
On the Security of Universal Re-Encryption

Fabio Banfi1, Ueli Maurer1, and Silvia Ritsch2

1 Department of Computer Science,
ETH Zurich,
Switzerland

{fabio.banfi,maurer}@inf.ethz.ch
2 TU Eindhoven,
The Netherlands
s.ritsch@tue.nl

Abstract. A universal re-encryption (URE) scheme is a public-key en-
cryption scheme enhanced with an algorithm that on input a ciphertext,
outputs another ciphertext which is still a valid encryption of the un-
derlying plaintext. Crucially, such a re-encryption algorithm does not
need any key as input, but the ciphertext is guaranteed to be valid under
the original key-pair. Therefore, URE schemes lend themselves naturally
as building blocks of mixnets: A sender transmits the encryption of a
message under the receivers public-key to a mixer, which re-encrypts it,
and the receiver later retrieves the re-encrypted ciphertext, which will
decrypt successfully to the original message.
Young and Yung (SCN 2018) argued that the original definition of URE
by Golle et al. (CT-RSA 2004) was flawed, because it did not consider
anonymity of encryption. This motivated them to claim that they finally
put URE on solid grounds by presenting four formal security notions
which they argued a URE should satisfy.
As our first contribution, we introduce a framework that allows to com-
pactly define and relate security notions as substitutions of systems. Using
such framework, as our second contribution we show that Young and
Yung’s four notions are not minimal, and therefore do not properly cap-
ture the essence of a secure URE scheme. We provide three definitions
that imply (and are implied by) theirs. Using the constructive cryptogra-
phy framework, our third contribution is to capture the essence of URE
from an application point of view by providing a composable security
notion that expresses the ideal use of URE in a mixnet. Finally, we show
that the composable notion is implied by our three minimal notions.

Keywords: universal re-encryption · unlinkability · anonymity · com-
posable security

mailto:fabio.banfi@inf.ethz.ch
mailto:maurer@inf.ethz.ch
s.ritsch@tue.nl

Table of Contents

1 Introduction . 3
1.1 Background and Motivation . 3
1.2 Contribution . 3
1.3 Related Work . 4

2 Preliminaries . 5
2.1 Notation . 5
2.2 Systems . 5
2.3 Universal Re-Encryption . 10

3 Game-Based Semantics of Universal Re-Encryption 10
3.1 Notions of Security . 11
3.2 Relations Among Security Notions . 14
3.3 Combined Notions . 20
3.4 Generalizing the Notions: From 2 to Many Receivers 21

4 Composable Semantics of Universal Re-Encryption 22
4.1 Constructive Cryptography . 22
4.2 Assumed and Ideal Resources . 24
4.3 First Main Result: Single Honest Mixer . 24
4.4 Second Main Result: Single Dishonest Mixer 28

References . 30
Appendices . 31
A Missing Proofs . 31

A.1 Combined Notions . 31
A.2 Generalizing the Notions: From 2 to n Receivers 34

B Relations to Young and Yung’s Notions . 36
B.1 Young and Yung’s Notions . 36
B.2 Equivalence of the Notions . 37

C Variant of All-in-One Notions . 39
D ElGamal-Based Universal Re-Encryption . 43

D.1 Decisional Diffie-Hellman Assumption . 43
D.2 Security of ElGamal-Based URE Scheme . 44

1 Introduction

1.1 Background and Motivation

Introduced in [GJJS04] by Golle et al., universal re-encryption (URE) is a
cryptographic primitive originally intended as a building block for mix networks,
or mixnets for short. URE is like a regular public-key encryption scheme, but
enhanced with a re-encryption algorithm, that on input a ciphertexts produces a
fresh ciphertext still valid for the underlying plaintext under the original key-pair,
and crucially does not require any key material as input. The guarantee that
a mixnet aims to provide, is that after a sender submits a message and later
the intended receiver fetches such message, an external observer cannot link
the two actions together. This property is called unlinkability, and is an enabler
of resistance against traffic analysis. URE schemes lend themselves naturally
as building blocks of such mixnets by having senders encrypt their messages
under the public-keys of the intended receivers and authentically publishing
the ciphertexts on a bulletin board, an honest mixer regularly re-encrypting all
posted ciphertexts, and receivers fetching all ciphertexts and figuring out which
ones were meant for them.

Recently, Young and Yung [YY18] pointed out that the original combined
security notion of URE of Golle et al. [GJJS04] was flawed, because it cap-
tured confidentiality (IND-CPA) and anonymity (key-indistinguishability) of
the re-encryption function, but only confidentiality (and not anonymity) of the
encryption function. They then claimed to provide the first formal foundation
of URE security, by essentially splitting the security notion from [GJJS04] into
three separate formal notions, and additionally requiring key-indistinguishability
of encryption. Nevertheless, we argue that they came short of properly capturing
the essence of URE, because their notions do not directly capture unlinkability as
an atomic property of an URE scheme, but rather mix it once with confidentiality
and once with anonymity.

1.2 Contribution

The main goal of this paper is to once more re-analyze the security foundations of
URE, and finally put this primitive on solid grounds. On the one hand, we show
that Young and Yung’s notions from [YY18] fall short of capturing the essence
of URE, which is unlinkability. On the other hand, we introduce two composable
notions that capture the essence of URE from an application point-of-view, and
show that the mentioned game-based security notions for URE only satisfy the
weaker one. All our results are shown using a new framework that we introduce.

A New Framework for Algebraic Proofs of Security. Most security proofs
are based on the idea of transforming an adversary for a problem into another
adversary for a different problem via a reduction. Usually security notions and
hardness assumptions are phrased as distinction problems, so in this case an
adversary is called a distinguisher. Here we take a more abstract view, and rather

3

than relating notions and hardness assumptions by transforming distinguishers,
we transform the distinction problems themselves, modeled as Maurer’s random
systems [Mau02]. To do so, we introduce the notion of substitution for two such
systems, an abstraction of indistinguishability that does not require to reason
about distinguishers. Our security statements can then be compactly described as
substitutions, and relating notions boils down to algebraically showing connections
between substitutions, which potentially enables automated verifiability.

Capturing the Essence of URE: Minimal Game-Based Notions. Using
substitutions, we then show that Young and Yung’s notions are not minimal.
More precisely, we introduce three minimal notions of security, confidentiality
(ind-cpa), anonymity (ik-cpa), and unlinkability (ulk-cpa), and show that their
four notions are implied by and imply ours. More precisely, we unveil that their
four notions are ind-cpa, ik-cpa, ind-cpa+ulk-cpa, and ik-cpa+ulk-cpa.

Capturing the Essence of URE: Composable Semantics. Finally, we
introduce two new composable notion for URE, also using substitutions, in order
to capture the essence of URE from an application point-of-view. The first notion
captures the case of an honest mixer, and we show that our game-based notions,
and therefore Young and Yung’s notions, imply it. The second notion captures
the case of a dishonest mixer, and in this case we show that the stronger notion
of ind-rcca is necessary. This means that the original ElGamal-based scheme
put forth by Golle et al. (and also proven by Young and Yung to satisfy their
notions) can’t possibly be secure according to our stronger composable notion, if
one wants meaningful security guarantees in the case of a dishonest mixer.

1.3 Related Work

The idea of building reductions by applying a number of algebraic operations
was previously explored by Brzuska et al [BDF+18]. The authors define security
notions as packages representing collections of oracles, and use their new frame-
work to prove the KEM-DEM security of Cramer-Shoup’s hybrid encryption
scheme, as well as to prove the security of the composition of forward-secure key
exchange protocols with symmetric-key protocols. Their motivation is similar to
ours, as they also claim that their method facilitates computer-aided proofs by
allowing to delegate perfect reductions steps to proof assistants.

URE was originally introduced by Golle et al in [GJJS04], and its security
foundation was crucially analyzed much later in Young and Yung in [YY18].
Both these works considered security under chosen-plaintext attacks, as we also
do here. An interesting line of research, started by Groth [Gro04], continued by
Prabhakaran and Rosulek [PR07], and culminating in the recent work by Wang et
al [WCY+21], studies URE security under the stronger model of chosen-ciphertext
attacks, where URE is often referred to as re-randomizable encryption.

Regarding composable notions, Wikström [Wik04] introduces a UC-functionality
capturing security of an ElGamal re-encryption protocol that is not universal,

4

that is, re-encryption is performed by the mixers by decrypting and then encrypt-
ing again, and thus is inherently more complex than our notion. In [PR07] a
so-called “replayable message posting” UC-functionality is introduced, but which
does not directly capture the application of URE in the context of mixnets, and
additionally assumes perfect unlinkability and chosen-ciphertext attacks security.

2 Preliminaries

2.1 Notation

For a list of variables x1, x2, . . ., we write x1, x2, . . . ← y to assign the value
y to each variable and x1, x2, . . . ← D to assign independently and identically
distributed values to each variable according to distribution D, where we usually
describe D as a probabilistic function. For a binary operation ⋆, y

⋆← x means
y ← y ⋆x. A map M is initialized by M ← [] and accessed by M [·]. ∅ denotes the
empty set, N .

= {0, 1, 2, . . .} denotes the set of natural numbers, and for n ∈ N,
we use the convention [n]

.
= {1, . . . , n}. For a random variable X over a set X ,

we define suppX
.
= {x ∈ X |Pr[X = x] > 0}. For a logical statement S, 1{S} is

1 if S is true, and 0 otherwise. We treat sets as multisets.

2.2 Systems

In this paper we follow [Mau02,MPR07] in making security statements about
cryptographic schemes using random systems (just systems for brevity). Such a
system takes inputs X1, X2, . . . from some input set X and generates, for each
new input Xi, an output Yi from some output set Y, which depends (possibly
probabilistically) on the current input Xi and on the internal state. A system is
described exactly by the conditional probability distributions of the i-th output
Yi, given Xi

.
= (X1, . . . , Xi) and Y i−1 .

= (Y1, . . . , Yi−1), for all i ≥ 1.

Definition 1 (System). An (X ,Y)-system S, for input set X and output set
Y, is a sequence of conditional probability distributions pSYi|Y i−1Xi , for i ≥ 1.
Two systems are compatible if they have the same input and output sets, and
two compatible systems S and T are equivalent, denoted S ≡ T, if they have the
same input-output behavior, that is, pSYi|Y i−1Xi = pTYi|Y i−1Xi for all i ≥ 1.

In this paper we will describe systems informally or with intuitive pseudocode,
rather than by the conditional probabilities characterizing them. For fixed sets
X and Y, we define some special stateless systems as follows.

Definition 2 (Special Systems). For any sets X ,Y, we define some special
(X ,Y)-systems (where X and Y are implicit and always clear from the context)
that behave as follows:

– ∗ is an (X ,X)-system that on input x, outputs x.
– 1ξ is an (X , {0, 1})-system that on input x, outputs 1 if x = ξ and 0 otherwise.
– ⊥ is an (X , {⊥})-system that on input any x always outputs ⊥.

5

– y is an (X ,Y)-system, where y ∈ Y, that on input any x always outputs y.
– Y is an (X ,Y)-system, where Y is a random variable over Y, that on input
any x, outputs some y with probability Pr[Y = y].

– $ is an (X ,Y)-system that on input any x, outputs some y with uniform
probability over Y.

We next describe some useful ways in which systems can be combined into
new systems, as illustrated in Figure 1.

System Composition/Operation Intuitive description

S1 ▷ S2
x y

S1 S2
x z y

⟨S1,S2⟩
x (y1, y2) x

S1

S2

x

x

y1

y2

(y1, y2)

LS1,S2M
(x1, x2) (y1, y2) (x1, x2)

S1

S2

x1

x2

y1

y2

(y1, y2)

[S1,S2]

x1 y1

x2 y2

S1

S2

x1

x2

y1

y2

(S)∗
(x, i) yi

S
(x, i)

i

x (y1, y2) yi

(S)i1,i2
x (yi1

, yi2
)

S i1,i2
x (y1, y2) (yi1

, yi2
)

(S)i
x yi

S i
x (y1, y2) yi

Fig. 1. Schematic representation of the systems from Definition 2 for ℓ = 2.

Definition 3 (System Compositions/Operations). Let ℓ ∈ N. For (Xi,Yi)-
system Si, for each i ∈ [ℓ], (X ,×ℓ

i=1
Yi)-system S, and pairwise different integers

i1, . . . , it ⊆ [ℓ], for t ≤ ℓ, we define the systems that behave as follows:

– S1 ▷ · · ·▷Sℓ is an (X1,Yℓ)-system defined only if Yi ⊆ Xi+1, for all i ∈ [ℓ− 1],
that on input x, inputs x to S1(x) and obtains y1, then inputs y1 to S2 and
obtains y2, and so on, until it finally outputs yℓ.

6

– ⟨S1, . . . ,Sℓ⟩ is an (X ,×ℓ

i=1
Yi)-system defined only if X = Xi, for all i ∈ [ℓ],

that on input x, for each i ∈ [ℓ] inputs x to Si and obtains yi, and then
outputs (y1, . . . , yℓ).

– LS1, . . . ,SℓM is a (×ℓ

i=1
Xi,×ℓ

i=1
Yi)-system that on input (x1, . . . , xℓ), for

each i ∈ [ℓ] inputs xi to Si and obtains yi, and then outputs (y1, . . . , yℓ).

– [S1, . . . ,Sℓ] is a (
⋃ℓ

i=1({i} ×Xi),
⋃ℓ

i=1 Yi)-system that on input (i, x), inputs
x to Si and obtains y, and then outputs y. We call this operation parallel
composition, and rather than saying “input (i, x) to [S1, . . . ,Sℓ]”, we say
“input x to sub-system Si”. If two or more of the systems S1, . . . ,Sℓ depend
on some shared parameter, then we use the notation JS1, . . . ,SℓK to denote
their correlated parallel composition, and make the parameter explicit.

– (S)∗ is a ([ℓ] × X ,
⋃ℓ

i=1 Yi)-system that on input (i, x), inputs x to S and
obtains (y1, . . . , yℓ), and then outputs yi.

– (S)i1,...,it is an (X ,×t

i=1
Yji)-system that on input x, inputs x to S and

obtains (y1, . . . , yℓ), and then outputs (yj1 , . . . , yjt).

Finally, we assume that grouping tuples into tuples yields tuples, that is, for
systems R,S,T and () ∈ {⟨ ⟩, L M, [], J K}, (R,S,T) ≡ (R, (S,T)) ≡ ((R,S),T).

Let now us give some more intuition on Definition 3 via some concrete example.
Consider systems S(·),T(·),U(·),V(·), each of which is parameterized by some
value. Then, let’s for example construct the following system, for some concrete
values a, b, c:

J⟨Sa,Tb⟩ ▷ LUa,Vc M2,1, a, b K.

This systems allows interaction with three sub-systems in parallel, where some
of them are correlated. Concretely, the last two sub-systems simply return the
corresponding value, on input ⋄ (note that, in a sense, we did not make public
all three parameters), whereas the first sub-system, on input some value x, will
output a tuple (z′, y′), in a way that also depend on a, b, c. More precisely, x will
first be fed to the system ⟨Sa,Tb⟩, which means that x will be input in parallel
to both Sa and Tb, and the resulting values y and z will be collected into a tuple
(y, z). This will then be input to the system LUa,VcM, which means that y will
be input to Ua, resulting in y′, whereas z will be input to Vb, resulting in z′. As
before, the resulting values y′ and z′ will be collected into a tuple (y′, z′). Finally,
this tuple will be permuted into (z′, y′), the output of the whole sub-system.

Since, as per Definition 3, systems can appear as sub-system of other systems,
we need a way to make this explicit, in order to later relate security notions
based on systems. To achieve this, in our proofs we will explicitly show how
to factorize systems by exhibiting a function ρ (the reduction) that given a
system of some special forms, maps it to another system. For example, looking
ahead, in the proof of Lemma 1, for any system S and parameter x we define
ρ(JS, xK) .

= J⟨Ex,S ▷R⟩, xK, for systems Ex and R defined later. Then we use
ρ to show that, for (sk, pk)← Gen, the system JEpk, pk K can be factored out of
J⟨Epk,Epk ▷R⟩, pk K, that is, ρ(JEpk, pk K) = J⟨Epk,Epk ▷R⟩, pk K. Visually, this
can be seen as follows (ignoring pk):

7

Epk

ρ

Epk

Epk R

Looking again ahead, let us consider the proof of Lemma 2 for a slightly more
complex example. There, in the second part of the proof we define ρ(JS, xK) .

