
A Cryptographic Layer for the Interoperability of
CBDC and Cryptocurrency Ledgers

Diego Castejon-Molina∗†, Alberto Del Amo Pastelero∗†, Dimitrios Vasilopoulos∗, Pedro Moreno-Sanchez1∗‡
∗ IMDEA Software Institute

† Universidad Politécnica de Madrid
‡ VISA Research

Abstract—Cryptocurrencies are used in several, distinct use
cases, thereby sustaining the existence of many ledgers that
are heterogeneous in terms of design and purpose. In addition,
the interest of central banks in deploying Central Bank Digital
Currency (CBDC) has spurred a blooming number of concep-
tually different proposals from central banks and academia. As
a result of the diversity of cryptocurrency and CBDC ledgers,
interoperability, i.e., the seamless transfer of value between users
that operate on different ledgers, has become an interesting
research problem. In fact, interoperability has been explored both
in CBDC and cryptocurrencies, and numerous proposals exist.
However, these proposals are tailored to the characteristics of the
ledgers for which they are designed. For instance, some rely on
trusted hardware, others rely on the scripting capabilities of the
underlying ledger or on specific cryptographic assumptions of the
transaction authorization mechanism (e.g., adaptor signatures),
while others rely on a trusted entity. This fragmentation results
in the repetitive development of interoperablity protocols that
address the same applications across the various ledgers.

In this work, we propose an alternative approach: decouple
the transaction authorization details of each ledger from the
definition of cross-ledger applications. To do so, we define a
middle layer that abstracts the core functionality for autho-
rizing transactions in any ledger and the security notions of
interest. This middle layer serves two purposes: (i) it becomes
the main cryptographic building block to (re)define cross-ledger
applications in a ledger agnostic manner; (ii) for any ledger
that exists (and the new to come), it suffices to prove that it
is a secure instance of the middle layer to be compatible with
cross-ledger protocols. We define two new primitives for our
middle layer, the basic payment ledger (BL) and the conditional
payment ledger (CL). We prove that the two most common
transaction authorization mechanism (digital signatures and zero
knowledge proofs) are secure constructions for BL. We also
prove that common smart contracts (e.g., HTLC and PTLC) and
the combination of adaptor signatures with verifiable timelock
puzzles are also secure constructions for CL. Finally, we discuss
how to design some popular applications (e.g. atomic swaps
between ledgers) using our middle layer.

I. INTRODUCTION

Distributed ledgers (DLs) are gradually becoming an ac-
cepted technology. Since the inception of Bitcoin, a wide range
of distributed ledgers have been proposed to cope with the
peculiarities of different use cases. For instance, cryptocur-
rencies other than Bitcoin have been proposed to provide
privacy-preserving payments (e.g., Monero and Zcash) or
smart contracts (e.g., Ethereum, Tezos). To accommodate for

1 This work has been done while in employment of IMDEA Software
Institute

these different goals, these ledgers expose distinct transaction
authorization mechanisms: While Monero relies on unlinkable
ring signatures and Zcash builds upon zero-knowledge proofs,
ledgers with support for smart contracts accept more expressive
transaction authorization policies encoded as a code excerpt.

More recently, several central banks have shown interest
in creating a digital version of their physical currency, called
Central Bank Digital Currency (CBDC) [2], [4]–[9], [11], [17],
[18], [20], [23], [24], [27]–[29], [39], [44], [48], [51]–[54],
[62]. Spurred from this interest, recent academic works have
contributed further proposals for CBDC [33], [37], [39], [60],
[65]. The different motivations behind each of the aforemen-
tioned works (i.e. transaction privacy, regulation adherence,
etc.) has resulted in a heterogeneous set of CBDC proposals.
For example, KSIcash [27] and Hamilton [39] build upon a
custom-made ledger; Bakong [44] relies on Hyperledger Iroha;
Itcoin [11], [62] is based on the payment channel network of
a Bitcoin inspired custom ledger; TIPS+ [62] is based on a
payment service of the Eurosystem [26]; while Platypus [65]
and the Swiss National Bank CBDC [20] are based on eCash.

In summary, there is a wide range of ledgers that are
heterogeneous in terms of design and purpose. In this state
of affairs, interoperability across these ledgers has become
an interesting research problem. Moreover, according to a
public consultation about the digital euro [25], one of the main
challenges for the digital euro is achieving interoperability.

Interoperability in the context of payments involves en-
abling the seamless flow of value between two users even
if their accounts are held in different ledgers. Such a flow
of value (or payment) between two users with accounts in
different ledgers requires a protocol to synchronize the au-
thorizations of two or more transactions across two or more
ledgers. Examples of such payment protocols are atomic swaps
between ledgers, coin mixing, and atomic multi-hop payments.

In the literature, there exist several instances of such
payment protocols, each tailored to the concrete transaction
authorization mechanism provided by one (or a small set) of
available distributed ledgers. For instance, for the three men-
tioned applications, there exist protocols (i) tailored to ledgers
that support HTLC smart contracts (e.g. [34], [41], [42],
[49]); (ii) tailored to ledgers that support a digital signature
compatible with adaptor signatures (e.g [3], [21], [30], [38],
[47], [56], [59]); (iii) tailored to ledgers that support a digital
signature not compatible with adaptor (e.g. [58]); (iv) tailored
to ledgers that support advanced scripting capabilities (e.g. [1],
[32], [67]); (v) based on trusted hardware (e.g. [12], [22], [61]).



This situation is undesirable from a scientific point of view
because, for each payment application, it requires designing
and analyzing several instances, one for each ledger setting.

Instead, the goal of this work is to define a framework that
allows to decouple the definition of cross-ledger protocols (e.g.
atomic swaps, coin mixing) from the specific authorization
mechanisms provided by existing ledgers.

A. Where Existing Approaches Fall Short

In the following, we summarize existing interoperability
solutions either for all CBDC or all cryptocurrencies.

CBDC-focused Approaches. There are reports from differ-
ent institutions like the European Central Bank (ECB) [24],
the Bank of International Settlements (BIS) [8], [10] or
SWIFT [55] that explore interoperability for CBDC. However,
these proposals do not contain many technical details and rely
on trusted intermediaries to facilitate the CBDC exchange,
similar to what happens currently with the banking sector.
Relying on a trusted entity to perform cross-ledger protocols
introduces a single point of failure, which could be mitigated
by using secure decentralized protocols based on cryptographic
assumptions. Furthermore, these CBDC interoperability pro-
posals focus on the coordination of payments between multiple
CBDC ledgers, but not between CBDC and a non CBDC
ledgers (e.g., any cryptocurrency). Extending these proposals
for cross-ledger payments based on cryptographic assumptions
(instead of trusted entities) has not been explored yet.

Bridge Ledger. Some approaches, like Polkadot [1] or X-
Claim [67], define cross-ledger payments with the aid of smart
contracts that are enforced by a ledger that supports scripts.
Therefore, if an atomic swap involves a ledger that does not
support scripting capabilities, an additional ledger is used to
provide the capabilities, like a bridge. In the case of X-Claim,
this bridge ledger issues redeemable tokens fully backed in
the ledger without scripting capabilities. Then, the cross-ledger
protocol is performed in a smart contract in the bridge ledger.
This approach could result in forcing users to operate in a third
ledger, a setting which implies additional trust assumptions that
are not always desirable. Moreover, this bridge ledger needs
to be able to interact with any other ledger.

Universal Atomic Swaps. Authors in [59] proposed a swap
protocol between any two ledgers. Such a generic construction
relies on a general-purpose 2-party computation and verifiable
timelock puzzles for discrete logarithms. Although such a
generic approach is in line with the goal of this work, the
concrete realization of the 2-party computation might lead to
protocols inefficient in practice, as agreed by the authors. In
fact, they also propose an alternative, efficient swap protocol
that is however restricted to ledgers that authorize transactions
using a digital signature scheme compatible with adaptor
signatures. This approach cannot seamlessly be extended to
cryptocurrency ledgers such as Zerocash, or CBDC ledgers
such as UTT, PEReDi and Platypus, since they do not rely on
digital signatures for authorizing transactions.

B. Our Approach

A more flexible and transparent approach would be to de-
tach the authorization details of each ledger from the definition

of cross-ledger applications. To do so, we define a middle layer
that abstracts the core functionality for authorizing transactions
in any ledger, along with the security notions of interest. For
instance, in the case of transaction authorization for conditional
payments, our middle layer models the complete functionality
of creating the shared account and locking the coins, autho-
rizing the transfer of coins to the receiver, or authorizing the
transfer of coins to the sender, if the condition to pay the
receiver is not met. Hence, this middle layer serves a two-fold
purpose: (i) it can become the main cryptographic building
block to (re)define cross-ledger applications, agnostic to the
concrete ledger instance; and (ii) if a new ledger is defined
(e.g., as currently being proposed for CBDC), it suffices to
prove that it is a secure instance of this middle layer to benefit
from these ledger-agnostic cross-ledger protocols.

As we explain later in Section IV-A, we identify two
classes of ledger transaction authorization schemes according
to the type of accounts and type of transactions that they sup-
port: ledgers with basic authorizations (BL) and ledgers with
conditional authorizations (CL). Then, our approach consists
in (i) proving that a given ledger is a secure instance of either
BL, CL or both (Section IV); and (ii) (re)defining cross-ledger
protocols using (several copies of) BL and CL as building
block (Section V).

Contributions. In this work, we:

• Introduce two new primitives for ledger transaction au-
thorizations and their security properties. They are called basic
payment ledger (BL) and conditional payment ledger (CL) and
capture the authorization mechanism of many ledgers.

• Introduce two constructions for BL and prove them
secure. The first construction is based on digital signature
schemes, while the second is based on NIZK. By doing this,
we show that at least the following ledgers can be described
as a BL [11], [27], [31], [35], [36], [39], [43]–[45], [50], [60],
[62], [64], [66].

• Introduce three constructions for CL and prove them
secure. The first construction assumes that the ledger supports
evaluation of a hard relation (e.g. preimage of a hash) and has
a timelock feature. The second construction assumes a ledger
that only supports timelocks. The third construction assumes a
BL whose authorization mechanism is compatible with adaptor
signatures. By doing this, we show that at least the following
ledgers can be described as a CL [11], [27], [31], [35], [36],
[39], [43]–[45], [64], [66].

• Show how to use the framework to solve the atomic
swaps, and other applications that we will explore in the future.

II. PRELIMINARIES

Accounts. Coins are held in accounts. We differentiate be-
tween two types of accounts. First, we consider simple ac-
counts. A simple account is identified by its public key pk,
while the corresponding private key sk is used to spend the
account’s coins. We thereby represent, e.g., an output in the
UTXO model (e.g., Bitcoin) whose spending condition is a
signature with the corresponding private key sk, an externally
owned account (EOA) in Ethereum or a CBDC account
governed by the key pair (pk, sk).

2



Second, we consider escrow accounts. An escrow account
is identified by a tuple epk = ((pkred,C), (pkref , T )) where C
denotes an instance of a cryptographic hard problem (e.g., find
the pre-image of a given hash value) and models co-ownership
of coins between two users (sender S and receiver R) for a
predefined amount of time T . Coins held in an escrow account
can be spent in two paths. First, using the secret key skred
corresponding to pkred and the solution to the problem instance
in C (redeem path). Second, using the secret key skref after the
timeout T expires (refund path). We thereby represent, e.g., an
output of type hash timelock contract (HTLC) in Bitcoin, an
instance of HTLC contract in Ethereum, or similar procedures
such as authorization holds in credit/debit cards [63].

Transactions. A transaction transfers coins between accounts.
We identify three types of transactions, each defined over its
own message space. First, we consider basic (bsc) transactions.
A basic transaction, denoted by txbsc, transfers coins from a
simple account. We abstract away from the transaction creation
details at each ledger and assume that there exists a function
txbsc ← ctTxbsc(pk,

{
p̈k, ¨epk

}
).

We then consider two additional types of transactions,
corresponding to the two spending paths for an escrow
account. A redeem transaction, denoted by txred, transfers
coins from an escrow account through the redeem path.
A refund transaction, denoted by txref , transfers coins from
an escrow account through the refund path. Similar to the
creation of basic transactions, we assume the existence of
two functions txred ← ctTxred(epk, p̈kred :=

{
p̈k, ¨epk

}
) and

txref ← ctTxref(epk, p̈kref :=
{

p̈k, ¨epk
}
) that create redeem

and refund transactions, respectively. For the rest of the paper,
every time we denote a transaction as txbsc, txred or txref , we
are referring to transactions in the basic, redeem and refund
message spaces, accordingly.

Generic Ledger. A ledger (L) maintains a list of (ordered)
transactions, denoted by TXL . The addition of new transac-
tions to TXL is enforced by the operator of the ledger, which
can be a small and fixed group of entities (e.g., as in CBDC
or permissioned blockchains), or a large and dynamic group
of entities running a permissionless distributed consensus
protocol (e.g., as in Bitcoin or Ethereum).

A transaction tx that transfers coins from a sender account
pkS := {pk, epk} to a receiver account p̈kR :=

{
p̈k, ¨epk

}
must satisfy a series of predicates before it is added to TXL .

1) The sender’s account must have enough coins to carry
out the transaction, a predicate that we denote by {0, 1} ←
IsFunded(pkS ,TXL).

2) The transaction must be well formed and not create
any new coins, a predicate that we denote by {0, 1} ←
IsValid(tx).

3) The transaction must not have been previously included
in the ledger, a predicate that we denote by {0, 1} ←
IsUnique(tx,TXL).

4) The transaction must have been successfully authorized,
a predicate that we denote by {0, 1} ← IsAuth(tx, σ, pkS).
Considering the different types of accounts, we can further sub-
divide the transaction authorization predicate into: (i) {0, 1} ←

IsAuthOwn(tx, σ, pkS), verifying that for an account pkS of
any type, it correctly authorizes the asset transfer in tx with
σ; (ii) {0, 1} ← IsAuthRel(txred, σred, epk), verifying that
for escrow account epk, the authorization σred provides a
solution to the problem C specified in epk; and (iii) {0, 1} ←
IsAuthT(txref , σref , epk), that verifies for refund transactions
if the required timeout T has expired.

Ledger Types. While existing ledgers follow the blueprint
of a generic ledger, we can classify existing ledgers de-
pending on: (i) the type of account supported (simple and
escrow); and (ii) the type of transaction supported (basic,
redeem and refund). Following this classification, we can
distinguish between ledgers whose scripting capabilities only
support basic transactions and simple accounts, and those
whose scripting capabilities additionally support refund and
redeem transactions, as well as escrow accounts. We refer
to the former as Basic Payment Ledger (BL) and to the
latter as Conditional Payment Ledger (CL). We next define
two schemes for our cryptographic framework, BL and CL
that describe how basic, redeem and refund transactions are
authorized to spend coins from simple and escrow accounts.

III. CRYPTOGRAPHIC LAYER: DEFINITIONS FOR BL AND
CL

Preliminaries. First, we assume unitary transactions to sim-
plify the notation. We discuss the extension to support arbitrary
amounts in Section VI. Second, we assume the existence of
an algorithm, called createT(·) that, when called, returns
an appropriate time parameter for the creation of an escrow
account. Moreover, we let readTime(·) be a function that
returns the current ledger time (e.g., current block height if the
time is measured as the number of blocks in the blockchain).
Third, an escrow account is based on the notion of hard
relation. We recall the notion of a hard relation R ⊆ DS×Dw

with statement-witness pairs (C, w) ∈ DS × Dw. We denote
by LR the associated language defined as LR := {C ∈
DS | ∃w ∈ Dw s.t. (C, w) ∈ R}. We say that R is a hard
relation if the following holds: (i) There exists a PPT algorithm
createR(1λ) that computes (C, w) ∈ R; (ii) the relation is
decidable in polynomial time; and (iii) for all PPT adversaries
A, the probability that on input C, A outputs w such that
(C, w) ∈ R is negligible.

Remark. The cryptographic games defined in this section do
not take into consideration the transaction correctness, its
format or the balance of the account, only the cryptographic
properties evaluated under IsAuth (e.g. ownership, hard
relation, time). We thereby focus on the authorization of trans-
actions as required for interoperability and assume that the rest
of predicates (e.g., IsValid, IsFunded, IsUnique) are
checked by the ledger operator before adding the transaction
to the ledger.

Therefore, the message space that the adversary A has
access in these games is larger than what it would actually be
when attacking the ledger (e.g., an adversary could manage to
forge the authorization of a transaction that spends from an
account with zero balance and thus would be later rejected by
the ledger operator).

3



bscForgeΠBL,A(λ)

Q := ∅
(pk, sk)← ctAcc(1λ)

(txbsc, σbsc)← AOAuthbsc(pk)
b0 := txbsc ̸∈ Q
b1 := isAuthBL(txbsc, σbsc, pk)
return b0 ∧ b1

OAuthbsc(txbsc)

σbsc ← Authbsc(skS , txbsc)
Q := Q∪ {txbsc}
return σbsc

Fig. 1. BL unforgeability.

A. Basic Payment Ledger (BL)

Users interact with BL using the API described in Defini-
tion 1.

Definition 1 (Basic Payment Ledger (BL)). A BL comprises
the three algorithms (ctAcc, Authbsc, isAuthBL) defined below:

• (pk, sk)← ctAcc(1λ) : Account creation is a PPT algo-
rithm, that takes as input the security parameter λ, and
outputs the public key pk and private key sk of the account.

• σbsc ← Authbsc(sk, txbsc) : Transaction authorization is a
PPT algorithm, that takes as input the private key of the
account sk and a basic transaction txbsc, and produces a
basic transaction authorization, σbsc.

• 1/0← isAuthBL(txbsc, σbsc, pk) : Authorization verification
for basic transactions is DPT algorithm that takes as input
a basic transaction txbsc, a basic transaction authorization
σbsc, and the public key of the sender pk, and outputs 1 if the
authorization corresponds to the sender and 0 otherwise.

Definition 2 (BL Correctness). A BL is said to be correct if for
all λ ∈ N, all (pk, sk)← ctAcc(1λ), all (p̈k, s̈k)← ctAcc(1λ),
all txbsc ← ctTxbsc(pk, p̈k), all σbsc ← Authbsc(sk, txbsc) it
holds that:

Pr [isAuthBL(txbsc, σbsc, pk) = 1] = 1

Security. The notion of security for BL is BL unforgeability
and ensures that the adversary cannot successfully authorize
transactions without access to the corresponding secret key.

Definition 3 (BL Unforgeability). A BL is said to offer BL
unforgeability if for all λ ∈ N there exists a negligible function
negl(λ) such that for all PPT adversaries A it holds that
Pr[bscForgeΠBL,A(λ) = 1] ≤ negl(λ), where bscForge is
defined in Fig. 1.

Interactive BL. Platypus [65] and PEReDi [37] are two
ledgers supporting simple accounts, in which a full transaction
authorization requires an interactive protocol between sender
and receiver. In Appendix A we provide an extension of the
BL, which we call Interactive BL (IBL), that contemplates
interactive authorization of basic transactions between sender
and receiver.

B. Conditional Payment Ledger (CL)

CL is an extension of BL that supports payments condi-
tioned on the knowledge of the solution to some hard problem

and a timeout based on ledger-dependent time. Users interact
with CL using the API described in Definition 1, with the
additions defined in Definition 4.

