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Abstract. We present a non-interactive and public verifier scheme that
allows one to assert the asset of a financial organization instantly and
incrementally in zero knowledge with high throughput. It is enabled by
the recent breakthrough in lookup argument, where the prover cost can
be independent of the lookup table size after a pre-processing step. We
extend the cq protocol [21] and develop an aggregated non-membership
proof for zero knowledge sets. Based on it, we design a non-intrusive pro-
tocol that works for pseudo-anonymous cryptocurrencies such as BTC.
It has O(n log(n)) prover complexity and O(1) proof size, where n is
the platform throughput (instead of anonymity set size). We implement
and evaluate the protocol. Running on a 56-core server, it supports 1024
transactions per second.

1 Introduction

First defined in Provisions [15], the zero knowledge (zk) proof-of-solvency (PoS)
problem is to prove in zero knowledge that the asset of an organization is greater
than its liability. Due to the volatility of financial market, we are interested in a
variation called instant zk-solvency problem, i.e., to prove solvency of an organi-
zation instantly and incrementally, e.g., at a frequency of 1Hz. This seems like
a daunting task that requires very expensive computing resources. For instance,
in [15] to generate and then verify a single zk-solvency proof for an anonymity
set of 500k BTC addresses needs about 1 hour. In our work, we use the entire
80 million BTC addresses as the anonymity set, and in fact it can be arbitrarily
large. The key observation of our work is that the ownership of an account needs
to be proved only once, and then the total asset can be proved incrementally.
We assume that the registration and verification of liability is handled by frame-
works such as DAPOL(+) [10, 28], then we just need to focus on the instant
zk-proof for asset only. In the rest of the paper we use terms “proof-of-reserve”
and “proof-of-asset” (PoA) interchangeably. The “asset” (“reserve”) here refers
to the asset that is in control by the organization.

We consider pseudo-anonymous cryptocurrencies such as Ethereum and BTC
where transaction details are public. Here, we abstract away platform specifics
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and use “account” to denote e.g., BTC wallet address and Ethereum account. 1

Let S represent the account set owned by an organization. At each transaction
cycle, the market (or a trusted smart contract) discloses two vectors: (1) a: the
list of all accounts that are involved in any transaction in the current cycle; and
(2) ∆ where each ∆i represents the balance change of the i’th account in a. Let
v be the total balance change for a∩S, and let CS be the Pedersen commitment
to S. We present a constant size zk-proof which convinces the verifier that a
commitment Cv hides the valid value for v, given a, ∆, and CS. Since CS does
not disclose information of S, the incremental balance change of S is proved in
zero knowledge.

The main challenge here is the concrete performance. We leverage the re-
cent break-through in lookup arguments [24, 37, 34, 22, 38, 27, 21]. Built upon
the cq protocol [21], we develop an aggregated non-membership proof for zero
knowledge sets, i.e., to show that the intersection of two committed zk-sets is
empty, which is used to demonstrate accumulated balance over a ∩ S. Because
we leverage the pre-processed lookup arguments, the prover complexity is in-
dependent of the size of S. Let n denote the throughput of the platform, the
prover cost is O(nlog(n)) field operations and a constant number of group multi-
exponentiation of size O(n). The verifier complexity and proof size are both
O(1). Concretely, running over a 56-core server at Google Cloud Computing,
our protocol has throughput of 1024 transactions per second (TPS), which is
half of Visa Network and 140 times faster than BTC. A second protocol works
for privacy preserving cryptocurrencies such as Monero and ZeroCoin and we
defer the details to an extended version of this paper.

