plexity of O(nℓ + κn2) for inputs of size ℓ bits in expectation and expected constant rounds. Both of
these primitives are of independent interest.

1 Introduction

Parallel broadcast is a primitive where all parties wish to broadcast ℓ bit messages in parallel. This is
an essential building block, central to many cryptographic protocols like verifiable secret sharing (VSS),
multi-party computation (MPC) [6, 8, 2], distributed key generation (DKG) [14] where all parties broadcast
messages in parallel in the same round. For example, in MPC and DKG applications, each party broadcasts
O(1) VSSs in parallel to share secrets. In VSS itself, each party broadcasts a commitment [17] to a secret
in parallel. Design of efficient protocols for parallel broadcast is therefore of paramount importance as any
improvements for parallel broadcast also results in improvement of these primitives. In this work, we focus
on improving the communication complexity (i.e., reducing the number of bits honest parties exchange) and
the round complexity (i.e., the time required to reach a decision) of parallel broadcast in the synchronous
authenticated model with PKI and digital signatures tolerating t < n/2 Byzantine failures under various
setup assumptions.

While existing works on parallel broadcast can tolerate a dishonest Byzantine majority, they either näıvely
run n instances of Byzantine agreement (or Byzantine broadcast) primitives (increasing the communication
complexity by an undesirable factor of n) [7, 1, 16] or incur a high round complexity along with strong
cryptographic assumptions [33, 28]. For example, the broadcast extension protocol1 due to Nayak et al. [28]
can be used to achieve a parallel broadcast protocol tolerating t < (1− ε)n Byzantine faults (where ε > 0 is
a small constant) with a communication complexity of O(n2ℓ + κn3 + n4) (where κ is a security parameter)
to propagate ℓ bit input and O(t) round complexity. Similarly, protocols due to Tsimos et al. [33] tolerate
t < (1−ε)n Byzantine faults with a communication complexity of O(κ2n3ℓ) and O(t log t) round complexity.

∗Lead author. Work done while the author was a student at Rochester Institute of Technology.
1By extension protocol, we mean reduction of reduction of BA/BB on long input to a BA/BB on a smaller input [28]
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Table 1: Comparison of related works on MVBA with ℓ-bit input

Network Resilience Communication Latency Adversary Assumption

Cachin et al. [13] async. t < n/3 O(n2ℓ) + E(O(κn2 + n3)) E(O(1)) adaptive threshold sigs.
VABA [5] async. t < n/3 O(n2ℓ) + E(O(κn2)) E(O(1)) adaptive threshold sigs.
DUMBO-MVBA [26] async. t < n/3 E(O(nℓ + κn2)) E(O(1)) adaptive threshold sigs.
Shrestha et al. [32] sync. t < n/2 E(O(n2ℓ + κn3)) E(O(1)) static PKI

This work sync. t < n/2 E(O(nℓ + κn2)) E(O(1)) adaptive threshold sigs.

E(.) implies “in expectation”.

Thus, this work investigates the communication complexity and round complexity of parallel broadcast
protocol when the fault tolerance is t < n/2. To be specific, we ask the following question:

Can we design a parallel broadcast protocol with a good communication complexity and a good
round complexity while tolerating t < n/2 Byzantine faults?

We answer this question affirmatively by showing two parallel broadcast protocols each with O(n2ℓ+κn3)
communication for inputs of size ℓ bits and termination in constant expected rounds. Thus, for inputs for
size ℓ = Ω(n) bits, our protocols have no asymptotic overhead. Our first protocol works in the authenticated
model with PKI and digital signatures and is secure against a static adversary. Our second protocol relies
on threshold setup assumption to obtain security against a (strongly rushing) adaptive adversary.

1.1 Key Technical Ideas and Results

Parallel broadcast is a primitive where all parties wish to broadcast ℓ bit messages in parallel [30]. It
can be implemented näıvely by invoking n instances of Byzantine broadcast [16] or Byzantine agreement [4]
primitives in parallel in a black box manner. However, this technique increases the communication complexity
by an undesirable factor of n. Moreover, invoking n concurrent instances of randomized Byzantine agreement
protocol [4] (that terminates in expected O(1) rounds) terminates in expected O(log n) rounds [7]; thus
increasing the round complexity. Our work focuses on improving communication complexity while keeping
a constant expected round complexity.

Towards communication efficient parallel broadcast. Instead of relying on n instances of expensive
Byzantine Broadcast (or Byzantine Agreement) primitive, we obtain parallel broadcast using a combination
of n instances of a gradecast primitive [23, 32] and only one instance of (validated) agreement protocol.
To ensure an overall communication complexity of O(n2ℓ + κn3) for inputs of size ℓ bits, we improve the
communication complexity of gradecast to O(nℓ+κn2) and the validated agreement protocol to O(nℓ+κn2)
in expectation. In the following, we will first describe our improvements to each of the primitives, before
describing parallel broadcast.

Gradecast with multiple grades. Gradecast is a relaxed version of broadcast introduced by Feldman and
Micali [18] where parties output a value along with a grade. Basic versions of gradecast [23, 32] have grades
in the range of {0, 1, 2}. We rely on a version of gradecast that supports grades in the range {0, 1, 2, 3, 4} (we
will explain later the need for this version of gradecast). At a high level, our gradecast with multiple grades
provides the following guarantees: (i) the grades of all honest parties are maximum i.e., 4 when the sender
is honest, (ii) honest parties may output different grades when the sender is Byzantine; but the grades of
any two honest parties differ by at most 1, (iii) when an honest party outputs a value with a grade of 2, all
honest parties output the same value with grade of ≥ 1, (iv) two honest parties may output different values
with a grade of 1 when no honest party has a grade of 2. While gradecast with grades up to 4 suffices for
our purpose, we generalize it to support arbitrary number of grades {0, 1, . . . , g∗} where g∗ is the maximum
supported grade.
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We give a construction tolerating t < (1 − ε)n Byzantine faults with a communication complexity of
O(n ℓ

ε + κn2). The key technique we employ to design communication efficient gradecast is to have parties
multicast smaller chunks of messages (via Reed-Solomon erasure codes [31]) only once and then “silently”
waiting to detect any conflicting messages while simultaneously increasing the grades when no conflicting
messages are detected. In particular, we obtain the following result:

Theorem 1. Assuming a public-key infrastructure, digital signatures and a universal structured reference
string under q-SDH assumption, there exists a g∗-gradecast protocol tolerating t < (1 − ε)n Byzantine faults
with a communication complexity of O(n ℓ

ε +κn2) for an input of size ℓ bits and a round complexity of 3g∗−2.

When ε > 0 is a small constant, our protocol has a communication complexity of O(nℓ + κn2). This
communication complexity is achieved when we assume q-Strong Diffe Hellman (q-SDH) [11] setup assump-
tion (this setup can be achieved via distributed protocols [9, 12]). We can alternatively make use of Merkle
tree [27] to avoid q-SDH assumption at the expense of O(log n) multiplication communication complexity.

Graded parallel broadcast: Composing n instances of gradecast with multiple grades and
ensuring validated output. Parties invoke gradecast with multiple grades with each party as a sender
to propagate their input and output an n-element list of grades (GradeList) corresponding to each party
as sender. When the sender is honest, all honest parties output a common value with the highest possible
grade. When the sender is Byzantine, honest parties may output different values with different grades. Thus,
GradeList of two honest parties may be different; especially the grades corresponding to Byzantine senders.

Looking ahead, our aim is to agree on a common GradeList using a validated Byzantine agreement protocol
and compute the final output vector based on the grades in the agreed GradeList to solve the parallel broadcast
problem. The agreed GradeList can be the input of even a Byzantine party who may set arbitrary grades
in its GradeList. In order to restrict a Byzantine party from setting arbitrary grades in its GradeList, we
define the notion of valid GradeList and ensure the validated Byzantine agreement protocol outputs only
valid GradeList. A valid GradeList is one that has been verified by at least one honest party. An honest party
verifies a given GradeList by checking against its own GradeList and ensuring that the grades corresponding
to a sender differ by at most 1. This restricts a Byzantine party to set arbitrary grades in a valid GradeList.

Given this notion of valid GradeList, let us see why we need a gradecast that supports grades in the range
{0, 1, 2, 3, 4} where honest parties output a common value with the highest grade of 4 when the sender is
honest. Consider a Byzantine party who may set arbitrary grades in its GradeList. For its GradeList to be
valid, it must set a grade of at least 3 corresponding to honest senders for its GradeList to be verified by
an honest party (since gradecast ensures that the grades output by any two parties differ by at most 1).
Then we can compute the final output vector (to solve parallel broadcast) by considering values that have
grades at least 3 in the agreed valid GradeList. This ensures honest inputs are always included in the final
output vector. Note that the Byzantine party may also set a grade of at least 3 corresponding to a Byzantine
sender in its GradeList. The GradeList will be verified as long as one honest party has a grade of at least
2 corresponding to this Byzantine sender. Note that our gradecast protocol ensures that all honest parties
have output the same value when an honest party sets a grade of at least 2. This ensures consistency in the
final output vector.

To see why gradecast protocol that supports fewer grades does not work, let us consider a gradecast
where the maximum grade is 3. We consider a GradeList of a Byzantine party who may set a grade of 2
corresponding to an honest sender (to ensure the GradeList is valid). In this version, in order to ensure
honest inputs are included in the final vector, we need to output values with grades of at least 2 in the
agreed GradeList. However, the Byzantine party may also set a grade of 2 corresponding to Byzantine sender
for which no honest party has a grade of 2; different honest parties may have different values in this case.
Thus, this violates consistency.

