
Quantum Cryptanalysis of OTR and OPP:
Attacks on Confidentiality, and Key-Recovery

Melanie Jauch and Varun Maram

Department of Computer Science, ETH Zurich, Switzerland
mjauch@student.ethz.ch, vmaram@inf.ethz.ch

Abstract. In this paper, we analyze the security of authenticated en-
cryption modes OTR (Minematsu, Eurocrypt 2014) and OPP (Granger
et al., Eurocrypt 2016) in a setting where an adversary is allowed to
make encryption queries in quantum superposition. Starting with OTR
– or more technically, AES-OTR, a third-round CAESAR candidate –
we extend prior quantum attacks on the mode’s unforgeability in the
literature to provide the first attacks breaking confidentiality, i.e., IND-
qCPA security, of AES-OTR in different settings depending on how the
associated data is processed. On a technical level, one of our IND-qCPA
attacks involves querying the quantum encryption oracle on a superpo-
sition of data with unequal length; to the best of our knowledge, such
an attack has never been modelled before in the (post-)quantum crypto-
graphic literature, and we hence believe our technique is of independent
interest. Coming to OPP, we present the first key-recovery attack against
the scheme which uses only a single quantum encryption query.

Keywords: AES-OTR, OPP, Authenticated Encryption, IND-qCPA Security,
Key-Recovery, Simon’s Algorithm, Deutsch’s Algorithm

1 Introduction

With the development of large-scale quantum computers on the horizon, the se-
curity of widely-deployed cryptographic systems faces new threats. Specifically,
public-key cryptosystems that rely on the hardness of factorization or comput-
ing discrete-logs would suffer from devastating attacks based on Shor’s algo-
rithm [28]. This has led to the setting of so-called post-quantum secure public-key
cryptography gaining a lot of attention over the last few years, which includes
efforts by NIST [3] to standardize such quantum-resistant algorithms.

Coming to the symmetric-key cryptography setting however, the impact of
quantum computers has been assumed to be significantly less severe for a long
time. It was widely believed that quantum attacks on symmetric primitives such
as block ciphers would only improve by a quadratic speed up due to Grover’s al-
gorithm [12], and that we cannot do any better. Naturally, it was hence assumed
that it is enough to simply double the key size of the affected primitives to restore
the same level of security as in the classical setting. However, the community

quickly realized that it is not sufficient to just consider the quantum security of
standalone primitives such as block ciphers – since they are rarely used in isola-
tion in practice – but to also consider their associated modes of operation. Such
modes are typically designed to provide enhanced security guarantees such as
confidentiality, integrity, and authenticity of encrypted messages. In this paper,
we will be focusing on modes related to authenticated encryption (AE).

Starting with the work of Kaplan et al. [17] which showed how to break
the authenticity guarantees of classical AE modes such as GCM and OCB in
the quantum setting in polynomial-time (in contrast to the generic quadratic
speed up offered by Grover’s algorithm), follow-up works by Bhaumik et al. [4]
and Bonnetain et al. [7] improved the quantum attacks against the latter OCB
modes, albeit still targeting authenticity. At a high-level, the above attacks fun-
damentally rely on other well-known quantum algorithms such as Simon’s pe-
riod finding algorithm [29] and Deutsch’s algorithm [8]. Subsequently, Maram
et al. [22] extended the aforementioned authenticity attacks to also break confi-
dentiality of the OCB modes in the quantum setting; more formally, the authors
targeted a quantum security notion called “IND-qCPA security” [5], which differs
from the classical IND-CPA security notion in that the adversary is allowed to
make quantum encryption queries. It is worth pointing out that the practicality
of this model (also generically called “Q2 security” in the literature) where the
attacker has quantum access to the secret-keyed encryption functionality is still
currently debated in the community (e.g., see [17,4,2,16,6]); however we consider
this discussion beyond the scope of our work.

Now focusing on the OCB modes, they are one of the most well-studied
and widely influential classical AE modes. OCB has three versions: OCB1 [27],
OCB2 [26] and OCB3 [18]. While OCB1 and OCB3 are provably secure AE
schemes in the classical setting, a breakthrough result by Inoue et al. [13] showed
that OCB2 is classically broken as an AE mode. More specifically, Inoue and
Minematsu [14] first came up with classical attacks on the authenticity guaran-
tees of OCB2. After their attacks became public, Poettering [25] and Iwata [15]
proceeded to extend them to also break confidentiality of OCB2 in the classical
setting. In this context, the aforementioned work of Maram et al. [22] can be
seen as translating this strategy to the quantum setting to break (IND-qCPA)
confidentiality of the three OCB modes starting with the quantum forgery at-
tacks in [17,4,7]. However at the same time, Inoue et al. [13] observed that their
classical attacks on OCB2 do not extend to other popular AE designs based on
OCB such as OTR [23] and OPP [11]; this is due to some subtle differences in the
structures of these modes when compared to OCB. In this paper, we analyze if
one would observe something similar regarding the effects of quantum insecurity
of OCB on the OTR and OPP modes.

Starting with OTR [23], it is technically a block cipher mode to realize a
nonce-based authenticated encryption with associated data (AEAD) scheme.
We specifically focus on an instantiation of the mode with AES as the under-
yling block cipher called AES-OTR [24], which also includes an additional way to
process associated data when compared to the generic OTR. AES-OTR was also

2

a third-round candidate in the CAESAR competition [1] aimed at standardizing
a portfolio of authenticated encryption schemes. In the classical setting, AES-
OTR was shown to offer provable security guarantees as an AE scheme [24].
Coming to the quantum setting however, works by Kaplan et al. [17] and Chang
et al. [20] proposed ways to attack the authenticity guarantees of AES-OTR in
the quantum superposition model using Simon’s algorithm. However the confi-
dentiality of AES-OTR in the same quantum setting has not been addressed in
the literature. Hence, following the work of Maram et al. [22] on the quantum
(IND-qCPA) confidentiality of OCB2, and given the status of AES-OTR as a
third-round CAESAR candidate, this leads us to pose the question:

Is the AES-OTR mode IND-qCPA secure?

Coming to OPP [11], it is a (public) permutation-based AE mode unlike
OCB and OTR. OPP essentially generalizes OCB3 by replacing the underlying
block cipher by an efficiently invertible public permutation and a different form
of masking. This ensures fast encryption and full parallelization, hence making
OPP an ideal candidate in applications requiring high efficiency of underlying
primitives. However in contrast to the OCB and OTR modes, the quantum
security of OPP – related to either authenticity or confidentiality – has not been
analyzed in the literature at all. This motivates us to ask the following question:

Is the OPP mode quantum secure?

1.1 Our Contributions

In this paper, we answer the above questions concerning the quantum security
of both AES-OTR and OPP modes by presenting tailor-made quantum attacks.
Along the way, some of our attacks involve techniques that we believe will be of
independent interest to the broader (post-)quantum cryptographic community.
Our concrete results are listed below:

Attacks on IND-qCPA Security of AES-OTR. In Section 3, we present the
first IND-qCPA attacks against AES-OTR. Specifically, our quantum attacks are
tailored to three different settings depending on how the associated data (AD)
is processed: namely, the settings with parallel and serial processing of AD, and
the setting where no AD is used at all.

For the first two settings with non-empty AD, our attacks work in the weak
adversarial setting where the nonces used by the challenger to answer encryption
queries in the IND-qCPA security game are generated uniformly at random
(instead of the nonces being chosen by the adversary). On a high level, the
attack breaking IND-qCPA security w.r.t. parallel AD processing uses Simon’s
algorithm as well as Deutsch’s algorithm to gain raw block cipher access, i.e., the
ability to evaluate the underlying block cipher on arbitrary inputs. With this
access, it is straightforward to break IND-qCPA security. This attack strategy is
similar to that used in [22] to break confidentiality of the OCB modes. However,

3

we need to make an extra assumption for our attack to be efficient: namely
that the authentication tags produced by the AES-OTR encryption oracle are
not (significantly) truncated. It is worth noting that the specification of AES-
OTR [24] recommends parameters with untruncated tags. But interestingly, in
the process we were also able to point out a gap in the quantum cryptanalysis
of OCB2’s confidentiality (with non-empty AD) in [22], since the corresponding
IND-qCPA attack there uses a similar assumption of untruncated tags implicitly.
This was later confirmed by one of the authors [21].

Coming to the setting where no AD is used in AES-OTR, our attack assumes
a stronger adversarial setting where the adversary is now allowed to adaptively
choose the (classical) nonces for its quantum encryption queries in the IND-qCPA
security game. This setting is the same as considered in [22, Section 4.4] with
respect to their IND-qCPA attack against OCB2 as a “pure” AE (i.e., no AD)
scheme. However, what makes our attack a non-trivial extension of the above
attack on OCB2 is that for AES-OTR there is an additional formatting function
applied to the nonce before it is AES-encrypted. We thus have to perform some
additional steps that increase the overall complexity of our attack. The attack
is described in detail in Appendix D.

Quantum Queries over Unequal-Length Data. Our IND-qCPA attack on
AES-OTR w.r.t. serial AD processing involves a novel paradigm which, to the
best of our knowledge, has never been considered in the (post-)quantum crypt-
analytic literature. Note that in the IND-qCPA security definition, an adversary
is allowed to make encryption queries on a quantum superposition of data. How-
ever, according to the laws of quantum physics, a superposition is defined only
over states with the same number of qubits. Hence in our IND-qCPA scenario,
this translates to the seemingly implicit restriction of an adversary only being
able to make superposition queries over equal -length data.

In our work, we show how to overcome this restriction by modelling the quan-
tum encryption oracle in the IND-qCPA security game in a way which allows
an adversary to also make superposition queries over unequal -length data (see
Section 3.3 for more details). Furthermore, to give evidence of the power of this
new quantum cryptanalytic paradigm, we show how an adversary can immedi-
ately gain raw block cipher access in our IND-qCPA attack on AES-OTR with
serial AD processing using only Simon’s algorithm; this is in contrast to the
IND-qCPA attacks against OCB in [22] and against AES-OTR with parallel AD
processing discussed above which also require Deutsch’s algorithm to obtain this
raw access. It’s also worth pointing out that using this novel paradigm, we no
longer have to rely on the above extra assumption of the AES-OTR authenti-
cation tags being untruncated in the serial AD case. Finally, our paradigm can
also be extended to cryptanalysis in the more realistic post-quantum setting,
i.e., where the adversary has quantum access only to public cryptographic ora-
cles (also called “Q1 security” in the literature) such as hash functions in the
so-called Quantum Random Oracle Model (QROM).

