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Abstract. The number-theoretic literature has long studied the ques-
tion of distributions of sequences of quadratic residue symbols modulo a
prime number. In this paper, we present an efficient algorithm for gen-
erating primes containing chosen sequences of quadratic residue symbols
and use it as the basis of a method extending the functionality of addi-
tively homomorphic cryptosystems.
We present an algorithm for encoding a chosen Boolean function into
the public key and an efficient two-party protocol for evaluating this
function on an encrypted sum. We demonstrate concrete parameters for
secure function evaluation on encrypted sums up to eight bits at standard
key sizes in the integer factorization setting. Although the approach is
limited to applications involving small sums, it is a practical way to
extend the functionality of existing secure protocols built on partially
homomorphic encryption schemes.
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1 Introduction

Ever since Yao’s Millionaires’ problem [29], distrusting parties have been com-
puting things of mutual interest without sharing their respective inputs. Secure
function evaluation (SFE) has many interesting applications in areas such as
privacy-preserving machine learning [24], private information retrieval [10], sim-
ilarity search in private databases such as genotype and other medical data [25],
online voting [2], auctions [11] and private credit checking [18].

Despite recent advances in fully homomorphic encryption, partially homo-
morphic schemes (i.e., those offering homomorphic operations with respect to a
single operation) still play an important role in secure computation. For example,
Switzerland requires internet-based elections to be cryptographically verifiable1

and the first certified implementation is based around mix nets built from addi-
tively homomorphic encryption.2

1 Swiss Federal Chancellery Ordinance on Electronic Voting. Available:
https://www.fedlex.admin.ch/eli/cc/2022/336/en

2 The Swiss Post E-voting System. Available: https://gitlab.com/swisspost-evoting



In applications where partially homomorphic encryption is sufficient, such
schemes can offer more clear-cut parameterizations, more mature hardness as-
sumptions, more straightforward implementations, and faster executions relative
to their fully homomorphic counterparts.

This paper presents a method for extending the functionality of additive ho-
momorphic encryption schemes (specifically those with efficient full decryption)
by working in groups containing sequences of quadratic residues and non-residues
with a correspondence to a chosen Boolean function. Given an encrypted value
Enc(x) and a Boolean function f : Zt → {0, 1}, we present an efficient method
for homomorphically evaluating Enc(f(x)) in a single public-key operation across
a short (but non-trivial) interval 0 ≤ x < t.

Let QR : Z×Z→ {0, 1} be a function testing the quadratic residuosity of an
integer x ∈ Zp, defined as

QR(x, p) =

{
0 if x is a quadratic residue modulo p.
1 otherwise.

Given f(·) and an integer sequence of the form [αx+β | 0 ≤ x < t, andα, β > 0],
our approach involves three components:
1. An efficient algorithm for finding a prime p for which

QR(αx+ β, p) = f(x).

2. An additively homomorphic public-key cryptosystem embedding the required
quadratic residue symbol sequence into the plaintext space, i.e., M⊂ Zp.

3. A public homomorphic operation that can blind the encryption of αx+ β
while preserving its quadratic residue symbol modulo p (and hence the out-
put of the function f(x)).

Taken together, these components allow f(x) to be securely evaluated on an
encrypted sum in the range 0 ≤ x < t for small (but non-trivial) values of t in a
single public-key operation.

Previously, patterns in quadratic residues have been exploited for the evalu-
ation of specific functions such as secure integer comparison [17], sign function
evaluation [1,30], and threshold functions [16]. However, secure evaluation of ar-
bitrary functions using quadratic residue patterns appears to be a novel direction.
Our work extends the approach of [16] to the general case.

Contribution. We present an algorithm for generating primes with arithmetic
sequences containing chosen quadratic residue symbols. These sequences extend
the functionality of additively homomorphic cryptosystems and generalize the
approach to secure evaluation of arbitrary functions by generating the candidate
primes that facilitate the required quadratic residue symbol sequences. Using
an additively homomorphic scheme with efficient full decryption (such as the
schemes due to Paillier [22] and Okamoto-Uchiyama [21]), given an encrypted
sum Enc(x), we present parameters for evaluating arbitrary functions Enc(f(x))
for x up to t = 256 at the 4096-bit prime range and sums up to t = 512 where
larger public-keys are acceptable.
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2 Related Work

Finding patterns in quadratic residues and non-residues has been a subject in
the number theory literature for a long time. Gauss posed the problem of finding
the smallest quadratic non-residue np modulo a prime p [19], and papers over the
past century have continued to refine this bound, most recently by Carella [8]
showing np ≪ (log p)(log log p).