We formally define the process of invoking n parallel instances of gradecast with multiple grades and
obtaining (possibly different) valid GradeList as graded parallel broadcast. We obtain the following result,

Theorem 2. Assuming a public-key infrastructure, digital signatures and a universal structured reference
string under q-SDH assumption, there exists a graded parallel broadcast protocol tolerating t < n/2 Byzantine
faults with O(n2ℓ + κn3) communication for an input of size ℓ bits and constant rounds.
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Agreeing on a common valid GradeList using efficient multi-value validated Byzantine agreement.
We make use of a single instance of multi-valued validated Byzantine agreement (MVBA) to agree on a
common GradeList. In MVBA, each party starts with a different externally valid input (possibly large) and
outputs a common value; the output value can be input of any party as long as it is externally valid. The
best-known prior work is the MVBA protocol of Shrestha et al. [32] which works in the authenticated model
with PKI and digital signatures. Their protocol is secure against a static adversary tolerating t < n/2 faults
with O(n2ℓ + κn3) communication in expectation and expected O(1) rounds.

In order to improve communication complexity and provide adaptive security, we design an MVBA proto-
col secure against a (strongly rushing) adaptive adversary tolerating t < n/2 Byzantine faults. Our MVBA
protocol incurs O(nℓ + κn2) communication in expectation and terminates in expected constant rounds
but assumes threshold setup and relies on adaptively-secure threshold signature scheme [25]. Following the
communication lower bound results of Abraham et al. [3] and Fitzi et al. [20], our MVBA protocol has
asymptotically optimal communication complexity. Specifically, we show the following result:

Theorem 3. Assuming a public-key infrastructure, digital signatures, threshold setup and a universal struc-
tured reference string under q-SDH assumption, there exists a multi-valued validated Byzantine agreement
protocol tolerating t < n/2 Byzantine faults with O(nℓ+κn2) communication in expectation for inputs of size
ℓ bits, termination in expected O(1) rounds and security against a (strongly rushing) adaptive adversary.

The starting point of our MVBA construction is the Byzantine synod protocol of Abraham et al. [4]
which is secure against a (strongly rushing) adaptive adversary and incurs O((ℓ + κ)n2) communication in
expectation and terminates in expected constant rounds. We present a brief overview of their protocol to
understand O(n2ℓ) term.

In their protocol, parties first multicast their ℓ-bit proposals and collect acknowledgements from at least
t + 1 parties. A proposal is said to be “prepared” if it collects acknowledgements from t + 1 parties. Each
of the parties then proposes these prepared proposals. This is followed by a leader election phase where
they always obtain a common leader. With probability at least 1/2, this leader is honest. Once the leader
is elected, parties only consider the prepared proposal of the leader. If such a proposal exists and there are
no equivocating prepared proposals from the leader, the proposal is committed; otherwise parties perform
a “view-change” to restart the process. Having parties create prepared proposals before a leader election
prevents an adaptive adversary from corrupting the elected party and creating equivocating proposals. For
proposals of size ℓ bits each, a multicast of n proposals trivially incurs O(n2ℓ) communication as each party
needs to receive nℓ bits.

Our MVBA protocol inherits the underlying consensus mechanism of their protocol and improves the
dissemination of the proposals to obtain O(nℓ + κn2) communication. Our solution uses Reed-Solomon
erasure codes [31] to encode large messages into n code words and cryptographic accumulators [29] to verify
the correctness of the code words.

In our protocol, each party Pi encodes its ℓ bit proposal to n code words (si,1, . . . , si,n) via Reed-
Solomon erasure codes and sends a code word si,j to party Pj ∀j ∈ [n] along with a cryptographic witness
to verify the correctness of the code word si,j . Each party Pj , upon receiving a valid code word si,j ,
sends an acknowledgment to party Pi. Party Pi considers its proposal “prepared” once it receives t + 1
acknowledgments. We stress that a party receives a single valid code word corresponding to the proposal;
and not the full proposal. This differs from extension techniques [28] where all parties receive the full
proposal. For all n proposals of size ℓ bits each, this process only incurs O(nℓ + κn2) communication.
Having proposals prepared in this manner still gives that same advantages against an adaptive adversary
with reduced communication.

Later in the protocol, when the prepared proposal is selected during leader election phase, the full proposal
needs to be retrieved before committing it. An original proposal can be decoded with t+ 1 valid code words
for the proposal. Note, however that a “prepared” proposal does not imply sufficient code words required to
decode the proposal will be available. A Byzantine party may send a valid code word corresponding to its
proposal to a single honest party and collect t acknowledgements from Byzantine parties to have its proposal
prepared. Thus, having a proposal prepared does not guarantee its availability. We consider such proposals
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Table 2: Comparison of related parallel broadcast protocols

Model Resilience Communication Latency Adversary
Expected Worst

Nayak et al.[28] PKI t < (1− ε)n O(n2ℓ+ κn3 + n4)∗ O(t) adaptive

Tsimos et al. [33] PKI t < (1− ε)n Õ(κ2n3ℓ)∗ O(t log t) adaptive

Tsimos et al. [33] trusted PKI t < (1− ε)n Õ(κ4n2ℓ)∗ O(κ log t) adaptive
Abraham et al. [1] unauthenticated t < n/3 O(n2ℓ) + E(O(n4 logn)) O(n2ℓ+ n5 logn) E(O(1)) static

Nayak et al. [28] + [4] threshold sigs. t < n/2 O(n2ℓ) + E(O(κn3)) O(n2ℓ+ κn4) E(logn) adaptive

This work + [32] PKI t < n/2 O(n2ℓ) + E(O(κn3)) O(n2ℓ+ κn4) E(O(1)) static
This work threshold sigs. t < n/2 O(n2ℓ+ κn3) + E(O(κn2)) O(n2ℓ+ κn3) E(O(1)) adaptive

Tsimos et al. [33] and Abraham et al. [1] do not assume q-SDH assumption. Tsimos et al. [33] has Õ in the communication
complexity which hides a logn factor unrelated to the q-SDH assumption. Without q-SDH setup assumption, our protocols
would have logn multiplicative factor in the communication complexity. E(.) implies “in expectation”. * This is the best

communication complexity as these protocols execute for a fixed number of rounds.

Figure 1: Overview of sub-protocols and their dependencies

as “bad”. When such a bad proposal is selected during the leader election phase, we “wait” for a few rounds
to detect recoverability of the proposal and perform view-change when we are unable to decode the selected
proposal, i.e., we rely on synchrony to detect and filter out bad proposals. Once an honest leader is elected,
its prepared proposal can be decoded and committed.

Efficient parallel broadcast. Finally, we obtain efficient protocols for parallel broadcast using the above
primitives. In particular, we use the graded parallel broadcast and MVBA protocol to achieve parallel
broadcast protocol. Specifically, we obtain the following main result:

Theorem 4. Assuming a public key infrastructure and digital signatures, if we have a graded parallel broad-
cast tolerating t < n/2 Byzantine faults with a communication complexity of x and round complexity of
y, and a MVBA protocol tolerating t < n/2 Byzantine faults with a communication complexity of a and a
round complexity of b, we can have a parallel broadcast protocol tolerating t < n/2 Byzantine faults with a
communication complexity of x + a and a round complexity of y + b.

We obtain different results for parallel broadcast depending on the variant of the validated Byzantine
agreement used. Our first parallel broadcast protocol uses the MVBA protocol of Shrestha et al. [32] which
is a secure against a static adversary with O(n2ℓ + κn3) communication in expectation and expected O(1)
rounds. Using their MVBA protocol, we obtain the following corollary:

Corollary 5. Assuming a public-key infrastructure, digital signatures, and a universal structured reference
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string under q-SDH assumption there exists a protocol secure against static adversary that solves parallel
broadcast tolerating t < n/2 Byzantine faults with O(n2ℓ) + E(O(κn3)) communication and expected O(1)
rounds.

Our second parallel broadcast protocol uses our MVBA protocol (Theorem 3). We obtain the following
corollary:

Corollary 6. Assuming a public-key infrastructure, digital signatures, threshold setup, and a universal
structured reference string under q-SDH assumption there exists a protocol that solves parallel broadcast
tolerating t < n/2 Byzantine faults with O(n2ℓ+κn3) +E(O(κn2)) communication, termination in expected
O(1) rounds and security against a (strongly rushing) adaptive adversary.

Observe that our second parallel broadcast has O(n2ℓ+κn3)+E(O(κn2)) communication. In the common
case, the protocol terminates in expected constant number of rounds with total communication complexity
of O(n2ℓ + κn3). In the worst case, when the protocol runs for linear number of rounds, this protocol still
incurs O(n2ℓ + κn3) communication; thus this protocol incurs O(n2ℓ + κn3) communication even in the
worst-case.

On simultaneous termination and sequential composition. Our protocols cannot provide simultane-
ous termination. This is similar to Feldman and Micali [18] and Katz and Koo [23]. However, we can use
techniques introduced in Lindell, Lysyanskaya and Rabin [24], Katz and Koo [23] and Cohen et al. [15] for
sequential composition of our protocols.

Related work. Table 1 and Table 2 presents comparisons with recent results in MVBA and parallel
broadcast literature. We present a detailed discussion in Section 7.