Definition 4 (Conditional Payment Ledger (CL)). A condi-
tional payment ledger defined w.r.t. a BL and a hard relation
R, extends BL with the algorithms (Authred, Authref , GWit,
isAuthCL) and interactive protocol ctEAcc defined below:

•
〈
{(epk, auxS , txred, txref),⊥},
{(epk, auxR, txred, txref),⊥}

〉
← ctEAcc

〈
S(C, T ),
R(C, T )

〉
:

The escrow account generation is a probabilistic protocol.
Each party takes as input C and T . The protocol outputs
the public identifier of the escrow account epk, private
information auxS (which allows to execute the refund
path), private information auxR (which allows to execute
the redeem path), the redeem transaction txred, the refund
transaction txref , or ⊥.

• {σred,⊥} ← Authred(auxR, w, txred) : The redeem transac-
tion authorization is a PPT algorithm, that takes as input the
private information for redeem auxR, the witness to the hard
relation w, and the redeem transaction txred, and outputs the
redeem transaction authorization σred or ⊥.

• {σref ,⊥} ← Authref(auxS , txref) : The refund transaction
authorization PPT algorithm, that takes as input the private
information for refund auxS and the refund transaction txref ,
and outputs the refund transaction authorization σref or ⊥.

• {w,⊥} ← GWit(txred, σred, auxS) : The Witness extraction
DPT algorithm, takes as input the redeem transaction txred,
the redeem transaction authorization σred, and the private
information for refund auxS , and outputs a witness to the
hard relation w or ⊥.

• 1/0← isAuthCL({(txred, σred), (txref , σref)}, epk) : The au-
thorization verification DPT algorithm for redeem and re-
fund transactions, takes as input a redeem (txred, σred) or
refund (txref , σref ) transaction-authorization pair and the
public identifier of the escrow account, epk, and outputs
1 if the authorization is valid or 0 otherwise.

The ctEAcc protocol models the redeem and refund paths
for the escrow account, as well as the creation of the escrow
account itself in which the coins must be locked with a
basic transaction from the sender. This mechanism is shown
in Section V. Note that there is no verification algorithm for
ctEAcc. The reasons for this are two-fold: (i) the protocol
creates the escrow account and sets up the redeem and refund
process, but does not transfer coins to the escrow account; and
(ii) the protocol can be aborted by any of the two parties, so
we implicitly require that S and R check its validity during
execution and abort it if needed.

Definition 5 (CL correctness). A CL is said to be correct if
for all λ ∈ N, all (C, w) ∈ R, all T ← createT(·), all〈
(epk, auxS , txred, txref),
(epk, auxR, txred, txref)

〉
← ctEAcc

〈
S(C, T ),
R(C, T )

〉
, all σred ←

Authred(auxR, w, txred), all w′ ← GWit(txred, σred, auxS) the
following condition is satisfied:

Pr

[
isAuthCL(txred, σred, epk) = 1

(C, w′) ∈ R

]
= 1

4



redForgeΠCL,R,A(λ)

(T, st0)← A(1
λ)

(C, w)← createR(1λ)〈
(epk, auxA, txred, txref , st1),
(epk, auxR, auxA, txred, txref)

〉
← ctEAcc

〈
A(C, st0),
R(C, T )

〉
(tx∗red, σ

∗
red)← A(st1)

τ ← readTime(·)
b0 := isAuthCL(tx

∗
red, σ

∗
red, epk)

b1 := τ < T

b2 := tx∗red ̸= txred
return b0 ∧ b1 ∧ b2

ExpRedeemΠCL,R,A(λ)

(C, w, T, st0)← A(1
λ)〈

(epk, auxA, txred, txref , st1),
(epk, auxR, auxA, txred, txref)

〉
← ctEAcc

〈
A(st0),
R(C, T )

〉
σred ← Authred(auxR, w, txred)
b0 := isAuthCL(txred, σred, epk) = 0

b1 := (C, w) ∈ R
return b0 ∧ b1

ExpExtractΠCL,R,A(λ)

(C, T, st0)← A(1
λ)〈

(epk, auxS , auxA, txred, txref),
(epk, auxA, txred, txref , st1)

〉
← ctEAcc

〈
S(C, T ),
A(st0)

〉
σred ← A(st1)
w ← GWit(txred, σred, auxS)

b0 := isAuthCL(txred, σred, epk)
b1 := (C, w) ̸∈ R
return b0 ∧ b1

refForgeΠCL,R,A(λ)

(C, T, st0)← A(1
λ)〈

(epk, auxS , auxA, txred, txref),
(epk, auxA, txred, txref , st1)

〉
← ctEAcc

〈
S(C, T ),
A(st0)

〉
(tx∗ref , σ

∗
ref)← A(st1)

b0 := tx∗ref /∈ {txred, txref}
b1 := isAuthCL(tx

∗
ref , σ

∗
ref , epk)

return b0 ∧ b1

ExpRefundΠCL,R,A(λ)

(T, st0)← A(1
λ)

(C, w)← createR(1λ)〈
(epk, auxS , auxA, txred, txref),
(epk, auxA, txred, txref , st1)

〉
← ctEAcc

〈
S(C, T ),
A(C, st0)

〉
σref ← Authref(auxS , txref)
return isAuthCL(txref , σref , epk) = 0

Fig. 2. Experiments for CL redeem unforgeability, CL redeemability, CL extractability, CL refund unforgeability, and CL refundability.

and, in addition to previous preconditions, for all σref ←
Authref(auxS , txref), all τ ← readTime(·) such that τ ≥ T
the following is satisfied:

Pr [isAuthCL(txref , σref , epk) = 1] = 1

Security. We consider the additional security goals of CL
with respect to BL, formally described in Fig. 2.

While the objective of the security in BL is to protect the
simple accounts, here the main goal is to guarantee that the
escrow account can only be spent either by the redeem or
refund paths. Therefore, the properties must guarantee that
the private information generated in protocol ctEAcc, namely,
auxS and auxR, are the only method that enables the redeem
and refund paths. Note that in an escrow account, only one of
a redeem authorization σred or refund authorization σref will
be added to the ledger’s transaction list TXL . Therefore, we
model the escrow account as a one time account.

CL redeem unforgeability ensures that an honest receiver
of an escrow account is the only party that can generate a
valid authorization for a redeem transaction (txred, σred). We
model this property by allowing A to choose the timeout
(T ), while the challenger generates the instance of the hard
relation (C, w). The adversary wins if she can forge a redeem
authorization for a redeem transaction different to the one
outputted by ctEAcc before the timeout expires. Note that
if the forged authorization is in the same redeem transaction
generated by ctEAcc, the adversary is not stealing coins from
the honest party. We explicitly introduce the time constraint
since there are some instances of CL in which txred and txref are
in the same message space (see Section IV-F). In this setting,
without the time constraint, a trivial way for the adversary to

win this game would be to wait until T expires, make a refund
transaction and its authorization, and use them as a forgery for
a redeem transaction. In order to correctly model the security
property, we force the adversary to come with a forgery before
the timeout T expires.

CL redeemability ensures that an honest receiver of an
escrow account can always generate a valid authorization for
a redeem transaction (txred, σred). We model this property by
allowing A to choose all the inputs of ctEAcc, including a
valid instance of the hard relation (C, w) ∈ R and then
engage with the challenger in ctEAcc to generate epk, aux, and
transactions txred and txref . The adversary wins if the honest
party fails to generate a valid redeem authorization σred, while
the witness and statement provided by the adversary are in the
hard relation.

CL extractability ensures that an honest sender of an escrow
account can always obtain a w from (txred, σred, auxS) such
that (C, w) ∈ R. We model this property by allowing A to
choose all the inputs of ctEAcc and then engage with the
challenger to generate epk, aux, and transactions txred and txref .
The adversary wins if she can provide a redeem authorization
for the redeem transaction outputted by the ctEAcc protocol
such that the honest party cannot obtain a witness for the
statement committed in the escrow account epk.

CL refund unforgeability ensures that an honest sender of
an escrow account is the only party that can generate a valid
authorization for a refund transaction (txref , σref). We model
this property by allowing A to choose a timeout T and a
condition C. Then, they both engage in ctEAcc to generate
epk, aux, txred and txref . The adversary wins if it is able to
generate a refund authorization in a transaction different to

5



txref or txred. Note that if the forged authorization is in the
refund transaction generated by ctEAcc, the adversary is not
stealing coins from the honest party. We explicitly exclude also
txred as there are instances of CL in which txred and txref belong
to the same message space (see Section IV-F), which would
allow the adversary to trivially win by simply forwarding
the redeem transaction, since she knows the witness, w. We
do not consider this as an attack, since an honest sender
with knowledge of the w, should be able to generate a valid
authorization for the redeem transaction.

CL refundability ensures that an honest sender of an escrow
account can always generate a valid authorization for a refund
transaction (txref , σref). We model this property by allowing A
to choose all the inputs of ctEAcc. Then, they both engage
in ctEAcc to generate epk, aux and the redeem and refund
transactions. The adversary wins if the honest party fails
to generate a valid refund authorization σref for the refund
transaction generated with ctEAcc.

The thoughtful reader might be considering if an honest
sender can be assured that the receiver cannot generate a
redeem transaction without knowledge of the witness. We
answer to this affirmatively; such an adversary can be used to
break the hard relation in which the escrow account is based,
and as such, cannot exist if the hard relation assumption holds.
Appendix J provides further details on this point.

We use the knowledge of secret key model (KOSK [13]) in
which the adversary outputs its (possibly maliciously chosen)
set of keys. For CL, A outputs auxA to the challenger after
running ctEAcc. We assume that during the execution of
ctEAcc protocol S and R generate some set of keys that later
they will store in auxS and auxR. During the execution of the
protocol, S and R prove that they know the secret key for the
sets of keys that allow to spend coins from epk. However, we
do not write these proofs explicitly in any of the constructions
we shown in Section IV.

A CL is secure if all the security properties hold. We
formally define CL security in Definition 6.

Definition 6 (CL security). Let G := {redForge, refForge,
ExpRedeem, ExpExtract, ExpRefund} be the games defined
in Fig. 2. A CL is secure if for every Gi ∈ G and for all
λ ∈ N there exists a negligible function negl(λ) such that for
all PPT adversaries A it holds that Pr[Gi(λ) = 1] ≤ negl(λ).

IV. CONSTRUCTIONS FOR BL AND CL

In the following section we provide constructions for BL
and CL assuming that the predicates portrayed in Table I are
provided by the ledger operator. CL is an extension of BL.
Therefore, it is expected that a ledger that is compatible with
a CL construction is also compatible with another BL con-
struction. Similarly, some ledgers, like Bitcoin or Ethereum,
may support IsAuthRel and IsAuthT. In these ledgers, it is
possible to build protocols that rely on those two predicates,
that rely only on one of them (IsAuthT) or that do not rely on
any of those predicates. For example, the construction shown
in Section IV-E is based on PTLC, which is regarded as a
cheaper alternative (in terms of transaction cost) to HTLC
transactions in Bitcoin. With the five constructions introduced
in this section, we show that at least 15 popular ledgers can
be described with the primitives defined in Section III.

A. Building Blocks

Digital Signature Scheme. We require a digital signature
scheme ΠDS := (KGen, Sig, Vf), where: (i) KGen gets as
input 1λ and outputs a key pair (pk, sk); (ii) Sig gets as input
sk and a message m, and outputs a signature σ; and (iii) Vf
gets as input pk, the message m, and the signature σ, and
outputs a bit b. We assume that ΠDS is correct (i.e. it holds
that Pr[Vf(pk,m,Sig(sk,m)) = 1] = 1) and secure under
the standard notion of existential unforgeability under chosen
message attack (EUF-CMA), which we restate in Appendix B.

Non Interactive Zero Knowledge. We require a Non Inter-
active Zero Knowledge (NIZK) system, which for input x in
language L, with witness ω, is a set of efficient algorithms
ΠVf := (SetUp,Prove,Vf), where: (i) SetUp takes as input
the security parameter 1λ and outputs a random public string
CRS; (ii) Prove takes as input x, ω, and CRS, and outputs a
proof π; and (iii) Vf takes as input x, CRS, and π, and outputs
1/0 to accept or reject the proof. We assume that ΠVf is correct
(i.e. it holds that Pr[Vf(x,Prove(x, ω,CRS),CRS) = 1] = 1
for all CRS← SetUp(1λ)). It is also secure under the notions
of knowledge-soundness and zero knowledge.

Verifiable Timed Dlog (VTD). For a general description of
the protocol, we require a verifiable timed commitment scheme
for any hard relation. We define this scheme in Appendix D.
However, instances of such a scheme do not exist for arbitrary
hard relations. Efficient implementations are known when the
hard relation is the discrete logarithm [57], [59], which are the
ones we use in our construction in Section IV-F. We restate in
the following the properties of the Verifiable Timed Dlog, for
the group G with generator G and order q is a tuple ΠVTD :=
(Commit, Verify, Open, forceOpen): (i) Commit takes as input
parameter T and the witness w, and outputs a puzzle P and a
proof π; (ii) Verify takes as input the puzzle P , T , the proof
π, and the public statement C, and outputs 1/0 to accept or
reject the proof; (iii) Open is run by the creator of the puzzle,
it takes as input the puzzle P of hardness T , and outputs the
solution to the puzzle w and the randomness of the puzzle r;
and (iv) forceOpen takes as input the puzzle P , and outputs the
solution to the puzzle w. We assume ΠVTD to be correct (i.e.
Pr[forceOpen(Commit(w, T )) = w] = 1) and secure under
the notions of Timed Privacy and Soundness. Timed privacy
ensures that for all PRAM1 algorithms whose running time is
at most t (where t < T ) the probability of success in extracting
w from the puzzle P is negligible. Soundness guarantees that
a user holding a puzzle P of hardness T will be able to run
forceOpen to obtain w in time T . For a detailed description
of the security properties, we refer the reader to [57], [59] or
to Appendix D, where we restate the properties, and generalize
them for any hard relation.

Two-party Signature with Aggregatable Public Keys. We
require a two-party signature scheme with aggregatable public
keys ΠDSA :=(Setup, KGen, ΠSig, KAgg, Vf), where: (i) Setup
takes as input the security parameter 1λ and outputs public
parameters pp; (ii) KGen takes as input pp, and outputs a
key pair (pk, sk); (iii) ΠSig is an interactive protocol between
all signers, which takes as input their private keys and the

1PRAM algorithms are polynomial time algorithms that have polynomially
bounded amount of parallel computing power.

6



TABLE I. CONSTRUCTIONS PREDICATES SUPPORTED BY THE LEDGER AND EXAMPLES. UNDERLINED LEDGERS ARE NOT CBDC.

Construction IsAuth
Predicate Assumptions Ledgers compatible with constructions

I
s
F
u
n
d
e
d

I
s
V
a
l
i
d

I
s
U
n
i
q
u
e

I
s
A
u
t
h
O
w
n

I
s
A
u
t
h
R
e
l

I
s
A
u
t
h
T

Section IV-B BL ✓ ✓ ✓ ✓ × ×
KSICash [27]; TIPS+ [62]; Project Hamilton [39]; Monero [45];Bakong [44]; itCoin [11], [62];
Iberpay Smart Money [35]; Bitcoin [43]; Ethereum [64]; Hyperledger Iroha [36]; XRP ledger [66];
Tezos [31]

Section IV-C BL ✓ ✓ ✓ ✓ × × UTT [60]; Zcash [50]; Tezos [31]

Section IV-D CL ✓ ✓ ✓ ✓ ✓ ✓
Bakong [44]; itCoin [11], [62]; Iberpay Smart Money [35]; Bitcoin [43]; Ethereum [64];
Hyperledger Iroha [36]; XRP ledger [66]; Tezos [31]

Section IV-E CL ✓ ✓ ✓ ✓ ✓ × Project Hamilton [39]; Monero [45];Bakong [44]; itCoin [11], [62]; Iberpay Smart Money [35];
Bitcoin [43]; Ethereum [64]; Hyperledger Iroha [36]; XRP ledger [66]; Tezos [31]

Section IV-F CL ✓ ✓ ✓ ✓ × × KSICash [27]; Project Hamilton [39]; Monero [45];Bakong [44]; itCoin [11], [62]; Iberpay Smart
Money [35]; Bitcoin [43]; Ethereum [64]; Hyperledger Iroha [36]; XRP ledger [66]; Tezos [31]

messages, and outputs a signature (σ); (iv) KAgg takes as input
the public keys of all signers and generates the aggregated
public key; and (v) Vf takes as input the aggregated public
key, the message m, and the signature σ, and outputs a
bit b. We assume that ΠDSA is correct (i.e. it holds that
Pr[Vf(KAgg(pk0, pk1),m,ΠSig < (sk0,m), (sk1,m) >) =
1] = 1) and secure under the notion of two party existential
unforgeability under chosen message attack (2-EUF-CMA), as
described in [21].

Two-party Adaptor Signature with Aggregatable Public
Keys. We require a two-party adaptor signature scheme with
aggregatable public keys defined over a two-party signature
scheme with aggregatable public keys ΠaDSA :=(ΠpSig, pVf,
Adapt, Extract), where: (i) ΠpSig is an interactive protocol
between all signers, which takes as input their private keys, the
message, and the public statement, and outputs a presignature
(σ̂); (ii) pVf takes as input the presignature σ̂, the public
statement, the message, and the aggregated public key, and
outpus a bit b; (iii) Adapt takes as input the presignature σ̂
and the witness w, and outputs a signature σ; (iv) Extract
takes as input the signature σ, the presignature σ̂, and the
public statement, and returns a witness w. We assume that
ΠaDSA is correct and secure under the notions of two party
existential presignature unforgeability under chosen message
attack (2-aEUF-CMA), two party presignature adaptability and
two party presignature extractability, as described in [21]. We
restate these properties in Appendix C.

B. BL Authorization from Digital Signatures

We now provide a generic construction of IsAuth for BL
w.r.t. a digital signature scheme and prove that it satisfies BL
unforgeability. Note that to give a complete construction of a
ledger with BL authorization, it is also required to provide a
construction for IsFunded, IsUnique and IsValid.

Building Blocks. We require a digital signature scheme that
is correct and existentially unforgeable under chosen message
attacks, as described in Section IV-A. We assume that the
message space of the digital signature scheme coincides with
Supp(ctTxbsc(·, ·)).
Construction. Our construction is depicted in Fig. 3. In
particular, transactions are authorized by a signature created
with the sender’s signing key. Accordingly, the transaction val-
idation (i.e., IsAuth predicate) checks whether the signature
accompanying a transaction successfully verifies with respect
to sender’s public key.

ctAcc(1λ) :

(pk, sk)← ΠDS.KGen(1
λ)

return (pk, sk)

Authbsc(sk, txbsc) :

σ ← ΠDS.Sig(sk, txbsc)
return σbsc := σ

isAuthBL(txbsc, σbsc, pk) :

σ := σbsc

return ΠDS.Vf(txbsc, σ, pk)

ctAcc(1λ) :

(pk, sk)← createR(1λ)

return (pk, sk)

Authbsc(sk, txbsc) :

x := ParseSt(txbsc); ω := sk
π ← ΠNIZK.Prove(x, ω,CRS)

return σbsc := π

isAuthBL(txbsc, σbsc, pk) :

x := ParseSt(txbsc); π := σbsc

return ΠNIZK.Vf(x, π,CRS)

Fig. 3. BL authentication from a digital signature scheme (left) and a NIZK
(right). We assume that CRS is a ledger parameter set at ledger setup and is
known by all participants.

Security. We state below our formal security claims and defer
the formal proof to Appendix E.

Theorem 1 (BL Unforgeability). Assume that the digital
signature scheme is existentially unforgeable against chosen
message attacks. Then, the construction in Fig. 3 offers BL
unforgeabilty according to Definition 3.

C. BL Authorization from NIZK

In this section, we provide a generic construction of
IsAuth for BL w.r.t. a NIZK and prove that it satisfies BL
unforgeability.