4

A Quantum Key-Recovery Attack on OPP. We present the first quantum
key-recovery attack on OPP in Section 4. Our attack is conducted in the weak
adversarial setting similar to our IND-qCPA attacks on AES-OTR, where the
nonces are chosen uniformly at random by the challenger. In contrast to AES-
OTR being based on a block cipher which may only be inverted knowing the key,
OPP is built upon an efficiently invertible public permutation P . We exploit this
specific property to formulate our key recovery attack. On a high level, we are
able to recover a value Ω = P (. . . ||K) using only a single quantum encryption
query via an application of Simon’s algorithm, where K is the key used in OPP;
hence, applying P−1 to Ω allows us to recover the key K.

2 Preliminaries

Notation. Denote by {0, 1}∗ the set of all finite-length bit strings and {0, 1}8∗
the set of all finite-length byte strings. We let the parameters n, k, τ , κ ≥ 0
define the block length, the size of the key, tag, and nonce respectively. For
b ∈ N we let [b] := {1, ..., b}. Given x, y ∈ {0, 1}∗, the concatenation of x and y
is denoted as x||y. We let the length of x in bits be denoted as |x| and we define
|x|b := max{1, ⌈X/b⌉}. We use the symbols ⊕,≪,≫,≪,≫ to denote bit-wise
XOR, left-shift, right-shift, left-rotation and right-rotation, respectively.

Further, we define the following padding function that, for a given input X,
extends it to a desired length m

pad0m : {0, 1}≤m → {0, 1}m, X 7→ X||0m−|X|

and for 0 ≤ |X| < m, we write X = X||10m−|X|−1 as the 10∗ padding.
By msbl(x) we mean the sequence of first l left-most bits of the bit sting

x and for any non-negative integer q, let bin(q,m) denote the standard m-bit
encoding of q.

We want to highlight the difference in notation for the encryption functions
used for AES-OTR in Section 3 and for OPP in Section 4. By OTR-EK,·(·) we
indicate the encryption algorithm of AES-OTR with an underlying block cipher
(AES to be precise) encryption function EK with key K. On the other hand we
use OPP-E(K, ·) to denote the encryption algorithm of OPP with key K that
uses a public permutation instead of a block cipher.

In the context of AES-OTR we use notations such as 2X, 3X or 7X for an
n-bit string X. Following [24], we here interpret X as a coefficient vector of the
polynomial in GF(2n). So by 2X we essentially mean multiplying the generator
of the field GF(2n), which is the polynomial x, and X over GF(2n). This process
is referred to as doubling. Similarly, 2iX denotes i-times doubling X and we
denote 3X = X ⊕ 2X as well as 7X = 22X ⊕ 2X ⊕X. Field multiplication over
GF(2n) for n = 128 can be implemented as

2X =

{
X ≪ 1 if msb1X = 0.

(X ≪ 1)⊕ 012010000111 if msb1X = 1.

We omit the details here and refer to [24] for further details.

5

Simon’s Algorithm. Simon’s algorithm is a quantum algorithm that is able
to solve the following problem referred to as Simon’s problem. This algorithm is
the key element of most of our quantum attacks against AES-OTR and OPP.

Definition 1. (Simon’s Problem) Given quantum access to a Boolean function
f : {0, 1}n → {0, 1}n (called Simon’s function) for which it holds: ∃s ∈ {0, 1}n :
∀x, y ∈ {0, 1}n

f(x) = f(y) ⇐⇒ y ∈ {x, x⊕ s},
the goal is to find the period s of f .

This problem of course can be solved in a classical setting by searching for
collisions in Θ(2n/2), when we are given classical access to the function f . How-
ever, when we are able to query the function f quantum-mechanically, and we
are thus allowed to make queries of arbitrary quantum superpositions of the
form |x⟩|0⟩ 7→ |x⟩|f(x)⟩, Simon’s algorithm can solve this problem with query
complexity O(n). On a high level, Simon’s algorithm is able to recover a ran-
dom vector y ∈ {0, 1}n in a single quantum query to f that is orthogonal to
the period s, i.e. y · s = 0. This subroutine is repeated O(n) times such that
one obtains n − 1 independent vectors where each is orthogonal to s with high
probability. Therefore s can be recovered by solving the corresponding system
of linear equations. For more details on the subroutine, we refer to [17].

Also [17] showed that Simon’s algorithm recovers the hidden period s with
O(n) quantum queries even if f has some “unwanted periods” – i.e., values t ̸= s
such that f(x) = f(x⊕ t) holds with probability ≤ 1/2 over a random choice of
x. As we will show, this condition is always satisfied in our attacks.

Deutsch’s Algorithm. Deutsch’s algorithm solves the following problem.

Definition 2. Given quantum access to a Boolean function f : {0, 1} → {0, 1},
the goal is to decide whether f is constant, i.e. f(0) = f(1), or f is balanced,
i.e. f(0) ̸= f(1).

The algorithm can solve this problem with a single quantum query to f with
success probability 1; note that any algorithm with classical access to f would
need two queries for the same. To be precise, Deutsch’s algorithm solves the
above problem by computing the value f(0)⊕f(1) using a single quantum query
to f .

IND-qCPA security of AEAD schemes. Below we define IND-qCPA se-
curity for nonce-based authenticated encryption with associated data (AEAD)
schemes; the formal definitions for such nonce-based AEAD schemes are provided
in Appendix A.

Definition 3. (IND-qCPA with random nonces) A nonce-based AEAD scheme
Π = (Enc, Dec) is indistinguishable under quantum chosen-plaintext attack
(IND-qCPA secure) with random nonces, if there is no efficient quantum ad-
versary A that is able to win the following security game, except with probability
at most 1

2 + ϵ where ϵ > 0 is negligible.

6

Key generation: A random key K ← K and a random bit b ← {0, 1} are
chosen by the challenger.

Queries: In any order the adversary A is allowed to make two types of queries:
– Encryption queries: The challenger first randomly chooses a nonce

N ← {0, 1}κ and forwards it to A. The adversary now can choose a
message-AD pair (M,A), possibly in superposition, and the challenger
encrypts (N,A,M) with the classical nonce N and returns the output
(C, T) to A.

– Challenge query: The challenger picks a random nonce N ← {0, 1}κ
once more and gives it to the adversary. Afterwards, A chooses two same
sized classical message-AD pairs (M0, A), (M1, A) and forwards them to
the challenger which in turn encrypts (N,A,Mb) with the previously cho-
sen classical nonce N . The output (C∗, T ∗) is again given to A.

Guess: The adversary outputs a bit b′ and wins if b = b′.

Let p be the probability that A wins the above game. Then its IND-qCPA
advantage with respect to the AEAD scheme Π is given by AdvIND-qCPA

Π (A) =∣∣p− 1
2

∣∣. So Π is said to be IND-qCPA secure under randomly chosen nonces if

AdvIND-qCPA
Π (A) of any polynomial-time quantum adversary A is negligible.

3 Quantum Attacks on Confidentiality of OTR

The AES-OTR block cipher mode emerged from the Offset Two-Round (OTR)
mode [23] as a part of the CAESAR competition [1] and is based on the AES
block cipher as proposed in [24]. It is a nonce based authenticated encryption
with associated data (AEAD) scheme and provides two methods for associated
data processing. AES-OTR has a provable security in the classical setting under
the assumption that AES is a pseudorandom function as argued in [24].

However, in this section we will show that we can exploit the way AD is pro-
cessed in both cases, namely in parallel and serial, to break IND-qCPA security.
In this case, we assume a setting where the adversary has quantum access to
an encryption oracle and the nonces the challenger uses to answer encryption
queries are picked uniformly at random. In Appendix D, we even go one step
further and break IND-qCPA security of AES-OTR considered as a pure AE
scheme, i.e., with empty AD. To do so, we consider a stronger adversarial set-
ting in which the adversary is allowed to pick the classical nonces adaptively.
We will be extending upon techniques as utilized in [22].

3.1 Specifications of AES-OTR

We begin by describing the AES-OTR mode by following the specifications as
proposed in [24] for the third round of the CAESAR competition. Let n, k, τ, κ
as labeled in Section 2, where k ∈ {128, 192, 256}, τ ∈ {32, 40, ..., 128} and κ ∈
{8, 16, ..., 120} are of a fixed length. Since AES-OTR uses AES as its underlying
block cipher, n = 128 is fixed as well and we assume EK to denote the AES

7

encryption function with key K. Also, the lengths of both a plaintext M and
associated data A are required to fulfill |M |, |A| ∈ {0, 1}8∗ such that |M |8, |A|8 ≤
264. We note that [24] provides sets of recommended parameters which imply
that for both instantiations of AES-OTR either with AES-128 or AES-256 a 16-
byte tag should be used. This recommendation becomes relevant for our attack
in Section 3.2. For further details on the parameters we refer to [24].

Below, we provide a simplified description of AES-OTR for both variants
of processing AD, namely in parallel (on the left) and in serial (on the right).
To indicate how the AD is processed, we use p for parallel and s for serial pro-
cessing and write OTR-EK,p(N,A,M) or OTR-EK,s(N,A,M) respectively. We
omit the description of the decryption algorithm, as decryption is not relevant
for our attacks. We again refer to [24] for the details. To be more precise, Al-
gorithm 4 corresponds to the encryption core and Algorithms 5 and 6 describe
the authentication core of the AEAD scheme described in Algorithm 1 and 2
for parallel and serial AD processing respectively. Note that the encryption core
of AES-OTR with parallel (normal box) and serial (dashed box) AD processing
only differ in the way U is defined. Algorithm 3 outlines how the nonce N is
formatted before being incorporated into the mask U , used to encrypt the plain-
text. (This formatting will play an important role for our attack in Section D
with adaptive nonces.) Notice that for a single block message AES-OTR only
encrypts it by xor-ing it with some value depending on U . We will exploit this
property for our IND-qCPA attacks.