2 Related Work

The earliest attempt of asset proof is [36] which is not zero knowledge. In [16],
the solution depends on special TPM hardware. Provisions [15] provides a zk-
solution to both the proof of reserve and liability problems, mainly relying on
zk-Σ-protocols. Its prover and verifier complexity are both linear with the size of
anonymity set, and it addresses pay-to-pubkey mode of BTC only. MProve(+)
[19, 17], Revelio [20], and Nummatus [18] each targets at a specific platform (e.g.,
Monero and Quisquis), and their design is tightly coupled with the platform (e.g.,
exploiting the ring signature in Monero). Their prover and verifier complexity are
both linear. In [1], zk-SNARK and double discrete logarithm proofs (DDLOG)
are combined to prove asset, where DDLOG is very expensive (e.g., costing over
2000 group elements for the proof of one coin). gOTzilla [3] employs MPC-in-
the-head and 1-out-of-n oblivious transfer. It can handle anonymity set size of

1 Even though BTC uses UTXO and allows mixing, from a BTC transaction and its
input, one can extract its sender/receiver BTC addresses and the change of balance
for each address. In case no-reuse principle is practiced, a BTC address is regarded
as a use-once account. In this case, to make out model work, an organization can
pre-compute a fixed set of BTC addresses for future use, and periodically expand
this set. We discuss its impact on the overall cost of the scheme in Section 5.1.
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80 million, but lacks non-interactiveness (i.e., it needs the verifier to be online
with the prover).

Scheme Prover Work Proof Size Hashed NI Incremental

Provisions [15] O(n) O(n) N Y N
MProve [19, 17, 20] O(n) O(n) Y Y N
zkSNARK e.g. [33] O(nlog(n)) O(1) Y Y N
CompositeNIZK [1] O(nlog(n)) O(n) Y Y N

gOTzilla [3] O(n) O(log(n)) Y N N

This Work O(tlog(t)) O(1) Y Y Y

Table 1. Comparison of Related Work. n: anonymity set size, t: blockchain throughput,
m: number of accounts controlled by the organization. In practice, t << n, e.g., for BTC
t is 7 and n is 80 million. Hashed: whether the scheme supports hash in generating
account address. Complexity includes field operation cost. NI: non-interactive. The
complexity of gOTzilla is for the case m = 1. We do not know if its proof size scales
linearly or sub-linearly with m. All others have complexity independent of m provided
m < n.

In Table 1, we present a brief comparison of the asymptotic complexity of
all the aforementioned related works. Compared with them, the proof size and
verifier complexity of our protocol are O(1). In addition, because the platform
throughput (e.g., 7 for BTC, or 2000 in Visa network) is much smaller than
the anonymity set size (e.g., 80 million for BTC), the concrete cost of prover
work in our scheme is much smaller. None of the aforementioned related work is
concretely efficient for supporting an incremental, non-interactive, public verifier,
and instant zk-asset proof scheme for the scale of the throughput as presented in
this paper. On the other hand, the protocol presented in this paper is only used
for the incremental zk-proof, and its bootstrap process (see Section 4.1) needs
to leverage the “classical” PoA technique.

In the cryptocurrency industry, there is a recent increase of interest in PoS
systems, after the FTX scandal. For instance, Binance provides a PoA system
since late 2022 [4]. Its zk-protocol works only for proving liability, and its cor-
porate holdings are manually verified by a third party auditor Mazar [14], who
backed off in December 2023. The solution provided in this paper helps to rule
out unreliable human factors and it provides instant asset report instead of
monthly updates. OKX [32] provides a similar PoS system as Binance, where
zkSTARK is used to assert user contribution to total liability. It differs in the
verification of corporate holdings - OKX publishes all of its wallet addresses,
hence losing privacy of its assets. More industrial efforts in PoA can be found in
[9], and a comprehensive survey of academic work can be found in [11].
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3 Preliminaries

3.1 Notations

We use P and V to denote the prover and the verifier. Let G be a generator
of bilinear groups, i.e., (p,g1,g2, G1,G2,GT , e) ← G(1λ), where all groups have
order p, and g1 (g2) the generator of G1 (G2). e : G1 ×G2 → GT is the bilinear

map. Let F be the scalar field of G1. s
$←− F represents sampling s uniformly from

F. We use n and N to denote the size of query and lookup tables. We assume the
existence of n-th and N -th roots of unity so FFT is applicable. We follow the
notations in Groth16 [26]. For instance, g1

ag1
b is written as [a]1 + [b]1. We use

[n] to denote range [1, n]. A vector t ∈ Fn is written as (t1, . . . , tn). u+v denotes
(u1+v1, . . . ,un+vn), and αu is (αu1, . . . , αun). We use ωn for the n’th root of
unity, i.e., (ωn)

n = 1. We define Hn = {ω1
n, . . . , ω

n
n}, and the corresponding set

of Lagrange base polynomials is denoted as {Ln,i(X)}ni=1, where Ln,i(ω
i
n) = 1

and Ln,i(ω
j
n) = 0 for j ̸= i. Given a multi-set S, its vanishing polynomial zS(X)

is defined as zS(X) =
∏

s∈S(X − s). It is known that zHn
(X) = Xn − 1. Given

s ∈ F, its Pedersen commitment is [s]1+r[h]1 for a random r, where h is unknown
to the prover.