Building Blocks. We require a NIZK that is correct and
provides soundness and zero-knowledge, as described in Sec-
tion IV-A, and a hard relation, as described in Section III.

Construction. Our construction is depicted in Fig. 3. In our
construction, we assume that the public statement required
by the NIZK can be extracted from the transaction itself,
and we denote it by x := ParseSt(txbsc). Later, we discuss
how to realize this assumption with Zcash and UTT. Given
that, our construction uses the Prove algorithm to authorize a
transaction and Vf to check the validity of such authorization.
This construction assumes that SetUp is run at ledger setup,
and the CRS is publicly available.

Security. We state below our formal security claims and defer
the formal proof to Appendix F.

7



Theorem 2 (BL Unforgeability). Assume that the NIZK pro-
vides knowledge soundness. Then, the construction in Fig. 3
offers BL unforgeabilty according to Definition 3.

Examples. Both in UTT [60] and Zcash [50] transactions
consist on a set of old coins, that are being burnt or destroyed,
and newly minted coins. Transactions are accompanied by a
proof for many statements (Zcash) or a set of proofs, one per
statement (UTT). The statements refer to proving that (i) the
input coins have sufficient coins (IsFunded), (ii) the input
and output coins are well formed (txbsc ∈ TX bsc), (iii) balance
is preserved (IsValid), and (iv) the input coins belong to the
sender (IsAuth). The ledger also verifies if the coins have
been spent (IsUnique).

Note that the statement (iv) is the only one related to the
transaction authorization (i.e., predicate IsAuth). Therefore,
to map UTT and Zcash to our framework, we only consider
the concrete statement-witness relation used in (iv).

D. CL from a Ledger with Condition and TimeLock Support

Bitcoin [43], Ethereum [64], Hyperledger Iroha [36], XRP
Ledger [66], Tezos [31] and their CBDC counterparts, it-
Coin [11], [62]- based on Bitcoin’s lightning network-, Iber-
pay Smart Money [35] -based on Ethereum contracts- and
Bakong [36], [44] - based on Hyperledger Iroha-, are examples
of ledgers with scripting capabilities that support IsAuthRel
and IsAuthT.

The conditional payment capabilities are embodied by
Hash TimeLock Contracts (HTLC) [49]. A HTLC allows to
create a transaction in which a sender and a receiver agree to
lock coins in an escrow address, under a C (a hash value )
and a timelock. In order to spend the coins from this escrow
account, there are two possible paths: (i) the witness of the
public statement (e.g. the hash preimage) is provided, together
with a signature of transaction valid under the receiver’s secret
key, or (ii) after the timelock, a signature under the sender’s
secret key is provided.

Building Blocks. For this construction, we require a digital
signature scheme that is correct and existentially unforge-
able under chosen message attacks, as described in Sec-
tion IV-A. We assume that the message space of the dig-
ital signature scheme coincides with Supp(ctTxbsc(·, ·)) ∪
Supp(ctTxred(·, ·)) ∪ Supp(ctTxref(·, ·)). Furthermore, we as-
sume the existence of a scripting language to enforce the
epk paths for redeem and refund transactions. Note that the
construction presented in this section does not rely only on
a hash as the hard relation: any other hard relation can be
supported (e.g. discrete logarithm).

Construction. In Section IV-B we proved that a ledger based
on a digital signature algorithm is a secure BL. Given that, we
focus here only on the specific functions that CL adds on top
of BL. This is presented in Fig. 4.

Security. We now analyze the security properties of our
construction. For properties CL redeem unforgeability and CL
refund unforgeability we state below our formal security claims
and defer the formal proof to Appendix G. Regarding CL
redeemability, CL refundability and CL extractability, it is
trivial to see that they hold. Both Authred and Authref result in

ctEAccS(C, T ) ctEAccR(C, T )

(pkS , skS)← ΠDS.KGen(1
λ) (pkR, skR)← ΠDS.KGen(1

λ)

(p̈kS , s̈kS)← ΠDS.KGen(1
λ) (p̈kR, s̈kR)← ΠDS.KGen(1

λ)

pkR ← Exchange(pkS) pkS ← Exchange(pkR)
epk := (pkR,C), (pkS , T ) epk := (pkR,C), (pkS , T )

txref ← ctTxref(epk, p̈kS) txred ← ctTxred(epk, p̈kR)
txred ← Exchange(txref) txref ← Exchange(txred)

auxS := (skS , s̈kS) auxR := (skR, s̈kR)
return (epk, auxS , txred, txref) return (epk, auxR, txred, txref)

Authred(auxR, w, txred)

(skR, ·)← auxR

σ ← ΠDS.Sig(skR, txred)
return (σ,w)

Authref(auxR, txref)

(skS , ·)← auxS

return ΠDS.Sig(skS , txref)

GWit(txred, σred, auxS)

(·, w)← σred

return w

isAuthCL({(txred, σred), (txref , σref)}, epk)

(pkR,C), (pkS , T )← epk
if txred

(σ,w)← σred

return IsAuthRel(txred, σred, epk) ∧ΠDS.Vf(txred, σ, pkR)
else if txref

return IsAuthT(txref , σref , epk) ∧ΠDS.Vf(txref , σref , pkS)
else return 0

Fig. 4. Implementation of CL functionalities using HTLC. We denote the
exchange of information between S and R with Exchange().

running ΠDS.Sig with knowledge of the appropriate secret key
(and the witness for redeem). Due to the correctness of ΠDS,
both algorithms will generate valid signatures, ensuring that
CL redeemability and CL refundability hold. In the specific
case of CL redeemability, the adversary provides the pair
(C, w). Since the signature is valid due to correctness of ΠDS,
the authorization will be valid as long as the statement and
witness provided by the adversary are in the hard relation. For
CL extractability, it is easy to see that a valid σred contains a
valid witness w, due to the definition of σred (see Figure 4).
Therefore, any valid σred in this setting provides a valid witness
and CL extractability holds.

Theorem 3 (CL redeem unforgeability). Assume that that the
digital signature scheme is unforgeable. Then, the our protocol
offers CL redeem unforgeability according to Definition 6.

Theorem 4 (CL refund unforgeability). Assume that that the
digital signature scheme is unforgeable. Then, our protocol
offers CL refund unforgeability according to Definition 6.

8



E. CL from a Ledger with TimeLock Support

The ledgers discussed in Section IV-D can also support
contracts that do not explicitly check IsAuthRel and only use
the scripting capabilities to ensure IsAuthT. An example of
this type of contract is Point TimeLock Contracts (PTLC) [46].
A PTLC allows to create a transaction in which a sender and
a receiver agree to lock coins in an escrow address, under a
condition C (a point in the elliptic curve) and a timelock. In
order to spend the coins from this escrow account there are
two possible paths: (i) the witness of the public statement (e.g.
the discrete log of the point) is used to adapt a presignature
on the escrow address into a valid signature, or (ii) after the
timelock, a signature under the sender’s secret key is provided.

Building Blocks. We require a digital signature scheme, a two
party digital signature scheme with aggregatable public keys,
and a two party adaptor signature scheme with aggregatable
public keys, as described in Section IV-A. We assume that the
message space of the digital signature scheme coincides with
Supp(ctTxbsc(·, ·))∪Supp(ctTxred(·, ·))∪Supp(ctTxref(·, ·)).
Finally, we need a timelock scripting capability to prevent the
refund path of the escrow account until T has expired.

Construction. In Section IV-B we proved that a ledger based
on a digital signature algorithm is a secure BL. In Section IV-D
we proved that a ledger based on a digital signature algorithm
and some scripting capabilities to encode the escrow account
is a secure CL. We present in Figure 5 our construction. Note
that Authref is equivalent to that of Section IV-D.

Security. For properties CL redeem unforgeability, CL re-
deemability and CL extractability we state below our formal
security claims and defer the formal proof to Appendix H.
Regarding CL refund unforgeability and CL refundability since
Authref is the same as in Section IV-D, these properties hold
for the same reasons. Note that the security reduction is the
same because pkrefS is a different key to the one used for the
redeem path pkS,R.

Theorem 5 (CL redeem unforgeability). Assume that the
two party adaptor signature scheme satisfies 2-aEUF-CMA
Security. Then, our protocol offers CL redeem unforgeability
according to Definition 6.

Theorem 6 (CL redeemability). Assume that the two party
adaptor signature scheme satisfies two-party pre-signature
adaptability. Then, our protocol offers CL redeemability ac-
cording to Definition 6.

Theorem 7 (CL extractability). Assume that the two party
adaptor signature scheme satisfies two-party witness ex-
tractability. Then, our protocol offers CL extractability accord-
ing to Definition 6.

F. Emulating a CL with a BL

We now consider how to create a CL when neither
IsAuthRel and IsAuthT are available. Effectively, this
means that the underlying ledger is of type BL. Therefore,
in this section we emulate the properties of a CL building
protocols on top of a BL. In a way, the emulation of a CL
from a BL could be considered an extension of Section IV-E
that allows to cryptographically timelock the generation of the
refund authorization.

ctEAccS(C, T ) ctEAccR(C, T )

(pkS , skS)← ΠDS.KGen(1
λ) (pkR, skR)← ΠDS.KGen(1

λ)

(pkrefS , skrefS )← ΠDS.KGen(1
λ)

(p̈kS , s̈kS)← ΠDS.KGen(1
λ) (p̈kR, s̈kR)← ΠDS.KGen(1

λ)

pkR ← Exchange(pkS , pkrefS ) pkS , pkrefS ← Exchange(pkR)
pkS,R ← KAgg(pkS , pkR) pkS,R ← KAgg(pkS , pkR)

epk := ((pkS,R), (pkrefS , T )) epk := ((pkS,R), (pkrefS , T ))

txref ← ctTxref(pkS,R, p̈kS) txred ← ctTxred(pkS,R, p̈kR)
txred ← Exchange(txref) txref ← Exchange(txred)
σ̂ ← ΠpSig(skS , txred,C) σ̂ ← ΠpSig(skR, txred,C)
aS := pVf(txred,C, σ̂) = 0 aR := pVf(txred,C, σ̂) = 0

if aS abort if aR abort

auxS := (skS , skrefS , s̈kS , σ̂,C) auxR := (skR, s̈kR, σ̂)
return (epk, auxS , txred, txref) return (epk, auxR, txred, txref)

Authred(auxR, w, txred)

(·, ·, σ̂)← auxR

return Adapt(σ̂, w)

Authref(auxR, txref)

(·, skrefS , ·, ·, ·)← auxS

return ΠDS.Sig(skrefS , txref)

GWit(txred, σred, auxS)

(·, ·, ·, σ̂,C)← auxS

return Extract(σred, σ̂,C)

isAuthCL({(txred, σred), (txref , σref)}, epk)

((pkS,R), (pkrefS , T ))← epk
if txred

return ΠDS.Vf(txred, σred, pkS,R)
else if txref

return IsAuthT(txref , σref , epk) ∧ΠDS.Vf(txref , σref , pkrefS )

else return 0

Fig. 5. Implementation CL functionalities of PTLC. Note that Authref is
exactly the same as in HTLC (see Figure 4). We denote the exchange of
information between S and R with Exchange().

Building Blocks. For this construction, we require a digi-
tal signature scheme, a two party digital signature scheme
with aggregatable public keys, a two party adaptor signa-
ture scheme with aggregatable public keys, and a verifiable
timed dlog as described in Section IV-A. We assume that the
message space of all three type of transactions is the same.
Therefore, the message space of the digital signature scheme
coincides with Supp(ctTxbsc(·, ·)) = Supp(ctTxred(·, ·)) =
Supp(ctTxref(·, ·)).

Construction. In Section IV-B we proved that a ledger based
on a digital signature algorithm is a secure BL. In Section IV-E
we proved the CL security of a ledger based on an identifi-
cation scheme. This scheme is similar to the PTLC, but with
the added complexity of having two presignatures. We present
our construction in Figure 6.

9



ctEAccS(C, T ) : ctEAccR(C, T ) :

(pkS , skS)← ΠDS.KGen(1
λ) (pkR, skR)← ΠDS.KGen(1

λ)

(p̈kS , s̈kS)← ΠDS.KGen(1
λ) (p̈kR, s̈kR)← ΠDS.KGen(1

λ)

pkR ← Exchange(pkS) pkS ← Exchange(pkR)
pkS,R ← KAgg(pkS , pkR) pkS,R ← KAgg(pkS , pkR)
epk := pkS,R epk := pkS,R
txref ← ctTxref(pkS,R, p̈kS) txred ← ctTxred(pkS,R, p̈kR)
txred ← Exchange(txref) txref ← Exchange(txred)
σ̂red ← ΠpSig(skS , txred,C) σ̂red ← ΠpSig(skR, txred,C)
aS := pVf(txred,C, σ̂red) aR := pVf(txred,C, σ̂red)

if aS = 0 abort if aR = 0 abort

(Cref , wref)← createR(1λ)

(P, π)← Commit(T,wref)

Receive(P, π,Cref) Send(P, π,Cref)

aS := Vf(P, π,Cref , T )

if aS = 0 abort

σ̂ref ← ΠpSig(skS , txref ,Cref) σ̂ref ← ΠpSig(skR, txref ,Cref)

aS := pVf(txref ,Cref , σ̂ref) aR := pVf(txref ,Cref , σ̂ref)

if aS = 0 abort if aR = 0 abort

auxS := (skS , s̈kS , σ̂red auxR := (skR, s̈kR, σ̂red)

σ̂ref ,C, P )

return (epk, auxS , txred, txref) return (epk, auxR, txred, txref)

Authred(auxR, w, txred)

(·, ·, σ̂red)← auxR

return Adapt(σ̂red, w)

Authref(auxS , txref) :

(·, ·, σ̂ref , ·, P )← auxS

wref ← forceOpen(P )

return Adapt(σ̂ref , w
ref)

GWit(txred, σred, auxS)

(·, ·, σ̂,C, ·)← auxS

return Extract(σred, σ̂,C)

isAuthCL({(txred, σred), (txref , σref)}, epk) :

pkS,R ← epk
return ΠDS.Vf(txi, σi, pkS,R)

Fig. 6. Emulation of a CL from a BL. Authred and GWit are implemented
as in Figure 5. We denote the bilateral exchange of information Exchange()
and unilateral sharing of information with Send() and Receive().

Security. We now analyze the security properties of our
construction. For properties CL redeem unforgeability, CL
refund unforgeability, CL redeemability, CL refundability and
CL extractability we state below our formal security claims
and defer the formal proof to Appendix I.

Theorem 8 (CL redeem unforgeability). Assume that the
two party adaptor signature scheme satisfies 2-aEUF-CMA
security and the verifiable timed dlog guarantees privacy.
Then, our protocol offers CL redeem unforgeability according
to Definition 6.

Theorem 9 (CL refund unforgeability). Assume that the
two party adaptor signature scheme satisfies two-party pre-
signature adaptability. Then, our protocol offers CL redeema-
bility according to Definition 6.

Theorem 10 (CL redeemability). Assume that the two party
adaptor signature scheme satisfies two-party pre-signature
adaptability. Then, our protocol offers CL redeemability ac-
cording to Definition 6.

Theorem 11 (CL refundability). Assume that verifiable timed
dlog is sound and that the two party adaptor signature
scheme satisfies two-party pre-signature adaptability. Then,
our protocol offers CL refundability according to Definition 6.

Theorem 12 (CL extractability). Assume that the two party
adaptor signature scheme satisfies two-party witness ex-
tractability. Then, our protocol offers CL extractability accord-
ing to Definition 6.

V. ATOMIC CROSS-LEDGER COIN SWAPS

In this section, we showcase how to use our crypto-
graphic framework to describe cross-ledger applications, such
as atomic coin swaps.

A cross-ledger swap involves two ledgers L0, L1 and two
users, Alice and Bob. Alice holds α coins on L0 controlled
by the account (skA, pkA) whereas Bob holds β coins on
L1 controlled by the account (skB , pkB). The swap problem
consists in ensuring that Alice transfers α to Bob in L0 if and
only if Bob transfers β to Alice in L1. Such a swap is atomic
if it results in one of the following outcomes (i) Bob owning α
in L0 and Alice owning β in L1 (i.e., coin swap); or (ii) Alice
recovering α in L0 and Bob recovering β in L1 (i.e., coin
refund).

Instead, we hereby show how to use our framework to
design a financial application (i.e., a cross-ledger coin swap in
this case) that is agnostic to the concrete transaction authoriza-
tion mechanism of the underlying ledger. This demonstrates
the utility of our framework in designing cross-ledger proto-
cols. Since we have defined two types of ledger, we discuss the
coin swap between two CL (Section V-A) and also between a
BL and a CL (Section V-B).

A. Atomic Cross-Ledger Swap between CL Ledgers

Protocol. The protocol is detailed in Fig. 7. Note that in blue
we detail the interactions of the users with the CL ledgers.
The protocol starts with a commit phase where parties agree
on the instance of the hard relation, the timeouts and the
escrow accounts parameters for the coin swap. This phase ends
with both parties sending coins to the escrow accounts in both
ledgers with the tx0bsc, tx1bsc transactions, respectively.

At this point, the protocol can enter either in the release
or the refund phase. In the former, Alice can authorize and
submit tx1red to L1 and then Bob can retrieve the coins from
L0 using the CL functionality. In the latter, Alice and Bob can
both recover their coins from the previously created escrow
accounts authorizing the corresponding refund transactions,
after their timeouts, T 0 and T 1 have expired.

10



Security intuition. Alice pays in L0 in exchange for a payment
from Bob in L1. During the commit phase, Alice engages with
Bob to generate and fund two escrow accounts, one in L0 and
the other in L1.

Regarding Alice, if they proceed to the release phase, we
know due to the property CL redeemability that Alice will
generate a valid authorization for the redeem transaction in L1.
Furthermore, due to the property CL redeem unforgeability,
she is the only party that can generate a redeem transaction
authorization. Alternatively, if they proceed to the refund stage,
due to the property CL refundability, she will generate a valid
authorization for the refund transaction in L0. Additionally,
due to CL refund unforgeability, she is the only party that can
generate a refund transaction authorization.

Regarding Bob, if they proceed to the release phase, we
know due to the property CL extractability, he will obtain
a correct witness w if Alice is able to generate a valid
redeem transaction in L1. We also know that due to CL
redeemability, Bob will generate a valid authorization for the
redeem transaction in L0, since he knows the correct witness.
Furthermore, due to the property CL redeem unforgeability,
he is the only party that can generate a redeem transaction
authorization. On the other hand, if they proceed to the refund
stage, due to the property CL refundability, he will generate a
valid authorization for the refund transaction in L1. Moreover,
due to CL refund unforgeability, he is the only party that can
generate a refund transaction authorization.

Discussion. CL provides the functionality to commit coins into
an escrow account between two parties, which can then be
either released or refunded. Atomic swap protocols built on
top of CL would only require to argue about: (i) how to link
the different conditions C for the created escrow accounts, and
(ii) how to set the timeouts, T , in order to guarantee that either
all parties fulfil the payment, or all parties can be refunded.

For example, in the running example of the coin swap,
since there are only two ledgers, there is no threat of a
wormhole attack [42]. As such, both escrow accounts could
be created with the same (C, w) ∈ R. If the two ledgers are
defined w.r.t different hard relations, then the sender should
provide two statements, C, C′, one for each hard relation, and
prove that both have the same witness w. Finally, the timeouts
need to be set in such a way that, even if the sender waits until
the last moment to trigger the redeem path, there is enough
time to run GWit to learn the witness w and use it in the second
ledger. Hence, the timeout T of the second ledger should be
larger than the one of the first ledger.