2 Model and Preliminaries

We consider a system consisting of n parties (P1, . . . , Pn) in a reliable, authenticated all-to-all network, where
up to t parties can be Byzantine faulty. The Byzantine parties may behave arbitrarily. We consider two
kinds of adversaries: (i) a static adversary, and (ii) a strongly rushing adaptive adversary. A static adversary
corrupts parties before the start of the protocol execution whereas a strongly rushing adaptive adversary
can adaptively decide which t parties to corrupt at any time during protocol execution. In addition, due to
“strongly-rushing” nature of the adversary, the adversary is capable of corrupting a party Ph after observing
message sent by party Ph in round r and remove round r messages sent by party Ph before they reach other
honest parties and send round r messages after corrupting it [4]. A party that is not faulty throughout the
execution is considered to be honest and executes the protocol as specified.

We assume a synchronous communication model. Thus, if an honest party sends a message at the
beginning of some round, the recipient receives the message by the end of that round. We make use of
digital signatures and a public-key infrastructure (PKI) to prevent spoofing and replays and to validate
messages. Message x sent by a node Pi is digitally signed by Pi’s private key and is denoted by ⟨x⟩i. In
addition, we use H(x) to denote the invocation of the hash function H on input x.

2.1 Definitions

Definition 2.1 (Parallel Broadcast [30]). In a parallel broadcast protocol, each party Pi has its input value vi
and each party Pi outputs a n-element vector Vi of values. A parallel broadcast protocol tolerating t Byzantine
failures has the following properties:

• Agreement. All honest parties must agree on the same vector of values V = [v1, . . . , vn].

• Validity. If the input of an honest party Pj is vj, then Vi[j] = vj.

• Termination. All honest parties must eventually decide on a vector V.
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Gradecast with multiple grades. Gradecast with multiples grades was originally introduced by Garay
et al. [22] that supports arbitrary number of grades. We present a slightly weaker definition of gradecast
with multiple grades.

Definition 2.2 (Gradecast with multiple grades). A protocol with a designated sender Pi holding an initial
input v is a g∗-gradecast protocol tolerating t Byzantine faults if the following conditions hold:

1. Each honest party Pj outputs a value vj with a grade gj ∈ {0, 1, . . . , g∗}.

2. If the sender is honest, each honest party Pj outputs v with a grade gj = g∗.

3. If two honest parties Pj and Pk output values with grades gj and gk respectively, then |gj − gk| ≤ 1.

4. If an honest party Pj outputs a value v with a grade gj > 1, then all honest parties output value v.

Our definition allows honest parties to output different values with a grade of 1 when no honest party
outputs a grade > 1 while the definition of Garay et al. [22] restricts honest parties to output the same value
with a grade of 1.

Multi-valued validated Byzantine agreement. In an MVBA protocol, there is an external validity
function ex-validation that every party has access to. Each honest party starts with some externally valid
input vi, and on termination must output a value. An MVBA protocol tolerating t Byzantine failures has
the following properties:

Definition 2.3 (Multi-valued Validated Byzantine Agreement [5, 26, 32]). A protocol solves multi-valued
validated Byzantine agreement if it satisfies the following properties except with negligible probability in the
security parameter κ:

• Agreement. No two honest parties decide on different values.

• Validity. If an honest party decides a value v, then ex-validation(v) = true.

• Termination. If all honest parties start with externally valid values, all honest parties eventually
decide.

2.2 Primitives

In this section, we present several primitives used in our protocols. Our protocols make use of standard
coding schemes and cryptographic accumulators in the literature.

Linear erasure and error correcting codes. We use standard (n, b) Reed-Solomon (RS) codes [31].
This code encodes b data symbols into code words of n symbols using ENC function and can decode the b
elements of code words to recover the original data using DEC function.

• ENC. Given inputs m1, . . . ,mb, an encoding function ENC computes [s1, . . . , sn] = ENC(m1, . . . ,mb),
where [s1, . . . , sn] are code words of length n. A combination of any b elements of n code words uniquely
determines the input message and the remaining of the code word.

• DEC. The function DEC computes [m1, . . . ,mb] = DEC(s1, ..., sn), and is capable of tolerating up to c
errors and d erasures in code words [s1, . . . , sn], if and only if n− b ≥ 2c + d. In our protocol, we invoke
DEC with c = 0 i.e., the input code words to DEC function do not contain errors; and only erasures. The
DEC function will return correct output in the presence of up to n− b erasures.

In our protocol, we use the (n, b) RS codes with n set to be the number of parties in the system and b
set to be the number of honest parties i.e., b = n− t.

Cryptographic accumulators. A cryptographic accumulator scheme constructs an accumulation value
for a set of values and produces a witness for each value in the set. Given the accumulation value and a
witness, any party can verify if a value is indeed in the set. Formally, given a parameter k, and a set D of n
values d1, . . . , dn, an accumulator has the following components:
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• Gen(1k, n): This algorithm takes a parameter k represented in unary form 1k and an accumulation thresh-
old n (an upper bound on the number of values that can be accumulated securely), returns an accumulator
key ak. The accumulator key ak is part of the q-SDH setup [11] and therefore is public to all parties.

• Eval(ak,D): This algorithm takes an accumulator key ak and a set D of values to be accumulated, returns
an accumulation value z for the value set D.

• CreateWit(ak, z, di,D): This algorithm takes an accumulator key ak, an accumulation value z for D and a
value di, returns ⊥ if di ̸∈ D, and a witness wi if di ∈ D.

• Verify(ak, z, wi, di): This algorithm takes an accumulator key ak, an accumulation value z for D, a witness
wi and a value di, returns true if wi is the witness for di ∈ D, and false otherwise.

In this paper, we use collision free bilinear accumulators from Nguyen [29] as cryptographic accumulators
which generates constant sized witness, but requires q-SDH assumption [11]. Alternatively, we can use Merkle
trees [27] (and avoid q-SDH assumption) at the expense of O(log n) multiplicative communication complexity.

Normalizing the length of cryptographic building blocks. Let λ denote the security parameter,
κh = κh(λ) denote the hash size, κs = κs(λ) denote the size of the signature size, κa = κa(λ) denote the
size of the accumulation value and witness of the accumulator. Further, let κ = max(κh, ks, κa); we assume
κ = Θ(κh) = Θ(κs) = Θ(κa) = Θ(λ). Throughout the paper, we will use the same parameter κ to denote
the hash size, signature size and accumulator size for convenience.

3 Gradecast with Multiple Grades

In this section, we present a communication efficient gradecast protocol that supports multiple grades.
Gradecast (aka graded broadcast) is a relaxed version of broadcast introduced by Feldman and Micali [18].
In gradecast, parties output a value along with a grade. Informally, the grade output by a party is an
indicator of the “confidence” in the output produced by it. Thus, when the grade output by an honest
party is high, other honest parties are expected to output the same value (even though their grade may be
lower). When the grades are lower, there may be some amount of disagreement between the output values
of different honest parties too. This is in contrast to broadcast which requires honest parties to reach a
unanimous decision.

The gradecast protocol of Feldman and Micali [18] supports three grades {0, 1, 2} and their protocol
tolerates t < n/3 Byzantine faults in the plain authenticated model without PKI. Later, Garay et al. [22]
generalized the gradecast protocol to the case of an arbitrary number of grades {0, 1, . . . , g∗} where g∗ is
the maximum supported grade. They gave a protocol in the authenticated model with PKI and digital
signatures tolerating t < n Byzantine faults and a message complexity of O(g∗n2) (this corresponds to a
communication complexity of O(g∗(ℓ + κ)n2) for input of size ℓ bits) and a round complexity of 2g∗ + 1. In
this work, we present a slightly weaker definition of the gradecast with multiple grades (see Definition 2.2)
and show a construction that satisfies this definition with a communication complexity of O(nℓ + κn2) for
input of size ℓ bits and t < (1 − ε)n resilience where ε > 0 is some constant. Our protocol also works in the
authenticated model with PKI and digital signatures.

Equivocation. Two or more messages of the same type but with different payload sent by a party is
considered an equivocation. In order to facilitate efficient equivocation checks, the sender sends the payload
along with signed hash of the payload. When an equivocation is detected, broadcasting the signed hash
suffices to prove equivocation by the sender.

Deliver. As a building block, we first present a Deliver function (refer Figure 2) used by an honest party to
efficiently propagate long messages using erasure coding techniques and cryptographic accumulators. The
input parameters to the function are long message m, accumulation value z corresponding to message m and
the sender’s signature on (H(m), z). The sender is the party who originally sent message m.
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Deliver(m, z, σ) :

- Partition input m into b blocks. Encode the b blocks into n code words [s1, . . . , sn] using ENC function. Add an index j
to each code word sj to obtain D = [(1, s1), . . . , (n, sn)]. Compute accumulation value zi = Eval(ak,D). If z ̸= zi or σ is
not a valid signature on (H(m), zi) abort. Otherwise, compute witness wj for each element (j, sj) ∈ D using CreateWit
function and send ⟨codeword, sj , wj , H(m), z⟩i and σ to party Pj ∀Pj ∈ P.

- If party Pj receives the first valid code word ⟨codeword, sj , wj , H(m), z⟩∗ along with the sender’s signature σ such that
Verify(ak, z, wj , (j, sj)) = true, forward the code word and the sender’s signature σ to all the parties.

- Upon receiving b valid code words for the first accumulation value z it received, decode m using DEC function.