Given t ∈ Fn, its encoding polynomial t(X) has degree n − 1 and it is
defined as: t(X) =

∑n
i=1 tiLn,i(X). We use the univariate zk-VPD scheme [39]

to provide zk-vector commitment. Sample rt ∈ F, and the masked polynomial
for t is defined as: t̂(X) = t(X) + rtzHn

(X), and the vector commitment to t
is: Ct = [t̂(s)]1, where s is the trapdoor of a KZG commitment key [29]. Given
a public point z, using the univariate port of the zk-VPD scheme, the prover
can convince the verifier that a Pedersen commitment Cy hides a value y = t(z)
without disclosing y. Note that t̂(X) is also a 1-leaky masked polynomial of t(X)
[13, Section 3.6] (also in [23, 8]), in the sense that running standard KZG opening
proof for one evaluation of t̂(X) still keeps t zero knowledge. 2-leaky masking
is similarly achieved by defining t̂(X) as t̂(X) = t(X) + (rt1X + rt0)zHn

(X).
In summary, for any vector u ∈ Fn, we use u(X), û(X), and Cu to denote its
encoding polynomial, masked polynomial, and vector commitment.

We use the notation from [6] to specify zk-protocols. Consider Schnorr’s
DLOG as an example: πDLOG(h){(x) : h = [x]1}. Here DLOG in πDLOG is a
mnemonic. (h) is the public information. The tuple before “:” is the secret known
by prover only, i.e., (x). Then the statement inside curly braces states the rela-
tion: the prover knows the secret discrete logarithm of h.

3.2 Lookup Argument

Let t ∈ Fn and T ∈ FN , a lookup argument for t ⊂̂ T asserts that for each
i ∈ [n]: ti ∈ T. Note that both t and T may contain duplicates. We need a ho-
momorphic and zero knowledge look-up argument, and a slight zk-enhancement
of cq [21] satisfies our needs. The basic idea of cq is to pre-compute commitments
of quotient polynomials in O(N log(N)) time. Then for arbitrary query table t
of size n, the prover work is O(nlog(n)), thus independent of N . We need to
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enhance cq so that it is zero knowledge. In our extension, we exploit bounded
leaky-zk as in [12, 13], and Schnorr style Σ-protocols as in [35]. We will present
its full technical details in the extended version of this paper. Similar construc-
tions for the zk-enhancement of cq can be found in two concurrent work: segment
lookup [13] and matrix lookup [7]. We denote it as πZK LOOKUP, as shown below:

1. (pk, vk) ← Setup (N,λ) : a trusted set-up given security parameter λ and
lookup table size limit N , samples bilinear groups and generates the prover
and verifier keys (pk, vk) for KZG.

2. (auxT,CT) ← Preprocess(T, pk): Given the lookup table T, it generates
auxT (the preprocessed information) and CT (a commitment to T).

3. π ← Prove(pk, auxT,T, t): produces a zero knowledge proof π for t ⊂̂ T.
4. 1/0← Verify(vk,CT,Ct, π) : checks that π is valid.
5. π ← FoldProve(pk, auxU,U, auxV,V,u,v, α): produces a zero knowledge

proof π for u+ αv ⊂̂ U+ αV.

Theorem 1. Under the Q-DLOG assumption [21] in the Algebraic Group Model
(AGM) and Random Oracle Model (ROM), πZK LOOKUP is perfectly complete, com-
putational knowledge sound, and zero knowledge.

The proof generally follows the analysis of cq [21], and is similar to that of
[13, 7]. We delay the details to the extended version.