=
J⟨∗,∗⟩ ▷ LS, ⟨1m̂, 0⟩M1,3,2,4, xK and then show that, for (sk, pk)← Gen, the system
JEpk ▷ ⟨∗,R⟩, pk K can be factored out of J⟨∗,∗⟩ ▷ LEpk ▷ ⟨∗,R⟩, ⟨1m̂, 0⟩M1,3,2,4, pk K.
Visually, this can be seen as follows (ignoring pk and making some simplifications,
such as turning the systems ∗ into wires):

ρ

Epk

1m̂

0

R

We next introduce the abstraction of (in)distinguishability of systems, that is
crucial for defining security notions and proving relations among them.

Definition 4 (Substitution). A substitution is a set {S,T}, where S and T
are two compatible systems, denoted S T (or equivalently, T S).

The notion of a substitution is exclusively used to make conditional statements,
that is, statements of the form “if we can substitute S by T (S T), then we can
also substitute system S′ by system T′ (S′ T′)”, which we denote (and formalize
below) as S T =⇒ S′ T′. In order to show such an implication, we usually
find systems S′′ and T′′ such that S′ ≡ S′′ and S′ ≡ T′′ (that is, S′′ and T′′ are
more convenient descriptions of a system with the same behavior as S′ and T′,
respectively), as well as factorization ρ such that ρ(S) = S′′ and ρ(T) = T′′. Now,
since {S′,T′} ≡ {S′′,T′′} = {ρ(S), ρ(T)} means S′ T′ ⇐⇒ ρ(S) ρ(T), and
since S T =⇒ ρ(S) ρ(T) (we can substitute S and T in any context, see
discussion at the end of this section for more details), we proved the original
implication.

We can now describe how to use substitutions in order to capture security
statements. Consider some cryptographic scheme Π. A security notion XΠ for
Π is defined by a substitution X0 X1, for two systems X0 and X1 depending
(implicitly) on Π. The expression “XΠ holds unconditionally”, means that X0 ≡
X1, and “XΠ holds unconditionally with probability p”, means that the behaviors
of X0 and X1 differs with probability p, denoted X0 p X1. If the scheme Π is
clear from the context, we just write X rather than XΠ. Let us now explain how

8

we can relate security notions defined as substitutions. Let X1, . . . ,Xℓ,Y be some
security notions (possibly relative to different schemes), for some ℓ ∈ N, defined
as substitutions Xi :⇐⇒ Xi,0 Xi,1, for i ∈ [ℓ], and Y :⇐⇒ Y0 Y1. We say
that X1, . . . ,Xℓ imply Y, denoted

X1 ∧ · · · ∧ Xℓ =⇒ Y,

if there exist n ∈ N, ρ1, . . . , ρn, i1, . . . , in ∈ [ℓ], and b1, . . . , bn ∈ {0, 1}, such that

– Y0 ≡ ρ1(Xi1,b1),
– ρi(Xij ,1−bj) ≡ ρi+1(Xij+1,bj+1

), for any j ∈ [n], and
– Y1 ≡ ρn(Xin,1−bn).

We overload notation by also defining X1 ∧ · · · ∧ Xℓ1 =⇒ Y1 ∧ · · · ∧ Yℓ2 ,
for some ℓ1, ℓ2 ∈ N, as X1 ∧ · · · ∧ Xℓ1 =⇒ Yi for any i ∈ [ℓ2]. We also use
the natural shorthand notation X1 ∧ · · · ∧ Xℓ1 ⇐⇒ Y1 ∧ · · · ∧ Yℓ2 to mean
X1 ∧ · · · ∧ Xℓ1 =⇒ Y1 ∧ · · · ∧ Yℓ2 and Y1 ∧ · · · ∧ Yℓ2 =⇒ X1 ∧ · · · ∧ Xℓ1 .

Finally, let us explain how we can separate security notions defined as
substitutions. Let X and Y be some security notions defined as substitutions
X :⇐⇒ X0 X1 and Y :⇐⇒ Y0 Y1. We say that Y is strictly stronger than
X, denoted

X ≠⇒ Y,

if there exists a concrete scheme Π′ such that XΠ′

0 XΠ′

1 , but YΠ′

0 ̸ YΠ′

1 ,
where by ̸ we mean that the systems YΠ′

0 and YΠ′

1 are trivially distinguishable,
and thus not substitutable (for example, 1x ̸ B and 0 ̸ 1). Nevertheless, this
is instead always shown by constructing the scheme Π′ from a generic scheme
Π, and then proving that XΠ =⇒ XΠ′

, but YΠ′

0 ̸ YΠ′

1 . We use the natural
shorthand notation X ⇍⇒ Y to mean X ≠⇒ Y and Y ≠⇒ X.

Relating our Abstract Framework to Concrete Security. For two systems
S and T, we mentioned above that if S T is a valid substitution, then so is
ρ(S) ρ(T). To see this, assume for example that we instantiate systems as
some kind of poly-time programs, in some security parameter κ ∈ N, and define
Sκ Tκ to mean

∆Dκ(Sκ,Tκ)
.
= |Pr[Dκ(Sκ) = 0]− Pr[Dκ(Tκ) = 0]| ≤ ε(Dκ),

for all poly-time (distinguishing) programs Dκ and some function ε negligible in
κ. Now, we might want to show that if this is the case, then

∆Dκ(S′
κ,T

′
κ) ≤ ε′(Dκ),

for all Dκ and some other negligible function ε′. In this case, the way to show
this is to simply observe that, since composing Dκ with (black-box) factorization
ρ, denoted Dκρ, still results in a poly-time program in κ, then

∆Dκ(S′
κ,T

′
κ) = ∆Dκ(S′′

κ,T
′′
κ) = ∆Dκ(ρ(Sκ), ρ(Tκ)) = ∆Dκρ(Sκ,Tκ).

Therefore, with ε′(Dκ)
.
= ε(Dκρ) being still negligible in κ, we proved the

implication.

9

2.3 Universal Re-Encryption

Definition 5. A universal re-encryption (URE) scheme for private-key space
SK, public-key space PK, message space M = {0, 1}κ, for some κ ∈ N, and
ciphertext space C, is a tuple ΠURE = (Gen, Enc, Rnc, Dec) where:

– Gen is the key-pair distribution over SK × PK;
– Enc is the probabilistic encryption algorithm that on input a public key

pk ∈ PK and a message m ∈M, outputs a ciphertext c ∈ C;
– Rnc is the probabilistic re-encryption algorithm that on input a ciphertext

c ∈ C outputs a new ciphertext ĉ ∈ C;
– Dec is the deterministic decryption algorithm that on input a secret key

sk ∈ SK and a ciphertext c ∈ C, outputs a message m ∈M.

As customary, for sk ∈ SK and pk ∈ PK, we write Encpk(·) for Enc(pk, ·) and
Decsk(·) for Dec(sk, ·).

In this paper all notions are relative to some fixed URE scheme ΠURE, defining
sets SK, PK,M, and C, and for which we define the following parameterized
systems.

Definition 6. For parameters sk, sk1, . . . , skn ∈ SK, and pk, pk1, . . . , pkn ∈ PK,
we define the parameterized systems that behave as follows:

– Epk is an (M, C)-system that on input m, outputs Encpk(m).
– E$

pk
.
= $ ▷Epk is an (M, C)-system that on input m, samples m̃ $←M and

outputs Encpk(m̃).
– R is a (C, C)-system that on input c, outputs Rnc(c).
– R∗ is a (C × N, C)-system that on input (c, t), outputs Rnct(c).
– Dsk is a (C,M)-system that on input c, outputs Decsk(c).
– Epk1,...,pkn is a (M× [n], C)-system that on input (m, i), outputs Encpki(m).
– Dsk1,...,skn is a (C × [n],M)-system that on input (c, i), outputs Decski(c).
– In is an ([n]×M×N×[n],M∪{⊥})-system that on input (n,m, t, j), outputs

m if i = j and ⊥ otherwise.
– pkpk1,...,pkn

is an ([n],PK)-system that on input i, outputs pki.

We will use the systems from Definition 6 to build more complex systems
through the system composition operations from Definition 3.

3 Game-Based Semantics of Universal Re-Encryption

We begin by defining security of a fixed URE scheme where for notions naturally
living in a multi-user setting (such as robustness and anonymity), we only
consider the case of two receivers. We combine our notions into single security
definitions in Section 3.3, and show that the resulting notions are equivalent in
Appendix A.1. We then generalize such combined notions to arbitrary sets of
receivers in Section 3.4, and show that they are implied by the combined notions
for two receivers in Appendix A.2.

10

3.1 Notions of Security

Minimal Notions. The first notions we introduce are the ones that intuitively
only capture a single security guarantee.

For correctness (cor), we consider the substitution of the following two systems,
both of which initially sample a key-pair (sk, pk) ← Gen. The first system, on
input a message-integer pair (m, t) ∈ M× N, encrypts m into c ← Encpk(m),
re-encrypts t times c, that is, computes ĉi ← Rnc(ĉi−1) for i ∈ [t] and where
ĉ0

.
= c, and finally decrypts ĉt into m′ := Decsk(ĉt) and outputs m′. The second

system, on input a message-integer pair (m, t) ∈M×N, simply outputs m. Both
systems also give access in parallel to the public key pk. The intuition is that the
scheme is correct if encrypting, re-encrypting an arbitrary number of times, and
then decrypting with the correct secret key, results in the original message.

Definition 7 (cor).

JLEpk,∗M ▷R∗ ▷Dsk, pk K JL∗,∗M1, pk K,

for (sk, pk)← Gen.

For robustness (rob), we consider the substitution of the following two systems,
both of which initially sample two independent key-pairs (sk1, pk1)← Gen and
(sk2, pk2)← Gen. The first system, on input a message-integer pair (m, t) ∈M×N,
encrypts m into c← Encpk1(m) using the public key from the first key-pair, re-
encrypts t times c, that is, computes ĉi ← Rnc(ĉi−1) for i ∈ [t] and where ĉ0

.
= c,

and finally decrypts ĉt into m′ := Decsk2(ĉt) using the secret key from the second
key-pair, and outputs m′. The second system, on input a message-integer pair
(m, t) ∈ M × N, simply outputs ⊥. Both systems also give access in parallel
to the public keys pk1 and pk2. The intuition is that the scheme is robust if
encrypting, re-encrypting an arbitrary number of times, and then decrypting
with an incorrect secret key, results in ⊥.

Definition 8 (rob).

JLEpk1 ,∗M ▷R∗ ▷Dsk2 , pk1, pk2K JL⊥,∗M1, pk1, pk2K,

for independent (sk1, pk1)← Gen and (sk2, pk2)← Gen.

For confidentiality, modeled as (real-or-random) indistinguishability of cipher-
texts under a chosen-plaintext attack (ind-cpa), we consider the substitution of
the following two systems, both of which initially sample a key-pair (sk, pk)← Gen.
The first system, on input a message m ∈M, encrypts m into c← Encpk(m) and
outputs c. The second system, on input a message m ∈M, samples m̃, encrypts
m̃ into c̃ ← Encpk(m̃) and outputs c̃. Both systems also give access in parallel
to the public key pk. The intuition is that the scheme is confidential if regular
encryptions or encryptions of unrelated messages are indistinguishable.

Definition 9 (ind-cpa).

JEpk, pk K JE$
pk, pk K,

for (sk, pk)← Gen.

11

For anonymity, modeled as key-indistinguishability under a chosen-plaintext
attack (ik-cpa), we consider the substitution of the following two systems, both of
which initially sample two independent key-pairs (sk1, pk1)← Gen and (sk2, pk2)←
Gen. The first system has two sub-systems: The first, on input a message m ∈M,
encrypts m into c ← Encpk1(m) using the public key from the first key-pair
and outputs c, while the second, on input a message m ∈ M, encrypts m into
c ← Encpk2(m) using the public key from the second key-pair and outputs c;
The second system also has two sub-systems: Both of them, on input a message
m ∈ M, encrypt m into c ← Encpk1(m) using the public key from the first
key-pair and output c. Both systems also give access in parallel to the public
keys pk1 and pk2. The intuition is that the scheme is anonymous if encryptions
under different public keys are indistinguishable.

Definition 10 (ik-cpa).

JEpk1 ,Epk2 , pk1, pk2K JEpk1 ,Epk1 , pk1, pk2K,

for independent (sk1, pk1)← Gen and (sk2, pk2)← Gen.

For unlinkability (ulk-cpa), we consider the substitution of the following two
systems, both of which initially sample a key-pair (sk, pk)← Gen. The first system,
on input a messagem ∈M, first encryptsm into c← Encpk(m). Then it computes
ĉ ← Rnc(c) and outputs (c, ĉ). Formally, we model this using the operator ▷
for systems that forwards c from system Epk to system ⟨∗,R⟩, which in turn
internally feeds c in parallel to systems ∗ and R, and collects the outputs c and ĉ
in the tuple (c, ĉ). The second system, on input a message m ∈M, first encrypts
m into c← Encpk(m). Then it encrypts again m into c′ ← Encpk(m) using fresh
and independent randomness. Finally, it computes ĉ← Rnc(c′) and outputs (c, ĉ).
Formally, we model this by composing the two systems Epk and Epk ▷R with
the system operator ⟨·, ·⟩. Both systems also give access in parallel to the public
key pk. The intuition is that the scheme is unlinkable if an encryption and its
re-encryption are indistinguishable from an encryption and the re-encryption of
another fresh encryption of the same message.

Definition 11 (ulk-cpa).

JEpk ▷ ⟨∗,R⟩, pk K J⟨Epk,Epk ▷R⟩, pk K,

for (sk, pk)← Gen.

For strong unlinkability (sulk-cpa), we consider the same substitution as for
regular unlinkability, except that we replace the system Epk▷R by the system Epk

as a sub-system of the right-hand side system. The intuition is that the scheme
is strongly unlinkable if an encryption and its re-encryption are indistinguishable
from two fresh encryptions of the same message.

Definition 12 (sulk-cpa).

JEpk ▷ ⟨∗,R⟩, pk K J⟨Epk,Epk⟩, pk K,

for (sk, pk)← Gen.

12

Young Yung’s Combined Notions. We now introduce the security notions
from in [YY18] that aim at capturing confidentiality and anonymity of the
re-encryption function. Note that we introduce a different flavor than the one
introduced there, but in Appendix B we show that our notions are essentially
equivalent. Moreover, as we will see in Section 3.2, these two notions are not
necessary, if a URE scheme already satisfies ind-cpa, ik-cpa, and ulk-cpa.

For confidentiality of re-encryption (ind-r-cpa), we consider the substitution of
the following two systems, both of which initially sample a key-pair (sk, pk)← Gen.
The first system, on input a message m ∈M, first encrypts m into c← Encpk(m).
Then it computes ĉ← Rnc(c) and outputs (c, ĉ). The second system, on input
a message m ∈ M, first encrypts m into c ← Encpk(m). Then it samples m̃,
encrypts m̃ into c̃← Encpk(m̃), computes ĉ← Rnc(c̃), and finally outputs (c, ĉ).
Both systems also give access in parallel to the public key pk. The intuition is that
the scheme has confidential re-encryption if an encryption and its re-encryption
are indistinguishable from an encryption and the re-encryption of the encryption
of an unrelated message.

Definition 13 (ind-r-cpa).

JEpk ▷ ⟨∗,R⟩, pk K J⟨Epk,E
$
pk ▷R⟩, pk K,

for (sk, pk)← Gen.

For anonymity of re-encryption (ik-r-cpa), we consider the substitution of the
following two systems, both of which initially sample two independent key-pairs
(sk1, pk1)← Gen and (sk2, pk2)← Gen. The first system has two sub-systems: The
first, on input a message m ∈ M, encrypts m into c ← Encpk1(m) using the
public key from the first key-pair, computes ĉ← Rnc(c), and then outputs (c, ĉ),
while the second, on input a message m ∈ M, encrypts m into c← Encpk2(m)
using the public key from the second key-pair, computes ĉ← Rnc(c), and then
outputs (c, ĉ) The second system also has two sub-systems: The first is the same
as in the first system, whereas the second, on input a message m ∈M, encrypts
m into c← Encpk2(m) using the public key from the second key-pair, encrypts
again m into c′ ← Encpk1(m) using the public key from the first key-pair, then
computes ĉ← Rnc(c′) and outputs (c, ĉ). Both systems also give access in parallel
to the public keys pk1 and pk2. The intuition is that the scheme has anonymous
re-encryption if two pairs consisting of an encryption and its re-encryption under
two independent public keys are indistinguishable from an encryption and its
re-encryption paired with and encryption and the re-encryption of an encryption
of the same message under an unrelated public key.