Figure 2: Deliver function

We consider the invocation of the Deliver function by an honest party Pi. When the function is invoked
using the above input parameters, the long message m is first partitioned into b blocks. The b blocks are
then encoded into n code words [s1, . . . , sn] using ENC function (defined in Section 2). An index j is added
to each code word sj to obtain D = [(1, s1), . . . , (n, sn)] and the accumulation value zi is computed from D
using Eval function. If z ̸= zi or the sender signature σ is not a valid signature on (H(m), zi), party Pi aborts
further operations. If party Pi did not abort, it computes the cryptographic witness wj for each element
(j, sj) ∈ D using CreateWit (defined in section 2). Then, the code word and witness pair (sj , wj) is sent to
the node Pj ∈ P along with the sender’s signature σ.

When a node Pj receives the first valid code word sj for an accumulation value z such that the witness
wj verifies (j, sj) (using Verify function defined in section 2), it forwards the code word and witness pair
(sj , wj) along with the sender’s signature σ to all parties. Note that party Pj forwards only the first valid
code word and witness pair (sj , wj). Thus, it is required that all honest parties forward the code word and
witness pair (sj , wj) for long message m; otherwise all honest nodes may not receive b code words required
to decode the long message m.

When a party Pi receives b valid code words corresponding to the first accumulation value z (or the first
valid code word) it receives, it reconstructs the object m.

The Deliver function incurs 2 rounds. Our Deliver function improves upon Deliver function of Rand-
Piper [10] to tolerate dishonest majority Byzantine faults.

Set oi = ⊥ and gi = 0. Each party Pi performs the following operations:

- Round 1: If party Pj is the designated sender, then it multicasts (v, z, σ) where v is the input value, z is the accumulation
value of v and σ is the its signature on (H(m), z)).

- Round 2h (h ∈ [1, g∗ − 1]): If party Pi receives (v, z, σ) for the first time, it invokes Deliver(v, z, σ).

- Round 2g∗: If party Pi invoked Deliver for value v without aborting by round 2g∗ − 2 and no party Pj equivocation has
been detected so far, set oi = v and gi = 2. Let vi be the first value received. If vi = ⊥, set oi = ⊥ and gi = 0, else if
oi = ⊥, set oi = vi and gi = 1.

- Round 2g∗ + h (h ∈ [1, g∗ − 2]): If party Pi invoked Deliver for value v by Round 2g∗ − 2(h + 1) and no party Pj

equivocation has been detected so far, set gi = gi + 1. At round 3g∗ − 2, output (oi, gi).

Figure 3: M-Gradecast(v, g∗) with O(nℓ + (κ + w)n2) communication.

3.1 Protocol details

We construct a protocol M-Gradecast(v, g∗) where v is the sender’s value and g∗ is the maximum supported
grade. The M-Gradecast(v, g∗) protocol is presented in Figure 3. In round 1, the designated sender Pj

multicasts (v, z, σ) where v is its input value, z is the accumulation value and σ is its signature on (H(m), z).
We note that the size of input value v can be large. In order to facilitate efficient equivocation checks, the
sender Pj signs (H(v), z) and sends the signature σ. Whenever an equivocation by the sender is detected,
multicasting these signatures suffices to prove equivocation by the sender.
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During rounds 2h for h ∈ [1, g∗ − 1], if party Pi receives (v, z, σ) for the first time, it invokes Deliver
to propagate long message v. Note that if party Pi invoked Deliver in round 2, it does not invoke Deliver
again in later rounds. Also, note that Deliver function requires 2 rounds. Rounds 2h + 1 for h ∈ [1, g∗ − 1]
accommodates steps of Deliver function invoked in rounds 2h for h ∈ [1, g∗ − 1]. We note that although
parties may invoke Deliver to propagate long message v in different rounds, they forward their code words
only the first time. For example, if a party Pi invoked Deliver in round 2 and an honest party Pk received its
first valid code word (sk, wk) in round 3 for accumulation value z, it forwards the code word to all parties in
round 3. Later, if some other party (say party Ph) invokes Deliver in round 4 and party Pk receives code word
(sk, wk) again in round 5, party Pk does not forward (sk, wk) again. This helps in keeping communication
complexity to O(nℓ + κn2).

In round 2g∗, each party Pi sets its output value and initial grades. If party Pi invoked Deliver for value
v at any prior rounds, and it did not detect any equivocation so far, it sets oi = v and gi = 2. We note that
an honest party decodes long messages corresponding to the first valid code word (or the first accumulatioin
value z) they receive even though it detects equivocation as long as it receives b valid code words. We refer
to this value as the first received value. Let vi be the first value received. If vi = ⊥, it sets oi = ⊥ and
gi = 0. Otherwise if oi = ⊥, set oi = vi and gi = 1 irrespective of the equivocation i.e., if Pi did not invoke
Deliver for any values but receives a value vi ̸= ⊥, it sets oi = vi and gi = 1.

In round 2g∗ + h for h ∈ [1, g∗ − 2], each party Pi updates their grade gi based on when they invoked
Deliver and if they have detected any equivocation so far.

Optimal communication complexity. Our M-Gradecast(v, g∗) incurs O(nℓ + κn2) communication for
input of ℓ bits while tolerating t < (1 − ε)n Byzantine faults where ε > 0 is a constant. In a recent
work, Shrestha et al. [32] designed a weak-gradecast protocol where grades are in the range {0, 1, 2} with a
communication complexity of O(nℓ+κn2) for input of size ℓ bits in the same setting and gave a communication
lower bound of Ω(nℓ + n2) for weak-gradecast. The communication lowerbound of Shrestha et al. [32] can
trivially be extended to show the optimal communication complexity of our M-Gradecast(v, g∗) protocol.

3.2 Security Analysis of Gradecast with Multiple grades

Claim 7. Suppose party Pj is the designated sender. If an honest party invokes Deliver in round r without
aborting for value v sent by party Pj and no honest party has detected a party Pj equivocation by round r+1,
then all honest parties will receive value v by round r + 2.

Proof. Suppose an honest party Pi invokes Deliver at round r without aborting for a value v sent by party Pj .
This implies party Pj sent a valid signature σ on (H(v), z) where z is the accumulation value of v. Moreover,
party Pi must have sent valid code words and witness ⟨codeword, sk, wk, H(v), z⟩i computed from value v to
every party Pk ∀Pk ∈ P along with the party Pj ’s signature σ at round r. The code words, witness and
signature σ arrive at all honest parties by round r + 1.

Since no honest party has detected a party Pj equivocation by round r+ 1, it must be that either honest
parties will forward their code word ⟨codeword, sk, wk, H(v), z⟩ when they receive the code words sent by
party Pi or they already sent the corresponding code word when they either invoked Deliver for value v or
received the code word from some other party. In any case, all honest parties will forward their code word
corresponding to value v by round r+ 1. In addition, accumulation value z is the first received accumulation
value for all honest parties. Thus, all honest parties will have received b valid code words for the first received
accumulation value z by round r + 2 sufficient to decode value v.

Theorem 8. The protocol in Figure 3 is a gradecast protocol with multiple grades satisfying Definition 2.2.

Proof. Suppose party Pj is the designated sender with its input value v. Let g∗ be the maximum grade.
We first consider the case when an honest party Pi outputs value v with a grade gi = 2 and no honest

party outputs a value with a grade > 2. Honest party Pi must have invoked Deliver for value v by round
2g∗ − 2 and did not detect a party Pj by round 2g∗. This implies no honest party detected a party Pj

equivocation by round 2g∗ − 1. By Claim 7, all honest parties receive value v by round 2g∗. In addition,
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since party Pi invoked Deliver for value v by round 2g∗ − 2, all honest parties receive a code word for value
v by round 2g∗ − 1. Thus, value v is the first value received by all honest parties. Since v ̸= ⊥, all honest
parties will output value v with a grade ≥ 1.

Next, we consider the case when an honest party Pi outputs a value v with a grade gi > 2. Without loss
of generality, assume gi is the highest grade output by any honest party. Let h = gi − 2. Since, party Pi

outputs value v with a grade gi > 2, it must have invoked Deliver to propagate value v by round 2g∗−2(h+1)
and did not detect any party Pj equivocation by round 2g∗ +h. This implies no other honest party detected
a party Pj equivocation by round 2g∗+h−1. With h ≥ 1, 2g∗+h−1 > 2g∗−2(h+1)+1. Thus, by Claim 7,
all other honest parties receive value v by round 2g∗ − 2h. The honest parties that did not invoke Deliver by
round 2g∗−2(h+1) will invoke Deliver for value v by round 2g∗−2h. Since no other honest party detected a
party Pj equivocation by round 2g∗ +h−1, all honest parties will set a grade of 2 in round 2g∗. In addition,
all honest parties will set a grade of 2 + h − 1 = gi − 1 by round 2g∗ + h − 1. Thus, all honest parties will
output value v with a grade at least gi − 1.

This also proves that if an honest party Pi outputs a value v with a grade gi > 1, then all honest parties
output value v.

Next, we consider the case when the designated sender is honest. Since, the sender is honest, it sends its
input value v to all honest parties such that all honest parties receive value v in round 2. Thus, all honest
parties invoke Deliver to propagate value v in round 2. Moreover, the honest sender does not equivocate.
Thus, all honest parties set a grade of 2 in round 2g∗ and set a grade of 2 + g∗ − 2 = g∗ in round 3g∗ − 2.