B. Atomic Cross-Ledger Swap between CL and BL Ledgers

Building Blocks. Aside from both ledgers, we require an ad-
ditional building block that allows to (i) verifiably encrypt the
witness of a statement in a given hard relation; and (ii) allow
to decrypt the data if and only if an oracle has attested that
a given event has occurred. Hereafter, we define two security
primitives that allow us to meet the above requirements:

Witness Encryption Based on Signatures. A witness encryp-
tion based on signatures [40] is a cryptographic primitive de-
fined with respect to signature scheme ΠDS := (KGen,Sig,Vf).

Alice(skA, pkA,∆) Bob(skB , pkB ,∆)

Commit Phase

(C, w)← createR(1λ) T 1 ← createT(·)
Send(C) Receive(C)
Receive(T 1) Send(T 1)

T 0 := T 1 +∆ T 0 := T 1 +∆

(epk0, aux0S , tx0red, tx0ref) (epk0, aux0R, tx0red, tx0ref)

← ctEAccL0
〈
S(C, T 0)

〉
← ctEAccL0

〈
R(C, T 0)

〉
(epk1, aux1R, tx1red, tx1ref) (epk1, aux1S , tx1red, tx1ref)

← ctEAccL1
〈
S(C, T 1)

〉
← ctEAccL1

〈
R(C, T 1)

〉
tx0bsc ← ctTxL0(pkA, epk1) tx1bsc ← ctTxL1(pkB , epk1)

σ0
bsc ← AuthL0bsc(skA, tx0bsc) σ1

bsc ← AuthL1bsc(skB , tx1bsc)

Send(tx0bsc) Receive(tx0bsc)

Receive(tx1bsc) Send(tx1bsc)

subTxL0(tx0bsc, σ
0
bsc)

if tx0bsc /∈ L0 abort

subTxL1(tx1bsc, σ
1
bsc)

Release phase (before T 1)

σ1
red ← AuthL1red(aux

1
R, w, tx1red)

subTxL1(tx1red, σ
1
red)

w ← GWitL1(tx1red, σ
1
red, aux

1
S)

σ0
red ← AuthL0red(aux

0
R, w, tx0red)

subTxL0(tx0red, σ
0
red)

Refund phase (after T 1)

σ0
ref ← AuthL0ref(aux

0
S , tx0ref) σ1

ref ← AuthL1ref(aux
1
S , tx1ref)

subTxL0(tx0ref , σ
0
ref) subTxL1(tx1ref , σ

1
ref)

Fig. 7. Atomic cross-ledger swap between CL ledgers. subTx refers to the
action of sending a transaction to the ledger.

It consists of two PPT algorithms (Enc, Dec), which we restate
in the following:

• c ← Enc((pk,m),m)). The encryption algorithm takes
as input a verification key pk of the signature scheme, a
message m̂, and the message to be encrypted m. It outputs
a ciphertext c.
• m ← Dec(σ, c). The decryption algorithm takes as input a

signature σ (s.t. Vf(pk,m, σ) = 1) and the ciphertext c. It
outputs a message m.

We assume it is correct and IND-CPA secure as defined in [40].

NIZK. A NIZK (as described in Section IV-A) for the
following language:

{(c,C, pk, txbsc) ∈ L : ∃ w s.t.
c← Enc((pk, txbsc), w) ∧ (C, w) ∈ R}

Assumptions. We assume an oracle service, similar to those
already deployed in practice (e.g., [15], [19], [40]), that check
whether a transaction txbsc has appeared in the BL ledger
and attest it with a signature σ ← Sig(sk, txbsc). This oracle
publishes these signatures in a bulletin board.

11



Alice(skA, pkA) Bob(skB , pkB)
Commit Phase

(pk′A, sk′A)← KGenBL(1λ) T ← createT(·)
Send(pkA, pk′A) Receive(pkA, pk′A)
Receive(pkB , T ) Send(pkB , T )

(C, w)← createR(1λ)

txBLbsc ← ctTxBL(pkB , pk′A)

c← Enc((pkO, txBLbsc), w)

π ← Prove(c, pkO, txBLbsc, w)

Send(txBLbsc, c, π,C) Receive(txBLbsc, c, π,C)
a := Vf(π, c,C, pkO, txBLbsc)
if a = 0 abort

(epkCL, auxCLS , txCLred, txCLref ) (epkCL, auxCLR , txCLred, txCLref )

← ctEAccCL ⟨S(C, T )⟩ ← ctEAccCL ⟨R(C, T )⟩
txCLbsc ← ctTxCL(pkA, epk)

Send(txCLbsc) Receive(txCLbsc)

σCL
bsc ← AuthCLbsc(skA, txCLbsc)

subTxCL(txCLbsc, σ
CL
bsc)

if txCLbsc ̸∈ TX CL abort

Release phase (before T )

σBL
bsc ← AuthBLbsc(skB , txBLbsc)

subTxBL(txBLbsc, σ
BL
bsc)

σO ← ReadO(txBLbsc)
w ← Dec(σO, c)

σCL
red ← AuthCLred(aux

CL
R , w, txCLred)

subTxCL(txCLred, σ
CL
red)

Refund phase (after T )

σCL
ref ← AuthCLref (aux

CL
S , txCLref )

subTxCL(txCLref , σ
CL
ref )

Fig. 8. Payment synchronization protocol between BL and CL. subTx refers
to the action of sending a transaction to the ledger, while ReadO refers to
reading information from the bulletin board of the oracle.

Protocol. Assuming the existence of the oracle service, we
can synchronize a payment between BL and CL. The idea is
to encrypt w and make its decryption possible if and only if
the oracle has attested that a specific transaction in BL has
happened. We show the synchronization protocol in Figure 8.
In blue, we mark the interactions of the users with the bulletin
board of the oracle, the CL and the BL. In this manner,
parties can read the attestation of the oracle (ReadO), submit
transactions to CL and BL ledgers (subTx), and read the ledger
history (TX BL, TX CL). All parties know the public key of the
oracle service pkO.

Security intuition. Alice pays in CL in exchange for a payment
from Bob in BL. During the commit phase, Alice engages
with Bob to generate one escrow account and agree on the
transaction that she will receive from Bob in BL.

Regarding Alice, if they proceed to the release phase, we
know due to the IND-CPA property of the encryption scheme,
Bob should not be able to learn the witness w without sending

the required transaction in BL. Furthermore, Bob is not able
to redeem without knowledge of the w, as this implies he can
break the hard relation. Alternatively, if they proceed to the
refund stage Alice will generate a valid authorization for the
refund transaction in L0, due to the property CL refundability.
Moreover, she is the only party that can generate a refund
transaction authorization, due to CL refund unforgeability.

As regards to Bob, if they proceed to the release phase
Alice should not be able to convince him that the cipher-text
contains a valid witness w when in fact it does not, due to the
knowledge-soundness property of the NIZK. Similarly, Bob,
who knows a valid witness, will generate a valid authorization
for the redeem transaction, due to CL redeemability. Addition-
ally, he is the only party that can generate a redeem transaction
authorization, due to the property CL redeem unforgeability.
On the other hand, if they proceed to the refund stage, due
to the property BL unforgeability, we know that Alice should
not be able to spend from Bob’s account without knowledge
of the secret key of Bob.

Discussion. To the best of our knowledge, a construction
that realizes the functionality of witness encryption based on
signatures together with the corresponding NIZK has not been
formally defined before. However, Section II of [40], outlines
the design of an efficient cryptographic primitive that allows
for the verifiable encryption of a discrete logarithm. This
design relies on the Boneh-Franklin identity-based encryp-
tion [14] to realize the witness encryption based on signatures,
and adopts ideas from the cut-and-choose technique used in
the verifiable encryption scheme of Camenisch et al. [16] to
achieve efficient verifiability for the encrypted message.

C. Other Applications

In this section, we showed as an example how to use our
framework for atomic swaps. However, it can also be used
as a cryptographic building blocks for other applications. We
provide two more examples.

Coin Mixers. Some coin mixer protocols like the primitive
blinded conditional signatures [30] are based on ledgers com-
patible with adaptor signatures, while others like Obscuro [61]
or Teeseract [12] rely on trusted hardware. Again, the current
situation seems to point to a heterogeneous set of protocols
each tailored to the characteristics of some ledgers. As such,
our cryptographic framework can be used to define coin mixing
protocols using the CL definition, ensuring that any protocol
devised with our framework could be compatible with any
ledger that is proven a secure CL.

Collateralized Loans. Collateralized loans are a standard
product offered by commercial banks, cryptocurrency ex-
changes, such as Binance, as well as standardized as an
Ethereum smart contract in the ERC-3156. However, the
aforementioned examples are tailored to the underlying as-
sumptions. While the ERC-3156 is based on the scripting
capabilities of the ethereum virtual machine, loans in an
exchange or a bank are based on the assumption of a trusted
party (although the regulation, guarantees and type of collateral
required differs between commercial banks and cryptocurrency
exchanges). We see as an interesting future work to model
collateralized loans using the CL as a cryptographic building
block, to provide a transversal protocol for any CL ledger.

12



VI. DISCUSSION

Arbitrary Amounts. For readability, the definitions for BL
and CL consider unitary transactions. Extending their defini-
tions to consider arbitrary amounts is possible: the validation
of the transaction amounts is considered in the predicates
IsFunded and IsValid. Moreover, transactions with ar-
bitrary amounts open the door for multiple receivers in ba-
sic, redeem and refund transactions. In particular, one could
adapt Definition 1 and Definition 4 to allow for multiple
receivers by defining the receiver accounts p̈k, as a list of
accounts rather than a single one.

Nested Escrow Accounts. In CL (Definition 4), the creation of
the escrow account protocol (ctEAcc) takes as input a public
statement and a timeout. This implicitly requires parties to
generate the receiving accounts (p̈k) for txred and txref inside
ctEAcc. However, inspection of our three CL constructions
(c.f. Figs. 4 to 6) as well as the respective security proofs,
shows that p̈k is only used as a placeholder for the receiver of
txred and txref , and does not affect the security of our scheme.
Hence, it can be also given as an input to ctEAcc. Therefore,
if p̈k are inputs to ctEAcc, it is possible to provide the escrow
account of another execution of ctEAcc as input, allowing
to combine multiple layers of conditions. This enables for
more advance functionalities for CL, also in combination with
multiple receiving addresses. We leave this as an interesting
future work direction.

Multisignature Wallets. Some ledgers (e.g. Bitcoin) sup-
port multisignature wallets. The constructions shown in Sec-
tion IV-E and Section IV-F are based on aggregatable keys,
but can be slightly modified to support multisignature wallets.
Instead of an aggregatable public key, the epk can consist of
two public keys (one for sender and another for receiver).
Therefore, a complete authorization on epk would require two
signatures, one for each of the keys. The redeem path could
be based on single-key adaptor signatures [3] that unlock
the signature that the receiver cannot generate on its own
with the proper witness. On the other hand, the refund path
for Section IV-F would also require a simple adaptor signature
on the signature of the receiver, with the witness to that path
(wref ) timelocked in a VTD puzzle.

Privacy. Privacy is an important feature to consider in any
payment system. However, in this work we focused on the
security aspects of the BL and CL, as our main goal is to
enable a universal methodology to build secure protocols based
on cryptographic assumptions to enable the interoperability of
BL and CL. We leave the definition of a privacy extension to
our cryptographic layer as future work.

Fungibility. A desirable property in many cross ledger pro-
tocols is fungibility, or the inability to pinpoint a conditional
transaction from all the transactions in the ledger. Note that
this property is also related to transaction privacy. With our
framework, one can check if a ledger can provide fungibility
by assessing (i) whether txbsc, txred and txref belong to the
same message space; and (ii) if they are distributed equally in
such space. In particular, a BL that emulates a CL following
the construction shown in Section IV-F should achieve this
notion.

Restrictions by a Central Bank. A central bank might want
to prevent citizens from performing cross-ledger payments
unless they are facilitated by a commercial bank. The reason
being compliance with anti-money laundering regulation. In
order to achieve so, there are several design options for the
CBDC easily identified with our framework. We discuss two
options: (i) require that the commercial bank holds partially
or in full the secret key of the user; and (ii) design the CBDC
ledger as a BL not compatible with adaptor signatures, and
limited view on the transactions accepted to the ledger (i.e.
each user can only see those in which they participate). Design
option (i) grants power to the commercial bank to prevent any
transaction not compliant with regulation from taking place.
Design option (ii) prevents users from building protocols to
emulate a CL, as described in Section IV-F. Furthermore, it
also prevents that an oracle service attesting accepted as we
described in Section V-B can be created. By introducing such
limitations, the central bank might run the risk of designing
a CBDC with features that are not sufficiently attractive for
citizens to use.

VII. CONCLUSIONS

Interoperability is a fundamental problem in CBDC and
cryptocurrencies alike. Yet, the approaches that exist are tai-
lored either to the specific ledger features, or rely on trusted
parties to facilitate exchanges. In this work, we proposed an
alternative approach: decouple the transaction authorization
details of each ledger from the definition of cross-ledger
applications. To do so, we defined a middle layer that abstracts
the core functionality for authorizing transactions in any ledger
and the security notions of interest. This middle layer servers
two purposes: (i) it becomes the main cryptographic building
block to (re)define cross-ledger applications in a ledger ag-
nostic manner; (ii) for any ledger that exists (and the new to
come), it suffices to prove that it is a secure instance of the
middle layer to be compatible with cross-ledger protocols.

In this work, we defined two new primitives for our cryp-
tographic layer, namely, BL and CL. We proved that digital
signatures and zero knowledge proofs are secure constructions
for BL. We also proved that HTLC, PTLC and the combination
of adaptor signatures with verifiable timelock puzzles are also
secure constructions for CL. Finally, we discussed how to
define some popular applications (e.g. atomic swaps between
ledgers) using our cryptographic layer.

Acknowledgements. This work has been partially supported
by PRODIGY Project (TED2021-132464B-I00) funded by
MCIN/AEI/10.13039/501100011033/ and the European Union
NextGenerationEU/PRTR

REFERENCES

[1] “Polkadot: Vision for a heterogeneous multi-chain framework,” 2016.
[2] R. Auer and R. Boehme, “Central bank digital currency: the

quest for minimally invasive technology,” Bank for International
Settlements, BIS Working Papers 948, Jun. 2021. [Online]. Available:
https://ideas.repec.org/p/bis/biswps/948.html

[3] L. Aumayr, O. Ersoy, A. Erwig, S. Faust, K. Hostáková, M. Maffei,
P. Moreno-Sanchez, and S. Riahi, “Generalized channels from limited
blockchain scripts and adaptor signatures,” in ASIACRYPT 2021.
Berlin, Heidelberg: Springer-Verlag, 2021, p. 635–664. [Online].
Available: https://doi.org/10.1007/978-3-030-92075-3 22

13

https://ideas.repec.org/p/bis/biswps/948.html
https://doi.org/10.1007/978-3-030-92075-3_22


[4] Bank of Canada, “Contingency Planning for a Central Bank
Digital Currency,” Bank of Canada webpage, 2020, accessed on
10.05.2022. [Online]. Available: https://www.bankofcanada.ca/2020/
02/contingency-planning-central-bank-digital-currency/

[5] Bank of England, “Central bank digital currency: Oportunities,
challenges and design,” Bank of England Discussion
Paper, 2019, accessed on 26.04.2022. [Online]. Available:
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/
central-bank-digital-currency-opportunities-challenges-and-design.
pdf?la=en&hash=DFAD18646A77C00772AF1C5B18E63E71F68E4593

[6] Bank of International Settlements, “Central bank digital currencies:
foundational principles and core features,” BIS other publications,
2020, accessed on 26.04.2022. [Online]. Available: https://www.bis.
org/publ/othp33.pdf

[7] ——, “Central bank digital currencies: financial stability implications,”
BIS other publications, 2021, accessed on 26.04.2022. [Online].
Available: https://www.bis.org/publ/othp42 fin stab.pdf

[8] ——, “Central bank digital currencies: System design and interoperabil-
ity,” BIS other publications, 2021, accessed on 26.04.2022. [Online].
Available: https://www.bis.org/publ/othp42 system design.pdf

[9] ——, “Central bank digital currencies: user needs and adoption,” BIS
other publications, 2021, accessed on 26.04.2022. [Online]. Available:
https://www.bis.org/publ/othp42 user needs.pdf

[10] ——, “Options for access to and interoperability of CBDCs
for cross-border payments: Report to G20,” BIS Innovation Hub,
Other, 2022, accessed on 29.05.2025. [Online]. Available: https:
//www.bis.org/publ/othp52.pdf

[11] M. Benedetti, F. D. Sclavis, M. Favorito, G. Galano, S. Giammusso,
A. Muci, and M. Nardelli, “A pow-less bitcoin with certified byzantine
consensus,” CoRR, vol. abs/2207.06870, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2207.06870

[12] I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach, P. Daian,
and A. Juels, “Tesseract: Real-time cryptocurrency exchange using
trusted hardware,” Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019.

[13] A. Boldyreva, “Threshold signatures, multisignatures and blind sig-
natures based on the gap-diffie-hellman-group signature scheme,” in
Public Key Cryptography — PKC 2003, Y. G. Desmedt, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 31–46.

[14] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” in Advances in Cryptology — CRYPTO 2001, J. Kilian, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 213–229.

[15] L. Breidenbach, C. Cachin, B. Chan, A. Coventry, S. Ellis, A. Juels,
F. Koushanfar, A. Miller, B. Magauran, D. Moroz et al., “Chainlink 2.0:
Next steps in the evolution of decentralized oracle networks,” Chainlink
Labs, vol. 1, 2021.

[16] J. Camenisch and I. Damgård, “Verifiable encryption, group encryption,
and their applications to separable group signatures and signature
sharing schemes,” in Proceedings of the 6th International Conference
on the Theory and Application of Cryptology and Information Security:
Advances in Cryptology, ser. ASIACRYPT ’00. Berlin, Heidelberg:
Springer-Verlag, 2000, p. 331–345.

[17] Central Bank of Nigeria, “Design Paper for the eNaira,” eNaira
webpage, 2021, accessed on 26.04.2022. [Online]. Available: https:
//enaira.gov.ng/download/eNaira Design Paper.pdf

[18] Central Bank of the Bahamas, “Project Sand Dollar: A Bahamas
Payments System Modernisation Initiative,” Central bank of
bahamas documents, 2019, accessed on 26.04.2022. [Online].
Available: https://www.centralbankbahamas.com/viewPDF/documents/
2019-12-25-02-18-11-Project-Sanddollar.pdf

[19] P. Chakka, S. Joshi, A. Kate, J. Tobkin, and D. Yang, “Dora:
Distributed oracle agreement with simple majority,” arXiv preprint
arXiv:2305.03903, 2023.

[20] D. Chaum, C. Grothoff, and T. Moser, “How to issue
a central bank digital currency,” Swiss National Bank
Working Papers, 2021, accessed on 26.04.2022. [Online].
Available: https://www.snb.ch/n/mmr/reference/working paper 2021
03/source/working paper 2021 03.n.pdf

[21] A. Erwig, S. Faust, K. Hostáková, M. Maitra, and S. Riahi, “Two-party

adaptor signatures from identification schemes,” in IACR International
Conference on Public-Key Cryptography. Springer, 2021, pp. 451–480.

[22] A. Erwig, S. Faust, S. Riahi, and T. Stöckert, “Commitee: An efficient
and secure commit-chain protocol using tees,” IACR Cryptol. ePrint
Arch., vol. 2020, p. 1486, 2020.