Definition 14 (ik-r-cpa).

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K,

for independent (sk1, pk1)← Gen and (sk2, pk2)← Gen.

13

3.2 Relations Among Security Notions

Minimality of ind-cpa, ik-cpa, and ulk-cpa. We begin by showing that the
four notions ind-cpa, ik-cpa, ind-r-cpa, and ik-r-cpa put forth by [YY18] are not
minimal, in the sense that they are all implied by the three notions ind-cpa, ik-cpa,
and ulk-cpa, and vice versa. Figure 2 summarizes all relations (both implications
and separations) that we prove. Furthermore, in Appendix B we show that our
notions are essentially equivalent to the ones introduced in [YY18].

ind-cpa ∧ ulk-cpa ∧ ik-cpa

ind-r-cpa ik-r-cpa

- - - -

Fig. 2. Relations among encryption and re-encryption security notions.

Lemma 1. ind-cpa ∧ ulk-cpa =⇒ ind-r-cpa.

Proof. Let (sk, pk)← Gen and consider ρ(JS, xK) .
= J⟨Ex,S ▷R⟩, xK. Then:

JEpk ▷ ⟨∗,R⟩, pk K J⟨Epk,Epk ▷R⟩, pk K (ulk-cpa)

= ρ(JEpk, pk K)

 ρ(JE$
pk, pk K) (ind-cpa)

= J⟨Epk,E
$
pk ▷R⟩, pk K.

Lemma 2. ind-cpa ⇍⇒ ind-r-cpa.

Proof.

≠⇒: Let Π
.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈ supp Gen, define Π′ .

=
(Gen′, Enc′, Rnc′, Dec′) as:
• Gen′

.
= Gen;

• Enc′pk(m)
.
= Encpk(m), for any m ∈M;

• Rnc′(c)
.
= c, for any c ∈ C;

• Dec′sk(c)
.
= Decsk(c), for any c ∈ C.

Let (sk, pk)← Gen. If Π is correct, then Π′ is clearly also correct, and if

JEpk, pk K JE$
pk, pk K,

then
JE′

pk, pk K ≡ JEpk, pk K JE$
pk, pk K ≡ JE′$

pk, pk K.

But clearly,

JE′
pk ▷ ⟨∗,R′⟩, pk K ≡ JEpk ▷ ⟨∗,∗⟩, pk K

̸ J⟨Epk,E
$
pk⟩, pk K

≡ J⟨Epk,E
$
pk ▷R⟩, pk K.

14

⇍=: Let Π
.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈ supp Gen and a fixed

m̂ ∈M, define Π′ .
= (Gen′, Enc′, Rnc′, Dec′) as:

• Gen′
.
= Gen;

• Enc′pk(m)
.
= (Encpk(m),1{m = m̂}), for any m ∈M;

• Rnc′((c, b))
.
= (Rnc(c), 0), for any (c, b) ∈ C × {0, 1};

• Dec′sk((c, b))
.
= Decsk(c), for any (c, b) ∈ C × {0, 1}.

Let (sk, pk)← Gen. If Π is correct, then Π′ is clearly also correct, and if

JEpk ▷ ⟨∗,R⟩, pk K J⟨Epk,E
$
pk ▷R⟩, pk K,

then with ρ(JS, xK) .
= J⟨∗,∗⟩ ▷ LS, ⟨1m̂, 0⟩M1,3,2,4, xK,

JE′
pk ▷ ⟨∗,R′⟩, pk K ≡ J⟨∗,∗⟩ ▷ LEpk ▷ ⟨∗,R⟩, ⟨1m̂, 0⟩M1,3,2,4, pk K

= ρ(JEpk ▷ ⟨∗,R⟩, pk K)

 ρ(J⟨Epk,E
$
pk ▷R⟩, pk K)

= J⟨∗,∗⟩ ▷ L⟨Epk,E
$
pk ▷R⟩, ⟨1m̂, 0⟩M1,3,2,4, pk K

≡ J⟨E′
pk,E

′$
pk ▷R

′⟩, pk K.

But with random variable B ∈ {0, 1} such that Pr[B = 1] = 1
|M| ,

JE′
pk, pk K ≡ J⟨∗,∗⟩ ▷ LEpk,1m̂M, pk K

̸ J⟨∗,∗⟩ ▷ LE$
pk, BM, pk K

≡ JE′$
pk, pk K,

since clearly 1m̂ ̸ B.

Lemma 3. ind-r-cpa =⇒ ulk-cpa.

Proof. Let (sk, pk)← Gen and consider ρ(JS, xK) .
= J⟨Ex, (S)2⟩, xK. Then:

JEpk ▷ ⟨∗,R⟩, pk K J⟨Epk,E
$
pk ▷R⟩, pk K (ind-r-cpa)

≡ J⟨Epk, ⟨Epk,E
$
pk ▷R⟩2⟩, pk K

= ρ(J⟨Epk,E
$
pk ▷R⟩, pk K)

 ρ(JEpk ▷ ⟨∗,R⟩, pk K) (ind-r-cpa)

= J⟨Epk, (Epk ▷ ⟨∗,R⟩)2⟩, pk K
≡ J⟨Epk,Epk ▷R⟩, pk K.

Lemma 4. ulk-cpa ≠⇒ ind-r-cpa.

Proof. Let Π
.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈ supp Gen and a fixed

m̂ ∈M, define Π′ .
= (Gen′, Enc′, Rnc′, Dec′) as:

– Gen′
.
= Gen;

15

– Enc′pk(m)
.
= (Encpk(m),1{m = m̂}), for any m ∈M;

– Rnc′((c, b))
.
= (Rnc(c), b), for any (c, b) ∈ C × {0, 1};

– Dec′sk((c, b))
.
= Decsk(c), for any (c, b) ∈ C × {0, 1}.

Let (sk, pk)← Gen. If Π is correct, then Π′ is clearly also correct, and if

JEpk ▷ ⟨∗,R⟩, pk K J⟨Epk,Epk ▷R⟩, pk K,

then with ρ(JS, xK) .
= J⟨∗,∗⟩ ▷ LS, ⟨1m̂,1m̂⟩M1,3,2,4, xK,

JE′
pk ▷ ⟨∗,R′⟩, pk K ≡ J⟨∗,∗⟩ ▷ LEpk ▷ ⟨∗,R⟩, ⟨1m̂,1m̂⟩M1,3,2,4, pk K

= ρ(JEpk ▷ ⟨∗,R⟩, pk K)
 ρ(J⟨Epk,Epk ▷R⟩, pk K)
= J⟨∗,∗⟩ ▷ L⟨Epk,Epk ▷R⟩, ⟨1m̂,1m̂⟩M1,3,2,4, pk K
≡ J⟨E′

pk,E
′
pk ▷R

′⟩, pk K.

But with random variable B ∈ {0, 1} such that Pr[B = 1] = 1
|M| ,

JE′
pk ▷ ⟨∗,R′⟩, pk K ≡ J⟨∗,∗⟩ ▷ LEpk ▷ ⟨∗,R⟩, ⟨1m̂,1m̂⟩M1,3,2,4, pk K

̸ J⟨∗,∗⟩ ▷ L⟨Epk,E
$
pk ▷R⟩, ⟨1m̂, B⟩M1,3,2,4, pk K

≡ J⟨E′
pk,E

′$
pk ▷R

′⟩, pk K.

since clearly 1m̂ ̸ B.

Lemma 5. ik-cpa ∧ ulk-cpa =⇒ ik-r-cpa.

Proof. Let (sk1, pk1)← Gen and (sk2, pk2)← Gen, and consider

– ρ1(JS, xK) .
= JS,Epk2 ▷ ⟨∗,R⟩, x, pk2K,

– ρ2(JS, xK) .
= J⟨Epk1 ,Epk1 ▷R⟩,S, pk1, xK, and

– ρ3(JS,T, x, yK) .
= J⟨Ex,S ▷R⟩, ⟨Ey,T ▷R⟩, x, yK.

Then:

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
= ρ1(JEpk1 ▷ ⟨∗,R⟩, pk1K)
 ρ1(J⟨Epk1 ,Epk1 ▷R⟩, pk1K) (ulk-cpa)

= J⟨Epk1 ,Epk1 ▷R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
= ρ2(JEpk2 ▷ ⟨∗,R⟩, pk2K)
 ρ2(J⟨Epk2 ,Epk2 ▷R⟩, pk2K) (ulk-cpa)

= J⟨Epk1 ,Epk1 ▷R⟩, ⟨Epk2 ,Epk2 ▷R⟩, pk1, pk2K
= ρ3(JEpk1 ,Epk2 , pk1, pk2K)
 ρ3(JEpk1 ,Epk1 , pk1, pk2K) (ik-cpa)

= J⟨Epk1 ,Epk1 ▷R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K.

16

Lemma 6. ik-cpa ⇍⇒ ik-r-cpa.

Proof.

≠⇒: Analogous to the case ≠⇒ in the proof of Lemma 2.
⇍=: Let Π

.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈ supp Gen, define Π′ .

=
(Gen′, Enc′, Rnc′, Dec′) as:
• Gen′

.
= Gen;

• Enc′pk(m)
.
= (Encpk(m), pk), for any m ∈M;

• Rnc′((c, pk′))
.
= (Rnc(c),⊥), for any (c, pk′) ∈ C × (PK ∪ {⊥});

• Dec′sk((c, pk
′))

.
= Decsk(c), for any (c, pk′) ∈ C × (PK ∪ {⊥}).

Let (sk1, pk1)← Gen and (sk2, pk2)← Gen. If Π is correct, then Π′ is clearly
also correct, and if

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K

JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K.

then with

ρ(JS,T, x, yK) .
= JS ▷ L⟨∗, x⟩, ⟨∗,⊥⟩M,T ▷ L⟨∗, y⟩, ⟨∗,⊥⟩M, x, yK,

JE′
pk1

▷ ⟨∗,R′⟩,E′
pk2

▷ ⟨∗,R′⟩, pk1, pk2K
≡ JEpk1 ▷ ⟨∗,R⟩ ▷ L⟨∗, pk1⟩, ⟨∗,⊥⟩M,

Epk2 ▷ ⟨∗,R⟩ ▷ L⟨∗, pk2⟩, ⟨∗,⊥⟩M, pk1, pk2K
= ρ(JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K)
 ρ(JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K)
= JEpk1 ▷ ⟨∗,R⟩ ▷ L⟨∗, pk1⟩, ⟨∗,⊥⟩M,

⟨Epk2 ,Epk1 ▷R⟩ ▷ L⟨∗, pk2⟩, ⟨∗,⊥⟩M, pk1, pk2K
≡ JE′

pk1
▷ ⟨∗,R′⟩, ⟨Epk2 ,E

′
pk1

▷R′⟩, pk1, pk2K.

But clearly,

JE′
pk1

,E′
pk2

, pk1, pk2K ≡ JEpk1 ▷ ⟨∗, pk1⟩,Epk2 ▷ ⟨∗, pk2⟩, pk1, pk2K
̸ JEpk1 ▷ ⟨∗, pk1⟩,Epk1 ▷ ⟨∗, pk1⟩, pk1, pk2K
≡ JE′

pk1
,E′

pk1
, pk1, pk2K.

Lemma 7. ik-r-cpa =⇒ ulk-cpa.

Proof. Let (sk, pk)← Gen and (sk′, pk′)← Gen, and consider

– ρ1(JS,T, x, yK) .
= JT, yK and

– ρ2(JS,T, x, yK) .
= J⟨Ey, (T)2⟩, yK.

17

Then:

JEpk ▷ ⟨∗,R⟩, pk K = ρ1(JEpk′ ▷ ⟨∗,R⟩,Epk ▷ ⟨∗,R⟩, pk′, pk K)
 ρ1(JEpk′ ▷ ⟨∗,R⟩, ⟨Epk,Epk′ ▷R⟩, pk′, pk K) (ik-r-cpa)

= J⟨Epk,Epk′ ▷R⟩, pk K
≡ J⟨Epk, ⟨Epk,Epk′ ▷R⟩2⟩, pk K
= ρ2(JEpk′ ▷ ⟨∗,R⟩, ⟨Epk,Epk′ ▷R⟩, pk′, pk K)
 ρ2(JEpk′ ▷ ⟨∗,R⟩,Epk ▷ ⟨∗,R⟩, pk′, pk K) (ik-r-cpa)

= J⟨Epk, (Epk ▷ ⟨∗,R⟩)2⟩, pk K
≡ J⟨Epk,Epk ▷R⟩, pk K.

Lemma 8. ulk-cpa ≠⇒ ik-r-cpa.

Proof. Let Π
.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈ supp Gen, define Π′ .

=
(Gen′, Enc′, Rnc′, Dec′) as:

– Gen′
.
= Gen;

– Enc′pk(m)
.
= (Encpk(m), pk), for any m ∈M;

– Rnc′((c, pk′))
.
= (Rnc(c), pk′), for any (c, pk′) ∈ C × (PK ∪ {⊥});

– Dec′sk((c, pk
′))

.
= Decsk(c), for any (c, pk′) ∈ C × (PK ∪ {⊥}).

Let (sk, pk)← Gen. If Π is correct, then Π′ is clearly also correct, and if

JEpk ▷ ⟨∗,R⟩, pk K J⟨Epk,Epk ▷R⟩, pk K,

then with ρ(JS, xK) .
= JS ▷ L⟨∗, x⟩, ⟨∗, x⟩M, xK,

JE′
pk ▷ ⟨∗,R′⟩, pk K ≡ JEpk ▷ ⟨∗,R⟩ ▷ L⟨∗, pk⟩, ⟨∗, pk⟩M, pk K

= ρ(JEpk ▷ ⟨∗,R⟩, pk K)
 ρ(J⟨Epk,Epk ▷R⟩, pk K)
= J⟨Epk,Epk ▷R⟩ ▷ L⟨∗, pk⟩, ⟨∗, pk⟩M, pk K
≡ J⟨E′

pk,E
′
pk ▷R

′⟩, pk K.

But clearly, for (sk1, pk1)← Gen and (sk2, pk2)← Gen,

JE′
pk1

▷ ⟨∗,R′⟩,E′
pk2

▷ ⟨∗,R′⟩, pk1, pk2K
≡ JEpk1 ▷ ⟨∗,R⟩ ▷ L⟨∗, pk1⟩, ⟨∗, pk1⟩M,

Epk2 ▷ ⟨∗,R⟩ ▷ L⟨∗, pk2⟩, ⟨∗, pk2⟩M, pk1, pk2K
̸ JEpk1 ▷ ⟨∗,R⟩ ▷ L⟨∗, pk1⟩, ⟨∗, pk1⟩M,

⟨Epk2 ,Epk1 ▷R⟩ ▷ L⟨∗, pk2⟩, ⟨∗, pk1⟩M, pk1, pk2K
≡ JE′

pk1
▷ ⟨∗,R′⟩, ⟨Epk2 ,E

′
pk1

▷R′⟩, pk1, pk2K.

18

Stronger Unlinkability. We next show that the strong unlinkability notion
sulk-cpa we put forth is significantly stronger than the conventional unlinkability
notion ulk-cpa. In the proof of Lemma 10 we used a minimal counterexample,
but if instead of a bit b ∈ {0, 1} we would append a counter t ∈ {0, 1}k, for some
k ∈ N, to the underlying ciphertext (initialized to 0 by Enc, increased by 1 by
Rnc, and ignored by Dec), the proof would still go through. This makes it evident
that ulk-cpa is weaker than sulk-cpa in the sense that, in general, a ulk-cpa-secure
scheme does not hide the number of re-encryptions a ciphertext went through.
In practice, this translates into such a scheme not hiding the number of hops
a message goes through in a mixnet, which is a property that was ignored in
[YY18].

Lemma 9. sulk-cpa =⇒ ulk-cpa.

Proof. Let (sk, pk)← Gen and consider ρ(JS, xK) .
= JEx, (S)2, xK. Then:

JEpk ▷ ⟨∗,R⟩, pk K J⟨Epk,Epk⟩, pk K (sulk-cpa)

≡ J⟨Epk, ⟨Epk,Epk⟩2⟩, pk K
= ρ(J⟨Epk,Epk⟩, pk K)
 ρ(JEpk ▷ ⟨∗,R⟩, pk K) (sulk-cpa)

= J⟨Epk, (Epk ▷ ⟨∗,R⟩)2⟩, pk K
≡ J⟨Epk,Epk ▷R⟩, pk K.

Lemma 10. ulk-cpa ≠⇒ sulk-cpa.

Proof. Let Π
.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈ supp Gen, define Π′ .