The case where each honest party outputs a value with a grade ∈ {0, 1, . . . , g∗} is trivial by design.

Lemma 9 (Communication Complexity). Let ℓ be the size of the input, κ be the size of accumulator, and
w be the size of witness. The communication complexity of the protocol in Figure 3 is O(n ℓ

ε + (κ + w)n2).

Proof. At the start of the protocol, the sender multicasts its value of size ℓ to all party Pj ∀j ∈ [n] along
with κ sized signed message containing accumulator and hash of large message. This step incurs O(nℓ+κn).
An honest party invokes Deliver only on the first value it receives where it sends a code word of size O(ℓ/b),
a witness of size w, an accumulator of size κ to each party and a singature of size κ bits. Moreover, each
party multicasts a code word of size O(ℓ/b), a witness of size w, an accumulator of size κ and a singature
of size κ bits. Thus, each party sends O(nℓ/b + (κ + w)n) = O(n ℓ

n−t + (κ + w)n) = O( ℓ
ε + (κ + w)n) bits.

Thus, the overall complexity is is O(n ℓ
ε + (κ + w)n2) bits.

4 Graded Parallel Broadcast

In this section, we present a new primitive that we call Graded Parallel Broadcast that is secure against
t < n/2 Byzantine faults. Graded parallel broadcast is a relaxation of parallel broadcast [33] and uses
gradecast with multiple grades to propagate its input. In this work, we consider an instance of gradecast
with multiple grades where the grades can be in the range {0, 1, . . . , 4}. In our construction, each party
Pi uses M-Gradecast(., 4) to propagate its input vi and output an n-element list of values along with an
n-element list of grades (GradeListi). Looking ahead, our aim is to have each party Pi feed its output
of graded parallel broadcast (i.e., GradeListi) into a Byzantine consensus primitive to agree on a common
GradeListh. The agreed GradeListh can be a Byzantine parties’ input too. However, a Byzantine party
may set arbitrary grades in its GradeList corresponding to an honest sender and prevent honest input from
appearing in the final output. In order to prevent this scenario, we restrict a Byzantine party from setting
arbitrary grades and consider only a valid GradeList. A valid GradeList has (i) at least n− t entries of grade
4, i.e., |{h |GradeList[h] = 4}| ≥ n− t, (ii) GradeList[i] ∈ {3, 4} corresponding to honest sender Pi. Note that
for an honest sender Pk, each honest party Pi sets a grade GradeListi[k] = 4. Thus, a valid GradeList must
have at least n− t entries of 4. Moreover, due to the properties of M-Gradecast(., 4), the grades of two parties
for the same sender can differ by at most 1. Since each honest party sets a grade of 4 for an honest sender
Pk, a Byzantine party must set a grade of at least 3 corresponding to an honest sender Pk for its GradeList
to be valid. In the final parallel broadcast protocol, we consider all values with grades in the range {3, 4}
corresponding to agreed GradeList.
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In graded parallel broadcast, we ensure that a valid GradeList is certified, i.e., it is accompanied by a
set of signatures from at least t + 1 parties. A set of t + 1 signatures on GradeList forms the certificate for
GradeList and denoted as AC(GradeList).

Definition 4.1 (Graded Parallel Broadcast). Each party Pi, as a sender, sends its input vi. Each honest
party Pj outputs an n-element list of values along with a n-element list GradeListj with an entry corresponding
to each party as a sender such that GradeListj [h] ∈ {0, 1, 2, 3, 4} ∀h ∈ [n]. A graded parallel Broadcast protocol
tolerating t Byzantine failures satisfies the following properties:

1. If sender Pi is honest, then each honest party Pj sets GradeListj [i] = 4.

2. A certified GradeListk must have |{h |GradeListk[h] = 4}| ≥ n− t.

3. If the sender Pi is honest and GradeListk is certified, then GradeListk[i] ∈ {3, 4}.

4. If GradeListk is certified and GradeListk[i] ∈ {3, 4}, then all honest parties have received a common
value vi.

Each party Pi with its initial input vi performs following operations:

1. (Round 1) Propose. Each party Pi invokes M-Gradecast(vi, 4).

2. (Round 10) Propose Grade. Let (oj,i, gj,i) be the output of M-Gradecast of party Pi with party Pj as sender. Set
GradeListi[j] = gj,i. Multicast ⟨grade-list,GradeListi⟩i.

3. (Round 11) Verify and Ack. Upon receiving ⟨grade-list,GradeListj⟩j from party Pj , if the following conditions hold
send ⟨ack, H(GradeListj)⟩i to party Pj .

(a) |{h |GradeListj [h] = 4}| ≥ n− t

(b) |GradeListj [h]− GradeListi[h]| < 2 ∀h ∈ [n].

Figure 4: Graded Parallel Broadcast with O(n2ℓ + (κ + w)n3) communication

Protocol Details. Each party Pi uses M-Gradecast(., 4) to propagate its input vi. At the end of M-Gradecast(., 4)
invocation, each honest party Pi outputs an n element list of values along with n element list of grades, de-
noted by GradeListi, with an entry corresponding to each party as a sender.

Party Pi then multicasts its GradeListi to all other parties. Party Pj then checks the validity of GradeListi
by checking if (i) |{h |GradeListi[h] = 4}| ≥ n − t, and (ii) |GradeListj [h] − GradeListi[h]| < 2 ∀h ∈ [n]. The
first check ensures that GradeListi contains at least n − t entries with GradeListi[h] = 4. Note that for an
honest sender Pk, each honest party Pi outputs a value with GradeListi[k] = 4. Thus, a valid GradeList
must have at least n − t entries of 4. In addition, due to the properties of M-Gradecast(., 4), the grades
of any two parties corresponding to a sender differs by at most 1. Thus, a valid GradeList must satisfy
|GradeListj [h] −GradeListi[h] < 2| ∀h ∈ [n]. This check also prevents a Byzantine party from setting too low
grades corresponding to an honest sender; otherwise its GradeList would not be certified. Thus, a Byzantine
party must set a grade of at least 3 corresponding to an honest sender for its GradeList to be certified.

If the checks pass, party Pj sends ⟨ack, H(GradeListi)⟩j to party Pi. A set of t+ 1 ack (ack-cert) messages
for GradeListi (denoted by AC(GradeListi)) implies at least one honest party has verified GradeListi.

4.1 Security Analysis of Graded Parallel Broadcast

Theorem 10. The protocol in Figure 4 is a graded Parallel Broadcast protocol satisfying Definition 4.1.

Proof. If the sender Pi is honest, it propagates its input vi using M-Gradecast. By Theorem 8, each honest
party Pj output GradeListj with GradeListj [i] = 4.

Next, we consider a certified grade list GradeListk. The only way GradeListk gets certified is if at least
one honest party Pj sends an ack for it. If an honest party Pj sends an ack for a grade list GradeListk, then
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it must be that (i) |{h |GradeListk[h] = 4}| ≥ n − t and (ii) |GradeListk[h] − GradeListj [h] < 2| ∀h ∈ [n].
Trivially, this implies a certified GradeListk must have |{h |GradeListk[h] = 4}| ≥ n− t. This also implies that
if GradeListk[h] ∈ {3, 4}, GradeListj [h] must be at least 2. By the properties of M-Gradecast ( Definition 2.2),
if an honest party outputs a value vh with a grade of > 1, all honest parties output a common value vh.
Thus, all honest parties have common value vh for all h such that GradeListk[h] = {3, 4}.

Next, we consider the grades in GradeListk[j] for an honest sender Pj . We know from the fact that for an
honest sender Pj , by the properties of M-Gradecast(v, 4), all honest parties will set a grade of 4. An honest
party Pi will send an ack for GradeListk only if |GradeListk[j] − GradeListi[j] < 2|. This implies GradeListk[j]
must be at least 3 i.e. GradeListk[j] ∈ {3, 4}.

Lemma 11 (Communication Complexity). Let ℓ be the size of commitment comm, κ be the size of secret
share and accumulator, and w be the size of witness. The communication complexity of the protocol is
O(n2ℓ + (κ + w)n3) bits per epoch.

Proof. In the Propose step, each party Pi invokes M-Gradecast(., 4) protocol. By Lemma 9, the communi-
cation complexity of one invocation of M-Gradecast protocol is O(nℓ + (κ + w)n2). Thus, this step incurs
O(n2ℓ + (κ + w)n3).

In the Propose grade step, each party multicast their GradeList of size O(n). Multicast of O(n)-sized
GradeList by n parties incurs O(n3) communication. In the Verify and Ack step, each party sends at most
n ack messages. This step incurs O(κn2) communication. Thus, the total communication complexity is
O(n2ℓ + (κ + w)n3) bits.

5 Multi-valued Validated Byzantine Agreement

In this section, we present an efficient protocol for multi-valued validated Byzantine agreement (MVBA)
tolerating t < n/2 Byzantine faults with security against a strongly rushing adaptive adversary. MVBA
protocol allows honest parties to agree on any externally valid input; the agreed value can be the input of a
Byzantine party as long as it is externally valid. The problem of multi-valued validated Byzantine agreement
has been extensively studied in the asynchronous model. In the synchronous model, Shrestha et al. [32]
recently gave an MVBA protocol in the authenticated model with PKI and digital signatures tolerating
t < n/2 Byzantine faults and secure against a static adversary. Their protocol incurs a communication
complexity of O(n2ℓ+κn3) communication in expectation for input of size ℓ bits and terminates in expected
O(1) rounds.