[23] European Central Bank, “A Digital Euro,” Digital Euro, 2020, accessed
on 26.04.2022. [Online]. Available: https://www.ecb.europa.eu/pub/pdf/
other/Report on a digital euro∼4d7268b458.en.pdf

[24] ——, “Digital euro experimentation scope and key
learnings,” Digital Euro, 2021, accessed on 26.04.2022.
[Online]. Available: https://www.ecb.europa.eu/pub/pdf/other/ecb.
digitaleuroscopekeylearnings202107∼564d89045e.en.pdf

[25] ——, “Eurosystem report on the public consultation on a digital
euro,” Digital Euro, 2021, accessed on 26.04.2022. [Online]. Avail-
able: https://www.ecb.europa.eu/pub/pdf/other/Eurosystem report on
the public consultation on a digital euro∼539fa8cd8d.en.pdf

[26] ——, “What is TARGET Instant Payment Settlement (TIPS)?”
European Central Bank main webpage, 2022, accessed on 26.04.2022.
[Online]. Available: https://www.ecb.europa.eu/paym/target/tips/html/
index.en.html

[27] European Central Bank, Banco de España, Eesti Pank, Bank of
Greece, Deutsche Bundesbank, Central Bank of Ireland, Latvijas
Banka, Banca d’Italia, and De Nederlandsche Bank, “Work stream
3: A New Solution Blockchain and eID,” Eesti Pank Varia,
2021, accessed on 26.04.2022. [Online]. Available: https://haldus.
eestipank.ee/sites/default/files/2021-07/Work%20stream%203%20-%
20A%20New%20Solution%20-%20Blockchain%20and%20eID 1.pdf

[28] European Central Bank and Bank of Japan, “Balancing confidenciality
and auditability in a distributed ledger environment,” STELLA project,
2019, accessed on 26.04.2022. [Online]. Available: https://www.ecb.
europa.eu/paym/intro/publications/pdf/ecb.miptopical200212.en.pdf

[29] ——, “Synchronized cross-border payments,” STELLA project, 2019,
accessed on 26.04.2022. [Online]. Available: https://www.ecb.europa.
eu/paym/intro/publications/pdf/ecb.miptopical190604.en.pdf

[30] N. Glaeser, M. Maffei, G. Malavolta, P. Moreno-Sanchez, E. Tairi,
and S. A. K. Thyagarajan, “Foundations of coin mixing services,”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1259–1273. [Online].
Available: https://doi.org/10.1145/3548606.3560637

[31] L. M. Goodman, “Tezos : A self-amending crypto-ledger position
paper,” 2014.

[32] M. Green and I. Miers, “Bolt: Anonymous payment channels for
decentralized currencies,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
473–489. [Online]. Available: https://doi.org/10.1145/3133956.3134093

[33] J. Gross, J. Sedlmeir, M. Babel, A. Bechtel, and B. Schellinger,
“Designing a central bank digital currency with support for cash-like
privacy,” 2021.

[34] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg,
“Tumblebit: An untrusted bitcoin-compatible anonymous payment hub,”
in Network and distributed system security symposium, 2017.

[35] Iberpay, “SMART MONEY Initiative: Preparations for the
possible launch of a digital euro or bank digital money by the
Spanish financial sector,” Iberpay webpage, 2021, accessed on
24.11.2022. [Online]. Available: https://www.iberpay.es/media/21555/
iberpay-report-on-smart-money-initiative-by-spanish-banking-sector.
pdf

[36] H. Iroha, “Iroha 2 documentation,” 2023. [Online]. Available:
https://hyperledger.github.io/iroha-2-docs/

[37] A. Kiayias, M. Kohlweiss, and A. Sarencheh, “Peredi: Privacy-
enhanced, regulated and distributed central bank digital currencies,”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1739–1752. [Online].
Available: https://doi.org/10.1145/3548606.3560707

[38] Z. Liu, A. Yang, J. Weng, T. Li, H. Zeng, and X. Liang, “Gmhl:
Generalized multi-hop locks for privacy-preserving payment channel

14

https://www.bankofcanada.ca/2020/02/contingency-planning-central-bank-digital-currency/
https://www.bankofcanada.ca/2020/02/contingency-planning-central-bank-digital-currency/
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf?la=en&hash=DFAD18646A77C00772AF1C5B18E63E71F68E4593
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf?la=en&hash=DFAD18646A77C00772AF1C5B18E63E71F68E4593
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf?la=en&hash=DFAD18646A77C00772AF1C5B18E63E71F68E4593
https://www.bis.org/publ/othp33.pdf
https://www.bis.org/publ/othp33.pdf
https://www.bis.org/publ/othp42_fin_stab.pdf
https://www.bis.org/publ/othp42_system_design.pdf
https://www.bis.org/publ/othp42_user_needs.pdf
https://www.bis.org/publ/othp52.pdf
https://www.bis.org/publ/othp52.pdf
https://doi.org/10.48550/arXiv.2207.06870
https://enaira.gov.ng/download/eNaira_Design_Paper.pdf
https://enaira.gov.ng/download/eNaira_Design_Paper.pdf
https://www.centralbankbahamas.com/viewPDF/documents/2019-12-25-02-18-11-Project-Sanddollar.pdf
https://www.centralbankbahamas.com/viewPDF/documents/2019-12-25-02-18-11-Project-Sanddollar.pdf
https://www.snb.ch/n/mmr/reference/working_paper_2021_03/source/working_paper_2021_03.n.pdf
https://www.snb.ch/n/mmr/reference/working_paper_2021_03/source/working_paper_2021_03.n.pdf
https://www.ecb.europa.eu/pub/pdf/other/Report_on_a_digital_euro~4d7268b458.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/Report_on_a_digital_euro~4d7268b458.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/ecb.digitaleuroscopekeylearnings202107~564d89045e.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/ecb.digitaleuroscopekeylearnings202107~564d89045e.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/Eurosystem_report_on_the_public_consultation_on_a_digital_euro~539fa8cd8d.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/Eurosystem_report_on_the_public_consultation_on_a_digital_euro~539fa8cd8d.en.pdf
https://www.ecb.europa.eu/paym/target/tips/html/index.en.html
https://www.ecb.europa.eu/paym/target/tips/html/index.en.html
https://haldus.eestipank.ee/sites/default/files/2021-07/Work%20stream%203%20-%20A%20New%20Solution%20-%20Blockchain%20and%20eID_1.pdf
https://haldus.eestipank.ee/sites/default/files/2021-07/Work%20stream%203%20-%20A%20New%20Solution%20-%20Blockchain%20and%20eID_1.pdf
https://haldus.eestipank.ee/sites/default/files/2021-07/Work%20stream%203%20-%20A%20New%20Solution%20-%20Blockchain%20and%20eID_1.pdf
https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.miptopical200212.en.pdf
https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.miptopical200212.en.pdf
https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.miptopical190604.en.pdf
https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.miptopical190604.en.pdf
https://doi.org/10.1145/3548606.3560637
https://doi.org/10.1145/3133956.3134093
https://www.iberpay.es/media/21555/iberpay-report-on-smart-money-initiative-by-spanish-banking-sector.pdf
https://www.iberpay.es/media/21555/iberpay-report-on-smart-money-initiative-by-spanish-banking-sector.pdf
https://www.iberpay.es/media/21555/iberpay-report-on-smart-money-initiative-by-spanish-banking-sector.pdf
https://hyperledger.github.io/iroha-2-docs/
https://doi.org/10.1145/3548606.3560707


networks,” Cryptology ePrint Archive, Report 2022/115, 2022, https:
//ia.cr/2022/115.

[39] J. Lovejoy, C. Fields, M. Virza, T. Frederick, D. Urness, K. Karwaski,
A. Brownworth, and N. Narula, “A High Performance Payment
Processing System Designed for Central Bank Digital Currencies,”
Federal Reserve of Boston and Digital Currency Initiative, 2022,
accessed on 26.04.2022. [Online]. Available: https://dam-prod.media.
mit.edu/x/2022/02/04/Hamilton-Whitepaper-2022.pdf

[40] V. Madathil, S. A. K. Thyagarajan, D. Vasilopou-
los, L. Fournier, G. Malavolta, and P. Moreno-Sanchez,
“Cryptographic oracle-based conditional payments,” 2023.
[Online]. Available: https://www.ndss-symposium.org/ndss-paper/
cryptographic-oracle-based-conditional-payments/

[41] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and privacy with payment-channel networks,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 455–471.

[42] G. Malavolta, P. A. Moreno-Sanchez, C. Schneidewind, A. Kate, and
M. Maffei, “Anonymous multi-hop locks for blockchain scalability and
interoperability,” Proceedings 2019 Network and Distributed System
Security Symposium, 2019.

[43] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[44] National Bank of Cambodia, “Project Bakong: Next Generation
Payment System,” Bakong Project webpage, 2020, accessed on
26.04.2022. [Online]. Available: https://bakong.nbc.org.kh/download/
NBC BAKONG White Paper.pdf

[45] S. Noether, A. Mackenzie et al., “Ring confidential transactions,”
Ledger, vol. 1, pp. 1–18, 2016.

[46] B. Optech, “Bitcoin optech newsletter 163. preparing for taproot 10:
Ptlc,” 2021. [Online]. Available: https://bitcoinops.org/en/newsletters/
2021/08/25/#preparing-for-taproot-10-ptlcs

[47] ——, “Bitcoin optech newsletter 170.” 2021. [On-
line]. Available: https://bitcoinops.org/en/newsletters/2021/10/13/
#multiple-proposed-ln-improvements

[48] People’s Bank of China, “Progress of Research and Development
of E-CNY in China,” People’s Bank of China Press Release, 2021,
accessed on 26.04.2022. [Online]. Available: http://www.pbc.gov.cn/
en/3688110/3688172/4157443/4293696/2021071614584691871.pdf

[49] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable
off-chain instant payments,” bitconlightning.com, 2016, accessed
on 06.05.2022. [Online]. Available: https://www.bitcoinlightning.com/
wp-content/uploads/2018/03/lightning-network-paper.pdf

[50] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in 2014 IEEE symposium on security and privacy. IEEE, 2014, pp.
459–474.

[51] Sveriges Riksbank, “E-krona project, report 1,” E-
krona reports, 2017, accessed on 26.04.2022. [On-
line]. Available: https://www.riksbank.se/globalassets/media/rapporter/
e-krona/2017/rapport ekrona uppdaterad 170920 eng.pdf

[52] ——, “E-krona project, report 2,” E-krona re-
ports, 2018, accessed on 26.04.2022. [Online]. Avail-
able: https://www.riksbank.se/globalassets/media/rapporter/e-krona/
2018/the-riksbanks-e-krona-project-report-2.pdf

[53] ——, “E-krona pilot phase 1,” E-krona reports, 2021, accessed on
26.04.2022. [Online]. Available: https://www.riksbank.se/globalassets/
media/rapporter/e-krona/2021/e-krona-pilot-phase-1.pdf

[54] ——, “E-krona pilot phase 2,” E-krona reports, 2022, accessed on
26.04.2022. [Online]. Available: https://www.riksbank.se/globalassets/
media/rapporter/e-krona/2022/e-krona-pilot-phase-2.pdf

[55] Swift. Cbdcs interoperability: 5 key takeaways from
our ground-breaking experiments. Accessed: 2023-05-29.
[Online]. Available: https://www.swift.com/news-events/news/
cbdcs-interoperability-5-key-takeaways-our-ground-breaking-experiments

[56] E. Tairi, P. Moreno-Sanchez, and M. Maffei, “A 2 l: Anonymous
atomic locks for scalability in payment channel hubs,” in 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 2021, pp. 1834–1851.

[57] S. A. K. Thyagarajan, A. Bhat, G. Malavolta, N. Döttling, A. Kate,

and D. Schröder, “Verifiable timed signatures made practical,” in CCS,
2020, pp. 1733–1750.

[58] S. A. K. Thyagarajan and G. Malavolta, “Lockable signatures for
blockchains: Scriptless scripts for all signatures,” 2021 IEEE Symposium
on Security and Privacy (SP), pp. 937–954, 2021.

[59] S. A. K. Thyagarajan, G. Malavolta, and P. Moreno-Sanchez, “Universal
atomic swaps: Secure exchange of coins across all blockchains,” in
IEEE Symposium on Security and Privacy, SP. IEEE, 2022, pp.
1299–1316. [Online]. Available: https://doi.org/10.1109/SP46214.2022.
9833731

[60] A. Tomescu, A. Bhat, B. Applebaum, I. Abraham, G. Gueta, B. Pinkas,
and A. Yanai, “Utt: Decentralized ecash with accountable privacy,”
Cryptology ePrint Archive, Paper 2022/452, 2022, https://eprint.iacr.
org/2022/452. [Online]. Available: https://eprint.iacr.org/2022/452

[61] M. Tran, L. Luu, M. S. Kang, I. Bentov, and P. Saxena, “Obscuro: A
bitcoin mixer using trusted execution environments,” in Proceedings of
the 34th Annual Computer Security Applications Conference, 2018, pp.
692–701.

[62] E. Urbinati, A. Belsito, D. Cani, A. Caporrini, M. Capotosto,
S. Folino, G. Galano, G. Goretti, Giancarloand Marcelli, P. Tiberi, and
A. Vita, “A digital euro: a contribution to the discussion on technical
design choices,” Banca d’Italia, 2021, accessed on 26.04.2022.
[Online]. Available: https://www.bancaditalia.it/pubblicazioni/
mercati-infrastrutture-e-sistemi-di-pagamento/questioni-istituzionali/
2021-010/N.10-MISP.pdf?language id=1

[63] VISA, “Authorization and reversal processing requirements for mer-
chant,” VISA webpage, 2020, accessed on 10.10.2022. [Online]. Avail-
able: https://usa.visa.com/content/dam/VCOM/global/support-legal/
documents/best-practices-authorization-and-reversal-processing.pdf

[64] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[65] K. Wüst, K. Kostiainen, N. Delius, and S. Capkun, “Platypus:
A central bank digital currency with unlinkable transactions and
privacy-preserving regulation,” New York, NY, USA, p. 2947–2960,
2022. [Online]. Available: https://doi.org/10.1145/3548606.3560617

[66] XRPL Foundation. Xrp ledger developer resources: Escrow. Accessed:
2023-05-18. [Online]. Available: https://xrpl.org/escrow.html

[67] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knot-
tenbelt, “Xclaim: Trustless, interoperable, cryptocurrency-backed as-
sets,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019, pp. 193–210.

15

https://ia.cr/2022/115
https://ia.cr/2022/115
https://dam-prod.media.mit.edu/x/2022/02/04/Hamilton-Whitepaper-2022.pdf
https://dam-prod.media.mit.edu/x/2022/02/04/Hamilton-Whitepaper-2022.pdf
https://www.ndss-symposium.org/ndss-paper/cryptographic-oracle-based-conditional-payments/
https://www.ndss-symposium.org/ndss-paper/cryptographic-oracle-based-conditional-payments/
https://bakong.nbc.org.kh/download/NBC_BAKONG_White_Paper.pdf
https://bakong.nbc.org.kh/download/NBC_BAKONG_White_Paper.pdf
https://bitcoinops.org/en/newsletters/2021/08/25/#preparing-for-taproot-10-ptlcs
https://bitcoinops.org/en/newsletters/2021/08/25/#preparing-for-taproot-10-ptlcs
https://bitcoinops.org/en/newsletters/2021/10/13/#multiple-proposed-ln-improvements
https://bitcoinops.org/en/newsletters/2021/10/13/#multiple-proposed-ln-improvements
http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/2021071614584691871.pdf
http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/2021071614584691871.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2017/rapport_ekrona_uppdaterad_170920_eng.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2017/rapport_ekrona_uppdaterad_170920_eng.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2018/the-riksbanks-e-krona-project-report-2.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2018/the-riksbanks-e-krona-project-report-2.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2021/e-krona-pilot-phase-1.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2021/e-krona-pilot-phase-1.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2022/e-krona-pilot-phase-2.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2022/e-krona-pilot-phase-2.pdf
https://www.swift.com/news-events/news/cbdcs-interoperability-5-key-takeaways-our-ground-breaking-experiments
https://www.swift.com/news-events/news/cbdcs-interoperability-5-key-takeaways-our-ground-breaking-experiments
https://doi.org/10.1109/SP46214.2022.9833731
https://doi.org/10.1109/SP46214.2022.9833731
https://eprint.iacr.org/2022/452
https://eprint.iacr.org/2022/452
https://eprint.iacr.org/2022/452
https://www.bancaditalia.it/pubblicazioni/mercati-infrastrutture-e-sistemi-di-pagamento/questioni-istituzionali/2021-010/N.10-MISP.pdf?language_id=1
https://www.bancaditalia.it/pubblicazioni/mercati-infrastrutture-e-sistemi-di-pagamento/questioni-istituzionali/2021-010/N.10-MISP.pdf?language_id=1
https://www.bancaditalia.it/pubblicazioni/mercati-infrastrutture-e-sistemi-di-pagamento/questioni-istituzionali/2021-010/N.10-MISP.pdf?language_id=1
https://usa.visa.com/content/dam/VCOM/global/support-legal/documents/best-practices-authorization-and-reversal-processing.pdf
https://usa.visa.com/content/dam/VCOM/global/support-legal/documents/best-practices-authorization-and-reversal-processing.pdf
https://doi.org/10.1145/3548606.3560617
https://xrpl.org/escrow.html


APPENDIX

A. Interactive-BL (IBL)

While in most ledgers the sender is able to authorize
the transaction without the intervention of the receiver (i.e.
intervention other than sharing a public key or some random-
ness.) and submit it to the ledger, we found a CBDC ledger,
Platypus [65], in which sender and receiver must interact
in order for the transaction to be properly authorized and
submitted to the ledger. Platypus is a version of interactive
and transferable eCash. As such, we extend the definition of
BL to accommodate to other CBDC ledgers that might follow
Platypus an also require interactive transaction authorization.

Definition 7 (Interactive-Basic Payment Ledger (IBL)).
Interactive-Basic Payment ledger comprises the PPT
algorithms (ctAcc, isAuthBL) and the protocol ΠAuthbsc
defined below:

• (pk, sk)← ctAcc(1λ) : The account creation algorithm.
Takes as input the security parameter, 1λ and outputs the
public key pk and private key sk of the account.

• σbsc ← ΠAuthbsc

〈
S(skS , txbsc),
R(skR, txbsc)

〉
The transaction authoriza-

tion protocol. Is an interactive protocol between S and R.
Each user takes as input their private key of the account,
(skS for S and skR for R) and a basic transaction, txbsc and
produces a basic transaction authorization, σbsc.

• 1/0← isAuthBL(txbsc, σbsc) : The authorization verification
algorithm for basic transactions. It takes as input a basic
transaction txbsc, a basic transaction authorization σbsc and
outputs 1 if the authorization corresponds to the sender and
receiver and 0 otherwise.

Definition 8 (IBL Correctness). A IBL is said to be cor-
rect if for all λ ∈ N, all (pkS , skS) ← ctAcc(1λ), all
(pkR, skR) ← ctAcc(1λ), all txbsc ← ctTxbsc(pkS , pkR), all

σbsc ← ΠAuthbsc

〈
S(skS , txbsc),
R(skR, txbsc)

〉
, it holds that:

Pr [isAuthBL(txbsc, σbsc) = 1] = 1

Security. The security properties are directed towards ensur-
ing that knowledge of the secret key is required to generate a
transaction involving any of the parties, as defined in Defini-
tion 9.

Definition 9 (IBL security). Let G := {SbscForge,
RbscForge} be the games defined in Fig. 9. A IBL is secure if
for every Gi ∈ G and for all λ ∈ N, there exists a negligible
function negl(λ) such that for all PPT adversaries A, it holds
that Pr[Gi(λ) = 1] ≤ negl(λ).