=
(Gen′, Enc′, Rnc′, Dec′) as:

– Gen′
.
= Gen;

– Enc′pk(m)
.
= (Encpk(m), 0), for any m ∈M;

– Rnc′((c, b))
.
= (Rnc(c), 1), for any (c, b) ∈ C × {0, 1};

– Dec′sk((c, b))
.
= Decsk(c), for any (c, b) ∈ C × {0, 1}.

Let (sk, pk)← Gen. If Π is correct, then Π′ is clearly also correct, and if

JEpk ▷ ⟨∗,R⟩, pk K J⟨Epk,Epk ▷R⟩, pk K,

then with ρ(JS, xK) .
= JS ▷ L⟨∗, 0⟩, ⟨∗, 1⟩M, xK,

JE′
pk ▷ ⟨∗,R′⟩, pk K ≡ JEpk ▷ ⟨∗,R⟩ ▷ L⟨∗, 0⟩, ⟨∗, 1⟩M, pk K

= ρ(JEpk ▷ ⟨∗,R⟩, pk K)
 ρ(J⟨Epk,Epk ▷R⟩, pk K)
= J⟨Epk,Epk ▷R⟩ ▷ L⟨∗, 0⟩, ⟨∗, 1⟩M, pk K
≡ J⟨E′

pk,E
′
pk ▷R

′⟩, pk K.

But clearly,

JE′
pk ▷ ⟨∗,R′⟩, pk K ≡ JEpk ▷ ⟨∗,R⟩ ▷ L⟨∗, 0⟩, ⟨∗, 1⟩M, pk K

̸ J⟨Epk,Epk⟩ ▷ L⟨∗, 0⟩, ⟨∗, 0⟩M, pk K
≡ J⟨E′

pk,E
′
pk⟩, pk K.

19

3.3 Combined Notions

In this section we introduce three notions that capture more security guarantees
at once, which will be easier to relate to the composable notions we will introduce
later. Figure 3 summarizes all relations (both implications and separations) that
we show in Appendix A.1. Furthermore, in Appendix C we describe a different
combined notion, ind-ik-r-cpa, that would result by naturally combining Young
and Yung’s ind-r-cpa and ik-r-cpa notions (but which is less directly relatable to
our composable notions). There, we also show some implications and separations.
Finally, in Appendix D, we show that the original URE scheme based on ElGamal
form [GJJS04] satisfies our strongest notion ind-ik-sulk-cpa.

ind-cpa

ind-ik-ulk-cpa ∧ ulk-cpa sulk-cpa ∧ ind-ik-sulk-cpa

ik-cpa

-

Fig. 3. Relations among combined notions.

For the combined notion of correctness and robustness (cor-rob), we want to
be able to substitute a pair of systems S1 and S2 depending on two independent
key-pairs (sk1, pk1) and (sk2, pk2), where system Si, for i ∈ [2], on input a tuple
(m, t, j) ∈M×N× [2] encrypts m using pki, re-encrypts the resulting ciphertext
t times, decrypts it with key skj , and outputs the resulting message (or ⊥), by
a pair of systems where Si, on input (m, t, j), always outputs m if j = i and ⊥
otherwise.

Definition 15 (cor-rob).

JLEpk1 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , LEpk2 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , pk1, pk2K

JL∗,⊥,∗M ▷ ⟨∗,∗⟩∗, L∗,⊥,∗M2,1,3 ▷ ⟨∗,∗⟩∗, pk1, pk2K,

for independent (sk1, pk1)← Gen and (sk2, pk2)← Gen.

For the combined notion of confidentiality, anonymity, and unlinkability (ind-
ik-ulk-cpa), we want to be able to substitute a pair of systems that encrypt and
then re-encrypt under two independent keys, by a pair of systems both first
sampling m̃, producing two independent encryptions of m̃ under the first key,
and only re-encrypting the second ciphertext.

20

Definition 16 (ind-ik-ulk-cpa).

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K

J⟨E$
pk1

,E$
pk1

▷R⟩, ⟨E$
pk1

,E$
pk1

▷R⟩, pk1, pk2K,

for independent (sk1, pk1)← Gen and (sk2, pk2)← Gen.

For the combined notion of confidentiality, anonymity, and unlinkability (ind-
ik-ulk-cpa), we want to be able to substitute a pair of systems that encrypt and
then re-encrypt under two independent keys, by a pair of systems both first
sampling m̃, and producing two independent encryptions of m̃ under the first
key.

Definition 17 (ind-ik-sulk-cpa).

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K J⟨E$
pk1

,E$
pk1
⟩, ⟨E$

pk1
,E$

pk1
⟩, pk1, pk2K,

for independent (sk1, pk1)← Gen and (sk2, pk2)← Gen.

3.4 Generalizing the Notions: From 2 to Many Receivers

The combined notions introduced above are still a bit limited, because they
only capture the case of two receivers. Nevertheless, as we explain now, it is
straightforward to generalize such notions via a generic hybrid argument. In
general, for two systems S1 and T1 we consider their generalized versions Sn and
Tn, for some n ∈ N. Within our framework, an hybrid argument then corresponds
to describing a generic reduction ρi(X), for i ∈ [n] and X ∈ {S1,T1}, such that
ρ1(S1) ≡ Sn, ρn(T1) ≡ Tn, and for all j ∈ [n − 1], ρj(T1) ≡ ρj+1(S1). Then
clearly,

Sn ≡ ρ1(S1) ρ1(T1) ≡ ρ2(S1) ρ2(T1) ≡ · · · ≡ ρn(S1) ρn(T1) ≡ Tn.

We now state the generic notions relative to a set R of receivers, and defer
the proofs that they are implied by the two-users ones to Appendix A.2.

Definition 18 (n-cor-rob).

JLEpk1,...,pkn ,∗,∗M ▷ LR∗,∗M ▷Dsk1,...,skn ,pkpk1,...,pkn
K JIn,pkpk1,...,pkn

K,

for independent (sk1, pk1)← Gen, . . . , (skn, pkn)← Gen.

Definition 19 (n-ind-ik-ulk-cpa).

JEpk1,...,pkn ▷ ⟨∗,R⟩,pkpk1,...,pkn
K JL∗,∗M1 ▷ ⟨E$

pk1
,E$

pk1
▷R⟩,pkpk1,...,pkn

K,

for independent (sk1, pk1)← Gen, . . . , (skn, pkn)← Gen.

Definition 20 (n-ind-ik-sulk-cpa).

JEpk1,...,pkn ▷ ⟨∗,R⟩,pkpk1,...,pkn
K JL∗,∗M1 ▷ ⟨E$

pk1
,E$

pk1
⟩,pkpk1,...,pkn

K,

for independent (sk1, pk1)← Gen, . . . , (skn, pkn)← Gen.

21

4 Composable Semantics of Universal Re-Encryption

The goal of this section is to define security of universal re-encryption from an
application point of view. We do so using the framework of constructive cryp-
tography (CC) [MR11,Mau12], in which security statements naturally compose.
Previously, composable semantics of other cryptographic schemes with anonymity
properties have been considered in CC: anonymous PKE [KMO+13], anonymous
(probabilistic) MACs [AHM+15], anonymous (probabilistic) symmetric-key en-
cryption and authenticated encryption [BM20], and three kinds of anonymous
signature schemes [BM21]. The common thread for all these four works, is that
the statements shown exclusively capture anonymity preservation. More precisely,
all statements show that a certain scheme realizes some ideal resource that
captures some kind of security in conjunction with anonymity, if used with an
assumed resource that captures a weaker form of security (than the kind captured
by the ideal resource) but already in conjunction with anonymity. Even more
concretely, for example in [BM20] it is shown that anonymous and IND-CPA
(probabilistic) symmetric-key encryption, from an authentic anonymous channel
(plus a resource modeling a shared secret key) constructs a secure (that is, both
authenticated and confidential) anonymous channel.

In this work, we show (for the first time) a construction that potentially
captures the creation of anonymity. We will assume resources that explicitly
leak the identity of senders and receivers, and therefore, if used naively, trivially
allow to link senders to receivers. Using URE, we are able to construct, from
such assumed resources, and ideal resource that leaks the identities, but hides
the links between senders and receivers. Therefore, under certain circumstances
(that is, the traffic from senders to receivers is “large”), such ideal resource also
guarantees anonymity of both senders and receivers.

We consider the simple case of a single honest mixer between the senders and
the receivers, where senders authentically send ciphertexts to the mixer, which
re-encrypts each stored ciphertext on each new input, and where receivers fetch
the list of all ciphertexts from the mixer, decrypt the ones meant for them, and
finally tell the mixer which ciphertexts are to be deleted.

4.1 Constructive Cryptography

Originally introduced in [MR11] under the name of abstract cryptography and
later instantiated as constructive cryptography (CC) in [Mau12], CC is a theory
that allows to define security of cryptographic schemes and protocols as statements
about constructions of ideal resources from assumed resources, which we model
as systems from Section 2.2 enhanced with interfaces.

Definition 21 (P-Resource). For a party set P, a P-resource R for (implicit)
input-output set X , is a (P × X ,P × X)-system. For P ∈ P and x ∈ X , to
“input x at interface P of R” means inputting (P, x) to R, and to “obtain x from
interface P of R”, means getting an output (P, x) from R.

22

A P-resource can be transformed into another P-resource, exhibiting a differ-
ent behavior, by applying a local converter at one of its interfaces.

Definition 22 (Local Converter). A local converter α is a system with in
and out interfaces (as per Definition 21), which can be applied to an interface
P ∈ P of a P-resource R, denoted αPR, which is in turn a P-resource. αPR
behaves as R, except that:

– Inputs to interface P are first input to interface out of α, which then produces
an output at its interface in, which is in turn input to interface P of R.

– Outputs at interface P of R are first input to interface in of α, which then
produces an output at its interface out, which is in turn output at interface
P of αPR.

For another local converter β, αβ is the local converter resulting by connecting
interface in of α to interface out of β.

A protocol can then be defined as a collection of local protocols, describing
the behavior of each party associated with an interface of a resource.

Definition 23 (A-Converter). For a set A, an A-converter α is a collection
of local converters αA, for A ∈ A. For P-resource R with A ⊆ P, we define αR
as the resource resulting by applying αA to interface A or R for each A ∈ A, that
is, (αA)

A((αB)
B(· · ·R)), for all A,B, . . . ∈ A. For another A-converter β,αβ is

an A-converter γ with γA
.
= αAβA, for each A ∈ A.

The following two lemmas are directly implied by Definitions 21, 22 and 23.

Lemma 11 (Sequential Composition of A-Converters). For P-resource
R and A-converters α and β, for A ⊆ P, α (β R) ≡ αβ R.

Lemma 12 (Commutativity of A-Converters). For P-resource R, A-
converter α and B-converter β, for A,B ⊆ P with A∩B = ∅, αβ R ≡ βαR.

Finally, we can define composable security of a protocol modeled by a converter
π as follows.

Definition 24 (Construction). For P-resources R and S with honest parties

set H ⊆ P and H-converter π (the protocol), we write R
π−→ S if and only if there

exists, for H .
= P ∖H, an H-converter sim (the simulator) such that π R sim S.

The advantage of composable security notions, as opposed to simple substitu-
tions from Section 3 capturing conventional game-based security notions, is that
they naturally compose.

Theorem 1 (Composition). For P-resources R, S, and T with honest parties

set H ⊆ P and H-converters π1,π2, if R
π1−−→ S and S

π2−−→ T, then R
π2π1−−−→ T.

Proof. Let sim1, sim2 be H-converters such that π1 R sim1 S and π2 S sim2 T.
Then, with ρ1(X)

.
= π2 X and ρ2(X)

.
= sim1 X, for any P-resource X, by Lemma 11

we have π2π1 R π2sim1 S and sim1π2 S sim1sim2 T. Therefore, by Lemma 12
we obtain π2π1 R sim1sim2 T.

23

4.2 Assumed and Ideal Resources

In this work we only consider P-resources with P = S ∪R∪{M,E}, where S, R,
and {M,E} are pairwise disjoint. Let the honest parties set by H .

= S ∪R∪{M}.
We describe such resources for A,B ⊆ H, and sets X ∈ {PK, C, {⋄} ∪ 2C} and
M defined by a fixed URE scheme ΠURE.

Definition 25 (AUTA→B
X , 1-AUTA→B

X , AUTA↔B
X). For A ∈ A, we define the

resource AUTA→B
X as follows:

– On input (x,B) ∈ X × B at interface A, output (A, x) at interfaces E,B.

For the resource 1-AUTA→B
X , interface A becomes inactive after the first input.

For B ∈ B, for the resource AUTA→B
X we additionally have:

– On input (x,A) ∈ X ×A at interface B, output (B, x) at interfaces E,A.

If A (or B) is singleton set A = {A}, we use A instead of A as superscript.

Definition 26 (ULKS→R
M). For S ∈ S and R ∈ R, we define the resource ULK

as follows: Initially set M ← [], and then:

– On input (m,R) ∈ M×R at interface S, output S at interface E and set

M [R]
∪← {m}.

– On input ⋄ at interface R, output (R, |M [R]|) at interface E.
– On input R at interface E, output M [R] at interface R and set M [R]← ∅.

4.3 First Main Result: Single Honest Mixer

We now show that if a URE scheme satisfies ind-ik-sulk-cpa security, then it also
securely constructs the resource ULKS→R

M , if appropriately used in conjunction
with resources 1-AUTR→S

PK , AUTS→M
C , and AUTM↔R

{⋄}∪2C . For this, we need to first
describe the behavior of the protocol πURE, implicitly parameterized by a generic
URE scheme ΠURE, when attached to such resources composed in parallel.

Definition 27 (πURE). For H .
= S ∪ R ∪ {M}, the H-protocol πURE using a

URE scheme ΠURE
.
= (Gen, Enc, Rnc, Dec) is composed by the local protocols πS,

for any S ∈ S, πR, for any R ∈ R, and πM , which are defined as follows:3

– πS: Upon initialization, for each R ∈ R obtain (R, pkR) from 1-AUTR→S
PK

though interface in, and then on input (m,R) ∈M×R at interface out, get
c← EncpkR(m) and output (c,M) to AUTS→M

C though interface in.
– πM : Upon initialization, set B ← ∅, and then:
• On input (S, c) from AUTS→M

C through interface in:
1. Set B′ ← ∅, and then for each c′ ∈ B get ĉ′ ← Rnc(c′) and set

B′ ∪← {ĉ}. Then set B ← B′.
3 Note that it is straightforward to formally define πS , πM , and πR with pseudocode,
as done in the proof of Theorem 2, but for better readability in the main body, we
decided to describe them informally.

24

2. Get ĉ← Rnc(c) and set B ∪← {ĉ}.
• On input (R, ⋄) from AUTM↔R

{⋄}∪2C through interface in, output (B, R) to

AUTM↔R
{⋄}∪2C through interface in.

• On input (R,OR) from AUTM↔R
{⋄}∪2C through interface in, set B ∖← OR.

– πR: Upon initialization, get (skR, pkR)← Gen, output (pkR, S) to AUTR→S
PK

through interface in for each S ∈ S, and then on input ⋄ at interface out:

1. Output ⋄ to AUTM↔R
{⋄}∪2C through interface in.

2. On input (M,B) from AUTM↔R
{⋄}∪2C through interface in, set OR ← ∅, and

then for each c ∈ B get m← DecskR , and if m ̸= ⊥, set OR
∪← {m}.

3. Output OR to AUTM↔R
{⋄}∪2C through interface in.

We can now define what it means for the protocol πURE, and therefore for
the underlying URE scheme ΠURE, to be composably secure.

Definition 28 (hm-ure).
[
1-AUTR→S

PK ,AUTS→M
C ,AUTM↔R

{⋄}∪2C

]
πURE−−−→ ULKS→R

M .

Finally, our first main result is that the game-based notions imply this new
composable notion.

Theorem 2. cor ∧ rob ∧ ind-cpa ∧ ik-cpa ∧ sulk-cpa =⇒ hm-ure.