In this work, we improve upon their result by a linear factor in communication and also design an MVBA
protocol secure against a strongly rushing adaptive adversary. We make threshold setup assumptions and
rely on adaptively-secure threshold signature scheme due to Loss and Moran [25] to perform a perfect leader
election where all honest parties obtain a common leader all the time. This assumption provides us with
three major advantages (i) the leader election can be performed in O(κn2) communication, (ii) we can obtain
security against an adaptive adversary, and (iii) since the leader election is perfect (i.e, all honest parties
observe a common leader), we only need to ensure the leader’s proposal is propagated among all parties; this
allows us to obtain O(nℓ + κn2) communication in expectation and security against an adaptive adversary.

The starting point of our construction is the adaptively-secure Byzantine synod protocol of Abraham
et al. [4] which has a communication complexity of O((ℓ + κ)n2) for ℓ bit input values and termination in
expected 16 rounds. Our MVBA protocol inherits the underlying consensus mechanism of their protocol and
improves the dissemination of the proposals to obtain O(nℓ+κn2) communication. Our solution uses Reed-
Solomon erasure codes [31] to decode large messages into n code words and cryptographic accumulators [29]
to verify the correctness of the code words. Section 1.1 presents the key ideas behind our improvement.

Epoch. Our protocol progresses through a series of numbered epochs. Each epoch lasts for 8 rounds.

Certified values and ranking. A certificate on a value vi consists of t+ 1 distinct signatures in an epoch
e and is represented by Ce(vi). Certificates are ranked by epochs, i.e., values certified in a higher epoch has a
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Each party Pi with its input vi performs following operations:

- Round 1: Each party Pi partitions its input vi into t + 1 data symbols and encode the t + 1 data symbols into n
code words (si,1, . . . , si,n) using ENC function. Compute accumulation value zvi using Eval function and witness wi,j

∀si,j ∈ (si,1, . . . , si,n) using CreateWit function. Send ⟨codeword, si,j , wi,j , zvi ⟩i to party Pj ∀j ∈ [n].

- Round 2: If party Pi receives the first valid code word ⟨codeword, sj,i, wj,i, zvj ⟩j for the accumulator zvj , send an
⟨ack, zvj ⟩i.

- Round 3: Upon receiving t+ 1 distinct ⟨ack, zvi ⟩∗ message, create a threshold signature, denoted as AC(zvi ).

Figure 5: Proposal Dispersal with O(nℓ + κn2) communication

higher rank. During the protocol execution, each party keeps track of all certified blocks and keeps updating
the highest ranked certified block to its knowledge. Parties lock on the highest ranked certified values and
do not vote for values other than the locked values to ensure safety of a commit.

5.1 Protocol Details

We first present a protocol used by all parties to efficiently distribute their long ℓ bit input vi at the cost of
O(nℓ + κn2) communication. This protocol is executed before the MVBA protocol (refer Figure 6).

Proposal dispersal. In proposal dispersal protocol (refer Figure 5), each party makes use of erasure
coding techniques and cryptographic accumulators to efficiently distribute its long message. Each party
Pi partitions its input vi into t + 1 data symbols. The t + 1 data symbols are then encoded into n code
words (si,1, . . . , si,n) using ENC function and a corresponding accumulation value zvi is computed. Then,
the cryptographic witness wi,j is computed for each code word si,j ∈ (si,1, . . . , si,n) using CreateWit. Then,
the code word and witness pair (si,j , wi,j) is sent to the partyPj ∀j ∈ [n] along with the accumulation value
zvi .

When a party Pj receives the first valid code word si,j for an accumulation value zvi such that the witness
wi,j verifies the code word si,j , it sends an ⟨ack, zvi⟩j to party Pi. When party Pi receives t+ 1 ack messages
for zvi , it forms an ack-cert for value vi, denoted as AC(zvi

). Note that an ack-cert for value vi does not imply
all honest parties have received valid code words corresponding to value vi; this only implies at least one
honest party has received a valid code word corresponding to value vi. When the sender Pi is honest, then
all honest parties will receive a valid code word corresponding to value vi which is sufficient to decode value
vi. In the MVBA protocol that follows, each party Pi proposes accumulation value zvi along with AC(zvi)
and honest parties only consider proposals containing an ack-cert. Collecting an ack-cert for a proposal is
similar to having a proposal prepared in the Byzantine synod protocol of Abraham et al. [4]. However, it
does not guarantee that all honest parties will be able to decode the proposed value.

In the proposal dispersal protocol, each party Pj receives only a single code word si,j corresponding to
value vi. For n proposals each of size ℓ bit, this protocol incurs O(nℓ + (κ + w)n2) bits where κ is the size
of accumulator and w is the size of the accumulator witness.

MVBA Protocol. At the start of the MVBA protocol (refer Figure 6), no party has a certificate for any
proposed value; thus each party Pi sends a status message with an empty certificate. Consequently, CCi = ⊥
for each party Pi and each party Pi multicasts its own value (zvi ,AC(zvi)) in the propose step of the first
epoch. In subsequent epochs, parties send proposals corresponding to the highest ranked certificate known to
them. Note that a valid proposal is accompanied by an ack-cert which can only be formed during a proposal
dispersal phase; this is because a ack-cert consists of at least t+ 1 ack for zvi and honest parties send ack for
zvi only in the proposal dispersal phase. In the MVBA protocol, all parties send their proposals first and
a leader is elected in a later round. This prevents an adaptive adversary from corrupting the elected party
and sending valid equivocating proposals afterwards; this is because ack-cert for an equivocating proposal
cannot form afterwards.

In round 3, parties participate in the adaptively-secure threshold coin tossing scheme due to Loss and
Moran [25] to randomly select a common leader Le for epoch e. The leaders are elected uniformly at random,
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Each party Pi with its input vi executes the proposal disperal protocol (refer Figure 5) and outputs AC(zvi ). Then, each
party Pi performs the following operations for each epoch e:

1. (Round 1) Status. Multicast the highest ranked certificate known to party Pi in the form of ⟨status, Ce′ (zvh ),AC(zvh )⟩i.
2. (Round 2) Propose. Let CCi := Ce′ (zvh ) be the highest ranked certificate known to party Pi at the end of Status round.

If CCi ̸= ⊥, set vali = (zvh ,AC(zvh )); otherwise set vali = (zvi ,AC(zvi )). Each party Pi multicasts ⟨propose, vali, CCi, e⟩i.
3. (Round 3) Elect. Each party Pi participates in threshold coin tossing scheme from [25]. Let Le be leader of epoch e.

4. (Round 4) Forward. Upon receiving the first valid proposal ⟨propose, (zvh ,AC(zvh )), CCLe , e⟩Le forward the proposal.
If CCi ≤ CCLe , party Pi forwards a valid code word ⟨codeword, sh,i, wh,i, zvh , e⟩i consistent with accumulator zvh sent by
party Ph during proposal dispersal phase (if party Pi received a code word for zvh ).

5. (Round 5) Decode. Upon receiving t + 1 valid code words for the accumulator zvh , decode vh using DEC function if
party Pi has not already received vh in earlier epochs. Send ⟨codeword, sh,j , wh,j , zvh , e⟩i to party Pj ∀j ∈ [n].

6. (Round 6) Forward2. If party Pi receives the first valid code word ⟨codeword, sh,i, wh,i, zvh , e⟩∗ for the accumulator
zvh , forward the code word to all the parties.

7. (Round 7) Vote. If party Pi receives vh by round 5, CCi ≤ CCLe , ex-validation(vh) = true and no equivocating proposal
by Le has been detected so far in epoch e, multicast a vote in the form of ⟨vote, e,H(zvh )⟩i.

8. (Round 8) Commit. Upon receiving t+1 distinct vote for zvh (denoted by Ce(zvh )), multicast Ce(zvh ), commit vh and
multicast ⟨terminate, e,H(vh)⟩i.

9. (At any time) Terminate. Upon receiving t+1 ⟨terminate, e,H(vh)⟩∗ messages, multicast it, output vh and terminate.

10. (At any time) Equivocation. Multicast the equivocating proposals signed by Le. Stop performing epoch e operations.

Figure 6: MVBA with O(nℓ + κn2) bits communication per epoch and expected O(1) epochs

a common honest leader is elected with probability at least 1
2 . Let ⟨propose, (zvh ,AC(zvh)), CCLe , e⟩ be L′

es
proposal for epoch e. If CCi ≤ CCLe

, party Pi forwards a code word (sh,i, wh,i) corresponding to the Le’s
proposal for zvh if party Pi has received (sh,i, wh,i) either during the proposal dispersal phase or in earlier
epochs. We note again that an ack-cert on accumulation value zvh

(i.e., AC(zvh)) does not imply that all
honest parties have received valid code words corresponding to value vh during proposal dispersal phase.
Thus, all honest parties may not forward their code word corresponding to value vh in round 4.

In round 5, if party Pi receives t + 1 valid code words for the accumulator zh, it decodes value vh using
DEC function. Party Pi again encodes value vh and sends code word (sh,j , wh,j) to party Pj ∀j ∈ [n]. In
round 6, party Pj forwards the valid code word (sh,j , wh,j) to all parties if it has not already forwarded the
code word (sh,j , wh,j) in round 4. Multicasting code words in round 5 and forwarding codewords in rounds
5 and 6 ensures that if an honest party successfully decodes vh, all honest parties will receive value vh by
the end of round 6.