Based upon πZK LOOKUP, we develop πRANGE(Ca, 2
B), a batched zk-range proof

which asserts that Ca is a Pedersen vector commitment to a ∈ Fn, and each ai
in a is in range [0, 2B). It has O(1) proof size and O(nlog(n)) prover complexity.

4 IZPR Protocol

4.1 Overview

We first provide a high level overview of the IZPR protocol. As the scheme
is based upon cq, IZPR needs a one-time trusted setup to provide prover and
verifier keys. It has two stages: a bootstrap stage and an incremental proof stage.
Bootstrap: the goal of the initial stage is to provide the proof for the ownership
of accounts and the initial total balance. In the discussion below, we use “prover”
to denote the organization who provides the asset proof.

The prover has the following secret information: (1) s ∈ FN : secret keys. (2)
S ∈ FN : public accounts (e.g., for BTC each Si = hash(gsi) where g is a generator
in curve secp256k1 and hash is a combination of SHA256 and RIPMD160). (3)
v ∈ FN : initial account balances for a specific timestamp ts, i.e., vi is the asset
value of Si.

Here, we specifically note that for the case when the organization practices
the no-reuse principle of BTC address, the prover has to pre-compute sufficient
private key/public account pairs for future use. If an account does not appear
in the blockchain yet, its value is set to 0.

The verifier is provided with the following information: (1) the snapshot
of the entire cryptocurrency platform at timestamp ts, which includes the list
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of all accounts and their balances. Usually a succinct commitment, e.g., the
root of a Merkle tree of such information, is provided. We denote such succinct
commitment as CT, and we use (Si,vi) ∈ CT to indicate that the value of Si

in CT is vi, and we use the notation Si ̸∈ CT for Si does not appear in CT. (2)
The information provided by the prover: CS: the Pedersen vector commitment
to S, and CI : a Pedersen commitment to the initial asset value I.

The goal of the prover is to convince the verifier that: the prover has the
knowledge of S, v, s such that all of the following are true:

1. Commitments Validity: knowledge of S behind CS and I behind CI .
2. Ownership: knowledge of private keys s, which generate accounts, e.g., for

BTC: ∀i ∈ [1, n] : Si = hash(gsi).
3. Account Existence: ∀i ∈ [1, n] : (Si ̸∈ CT ∧ vi = 0) ∨ (Si,vi) ∈ CT.

4. Initial Asset: I =
∑N

i=1 vi

Incremental Stage:At any time, the prover maintains a Pedersen commitment
CB to the total balance B of all accounts. B can be kept as a secret depending
on business needs. At the bootstrap, the prover has established that CB = CI .
The prover also publishes CS.

2

Then at each cycle (blockchain epoch), the prover executes a πIZPR protocol
(details in Section 4.3), based on the public information of the cryptocurrency
platform, as shown in the following.

1. The cryptocurrency platform publishes the following information: (1) a: the
list of all accounts that are involved in any transaction in the current cycle;
(2) ∆: the change of balance for each account in a. Let p be the order of
the scalar field F used. If the balance change is negative, e.g., −c, then it
is represented as p− c in F. To reduce the verifier complexity, the Pedersen
vector commitment to the above are provided and let them be: Ca and C∆.

2. The prover provides a constant-size proof πIZPR which asserts that: given CS,
Ca, C∆, the total balance change for a∩S according to ∆ is a value v hiding
in a Pedersen commitment Cv. The O(1) size proof is made public and can
be verified non-interactively by any verifier.

3. The prover then updates CB ← CB + Cv, leveraging the homomorphic
property of Pedersen commitment.
Assuming that CL commits to the total liability L. CB − CL commits to
B − L. The zk-range proof to show B − L > 0 incurs trivial cost. Thus, the
organization can prove its solvency without disclosing the total asset and
liability value. In certain market situation, this might be desirable. With
slight change, one can also prove that the secret total asset value B is 10%
greater than total liability in zero knowledge, providing more assurance to
clients of the organization.