Much of the subsequent literature has focused on distributions of consecutive
runs of residues and non-residues, providing bounds on the size of a prime nec-
essary to observe a specified run length. For some a ≥ 1

4

√
e, a sequence of length

p1/4 for a given p contains at least one residue and one non-residue according
to Burgess [7]. Research has long explored primes with at least ℓ consecutive
quadratic residues or non-residues. Studies by Brauer [5] and Davenport [14]
examined arbitrary combinations of residues and non-residues, but these were
restricted to very short sequences (t < 10).

Records for run lengths were improved with the rise of scientific computing
in the 1980s. For example, Buell [6] experimentally studied the smallest primes
exhibiting a consecutive sequence of ℓ residues followed by ℓ non-residues. For a
residue symbol sequences of the form QR(a+ x, p) for 0 ≤ x < t, they achieved
ℓ = 9 and thus t = 18 for p = 414463.

Since there are an equal number of residues and non-residues modulo an
odd prime p, the probability that a particular integer will be a residue or non-
residue would be 1/2 across all primes if the distribution were uniform and
random. Peralta [23] presented the probability of finding an arbitrary residue
symbol sequence modulo p given the length of sequence t and found it deviates
from random by a factor no more than t(3 +

√
p)/p. Later research exploited

the random-looking distributions of residue symbols for applications in water-
marking [4] and pseudorandom bit generators [13, 26, 27], approximate pattern
matching [15].

While there are several interesting applications exploiting the patterns in
quadratic residues, Feige et al. [17] proposed a minimal model for secure inte-
ger comparison by exploiting the fact that, for p = 7, the Legendre symbols(

x
p

)
∀x = a− b | a, b ∈ [−2, 2] coincide with the sign function of x ∈ [−2, 2]. Fol-

lowing this, improved secure function evaluation protocols were proposed [1,30]
to evaluate sign function by generating primes with the required quadratic
residue symbol patterns modulo a prime number, specifically a Blum prime
(p ≡ 3 mod 4). However, both these approaches [1, 30] rely on finding consec-
utive long runs of quadratic residues alone, thus only useful to perform secure
comparison based on sign function. The work in [16] used brute force to search
for consecutive sequences of ℓ residues followed by ℓ non-residues, where the
quadratic residuosity function is calculated as QR(x+a, p). The maximum value
attained in this approach is t = 52, for a = 1134844 and p = 2269739. Such
runs were exploited to evaluate the threshold function, i.e., a Heaviside function
H(x), which is off until x = c.
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Our approach. As we prove in the next section, the number of primes exhibiting a
given residue symbol sequence is infinite. However, in contrast to previous work,
instead of relying on the Legendre symbols of consecutive numbers modulo a
prime p, we present parameters to find arithmetic sequences of the form αx+β,
which can be used to generate primes toward secure evaluation of an arbitrary
function with an integer domain and Boolean range.

3 Cryptographic Preliminaries

Let f be a function where, f : Zt → {0, 1} is defined over an integer input x for
0 ≤ x < t. Our objective is to securely evaluate f without revealing its inputs. To
achieve this, we present relevant notations and an algorithm that can provably
generate primes embedding arithmetic residue symbol sequences that implement
f . Such primes are useful to extend the functionality of additively homomorphic
cryptosystems.

Definition 1 (Legendre Symbol). The Legendre symbol is a function L :
Z× Z 7→ {−1, 0, 1} defined as:

(
x

p

)
≡


1 if x is quadratic residue mod p

−1 if x is quadratic non-residue mod p

0 if x ≡ 0 mod p.

It can be directly established that the quadratic residuosity function QR : Z ×
Z→ {0, 1}, as defined in the introduction:

QR(x, p) =

{
0 if x is a quadratic residue modulo p.
1 otherwise.

is a modification of the Legendre symbol’s co-domain where

QR(x, p) =

(
x
p

)
+ 1

2
.

Since the Legendre symbol is a completely multiplicative function of its top
argument, so is the quadratic residuosity function.

3.1 Linear Embeddings of Boolean Functions in Residue Sequences

We deal with the following functions:

– A function f : Zt → {0, 1} that needs to be securely evaluated over an input
x, for 0 ≤ x < t and t ∈ Z+.

– The quadratic residuosity function QR : Z×Z→ {0, 1} for secure evaluation
of f .
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– A mapping function h : Z → Zp, that maps an input x into h(x) = (αx +
β) mod p. Here, {α, β} ∈ Z+ and are given as input parameters to facilitate
the application of QR function.

We are interested in locating primes p which contain some residue symbol se-
quences modulo a prime p that imitate the range of f . In other words, given and
integers {α, β} we are looking for some p that can compute:

QR(h(x), p) = f(x)

for 0 ≤ x < t.