Algorithm 1 OTR-EK,p(N,A,M)

1: (C, TE)← EF-PK,τ (N,M)
2: if A ̸= ε then
3: TA← AF-PK(A)
4: else TA← 0n

5: T ← msbτ (TE ⊕ TA)
6: return (C, T)

Algorithm 2 OTR-EK,s(N,A,M)

1: if A ̸= ε then
2: TA← AF-SK(A)
3: else TA← 0n

4: (C, TE)← EF-SK,τ (N,M, TA)
5: T ← msbτ (TE)
6: return (C, T)

Algorithm 3 Format(τ,N)

return bin(τ mod n, 7)||0n−8−κ||1||N

8

Algorithm 4 EF-PK,τ (N,M) , EF-SK,τ (N,M, TA)

1: Σ ← 0n

2: U ← EK(Format(τ,N))

3: U ← 2
(
EK(Format(τ,N))⊕ TA

)
4: L← U , L# ← 3U
5: M1||...||Mm ←M s.t. |Mi| = n
6: for i ∈ {1, ..., ⌈m/2⌉ − 1} do
7: C2i−1 ← EK(L⊕M2i−1)⊕M2i

8: C2i ← EK(L# ⊕ C2i−1)⊕M2i−1

9: Σ ← Σ ⊕M2i

10: L← L⊕ L#, L# ← 2L#

11: if m is even then
12: Z ← EK(L⊕Mm−1)

13: Cm ← msb|Mm|(Z)⊕Mm

14: Cm−1 ← EK(L# ⊕ Cm)⊕Mm−1

15: Σ ← Σ ⊕ Z ⊕ Cm

16: L∗ ← L#

17: else if m is odd then
18: Cm ← msb|Mm|(EK(L))⊕Mm

19: Σ ← Σ ⊕Mm

20: L∗ ← L
21: if |Mm| ̸= n then
22: TE ← EK(32L∗ ⊕Σ)
23: else TE ← EK(7L∗ ⊕Σ)

24: C ← C1||...||Cm

25: return (C, TE)

Algorithm 5 AF-PK(A)

1: Ξ ← 0n

2: Q← EK(0n)
3: A1||...||Aa ← A, s.t. |Ai| = n
4: for i ∈ {1, ..., a− 1} do
5: Ξ ← Ξ ⊕ EK(Q⊕Ai)
6: Q← 2Q

7: Ξ ← Ξ ⊕Aa

8: if |Aa| ̸= n then
9: TA← EK(3Q⊕ Ξ)
10: else TA← EK(32Q⊕ Ξ)

11: return TA

Algorithm 6 AF-SK(A)

1: Ξ ← 0n

2: Q← EK(0n)
3: A1||...||Aa ← A, s.t. |Ai| = n
4: for i ∈ {1, ..., a− 1} do
5: Ξ ← EK(Ai ⊕ Ξ)

6: Ξ ← Ξ ⊕Aa

7: if |Aa| ≠ n then
8: TA← EK(2Q⊕ Ξ)
9: else
10: TA← EK(4Q⊕ Ξ)

11: return TA

Ek Ek
... Ek ⊕

⊕Q

A1

⊕2Q

A2

⊕ ...

⊕2a−2Q

Aa−1

⊕

pad

Aa

⊕

2a−13Q if |Aa| ̸= n

2a−132Q if |Aa| = n

Ek TA
Ek Ek

... Ek ⊕

A1

⊕

A2

⊕

... Aa−1

⊕

pad

Aa

Ek TA

2Q if |Aa| ̸= n

4Q if |Aa| = n

Fig. 1: Computation of the value TA of
the authentication core of AES-OTR
with parallel AD processing with Q =
EK(0n).

Fig. 2: Computation of the value TA of
the authentication core of AES-OTR
with serial AD processing with Q =
EK(0n).

In the pictorial description of how the value TA in Algorithms 5 and 6 for
parallel and serial AD processing is computed, the value Q is used as part of the

9

masking and is defined as Q = EK(0n). Note that Q is a constant value and is
independent of the nonce N . This is the key observation we use in our attacks
in Sections 3.2 and 3.3 that exploit the way AD is being processed.

It is worth mentioning that there are some prior works (specifically [17,20])
which proposed approaches to attack unforgeability of AES-OTR using Simon’s
algorithm when given quantum access to the corresponding encryption oracle.
On a high level, the above works exploit the way AD is processed to compute
collisions in the intermediate variable TA (see Figures 1 and 2); we present a
detailed description of their attacks in Appendix B. We will use similar ideas for
our following quantum attacks on the confidentiality of AES-OTR.

3.2 IND-qCPA Attack on AES-OTR with Parallel AD Processing

In this section, we show that AES-OTR is insecure in the IND-qCPA setting
with random nonces when it is used as an AEAD scheme with associated data
processed in parallel. In our IND-qCPA attack, we exploit the way AD is pro-
cessed to find collisions for the output value TA of Algorithm 5, as well as
exploit the fact that the encryption algorithm essentially performs a one-time
pad encryption when given a single-block message.

As a general attack strategy, we want to create a periodic function f1, whose
period can be computed using Simon’s algorithm. To construct our Simon’s func-
tion f1, we use a similar approach as described in [22, Section 4.3] for breaking
IND-qCPA security of OCB2. Note that the way OCB2 authenticates AD in
[22, Figure 3] is (up to multiplication with constants) essentially the same as for
AES-OTR in Algorithm 5. Thus, we can follow a very similar argument.

We define f1 : {0, 1}n → {0, 1}τ

f1(A) = OTR-EK,p(N,A||A||0n, ε).

As the plaintext is chosen to be empty, the ciphertext is empty as well which
is the reason the quantum encryption oracle OTR-EK,p(N, ·) returns a tag of
length τ only.1 Now notice that f1 has period s = 3Q = Q⊕ 2Q since

f1(A) = msbτ (TA⊕ TE)

= msbτ

(
EK

(
2232Q⊕ EK(A⊕Q)⊕ EK(A⊕ 2Q)

)
⊕ TE

)
= msbτ

(
EK

(
2232Q⊕ EK(A⊕Q⊕ 2Q⊕ 2Q)⊕ EK(A⊕ 2Q⊕Q⊕Q)

)
⊕ TE

)
= msbτ

(
EK

(
2232Q⊕ EK(A⊕ 3Q⊕ 2Q)⊕ EK(A⊕ 3Q⊕Q)

)
⊕ TE

)
= f1(A⊕ s).

1 We notice that in the context of Simon’s algorithm the domain and the co-domain of
Simon’s function are required to be of the same dimension. Since the size of the tag
τ is possibly less than n, we technically need to append an additional n− τ bits of
zeros (or any other fixed bit string of size n− τ). Importantly, this does not change
the periodicity of f1, as these bits are fixed. For the sake of convenience however, we
refrain from appending them in each step of the analysis of f1.

10

Following the arguments made in [22, Section 3.1], using a single quantum
query to the encryption oracle OTR-EK,p(N, ·), the function f1 can be computed
in superposition. We need this to be done in a single quantum query, as the
nonce N changes with each quantum query made to the oracle. We thus can
apply Simon’s algorithm to f1, which computes a vector y ∈ {0, 1}n that is
orthogonal to the period s = 3Q = 3EK(0n). Notice that there do not exist any
“unwanted periods” as defined in Section 2 with overwhelming probability, since
we can apply the same reasoning as in [17, Section 5.3] using that AES is a PRP.

It is important that the period is independent of the nonce N , such that
despite the nonce changing with each quantum query, Simon’s algorithm still
returns a random vector y orthogonal to the fixed period. This means, after
recovering O(n) such independent orthogonal vectors y, we can recover the value
3Q = 3EK(0n) and thus the value EK(0n) as well with O(n) quantum queries
to the AES-OTR encryption oracle.

For the rest of this section, we assume that AES-OTR is instantiated using
the recommended parameter sets from [24]. In particular, we assume that the size
of the tag is 16-bytes, i.e., τ = n. It turns out that not only is this assumption
necessary for our attack to succeed efficiently but is also necessary for the IND-
qCPA attack on OCB2 in [22, Section 4.3]. We discuss this assumption in detail
in Appendix C.

As a next step towards breaking IND-qCPA security we want to gain raw
block cipher access i.e. the ability to compute EK(inp) for any given input
inp ∈ {0, 1}n. To realize this, we use Deutsch’s algorithm like done in [22] as
follows. Having recovered the value Q = EK(0n), define two fixed single-block
associated data inputs α0 = 32Q and α1 = 32Q ⊕ inp for any given input
inp ∈ {0, 1}n. We continue by considering the n functions f (i) : {0, 1} → {0, 1},

f (i)(b) = ith bit of {OTR-EK,p(N,αb, ε)} (3.1)

for a random nonce N and empty message. Here again, the output of OTR-
EK,p(N, ·) is only the tag of length τ = n, as the message is kept empty. Following
the argument in [22], we can compute f (i)(b) in superposition with a single
quantum query to the AES-OTR encryption oracle by also truncating out the
unneeded n − 1 bits of the output of OTR-EK,p(N, ·). This gives us the ability
to apply Deutsch’s algorithm on f (i) and recover the value

f (i)(0)⊕ f (i)(1) = ith bit of{TE ⊕ EK(α0 ⊕ 32Q)}
⊕ ith bit of{TE ⊕ EK(α1 ⊕ 32Q)}

= ith bit of{EK(0n)⊕ EK(inp)} (3.2)

with a single quantum query. Thus, by applying Deutsch’s algorithm to each of
the n functions f (i), we are able to recover all n bits of

(
EK(0n) ⊕ EK(inp)

)
and from this, since we already know EK(0n), we can recover EK(inp). It is
worth pointing out, that despite the nonce N changes with each application of
Deutsch’s algorithm, we are still able to recover

(
EK(0n)⊕EK(inp)

)
since it is

independent of N ; note that the nonce-dependent value TE gets “xored-out” in
Equation (3.2).

11

As a result of the observations above, we can now sketch our IND-qCPA
attack against AES-OTR with parallel AD processing:

1. Recover the value 3Q and thus the value EK(0n) using O(n) quantum queries
with Simon’s algorithm as discussed above.

2. Pick arbitrary but different single-block messages M0 and M1 and define the
associated data to be empty, i.e. A = ε. We now give these values as an
input to the challenger and record the nonce N which is used to encrypt Mb

as well as the output (C∗, T) of the challenger.
3. Using Deutsch’s algorithm 2n times (i.e., using raw block cipher access twice)

as described above, we compute the value V = EK

(
EK

(
Format(τ,N)

))
using a total of 2n quantum queries. Here, we use the nonce N the challenger
used to encrypt the challenge query.