In practice, the concern is the scalability of the scheme. We extend the cq
protocol, and develop a number of constructions for realizing the IZPR scheme.
The rest of this section delves into the technical details.
2 It is assumed that S is fixed. It is possible to periodically expand S, which is briefly
discussed in Section 5.1.
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1. P computes s and o of size n for t:

(si,oi) =

{
(j,1) if ∃j s.t. Tj = ti
(k,0) if ∃k s.t. Tk < ti < T′

k

Then P computes u = (Tsi)
n
i=1 and v = (T′

si)
n
i=1, and the vector

commitments: Cu,Cv,Co. P→ V : (Cu,Cv,Co).

2. V : α
$←− F. V→ P : α.

3. P computes π ← FoldProve(pk, auxT,T, auxT′ ,T′,u,v, α). P→ V : π.
4. V aborts if Verify(vk,CT + αCT′ ,Cu + αCv, π) returns 0.
5. P and V run πRANGE(Ct −Cu, 2

B), and πRANGE(Cv −Ct, 2
B).

6. P shows o is a Boolean array by proving that there exists a qo(X) s.t.

o(X)(o(X)− 1) = qo(X)zHn(X)

7. P proves o(X) is correct. P computes d = t− u (note Ct −Cu commits to
d). Then P shows there are q(X) and v(X) s.t.

o(X)d(X) + (1− o(X))(v(X)d(X)− 1) = q(X)zHn(X)

Here v(X) encodes the inverse of each di if it exists.

Fig. 1. PN-Lookup Argument

4.2 Positive-Negative Lookup

We first need an enhanced version of lookup argument. Given the secret query
table t, and a public lookup table T, the goal is to assert that a Pedersen
commitment Co encodes a Boolean vector o such that oi indicates whether ti is
contained in T. We call it Zero Knowledge Positive-Negative Lookup argument
(“zk-PN-Lookup” for short). The basic idea is straight-forward. Let T be sorted
in ascending order. When ti ̸∈ T, we simply identify Tj and Tj+1 s.t. Tj < ti <
Tj+1.

Formally, we assume that all elements in lookup tables are in range [0, 2B),
e.g., for BTC, B is 160. Given a private and sorted table A = {A1 < ... <
AN−1} with all elements in range (0, 2B), define T = {0,A1, . . . ,AN−1}, and
T′ = {A1, . . . ,AN−1, 2

B}. We call (T,T′) the sorted vector pair for A with
bound 2B . Their relation can be proved with a separate zk-proof. Then πPN LOOKUP

is defined below:

πPN LOOKUP(CT,CT′ ,Ct,Co, B){(T,T′, t,o) :

Ct = [t̂(s)]1 ∧ Co = [ô(s)]1 ∧ CT = [T̂ (s)]1 ∧ CT′ = [T̂ ′(s)]1 ∧
∀i ∈ [n] : ((oi = 1 ∧ ∃j s.t. Tj = ti) ∨ (oi = 0 ∧ ∃j s.t. Tj < ti < T′

j))}

Figure 1 presents the details of the πPN LOOKUP protocol. We now explain its
design idea and informally reason about its security.
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There are two cases to cover: (1) ti ̸∈ T, i.e., there exists j s.t. Tj < ti < T′
j ;

and (2) ti ∈ T, i.e., there exists a k s.t. Tk = ti. The prover derives two private
vectors u and v to assist the proof. Consider the following example.

Example 1. Let T = (0, 100, 200, 300) and T′ = (100, 200, 300, 2B). Let t =
(100, 250), and the resulting o = (1, 0). To reason about the position of elements
in t, the prover computes in private: u = (100, 200) and v = (200, 300). Note
that for each i: (ui,vi) constitutes a pair of elements in T and T′ of the same
index. This property is proved via a folded lookup argument (steps 1-3 in Figure
1): Given the vector commitments to u and v, the prover samples a random
challenge α and then the prover proves that each element of vector u + αv
belongs to T+αT′. Given α is random, the probability that the property being
violated is negligible. Then the prover needs to argue that for each i: ui ≤ t ≤ vi.
This is accomplished using two batched zk-range proofs (step 5 in Figure 1).