Approach to Secure computation. We can homomorphically evaluate f us-
ing an additive scheme as follows. Let CS = {Gen,Enc,Dec} be an additively ho-
momorphic public-key cryptosystem that display the following homomorphisms:

Enc(x1) · Enc(x2) = Enc(x1 + x2 mod p)

and

Enc(x1)
x2 = Enc(x1x2 mod p).

Given an encrypted value Enc(x) in the range 0 ≤ x < t, and an α, β > 0, one
can homomorphically compute Enc(h(x)) as follows:

Enc(h(x)) = Enc(x)α · Enc(β) = Enc(αx+ β mod (p)).

Applying the quadratic residue function to the decryption Enc(h(x)) yields.

QR(Dec(Enc(h(x))), p) = QR(h(x), p) = f(x).

This demonstrates the basic mechanics of the secure evaluation of f . Clearly,
however, the decrypter could recover x from seeing h(x), and thus a homomor-
phic blinding function will be presented later in section 4.

3.2 Prime numbers with Chosen Residue Symbol Sequences

We begin with the Legendre symbol as a standard notation and later re-frame
the discussion in terms of a quadratic residuosity function QR. Consider a list of
t distinct primes {a1, . . . , at} and a list of Legendre symbols {ℓ1, . . . , ℓt} where
ℓx ∈ {−1, 1}. For all 1 ≤ x ≤ t, a prime p can be generated using Algorithm 1
such that (

p

ax

)
= ℓx.
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function ψ(Primes {a1, . . . , at}, target symbols {ℓ1, . . . , ℓt}, bit-length λ)
while True do

B ← [ ]
for 1 ≤ x ≤ t do

if ℓx == 1 then
Choose bx

R←− QRax
▷ Set of quadratic residues modulo ax

else
Choose bx

R←− NRax ▷ Set of non-residues modulo ax
end if
B.append(bx)

end for
Compute p′ ← CRT

(
[a1, . . . , at], [b1, . . . , bt]

)
Compute A←

∏t−1
x=0[ax]

Choose k R←− [kmin, kmax] ▷ Largest interval such that |p| = λ
Compute p← kA+ p′

if isPrime(p) == True then
return p

end if
end while

end function

Algorithm 1

Theorem 1. The function ψ in Algorithm 1 is guaranteed to return a prime p
that facilitates the chosen residue symbol sequences.

Proof. See Appendix A for the proof.

Theorem 2. For all t ∈ Z+ and all functions f : Zt → {0, 1} there exists a
prime p and two integers 0 < α, β < p such that for all 0 ≤ x < t(

αx+ β

p

)
+ 1

2
= f(x)

where
(

αx+β
p

)
denotes the Legendre symbol of αx+ β modulo p.

Proof. Let α, β, t be positive integers such that αx+β is prime for all 0 ≤ x < t.
The existence of such an α, β is guaranteed for all t > 0 by a theorem due to
Green and Tao [20], which proves the primes contain arbitrarily long arithmetic
sequences, and, therefore, there exists an α, β for all t > 0 such that αx + β is
prime for all 0 ≤ x < t. Given such a linear sequence of (αx+ β)’s where all of
them are prime valued, 3 Theorem 1 guarantees there exists a prime p such that

3 Requiring all (αx+β) be prime is only done to facilitate the existence proof. In prac-
tice, Algorithm Gen (see Section 4.1) can generate suitable keypairs in the presence
of composite (αx+ β)’s.
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for all 0 ≤ x < t, (
p

αx+ β

)
= 2f(x)− 1.

Suppose there existed a p such that p ≡ 1 mod 4. By the law of quadratic
reciprocity, (

αx+ β

p

)
=

(
p

αx+ β

)
= 2f(x)− 1, (1)

and therefore,

f(x) =

(
αx+ β

p

)
+ 1

2
.

In the alternate case where all such primes p were congruent to 3 mod 4, Theorem
1 also guarantees there exists a prime p such that(

p

αx+ β

)
=

{
2f(x)− 1 if αx+ b ≡ 1 mod 4

1− 2f(x) if αx+ b ≡ 3 mod 4.

For all αx+ β ≡ 1 mod 4, quadratic reciprocity again gives us(
αx+ β

p

)
=

(
p

αx+ β

)
= 2f(x)− 1.

Finally, for all αx+ β ≡ 3 mod 4,(
αx+ β

p

)
= −

(
p

αx+ β

)
= −(1− 2f(x)) = 2f(x)− 1.