4. Output the bit b′′ = b′ if C∗ = V ⊕Mb′ .

It remains to show that our attack outputs the correct bit b′′:
To see this, we notice that for a single-block message M and empty AD the

output of the encryption oracle is the ciphertext-tag pair (C∗, T) where

C∗ = msb|M |
(
EK(L)

)
⊕M

with L = EK(Format(τ,N)) following the description of Algorithm 4. Since the
attack relies on recomputing exactly the value used to encrypt Mb in a one-time
pad-like manner, the attack succeeds with high probability.

3.3 IND-qCPA Attack on AES-OTR with Serial AD Processing

The aim of this section is to break IND-qCPA security of AES-OTR used as an
AEAD scheme with random nonces but now with associated data processed in
serial by Algorithm 6. We again exploit the way AD is processed to compute
collisions for the variable TA.

Similar to the attack above, we define a periodic function f2 whose period can
be computed using Simon’s algorithm. In this case however, as a consequence of
our choice of f2, computing the period of the function already gives us raw block
cipher access. This is in contrast to the IND-qCPA attack in [22, Section 4.3] and
our previous attack in Section 3.2, where we first recover EK(0n) and then gain
raw block cipher access via Deutsch’s algorithm. In this section, Simon’s function
is defined in a very different fashion than before, as the function can distinguish
two different cases depending on an input bit b and treat them accordingly –
this affects either having one or two blocks of associated data as an input to the
quantum encryption oracle respectively. We therefore also need to argue why we
actually have quantum access to Simon’s function we define below.

This is precisely the scenario we described in Section 1.1 w.r.t. an adversary
being able to query a superposition of (associated) data with unequal length
to the quantum encryption oracle. We achieve this by a novel modelling of the
encryption oracle in our quantum circuit for f2, such that the circuit also queries

12

the encryption oracle only once each time f2 is queried; we emphasize the latter
aspect is due to the changing nonces as described in Section 3.2. At this point
however, we make the assumption that we have quantum access to the Simon’s
function f2 and are able to compute it with a single query to the quantum
encryption oracle. We later validate this assumption and further discuss the
quantum accessibility as well as the issue of having to achieve this with a single
quantum query near the end of this section.

We realize gaining raw block cipher access by choosing an arbitrary B ∈
{0, 1}n (for which we want to know its encryption EK(B)) and set Simon’s
function to be f2 : {0, 1}n+1 → {0, 1}τ ,

f2(b||A) =

{
OTR-EK,s(N,B||A, ε) if b = 0

OTR-EK,s(N,A, ε) if b = 1

where b ∈ {0, 1} is a single bit and A ∈ {0, 1}n represents one block of associated
data of size n. Note that here f2 gives us a value in {0, 1}τ , since the ciphertext
is empty as a result of the plaintext being chosen as empty. More precisely, for
a general set of associated data D and empty plaintext we get by Algorithm 4
and Algorithm 2 that

OTR-EK,s(N,D, ε) = msbτ

(
EK

(
332

(
TAD ⊕ EK

(
Format(τ,N)

))))
where TAD = AF-SK(D). This implies that the period s of f2 only depends on
the function AF-SK(D). Therefore, we define a new function g : {0, 1}n+1 →
{0, 1}n,

g(b||A) =

{
AF-SK(B||A) if b = 0

AF-SK(A) if b = 1

We claim that g, and therefore f2 as well, has period s = 1||EK(B). Indeed:

g
(
0||A⊕ 1||EK(B)

)
= g

(
1||A⊕ EK(B)

)
= AF-SK

(
A⊕ EK(B)

)
= EK(4Q⊕A⊕ EK(B)) = AF-SK(B||A) = g(0||A) (3.3)

g(1||A⊕ 1||EK(B)) = g(0||A⊕ EK(B)) = AF-SK(B||A⊕ EK(B))

= EK

(
4Q⊕A⊕ EK(B)⊕ EK(B)

)
= EK(4Q⊕A)

= AF-SK(A) = g(1||A) (3.4)

where Q = EK(0n), and for Equations 3.3 and 3.4, we used the definition of
Algorithm 6.

Under the assumption that we can in fact compute f2 in superposition using
a single quantum query to the encryption oracle OTR-EK,s(N, ·), we can apply
Simon’s algorithm to f2. Hence, with a similar argument as in Section 3.2 we can
recover the value s = 1||EK(B) and thus the value EK(B) for any B ∈ {0, 1}n
with O(n) quantum queries. It is important to mention that the period s is again

13

independent of the nonce. So even though the nonce, and hence f2 changes with
each quantum query, Simon’s algorithm still returns a random vector orthogonal
to the fixed period s = 1||EK(B) in each of the n iterations. We conclude that
this grants us raw block cipher access without having to use Deutsch’s algorithm
like in the attack described in Section 3.2.

Unlike our IND-qCPA attack in Section 3.2, this attack succeeds with high
probability even if the tags were truncated. This is justified because in the pre-
vious section truncation only became an issue when we applied Deutsch’s algo-
rithm. Here, we do not use Deutsch’s algorithm but Simon’s algorithm only. Since
the function f2 is still periodic as its periodicity is unaffected by the truncation
of the tag, running Simon’s algorithm does not run into any issues.

Now we can again sketch an IND-qCPA attack against AES-OTR but this
time with serial AD processing:

1. Pick arbitrary but different single-block messages M0 and M1 and define the
AD to be empty. We give these values as an input to the challenger and
record the nonce N which was used to encrypt either M0 or M1 as well as
the output (C∗, T) of the challenger.

2. Compute the value V = EK

(
2 · EK

(
Format(τ,N)

))
using 2O(n) quantum

encryption queries via two applications of Simon’s algorithm
(
using the raw

block cipher access twice as discussed above).
3. Output the bit b′′ = b′ if Mb′ = C∗ ⊕ V .

To see that the above attack succeeds we note that for a single-block message
M of size n and empty AD we have

OTR-EK,s(N, ε,M)
∣∣∣
C
= EK

(
2 · EK

(
Format(τ,N)

))
⊕M.

where by |C we indicate truncating out the tag T . This is essentially a one-time
pad encryption with mask V . Since we are able to compute V , we also recover
the correct bit b′′.

On the Quantum Accessibility of Function f2. It remains to argue that
we actually have quantum access to the function f2 with a single query to the
encryption oracle each time we query f2. This is done by coming up with a suit-
able quantum circuit that describes f2 such that it uses only a single encryption
unitary gate; this is because the nonce N changes with each quantum query
made to the encryption oracle.

To achieve this, we have to modify the quantum encryption oracle queries
in a slight way: we add an additional n-qubit input register which encodes the
length of our message. By doing so, the encryption oracle knows how many bits
of the message it should actually encrypt. Thus, we also need to define f2 in a
different manner:

f2(b||A) =

{
OTR-ẼK,s(N, bin(2n, n)||B||A, ε) if b = 0.

OTR-ẼK,s(N, bin(n, n)||A||0n, ε) if b = 1.

14

The circuit also uses so-called Fredkin gate (as described e.g. in [30, Section
2.2]), which is a controlled swap gate. The Fredkin gate, upon input basis state
(b, I1, I2) with b a single bit, produces output (b,O1, O2) where O1 = b̄I1 + bI2,
O2 = bI1 + b̄I2. So the gate essentially swaps the inputs when b = 1 and does
nothing if b = 0. Note that the way f2 is defined, both |bin(2n, n)||B||A⟩ and
|bin(n, n)||A||0n⟩ are 3n qubit states and hence can be swapped (the swap gate
can only operate on inputs that are of the same length, as the swapping is done
qubit wise). In this case, when the encryption oracle gets such an input, it first
parses the first n qubits of the query to figure out how many blocks of the input
have to be encrypted. For b = 0 it just takes B||A as an input but if b = 1
then it ignores the remaining 0n block of the query and only encrypts A. The
corresponding quantum circuit therefore looks as follows:

|b⟩

|n||A||0n⟩

|2n||B||A⟩

|0n⟩

|b⟩

U
O
T
R
-Ẽ

K
,s

|f2(b||A)⟩

Fig. 3: The quantum circuit implementing f2 using a single quantum query via
the gate UOTR-ẼK,s

. We indicate the n-bit encoding of n and 2n with bold letters.

Note that the output of the second register is set to |n||A||0n⟩ if b = 0 and
|2n||B||A⟩ if b = 1. For the third register it is the other way round.

Comparison with the Quantum Attack on CMAC in [17]. Note that
the serial AD processing component of AES-OTR (Algorithm 6) is essentially
equivalent to the message authentication code CMAC [9]. And Kaplan et al. [17]
show how to break the quantum unforgeability of CMAC using Simon’s algo-
rithm (technically they present a quantum attack against the closely related
CBC-MAC, but it is straightforward to extend the attack to CMAC).

On a high-level, the extension of their CMAC attack to AES-OTR with
serial AD processing would proceed as follows. Choose two arbitrary blocks
B0, B1 ∈ {0, 1}n and define the function g̃(b||A) = AF-SK(Bb||A) (correspond-
ing to Simon’s function f̃2(b||A) = OTR-EK,s(N,Bb||A, ε)). It is not hard to

see that g̃ (and f̃2) has period s̃ = 1||(EK(B0) ⊕ EK(B1)). Hence we can use
Simon’s algorithm as in [17, Section 5.1] to recover the value EK(B0)⊕EK(B1).
Also note that we no longer need to query the quantum encryption oracle on a
superposition of unequal length AD, unlike our IND-qCPA attack above. How-
ever, just knowing EK(B0) ⊕ EK(B1) is not sufficient to obtain the raw block
cipher access EK(·) we would need to break IND-qCPA security, even if B0, B1

are under our control.

15

4 Quantum Key-Recovery Attack on OPP

The Offset Public Permutation Mode (OPP) was proposed in [10] and [11] and
it essentially tries to generalize OCB3 by replacing the underlying block cipher
by a public permutation and a different form of masking. In this section we will
show that using a public permutation the way OPP does, actually leads to a
devastating key recovery attack in the quantum setting.

Our attack uses a similar strategy as the IND-qCPA attack against OCB2 in
[22, Section 4.4] with adaptively chosen nonces; but instead of choosing a new
nonce adaptively to break IND-qCPA security, we are able to recover the value
Ω := P (X||K) where P is an efficiently invertible public permutation and K is
the key (X can be seen as a formatting of the nonce). In contrast to OTR being
based on a block cipher that may only be inverted knowing the key, we are here
dealing with a public permutation that can be inverted efficiently. This is the
key issue of OPP and the reason we are able to recover the key knowing Ω.