Next, in Step 6 of Figure 1, the prover convinces the verifier that o is a
Boolean array, i.e., for i ∈ [n]: o2

i − 1 = 0, which enforces that oi is either 1
or 0. Consider the encoding polynomial o(X) =

∑n
i=1 oiLn,i(X), based on the

property of Lagrange base polynomials, we have for i ∈ [n]: o(ωi
n) = oi. Thus

the prover needs show the existence of a polynomial qo(X) s.t. o(X)(o(X)−1) =
qo(X)zHn

(X). The prover cannot disclose o(X) or qo(X), instead, their masked
polynomials are used, to preserve zero knowledge. Similarly, Step (7) in Figure 1
proves that o(X) encodes the correct information, i.e., when ti ∈ T, o(ωi

n) = 1,
otherwise o(ωi

n) = 0.
πPN LOOKUP immediately leads to an aggregated non-membership proof. Given

a preprocessed CT, to prove that t∩T = ∅ can be achieved by running πPN LOOKUP

first and then showing that Co is a Pedersen vector commitment to (0)
n
i=1. The

prover complexity of πPN LOOKUP O(nlog(n)) and its verifier complexity is O(1).
Using Fiat-Shamir transform, πPN LOOKUP can be converted into a non-interactive

proof. We then have the following:

Lemma 1. Under the Q-DLOG assumption in the AGM and ROM, πPN LOOKUP

is perfectly complete, computational knowledge sound, and zero knowledge.

4.3 πIZPR Protocol

We now consider πIZPR, the asset proof for pseudo-anonymous cryptocurrencies.
It is non-intrusive in the sense that there is no change needed on the blockchain,
or any participants who have no need for asserting assets. The protocol assumes
that at the bootstrap step, the organization has provided the ownership proof
for each account in S. Let T and T′ be the corresponding sorted vector pair for
S. To verifier, only their commitments (CT and CT′) are visible.

For each transaction cycle, the blockchain makes two vectors public: a: the
list of accounts, and ∆, the corresponding balance change of each account in a.
We use [0, 2B) as positive and [|F|−2B , |F|) as negative values. Let n = |a|, 3 and
3 In the implementation |a| = |u| − 1
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1. P receives input: S, a, and ∆.
V receives input: B, Ca, C∆, CT, CT′ , and Cv.

2. P computes array oi as shown in Figure 1, and v the accumulation of balance
changes of a ∩ S. Define polynomial u(X) s.t.

u(ω1
n) = 0

u(ωn
n) = v

u(Xωn)− u(X)− o(X)∆(X) = q(X)zHn(X)/(X − ωn
n)

P samples random openings and compute masked polynomials û(X), and
ô(X). In particular, make û(X) 2-leaky by:
û(X) = u(X) + (ru1X + ru0)zHn(X). Define ∆̂(X) = ∆(X). Define

q̂(X) = û(Xωn)−û(X)−ô(X)∆̂(X)
zHn (X)/(X−ωn

n)
. Compute Cu = [û(s)]1, Co = [ô(s)]1, and

Cq = [q̂(s)]1. P→ V : (Cu,Cq,Co).

3. V samples t
$←− F. V→ P : t.

4. P computes tu2 = û(tωn), tu = û(t), to = ô(t), t∆ = ∆̂(t), and tq = q̂(t). P
and V run standard KZG opening proof for them, where the last 4 can be
batched. P and V run another KZG opening for û(ω1

n) = 0.
5. V checks tu2 − tu − tot∆ = tq(t

n − 1)/(t− ωn
n).

6. P and V engage in a univariate zk-VPD [39] opening proof to prove that
Cv = [v]1 + rv[h]1 for some rv and u(ωn

n) = v, but without disclosing the
value of v.

7. P and V run πPN LOOKUP(CT,CT′ ,Ca,Co, B).

Fig. 2. πIZPR Protocol

N = |T|. Typically, the value of n is not large and determined by the throughput
of the platform. For instance, BTC, ETH, Visa Network and NYSE operate at
7, 30, 1700, and 24000 TPS, respectively. In this work, we aim at accomplishing
1000 TPS, and set n = 2048 (assuming each transaction causing updates on two
accounts) and N = 8 million. Define Ca = [a(s)]1 (without blinding factor) and
similarly is C∆ defined. They are used only as succinct representation of a and
∆ and need to be publicly computable (thus no hiding property is needed). On
the other hand, CT and CT′ are hiding.