Therefore

f(x) =

(
αx+ β

p

)
+ 1

2
(2)

for all 0 ≤ x < t. ⊓⊔

4 Our Cryptosystem

Let CS = {Gen,Enc,Dec,Add,Smul,Eval} be an additively homomorphic public-
key cryptosystem. Let M be the plaintext space and m ∈ M be a message.
Without loss of generality and for the sake of a concrete description, we build
CS based on the cryptosystem due to Okomoto and Uchiyama [21], which has
a message space cardinality |M| = p for a large prime p. Given pre-computed
sequence parameters α, β, and a Boolean function f : Zt → {0, 1} we define CS
with the following functionalities:
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– Gen(1ρ, α, β, f): Outputs secret key SK = {p, q} and public key PK = {n}
where n = p2q. Here p is chosen such that QR(αx+ β, p) = f(x) for 0 ≤ x < t.
To facilitate efficient generation for non-trivial values of t, p is generated us-
ing the algorithm presented in Section 4.1. By contrast, q is randomly chosen
using standard methods. Both |p| = |q| = λ, where λ is a standard length at
the ρ-bit security level in the integer factorization setting.

– Enc(PK,m): Encryption function accepting a public key PK, plaintext m
and outputting a ciphertext c = JmK.

– Dec(SK, c): Decryption function accepting a private key SK, ciphertext c =
JmK and outputting plaintext m.

– Add(c1, c2): Homomorphic addition accepting two encrypted messages c1 =
Jm1K and c2 = Jm2K and outputting a ciphertext c′ = J(m1 +m2) mod pK.

– Smul(s, c): Scalar homomorphic multiplication accepting a ciphertext c1 =
Jm1K and a scalar m2, outputting a ciphertext c′ = J(m1m2) mod pK.

The properties of CS can be further used to securely evaluate f on an encrypted
plaintext. Toward that end, a sixth functionality Eval, is defined:

– Eval(PK, α, β, c): Secure evaluation of f on an encrypted plaintext c = JmK.
First, a non-zero blinding parameter rc is uniformly sampled from the mes-
sage spaceM. SinceM = Zp and p is a private value, we sample uniformly
from the public interval rc ← [1, 2λ].4 The function computes:

Smul(r2c ,Add(Smul(JmK, α),Enc(β)) = Jr2c · (αm+ β) mod pK.

Note that decrypting J(αm + β) mod pK directly would reveal m, as α, β are
public. Hence, a blinding operation is applied to randomize this value while pre-
serving its residuosity. The result of Eval is the encryption of uniform quadratic
residue in Zp if QR(αm+ β) = 1, and a uniform non-residue otherwise. The out-
put of Eval can then be decrypted by the private key holder and the quadratic
residuosity of the plaintext tested to reveal the outcome of f(m).

4.1 Key Generation

To securely evaluate a function of the form f : Zt 7→ {0, 1}, we work in an addi-
tive group modulo a prime p which contains an arithmetic sequence S ⊂ Z∗

p such
that for each sm ∈ S, QR(sm) = f(m), or, in Legendre symbol form, where:(

sm
p

)
= 1− 2 · f(m).

This section describes a method for generating a prime p containing such a
sequence.5

4 If implementing CS based on an additive cryptosystem in which |M| = n is a public
value, such as in the case of DGK [12] or Paillier [22], blinding factor rc can be
chosen from Zn.

5 See our Python3 implementation of the key generation algorithm with example pa-
rameters: https://github.com/mounikapratapa/SFEPHE
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Step 1: Let S = {sm | sm = αm+ β, 0 ≤ m < t} be an odd sequence for some α, β ∈
Z+.

Step 2: For each sm ∈ S, let s(em,0)
m,0 , . . . , s

(em,ρm )
m,ρm represent all of the prime factors

of sm for which em,j is an odd power.6 The multiplicative properties of the
Legendre symbol give us(
sm
p

)
=

(
s
(em,0)
m,0 · . . . · s(em,ρm )

m,ρm

p

)
=

(
sm,0

p

)
· . . . ·

(
sm,ρm

p

)
= 1− 2 · f(m)

This can be rewritten in terms of applications of QR by replacing multiplica-
tions with additions when expressing the factorization of individual sequence
elements:

QR(sm, p) = QR(sm,0, p) + . . .+ QR(sm,ρm , p) ≡ f(m) mod 2. (3)

Expressing residues and non-residues in this form (i.e., as an addition mod-
ulo 2) instead of Legendre symbols (as a multiplication of signs) allows us to
obtain a system of equations capturing the relationship between the unique
prime factors of a sequence element and the function evaluated at that po-
sition.