4.1 Specification of OPP

In this section, it is assumed that the plaintexts we are dealing with always
have a size that is a multiple of the block length. As a consequence, it is not
necessary to treat the last block of the plaintext any differently in our analysis,
and furthermore we are also excluding the specifications for how OPP encrypts
plaintexts that do not meet this assumption. In the same manner this also applies
to the way we describe the processing of associated data.

Let n, k, τ, κ as labeled in Section 2 such that κ ≤ n − k − 1. We begin by
describing the OPP mode as proposed in [10] in a simplified manner that also
maintains consistent labeling of variables in previous descriptions of modes such
as OTR.

A set of functions Φ = {α, β, γ} is given by α, β, γ : {0, 1}n → {0, 1}n, α(x) =
φ(x), β(x) = φ(x) ⊕ x and γ(x) = φ2(x) ⊕ φ(x) ⊕ x where for x = x0||...||x15

and xi ∈ {0, 1}64 the function φ : {0, 1}1024 → {0, 1}1024 is defined as

φ(x0, ..., x15) =
(
x1, ..., x15, (x0 ≪ 53)⊕ (x5 ≪ 13)

)
.

OPP uses the so called tweakable Even-Mansour construction MEM, where
a tweak space T of the form T ⊆ {0, 1}n−k × N3, as outlined in [10, Lemma 4],
is considered. For further details about tweaks and tweakable block ciphers we
refer to [10] as this specific notion is not relevant for the subsequent attack.

The encryption function Ẽ : {0, 1}k × T × {0, 1}n → {0, 1}n is then defined
as

Ẽ(K,X, ī,M) = P
(
δ(K,X, ī)⊕M

)
⊕ δ(K,X, ī)

where δ : {0, 1}k × T → {0, 1}n is called the masking function and for ī =
(i0, i1, i2) ∈ N3 it is set to be δ(K,X, ī) = γi2 ◦ βi1 ◦ αi0

(
P (X||K)

)
. For conve-

nience the shorthand notation Ẽ ī
K,X(M) = Ẽ(K,X, ī,M) is being used in the

algorithmic description of OPP.

16

The decryption function D̃ corresponding to Ẽ is defined in a straightforward
manner. However it should be noted that P is a public permutation such that
P−1 can be computed efficiently, since the inverse permutation is necessary to
perform decryption.

Below, we present a simplified description of the OPP mode based on the
specification in [10]. We only provide a description of the encryption and au-
thentication part of the algorithm, as the details regarding decryption are not
relevant to our attack and are therefore omitted. To be precise, the authentica-
tion core of OPP is described in Algorithm 9 and the encryption core corresponds
to Algorithm 8.

Algorithm 7 OPP-E(K,N,AD,M)

1: X ← pad0
n−κ−k(N)

2: C, S ← OPPEnc(K,X,M)
3: T ← OPPAbs(K,X,AD,S)
4: return C, T

Algorithm 8 OPPEnc(K,X,M)

1: M0||...||Mm−1 ←M, s.t. |Mi| = n
2: C ← ε
3: S ← 0n

4: for i ∈ {0, ...,m− 1} do
5: Ci ← Ẽi,0,1

K,X (Mi)
6: C ← C||Ci

7: S ← S ⊕Mi

8: return C, Ẽm−1,2,1
K,X (S)

Algorithm 9 OPPAbs(K,X,A, S)

1: A0||...||Aa−1 ← A, s.t. |Ai| = n
2: S′ ← 0n

3: for i ∈ {0, ..., a− 1} do
4: S′ ← S′ ⊕ Ẽi,0,0

K,X (Ai)

5: return msbτ (S
′ ⊕ S)

4.2 Our Quantum Key-Recovery Attack

In this attack, we adapt the techniques used in [22, Section 4.4] for breaking
IND-qCPA security of OCB2 with adaptively chosen nonces. However, in this
case we are able to recover the key instead. Our attack is focused solely on the
encryption part, so OPP is used as a pure AE scheme, and does not make use of
the way associated data is processed. This is in contrast to our previous attacks
in Sections 3.2 and 3.3 as there we could exploit the fact that AD processing
was not dependent on a nonce but rather on the constant value Q = Ek(0

n).
In the case of OPP this is different because the nonce is used in the associated
data processing, as the value P (X||K) where X = pad0n−κ−k(N) is dependent
on the nonce N (see Algorithm 7). Since the nonce changes with each call to the
encryption oracle, OPP never processes a fixed set of AD the same way. This
is the reason we can’t apply Simon’s algorithm (which calls the oracle multiple
times) in the same manner.

Before we formulate the attack itself, we observe a crucial property of the xor
of two consecutive ciphertext blocks considered as a function of its corresponding
plaintext blocks. Define Ω = P (X||K) and recall that OPP encrypts the i-th

17

plaintext block Mi as Ci = P (δ(K,X, (i, 0, 1)) ⊕Mi) ⊕ δ(K,X, (i, 0, 1)) where
δ(K,X, (i, 0, 1)) = φi+2(Ω) ⊕ φi+1(Ω) ⊕ φi(Ω). We now define functions fi :
{0, 1}n → {0, 1}n such that

fi(M) = P
(
δ(K,X, (i, 0, 1))⊕M

)
⊕ δ(K,X, (i, 0, 1)),

which correspond to the i-th ciphertext block Ci considered as a function of its
underlying plaintext block M . Further, by defining s := φi+3(Ω)⊕φi(Ω) we see
that

fi(M ⊕ s)⊕ fi+1(M ⊕ s)

= P
(
φi+2(Ω)⊕ φi+1(Ω)⊕ φi(Ω)⊕M ⊕ s

)
⊕ P

(
φi+3(Ω)⊕ φi+2(Ω)⊕ φi+1(Ω)⊕M ⊕ s

)
⊕ φi+3(Ω)⊕ φi(Ω)

= P
(
φi+3(Ω)⊕ φi+2(Ω)⊕ φi+1(Ω)⊕M

)
⊕ P

(
φi+2(Ω)⊕ φi+1(Ω)⊕ φi(Ω)⊕M

)
⊕ φi+3(Ω)⊕ φi(Ω)

= fi+1(M)⊕ fi(M)

So if we define Fi,i+1 : {0, 1}n → {0, 1}n as Fi,i+1(M) = fi(M) ⊕ fi+1(M) we
see from the above calculations that Fi,i+1(M ⊕ s) = Fi,i+1(M), i.e., Fi,i+1 is a
periodic function with period s = φi+3(Ω)⊕ φi(Ω).

The idea is now to apply a linear function to 2n + 1 ciphertext blocks to
capture this observation and create a periodic function that itself contains n
copies of the periodic function Fi,i+1 from above. To do so consider the function
g : {0, 1}(2n+1)n+τ → {0, 1}(n+1)n

g(C0, C1, ..., C2n, t) = (C0, C1 ⊕ C2, ..., C2n−1 ⊕ C2n).

Here, the Ci’s are n-bit blocks and t is a τ -bit block. It is not hard to see that
g is in fact a linear function - i.e., it satisfies g(C ⊕ C ′) = g(C)⊕ g(C ′) for any

valid inputs C and C ′. Furthermore let f̃N : {0, 1}n2 → {0, 1}(n+1)n such that

f̃N (M1, ...,Mn) = g ◦OPP-E(K,N, ε, 0n||M1||M1||M2||...||Mn||Mn) (4.1)

for some randomly chosen nonce N and empty associated data. We can also
reformulate f̃N in terms of the functions fi and Fi,i+1 from above. To be precise,
it holds

f̃N (M1, ...,Mn) =
(
f0(0

n), F1,2(M1), ..., F2n−1,2n(Mn)
)
. (4.2)

Moreover, we have included an all-zero plaintext block at the beginning, which
will be useful later on for verifying correctness of the recovered key.

The crucial property required for the success of the attack is that f̃N has n
linearly independent periods ⟨si⟩i∈[n] where

si =
(
(0n)i−1||φ2i+2(Ω)⊕ φ2i−1(Ω)||(0n)n−i

)
.

18

This directly follows from the observation on the periodicity of Fi,i+1 and the
fact that each pair of the two consecutive ciphertext blocks C2i−1 and C2i for
i ∈ [n] encrypt the same plaintext block Mi but with different mask δ.

Following the same argument as in [22, Section 4.4], we can apply [4, Lemma
2] which assures the ability to compute a linear function of a quantum oracle’s
output. Therefore, we can compute f̃N with a single quantum query to the OPP-
E(K,N, ·) oracle. Once more, we can apply Simon’s algorithm to f̃N which,

with a single quantum query, recovers a vector y = (y1, ..., yn) ∈ {0, 1}n
2

with
yi ∈ {0, 1}n ∀i ∈ [n] that is orthogonal to each of the periods si. The algorithm
successfully computes such a vector with overwhelming probability as there do
not exist any “unwanted periods” to which y could be orthogonal to.

We justify this claim by building upon the argument presented in [4, Section
3.2], which treats the absence of “unwanted periods” in a very similar attack
on a variant of OCB. We recall that OCB uses a block cipher instead of a pub-
lic permutation like it is the case for OPP, so we need to adjust the reasoning
to the setting of a public permutation. If we assume the existence of an un-
wanted period s̃ of f̃N with a probability greater than 1

2 , then at least one of
the Fi,i+1 in Equation 4.2 would also have to admit an unwanted period s̃i,i+1

with probability greater than 1
2n . We now draw upon the reasoning presented

in [17, Section 3.2], which shows the non-occurrence of higher order differen-
tials in the Even-Mansour construction. More accurately, Fi,i+1 admitting such
an unwanted period is equivalent to saying that P admits a high-probability
higher-order differential. But these only happen with negligible probability for a
random choice of P according to [17]. This argument makes sure that the prob-
ability for unwanted periods to appear is bounded and thus Simon’s algorithm
computes a vector y as described above with overwhelming probability.