Proof. Let n
.
= |R|, assume R = {R1, . . . , Rn}, and let pki

.
= pkRi

, for i ∈ [n].
By combining Lemma 13 and Lemma 22, we can use the substitution n-cor-rob,
and by combining Lemma 15 and Lemma 24, we can use the substitution n-ind-
ik-sulk-cpa. Define sim, ρ1, and ρ2 as in Figure 4, and also define hybrid resources
H0 to H3 as in Figure 5, where changes from the previous hybrid are highlighted
in dark gray. Then, for a fixed R ∈ R:

πURE

[
1-AUTR→S

PK ,AUTS→M
C ,AUTM↔R

{⋄}∪2C

]
≡ H0 (monolithic representation)

≡ ρ1(JLEpk1,...,pkn ,∗,∗M ▷ LR∗,∗M ▷Dsk1,...,skn ,pkpk1,...,pkn
K)

(by inspection)

 ρ1(JIn,pkpk1,...,pkn
K) (R-cor-rob)

≡ H1 (by inspection)

= ρ2(JEpk1,...,pkn ▷ ⟨∗,R⟩,pkpk1,...,pkn
K)

 ρ2(JL∗,∗M1 ▷ ⟨E$
pk1

,E$
pk1
⟩,pkpk1,...,pkn

K) (R-ind-ik-sulk-cpa)
= H2

≡ H3 (by inspection)

≡ simULKS→R. (monolithic representation)

25

ρ1(JS,pkRK)

init:
B,D ← ∅
for R ∈ R do

pkR ← pkR(R)
out(E; (R, pkR))

iface S(m∈M, R∈R):
(B,D)← Rnc(B,D)
c← EncpkR(m)
out(E; (S, c))
ĉ← Rnc(m)

B ∪← {ĉ}
D ∪← {(S,m, 1)}

iface R(⋄):
OE ,OR,D′ ← ∅
out(E;R)
out(E;B)
for (S,m, t) ∈ D do

m← S(S,m,t,R)
if m ̸= ⊥ then

OE
∪← {ĉ}

OR
∪← {m}

D′ ∪← {(S,m,
t, R)}

B ∖← OE

D ∖← D′

out(E;OE)
out(R;OR)

func Rnc(B,D):
B′,D′ ← ∅
for c ∈ B do

ĉ← Rnc(c)

B′ ∪← {ĉ}
for (S,m, t) ∈ D do

D′ ∪←{(S,m,t+1)}
return (B′,D′)

ρ2(JS,pkRK)

init:
B ← ∅,M,C ← []
for R ∈ R do

pkR ← pkR(R)
out(E; (R, pkR))

iface S(m∈M, R∈R):
B ← Rnc(B,M)
(c, ĉ)← S(R,m)
out(E; (S, c))

B ∪← {ĉ}
M [R]

∪← {m}
C[(R,m)]← ĉ

iface R(⋄):
OE ,OR ← ∅
out(E;R)
out(E;B)
for m ∈M [R] do

OE
∪← {ĉ}

OR ←M [R]
M [R]← ∅
B ∖← OE

out(E;OE)
out(R;OR)

func Rnc(B,M):
B′ ← ∅
for R ∈ R do

for m∈M [R] do
c← C[(R,m)]
ĉ← Rnc(c)

B′ ∪← {ĉ}
return B′

sim

init:
B ← ∅
R̃ $←R, m̃ $←M
for R ∈ R do

(skR, pkR)← Gen

out(out; (R, pkR))
iface in(S ∈ S):
B ← Rnc(B)
c← Encpk

R̃
(m̃)

out(out; (S, c))
ĉ← Encpk

R̃
(m̃)

B ∪← {ĉ}
iface in(R ∈ R, ℓ ∈ N):
OE ← ∅
out(out;R)
out(out;B)
OE

$←{A⊆B : |A|=ℓ}
B ∖← OE

out(out;OE)
out(in; ⋄)

func Rnc(B):
B′ ← ∅
for c ∈ B do

ĉ← Rnc(c)

B′ ∪← {ĉ}
return B′

Fig. 4. Reductions and simulator for the proof of Theorem 2, for S ∈ S and R ∈ R.

When Does Unlinkability Imply Anonymity? Note that, as discussed
before, unlikability only implies anonymity under certain circumstances. In fact,
if right after initialization a sender S sends a message m to a receiver R through
ULKS→R

M , and right after that, R fetches its messages, then an eavesdropping
adversary E will learn that indeed the sender was S, the receiver was R, and
will clearly also link the two actions together. In particular, this means that E

26

H0

init:
B ← ∅
for R ∈ R do

(skR, pkR)← Gen

out(E; (R, pkR))
iface S(m∈M, R∈R):
B ← Rnc(B)
c← EncpkR(m)
out(E; (S, c))
ĉ← Rnc(m)

B ∪← {ĉ}
iface R(⋄):
OE ,OR ← ∅
out(E;R)
out(E;B)
for ĉ ∈ B do

m← DecskR(ĉ)
if m ̸= ⊥ then

OE
∪← {ĉ}

OR
∪← {m}

B ∖← OE

out(E;OE)
out(R;OR)

func Rnc(B):
B′ ← ∅
for c ∈ B do

ĉ← Rnc(c)

B′ ∪← {ĉ}
return B′

H1 H2

init:
B ← ∅ ,M,C ← []

R̃ $←R, m̃ $←M
for R ∈ R do

(skR, pkR)← Gen

out(E; (R, pkR))
iface S(m∈M, R∈R):
B ← Rnc(B,M)

c← EncpkR(m)

c← Encpk
R̃
(m̃)

out(E; (S, c))
ĉ← Rnc(m)

ĉ← Encpk
R̃
(m̃)

B ∪← {ĉ}
M [R]

∪← {m}
C[(R,m)]← ĉ

iface R(⋄):
OE ,OR ← ∅
out(E;R)
out(E;B)
for m ∈M [R] do

OE
∪← {ĉ}

OR ←M [R]

M [R]← ∅
B ∖← OE

out(E;OE)
out(R;OR)

func Rnc(B,M):
B′ ← ∅
for R ∈ R do

for m∈M [R] do

c← C[(R,m)]

ĉ← Rnc(c)

B′ ∪← {ĉ}
return B′

H3

init:
B ← ∅,M ← []
R̃ $←R, m̃ $←M
for R ∈ R do

(skR, pkR)← Gen

out(E; (R, pkR))
iface S(m∈M, R∈R):
B ← Rnc(B)
c← Encpk

R̃
(m̃)

out(E; (S, c))
ĉ← Encpk

R̃
(m̃)

B ∪← {ĉ}
M [R]

∪← {m}
iface R(⋄):
OE ,OR ← ∅
out(E;R)
out(E;B)
ℓ← |OR|
OE

$←{A⊆B : |A|=ℓ}
OR ←M [R]
M [R]← ∅
B ∖← OE

out(E;OE)
out(R;OR)

func Rnc(B):
B′ ← ∅
for c ∈ B do

ĉ← Rnc(c)

B′ ∪← {ĉ}
return B′

Fig. 5. Hybrids for the proof of Theorem 2, for S ∈ S and R ∈ R.

can link the sender to a specific ciphertext it saw, and we want to understand
when this becomes impossible to do for E. Therefore, a natural question is, under
what circumstances does ULKS→R

M provide anonymity of the senders? Consider
now the case where, right after initialization, the following sequence of actions
takes place: (1) sender S0 sends message m0 to receiver R0, (2) sender S1 sends

27

message m1 to receiver R1, (3) R0 fetches its messages, and (4) R1 fetches its
messages. Now, the guarantee provided by ULKS→R

M is that E cannot link any of
the two senders to any of the two receivers, that is, E will be unable to distinguish
the case that Si sent to Ri from the case that Si sent to R1−i, for i ∈ {0, 1}.
This implies that now E cannot link any ciphertext it sees to neither S0 nor
S1. Moreover, after those four actions take place, that is, after the set M kept
by ULKS→R

M is empty again, the state of anonymity is equivalent to the one
right after initialization. Therefore, to answer the above question, senders are
guaranteed to be anonymous among the set of senders that sent messages since
the last time that M was not empty.

4.4 Second Main Result: Single Dishonest Mixer

We now consider the case where the mixer is dishonest, that is, H .
= S ∪ R

(and H = {M,E}). This means that we define security of a URE scheme as in
Definition 28, but where no protocol converter is attached to interface M of the
assumed resource. More precisely, we are considering security of an H-protocol
π′
URE which is composed only by the local protocols πS (for S ∈ S) and πR (for

R ∈ R) from Definition 27. In order to meaningfully adapt Definition 28 to
π′
URE, we need to introduce the following resources (for this specific honest and

dishonest parties sets H and H): the insecure and the confidential channels.

Definition 29 (INSS→R
C). For S ∈ S and R ∈ R, we define the resource

INSS→R
C as follows:

– On input (c,R) ∈ C ×R at interface S, output (S, c) at interfaces E,M .
– On input (c,R) ∈ C ×R at interface I∈{E,M}, output (I, c) at interface R.

Definition 30 (CNFS→R
M). For S ∈ S and R ∈ R, we define the resource

CNFS→R
M as follows, where initially i← 0 and T ← []:

– On input (m,R) ∈ M × R at interface S, output (S, |m|, i) at interfaces

E,M , and set T [i]← (S,m,R) and i
+← 1.

– On input (m,R) ∈M×R at interface I ∈ {E,M}, output (I,m) at interface
R.

– On input i ∈ N at interface I ∈ {E,M}, get (S,m,R) ← T [i], and output
(S,m) at interface R.

We can now define the composable security of π′
URE as follows.

Definition 31 (dm-ure).
[
1-AUTR→S

PK ,AUTS→M
C ,AUTM↔R

{⋄}∪2C

]
π′

URE−−−→ CNFS→R
M .

It is easy to see that, since now the mixer is dishonest, the assumed resource
behaves exactly as the insecure channel INSS→R

C , since now the adversary (con-
trolling interfaces E and M) not only will see every ciphertext input by the
honest senders, but it will also be able to inject ciphertexts to the receivers.
Therefore, as it has been shown in [CMT13,BMPR21], it is possible to construct
the confidential channel CNFS→R

M from INSS→R
C , if the scheme is ind-rcca secure.

Theorem 3. cor ∧ rob ∧ ind-rcca =⇒ dm-ure.

28

References

AHM+15. Joël Alwen, Martin Hirt, Ueli Maurer, Arpita Patra, and Pavel Raykov.
Anonymous authentication with shared secrets. In Diego F. Aranha and
Alfred Menezes, editors, LATINCRYPT 2014, volume 8895 of LNCS,
pages 219–236. Springer, Heidelberg, September 2015. doi:10.1007/

978-3-319-16295-9_12.
BBM00. Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption

in a multi-user setting: Security proofs and improvements. In Bart Preneel,
editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 259–274. Springer,
Heidelberg, May 2000. doi:10.1007/3-540-45539-6_18.

BDF+18. Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok,
and Markulf Kohlweiss. State separation for code-based game-playing
proofs. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018,
Part III, volume 11274 of LNCS, pages 222–249. Springer, Heidelberg,
December 2018. doi:10.1007/978-3-030-03332-3_9.

BM20. Fabio Banfi and Ueli Maurer. Anonymous symmetric-key communication.
In Clemente Galdi and Vladimir Kolesnikov, editors, SCN 20, volume
12238 of LNCS, pages 471–491. Springer, Heidelberg, September 2020. doi:
10.1007/978-3-030-57990-6_23.

BM21. Fabio Banfi and Ueli Maurer. Composable notions for anonymous and
authenticated communication. Cryptology ePrint Archive, Report 2021/1581,
2021. https://eprint.iacr.org/2021/1581.

BMPR21. Christian Badertscher, Ueli Maurer, Christopher Portmann, and Guilherme
Rito. Revisiting (R)CCA security and replay protection. In Juan Garay,
editor, PKC 2021, Part II, volume 12711 of LNCS, pages 173–202. Springer,
Heidelberg, May 2021. doi:10.1007/978-3-030-75248-4_7.

CMT13. Sandro Coretti, Ueli Maurer, and Björn Tackmann. Constructing confidential
channels from authenticated channels - public-key encryption revisited.
In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I,
volume 8269 of LNCS, pages 134–153. Springer, Heidelberg, December 2013.
doi:10.1007/978-3-642-42033-7_8.

GJJS04. Philippe Golle, Markus Jakobsson, Ari Juels, and Paul F. Syverson. Universal
re-encryption for mixnets. In Tatsuaki Okamoto, editor, CT-RSA 2004,
volume 2964 of LNCS, pages 163–178. Springer, Heidelberg, February 2004.
doi:10.1007/978-3-540-24660-2_14.

Gro04. Jens Groth. Rerandomizable and replayable adaptive chosen ciphertext
attack secure cryptosystems. In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 152–170. Springer, Heidelberg, February 2004. doi:

10.1007/978-3-540-24638-1_9.
KMO+13. Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tackmann, and

Daniele Venturi. Anonymity-preserving public-key encryption: A construc-
tive approach. In Emiliano De Cristofaro and Matthew K. Wright, editors,
PETS 2013, volume 7981 of LNCS, pages 19–39. Springer, Heidelberg, July
2013. doi:10.1007/978-3-642-39077-7_2.

Mau02. Ueli M. Maurer. Indistinguishability of random systems. In Lars R. Knudsen,
editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 110–132. Springer,
Heidelberg, April / May 2002. doi:10.1007/3-540-46035-7_8.

Mau12. Ueli Maurer. Constructive cryptography – a new paradigm for security
definitions and proofs. In Sebastian Mödersheim and Catuscia Palamidessi,

29

https://doi.org/10.1007/978-3-319-16295-9_12
https://doi.org/10.1007/978-3-319-16295-9_12
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-57990-6_23
https://doi.org/10.1007/978-3-030-57990-6_23
https://eprint.iacr.org/2021/1581
https://doi.org/10.1007/978-3-030-75248-4_7
https://doi.org/10.1007/978-3-642-42033-7_8
https://doi.org/10.1007/978-3-540-24660-2_14
https://doi.org/10.1007/978-3-540-24638-1_9
https://doi.org/10.1007/978-3-540-24638-1_9
https://doi.org/10.1007/978-3-642-39077-7_2
https://doi.org/10.1007/3-540-46035-7_8

editors, Theory of Security and Applications – TOSCA 2011, pages 33–56,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

MPR07. Ueli M. Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability
amplification. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of
LNCS, pages 130–149. Springer, Heidelberg, August 2007. doi:10.1007/

978-3-540-74143-5_8.
MR11. Ueli Maurer and Renato Renner. Abstract cryptography. In Bernard

Chazelle, editor, ICS 2011, pages 1–21. Tsinghua University Press, January
2011.

PR07. Manoj Prabhakaran and Mike Rosulek. Rerandomizable RCCA encryption.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 517–
534. Springer, Heidelberg, August 2007. doi:10.1007/978-3-540-74143-5_
29.

WCY+21. Yi Wang, Rongmao Chen, Guomin Yang, Xinyi Huang, Baosheng Wang, and
Moti Yung. Receiver-anonymity in rerandomizable RCCA-secure cryptosys-
tems resolved. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part IV, volume 12828 of LNCS, pages 270–300, Virtual Event, August 2021.
Springer, Heidelberg. doi:10.1007/978-3-030-84259-8_10.

Wik04. Douglas Wikström. A universally composable mix-net. In Moni Naor, editor,
TCC 2004, volume 2951 of LNCS, pages 317–335. Springer, Heidelberg,
February 2004. doi:10.1007/978-3-540-24638-1_18.

YY18. Adam L. Young and Moti Yung. Semantically secure anonymity: Foundations
of re-encryption. In Dario Catalano and Roberto De Prisco, editors, SCN
18, volume 11035 of LNCS, pages 255–273. Springer, Heidelberg, September
2018. doi:10.1007/978-3-319-98113-0_14.

30

https://doi.org/10.1007/978-3-540-74143-5_8
https://doi.org/10.1007/978-3-540-74143-5_8
https://doi.org/10.1007/978-3-540-74143-5_29
https://doi.org/10.1007/978-3-540-74143-5_29
https://doi.org/10.1007/978-3-030-84259-8_10
https://doi.org/10.1007/978-3-540-24638-1_18
https://doi.org/10.1007/978-3-319-98113-0_14

A Missing Proofs

In this section (and also in Appendix C), some proofs (of both implications and
separations) use the exact same sequence of factorizations as previous proofs
(but on possibly different systems). In such cases, instead of essentially repeating
the exact same argument, we say that the proof is analogous to a previous one.

A.1 Combined Notions

Lemma 13. cor ∧ rob ⇐⇒ cor-rob.

Proof.