Intuitively, πIZPR states that Cv commits to a value v that is the sum of
balance changes for all accounts that appear in the intersection of S and a as
sets. It is formally defined below.

πIZPR(B,CT,CT′ ,Ca,C∆,Cv){(T,T′,a,∆, v, r) :
Cv = [v]1 + r[h]1 ∧ v =

∑
aj∈S∩a ∆j

Ca = [a(s)]1 ∧ C∆ = [∆(s)]1 ∧ CT = [T̂ (s)]1 ∧ CT′ = [T̂ ′(s)]1}
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The protocol is built upon πPN LOOKUP, and the details are presented in Figure
2. In the following we present its design idea and an informal analysis of its
security.

(Steps 1-2): Given a, the prover first computes a Boolean vector o where
each oi indicates if ai appears in T. Note that the validity of o is established in
step 7. Then the prover defines an accumulator vector u s.t. u1 = 0 and its last
element is the sum of all account balance changes, i.e., the value of v. Therefore,
for i ∈ [1, n−1], we have: ui+1 = ui+oi∆i, i.e., the Boolean oi decides whether
to include ∆i in the sum. Let u(X) be the encoding polynomial of vector u, we
then have the following listed in Step 2:

u(Xωn)− u(X)− o(X)∆(X) = q(X)zHn(X)/(X − ωn
n) (1)

Here ωn is the n’th root of unity, and the u(Xωn) and u(X) intuitively model
the relation between ui+1 and ui. The last item zHn(X)/(X −ωn

n) expresses the
range condition [1, n− 1], i.e., given that zHn(X) =

∏n
i=1(X − ωi), the formula

excludes the case i = n.
Note that for each vector, e.g., u, the commitment to its masked polynomial

û(X) is sent to the verifier, for preserving zero knowledge.
(Steps 3-5) The verifier samples a random challenge t, and the prover uses

KZG polynomial commitment to assert the evaluation of each related polynomial
at point t (step 4), and then the verifier use these values to check Equation
1 (step 5). Given that for each i ∈ [n] : u(ωi

n) = û(ωi
n), and by Schwartz-

Zippel, the probability of failing soundness is negligible. Also note that since
each polynomial is involved in KZG evaluation proof for up to 2 times, and their
masked polynomials have their degrees raised correspondingly, which preserves
zero knowledge. The same technique is used in [23, 8].

(Step 6) Finally, the prover needs to convince the verifier that un = v,
without disclosing the value of v. KZG cannot be used here, because it discloses
the evaluation itself. Instead, we employ a univariate instantiation of the zk-
VPD [39] scheme, which given the KZG commitment to a polynomial p, a point
t and proves that a Pedersen commitment C hides the value of p(t). This finally
concludes the proof that Cv is a Pedersen commitment to the sum of balance
changes of a ∩ S.

Theorem 2. Under the Q-DLOG assumption in AGM and ROM, πIZPR is per-
fectly complete, computational knowledge sound, and zero knowledge. Its prover
complexity is O(|a|log(|a|)). Its verifier complexity and proof size are both O(1).

5 Implementation and Evaluation

We implemented and evaluated πIZPR over BLS12-381 (providing 128-bit secu-
rity). Our implementation consists of 4600 lines of Rust, and is based on the
arkworks library [2] (which provides parallelism via multi-threaded Rayon). Fig-
ure 3 shows the scalability of the zk-cq protocol, the batched zk-range proof based
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Fig. 3. Scalability of πIZPR

on cq, the zk-pn-lookup protocol and the πIZPR protocol. The evaluation data is
collected over a GCP C2D instance with 56 cores, and the best performance
is achieved at 2⌊log(56)⌋ = 32 threads. For the zk-range proof, we assert range
[0, 2160) and split each field element into 8 chunks of 20-bit numbers. Therefore
given n elements in a batched zk-range proof, it results in a lookup argument for
query table size of 16n. The concrete prover cost of zk-range proof for process-
ing 32k 160-bit field elements needs 24.5 seconds with 32 threads, equivalent to
6.7bit/(thread,ms), this is faster than the bullet proof [5] (3.2bit/(thread,ms)),
and our proof size and verifier cost are both O(1).