By orthogonality of y we get n equations of the form

yi ·
(
φ2i+2(Ω)⊕ φ2i−1(Ω)

)
= 0. (4.3)

Before we can proceed, we recall that for x = x0||...||x15 and xi ∈ {0, 1}64
the function φ is defined as

φ(x0, ..., x15) =
(
x1, ..., x15, (x0 ≪ 53)⊕ (x5 ≪ 13)

)
As described in [10] we see that the function φ is in fact a linear map and it
therefore can be represented by a matrix M . Following this, Equation 4.3 is
equivalent to

yi ·
(
M2i+2 ·Ω ⊕M2i−1 ·Ω

)
= 0 (4.4)

Knowing M and using associativity of matrix multiplication, we are able to
solve the n Equations in 4.4 and thus recover the value Ω = P (X||K). But since
P is a public permutation and its inverse is assumed to be computable efficiently
due P−1 being needed for decryption, we can just apply P−1 to Ω and we thus
are able to acquire X||K. In particular, we gain possession of the key K.

Observe, that in addition when running Simon’s algorithm, we recover the
fixed classical value of the first ciphertext block C0 = Ẽ0,0,1

K,X (0n) when we mea-

sure the quantum register corresponding to the output of f̃N as part of our

19

application of Simon’s algorithm. It is important that we fix the value to 0n (or
any other arbitrary fixed classical value of length n also works) in order for C0

to be a classical value.
We sketch our key-recovery attack below:

1. Given access to a quantum encryption oracle of OPP for a random nonce N ,
i.e., OPP-E(K,N, ε, ·), we recover with a single quantum encryption query

the classical values Ω = P (X||K) and C0 = Ẽ0,0,1
K,X (0n) as discussed above.

In particular, we recover the classical value of the key K.
2. We perform a sanity check on the key: using Ω we recompute the encryption

C̃ of the one-block plaintext 0n with respect to the same key K and nonce
N as used in the above encryption oracle query as

C̃ = P
(
φ2(Ω)⊕ φ(Ω)⊕Ω

)
⊕ φ2(Ω)⊕ φ(Ω)⊕Ω.

Check that C0 = C̃. If this turns out to be false we repeat step 1., else we
are certain to have recovered the right key K.

It remains to argue why this attack is successful. We perform a sanity check in
order to assure correctness of the key K. This is where the first ciphertext block
is useful. Indeed, having recovered the key K as described above, we can now
just recompute the encryption of 0n, again with respect to the same key-nonce
pair (K,N) as in the provided encryption oracle, as

C̃ = P
(
δ(K,X, (0, 0, 1))⊕ 0n

)
⊕ δ(K,X, (0, 0, 1))

= P
(
φ2(Ω)⊕ φ(Ω)⊕Ω

)
⊕ φ2(Ω)⊕ φ(Ω)⊕Ω

where Ω = P (X||K) and X = pad0n−κ−k(N). If now C̃ = C0, i.e. the encryption
of the oracle and our manual computation coincide, we can be sure that we
recovered the right key K. Else, we can just repeat the attack until the assertion
returns to be true.

With the included sanity check, we are certain to recover the key K at some
point, as step one of our attack involves an application of Simon’s algorithm that
already succeeds with high probability thanks to the non-existence of “unwanted
periods” as argued before. Finally, we compare our quantum key-recovery attack
on OPP with the corresponding attack on the generic Even-Mansour construc-
tion of [17] in Appendix E.

Acknowledgements. It is our pleasure to thank Xavier Bonnetain for helpful
discussions, and the anonymous reviewers of SAC 2023 for their constructive
comments and suggestions.

References

1. Caesar: Competition for authenticated encryption: Security, applicability, and ro-
bustness, 2012-2019. Last accessed 23 March 2023, https://competitions.cr.
yp.to/caesar.html.

20

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html

2. G. Alagic, C. Bai, J. Katz, and C. Majenz. Post-quantum security of the even-
mansour cipher. In Advances in Cryptology – EUROCRYPT 2022, Part III, pages
458–487, 2022.

3. G. Alagic, D. Cooper, Q. Dang, T. Dang, J. M. Kelsey, J. Lichtinger, Y.-K. Liu,
C. A. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson, D. Smith-Tone, and
D. Apon. Status report on the third round of the nist post-quantum cryptography
standardization process, 2022.

4. R. Bhaumik, X. Bonnetain, A. Chailloux, G. Leurent, M. Naya-Plasencia,
A. Schrottenloher, and Y. Seurin. QCB: Efficient quantum-secure authenticated
encryption. In Advances in Cryptology – ASIACRYPT 2021, Part I, pages 668–698,
2021.

5. D. Boneh and M. Zhandry. Secure signatures and chosen ciphertext security in a
quantum computing world. In Advances in Cryptology – CRYPTO 2013, Part II,
pages 361–379, 2013.

6. X. Bonnetain, A. Hosoyamada, M. Naya-Plasencia, Y. Sasaki, and A. Schrotten-
loher. Quantum attacks without superposition queries: The offline Simon’s algo-
rithm. In Advances in Cryptology – ASIACRYPT 2019, Part I, pages 552–583,
2019.

7. X. Bonnetain, G. Leurent, M. Naya-Plasencia, and A. Schrottenloher. Quantum
linearization attacks. In Advances in Cryptology – ASIACRYPT 2021, Part I,
pages 422–452, 2021.

8. D. Deutsch. Quantum theory, the Church-Turing principle and the universal quan-
tum computer. Proceedings of the Royal Society of London Series A, 400(1818):97–
117, 1985.

9. M. Dworkin. Recommendation for block cipher modes of operation: The cmac
mode for authentication. Technical Report NIST Special Publication (SP) 800-
38B, National Institute of Standards and Technology, Gaithersburg, MD, 2005.

10. R. Granger, P. Jovanovic, B. Mennink, and S. Neves. Improved masking for tweak-
able blockciphers with applications to authenticated encryption. Cryptology ePrint
Archive, Paper 2015/999, 2015. https://eprint.iacr.org/2015/999.

11. R. Granger, P. Jovanovic, B. Mennink, and S. Neves. Improved masking for tweak-
able blockciphers with applications to authenticated encryption. In Advances in
Cryptology – EUROCRYPT 2016, Part I, pages 263–293, 2016.

12. L. K. Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
page 212–219, 1996.

13. A. Inoue, T. Iwata, K. Minematsu, and B. Poettering. Cryptanalysis of
OCB2: Attacks on authenticity and confidentiality. In Advances in Cryptology
– CRYPTO 2019, Part I, pages 3–31, 2019.

14. A. Inoue and K. Minematsu. Cryptanalysis of OCB2. Cryptology ePrint Archive,
Report 2018/1040, 2018. https://eprint.iacr.org/2018/1040.

15. T. Iwata. Plaintext recovery attack of OCB2. Cryptology ePrint Archive, Report
2018/1090, 2018. https://eprint.iacr.org/2018/1090.

16. J. Jaeger, F. Song, and S. Tessaro. Quantum key-length extension. In TCC 2021:
19th Theory of Cryptography Conference, Part I, pages 209–239, 2021.

17. M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia. Breaking symmet-
ric cryptosystems using quantum period finding. In Advances in Cryptology –
CRYPTO 2016, Part II, pages 207–237, 2016.

18. T. Krovetz and P. Rogaway. The software performance of authenticated-encryption
modes. In Fast Software Encryption – FSE 2011, pages 306–327, 2011.

21

https://eprint.iacr.org/2015/999
https://eprint.iacr.org/2018/1040
https://eprint.iacr.org/2018/1090

19. H. Kuwakado and M. Morii. Security on the quantum-type even-mansour cipher.
2012 International Symposium on Information Theory and its Applications, pages
312–316, 2012.

20. X. W. Lipeng Chang, Yuechuan Wei and X. Pan. Collision forgery attack on the
aes-otr algorithm under quantum computing. Symmetry, 2022. https://doi.org/
10.3390/sym14071434.

21. V. Maram. Private communication, 2023.
22. V. Maram, D. Masny, S. Patranabis, and S. Raghuraman. On the quantum security

of OCB. IACR Transactions on Symmetric Cryptology, 2022(2):379–414, 2022.
23. K. Minematsu. Parallelizable rate-1 authenticated encryption from pseudorandom

functions. In Advances in Cryptology – EUROCRYPT 2014, pages 275–292, 2014.
24. K. Minematsu. Aes-otr v3.1. Third-Round Candidate Submission to CAESAR

Competition, 2016. https://competitions.cr.yp.to/round3/aesotrv31.pdf.
25. B. Poettering. Shorter double-authentication preventing signatures for small

address spaces. Cryptology ePrint Archive, Report 2018/223, 2018. https:

//eprint.iacr.org/2018/223.
26. P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to

modes OCB and PMAC. In Advances in Cryptology – ASIACRYPT 2004, pages
16–31, 2004.

27. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of
operation for efficient authenticated encryption. In ACM CCS 2001: 8th Confer-
ence on Computer and Communications Security, pages 196–205, 2001.

28. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Review, 41(2):303–332, 1999.

29. D. R. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474–1483, 1997.

30. H. Thapliyal, N. Ranganathan, and S. Kotiyal. Reversible Logic Based Design and
Test of Field Coupled Nanocomputing Circuits, pages 133–172. 2014.

A AEAD Definitions

We begin by defining a nonce-based authenticated encryption with associated data
(AEAD) scheme as both AES-OTR and OPP are one.

Definition 4. (Nonce-based AEAD scheme) A nonce-based AEAD scheme is
a tuple of probabilistic polynomial-time algorithms Π = (Enc,Dec) with a key
space K = {0, 1}k such that

Enc(K,N,A,M): This algorithm takes as input a key K, a nonce N , associated
data (AD) A and a message M . It produces as an output a ciphertext C and
a tag T . We write (C, T)← EncK(N,A,M).

Dec(K,N,A,C, T): This algorithm takes as input a key K, a nonce N , AD
A, a ciphertext C and a tag T and outputs a message M or ⊥. We write
DecK(N,A,C, T) to denote this output.

The AEAD scheme needs to satisfy correctness, which is given, if for any
N,A and M we have

Pr[DecK(N,A,EncK(N,A,M)) = M] ≥ 1− ϵ,

∀K ∈ K and ϵ > 0 is negligible.

22

https://doi.org/10.3390/sym14071434
https://doi.org/10.3390/sym14071434
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://eprint.iacr.org/2018/223
https://eprint.iacr.org/2018/223

B Prior Quantum Attacks on Unforgeability of AES-OTR

Prior work in [20] already proposed an approach to attack the unforgeability
of AES-OTR which uses quantum access to the encryption oracle and applies
Simon’s algorithm. The way associated data is processed and its impact on the
tag T (more specifically on the intermediate variable TA) is exploited. Here we
give a short description of said properties and refer to [20] for specific details.