=⇒: Let (sk1, pk1)← Gen and (sk2, pk2)← Gen, and consider

• ρ1(JS, xK) .
= J⟨S, LEx,∗M ▷R∗ ▷Dsk2⟩∗,
⟨LEpk2 ,∗M ▷R∗ ▷Dsk1 , LEpk2 ,∗M ▷R∗ ▷Dsk2⟩∗, x, pk2K,

• ρ2(JS, xK) .
= J⟨L∗,∗M1, LEpk1 ,∗M ▷R∗ ▷Dsk2⟩∗,
⟨LEx,∗M ▷R∗ ▷Dsk1 ,S⟩∗, pk1, xK,

• ρ3(JS, x, yK)
.
= J⟨L∗,∗M1,S⟩∗, ⟨LEy,∗M ▷R∗ ▷Dsk1 , L∗,∗M1⟩∗, x, yK, and

• ρ4(JS, x, yK)
.
= J⟨L∗,∗M1, L⊥,∗M1⟩∗, ⟨S, L∗,∗M1⟩∗, y, xK.

Then:

JLEpk1 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , LEpk2 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , pk1, pk2K
≡ J⟨LEpk1 ,∗M ▷R∗ ▷Dsk1 , LEpk1 ,∗M ▷R∗ ▷Dsk2⟩∗,

⟨LEpk2 ,∗M ▷R∗ ▷Dsk1 , LEpk2 ,∗M ▷R∗ ▷Dsk2⟩∗, pk1, pk2K
= ρ1(JLEpk1 ,∗M ▷R∗ ▷Dsk1 , pk1K)
 ρ1(JL∗,∗M1, pk1K) (cor)

= J⟨L∗,∗M1, LEpk1 ,∗M ▷R∗ ▷Dsk2⟩∗,
⟨LEpk2 ,∗M ▷R∗ ▷Dsk1 , LEpk2 ,∗M ▷R∗ ▷Dsk2⟩∗, pk1, pk2K

= ρ2(JLEpk2 ,∗M ▷R∗ ▷Dsk2 , pk2K)
 ρ2(JL∗,∗M1, pk2K) (cor)

= J⟨L∗,∗M1, LEpk1 ,∗M ▷R∗ ▷Dsk2⟩∗,
⟨LEpk2 ,∗M ▷R∗ ▷Dsk1 , L∗,∗M1⟩∗, pk1, pk2K

= ρ3(JLEpk1 ,∗M ▷R∗ ▷Dsk2 , pk1, pk2K)
 ρ3(JL⊥,∗M1, pk1, pk2K) (rob)

= J⟨L∗,∗M1, L⊥,∗M1⟩∗, ⟨Epk2 ▷R
∗ ▷Dsk1 , L∗,∗M1⟩∗, pk1, pk2K

= ρ4(JLEpk2 ,∗M ▷R∗ ▷Dsk1 , pk2, pk1K)
 ρ4(JL⊥,∗M1, pk2, pk1K) (rob)

= J⟨L∗,∗M1, L⊥,∗M1⟩∗, ⟨L⊥,∗M1, L∗,∗M1⟩∗, pk1, pk2K
≡ JL∗,⊥,∗M ▷ ⟨∗,∗⟩∗, L∗,⊥,∗M2,1,3 ▷ ⟨∗,∗⟩∗, pk1, pk2K.

31

⇐=: Let (sk1, pk1)← Gen and (sk2, pk2)← Gen, and consider ρi(JS,T, x, yK) .
=

JL∗, ⟨∗, i⟩M ▷ S, xK, for i ∈ {1, 2}. Then:

JLEpk1 ,∗M ▷R∗ ▷Dsk1 , pk1K
≡ JL∗, ⟨∗, 1⟩M ▷ LEpk1 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , pk K
= ρ1(JLEpk1 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 ,

LEpk2 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , pk1, pk2K)
 ρ1(JL∗,⊥,∗M ▷ ⟨∗,∗⟩∗,

L∗,⊥,∗M2,1,3 ▷ ⟨∗,∗⟩∗, pk1, pk2K) (cor-rob)

= JL∗, ⟨∗, 1⟩M ▷ L∗,⊥,∗M ▷ ⟨∗,∗⟩∗, pk1K
≡ JL∗,∗M1, pk1K,

and

JLEpk1 ,∗M ▷R∗ ▷Dsk2 , pk1, pk2K
≡ JL∗, ⟨∗, 2⟩M ▷ LEpk1 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , pk1, pk2K
= ρ2(JLEpk1 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 ,

LEpk2 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , pk1, pk2K)
 ρ2(JL∗,⊥,∗M ▷ ⟨∗,∗⟩∗,

L∗,⊥,∗M2,1,3 ▷ ⟨∗,∗⟩∗, pk1, pk2K) (cor-rob)

= JL∗, ⟨∗, 2⟩M ▷ L∗,⊥,∗M ▷ ⟨∗,∗⟩∗, pk1, pk2K
≡ J⊥, pk1, pk2K.

Lemma 14. ind-cpa ∧ ik-cpa ∧ ulk-cpa =⇒ ind-ik-ulk-cpa.

Proof. Let (sk1, pk1)← Gen and (sk2, pk2)← Gen, and consider

– ρ1(JS,T, x, yK) .
= JS ▷ ⟨∗,R⟩,T ▷ ⟨∗,R⟩, x, yK,

– ρ2(JS, xK) .
= JS,S, x, pk2K, and

– ρ3(JS, xK) .
= J⟨S,S ▷R⟩, ⟨S,S ▷R⟩, x, pk2K.

Then:

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
= ρ1(JEpk1 ,Epk2 , pk1, pk2K)
 ρ1(JEpk1 ,Epk1 , pk1, pk2K) (ik-cpa)

= JEpk1 ▷ ⟨∗,R⟩,Epk1 ▷ ⟨∗,R⟩, pk1, pk2K
= ρ2(JEpk1 ▷ ⟨∗,R⟩, pk1K)
 ρ2(J⟨Epk1 ,Epk1 ▷R⟩, pk1K) (ulk-cpa)

= J⟨Epk1 ,Epk1 ▷R⟩, ⟨Epk1 ,Epk1 ▷R⟩, pk1, pk2K
= ρ3(JEpk1 , pk1K)

 ρ3(JE$
pk1

, pk1K) (ind-cpa)

= J⟨E$
pk1

,E$
pk1

▷R⟩, ⟨E$
pk1

,E$
pk1

▷R⟩, pk1, pk2K.

32

Lemma 15. ind-cpa ∧ ik-cpa ∧ sulk-cpa =⇒ ind-ik-sulk-cpa.

Proof. As for Lemma 14, but with ρ3(JS, xK) .
= J⟨S,S⟩, ⟨S,S⟩, x, pk2K.

Lemma 16. ind-ik-ulk-cpa =⇒ ind-cpa.

Proof. Let (sk, pk)← Gen and consider ρ(JS,T, x, yK) .
= J(S)1, xK. Then:

JEpk, pk K ≡ J(Epk ▷ ⟨∗,R⟩)1, pk K
= ρ(JEpk ▷ ⟨∗,R⟩,Epk′ ▷ ⟨∗,R⟩, pk, pk′K)
 ρ(J⟨E$

pk,E
$
pk ▷R⟩, ⟨E

$
pk,E

$
pk ▷R⟩, pk, pk

′K) (ind-ik-ulk-cpa)

= J⟨E$
pk,E

$
pk ▷R⟩1, pk K

≡ JE$
pk, pk K.

Lemma 17. ind-ik-ulk-cpa =⇒ ik-cpa.

Proof. Let (sk1, pk1)← Gen and (sk2, pk2)← Gen, and consider

– ρ1(JS,T, x, yK) .
= J(S)1, (T)1, x, yK and

– ρ2(JS,T, x, yK) .
= J(S)1, (S)1, x, yK.

Then:

JEpk1 ,Epk2 , pk1, pk2K
≡ J(Epk1 ▷ ⟨∗,R⟩)1, (Epk2 ▷ ⟨∗,R⟩)1, pk1, pk2K
= ρ1(JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K)
 ρ1(J⟨E$

pk1
,E$

pk1
▷R⟩, ⟨E$

pk1
,E$

pk1
▷R⟩, pk1, pk2K) (ind-ik-ulk-cpa)

= J⟨E$
pk1

,E$
pk1

▷R⟩1, ⟨E$
pk1

,E$
pk1

▷R⟩1, pk1, pk2K

= ρ2(J⟨E$
pk1

,E$
pk1

▷R⟩, ⟨E$
pk1

,E$
pk1

▷R⟩, pk1, pk2K)
 ρ2(JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K) (ind-ik-ulk-cpa)

= J(Epk1 ▷ ⟨∗,R⟩)1, (Epk1 ▷ ⟨∗,R⟩)1, pk1, pk2K
≡ JEpk1 ,Epk1 , pk1, pk2K.

Lemma 18. ind-ik-ulk-cpa =⇒ ulk-cpa.

Proof. Let (sk, pk)← Gen and (sk′, pk′)← Gen, and consider

– ρ1(JS,T, x, yK) .
= JS, xK and

– ρ2(JS,T, x, yK) .
= J⟨(S)1, (S)1 ▷R⟩, xK.

33

Then:

JEpk ▷ ⟨∗,R⟩, pk K
= ρ1(JEpk ▷ ⟨∗,R⟩,Epk′ ▷ ⟨∗,R⟩, pk, pk′K)
 ρ1(J⟨E$

pk,E
$
pk ▷R⟩, ⟨E

$
pk,E

$
pk ▷R⟩, pk, pk

′K) (ind-ik-ulk-cpa)

= J⟨E$
pk,E

$
pk ▷R⟩, pk K

≡ J⟨⟨E$
pk,E

$
pk ▷R⟩1, ⟨E

$
pk,E

$
pk ▷R⟩1 ▷R⟩, pk K

= ρ2(J⟨E$
pk,E

$
pk ▷R⟩, ⟨E

$
pk,E

$
pk ▷R⟩, pk, pk

′K)

 ρ2(JEpk ▷ ⟨∗,R⟩,Epk′ ▷ ⟨∗,R⟩, pk, pk′K) (ind-ik-ulk-cpa)

= J⟨(Epk ▷ ⟨∗,R⟩)1, (Epk ▷ ⟨∗,R⟩)1 ▷R⟩, pk K
≡ J⟨Epk,Epk ▷R⟩, pk K.

Lemma 19. ind-ik-sulk-cpa =⇒ ind-cpa.

Proof. Analogous to the proof of Lemma 16.

Lemma 20. ind-ik-sulk-cpa =⇒ ik-cpa.

Proof. Analogous to the proof of Lemma 17.

Lemma 21. ind-ik-sulk-cpa =⇒ sulk-cpa.

Proof. As for Lemma 18, but with ρ2(JS,T, x, yK) .
= J⟨(S)1, (S)1⟩, xK.

A.2 Generalizing the Notions: From 2 to n Receivers

Lemma 22. cor-rob =⇒ n-cor-rob.

Proof. Let ρ(JS1, . . . ,Sn, x1, . . . , xnK) .
= JS′,pkx1,...,xn

K, where for i, j ∈ [n], m ∈
M, and t ∈ N, S′(i,m, t, j)

.
= Si(m, t, j). Let (sk1, pk1)← Gen, . . . , (skn, pkn)←

Gen. Then:

– JLEpk1,...,pkn ,∗,∗M ▷ LR∗,∗M ▷Dsk1,...,skn ,pkpk1,...,pkn
K

≡ ρ(JLEpk1 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,...,skn , . . . ,
LEpkn ,∗,∗M ▷ LR∗,∗M ▷Dsk1,...,skn , pk1, . . . , pknK).

– JIn,pkpk1,...,pkn
K ≡ ρ(J⟨L∗,∗M1, L⊥,∗M1, . . . , L⊥,∗M1︸ ︷︷ ︸

n−1 times

⟩∗,

⟨L⊥,∗M1, L∗,∗M1, L⊥,∗M1, . . . , L⊥,∗M1︸ ︷︷ ︸
n−2 times

⟩∗, . . . ,

⟨L⊥,∗M1, . . . , L⊥,∗M1︸ ︷︷ ︸
n−1 times

, L∗,∗M1⟩∗, pk1, . . . , pknK).

For i ∈ [n] and j ∈ {i+ 1, . . . , n}, also let

ρi,j(JS,T, x, yK) .
= JH1, . . . ,Hi−1,S,Hi+1, . . . ,Hj−1,T,Hj+1, . . . ,Hn,

pk1, . . . , pki−1, x, pki+1, . . . , pkj−1, y, pkj+1, . . . , pknK,

where Hi,j
ℓ is the hybrid system that on input (i′,m, t, j′) ∈ [n]×M× N× [n]:

34

– If (i′, j′) ≤lex (i, j): If i′ = j′, output m, otherwise output ⊥.
– Otherwise: Output Decskj′ (Rnc

t(Encpki′ (m))).

(≤lex is the lexicographic order on [n]2.) Clearly,

– ρ ◦ ρ1,1(JLEpk,∗,∗M ▷ LR∗,∗M ▷Dsk,sk′ , LEpk′ ,∗,∗M ▷ LR∗,∗M ▷Dsk,sk′ , pk, pk
′K)

≡ JLEpk1,...,pkn ,∗,∗M ▷ LR∗,∗M ▷Dsk1,...,skn ,pkpk1,...,pkn
K,

– ρ ◦ ρn,n(J⟨L∗,∗M1, L⊥,∗M1⟩∗, ⟨L⊥,∗M1, L∗,∗M1⟩∗, pk, pk′K) ≡ JIn,pkpk1,...,pkn
K,

– ρk,ℓ+1(JLEpk,∗,∗M ▷ LR∗,∗M ▷Dsk,sk′ , LEpk′ ,∗,∗M ▷ LR∗,∗M ▷Dsk,sk′ , pk, pk
′K)

≡ ρk,ℓ(J⟨L∗,∗M1, L⊥,∗M1⟩∗, ⟨L⊥,∗M1, L∗,∗M1⟩∗, pk, pk′K),
for all k ∈ [n− 1], ℓ ∈ {k, . . . , n− 1}, and

– ρk,n(JLEpk,∗,∗M ▷ LR∗,∗M ▷Dsk,sk′ , LEpk′ ,∗,∗M ▷ LR∗,∗M ▷Dsk,sk′ , pk, pk
′K)

≡ ρk+1,k+2(J⟨L∗,∗M1, L⊥,∗M1⟩∗, ⟨L⊥,∗M1, L∗,∗M1⟩∗, pk, pk′K),
for all k ∈ [n− 2].

Therefore, by the discussion in Section 3.4, this implies

JLEpk1,...,pkn ,∗,∗M ▷ LR∗,∗M ▷Dsk1,...,skn ,pkpk1,...,pkn
K JIn,pkpk1,...,pkn

K.

Lemma 23. ind-ik-ulk-cpa =⇒ R-ind-ik-ulk-cpa.

Proof. Let ρ(JS1, . . . ,Sn, x1, . . . , xnK) .
= JS′,pkx1,...,xn

K, where for i ∈ [n],
S′(m, i)

.
= Si(m). Let (sk1, pk1)← Gen, . . . , (skn, pkn)← Gen. Then:

– JEpk1,...,pkn ▷ ⟨∗,R⟩,pkpk1,...,pkn
K

≡ ρ(JEpk1 ▷ ⟨∗,R⟩, . . . ,Epkn ▷ ⟨∗,R⟩, pk1, . . . , pknK).
– JL∗,∗M1 ▷ ⟨E$

pk1
,E$

pk1
▷R⟩,pkpk1,...,pkn

K
≡ ρ(J⟨E$

pk1
,E$

pk1
▷R⟩, . . . , ⟨E$

pk1
,E$

pk1
▷R⟩, pk1, . . . , pknK).

For i ∈ [n], also let

ρi(JS, xK) .
= J⟨E$

pk1
,E$

pk1
▷R⟩, . . . , ⟨E$

pk1
,E$

pk1
▷R⟩︸ ︷︷ ︸

i−1 times

,S,

Epki+1
▷ ⟨∗,R⟩, . . . ,Epkn ▷ ⟨∗,R⟩,

pk1, . . . , pki−1, x, pki+1, . . . , pknK.

Clearly,

– ρ ◦ ρ1(JEpk1 ▷ ⟨∗,R⟩, pk1K) ≡ JEpk1,...,pkn ▷ ⟨∗,R⟩,pkpk1,...,pkn
K,

– ρ ◦ ρn(J⟨E$
pk1

,E$
pk1

▷R⟩, pk1K) ≡ JL∗,∗M1 ▷ ⟨E$
pk1

,E$
pk1

▷R⟩,pkpk1,...,pkn
K, and

– ρj(J⟨E$
pk1

,E$
pk1

▷R⟩, pk K) ≡ ρj+1(JEpkj+1
▷ ⟨∗,R⟩, pkj+1K), for all j ∈ [n− 1].