The lookup table has 8 million entries (simulating an exchange owning 10%
of existing BTC addresses). The one-time preprocessing for πIZPR (mainly for
the cq) takes 4 hours.4 The prover cost for 2048 account updates is 0.935 second
(32-threads), and the verification cost is 45 ms (1-thread). Assuming that each
transaction results in change of 2 accounts, this is equivalent to supporting TPS
of 1024, which is half of the speed of Visa Network and 146 times of BTC. The
proof size is 3.4 kb.

5.1 Discussion on Bootstrap Cost

There are many ways to realize the bootstrap process, which is out of the scope
of this paper, as the bootstrap is orthogonal to the incremental proof protocol.

4 The cost does not include the ownership proof for each BTC address.
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We briefly describe some representative approaches to the bootstrap step, and
estimate their cost.

If the size of account set S is small, prior related work listed in Section 2 apply.
The proof can be non-succinct but public verifier and non-interactive (e.g., using
Provisions [15]), or interactive and requiring dedicated verifier (e.g., gOTzilla
[3]). For instance, for the 1-verifier interactive case (gOTzilla), for asserting the
ownership of 1-coin, a Boolean circuit of 256-million AND gates is needed, which
needs a few minutes of prover time with 48-threads. We estimate that its cost
of proving 1 BTC coin would be 5 cents. 5

Given a large S and even bigger anonymity set size, 6 the bootstrap process
can be expensive. We provide an analysis for the use of typical bilinear pairing
based zkSNARK systems (e.g., [25, 26, 23]) for the bootstrap process, focusing
on BTC only and analyses for other platforms are similar. The cost of zkSNARK
mainly arises from modeling the ownership proof for BTC, i.e., Si = hash(gsi).
The hash operations such as SHA-256 costs about 25k R1CS constraints (or
arithmetic circuits of similar size). However, to encode gsi becomes a challenge.
It is known that g is a curve point in secp256k1, and each point add/double
operation costs 15 multiplications over its base field. The problem is that the
order of secp256k1 base field does not match the scalar field order of bilinear
pairing friendly curves such as BLS12-381. Then the field operations need to
be simulated by chunks of scalar fields of the prover system. We performed an
initial analysis using Jsnark [31], using 32-bit chunks to represent the 256-bit
base field operations. Our data shows that each such operation costs 990 R1CS
constraints. In this case, to model the gsi operation (given 256-bit si would need
about 15×256×990 = 3.8 million R1CS constraints. It is known that for typical
pairing based zkSNARK systems, to prove 1 million constraints typically needs
1-thread of 100 seconds of CPU time. Given 10 cents/hour of CPU core cost over
typical cloud systems, we estimate that 1 BTC address ownership proof would
cost 1 cent. For an exchange that manages 10% of all BTC asset, its bootstrap
process (for 8 million BTC addresses) would incur a one-time computing cost of
80, 000 dollars. Periodical expansion of the account set is possible via a similar
bootstrapping circuit, and Quasi-adaptive NIZK [30], for which, we delay the
details to an extension of this paper.

As the bootstrap process is only performed once, human auditing is also
possible. In this case, the prover simply provides the list of all accounts to the
auditor, who subsequently sums the initial total balance based on the public
information from the cryptocurrency platform, and keeps the list of accounts
confidential.

5 The estimate is based on the hardware reported in gOTzilla (24 physical cores). A
similar C2D instance at Google Cloud costs 2.84 dollars per hour.

6 One interesting question is: what is the appropriate size of |S|? It is known that
OKX has 23k BTC addresses for 143k BTC coins [32] (out of 19 million BTC coins
world-wide). Larger |S| means less financial drives for attacks, and better privacy.
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6 Conclusion

Based on the recent progress of lookup arguments, we develop a zero knowledge
protocol for asserting the asset of an organization incrementally. The prover cost
does not depend on the number of the accounts owned by an organization (which
can be arbitrarily large), but on the throughput of the platform. With modest
computing resources, the protocol can support regular business transaction sys-
tems at 210 TPS. We foresee that with some light implementation efforts, e.g.,
leveraging MPI, the protocol can be further scaled.
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