Step 3: Let A = {a0, . . . , au−1} represent the set of u unique prime factors from
the combined set of all sequence factors sm,j across all sequence elements
sm. That is, ai ∈ A if there is some sm such that ai | sm and ai ∤ sj for all
other j ̸= m. Non-unique factors will not be utilized in this calculation and
are assigned a fixed, implicit target residue symbol of 1. For each sequence
element sm ∈ S and each unique prime factor aj ∈ A, we define a function
d(aj , sm) such that

d(aj , sm) =

{
1 if aj | sm
0 otherwise.

Step 4: Define a (t × u) matrix M . Let the last column represent function f evalu-
ated at m. Form an augmented matrix representing the system of equations
arising from Equation (3):

a0 a1 . . . au−1


s0 d(a0, s0) d(a1, s0) . . . d(au−1, s0) f(0)
s1 d(a0, s1) d(a1, s1) . . . d(au−1, s1) f(1)
...

...
...

...
...

st−1 d(a0, st−1) d(a1, st−1) . . . d(au−1, st−1) f(t− 1)

Step 5: Using Gaussian elimination, convert M into reduced row echelon form, i.e.,
computeM ′ ← RREF(M). If the system of equations implied byM ′ is consis-
tent and exactly determined, each aj ∈ A implies a residue value σj ∈ {0, 1}

6 Factors sem,j

m,j of even power will have a fixed residue symbol of 1 and are excluded
from the generation algorithm (having no bearing on the outcome).
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which will satisfy the overall requirement that QR(sm) = f(m) for 0 ≤ m < t.
If the system is consistent and underdetermined, select a single valid solu-
tion uniformly at random and proceed to Step 6. Otherwise repeat the same
process from Step 1 with a different α, β.

Step 6: For each factor aj ∈ A and each residue value σj ∈ {0, 1} computed in the
previous step, select bj uniformly from [1, aj) such that QR(bj , aj) = σj .

Step 7: For each pair aj , bj , apply Chinese remaindering to compute a p′ satisfying
the following system of congruences:

p′ ≡ b0 mod a0

p′ ≡ b1 mod a1

p′ ≡ b2 mod a2

...
p′ ≡ bu−1 mod au−1.

Step 8: Compute:

p← k
( u−1∏

j=0

aj

)
+ p′

for k R←− [kmin, kmax] sampled uniformly from the largest interval such that
|p| = λ.

Step 9: If p ≡ 1 mod 4 and p is prime, continue to the next step, otherwise repeat
Steps 6–8 until such a p is found.

Step 10: Generate a random prime q of length λ using a standard generation method
suitable for the integer factorization setting.

Step 11: Output p, q.

4.2 Encryption and Decryption

We recall the Okamoto-Uchiyama cryptosystem [21], which is the basis for CS.

Key generation: Run the key generation algorithm in Section 4.1 to obtain
large primes p, q. Compute n = p2q. Select a uniform g ∈ {2, . . . , n− 1} such
that:

gp−1 ̸≡ 1 mod p2.

Set h← gn mod n. Return SK ← {p, q} and PK ← {n, g, h}.

Observe: Z∗
n is a cyclic group of order p(p − 1)(q − 1). Let us define two sub-

groups: Gp ⊂ Z∗
n, the subgroup of order p, and Gϕ ⊂ Z∗

n, the subgroup of order
ϕ = (p− 1)(q − 1). An isomorphism Z∗

n
∼= Gp ×Gϕ exists such that g ∈ Z∗

n can
be rewritten as gpgϕ mod n, for some gp ∈ Gp and gp ∈ Gϕ respectively. Thus g
has order p ·ϕ whereas h = gn = gp

2q = gp
2q

p gp
2q

ϕ = g0pg
p2q
ϕ ≡ gr̂ϕ mod n has order

ϕ.
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Encryption: A plaintext 0 ≤ m < p is encrypted as follows. Uniformly sample
r ← Z∗

n. Output:
c← gmhr mod n.

Observe: Following our notation, c = (gpgϕ)
m(gr̂ϕ)

r = gmp g
m+r̂r
ϕ ≡ gmp gr̄ϕ mod n.

In other words, m is captured in the subgroup of order p and gr̄ϕ is indistinguish-
able from a uniform element in Gϕ.

Decryption: A ciphertext c is decrypted as follows. First compute

ĉ← cϕ mod n.

Observe: ĉ = cϕ = (gmp g
r̄
ϕ)

ϕ = (gmp )ϕ(gr̄ϕ)
ϕ = gmϕ

p g0ϕ = gmϕ
p mod n.