B. Digital Signature Scheme

A digital signature scheme consists on the tuple ΠDS :=
(KGen, Sig, Vf), where: (i) KGen gets as input 1λ and outputs a
key pair (pk, sk); (ii) Sig gets as input sk and a message m and
outputs a signature σ; and (iii) Vf gets as input pk, the message
m and the signature σ, and outputs a bit b. We assume that
ΠDS is correct (i.e. it holds that Vf(pk,m,Sig(sk,m)) = 1) and

SbscForgeΠBL,A(λ)

Q := ∅
(pkS , skS)← ctAcc(1λ)

(txbsc, σbsc)← A
OSΠAuth

bsc (pkS)
b0 := txbsc ̸∈ Q
b1 := isAuthBL(txbsc, σbsc)

return b0 ∧ b1

OSΠAuthbsc
(txbsc, skR)

σbsc ← ΠAuth
bsc

〈
S(skS , txbsc),
R(skR, txbsc)

〉
Q := Q∪ {txbsc}
return σbsc

Fig. 9. IBL security. We only show SbscForge, since RbscForge is the
same game, but changing S for R.

secure under the standard notion of existential unforgeability
under chosen message attack (EUF-CMA), which we restate
in Figure 10.

EUF− CMA

Q := ∅
(pk, sk)← KGen(1λ)

(m,σ)← ASigO(pk)
return Vf(pk,m, σ) ∧m ̸∈ Q

SigO(m)

σ ← Sig(sk,m)

Q := Q∪m

return σ

Fig. 10. Experiment for EUF-CMA.

C. Two party adaptor signature scheme with aggregatable
public keys

A two-party adaptor signature scheme with aggregatable
public keys [21] is defined w.r.t. a hard relation R and a
two party signature scheme with aggregatable public keys
ΠDSA :=(Setup, KGen, ΠSig, KAgg, Vf). It is run between
parties P0 and P1 and consists on the tupleΠaDSA :=(ΠpSig,
pVf, Adapt, Extract), where:

• ΠpSig is an interactive protocol between all signers, which
takes as input their private keys, the message and the
public statement and outputs a presignature (σ̂);

• pVf takes as input the presignature σ̂, the public state-
ment, the message and the aggregated public key and
outpus a bit b

• Adapt takes as input the presignature σ̂ and the witness
w and outputs a signature σ ;

• Extract takes as input the signature σ, the presignature σ̂
and the public statement and returns a witness, w.

We assume that ΠaDSA is correct and secure under the notions
of two party existential pre signature unforgeability under
chosen message attack (2-aEUF-CMA), two party presignature
adaptability and two party presignature extractability.

Definition 10 (2-aEUF-CMA). A two-party adaptor signature
scheme with aggregatable public keys is said to offer 2-aEUF-
CMA if for all λ ∈ N, there exists a negligible function

16



negl(λ) such that for all PPT adversaries A, it holds that
Pr[aSigForge(λ) = 1] ≤ negl(λ), where aSigForge is defined
in Fig. 11.

aSigForge(λ)

Q := ∅; pp← Setup(1λ)

(pk1−b, sk1−b)← ctAcc(pp)

(pkb, skb)← A(pp, pk1−b)

m∗ ← AOΠSig,OΠpSig(pk1−b, pkb, skb)

(C, w)← createR(1λ)

σ̂ ← ΠpSigsk1−b
(m∗,C)

σ∗ ← AOΠSig,OΠpSig(σ̂,C)
b0 := m ̸∈ Q
b1 := Vf(m∗, σ∗,KAgg(pk0, pk1)
return b0 ∧ b1

OΠSig(m)

σ ← ΠSigsk1−b
(pk0, pk1,m)

Q := Q∪ {m}
return σ

OΠpSig(m,C)

σ̂ ← ΠpSigsk1−b
(pk0, pk1,m,C)

Q := Q∪ {m}
return σ̂

Fig. 11. Experiment for 2-aEUF-CMA.

Definition 11 (Two-Party Pre-Signature Adaptability). A two-
party adaptor signature scheme with aggregatable public keys
is said to offer Two-Party Pre-Signature Adaptability if for
all λ ∈ N, messages m ∈ {0, 1}∗, statement and witness
pairs (C, w) ∈ R, publick keys pk0 and pk1 and presignature
σ̂ ∈ {0, 1}∗ that satisfies pVf(m,C, σ̂,KAgg(pk0, pk1), we
have that Pr[Vf(m,Adapt(σ̂, w),KAgg(pk0, pk1) = 1] = 1.

Definition 12 (Two Party Witness Extractability). A two-party
adaptor signature scheme with aggregatable public keys is said
to offer Two Party Witness Extractability if for all λ ∈ N,
there exists a negligible function negl(λ) such that for all PPT
adversaries A, it holds that Pr[aWitExt(λ) = 1] ≤ negl(λ),
where aWitExt is defined in Fig. 12.

D. Verifiable Timed Commitment

A verifiable timed commitment scheme, ΠVTC := (Commit,
Verify, Open, forceOpen) is defined with respect to a hard
relation, R, where (C, w) ∈ R and: (i) Commit takes as input
parameter T and the witness w and outputs a puzzle, P and a
proof π; (ii) Verify takes as input the puzzle P , T , the proof
π and the public statement C and outputs 1/0 to accept or
reject the proof; (iii) Open is run by the creator of the puzzle,
takes as input the puzzle P of hardness T and outputs the
solution to the puzzle, w and the randomness of the puzzle r;
and (iv) forceOpen takes as input the puzzle P and outputs the
solution to the puzzle, w. We assume ΠVTC to be correct (i.e.
Pr[SolP(GenP(T, s)) = s] = 1) and secure under the notions

aWitExt(λ)

Q := ∅; pp← Setup(1λ)

(pk1−b, sk1−b)← ctAcc(pp)

(pkb, skb)← A(pp, pk1−b)

(m∗,C∗)

← AOΠSig,OΠpSig(pk1−b, pkb, skb)
σ̂ ← ΠpSigsk1−b

(m∗,C∗)

σ∗ ← AOΠSig,OΠpSig(σ̂,C)
w∗ ← Extract(σ∗, σ̂,C∗)

b0 := m ̸∈ Q
b1 := Vf(m∗, σ∗,KAgg(pk0, pk1)
b2 := (C∗, w∗) ̸∈ R
return b0 ∧ b1 ∧ b2

OΠSig(m)

σ ← ΠSigsk1−b
(pk0, pk1,m)

Q := Q∪ {m}
return σ

OΠpSig(m,C)

σ̂ ← ΠpSigsk1−b
(pk0, pk1,m,C)

Q := Q∪ {m}
return σ̂

Fig. 12. Experiment for Two Party Witness Extractability.

of Timed Privacy and Soundness, which are defined in [59].
We restate them below.

Definition 13 (Soundness). A VTC scheme ΠVTC := (Commit,
Verify, Open, forceOpen) is sound if there exists a negligible
function negl(λ) such that for all PPT adversaries A, it holds
that

Pr

b1 = 1
b2 = 0

∣∣∣∣∣
(C, P, π, T )← A(1λ)
w ← forceOpen(P )
b1 := Vf(π, P,C, T )
b2 := (C, w) ∈ R

 ≤ negl(λ)

We say that a VTC is simulation-sound if it is sound even
when the prover has access to simulated proofs for (possibly
false) statements of his choice; i.e., the prover must not be
able to compute a valid proof for a fresh false statement of his
choice.

Definition 14 (Timed Privacy). A VTC scheme ΠVTC :=
(Commit, Verify, Open, forceOpen) is private if there exists
a negligible function negl(λ), a PPT simulator S , and a
polynomial T̂ such that for all polynomials T > T̂ , all PRAM
algorithms A whose running time is at most t < T , all
messages m ∈ {0, 1}∗, and all λ ∈ N , it holds that:

Pr

b = b∗

∣∣∣∣∣
(C, w)← createR(1λ)

b←$ {0, 1}
if b = 0 : (P, π)← Commit(w, T )

if b = 1 : (P, π)← S(C, T )
b∗ ← A(C, P, π, T )

 ≤ 1

2
+ negl(λ)

17



E. Security proofs for BL based on digital signatures

Correctness. We now analyze the correctness of our construc-
tion.

Theorem 13 (BL correctness). Assume that the digital signa-
ture scheme is correct. Then, this construction is a correct BL
according to Definition 2.

Proof: We need to show that

Pr [isAuthBL(txbsc, σbsc, pkS) = 1] = 1

By definition of isAuthBL we have that
isAuthBL(txbsc, σbsc, pkS) = ΠDS.Vf(txbsc, σbsc, pkS). By
definition of Authbsc, we have that isAuthBL(txbsc, σbsc, pkS) =
ΠDS.Vf(txbsc,ΠDS.Sig(skS , txbsc), pkS). Finally, assuming that
the digital signature scheme ΠDS is correct, we have that
isAuthBL(txbsc, σbsc, pkS) = 1. This concludes the proof.

Security. We now analyze the security of our construction.

Theorem 1 (BL Unforgeability). Assume that the digital
signature scheme is existentially unforgeable against chosen
message attacks. Then, the construction in Fig. 3 offers BL
unforgeabilty according to Definition 3.

Proof: Assume by contradiction that there exists a PPT
adversary A such that Pr[bscForge(λ) = 1] > negl(λ). We can
construct an adversary B that uses A to win the unforgeability
of the signature scheme, with the following steps:

• The challenger produces they key pair (pk, sk) and shares
pk with B.

• B forwards pk to A, which replies with a basic transaction,
txbsc and transaction authorization σbsc.

• B forwards the pair (txbsc, σbsc) to the challenger.

The OAuthbsc oracle of bscForge requires to call the OSig
oracle of the signature unforgeability game, which guarantees
that the memory of both oracles is synchronized.

Our adversary B perfectly simulates bscForge to A. More-
over, it is easy to see that B is a PPT algorithm. If isAuthBL
returns 1 for (txbsc, σbsc), this implies that ΠDS.Vf(m,σ)
returns 1, and σ will be a forgery. However, this contradicts
the assumption that the digital signature scheme is EUF-
CMA secure, so A cannot exist and this concludes the proof
of Theorem 1.

F. Security proofs for BL based on NIZK

Correctness. We now analyze the correctness of our construc-
tion.

Theorem 14 (BL correctness). Assume that the NIZK is
correct. Then, the NIZK construction in Figure 3 is a correct
BL according to Definition 2.

Proof: We need to show that

Pr [isAuthBL(txbsc, σbsc, pkS) = 1] = 1

By definition of isAuthBL we have that
isAuthBL(txbsc, σbsc, pkS) = ΠNIZK.Vf(x, π,CRS). By
definition of Authbsc, we have that isAuthBL(txbsc, σbsc, pkS) =
ΠNIZK.Vf(x,ΠNIZK.Prove(x, ω,CRS),CRS). The construction

assumes that CRS is generated at ledger setup by running
CRS ← SetUp(1λ). Finally, assuming that the NIZK ΠNIZK
is correct, we have that isAuthBL(txbsc, σbsc, pkS) = 1. This
concludes the proof.

Security. We now analyze the security of our construction.

Theorem 2 (BL Unforgeability). Assume that the NIZK pro-
vides knowledge soundness. Then, the construction in Fig. 3
offers BL unforgeabilty according to Definition 3.

Proof: Assume by contradiction that there exists a PPT
adversary A such that Pr[bscForge(λ) = 1] > negl(λ). We can
construct an adversary B that uses A to win the knowledge
soundness of the NIZK scheme, with the following steps:

• The challenger produces they CRS and shares CRS with B.
B and A use this string in the BL ledger.
• B runs (pk, sk) ← ctAcc and forwards pk to A, which

replies with a basic transaction, txbsc and transaction au-
thorization σbsc.
• B forwards the pair (txbsc, σbsc) to the challenger, encoded

as (x, π).

Our adversary B perfectly simulates bscForge to A. More-
over, it is easy to see that B is a PPT algorithm. If isAuthBL
returns 1 for (txbsc, σbsc), this implies that ΠNIZK.Vf(x, π,CRS)
returns 1, while at the same time A did not have access to
the witness, sk. Therefore, the challenger will not be able to
extract sk such that (txbsc, sk) ∈ L. However, this contradicts
the assumption that the NIZK scheme provides knowledge-
soundness, so A cannot exist and this concludes the proof
of Theorem 2.

G. Security proofs for ledger with condition and time-lock
support

Correctness. We first analyze the correctness of our construc-
tion.

Theorem 15 (CL correctness). Assume that the digital signa-
ture scheme is correct. Then, the HTLC blueprint is a correct
CL according to Definition 5.

Proof: We need to show for the redeem path that

Pr

[
isAuthCL(txred, σred, epk) = 1

(C, w′) ∈ R

]
= 1

and for the refund path that

Pr
[
isAuthCL(txref , σref , epk) = 1

]
= 1

Redeem refers to prove that isAuthCL(txred, σred, epk) =
1. By definition of isAuthCL, we have that
isAuthCL(txred, σred, epk) = ΠDS.Vf(txred, σred, pkR)∧(C, w) ∈
R. We now focus on the Vf side of the equation. By the
definition of Authred, we have that ΠDS.Vf(txred, σred, pkR) =
ΠDS.Vf(txred,ΠDS.Sig(txred, skR), pkR). The key pair
(pkR, skR) was generated in ctEAcc running ΠDS.KGen(1

λ).
Therefore, since we assume that the digital signature is
correct, the Vf side of isAuthCL must return 1. Regarding the
hard relation side of isAuthCL, Authred simply takes w and
appends it to σred. Since our assumption is that (C, w) ∈ R,
this side of isAuthCL also returns 1.

18



Get Witness refers to proving that (C, w′) ∈ R. By
construction, σred is the tuple (σ,w). Since we shown already
that isAuthCL(txred, σred, epk) = 1, this implies that w in σred

is a valid witness from C in R and by definition, GWit obtains
w′ simply by taking w from σred, therefore (C, w′) ∈ R.

Refund refers to prove that isAuthCL(txref , σref , epk) =
1. By definition of isAuthCL, we have that
isAuthCL(txref , σref , epk) = ΠDS.Vf(txref , σref , pkS). By the
definition of Authref , we have that ΠDS.Vf(txref , σref , pkS) =
ΠDS.Vf(txref ,ΠDS.Sig(txred, skS), pkS). The key pair (pkS , skS)
was generated in ctEAcc running ΠDS.KGen(1

λ). Therefore,
since we assume that the digital signature is correct,
isAuthCL(txred, σred, epk) = 1. This concludes the proof
of Theorem 15.

Security. We now analyze the security properties of our con-
struction. Properties CL redeem unforgeability and CL refund
unforgeability are proven below. Regarding CL redeemability,
CL refundability and CL extractability, it is trivial to see
that they hold. Both Authred and Authref result in running
ΠDS.Sig with knowledge of the appropriate secret key and the
witness (for redeem). Due to the correctness of ΠDS, both
algorithms will generate valid signatures, ensuring that CL
redeemability and CL refundability hold. In the specific case
of CL redeemability, the adversary provides the pair (C, w).
Since the signature is valid due to correctness of ΠDS, the
authorization will be valid as long as the statement and witness
provided by the adversary is in the hard relation. For CL
extractability, it is easy to see that a valid σred contains a
valid witness w, due to the definition of σred (see Figure 4).
Therefore, any valid σred in this setting provides a valid witness
and CL extractability holds.

Theorem 3 (CL redeem unforgeability). Assume that that the
digital signature scheme is unforgeable. Then, the our protocol
offers CL redeem unforgeability according to Definition 6.

Proof: Assume by contradiction that there exists a PPT
adversary A such that Pr[refForgeΠCL,R,A(λ) = 1] > negl(λ).
We can construct an adversary B that uses A to win the
unforgeability of the signature scheme, with the following
steps:

• The challenger produces they key pair (pk, sk) and shares
pk with B.

• B receives T fromA and runs createR to obtain (C, w) ∈ R.
• Then, B engages in ctEAcc with A, providing C to the latter

as input. When it is the turn of B to forward pkR, instead
B forwards pk to A. The rest of the protocol continues as
described in Fig. 4.
• A sends B a forged pair of redeem transaction, tx∗red and

transaction authorization σred.
• B renames the pair (tx∗red, σ

∗
red) as (m,σ) and forwards this

to the challenger.

Our adversary B perfectly simulates redForgeΠCL,R,A to
A. Moreover, it is easy to see that B is a PPT algorithm.
If isAuthCL returns 1 for (tx∗red, σ

∗
red, epk), this means that

ΠDS.Vf(tx∗red, σ
∗
red, pkR) = 1 , then ΠDS.Vf(m,σ, pk) will also

return 1, and σ will be a forgery. Furthermore, since A does
not have access to an oracle, tx∗red will not be in the memory of
the challenger. However, this contradicts the assumption that

the digital signature scheme is EUF-CMA secure, so A cannot
exist and this concludes the proof of Theorem 3.

Theorem 4 (CL refund unforgeability). Assume that that the
digital signature scheme is unforgeable. Then, our protocol
offers CL refund unforgeability according to Definition 6.

Proof: Assume by contradiction that there exists a PPT
adversary A such that Pr[refForgeΠCL,R,A(λ) = 1] > negl(λ).
We can construct an adversary B that uses A to win the
unforgeability of the signature scheme, with the following
steps:

• The challenger produces they key pair (pk, sk) and shares
pk with B.
• B receives C, T and st0 from A, and engages in ctEAcc

with A. When it is the turn of B to forward pkS , instead
B forwards pk to A. The rest of the protocol continues as
described in Fig. 4.
• A sends B a forged pair of refund transaction, tx∗ref and

transaction authorization σ∗
ref .

• B renames the pair (tx∗ref , σ
∗
ref) as (m,σ) and forwards this

to the challenger.

Our adversary B perfectly simulates refForgeΠCL,R,A to
A. Moreover, it is easy to see that B is a PPT algorithm.
If isAuthCL returns 1 for (tx∗ref , σ

∗
ref , epk), this means that

ΠDS.Vf(tx∗ref , σ
∗
ref , pkS) = 1, then ΠDS.Vf(m,σ, pk) will also

return 1, and σ will be a forgery. Furthermore, since A does
not have access to an oracle, tx∗ref will not be in the memory of
the challenger. However, this contradicts the assumption that
the digital signature scheme is EUF-CMA secure, so A cannot
exist and this concludes the proof of Theorem 4.

H. Security proofs for ledger with time-lock support

Correctness. We first analyze the correctness of our construc-
tion.

Theorem 16 (CL correctness). Assume that the digital signa-
ture scheme, the 2 party adaptor signature scheme and the
script for epk are correct. Then, the PTLC blueprint is a
correct CL according to Definition 5.

Proof: We need to show for the redeem path that

Pr

[
isAuthCL(txred, σred, epk) = 1

(C, w′) ∈ R

]
= 1

and for the refund path that

Pr
[
isAuthCL(txref , σref , epk) = 1

]
= 1

Redeem refers to prove that isAuthCL(txred, σred, epk) = 1.
By definition of isAuthCL for the redeem path, we have that
isAuthCL(txred, σred, epk) = ΠDS.Vf(txred, σred, pkS,R) By the
definition of Authred, we have that ΠDS.Vf(txred, σred, pkS,R) =
ΠDS.Vf(txred,Adapt(σ̂, w), pkS,R). By definition of ctEAcc,
σ̂ ← ΠpSig. Therefore, since we assume that the two party
adaptor digital signature is correct, isAuthCL(txred, σred, epk) =
1.

Get Witness refers to proving that (C, w′) ∈ R. By con-
struction, GWit executes Extract(σred, σ̂,C). We have already
proven that σred is the output of Adapt, and that it is a valid

19



signature. Therefore, since the two party adaptor signature
scheme is correct, w′ generated by Extract(σred, σ̂,C) must
also be a valid witness to C.