On a high level, the processing of associated data, whether in parallel or
serial, enables the derivation of collisions for the intermediate variable TA, which
is utilized to compute the tag T . For convenience, we assume that the last block
of AD is always of full size to avoid having to treat it differently in the analysis
as padding would be applied otherwise. Additionally, for the sake of convenience
we introduce a subscript to the value TA in order to keep track to which set of
AD it belongs. E.g. for a set of associated data A we set TAA = AF-PK(A).

B.1 Finding Collisions when AD Processed in Parallel.

We first consider the case when associated data is processed in parallel as de-
scribed in Algorithm 5 with output TA. Given a set of associated data A =
A1||A2||...||Aa, where Ai ∈ {0, 1}n ∀i ∈ [a], we define a set of intermediate vari-
ables XA[i] for i ∈ [a− 1] as XA[i] = EK(Ai ⊕ 2i−1Q) such that (see Figure 1)

TAA = EK(XA[1]⊕ ...⊕XA[a− 1]⊕Aa ⊕ 2a−132Q).

Note that even though the value Q is constantly being updated in Algorithm 5,
we here consider Q to be a fixed value and set it to Q = EK(0n).

For the given associated data A we can construct a second set of associated
data B = B1||...||Ba, A ̸= B, where B1 = A2 ⊕ 3Q,B2 = A1 ⊕ 3Q and Bi = Ai

for i ∈ {3, ..., a} which yields the same value TA after being processed in parallel.
Note, that 3Q = Q⊕ 2Q by definition (see Section 2). This implies

XB [1] = EK(B1 ⊕Q) = EK(A2 ⊕ 3Q⊕Q) = EK(A2 ⊕ 2Q) = XA[2]

XB [2] = EK(B2 ⊕ 2Q) = EK(A1 ⊕ 3Q⊕ 2Q) = EK(A1 ⊕Q) = XA[1]

XB [i] = XA[i]

for i ∈ {3, ..., a} and therefore

TAB = EK(XB [1]⊕XB [2]⊕XB [3]⊕ ...⊕XB [a− 1]⊕Ba ⊕ 2a−132Q)

= EK(XA[2]⊕XA[1]⊕XA[3]⊕ ...⊕XA[a− 1]⊕Aa ⊕ 2a−132Q) = TAA

B.2 Finding Collisions when AD Processed in Serial.

We now consider the case when associated data is processed in serial as described
in Algorithm 6 with output TA. For a given set of AD A = A1||...||Aa with
Ai ∈ {0, 1}n, we want to produce a second set of AD B = B1||...||Ba−1, where
A ̸= B, such that TAA = TAB .

23

Again, we define some intermediate variables XA[i] for i ∈ [a − 1] as (see
Figure 2):

XA[1] = A1, XA[j] = Aj ⊕ EK

(
XA[j − 1]

)
, XA[a] = 4Q⊕Aa ⊕ EK

(
XA[a− 1]

)
for j ∈ {2, ..., a− 1} and Q = EK(0n) such that TAA = EK

(
XA[a]

)
.

We construct a second set of associated data B = B1||...||Ba−1, where B1 =
A2⊕EK(A1) and Bi = Ai+1 for i ∈ {2, ..., a− 1}. We claim that this causes the
TA values to coincide. We want to show that XA[j] = XB [j − 1]∀j ∈ [a] in a
proof by induction on 2 ≤ j ≤ a− 1 and first observe that

XA[2] = A2 ⊕ EK

(
XA[1]

)
= A2 ⊕ EK(A1) = XB [1].

We now assume XA[j] = XB [j − 1] as the induction hypothesis. It holds

XA[j + 1] = Aj+1 ⊕ EK

(
XA[j]

)
= Bj ⊕ EK

(
XB [j − 1]

)
= XB [j].

Here the second equality uses the induction hypothesis and the definition of B.
Thus, we may conclude by induction that

XB [a− 1] = 4Q⊕Ba−1 ⊕ EK

(
XB [a− 2]

)
= 4Q⊕Aa ⊕ EK

(
XA[a− 1]

)
= XA[a].

And therefore we get

TAB = EK

(
XB [a− 1]

)
= EK

(
XA[a]

)
= TAA. (B.1)

This means that for any given AD A = A1||...||Aa, the above constructed AD B
produces the same TA value.

Notice that the observations on TA values made in the above parallel and
serial AD cases are in the classical setting. We now come back to the discussion
of the quantum aspect of the attacks presented in [20]. At a high level, they use
Simon’s algorithm with respect to the quantum accessibility of the encryption
oracle to generate such collisions. These collisions are then used to construct
forgeries in the quantum setting.

C Assuming τ = n in the IND-qCPA Attack on
AES-OTR with Parallel AD Processing

Even if AES-OTR is recommended to be instantiated using untruncated tags as
mentioned in Section 3.2, we want to discuss the consequences if this is not the
case.

Before we gained raw block cipher access in Section 3.2, we assumed that
τ = n. This is important because AES-OTR is designed to output the value
T = msbτ (TE ⊕ TA) as the tag of the corresponding plaintext-AD pair. If the
plaintext is empty as it is defined for Function 3.1, but τ < n instead, as a

24

consequence the tag only gives us the first τ bits of TE⊕TA by definition. This
means that Equation 3.2 would now be

f (i)(0)⊕ f (i)(1) = ith bit of
{
msbτ

(
EK(0n)⊕ EK(inp)

)}
for i ∈ [τ] and thus instead of recovering EK(inp) we would only be able to
recover msbτ (EK(inp)) by following the same reasoning as above.

This difference affects our attack, as the ability to compute the value V in
Step 3 is based on having raw block cipher access to all of the n bits of the
(inner) EK(Format(τ,N)) value, because we need to apply the raw block cipher
access again to this value (of now only τ bits) to compute V . Thus, we cannot
compute V as straight forward as before, as we are missing information on the
last n− τ bits.

Now if the tags are not truncated significantly, then we can salvage our IND-
qCPA attack by just brute-forcing all possible values of the remaining n− τ bits
of EK(Format(τ,N)). However if the truncation is significant, then this brute-
forcing strategy becomes inefficient; we leave it as an interesting open question
to analyze IND-qCPA security of AES-OTR in this latter case.

We also want to point out that the IND-qCPA attack on OCB2 in [22, Section
4.3] also runs into the very same issue but it isn’t addressed accordingly. This
issue was confirmed by the authors in [22] and that they indeed consider only
untruncated tags in their attacks [21].

D IND-qCPA Attack on AES-OTR with Empty AD

So far, our IND-qCPA analysis of AES-OTR relied on exploiting the processing
of AD in either parallel or serial manner. We now want to break confidentiality
by considering AES-OTR as a pure AE scheme. To do so, we consider a stronger
adversary that can adaptively pick the nonces (in a non repeating manner)
and hand it to the challenger. The challenger then has to respond to encryption
queries in the IND-qCPA security game using these nonces. We adapt the attack
model from [22, Section 4.4], as well as the general strategy.

The strategy in this case is to recover the value U = EK(Format(τ,N)) for
a randomly chosen nonce N using Simon’s algorithm and picking a new nonce
based on the recovered value. The challenger then has to use this newly picked
nonce to answer the challenge query which enables us to perform an IND-qCPA
attack. However, the formatting of the nonce causes our attack to be a non-
trivial extension to the one in [22]: before picking the new nonce, we have to
check whether U has a desired format and if this is not the case, we have to
repeat the recovery step. Observe, that here compared to our attacks in Sections
3.2 and 3.3, the value we want to recover is dependent on the nonce N . So
the strategy to use O(n) quantum oracle queries in an application of Simon’s
algorithm with respect to a function as used in the previous section would not
work. The reason is that if Simon’s function has a period depending on U , then
in each step of Simon’s algorithm, we would recover a vector orthogonal to a

25

different value of the period. This issue arises because the nonce changes with
every query and hence, U and the corresponding period also change. To resolve
this obstacle, we define a function with numerous independent periods and an
input that consists of multiple plaintext blocks (specifically, 4n blocks). By using
this approach, that is inspired by the attack presented in [4, Section 3.2] (and [22,
Section 4.4]), we can overcome the challenge of changing nonces, as we describe
in this section.

Note, that even though encryption of AES-OTR has some slight differences
when AD is processed in either parallel or serial, Algorithm 4 executes the same
steps where only the value U differs by a factor of 2 if the associated data is
kept empty. Thus, our attack works in both settings, but we treat the parallel
case here.

Let m ̸= 0 be even. Recall that for a message M = M1||...||Mm||0n with
Mi ∈ {0, 1}n ∀i ∈ [m] we get ciphertext C = C1||...||Cm||Cm+1 where

C2k−1 = EK

(
2k−1U ⊕M2k−1

)
⊕M2k

C2k = EK

(
2k−13U ⊕ C2k−1

)
⊕M2k−1

for k ∈ [m/2] are n-bit blocks as well. We set the last plaintext block to be
all zeros since this block is encrypted differently, and we only want to focus on
properties of the encryption of the first m blocks.

We define functions h2k−1 : {0, 1}n → {0, 1}n such that

h2k−1(M) = EK

(
2k−1U ⊕M

)
⊕M

for k ∈ [m/2] which correspond to the (2k − 1)-th ciphertext block C2k−1 when
M2k−1 = M2k =: M . Further, by defining s := 2k−1U ⊕ 2kU we find that

h2k−1(M ⊕ s)⊕ h2(k+1)−1(M ⊕ s) = EK

(
2k−1U ⊕M ⊕ s

)
⊕ EK

(
2kU ⊕M ⊕ s

)
= EK

(
2kU ⊕M

)
⊕ EK

(
2k−1U ⊕M

)
= h2(k+1)−1(M)⊕ h2k−1(M). (D.1)

So, if we define H2k−1,2(k+1)−1 : {0, 1}n → {0, 1}n as

H2k−1,2(k+1)−1(M) = h2k−1(M)⊕ h2(k+1)−1(M)

this function is in fact periodic with period s = 2k−1U ⊕ 2kU , as the above
calculations indicate.

With the function H2k−1,2(k+1)−1 we basically link four consecutive plaintext
blocks (more precisely we set M = M2k−1 = M2k = M2(k+1)−1 = M2(k+1)) in
order to create a periodic function. We will further develop this idea by first
encrypting 4(n + 1) + 1 plaintext blocks followed by an application of a linear
function that captures exactly this observation.