Compute the discrete logarithm of gmϕ
p to recover mϕ. An efficient algorithm

exists for computing discrete logarithms in Gp ⊂ Z∗
p2q given knowledge of p

(which we omit for space). Finally, compute

(mϕ) · ϕ−1 ≡ m mod p

and return m.

4.3 Correctness of the Evaluation Function

The Eval function defined in Section 4 is used to homomorphically evaluate
Jf(m)K on encrypted plaintext JmK.

Theorem 3. Given c = Enc(m), QR(Dec(SK,Eval(PK, α, β, c)), p) = f(m) in
the range 0 ≤ m < t.

Proof. Given ciphertext c = Enc(m), a blinding factor rc sampled from the public
interval rc ← [1, 2λ], and public sequence parameters α, β, Eval computes:

c′ = Eval(PK, α, β, c) = (cα · JβK)r
2
c mod n

= (JmKα · JβK)r
2
c

= J(αm+ β) · r2cK.

Recall from the definitions in Section 3.1

QR(αm+ β, p) = f(x)

and

QR(r2c , p) = 1.

Decrypting c′ returns (αm+ β) · r2c mod p. Therefore applying the QR-function
to the decryption result we have

QR((αm+ β) · r2c , p) = QR(αm+ β, p) · QR(r2c , p)
= f(m) · 1
= f(m).

⊓⊔
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5 Semantic Security of CS

We prove that CS is semantically secure under common hardness assumptions.
While CS partially depends on the semantic security of the underlying Okamoto-
Uchiyama [21] cryptosystem, the key-generation algorithm has been modified
from the general case by the quadratic residuosity function. Here we argue that
the modified key-generation function does not affect the semantic security of the
underlying cryptosystem. First, we recall some definitions.

Definition 2. A function f : N 7→ R is negligible with respect to n ∈ N, if for all
positive polynomials p, there exists some M ∈ Z such that it holds f(n) < 1

p(n)

every time n > M .

Definition 3. Given an encryption function Enck(m), message length |m|, ran-
dom number r and a security parameter 1n, a cryptosystem CS is semantically
secure if there exists a pair of probabilistic polynomial time algorithms A and A′

such that, for every such pair:

Pr[A(1n,Enck(m), r) = m]− Pr[A′(1n, |m|, r) = m] <
1

p(n)
.

Note that A has access to the ciphertext Enck(m), where as A′ has access only
to the message length |m|, while the rest of the information both the algorithms
have access to remain equal. Intuitively, the above definition thus implies that
the ciphertext Enck(m) does not reveal any additional information about the
underlying plaintext message.

Now, we proceed to establish the security proof of CS involving quadratic
residuosity function by proving that the semantic security of the cryptosystem
CS reduces to deciding the quadratic residuosity of a plaintext messagemmodulo
a prime p, i.e., QR(m, p).

Definition 4. Given a ∈ Z∗
n and n = p2q for unknown p, q, the p-th residue

decision problem, denoted as PRDP , is the problem of deciding if there exists a
b such that a ≡ bp mod n.

The semantic security of Okamoto-Uchiyama cryptosystem can be stated in
terms of the PRDP . Particularly, for a messagem = 0, the ciphertext c = Enc(0)
is a p-th residue modulo n, since c = g0hr = hr mod n. Recall from Section 4.2
that h = gn = gp

2q mod n is a p-th residue.

Definition 5. Given Enc(m) and an unknown p, the quadratic residuosity mod
p decisional problem, denoted as QRPDP , is the computational problem of de-
termining whether m is a quadratic residue modulo p, computing QR(m, p).

Theorem 4. The p-th residue decision problem is polynomially reducible to the
quadratic residuosity decision problem, i.e., PRDP ≤p QRPDP.
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Proof. Let A be an algorithm computing the quadratic residuosity of message
QR(m, p). For a key-size λ and a ciphertext c = Enc(m), we construct an algo-
rithm B(c) that returns True if c is a p-th residue modulo in a polynomial factor
of A’s runtime with non-negligible advantage.

function B(c)
Uniformly sample γ R←− [1, 2λ]
Compute c′ ← c · Enc(γ2)
if A(c′) == False then

return False
end if
return True

end function

Algorithm: B

function A(c)
Given c = Enc(m)
Compute y ← QR(m, p)
return y

end function

Algorithm: A

Consider the case when m = 0. QR(0 + γ2) = QR(0) · QR(γ2) = 1 · 1 = 1 for all
γ. Therefore

Pr[B(c) = True |m = 0] = 1.

For any other value of m > 0, the output of B(c) depends on the residuosity
of (m + γ2), which in turn depends on the distribution of quadratic residues
modulo p, giving us

Pr[B(c) = True |m > 0] =

(
1

2

)
+ ϵ.