Refund refers to prove that isAuthCL(txref , σref , epk) = 1.
Since Authref is the same as in Section IV-D with regards to
keypair (pkrefS , skrefS ), the statement holds for the same reasons
as in Theorem 15. And this concludes the proof of Theorem 16.

Security. We now analyze the security properties of our
construction. Properties CL redeem unforgeability, CL re-
deemability and CL extractability are proven below. Regarding
CL refund unforgeability and CL refundability since Authref
is the same as in Section IV-D, these properties hold for the
same reasons. Note that the reduction is the same because
(pkrefS , skrefS ) is a different key to the one used for the redeem
path (pkS , skS).

Theorem 5 (CL redeem unforgeability). Assume that the
two party adaptor signature scheme satisfies 2-aEUF-CMA
Security. Then, our protocol offers CL redeem unforgeability
according to Definition 6.

Proof: We show redForgeΠCL,R,A, expanded with the
interactions of the PTLC blueprint in Figure 13

PTLC: redForgeΠCL,R,A(λ)

(T, st0)← A(1
λ)

(C, w)← createR(1λ)

sta ← A(C, st0)
(pkR, skR)← ΠDS.KGen(1

λ)

(p̈kR, s̈kR)← ΠDS.KGen(1
λ)

(pkS , skS , pkrefS , stb)← A(pkR, sta)
pkS,R ← KAgg(pkS , pkR)

epk := pkS,R ∨ (pkrefS ∧ T )

txred ← ctTxred(pkS,R, p̈kR)
(txref , stc)← A(txred, stb)

(σ̂, st1)← ΠpSig

〈
A(stc),

R(skR, txred,C)

〉
if pVf(txred,C, σ̂) = 0 abort

(tx∗red, σ
∗
red)← A(st1)

τ ← readTime(·)
b0 := ΠDS.Vf(tx∗red, σ

∗
red, pk′S,R)

b1 := τ < T

b2 := tx∗red ̸= txred
return b0 ∧ b1 ∧ b2

Fig. 13. PTLC: Experiment for redForgeΠCL,R,A.

Assume by contradiction that there exists a PPT adversary
A such that Pr[redForgeΠCL,R,A(λ) = 1] > negl(λ). We can
construct an adversary B that uses A to break 2-aEUF-CMA
Security (see Appendix C) with the following steps:

• B receives pkR from the challenger.
• B receives T from A.
• B runs (C, w)← createR(1λ) and shares C with A.

• B runs (pkR, skR) ← ΠDS.KGen(1
λ), (p̈kR, s̈kR) ←

ΠDS.KGen(1
λ) and shares pkR with A.

• A returns (pkS , skS , pkrefS ) to B, who forwards (pkS , skS) to
the challenger.
• B runs pkS,R ← KAgg(pkS , pkR), defines epk := (pkS,R ∨

pkrefS &T ) and creates txred. Sends txred to A to obtain txref .
• B calls OΠpSig of the challenger to run ΠpSig with A and

obtain σ̂ using C.
• B will check if pVf(txred,C, σ̂) = 0. However, this check

will verify, as B used the challenger as an oracle.
• A sends (tx∗red, σ

∗
red) to B.

• B sends tx∗red to the challenger, and both engage in ΠpSig

protocol, using a freshly created C′ by the challenger. B
can run this protocol because it received skS from A in a
previous step. The protocol ends with σ̂∗

• B sends σ∗
red to the challenger.

Our adversary B perfectly simulates redForgeΠCL,R,A to
A. Moreover, it is easy to see that B is a PPT algo-
rithm. If isAuthCL(tx∗red, σ

∗
red, epk) = 1, this implies that

Vf(tx∗red, σ
∗
red, pkS,R) = 1, which will also satisfied in the

two party adaptor security game. Furthermore, while txred will
be in memory of 2-aEUF-CMA Security, tx∗red will not be in
memory. If the adversary is able to send a forgery before the
T , expires, it will win redForgeΠCL,R,A. This implies that an
adversary winning redForgeΠCL,R,A can be used to break 2-
aEUF-CMA Security. However, this contradicts the assumption
that the two party adaptor signature scheme provides 2-aEUF-
CMA Security and this concludes the proof of Theorem 5.

Theorem 6 (CL redeemability). Assume that the two party
adaptor signature scheme satisfies two-party pre-signature
adaptability. Then, our protocol offers CL redeemability ac-
cording to Definition 6.

Proof: We show ExpRedeemΠCL,R,A, expanded with the
interactions of the PTLC construction in Figure 14

PTLC: ExpRedeemΠCL,R,A(λ)

(C, w, T, st0)← A(1
λ)

(pkR, skR)← ΠDS.KGen(λ)

(p̈kR, s̈kR)← ΠDS.KGen(λ)

(pkS , skS , pkrefS , sta)← A(pkR, st0)
pkS,R ← KAgg(pkS , pkR)

epk := pkS,R ∨ (pkrefS ∧ T )

txred ← ctTxred(pkS,R, p̈kR)
(txref , stb)← A(txred, sta)

(σ̂, st1)← ΠpSig

〈
A(stb),

R(skR, txred,C)

〉
if pVf(txred,C, σ̂) = 0 abort

σred ← Adapt(σ̂, w)

b0 := ΠDS.Vf(txred, σred, pkS,R) = 0

b1 := (C, w) ∈ R
return b0 ∧ b1

Fig. 14. PTLC: Experiment for ExpRedeemΠCL,R,A

Assume by contradiction that there exists a PPT adversary

20



A such that Pr[ExpRedeemΠCL,R,A(λ) = 1] > negl(λ). We
can construct an adversary B that uses A to break Two-Party
Adaptability (see Appendix C) with the following steps:

• B receives (C, w, T ) from A.
• B runs (pkR, skR) ← ΠDS.KGen(1

λ), (p̈kR, s̈kR) ←
ΠDS.KGen(1

λ) and shares pkR with A.
• A replies with pkS , skS and pkrefS .
• B runs KAgg in order to obtain pkS,R, which is used to also

create epk and txred. Sends txred to A and receives txref .
• B runs ΠpSig with A, until the protocol ends, outputting σ̂.
• B checks if pVf(txred,C, σ̂) verifies. If it verifies, B sends
C, w, pkS , pkR, txred and σ̂ to the challenger.

Our adversary B perfectly simulates ExpRedeemΠCL,R,A
to A. Moreover, it is easy to see that B is a PPT algorithm.
Now, if adversary wins ExpRedeemΠCL,R,A, this implies that
B failed to obtain a valid signature when running Adapt(σ̂, w)
with a valid witness. Therefore, the challenger will fail as well.
However, this contradicts the assumption that the two party
adaptor signature scheme provides Two-Party Adaptability and
this concludes the proof of Theorem 6.

Theorem 7 (CL extractability). Assume that the two party
adaptor signature scheme satisfies two-party witness ex-
tractability. Then, our protocol offers CL extractability accord-
ing to Definition 6.

Proof: We show ExpExtractΠCL,R,A, expanded with the
interactions of the PTLC construction in Figure 15

PTLC: ExpExtractΠCL,R,A(λ)

(C, T, st0)← A(1
λ)

(pkS , skS)← KGen(λ)

(pkrefS , skrefS )← KGen(λ)

(p̈kS , s̈kS)← KGen(λ)

(pkR, skR, sta)← A(pkS , pkrefS )

pkS,R ← KAgg(pkS , pkR)

epk := pkS,R ∨ (pkrefS ∧ T )

txref ← ctTxref(pkS,R, p̈kS)
(txred, stb)← A(txref , sta)

(σ̂, st1)← ΠpSig

〈
S(skS , txred,C),
A(stb)

〉
if pVf(txred,C, σ̂) = 0 abort

σred ← A(st1)
w′ ← Extract(σred, σ̂,C)
b0 := Vf(txred, σred, pkS,R)

b1 := (C, w′) ̸∈ R
return b0 ∧ b1

Fig. 15. PTLC: Experiment for ExpExtractΠCL,R,A

Assume by contradiction that there exists a PPT adversary
A such that Pr[ExpExtractΠCL,R,A(λ) = 1] > negl(λ). We
can construct an adversary B that uses A to break Two-Party
Witness Extractability (see Appendix C) with the following
steps:

• B receives pkS from the challenger.

• B receives (C, T ) from A.
• B runs (pkrefS , skrefS ) ← ΠDS.KGen(1

λ), (p̈kS , s̈kS) ←
ΠDS.KGen(1

λ) and shares pkS , pkrefS with A.
• A replies with pkR, skR.
• B runs KAgg in order to obtain pkS,R, which is used to

also create epk and txref . txref is sent to A to obtain txred.
B sends pkR, skR, txred,C to challenger in two stages. First,
the keys, then the transaction and C.
• Challenger starts ΠpSig protocol, using txred and C. B simply

relays the messages between challenger and A, until the
protocol ends, outputting σ̂.
• A sends (σred) to B, which forwards it to the challenger.

Our adversary B perfectly simulates ExpExtractΠCL,R,A to
A. Moreover, it is easy to see that B is a PPT algorithm.
If condition b0 is satisfied in ExpExtractΠCL,R,A this means
that Vf(txred, σred, pkS,R) = 1, which will also be satisfied
in the adaptor Two-Party Witness Extractability. Finally, b1
is equivalent to the second winning condition for Two-Party
Witness Extractability. This implies that an adversary that wins
ExpExtractΠCL,R,A can be used to break Two-Party Witness
Extractability. Note that A does not have oracle access, and
that txred is the message used to generate the presignature with
the challenger, ensuring that it will not be in the challenger’s
memory. However, this contradicts the assumption that the two
party adaptor signature scheme provides Two-Party Witness
Extractability and this concludes the proof of Theorem 7.

I. Security proofs for emulating a CL with a BL

Correctness. We first analyze the correctness of the construc-
tion.

Theorem 17 (CL correctness). Assume that the aggregatable
digital signature scheme, the 2 party adaptor signature scheme
and the Verifiable Timed Commitment schemes are correct.
Then, the CL emulation from a BL correct CL according
to Definition 5.

Proof: We need to show for the redeem path that

Pr

[
isAuthCL(txred, σred, epk) = 1

(C, w′) ∈ R

]
= 1

and for the refund path that

Pr
[
isAuthCL(txref , σref , epk) = 1

]
= 1

CL emulation is an extension of PTLC with a refund branch
that is not trusted on the ledger. Therefore, prove correctness
for the redeem branch (Authred and GWit) is equivalent to
prove it for PTLC (see Theorem 16).

Refund refers to prove that isAuthCL(txref , σref , epk) = 1.
By definition of isAuthCL for the refund path, we have that
isAuthCL(txref , σref , epk) = ΠDS.Vf(txref , σref , pkS,R). By the
definition of Authref , we have that σred ← Adapt(σ̂ref , w

ref)
and wref ← forceOpen(P ). By definition of ctEAcc, P ←
ΠVTD.Commit(T,wref), while σ̂ref is the output of ΠpSig

on public statement Cref and keys pkS and pkR. There-
fore, since we assume that the two party aggregatable digi-
tal signature and Verifiable Timed Commitment are correct,
isAuthCL(txref , σref , epk) = 1. And this concludes the proof
of Theorem 17

21



Security. We now analyze the security properties of our
construction.

Theorem 8 (CL redeem unforgeability). Assume that the
two party adaptor signature scheme satisfies 2-aEUF-CMA
security and the verifiable timed dlog guarantees privacy.
Then, our protocol offers CL redeem unforgeability according
to Definition 6.

Proof: We consider the following game hops:

Game redForgeG0

ΠCL,R,A: This game, formally defined
in Figure 16 with the blue line, corresponds to the original
game for CL redeem unforgeability. The game is expanded
with the interactions described in our implementation.

Game redForgeG1

ΠCL,R,A: This game, formally defined
in Figure 16, works exactly as G0 but with the red line instead
of the blue line. The challenger, instead of using Commit, uses
simulator S in order to generate P and π.

Game redForgeG2

ΠCL,R,A: This game, formally defined
in Figure 16, works exactly as G1 with the exception the violet
line. The challenger, aborts if tx∗ref = txref .

CL emulation: redForgeΠCL,R,A(λ)

(T, st0)← A(1
λ)

(C, w)← createR(1λ)

sta ← A(C, st0)
(pkR, skR)← ΠDS.KGen(1

λ)

(p̈kR, s̈kR)← ΠDS.KGen(1
λ)

(pkS , skS , stb)← A(pkR, sta)
pkS,R ← KAgg(pkS , pkR)
epk := pkS,R
txred ← ctTxred(pkS,R, p̈kR)
(txref , stc)← A(txred, stb)

(σ̂red, std)← ΠpSig

〈
A(stc),

R(skR, txred,C)

〉
if pVf(txred,C, σ̂red) = 0 abort

(Cref , wref)← createR(1λ)

(P, π)← Commit(wref , T ) (P, π)← S(Cref , T )

ste ← A(P, π,C
ref , std)

(σ̂ref , st1)← ΠpSig

〈
A(ste),

R(skR, txref ,Cref)

〉
if pVf(txred,Cref , σ̂ref) = 0 abort

(tx∗red, σ
∗
red)← A(st1)

if tx∗red = txref abort
τ ← readTime(·)
b0 := Vf(tx∗red, σ

∗
red, pkS,R)

b1 := τ < T

b2 := tx∗red ̸= txred
return b0 ∧ b1

Fig. 16. CL emulation: Experiments redForgeG0
ΠCL,R,A (ignoring the violet

and red lines, and including the blue line); redForgeG1
ΠCL,R,A (including red

line, and ignoring the violet and blue lines); and redForgeG2
ΠCL,R,A (including

the violet and red lines, and ignoring the blue line).

Claim 1. Let Bad1 be the event that:∣∣∣∣∣ Pr[redForgeG0

ΠCL,R,A(λ) = 1]

−Pr[redForgeG1

ΠCL,R,A(λ) = 1]

∣∣∣∣∣ > negl(λ)

Assume that the Verifiable Timed Commitment provides Timed
Privacy. Then Pr[Bad1] ≤ negl(λ).

Proof: Assume by contradiction that Pr[Bad1] > negl(λ),
then there exists PPT distinguisher A such that:

Pr

b = b∗

∣∣∣∣∣
b←$ {0, 1}

redForgeGb
ΠCL,R,A(λ)

b∗ ← A()

 >
1

2
+ negl(λ)

We can construct adversary B that uses A to break VTC
Timed Privacy (see Appendix D) with the following steps:

• B receives C, P, π from the challenger.
• B receives T from A.
• B runs (C′, w′)← createR(1λ) and shares C′ with A.
• B runs (pkR, skR) ← ΠDS.KGen(1

λ), (p̈kR, s̈kR) ←
ΠDS.KGen(1

λ) and shares pkR with A.
• A returns (pkS , skS) to B.
• B runs KAgg in order to obtain pkS,R, which is used to also

create epk and txred. Sends txred to A to obtain txref .
• B engage in ΠpSig with A using txred,C′ and obtains σ̂red.
• B sends C, P, π to A.
• B engage in ΠpSig with A using txref ,C and obtains σ̂ref .
• A sends (tx∗ref , σ

∗
ref ) to B.

• A sends b∗ to B, which in turn forwards it to the challenger.

Our adversary B perfectly simulates redForgeG0

ΠCL,R,A and
redForgeG1

ΠCL,R,A to A. Moreover, it is easy to see that B is
a PPT algorithm. If the adversary can distinguish the two
games with provability higher than 1/2+ negl(λ) this implies
that it can be used to break VTC Timed Privacy. However,
this contradicts with the assumption that the Verifiable Timed
Commitment guarantees Privacy. Thus, Pr[Bad1] ≤ negl(λ)
and this claim has been proven.

Claim 2. Let Bad2 be the event that the challenger aborts
because tx∗red = txref . Assume that the two party adaptor
signature provides 2-aEUF-CMA Security (see Appendix C).
Then Pr[Bad2] ≤ negl(λ).

Proof: Assume by contradiction that there exists a PPT
adversary A such that Pr[Bad1] > negl(λ). We can construct
an adversary B that uses A to break 2-aEUF-CMA Security
(see Appendix C) with the following steps:

• B receives pkR from the challenger.
• B receives T from A.
• B runs (C, w)← createR(1λ) and shares C with A.
• B runs (pkR, skR) ← ΠDS.KGen(1

λ), (p̈kR, s̈kR) ←
ΠDS.KGen(1

λ) and shares pkR with A.
• A returns (pkS , skS) to B, who forwards (pkS , skS) to the

challenger.
• B runs KAgg in order to obtain pkS,R, which is used to also

create epk and txred. Sends txred to A to obtain txref .
• B calls OΠpSig of the challenger to run ΠpSig with A and

obtain σ̂red using C.
• B sends txref as m∗ to the challenger and receives Cref .
• B runs (P, π)← S(Cref , T ) and sends Cref , P, π to A.

22



• Challenger starts ΠpSig protocol, using txref and Cref . B
simply relays the messages between challenger and A, until
the protocol ends, outputting σ̂.

• A sends (tx∗red, σ
∗
red) to B.

• B sends σ∗
red as σ∗ to the challenger.

Our adversary B perfectly simulates redForgeΠCL,R,A to
A. Moreover, it is easy to see that B is a PPT algo-
rithm. If isAuthCL(tx∗red, σ

∗
red, epk) = 1, this implies that

Vf(tx∗red, σ
∗
red, pkS,R) = 1, which will also satisfied in the two

party adaptor security game. Furthermore, while txred will be
in memory of 2-aEUF-CMA Security, tx∗red := txref will not be
in memory. If the adversary is able to send a forgery before
the T , expires, it will win redForgeΠCL,R,A. This implies that
an adversary winning redForgeΠCL,R,A can be used to break 2-
aEUF-CMA Security. However, this contradicts the assumption
that the two party adaptor signature scheme provides 2-aEUF-
CMA Security. Thus, Pr[Bad2] ≤ negl(λ) and this claim has
been proven.

Claim 3. Assume that the two party adaptor signature
provides 2-aEUF-CMA Security (see Appendix C). Then
Pr[redForgeG2

ΠCL,R,A(λ) = 1] ≤ negl(λ).

Proof: Assume by contradiction that there exists a PPT
adversary A such that Pr[redForgeG2

ΠCL,R,A(λ) = 1] > negl(λ).
We can construct an adversary B that uses A to break 2-aEUF-
CMA Security (see Appendix C) with the following steps:

• B receives pkR from the challenger.
• B receives T from A.
• B runs (C, w)← createR(1λ) and shares C with A.
• B runs (pkR, skR) ← ΠDS.KGen(1

λ), (p̈kR, s̈kR) ←
ΠDS.KGen(1

λ) and shares pkR with A.
• A returns (pkS , skS) to B, who forwards (pkS , skS) to the

challenger.
• B runs KAgg in order to obtain pkS,R, which is used to also

create epk and txred. Sends txred to A to obtain txref .
• B calls OΠpSig of the challenger to run ΠpSig with A and

obtain σ̂red using C.
• B runs (Cref , wref)← createR(1λ) and (P, π)← S(Cref , T )

and sends Cref , P, π to A.
• B calls OΠpSig of the challenger to run ΠpSig with A and

obtain σ̂ref using Cref .
• A sends (tx∗red, σ

∗
red) to B.

• B sends tx∗red to the challenger, and both engage in ΠpSig

protocol, using a freshly created C′ by the challenger. B
can run this protocol because it received skS from A in a
previous step. The protocol ends with σ̂∗

red.
• B sends σ∗

red to the challenger.