Consider the function g : {0, 1}n(4(n+1)+1)+τ → {0, 1}n(n+1)

g(C1, ..., C4(n+1)+1, T) = (C1, C5 ⊕ C7, C9 ⊕ C11, ..., C4n+1 ⊕ C4n+3)

26

Here, the Ci’s are n-bit blocks and T is a τ -bit block. It is not hard to see that
g satisfies g(C ⊕ C ′) = g(C) ⊕ g(C ′) for any valid inputs C and C ′ i.e. g is a
linear function.

We further define the function fN : {0, 1}n2 → {0, 1}n(n+1) such that

fN (M1, ...,Mn) = g ◦OTR-EK,p(N, ε, 04n||M4
1 ||...||M4

n||0n)

for some randomly chosen nonce N and empty AD2. Here, we included the last
plaintext block 0n since the last block (note, that we have an odd amount of
blocks) is treated differently by the encryption algorithm and we want to avoid
having to analyze encryption in this case. This choice allows us to just ignore the
last block of ciphertext as it is irrelevant for our attack. We can also write fN
in terms of the functions h2k−1 and H2k−1,2(k+1)−1 from above. To be precise,
it holds

fN (M1, ...,Mn) =
(
h1(0

n), H5,7(M1), ...,H4n+1,4n+3(Mn)
)
. (D.2)

We proceed by claiming that fN has the n linearly independent periods ⟨si⟩i∈[n]

with si = (si,1, ..., si,n) and si,j ∈ {0, 1}n, where

si =
(
(0n)i−1||22iU ⊕ 22i+1U ||(0n)n−i

)
.

Hence, only the entry si,i is non-zero ∀i ∈ [n]. This is the crucial property
required for our attack to succeed, as we then are able to let fN be Simon’s
function to which we can apply Simon’s algorithm. Indeed, when we take a look
at fN (M1, ...,Mi ⊕ 22iU ⊕ 22i+1U, ...,Mn) it is enough to consider the (i+ 1)-st
entry (as it is the only entry affected by the period si) given from Equation D.2
for which it holds

H4i+1,4i+3(Mi ⊕ si,i) = H4i+1,4i+3(Mi),

as we have shown in Equation D.1 (with suiting choice of indices).
Hence we can follow the reasoning in [22, Section 4.4] and apply [4, Lemma 2]

that assures the ability to compute a linear function of an output of a quantum
oracle.3 Using this lemma, we can compute fN with a single quantum query to
the OTR-EK,p(N, ·) oracle. Again, with similar arguments as in [22] this in turn
allows us to apply Simon’s algorithm to fN where with a single quantum query

2 Here, by M4
i we mean the concatenation of four copies of Mi.

3 Note that the linear function g above does not use certain input ciphertext blocks,
such as blocks of the form C2i. In our application of [4, Lemma 2], these blocks
are essentially “truncated out” wherein the qubit registers corresponding to such
blocks are initialized with the uniform superposition

∑2n−1
z=0 |z⟩. After our quantum

query to the OTR-EK,p(N, ·) oracle, when the resulting ciphertext blocks are xored
to these registers, the uniform superposition remains intact. Hence we can remove
such registers as they are not entangled with other registers of relevance, thereby
making sure that the “truncated” registers do not affect our subsequent application
of Simon’s algorithm.

27

we are able to recover a vector y = (y1, ..., yn) ∈ {0, 1}n
2

, yi ∈ {0, 1}n∀i ∈ [n]
that is orthogonal to each of the n periods ⟨si⟩i∈[n].

With overwhelming probability the algorithm successfully computes such a
vector y because we can apply a similar argument as in [4] to argue that there
do not exist any “unwanted periods” in fN to which y could be orthogonal to.
To be precise, if we assume the existence of an unwanted period s′ of fN with a
probability greater than 1

2 , then at least one of the H4i+1,4i+3 in Equation D.2
would also admit an unwanted period s′4i+1,4i+3 with probability greater than
1
2n . But this is impossible as EK being AES does not have a high-probability
higher-order differential.

Hence, we can continue by solving the n equations we get from orthogonality

yi · (22iU ⊕ 22i+1U) = 0

for i ∈ [n] and we are thus able to recover the value U = EK(Format(τ,N)).
Using only a single quantum query to recover U is crucial. Indeed, if we want
to compute U = EK(Format(τ,N)) and we make a second quantum encryption
query, then the nonce changes to an independent N ′. Hence, the corresponding
output of Simon’s algorithm with respect to the second quantum encryption
query depends on N ′ but is (most likely) independent of N . Therefore it is not
cleat how the system of linear equations obtained with respect to the second
query (with independent nonce N ′) helps in recovering U = EK(Format(τ,N)).

Furthermore, as described in [22] we are also able to recover the fixed first
ciphertext block C1 = EK(U) by measuring the quantum register corresponding
to the output of fN as a part of Simon’s algorithm. It is important that the
plaintext block is fixed to 0n (or any other fixed classical value), so that C1 is a
classical value.

Using these values we can now formulate our IND-qCPA attack in a setting
with adaptively chosen nonces. Note however, that in difference to the attack
in [22], we need an additional step as here the value U differs from the one
used in OCB2: for AES-OTR there is an additional formatting applied to the
nonce N which does not exist for OCB2. This creates the problem that we
cannot just define our new nonce N∗ to be the recovered value U as it was the
case in the [22] attack. because it may not have the correct format to satisfy
C1 = EK(U) = EK(EK(Format(τ,N∗)) which is what we need in order for our
attack to work. We resolve this issue by iterating the above steps for different
initial nonces N , until we find one that satisfies the desired condition. We will
formalize this idea now:

1. For a randomly chosen nonce N we recover in a single quantum encryption
query the classical values U = EK(Format(τ,N)) and C1 = EK(U) using
Simon’s algorithm as described above.

2. Check if U is of the form

U = Format(τ,N ′) = bin(τ mod n, 7)||0n−8−|N ′|||1||N ′

for some N ′ ∈ {0, 1}8i where i ∈ [15]. If this condition is not satisfied, we
repeat step 1 for a different nonce N and else we continue with step 3.

28

3. Choose the nonce N∗ to be N∗ = N ′ such that we guarantee the correspond-
ing initial offset U∗ in the challenge query to be

U∗ = EK(Format(τ,N∗)) = EK(U) = C1

where C1 is the value we recovered in the first step.
4. Define m0 = U∗ ⊕ U , m1 = 0n, where U is the value we recovered in the

first step with the desired format of step 2, and a random m′
0 ∈ {0, 1}n

such that m0 ̸= m′
0. Select the two 2-block messages as M0 = m0||m1 and

M1 = m′
0||m1 and A = ϵ for the challenge query.

5. Record the the response (C∗, T ∗) from the challenger, where C∗ = C∗
1 ||C∗

2

with C∗
i ∈ {0, 1}n and output b′ = 0 if C∗

2 = C1 and b′ = 1 else.

The attack succeeds because as a result of our choice of messages and nonce
for the challenge query the response (C∗, T ∗) satisfies

C∗
2 =

{
EK(U∗ ⊕m0)⊕m1 = EK(U) = C1 if M0 was encrypted.

EK(U∗ ⊕m′
0)⊕m1 = EK(U∗ ⊕m′

1) ̸= C1 if M1 was encrypted.

Note, that when we choose M0 and M1 to have two blocks of plaintext, they are
encrypted following the case in lines 11 to 14 of Algorithm 4.

Also, Step 2 succeeds with high probability. Indeed, if we assume that the size
of the nonce is κ = 120 (in general κ ∈ {8, 16, ..., 120}) we essentially require the
first 8 bits of U to be fixed to bin(τ mod n, 7)||1. This happens with probability
(1/2)8 and is even bigger when we allow κ ∈ {8, 16, ..., 120} (note, that then in
general n−κ bits need to be fixed). Therefore this step eventually is successful.

E Quantum Key-Recovery Attack on MEM in [17]

We want to mention that there does already exist a quantum key-recovery attack
on the Even-Mansour construction first described in [19] and further discussed in
[17, Section 3.2]. We want to highlight the novelty of our quantum key-recovery
attack on OPP with respect to the existing attacks on Even-Mansour based
schemes (as OPP itself uses the Even-Mansour construction). We first give a
short recap on the attack as described in [17].

Starting from the block cipher

Ek1,k2
(M) = P (M ⊕ k1)⊕ k2

where P is some public permutation, [17, Section 3.2] shows that either there
exists a classical distinguishing attack (though this case is negligible with random
P), or, using Simon’s algorithm, we are able to successfully recover k1. This is
done by applying Simon’s algorithm to the periodic function defined by

f : {0, 1}n → {0, 1}n

f(M) = Ek1,k2
(M)⊕ P (M) = P (M ⊕ k1)⊕ P (M)⊕ k2

29

where f(M⊕k1) = f(M). As a result, k1 is recovered in n quantum queries. It is
important to highlight that, in this particular case of the isolated Even-Mansour
construction, both k1 and k2 are keys of a fixed value. If we compare this to the
setting of OPP, we have that k1 = k2 = δ(K,X, (i, 0, 1)) = φi+2(Ω)⊕φi+1(Ω)⊕
φi(Ω) with Ω = P (X||K) and X = pad0n−κ−k(N). The OPP setting is more
complex as there encryption is dependent on a nonce N , which changes with
each call to the encryption oracle. As a result, the value of f , and even more
importantly the period k1 of f , would change in each of the n iterations during an
application of Simon’s algorithm. This is why we cannot just extend the attack
on MEM in [17] to OPP, as in each application it would recover a vector y
orthogonal to a different period. Recall that in our quantum key-recovery attack
in Section 4.2 we overcame this issue as we only use one single quantum query
to the OPP-E(K,N, ·) oracle to compute the periodic function f̃N in 4.1 in order
to recover Ω and thus the key K using Simon’s algorithm.

To emphasize, the main difference between our attack and the existing one is
twofold. Firstly, we are focusing on the authenticated encryption setting, which
includes changing nonces that make the straight forward application of Simon’s
algorithm infeasible. Secondly, our attack is more efficient in terms of numbers
of queries, as it only requires one single quantum encryption query, whereas the
existing attack requires n queries.

30

	Quantum Cryptanalysis of OTR and OPP:Attacks on Confidentiality, and Key-Recovery