The overall probability

Pr[B(c) = True | m← [0, λ]] = (Pr[B(c) = True |m = 0] · Pr[m = 0])

+ (Pr[B(c) = True |m > 0] · Pr[m > 0])

=

(
1 · 1

2λ

)
+

((
1

2
+ ϵ

)
·
(
1− 1

2λ

))
≥ ϵ

is non-negligible. This implies that as long as the semantic security of underly-
ing encryption scheme holds, the QR() function does not reveal any additional
information about the underlying plaintext message. ⊓⊔

Security in the presence of factor base [ax]. Since the input parameters
α, β and the range of f(x) are public, it is easy to determine the sequence
and factor base [ax]. The array [bx] used for CRT is chosen randomly and it
remains hidden. Since the chosen [bx] and k varies with each iteration of the key-
generation algorithm, this adds additional randomness to the choice of primes.
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Leaking the quadratic residuosity of elements in Zp. The public nature
of α, β and the function f(x) creates access to a limited oracle that provides
information about quadratic residuosity QR(x, p) for t elements, where t is the
function size. Due to this reason, the security of our system relies on a slightly
weaker assumption than factoring n = p2q. The alternate hardness assumption
we propose here is factoring n = p2q in the presence of the quadratic residuosity
oracle QR(x, p). Although the information provided by such an oracle is highly
restricted relative to Zn, whether this information can be exploited to factorize
n remains an open question and requires further cryptanalytic efforts.

6 Protocol

Protocol π is conducted between two semi-honest parties PA and PB . Let PA

input a vector of plaintexts X = {x1, . . . , xa} and PB input a vector of plaintexts
Y = {y1, . . . , yb} for xi, yj ∈M. Let CS = {Gen,Enc,Dec,Add,Smul,Eval} be an
additively homomorphic cryptosystem with the functionalities defined in Sec-
tion 4. Let PA be the holder of the private-key SK.

Since our protocol is framed as an extension of existing protocols based on
additive schemes (e.g., vector addition, weighted sums etc.). We begin by defining
a sub-protocol πsub, which capturing the existing protocol conducted on X and
Y using the conventional functionalities {Enc,Add,Smul}. Suppose the output
of πsub results in PA receiving a single ciphertext JmK where m represents the
nominal outcome of πsub. Protocol π extends πsub with the Eval functionality to
homomorphically compute f(m) given JmK. The full protocol π is presented in
Figure 1.

Public: Public-key PK, sequence parameters {α, β}, f : Zt 7→ {0, 1}, the de-
scription of a secure sub-protocol πsub invoking conventional additively homo-
morphic functionalities Enc,Add,Smul.
Private Input (PA): Plaintexts X = {x1, . . . , xa}. Private key SK = {p, q}.
Private Input (PB): Plaintexts Y = {y1, . . . , yb}.
Output: Given JmK← πsub(X,Y ), PA learns f(m). PB learns ⊥ .

– PA, PB : Run πsub(X,Y ). PB receives JmK as output. PA receives ⊥.
– PB : Compute:

c′ ← Eval(PK, α, β, JmK).

– PB → PA : PB sends c′ to PA.
– PA : Decrypt c′ ← Dec(SK.c′) to obtain m′ ← (α ·m+ β) · r2c .
– PA : Compute QR(m′, p) = f(m).

Fig. 1: Secure Function Evaluation Protocol π
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Theorem 5. The secure evaluation of function f : Zt 7→ {0, 1} by the protocol
π is correct.

Proof. From Theorem 3 we previously established that QR(Dec(SK, c′)) returns
f(m) as

QR(Dec(SK, c
′
), p)) = f(m).

6.1 Participant privacy during the protocol π

Participant privacy while running the protocol π in two party setting guarantees
that there is no inadvertent leakage of information in the presence of semi-honest
adversaries. Such adversaries follow the protocol exactly but try to learn more
information than allowed based on their respective inputs and any intermedi-
ate transcripts during the protocol execution. To formalize this idea, we adopt
privacy by simulation approach by creating the view of the parties without the
knowledge of any keys. Security proof is established by constructing a simulator
S that generates a view for adversary that is computationally indistinguishable
from its real view. Privacy by simulation requires certain notations to proceed
further.

– f = (fPA
, fPB

) is the two-party functionality that is computed by the pro-
tocol π.

– The view of PA and PB denoted as V iewπ
PA

and V iewπPB are defined as:

Viewπ
PA

(x) = (xPA
, rPA

,mPB
),

Viewπ
PB

(x) = (xPB
, rPB

,mPA
).

where, x = (xPA
, xPB

) represent the inputs of the participants to the proto-
col, r = (rPA

, rPB
) are the random values generated during the transaction

and m = (mPA
,mPB

) are the messages sent by the respective parties during
the protocol.