Our adversary B perfectly simulates redForgeG2

ΠCL,R,A to
A. Moreover, it is easy to see that B is a PPT algo-
rithm. If isAuthCL(tx∗red, σ

∗
red, epk) = 1, this implies that

Vf(tx∗red, σ
∗
red, pkS,R) = 1, which will also satisfied in the two

party adaptor security game. Furthermore, while txred, txref will
be in memory of 2-aEUF-CMA Security, tx∗red will not be in
memory. If the adversary is able to send a forgery before the
T , expires, it will win redForgeG2

ΠCL,R,A. This implies that an
adversary winning redForgeG2

ΠCL,R,A can be used to break 2-
aEUF-CMA Security. However, this contradicts the assumption
that the two party adaptor signature scheme provides 2-aEUF-
CMA Security and this claim has been proven.

This concludes the proof of Theorem 8.

Theorem 9 (CL refund unforgeability). Assume that the
two party adaptor signature scheme satisfies two-party pre-
signature adaptability. Then, our protocol offers CL redeema-
bility according to Definition 6.

Proof: refForgeΠCL,R,A, formally defined in Figure 17,
corresponds to the original game for CL refund unforgeability.
The game is expanded with the interactions described in our
implementation.

CL emulation: refForgeΠCL,R,A(λ)

(C, T, st0)← A(1
λ)

(pkS , skS)← ΠDS.KGen(1
λ)

(p̈kS , s̈kS)← ΠDS.KGen(1
λ)

(pkR, skR, sta)← A(pkS , st0)
pkS,R ← KAgg(pkS , pkR)
epk := pkS,R
txref ← ctTxref(pkS,R, p̈kS)
(txred, stb)← A(txref , sta)

(σ̂red, stc)← ΠpSig

〈
R(skS , txred,C),
A(stb)

〉
if pVf(txred,C, σ̂red) = 0 abort

(P, π,Cref , std)← A(stc)
if Vf(π, P,Cref , T ) = 0 abort

(σ̂ref , st1)← ΠpSig

〈
S(skS , txref ,Cref),

A(std)

〉
if pVf(txref ,Cref , σ̂ref) = 0 abort

(tx∗ref , σ
∗
ref)← A(st1)

b0 := tx∗ref /∈ {txred, txref}
b1 := Vf(tx∗ref , σ

∗
ref , pkS,R)

return b0 ∧ b1

Fig. 17. CL emulation: Experiment refForgeΠCL,R,A .

Assume by contradiction that there exists a PPT adversary
A such that Pr[refForgeΠCL,R,A(λ) = 1] > negl(λ). We can
construct an adversary B that uses A to break 2-aEUF-CMA
Security (see Appendix C) with the following steps:

• B receives pkS from the challenger.
• B receives C, T from A.
• B runs (p̈kS , s̈kS) ← ΠDS.KGen(1

λ) and shares pkS with
A.
• A returns (pkR, skR) to B, who forwards (pkR, skR) to the

challenger.
• B runs KAgg in order to obtain pkS,R, which is used to also

create epk and txref . Sends txref to A to obtain txred.
• B calls OΠpSig of the challenger to run ΠpSig with A and

obtain σ̂red using C.
• A sends P, π,Cref .
• B calls OΠpSig of the challenger to run ΠpSig with A and

obtain σ̂ref using Cref .
• A sends (tx∗ref , σ

∗
ref ) to B.

• B sends tx∗ref to the challenger, and both engage in ΠpSig

protocol, using a freshly created C′ by the challenger. B

23



can run this protocol because it received skS from A in a
previous step. The protocol ends with σ̂∗

ref .
• B sends σ∗

ref to the challenger.

Our adversary B perfectly simulates refForgeΠCL,R,A to
A. Moreover, it is easy to see that B is a PPT algo-
rithm. If isAuthCL(tx∗ref , σ

∗
ref , epk) = 1, this implies that

Vf(tx∗ref , σ
∗
ref , pkS,R) = 1, which will also satisfied in the two

party adaptor security game. Furthermore, while txred, txref will
be in memory of 2-aEUF-CMA Security, tx∗ref will not be in
memory. If the adversary is able to send a forgery before the
T , expires, it will win refForgeΠCL,R,A. This implies that an
adversary winning refForgeΠCL,R,A can be used to break 2-
aEUF-CMA Security. However, this contradicts the assumption
that the two party adaptor signature scheme provides 2-aEUF-
CMA Security and this concludes the proof of Theorem 9.

Theorem 10 (CL redeemability). Assume that the two party
adaptor signature scheme satisfies two-party pre-signature
adaptability. Then, our protocol offers CL redeemability ac-
cording to Definition 6.

Proof: ExpRedeemΠCL,R,A, formally defined in Figure 18,
corresponds to the original game for CL redeemability. The
game is expanded with the interactions described in our
implementation.

CL emulation: ExpRedeemΠCL,R,A(λ)

(C, w, T, st0)← A(1
λ)

(pkR, skR)← ΠDS.KGen(1
λ)

(p̈kR, s̈kR)← ΠDS.KGen(1
λ)

(pkS , skS , sta)← A(pkR, st0)
pkS,R ← KAgg(pkS , pkR)
epk := pkS,R
txred ← ctTxred(pkS,R, p̈kR)
(txref , stb)← A(txred, sta)

(σ̂red, stc)← ΠpSig

〈
A(stb),

R(skR, txred,C)

〉
if pVf(txred,C, σ̂red) = 0 abort

(Cref , wref)← createR(1λ)

(P, π)← Commit(T,wref)

std ← A(P, π,C
ref , stc)

(σ̂ref , st1)← ΠpSig

〈
A(std),

R(skR, txref ,Cref)

〉
if pVf(txred,Cref , σ̂ref) = 0 abort

σred ← Adapt(σ̂red, w)

b0 := Vf(txred, σred, pkS,R) = 0

b1 := (C, w) ∈ R
return b0 ∧ b1

Fig. 18. CL emulation: Experiment ExpRedeemΠCL,R,A.

Assume by contradiction that there exists a PPT adversary
A such that Pr[ExpRedeemΠCL,R,A(λ) = 1] > negl(λ). We
can construct an adversary B that uses A to break Two-Party
Adaptability (see Appendix C) with the following steps:

• B receives (C, w, T ) from A.
• B runs (pkR, skR) ← ΠDS.KGen(1

λ), (p̈kR, s̈kR) ←
ΠDS.KGen(1

λ) and shares pkR with A.
• A replies with pkS and skS .
• B runs KAgg in order to obtain pkS,R, which is used to also

create epk and txred. Sends txred to A and receives txref .
• B runs ΠpSig with A, using txred and C, until the protocol

ends, outputting σ̂red.
• B runs (Cref , wref) ← createR(1λ), (P, π) ←
Commit(T,wref) and shares P , π and Cref with A.
• B runs ΠpSig with A, using txref and Cref , until the protocol

ends, outputting σ̂ref .
• B checks if pVf(txred,C, σ̂red) verifies. If it verifies, B sends
C, w, pkS , pkR, txred and σ̂red to the challenger.

Our adversary B perfectly simulates ExpRedeemΠCL,R,A to
A. Moreover, it is easy to see that B is a PPT algorithm. Now,
if adversary wins ExpRedeemΠCL,R,A, this implies that B failed
to obtain a valid signature when running Adapt(σ̂red, w) with
a valid witness. Therefore, the challenger will fail as well.
However, this contradicts the assumption that the two party
adaptor signature scheme provides Two-Party Adaptability and
this concludes the proof of Theorem 10.

Theorem 11 (CL refundability). Assume that verifiable timed
dlog is sound and that the two party adaptor signature
scheme satisfies two-party pre-signature adaptability. Then,
our protocol offers CL refundability according to Definition 6.

Proof: We consider the following game hops:

Game ExpRefundG0

ΠCL,R,A: This game, formally defined
in Figure 19 without the grey line, corresponds to the original
game for CL refundability. The game is expanded with the
interactions described in our implementation.

Game ExpRefundG1

ΠCL,R,A: This game, formally defined
in Figure 19, works exactly as G0 with the exception high-
lighted in the grey line. The challenger, aborts if (Cref , wref) /∈
R.

Claim 4. Let Bad1 be the event that the challenger aborts
in because (Cref , wref) /∈ R. Assume that the Verifiable
Timed Commitment provides Soundness (see Appendix C).
Then Pr[Bad1] ≤ negl(λ).

Proof: Assume by contradiction that there exists a PPT
adversary A such that Pr[Bad1] > negl(λ). We can construct
an adversary bdv that uses A to break VTC Soundness
(see Appendix C) with the following steps.

• B receives T from A.
• B runs (C, w)← createR(1λ) and shares C with A.
• B runs (pkS , skS) ← ΠDS.KGen(1

λ), (p̈kS , s̈kS) ←
ΠDS.KGen(1

λ) and shares pkS with A.
• A returns (pkR, skR) to B, which runs KAgg in order to

obtain pkS,R, which is used to also create epk and txred.
• B sends txred to A to obtain txref .
• B engages in ΠpSig with A and obtains σ̂red using txred,C.
• A sends Cref , P, π to B.
• B engages in ΠpSig with A and obtains σ̂ref using txref ,Cref .
• B runs wref ← forceOpen(P ).
• B sends (Cref , P, π, T ) to the challenger.

24



CL emulation: ExpRefundΠCL,R,A(λ)

(T, st0)← A(1
λ)

(C, w)← createR(1λ)

sta ← A(C, st0)
(pkS , skS)← ΠDS.KGen(1

λ)

(p̈kS , s̈kS)← ΠDS.KGen(1
λ)

(pkR, skR, stb)← A(pkS , sta)
pkS,R ← KAgg(pkS , pkR)
epk := pkS,R
txref ← ctTxref(pkS,R, p̈kS)
(txred, stc)← A(txref , stb)

(σ̂red, std)← ΠpSig

〈
R(skS , txred,C),
A(stc)

〉
if pVf(txred,C, σ̂red) = 0 abort

(P, π,Cref , ste)← A(std)
if Vf(π, P,Cref , T ) = 0 abort

(σ̂ref , st1)← ΠpSig

〈
S(skS , txref ,Cref),

A(ste),

〉
if pVf(txref ,Cref , σ̂ref) = 0 abort

wref ← forceOpen(P )

if (Cref , wref) /∈ R abort

σref ← Adapt(σ̂ref , w
ref)

return Vf(txref , σref , pkS,R) = 0

Fig. 19. CL emulation: Experiments ExpRefundG0
ΠCL,R,A (ignoring the line

highlighted in grey) and ExpRefundG1
ΠCL,R,A (including line highlighted in

grey).

Our adversary B perfectly simulates ExpRefundΠCL,R,A to
A. Moreover, it is easy to see that B is a PPT algorithm.
Now, if adversary wins ExpRefundΠCL,R,A, this implies that
Vf(π, P,Cref , T ) = 1 which also satisfies VTC Soundness.
Moreover, forceOpen(P ) outputs wref such that (Cref , wref) /∈
R (Pr[Bad1] > negl(λ) assumption). This implies that an
adversary winning ExpRefundΠCL,R,A can be used to break
VTC Soundness. However, this contradicts the assumption that
the Verifiable Timed Commitment provides Soundness and this
claim has been proven.

Claim 5. Assume that the two party adaptor signature provides
Two-Party Pre-Signature Adaptability (see Appendix C). Then
Pr[ExpRefundG1

ΠCL,R,A(λ) = 1] ≤ negl(λ).

Proof: Assume by contradiction that there exists a PPT
adversary A such that Pr[ExpRefundG1

ΠCL,R,A(λ) = 1] >
negl(λ). We can construct an adersary B that uses A to break
Two-Party Pre-Signature Adaptability (see Appendix C) with
the following steps:

• B receives T from A.
• B runs (C, w)← createR(1λ) and shares C with A.
• B runs (pkS , skS) ← ΠDS.KGen(1

λ), (p̈kS , s̈kS) ←
ΠDS.KGen(1

λ) and shares pkS with A.
• A returns (pkR, skR) to B, which runs KAgg in order to

obtain pkS,R, which is used to also create epk and txred.
• B sends txred to A to obtain txref .

• B engages in ΠpSig with A and obtains σ̂red using txred,C.
• A sends Cref , P, π to B.
• B engages in ΠpSig with A and obtains σ̂ref using txref ,Cref .
• B runs wref ← forceOpen(P ).
• B runs σref ← Adapt(σ̂ref , w

ref)
• B sends (txref ,Cref , wref , pkS , pkR, σ̂ref , σref) to the chal-

lenger.

Our adversary B perfectly simulates ExpRefundG1

ΠCL,R,A to
A. Moreover, it is easy to see that B is a PPT algorithm. Now,
if adversary wins ExpRefundΠCL,R,A−G1, this implies that B
failed to obtain a valid signature when running Adapt(σ̂red, w)
with a valid witness. Therefore, the challenger will fail as well.
However, this contradicts the assumption that the two party
adaptor signature scheme provides Two-Party Adaptability and
this claim has been proven.

This concludes the proof of Theorem 11.

Theorem 12 (CL extractability). Assume that the two party
adaptor signature scheme satisfies two-party witness ex-
tractability. Then, our protocol offers CL extractability accord-
ing to Definition 6.

Proof: ExpExtractΠCL,R,A, formally defined in Figure 20,
corresponds to the original game for CL redeem unforgeability.
The game is expanded with the interactions described in our
implementation.

CL emulation: ExpExtractΠCL,R,A(λ)

(C, T, st0)← A(1
λ)

(pkS , skS)← ΠDS.KGen(1
λ)

(p̈kS , s̈kS)← ΠDS.KGen(1
λ)

(pkR, skR, sta)← A(pkS , st0)
pkS,R ← KAgg(pkS , pkR)
epk := pkS,R
txref ← ctTxref(pkS,R, p̈kS)
(txred, stb)← A(txref , sta)

(σ̂red, stc)← ΠpSig

〈
R(skS , txred,C),
A(stb)

〉
if pVf(txred,C, σ̂red) = 0 abort

(P, π,Cref , std)← A(stc)
if Vf(π, P,Cref , T ) = 0 abort

(σ̂ref , st1)← ΠpSig

〈
S(skS , txref ,Cref),

A(std)

〉
if pVf(txref ,Cref , σ̂ref) = 0 abort

σred ← A(st1)
w ← Extract(σred, σ̂red,C)
b0 := Vf(txred, σred, pkS,R)
b1 := (C, w) ̸∈ R
return b0 ∧ b1

Fig. 20. CL emulation: Experiment ExpExtractΠCL,R,A.

Assume by contradiction that there exists a PPT adversary
A such that Pr[ExpExtractΠCL,R,A(λ) = 1] > negl(λ). We
can construct an adversary B that uses A to break Two-Party

25



Witness Extractability (see Appendix C) with the following
steps:

• B receives pkS from the challenger.
• B receives (C, T ) from A.
• B runs (p̈kS , s̈kS) ← ΠDS.KGen(1

λ) and shares pkS with
A.

• A replies with pkR, skR.
• B runs KAgg in order to obtain pkS,R, which is used to

also create epk and txref . txref is sent to A to obtain txred.
B sends pkR, skR, txred,C to challenger in two stages. First,
the keys, then the transaction and C.

• Challenger starts ΠpSig protocol, using txred and C. B simply
relays the messages between challenger and A, until the
protocol ends, outputting σ̂.

• A sends P, π,Cref .
• B calls OΠpSig of the challenger to run ΠpSig with A and

obtain σ̂ref using C.
• A sends σred to B, which forwards it as σ to the challenger.

Our adversary B perfectly simulates ExpExtractΠCL,R,A to
A. Moreover, it is easy to see that B is a PPT algorithm.
If condition b0 is satisfied in ExpExtractΠCL,R,A this means
that Vf(txred, σred, pkS,R) = 1, which will also be satisfied
in the adaptor Two-Party Witness Extractability. Finally, b1
is equivalent to the second winning condition for Two-Party
Witness Extractability. This implies that an adversary that wins
ExpExtractΠCL,R,A can be used to break Two-Party Witness
Extractability. Note that A does not have oracle access, and
that txred is the message used to generate the presignature with
the challenger, ensuring that it will not be in the challenger’s
memory. However, this contradicts the assumption that the two
party adaptor signature scheme provides Two-Party Witness
Extractability and this concludes the proof of Theorem 12.

J. Witness unforgeability is equivalent to hard relation

An additional property, called witness unforgeability could
provide guarantees to an honest sender that the receiver can-
not generate a redeem transaction without knowledge of the
corresponding witness. We define this property as follows.

Definition 15 (CL Witness Unforgeability). A CL is said to
offer CL Witness Unforgeability if for all λ ∈ N, there exists a
negligible function negl(λ) such that for all PPT adversaries
A, it holds that Pr[wForgeΠCL,R,A(λ) = 1] ≤ negl(λ), where
wForgeΠCL,R,A is defined in Fig. 21.

If we assume that the hard relation does not hold, it is
trivial to see that this property does not hold either. Now, we
show that if the hard relation assumption holds, this property
must hold as well.

Theorem 18 (CL Witness Unforgeability). Assume that that
the hard relation assumption holds. Then, CL offers CL redeem
unforgeability according to Definition 15.

Proof: Assume by contradiction that there exists a PPT
adversary A such that Pr[wForgeΠCL,R,A(λ) = 1] > negl(λ).
We can construct an adversary B that uses A to break the hard
relation, with the following steps:

• The challenger produces they an instance of the hard rela-
tion, (C, w) and shares C with B.

wForgeΠCL,R,A(λ)

(T, st0)← A(1
λ)

(C, w)← createR(1λ)〈
(epk, auxS , auxA, txred, txref),
(epk, auxA, txred, txref , st1)

〉
← ctEAcc

〈
S(C, T ),
A(st0)

〉
σred ← A(st1)
w′ ← GWit(txred, σred, auxS)

b0 := isAuthCL(txred, σred, epk)
b1 := (C, w′) ∈ R
return b0 ∧ b1

Fig. 21. Experiment for CL Witness Unforgeability.

• B receives T and st0 from A, and follows all the steps as
described in Fig. 21.
• B runs algorithm GWit using auxS , txred, σred as input to

generate w′.
• B forwards w′ to the challenger.

Our adversary B perfectly simulates wForgeΠCL,R,A to A.
Moreover, it is easy to see that B is a PPT algorithm.

If isAuthCL returns 1 for (txref , σref , epk) and (C, w′) ∈ R,
this means that (C, w′) ∈ R will also hold for the challenger.
However, this contradicts the assumption that the hard relation
assumption holds, so A cannot exist and this concludes the
proof of Theorem 18.

26


	Introduction
	Where Existing Approaches Fall Short
	Our Approach

	Preliminaries
	Cryptographic Layer: Definitions for BL and CL
	Basic Payment Ledger (BL)
	Conditional Payment Ledger (CL)

	Constructions for BL and CL
	Building Blocks
	BL Authorization from Digital Signatures
	BL Authorization from NIZK
	CL from a Ledger with Condition and TimeLock Support
	CL from a Ledger with TimeLock Support
	Emulating a CL with a BL

	Atomic Cross-Ledger Coin Swaps
	Atomic Cross-Ledger Swap between CL Ledgers
	Atomic Cross-Ledger Swap between CL and BL Ledgers
	Other Applications

	Discussion
	Conclusions
	References
	Appendix
	Interactive-BL (IBL)
	Digital Signature Scheme
	Two party adaptor signature scheme with aggregatable public keys
	Verifiable Timed Commitment
	Security proofs for BL based on digital signatures
	Security proofs for BL based on NIZK
	Security proofs for ledger with condition and time-lock support
	Security proofs for ledger with time-lock support
	Security proofs for emulating a CL with a BL
	Witness unforgeability is equivalent to hard relation