Therefore, by the discussion in Section 3.4, this implies

JEpk1,...,pkn ▷ ⟨∗,R⟩,pkpk1,...,pkn
K JL∗,∗M1 ▷ ⟨E$

pk1
,E$

pk1
▷R⟩,pkpk1,...,pkn

K.

35

Lemma 24. ind-ik-sulk-cpa =⇒ R-ind-ik-sulk-cpa.

Proof. As for Lemma 23, but with

ρi(JS, xK) .
= J⟨E$

pk1
,E$

pk1
⟩, . . . , ⟨E$

pk1
,E$

pk1
⟩︸ ︷︷ ︸

i−1 times

,S,

Epki+1
▷ ⟨∗,R⟩, . . . ,Epkn ▷ ⟨∗,R⟩,

pk1, . . . , pki−1, x, pki+1, . . . , pknK.

B Relations to Young and Yung’s Notions

In this section we bridge the gap between our security notions ind-cpa, ik-cpa,
ind-r-cpa, and ik-r-cpa, and the corresponding notions introduced by Young and
Yung [YY18]. They phrase their four notions as single-challenge, left-or-right, bit-
guessing problems. On the other hand, out notions are phrased as multi-challenge,
real-or-random, distinction problems (abstracted as substitutions). It is trivial
to transform a (uniform) bit-guessing problem into a distinction one, as well
as relating a single-challenge to a multi-challenge one. Here we show that the
equivalent multi-challenge distinction-based left-or-right notions of Young and
Yung are equivalent to our real-or-random ones.

Another gap between our notions and Young and Yung’s, which is unbridge-
able, is that in their model the adversary can choose the randomness given to the
encryption oracles. This could easily integrated in our setting, but we decided
not to in order to keep the treatment self-contained.

B.1 Young and Yung’s Notions

Definition 32 (lor-ind-cpa).

JL∗,∗M1 ▷Epk, pk K JL∗,∗M2 ▷Epk, pk K,

for (sk, pk)← Gen.

Definition 33 (lor-ik-cpa).

JEpk1 , pk1, pk2K JEpk2 , pk1, pk2K,

for independent (sk1, pk1)← Gen and (sk2, pk2)← Gen.

Definition 34 (lor-ind-r-cpa).

JLEpk ▷ ⟨∗,R⟩,EpkM, pk K JLEpk,Epk ▷ ⟨R,∗⟩M, pk K,

for (sk, pk)← Gen.

Definition 35 (lor-ik-r-cpa).

J⟨Epk1 ▷ ⟨∗,R⟩,Epk2⟩, pk1, pk2K J⟨Epk1 ,Epk2 ▷ ⟨R,∗⟩⟩, pk1, pk2K,

for independent (sk1, pk1)← Gen and (sk2, pk2)← Gen.

36

B.2 Equivalence of the Notions

Lemma 25. lor-ind-cpa ⇐⇒ ind-cpa.

Proof.

=⇒: Let (sk, pk)← Gen and consider ρ(JS, xK) .
= J⟨∗,$⟩ ▷ S, xK. Then:

JEpk, pk K ≡ J⟨∗,$⟩ ▷ L∗,∗M1 ▷Epk, pk K
= ρ(JL∗,∗M1 ▷Epk, pk K)
 ρ(JL∗,∗M2 ▷Epk, pk K) (lor-ind-cpa)

= J⟨∗,$⟩ ▷ L∗,∗M2 ▷Epk, pk K

≡ JE$
pk, pk K.

⇐=: Let (sk, pk)← Gen and consider ρi(JS, xK) .
= JL∗,∗Mi ▷ S, xK, for i ∈ {1, 2}.

Then:

JL∗,∗M1 ▷Epk, pk K = ρ1(JEpk, pk K)

 ρ1(JE$
pk, pk K) (ind-cpa)

= JL∗,∗M1 ▷E$
pk, pk K

≡ JL∗,∗M2 ▷E$
pk, pk K

= ρ2(JE$
pk, pk K)

 ρ2(JEpk, pk K) (ind-cpa)

≡ JL∗,∗M2 ▷Epk, pk K.

Lemma 26. lor-ik-cpa ⇐⇒ ik-cpa.

Proof.

=⇒: Let (sk1, pk1) ← Gen and (sk2, pk2) ← Gen, and consider ρ(JS, x, yK) .
=

JEx,S, x, yK. Then:

JEpk1 ,Epk2 , pk1, pk2K = ρ(JEpk2 , pk1, pk2K)
 ρ(JEpk1 , pk1, pk2K) (lor-ik-cpa)

= JEpk1 ,Epk1 , pk1, pk2K.

⇐=: Let (sk1, pk1) ← Gen and (sk2, pk2) ← Gen, and consider ρ(JS,T, x, yK) .
=

JT, x, yK. Then:

JEpk1 , pk1, pk2K = ρ(JEpk1 ,Epk1 , pk1, pk2 M)
 ρ(JEpk1 ,Epk2 , pk1, pk2 M) (ik-cpa)

= JEpk2 , pk1, pk2K.

Lemma 27. lor-ind-r-cpa ⇐⇒ ind-r-cpa.

37

Proof.

=⇒: Let (sk, pk)← Gen and consider ρ(JS, xK) .
= J⟨∗,$⟩ ▷ (S)1,2, xK. Then:

JEpk ▷ ⟨∗,R⟩, pk K ≡ J⟨∗,$⟩ ▷ LEpk ▷ ⟨∗,R⟩,EpkM1,2, pk K
= ρ(JLEpk ▷ ⟨∗,R⟩,EpkM, pk K)
 ρ(JLEpk,Epk ▷ ⟨R,∗⟩M, pk K) (lor-ind-r-cpa)

= J⟨∗,$⟩ ▷ LEpk,Epk ▷ ⟨R,∗⟩M1,2, pk K

≡ J⟨Epk,E
$
pk ▷R⟩, pk K.

⇐=: Let (sk, pk)← Gen and consider ρ1(JS, xK) .
= JLS,ExM, xK and ρ2(JS, xK) .

=
JLEx, (S)2,1M, xK. Then:

JLEpk ▷ ⟨∗,R⟩,EpkM, pk K = ρ1(JEpk ▷ ⟨∗,R⟩, pk K)

 ρ1(J⟨Epk,E
$
pk ▷R⟩, pk K) (ind-r-cpa)

= JL⟨Epk,E
$
pk ▷R⟩,EpkM, pk K

= JLEpk, ⟨E$
pk ▷R,Epk⟩M, pk K

≡ JLEpk, ⟨Epk,E
$
pk ▷R⟩2,1M, pk K

= ρ2(J⟨Epk,E
$
pk ▷R⟩, pk K)

 ρ2(JEpk ▷ ⟨∗,R⟩, pk K) (ind-r-cpa)

= JLEpk, (Epk ▷ ⟨∗,R⟩)2,1M, pk K
≡ JLEpk,Epk ▷ ⟨R,∗⟩M, pk K.

Lemma 28. lor-ik-r-cpa ⇐⇒ ik-r-cpa.

Proof.

=⇒: Let (sk1, pk1) ← Gen and (sk2, pk2) ← Gen, and consider ρ(JS, x, yK) .
=

JEx ▷ ⟨∗,R⟩, (S)3,2, x, yK. Then:

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
≡ JEpk1 ▷ ⟨∗,R⟩, ⟨Epk1 ,Epk2 ▷ ⟨R,∗⟩⟩3,2, pk1, pk2K
= ρ(J⟨Epk1 ,Epk2 ▷ ⟨R,∗⟩⟩, pk1, pk2K)
 ρ(J⟨Epk1 ▷ ⟨∗,R⟩,Epk2⟩, pk1, pk2K) (lor-ik-r-cpa)

= JEpk1 ▷ ⟨∗,R⟩, ⟨Epk1 ▷ ⟨∗,R⟩,Epk2⟩3,2, pk1, pk2K
≡ JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K.

⇐=: Note that, by Lemma 7, ik-r-cpa =⇒ ulk-cpa. Therefore, we can use

J⟨Epk2 ,Epk2 ▷R⟩, pk2K JEpk2 ▷ ⟨∗,R⟩, pk2K.

Let (sk1, pk1)← Gen and (sk2, pk2)← Gen, and consider
• ρ1(JS,T, x, yK) .

= J⟨T,Ex⟩, y, xK and

38

• ρ2(JS, xK) .
= J⟨Epk1 , (S)2,1⟩, pk1, x⟩K.

Then:

J⟨Epk1 ▷ ⟨∗,R⟩,Epk2⟩, pk1, pk2K
= ρ1(JEpk2 ▷ ⟨∗,R⟩,Epk1 ▷ ⟨∗,R⟩, pk2, pk1K)
 ρ1(JEpk2 ▷ ⟨∗,R⟩, ⟨Epk1 ,Epk2 ▷R⟩, pk2, pk1K) (ik-r-cpa)

= J⟨⟨Epk1 ,Epk2 ▷R⟩,Epk2⟩, pk1, pk2K
≡ J⟨Epk1 , ⟨Epk2 ▷R,Epk2⟩⟩, pk1, pk2K
≡ J⟨Epk1 , ⟨Epk2 ,Epk2 ▷R⟩2,1⟩, pk1, pk2K
= ρ2(J⟨Epk2 ,Epk2 ▷R⟩, pk2K)
 ρ2(JEpk2 ▷ ⟨∗,R⟩, pk2K) (ulk-cpa)

= J⟨Epk1 , (Epk2 ▷ ⟨∗,R⟩)2,1⟩, pk1, pk2K
= J⟨Epk1 ,Epk2 ▷ ⟨R,∗⟩⟩, pk1, pk2K.

C Variant of All-in-One Notions

In this section we introduce a different combined notion, ind-ik-r-cpa, that would
result by naturally combining Young and Yung’s ind-r-cpa and ik-r-cpa notions.
We show that together, those two notions imply ind-ik-r-cpa, and also that ind-
ik-r-cpa is implied by the combined notion for confidentiality and anonymity,
ind-ik-cpa, taken together with unlinkability. All shown relations are summarized
in Figure 6. Nevertheless, ind-ik-r-cpa is less directly relatable to our composable
notions than ind-ik-ulk-cpa.

Definition 36 (ind-ik-cpa).

JEpk1 ,Epk2 , pk1, pk2K JE$
pk1

,E$
pk1

, pk1, pk2K,

for independent (sk1, pk1)← Gen and (sk2, pk2)← Gen.

Definition 37 (ind-ik-r-cpa).

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K

J⟨Epk1 ,E
$
pk1

▷R⟩, ⟨Epk2 ,E
$
pk1

▷R⟩, pk1, pk2K,

for independent (sk1, pk1)← Gen and (sk2, pk2)← Gen.

Lemma 29. ind-cpa ∧ ik-cpa ⇐⇒ ind-ik-cpa.

Proof.

39

ind-cpa ind-r-cpa

∧ ind-ik-cpa ∧ ind-ik-r-cpa ∧

ik-cpa ulk-cpa ik-r-cpa

- --

- - -

Fig. 6. Relations among ciphertext-indistinguishability, key-indistinguishability, and
unlinkability.

=⇒: Let (sk1, pk1) ← Gen and (sk2, pk2) ← Gen, and consider ρ(JS, xK) .
=

JS,S, x, pk2K. Then:

JEpk1 ,Epk2 , pk1, pk2K JEpk1 ,Epk1 , pk1, pk2K (ik-cpa)

= ρ(JEpk1 , pk1K)

 ρ(JE$
pk1

, pk1K) (ind-cpa)

= JE$
pk1

,E$
pk1

, pk1, pk2K.

⇐=: Let (sk, pk) ← Gen and (sk′, pk′) ← Gen, and consider ρ(JS,T, x, yK) .
=

JS, xK. Then:

JEpk, pk K = ρ(JEpk,Epk′ , pk, pk
′K)

 ρ(JE$
pk,E

$
pk, pk, pk

′K) (ind-ik-cpa)

= JE$
pk, pk K.

Let (sk1, pk1)← Gen and (sk2, pk2)← Gen, and consider ρi(JS1,S2, x, yK)
.
=

JEx,S1−i, x, yK, for i ∈ {1, 2}. Then:

JEpk1 ,Epk2 , pk1, pk2K = ρ1(JEpk1 ,Epk2 , pk1, pk2K)

 ρ1(JE$
pk1

,E$
pk1

, pk1, pk2K) (ind-ik-cpa)

= JEpk1 ,E
$
pk1

, pk1, pk2K

= ρ2(JE$
pk1

,E$
pk1

, pk1, pk2K)

 ρ2(JEpk1 ,Epk2 , pk1, pk2K) (ind-ik-cpa)

= JEpk1 ,Epk1 , pk1, pk2K.

Lemma 30. ind-cpa ≠⇒ ind-ik-cpa.

Proof. Let Π
.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈ supp Gen, define Π′ .

=
(Gen′, Enc′, Rnc′, Dec′) as:

– Gen′
.
= Gen;

– Enc′pk(m)
.
= (Encpk(m), pk), for any m ∈M;

40

– Rnc′((c, pk′))
.
= (Rnc(c), pk′), for any (c, pk′) ∈ C × PK;

– Dec′sk((c, pk
′))

.
= Decsk(c), for any (c, pk′) ∈ C × PK.

Let (sk, pk)← Gen. If Π is correct, then Π′ is clearly also correct, and if

JEpk, pk K JE$
pk, pk K,

then with ρ(JS, xK) .
= JS ▷ ⟨∗, x⟩, xK,

JE′
pk, pk K ≡ JEpk ▷ ⟨∗, pk⟩, pk K

= ρ(JEpk, pk K)

 ρ(JE$
pk, pk K)

= JE$
pk ▷ ⟨∗, pk⟩, pk K

≡ JE′$
pk, pk K.

But clearly, for (sk1, pk1)← Gen and (sk2, pk2)← Gen,

JE′
pk1

,E′
pk2

, pk1, pk2K ≡ JEpk1 ▷ ⟨∗, pk1⟩,Epk2 ▷ ⟨∗, pk2⟩, pk1, pk2K

̸ JE$
pk1

▷ ⟨∗, pk1⟩,E$
pk1

▷ ⟨∗, pk1⟩, pk1, pk2K

≡ JE′$
pk1

,E′$
pk1

, pk1, pk2K.

Lemma 31. ik-cpa ≠⇒ ind-ik-cpa.

Proof. Let Π
.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈ supp Gen, define Π′ .

=
(Gen′, Enc′, Rnc′, Dec′) as:

– Gen′
.
= Gen;

– Enc′pk(m)
.
= (Encpk(m),m), for any m ∈M;

– Rnc′((c,m))
.
= (Rnc(c),m), for any (c,m) ∈ C ×M;

– Dec′sk((c,m))
.
= Decsk(c), for any (c,m) ∈ C ×M.

If Π is correct, then Π′ is clearly also correct, and if

JEpk1 ,Epk2 , pk1, pk2K JEpk1 ,Epk1 , pk1, pk2K,

then with ρ(JS, xK) .
= J⟨S,∗⟩, xK,

JE′
pk, pk K ≡ J⟨Epk,∗⟩, pk K

= ρ(JEpk, pk K)

 ρ(JE$
pk, pk K)

= J⟨E$
pk,∗⟩, pk K

≡ JE′$
pk, pk K.

But clearly, for (sk1, pk1)← Gen and (sk2, pk2)← Gen,

JE′
pk1

,E′
pk2

, pk1, pk2K ≡ J⟨Epk1 ,∗⟩, ⟨Epk2 ,∗⟩, pk1, pk2K
̸ J$ ▷ ⟨Epk1 ,∗⟩,$ ▷ ⟨Epk1 ,∗⟩, pk1, pk2K
≡ JE′$

pk1
,E′$

pk1
, pk1, pk2K.

41

Lemma 32. ind-r-cpa ∧ ik-r-cpa ⇐⇒ ind-ik-r-cpa.

Proof.

=⇒: Let (sk1, pk1) ← Gen and (sk2, pk2) ← Gen, and consider ρ(JS, xK) .
=

JS, ⟨Epk2 , (S)2⟩, x, pk2K. Then:

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
 JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K (ik-r-cpa)

≡ JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 , (Epk1 ▷ ⟨∗,R⟩)2⟩, pk1, pk2K
= ρ(JEpk1 ▷ ⟨∗,R⟩, pk1K)
 ρ(J⟨Epk1 ,E

$
pk1

▷R⟩, pk1K) (ind-r-cpa)

= J⟨Epk1 ,E
$
pk1

▷R⟩, ⟨Epk2 , ⟨Epk1 ,E
$
pk1

▷R⟩2⟩, pk1, pk2K

≡ J⟨Epk1 ,E
$
pk1

▷R⟩, ⟨Epk2 ,E
$
pk1

▷R⟩, pk1, pk2K.