Note that the elected leader could be Byzantine and that leader might not have sent valid code words
to all honest parties during proposal dispersal phase and all honest parties may not have received valid
code words corresponding to value vh although an AC(zvh) exists. Thus, it is possible that no honest party
receives t + 1 valid code words for accumulator zvh required to decode value vh in round 5. In such a case,
we ensure no honest party commits value vh. In our protocol, we require that an honest party be able to
decode value vh in timely manner before voting for value vh and later commit it. In particular, we rely on
synchrony assumption to detect “bad” proposals and prevent it from getting committed.

Thus, party Pi votes for value vh only if it decodes value vh by round 5. Party Pi also checks if it did not
detect equivocating proposals made by leader Le in epoch e. This check ensure that if an honest party votes
for a value vh in round 7, all honest parties receive value vh by round 7. In addition, party Pi also checks
the proposed value is externally valid (i.e., ex-validation(vh) = true) and the leader Le is proposing with the
highest ranked certificate. This ensures the safety of a committed value in earlier epochs.

An honest party Pi commits value vh if it receives t + 1 distinct votes for vh. It multicasts the vote
certificate and ⟨terminate, e,H(vh)⟩. In the next round, all honest parties will receive the vote certificate and
not vote for lower ranked certificates in future epochs. In addition, if an honest party receives t + 1 distinct
⟨terminate, e,H(zvh)⟩ in a round, all honest parties receive the termination certificate, output value vh and
terminate in the next round.
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Optimal communication complexity. Each party needs to learn ℓ bit input; thus, a protocol must incur
Ω(nℓ) communication [20]. In Abraham et al. [3], they show Ω(n2) communication is required even for a
randomized Byzantine agreement protocol secure against a strongly rushing adaptive adversary. Thus, our
MVBA protocol has optimal communication complexity of O(nℓ + κn2) in expectation.

Round complexity. In an epoch, an honest leader is elected with probability at least 1
2 . All honest parties

commit and terminate in the same epoch when an honest leader is elected. Thus, the protocol terminates in
expected 2 epochs. The proposal dispersal phase requires 2 rounds. Multicast of the termination certificate
requires one more additional round. Thus, the protocol terminates in 19 rounds in expectation.

5.2 Security Analysis of Multi-valued Validated Byzantine Agreement

Claim 12. If an honest party votes for value vh at round 7, then all honest parties receive value vh by round
7.

Proof. Suppose an honest party Pi votes for value vh at round 7 in epoch e. Then party Pi must have
decoded value vh by round 5 and did not detect equivocating proposals by leader Le by round 7. Party Pi

must have sent valid code words and witness ⟨codeword, mtype, sh,k, wh,k, zvh⟩i computed from value vh to
every party Pk ∀k ∈ [n] at round 5. The code words and witness arrive at all honest parties by round 6. In
addition, no honest party detected an equivocating proposal by round 6 in epoch e.

Since no honest party detected an equivocating proposal by round 6 in epoch e., it must be that either
honest parties will forward their code word ⟨codeword,mtype, sh,k, wh,k, zvh

⟩ when they receive the code
words sent by party Pi or they already sent the corresponding code word in round 5 or received the code
word from some other party. In any case, all honest parties will forward their code word corresponding
to value vh by round 6. Thus, all honest parties will have received t + 1 valid code words for a common
accumulation value zvh by round 7 sufficient to decode value vh.

Lemma 13. If an honest party commits value vh in epoch e, then (i) an equivocating certificate does not
exist in epoch e, and (ii) all honest parties receive Ce(zvh) by the end of epoch e.

Proof. Suppose an honest party Pi commits value vh in epoch e. Party Pi must have received at least t + 1
vote messages for value vh at round 8 in epoch e. At least one honest party (say party Pj) must have voted
for value vh at round 7 in epoch e. Party Pj votes for value vh when it receives value vh by round 5, invokes
Deliver for value vh and does not detect any equivocating proposal by leader Le by round 7. By Claim 12,
all honest parties receive value vh by round 7. Thus, no honest party votes for a conflicting value and an
equivocating certificate does not exist in epoch e. This proves part (i) of the Lemma.

For part (ii), note that party Pi multicasts Ce(zvh) when it commits value vh in round 8. Thus, all honest
parties receive Ce(zvh) by end of round 8. By part (i) of the Lemma, an equivocating certificate does not
exist. Thus, all honest parties will receive Ce(zvh) by the end of epoch e.

Theorem 14 (Safety). If two honest parties commit v and v′, then v = v′.

Proof. Suppose an honest party Pi commits value v in epoch e. By Lemma 13, all honest parties receive
Ce(v) by the end of epoch e and no equivocating certificate exists in epoch e. Thus, no honest party votes
for values other than v in any epoch e′ > e and an equivocating certificate cannot form in epochs higher
than e′ > e. Thus, it must be that if two honest party commits to v and v′, then v = v′

Theorem 15 (Termination). If the leader Le of epoch e is honest, all honest parties terminate by epoch e.

Proof. Suppose the leader Le of epoch e is honest. Leader Le will send the same proposal (zvh ,AC(zvh)) to
all parties by extending the highest ranked certificate known to all honest parties. Thus, each honest party
Pi will forward valid code word (si, wi) corresponding to value vh to all parties in round 4 and all honest
parties will receive t + 1 valid code words sufficient to decode value vh in round 5. Thus, each honest party
Pi will vote for value vh in epoch 7, receive Ce(zvh) by round 8 and commit vh. In addition each honest
party Pi will multicast ⟨terminate, e,H(vh)⟩i , receive t+ 1 distinct terminate, terminate by the end of round
8 of epoch e.
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Theorem 16. The protocol in Figure 6 is a multi-valued validated Byzantine agreement protocol satisfy-
ing Definition 2.3

Proof. For a value vh to be decided at least one honest party must vote for it. For an honest party to vote for
value vh it must be that ex-validation(vh) = true. The proofs for safety and termination follows immediately
from Theorem 14 and Theorem 15.

Lemma 17 (Communication Complexity). Let ℓ be the size of the input, κ be the size of accumulator, and
w be the size of witness. The communication complexity of the MVBA protocol is O(nℓ + (κ + w)n2)) in
expectation.

Proof. In the proposal dispersal phase, each party sends a code word of size O(ℓ/n), a witness of size w and
an accumulator of size κ to all other parties. In addition, each party sends κ-sized ack message to all other
parties. Thus, this phase incurs O(nℓ + (κ + w)n2) communication.

In the protocol in Figure 6, the status step incurs O(κn2) as each party sends O(κ)-sized threshold
signature to all other parties. The propose step also incurs O(κn2) communication. The leader election
phase in round 3 incurs O(κn2) communication. In the Forward step (round 4) each party multicasts code
word of size O(ℓ/n), witness of size w bits, accumulator of size O(κ) bits with a total communication
complexity of O(nℓ + (κ + w)n2) bits. Similarly, in Decode step and Forward2, each party sends code word
of size O(ℓ/n), witness of size w bits, accumulator of size O(κ) bits with a total communication complexity
of O(nℓ + (κ + w)n2) bits.

In Vote step, each party multicasts O(κ)-sized vote message to all other parties, this incurs O(κn2) com-
munication. In the commit step, each party multicasts O(κ)-sized vote certificate and O(κ)-sized terminate
messages. All-to-all multicast of O(κ)-sized termination certificate also incurs O(κn2) communication. Thus,
the protocol incurs O(nℓ + (κ + w)n2)) communication in an epoch.

Note that the protocol terminates in expected constant epochs. Thus, the communication complexity of
the protocol is O(nℓ + (κ + w)n2)) in expectation.

6 Parallel Broadcast

Finally, we present two communication efficient parallel broadcast protocols tolerating t < n/2 Byzantine
faults with a communication complexity of O(n2ℓ + κn3) for input of size ℓ bits and expected O(1) rounds
under various setup assumptions. The first protocol is in the authenticated model with PKI and digital
signatures. It is secure against a static adversary. The second protocol is secure against an adaptive
adversary, but assumes threshold setup and uses adaptively-secure threshold signature scheme.

We present parallel broadcast protocols with expected constant rounds in Figure 7. In this protocol,
each party Pi first uses graded parallel broadcast to propagate their input vi and output a n-element list of
values along with a n-element grade list GradeListi accompanied by AC(GradeListi). The tuple (GradeListi,
AC(GradeListi)) is then input to an MVBA protocol to agree on a common certified GradeListh. The ack
certificate on GradeList serves as the external validity function. Parties then output V with V[j] = vj if
GradeListh[j] ∈ {3, 4} ∀j ∈ [n]. We give two variants of the protocol depending upon the MVBA protocol
being considered.

1. Graded parallel broadcast. Each party Pi invokes graded parallel broadcast protocol (refer Figure 4) with its input vi
and outputs an n element list of values along with (GradeListi, AC(GradeListi)).

2. MVBA. Each party Pi participates in MVBA with input GradeListi and AC(GradeListi). Let GradeListh be the output of
the MVBA protocol.