⇐=: Let (sk, pk) ← Gen and (sk′, pk′) ← Gen, and consider ρ(JS,T, x, yK) .
=

JS, xK. Then:

JEpk ▷ ⟨∗,R⟩, pk K = ρ(JEpk ▷ ⟨∗,R⟩,Epk′ ▷ ⟨∗,R⟩, pk, pk′K)
 ρ(J⟨Epk,E

$
pk ▷R⟩, ⟨Epk′ ,E

$
pk ▷R⟩, pk, pk

′K) (ind-ik-r-cpa)

= J⟨Epk,E
$
pk ▷R⟩, pk K.

Let (sk1, pk1)← Gen and (sk2, pk2)← Gen, and consider
• ρ1(JS,T, x, yK) .

= JEx ▷ ⟨∗,R⟩,T, x, yK and
• ρ2(JS,T, x, yK) .

= JEx ▷ ⟨∗,R⟩, ⟨Ey, (S)2⟩, x, yK.
Then:

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
= ρ1(JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K)
 ρ1(J⟨Epk1 ,E

$
pk1

▷R⟩, ⟨Epk2 ,E
$
pk1

▷R⟩, pk1, pk2K) (ind-ik-r-cpa)

= JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,E
$
pk1

▷R⟩, pk1, pk2K

≡ JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 , ⟨Epk1 ,E
$
pk1

▷R⟩2⟩, pk1, pk2K

= ρ2(J⟨Epk1 ,E
$
pk1

▷R⟩, ⟨Epk2 ,E
$
pk1

▷R⟩, pk1, pk2K)
 ρ2(JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K) (ind-ik-r-cpa)

≡ JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 , (Epk1 ▷ ⟨∗,R⟩)2⟩, pk1, pk2K
= JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K.

Lemma 33. ind-r-cpa ≠⇒ ind-ik-r-cpa.

Proof. Analogous to the proof of Lemma 30.

Lemma 34. ik-r-cpa ≠⇒ ind-ik-r-cpa.

42

Proof. Analogous to the proof of Lemma 31.

Lemma 35. ind-ik-cpa ∧ ulk-cpa =⇒ ind-ik-r-cpa.

Proof. Analogous to the proof of Lemma 5.

Lemma 36. ind-ik-cpa ⇍⇒ ind-ik-r-cpa.

Proof. Analogous to the proofs of both Lemma 2 and Lemma 6.

Lemma 37. ind-ik-r-cpa =⇒ ulk-cpa.

Proof. Implied by both Lemma 32 + Lemma 3 and Lemma 32 + Lemma 7.

Lemma 38. ulk-cpa ≠⇒ ind-ik-r-cpa.

Proof. By Lemma 32, ind-ik-r-cpa =⇒ ik-r-cpa, but by Lemma 8, ulk-cpa ≠⇒
ik-r-cpa, hence ulk-cpa =⇒ ind-ik-cpa would lead to a contradiction.

D ElGamal-Based Universal Re-Encryption

In this section we fix a cyclic group G = ⟨g⟩ of order q
.
= |G| with generator

g ∈ G.

D.1 Decisional Diffie-Hellman Assumption

We can base all results of this paper on a single assumption, that we also define
as a substitution. The decisional Diffie-Hellman (DDH) problem for G states that
it is hard to distinguish triplets of the form (gα, gβ , gαβ) ∈ G3, for α, β $← Zq,
from triplets of the form (gα, gβ , gγ) ∈ G3, for α, β, γ $← Zq. To formalize this
assumption as a substitution, we define the following systems.

Definition 38 (DDH Systems).

– Sddh
0 : on input ⋄, output (gα, gβ , gαβ) ∈ G3, for α, β $← Zq (only once).

– Sddh
1 : on input ⋄, output (gα, gβ , gγ) ∈ G3, for α, β, γ $← Zq (only once).

We can now capture such assumption as a substitution, and consequently
treat it as a notion which we can relate to other security notions, for a specific
scheme based on DDH.

Definition 39 (ddh). Sddh
0 Sddh

1 .

43

D.2 Security of ElGamal-Based URE Scheme

We now define the concrete ElGamal-based URE scheme introduced by Golle
et al [GJJS04] (that is, we specify a concrete instantiation of Definition 5), and
then prove that it satisfies all our notions. In our proofs we will use common
re-randomization techniques, as introduced for example in [BBM00], in order to
be able to use a single DDH instance to simulate encryption of many messages,
both under a public key defined by such instance and an independent one.

Definition 40. ΠURE-ElGamal = (Gen, Enc, Rnc, Dec), with private-key space SK .
=

Zq, public-key space PK .
= G, message space4 M = G, and ciphertext space

C .
= G4, is defined as follows:

– Gen()
.
= (sk, gsk), for sk $← Zq.

– Encpk(m)
.
= (m · pkκ0 , gκ0 , pkκ1 , gκ1), for κ0, κ1

$← Zq.

– Rnc((α0, β0, α1, β1))
.
= (α0α

κ′
0

1 , β0β
κ′
0

1 , α
κ′
1

1 , β
κ′
1

1), for κ′
0, κ

′
1

$← Zq.

– Decsk((α0, β0, α1, β1))
.
=

{
α0/β

sk
0 if α1/β

sk
1 = 1,

⊥ otherwise.

In the following we understand the systems from Definition 6 as being implic-
itly parameterized on ΠURE-ElGamal.

Lemma 39. corΠURE-ElGamal holds unconditionally.

Proof. Let (m, t) ∈ G × N. Then, for κ0
0, κ

0
1, κ

1
0, κ

1
1, . . . , κ

t
0, κ

t
1

$← Zq, (sk, pk) ←
Gen, σ

.
=

∑t
i=0 κ

i
0

∏i−1
j=0 κ

j
1, and ω

.
=

∏t
i=0 κ

i
1, on input (m, t) the system

JLEpk,∗M ▷R∗ ▷Dsk, pk K will output

Decsk(Rnc
t(Encpk(m))) = Decsk(Rnc

t((m · pkκ0 , gκ0 , pkκ1 , gκ1)))

= Decsk((m · pkσ, gσ, pkω, gω))
= m · pkσ/gσ·sk

= m · gsk·σ/gσ·sk

= m,

since pkω/gω·sk = gsk·ω/gω·sk = 1. Therefore,

JLEpk,∗M ▷R∗ ▷Dsk, pk K ≡ JL∗,∗M1, pk K.

Lemma 40. robΠURE-ElGamal holds unconditionally with probability 1
q .

4 Note that in Definition 5 we specified thatM .
= {0, 1}κ, for some κ ∈ N, whereas

here we consider group elements, rather than bitstrings. Since message should have
the same length, we implicitly assume some padding takes place (e.g., via hashing).

44

Proof. Let (m, t) ∈ G × N. Then, for κ0
0, κ

0
1, κ

1
0, κ

1
1, . . . , κ

t
0, κ

t
1

$← Zq, (sk1, pk1),

(sk2, pk2) ← Gen, σ
.
=

∑t
i=0 κ

i
0

∏i−1
j=0 κ

j
1, and ω

.
=

∏t
i=0 κ

i
1, on input (m, t) the

system JLEpk1 ,∗M ▷R∗ ▷Dsk2 , pk1, pk2K will output

Decsk2(Rnc
t(Encpk1(m))) = Decsk2(Rnc

t((m · pkκ0
1 , gκ0 , pkκ1

1 , gκ1)))

= Decsk2((m · pk
σ
1 , g

σ, pkω1 , g
ω))

= ⊥,

since pkω1 /g
ω·sk2 = gsk1·ω/gω·sk2 = 1 if and only if sk1 = sk2, which happens with

probability 1
q . Therefore,

JLEpk1 ,∗M ▷R∗ ▷Dsk2 , pk1, pk2K 1
q

J⊥, pk1, pk2K.

Lemma 41. ddh =⇒ ind-cpaΠURE-ElGamal .

Proof. Let define reduction ρ as follows: For i ∈ {0, 1}, the system ρ(Sddh
i)

.
=

JS, pk K initially inputs ⋄ to Sddh
i obtaining (x, y, z), and then defines:

– pk
.
= x.

– S: On input m ∈ G, get u, v, κ1
$← Zq and output (m·zuxv, yugv, xκ1gκ1 , gκ1).

Then:

– ρ(Sddh
0) ≡ JEpk, pk K: We have that (x, y, z) = (gα, gβ , gαβ), for α, β $← Zq,

hence with sk
.
= α and κ0

.
= βu+ v we get

(m · zuxv, yugv, xκ1gκ1 , gκ1) = (m · gαβu+αv, gβu+v, gακ1 , gκ1)

= (m · gα(βu+v), gβu+v, gακ1 , gκ1)

= (m · pkκ0 , gκ0 , pkκ1 , gκ1),

which is distributed exactly as the output of Epk on input m.
– ρ(Sddh

1) ≡ JE$
pk, pk K: We have that (x, y, z) = (gα, gβ , gγ), for α, β, γ $← Zq,

hence with sk
.
= α, κ0

.
= βu+ v, and m̃

.
= m · gu(γ−αβ) (thus, m̃ $← G) we get

(m · zuxv, yugv, xκ1gκ1 , gκ1) = (m · gγu+αv+(αβu−αβu), gβu+v, gακ1 , gκ1)

= (m · gu(γ−αβ) · gα(βu+v), gβu+v, gακ1 , gκ1)

= (m̃ · pkκ0 , gκ0 , pkκ1 , gκ1),

which is distributed exactly as the output of E$
pk on input m.

Therefore, JEpk, pk K ≡ ρ(Sddh
0) ρ(Sddh

1) ≡ JE$
pk, pk K.

Lemma 42. ddh =⇒ ik-cpaΠURE-ElGamal .

Proof. For i ∈ {1, 2}, let define reduction ρi as follows: For j ∈ {0, 1}, the system
ρi(S

ddh
j)

.
= JEpk1 ,S, pk1, pk2K initially inputs ⋄ to Sddh

j obtaining (x1, y1, z1), and

then sets (x2, y2, z2)← (x1 · ga, yc1 · gb, zc1 · xb
1 · yac1 · gab), for a, b, c $← Zq. It then

defines:

45

– pk1
.
= x1 and pk2

.
= x2.

– S: On input m ∈ G, get u, v, κ1
$← Zq and output (m·zui xv

i , y
u
i g

v, xκ1
i gκ1 , gκ1).

Then,

– ρ1(S
ddh
0) ≡ JEpk1 ,Epk1 , pk1, pk2K: We have that (x1, y1, z1) = (gα, gβ , gαβ),

for α, β $← Zq, hence with sk1
.
= α and κ0

.
= βu+ v we get

(m · zu1xv
1, y

u
1 g

v, xκ1
1 gκ1 , gκ1) = (m · gαβu+αv, gβu+v, gακ1 , gκ1)

= (m · gα(βu+v), gβu+v, gακ1 , gκ1)

= (m · pkκ0
1 , gκ0 , pkκ1

1 , gκ1),

which is distributed exactly as the output of Epk1 on input m.

– ρ1(S
ddh
0) ≡ JEpk1 ,Epk2 , pk1, pk2K: We have that (x2, y2, z2) = (gα

′
, gβ

′
, gα

′β′
),

for α′, β′ $← Zq (because α′ .
= α+a, β′ .

= βc+b, and α, β, a, b, c $← Zq), hence
with sk2

.
= α′ and κ0

.
= βu+ v we get

(m · zu2xv
2, y

u
2 g

v, xκ1
2 gκ1 , gκ1) = (m · gα

′β′u+α′v, gβ
′u+v, gα

′κ1 , gκ1)

= (m · gα
′(β′u+v), gβ

′u+v, gα
′κ1 , gκ1)

= (m · pkκ0
2 , gκ0 , pkκ1

2 , gκ1),

which is distributed exactly as the output of Epk2 on input m.
– ρ1(S

ddh
1) ≡ ρ2(S

ddh
1): We have that (x1, y1, z1) = (gα, gβ , gγ) and (x2, y2, z2) =

(gα
′
, gβ

′
, gγ

′
), for α, β, γ $← Zq and α′ .

= α+a, β′ .
= βc+b, γ′ .

= γc+αb+βac+
ab. Hence, α′, β′, γ′ $← Zq, which implies that (x1, y1, z1) and (x2, y2, z2) are
identically distributed, thus ρ1(S

ddh
1) and ρ2(S

ddh
1) have the same behavior.

Therefore,

JEpk1 ,Epk1 , pk1, pk2K ≡ ρ1(S
ddh
0)

 ρ1(S
ddh
1) (ddh)

≡ ρ2(S
ddh
1)

 ρ2(S
ddh
0) (ddh)

≡ JEpk1 ,Epk2 , pk1, pk2K.

Lemma 43. ddh =⇒ ulk-cpaΠURE-ElGamal .

Proof. For i ∈ {1, 2}, let define reduction ρi as follows: For j ∈ {0, 1}, the system
ρi(S

ddh
j)

.
= JS, pk K initially inputs ⋄ to Sddh

j obtaining (x, y, z), and then defines:

– pk
.
= x.

– S: On input m ∈ G, get u, v, κ1, u
′, v′, κ′

1
$← Zq, and set c1

.
= (m · zuxv, yugv,

xκ1gκ1 , gκ1) and c′2
.
= (m · zu′

xv′
, yu

′
gv

′
, xκ′

1gκ
′
1 , gκ

′
1). Then set c2

.
= c1,

ĉ1
.
= Rnc(c1), and ĉ2

.
= Rnc(c′2). Finally, output (ci, ĉi).

Then:

46

– ρ1(S
ddh
0) ≡ JEpk ▷ ⟨∗,R⟩, pk K: As we showed in the proof of Lemma 41, if

(x, y, z) = (gα, gβ , gαβ), for α, β $← Zq, then (m · zuxv, yugv, xκ1gκ1 , gκ1) is
distributed exactly as the output of Epk on input m, therefore (c1, ĉ1) is
distributed exactly as the output of Epk ▷ ⟨∗,R⟩ on input m.

– ρ2(S
ddh
0) ≡ J⟨Epk,Epk ▷R⟩, pk K: As we showed in the proof of Lemma 41, if

(x, y, z) = (gα, gβ , gαβ), for α, β $← Zq, then (m · zuxv, yugv, xκ1gκ1 , gκ1) and

(m · zu′
xv′

, yu
′
gv

′
, xκ′

1gκ
′
1 , gκ

′
1) are independent and both distributed exactly

as the output of Epk on input m, therefore (c2, ĉ2) is distributed exactly as
the output of ⟨Epk,Epk ▷R⟩ on input m.

– ρ1(S
ddh
1) ≡ ρ2(S

ddh
1): We have that (x, y, z) = (gα, gβ , gγ), for α, β, γ $← Zq,

which implies that (c1, ĉ1) and (c2, ĉ2) are identically distributed, thus ρ1(S
ddh
1)

and ρ2(S
ddh
1) have the same behavior.

Therefore,

JEpk ▷ ⟨∗,R⟩, pk K ≡ ρ1(S
ddh
0)

 ρ1(S
ddh
1) (ddh)

≡ ρ2(S
ddh
1)

 ρ2(S
ddh
0) (ddh)

≡ J⟨Epk,Epk ▷R⟩, pk K.

Lemma 44. ddh =⇒ sulk-cpaΠURE-ElGamal .

Proof. Similar to the proof of Lemma 43.

Corollary 1. ddh =⇒ ind-ik-sulk-cpaΠURE-ElGamal .

Corollary 2. ddh =⇒ cc-ureΠURE-ElGamal .

47

	On the Security of Universal Re-Encryption
	Introduction
	Background and Motivation
	Contribution
	Related Work

	Preliminaries
	Notation
	Systems
	Universal Re-Encryption

	Game-Based Semantics of Universal Re-Encryption
	Notions of Security
	Relations Among Security Notions
	Combined Notions
	Generalizing the Notions: From 2 to Many Receivers

	Composable Semantics of Universal Re-Encryption
	Constructive Cryptography
	Assumed and Ideal Resources
	First Main Result: Single Honest Mixer
	Second Main Result: Single Dishonest Mixer

	References
	Appendices
	Missing Proofs
	Combined Notions
	Generalizing the Notions: From 2 to n Receivers

	Relations to Young and Yung's Notions
	Young and Yung's Notions
	Equivalence of the Notions

	Variant of All-in-One Notions
	ElGamal-Based Universal Re-Encryption
	Decisional Diffie-Hellman Assumption
	Security of ElGamal-Based URE Scheme