3. Output. Set V[j] = vj if GradeListh[j] ∈ {3, 4} ∀j ∈ [n]. Output V.

Figure 7: Parallel broadcast with O(n2ℓ + κn3) communication and expected O(1) rounds

17



Using MVBA protocol of Shrestha et al. [32]. In Shrestha et al. [32], they gave an MVBA protocol in
the authenticated model with PKI and digital signatures with security against a static adversary. Their pro-
tocol incurs O(κn3) communication in expectation when ℓ = O(n) (i.e., the size of (GradeList,AC(GradeList))
and terminates in expected O(1) rounds. The exact round complexity of their MVBA protocol is expected
36 rounds. We refer the readers to Shrestha et al. [32] for more details. Using this MVBA protocol, gives
us a parallel broadcast protocol secure against static adversary in the authenticated model with PKI and
digital signatures. The resulting parallel broadcast protocol has O(n2ℓ) + E(O(κn3)) communication and
terminates in expected constant rounds. Concretely, this protocol terminates in expected 47 rounds.

Using MVBA from Section 5. In the second variant, we make use of our MVBA protocol from Sec-
tion 5. Using our MVBA protocol, gives us a parallel broadcast protocol secure against a (strongly
rushing) adaptive adversary. The graded parallel broadcast protocol has a communication complexity of
O(n2ℓ + κn3) and the MVBA protocol has a communication complexity of O(κn2) when ℓ = O(n) (the
size of (GradeList,AC(GradeList)). Thus, the resulting parallel broadcast protocol will have O(n2ℓ + κn3) +
E(O(κn2)) communication and terminates in expected O(1) rounds. Concretely, this protocol terminates in
expected 30 rounds.

6.1 Security Analysis of Parallel Broadcast

Theorem 18. The protocol in Figure 7 is a parallel broadcast protocol satisfying Definition 2.1.

Proof. By Theorem 16, all honest parties eventually terminate with a common GradeListh where external
validity function is presence of AC(GradeListh). Termination follows from termination property of the un-
derlying MVBA protocol.

By the properties of graded parallel broadcast( Theorem 10), all honest parties receive the same value
vj such that GradeListh[j] ∈ {3, 4}. Since, all honest parties compute final vector V based on common
GradeListh. Thus, agreement holds.

In addition, the grades corresponding to honest parties in GradeListh are in the range {3,4}. Thus, validity
holds.

7 Related Work

7.1 Related Work in Parallel Broadcast Literature

The problem of parallel broadcast (aka, interactive consistency [30]) was originally introduced by Pease et
al [30]. In the same work, they show two variants of the protocol (i) a protocol with t < n/3 resilience in
the plain authenticated model or unauthenticated model, and (ii) a protocol with t < n resilience in the
authenticated model with authenticators. Both of their protocols had exponential communication complexity
and Θ(t) round complexity.

Ben-or and El-Yaniv [7] showed how to achieve expected O(1) rounds for the interactive consistency
problem tolerating t < n/3 Byzantine faults in the plain authenticated model. In their solution, they
invoked O(n log n) instances of the BA protocol due to Feldman and Micali [18] in a “black-box” fashion to
achieve expected O(1) round parallel broadcast protocol. Their construction has a very high communication
as each instance of BA protocol of Feldman and Micali [18] has O(n6 log n) communication (without q-SDH
setup assumption) even for a single bit.

Very recently, Abraham et al. [1] gave an efficient protocol in the plain authenticated model tolerating
t < n/3 Byzantine faults and security against an adaptive adversary. Their protocol incurs O(n2ℓ+n4 log n)
communication (without q-SDH setup assumption) in expectation for input of size ℓ bits and expected O(1)
rounds.

In the authenticated model with PKI and digital signatures, the notion of parallel broadcast was recently
explored by Tsimos et al. [33]. They show two variants of the protocol each tolerating t < (1−ε)n Byzantine
faults and security against an adaptive adversary. The first protocol works in the authenticated model with
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PKI and digital signatures and incurs Õ(κ2n3) communication for single bit input and O(t log t) rounds.
Their second protocol has stronger setup assumptions. In particular, they require a trusted dealer to setup
the keys and relies on bit-specific committee election [3] to reduce communication. In addition, their protocol
requires parties to erase their signatures once a message has been sent. Their protocol incurs Õ(κ4n2)
communication for single bit input and O(κ log t) rounds.

Closely related technique. In a recent work [1], Abraham et al. gave a parallel broadcast protocol in the
unauthenticated model tolerating t < n/3 Byzantine faults with a communication complexity of O(n2ℓ) +
E(O(n4 log n)) and termination in expected O(1) rounds. Their protocol relies on the idea of Fitzi and
Garay [19] where multiple BA sub-protocols are run in parallel when only a single leader election is invoked
per iteration for all the sub-protocols. In their construction, each party first propagates their ℓ bit input
via a gradecast protocol where each gradecast invocation costs O(nℓ + n3 log n); the total communication
complexity of n parallel gradecast is O(n2ℓ + n4 log n). It is followed by parallel invocation of n instances
of BA protocol where each BA protocol has a communication complexity of O(n3 log n) bits for a single bit
input. In addition, their leader election protocol has a communication complexity of O(n4 log n) bits. The
resulting protocol has a communication complexity of O(n2ℓ) + E(O(n4 log n)) for input of size ℓ bits.

We note that their technique is relevant but not sufficient to achieve our goal. In the authenticated
model with PKI and digital signatures, to the best of our knowledge, the MVBA protocol due to Shrestha et
al. [32], when used as a BA protocol, is the most efficient protocol in the setting which has a communication
complexity of O(κn3) in expectation and termination in expected constant rounds. Parallel invocation of
O(n) instances of this BA protocol would result in O(κn4) communication in each round. In contrast, our
parallel broadcast in the setting incurs O(n2ℓ) + E(O(κn3)) communication.

With threshold setup assumption, to the best of our knowledge, the BA protocol due to Abraham
et al. [4] is the most efficient protocol which has a communication complexity of O(κn2) in expectation
and termination in expected constant rounds. Following the technique of Abraham et al. [1], we can use
M-Gradecast(., 2) to propagate ℓ bit input at the total communication complexity of O(n2ℓ + κn3). Then,
parallel invocation of O(n) instances of binary BA protocol due to Abraham et al. [4] along with a single leader
election protocol across all BA instances will result in expected O(κn3) communication and termination in
expected constant rounds. The total communication complexity of the protocol following their technique
is O(n2ℓ) + E(O(κn3)) and termination in expected constant rounds. In the same setting, our protocol
incurs O(n2ℓ+κn3)+E(O(κn2)) communication and expected constant rounds. In the worst case, when the
protocol runs for linear number of rounds, the protocol following their technique would incur O(n2ℓ + κn4)
communication, while our protocol incurs O(n2ℓ + κn3) communication.

7.2 Related Works in MVBA Literature

Multi-valued validated Byzantine agreement was first introduced by Cachin et al. [13] to allow honest parties
to agree on any externally valid values. Their protocol works in asynchronous communication model and
has optimal t < n/3 resilience with O(n2ℓ + κn2 + n3) communication for input of size ℓ. Later, Abraham
et al. [5] gave an MVBA protocol with optimal resilience and O(n2ℓ + κn2) communication in the same
asynchronous setting. Lu et al. [26] extended the work of Abraham et al. [5] to handle long messages of size ℓ
with a communication complexity of O(nℓ+ κn2). All of these protocols assume threshold setup, are secure
against an adaptive adversary and terminate in expected O(1) rounds. We provide technical differences with
MVBA protocol of Lu et al. [26].

Comparison with MVBA protocol of Lu et al. [26]. In the MVBA protocol due to Lu et al. [26], they
use (t + 1, n) RS codes with t < n/3 to distribute ℓ bit proposal during proposal dispersal phase. In their
protocol, they collect an ack-cert consisting of 2t+ 1 ack messages. If there is an ack-cert for a proposal, this
implies at least t + 1 honest parties have received valid code words for the proposal. This is sufficient to
decode the proposal since the protocol uses (t+1, n) RS codes. Thus, in their protocol, ack-cert for a proposal
implies honest parties have sufficient valid code words to decode the original proposal and honest parties
can agree on any proposal with an ack-cert. This is in contrast to our protocol since honest parties may not
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be able to decode the proposal even though the proposal is accompanied by an ack-cert. Our protocol relies
on synchrony to filter out such “bad” proposals.

Comparison with MVBA protocol of Shrestha et al. [32]. In the synchronous setting, Shrestha et
al. [32] gave the first MVBA protocol tolerating t < n/2 Byzantine faults secure against static adversary.
Their protocol works in the plain PKI model without threshold setup and incurs O(n2ℓ+ κn3) for inputs of
size ℓ and expected constant rounds. In this work, we present an MVBA protocol with better communication
and security against a strongly rushing adaptive adversary. Our protocol requires threshold setup and incurs
O(nℓ + κn2) for inputs of size ℓ bits and terminates in expected O(1) rounds.

7.3 Related Work in the Gradecast with Multiple Grades Literature

Gradecast with multiple grades was initially introduced by Garay et al. [22]. They gave a protocol in the
authenticated model with PKI model tolerating t < n Byzantine failures with a message complexity of
O(g∗n2) and a communication complexity of O(g∗(nℓ+ κn2)) for ℓ bit input. A recent work [21] also gave a
gradecast with multiple grades under the notion of Proxcast. Their protocol tolerates t < n Byzantine faults
and a message complexity of O(g∗n2). This corresponds to a communication complexity of O(g∗(nℓ+ κn2))
for ℓ bit input. In this work, we present a slightly relaxed definition for gradecast with multiple grades and
provide a construction with a communication complexity of O(nℓ+κn2) for ℓ bit input tolerating t < (1−ε)n
Byzantine faults where ε > 0 is a constant.
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