– We say that π securely computes f in the presence of a semi-honest adver-
sary if we are able to construct the algorithms SPB

to simulate PB ’s view
to establish PA’s privacy and SPA

to simulate PA’s view to establish PB ’s
privacy.

PA’s Privacy For PA’s privacy, we need to establish that PB ’s view is simulat-
able given PB ’s input xPB

and output fPB
(xPA

, xPB
) = ⊥. We have output by

PA denoted as OutputπPA
, which is a result of the execution of protocol π on the

combined input from both the parties.

Theorem 6 (PA’s privacy). There exists a probabilistic polynomial time algo-
rithm SPB

such that[
SPB

(xPB
,⊥), f(xPA

, xPB
)
] c≡

[
Viewπ

PB
,OutputπPA

(x)
]
.

where
c≡ indicates ciphertext indistinguishability.
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Proof. The proof of PA’s privacy is simple because PB only receives the cipher-
text c = Enc(x), i.e., mPA

= c. To simulate PB ’s view the simulator just needs
to sample the messages of the form c ← Z∗

n. Due to the semantic security of
the CS, it is easy to establish that a ciphertext c = Enc(x) is computationally
indistinguishable from an element of Z∗

n. SPB
can now compute the output using

public key PK, c and PB ’s input xPB
and computing f(xPA

, xPB
) homomorphi-

cally, thereby simulating V iewPB
. ⊓⊔

6.2 PB’s Privacy

We rely on the similar approach to the proof of PA’s privacy. We establish that
ViewPA

is simulatable given PA’s input denoted as xPA
. Note that, the privacy

proof relies on the hiding properties of blinding factor b. Let QR,NR ⊂ Zn re-
spectively denote the subsets of quadratic residues and non-residues modulo
prime n. PA decrypts ciphertext c′, this results in random looking message
m′ = (f(xPA

, xPB
)α+ β) · r2c mod n where rc is a uniform element modulo n

and thus r2c is uniform in QR.

Theorem 7 (PB’s privacy). There exists a probabilistic polynomial time algo-
rithm SPA

such that

[
SPA

(xPA
, f(xPA

, xPB
))
] c≡

[
Viewπ

PA
,⊥]

Proof. Algorithm SPA
will begin by directly computing encryptions using PK

and the PA’s input xPA
and outputs f(xPA

, xPB
). SPA

now computes the quadratic
residuosity using QR(f(xPA

, xPB
)) to check for the output, for 0 the decrypted

plaintext would be of the form m′ ∈ NR. SPA
samples m′ ←R NR for each

0 ≤ j < k − 1 and computes the corresponding ciphertexts c = Enc(m′) using
PK. If f(m) = 1, then, plaintext would be of the formm ∈ QR. If (f(xPA

, xPB
)α+

β) is a quadratic residue (resp. non-residue), then the term (f(xPA
, xPB

)α+β) ·
r2c is indistinguishable from a random element in QR (resp. NR) as proved
in [16], implying m′ values are indistinguishable from a real-world plaintext
(f(xPA

, xPB
)α+ β) · r2c mod p. ⊓⊔

7 Results and discussion

7.1 Experimental setup

The following subsections describe the process of finding appropriate sequence
parameters α, β, generation of prime p, and implementing the secure evaluation
of a generic function using the protocol π. We implemented all the experiments
in Python3 on a local Intel i7 quad-core processor @ 1.8GHz with 8 GB RAM.
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Finding sequence parameters α, β Recall as part of the key generation
algorithm in Section 4.1, our goal is to find some linear sequence defined by
sm = αm+ β and some prime p for which the Legendre symbol of sm modulo p
matches a given Boolean function evaluated at f(m) over 0 ≤ m < t.

For this to be true for all possible Boolean functions f , we require the residue
symbols of each sm to be, in essence, independently programmable. This is not
possible for most sequences. For example, the factorization of elements of the
sequence 3m+ 2 is: 2, 5, 23, 11, . . . . Here, no matter what prime p is chosen, the
Legendre symbol of s0 is always the same as s2. Conversely, the factorization
of 4m + 3 is: 3, 7, 11, 3 · 5, . . . . Here, no matter the Legendre symbol of s0, the
symbol for s3 can be set independently by choosing a prime p for which 5 has
the necessary symbol to give s3 the required symbol to match f(3).

In general, we can independently “program” each symbol of the sequence so
long as each sm contains at least one unique odd-powered prime factor. This
condition is simple and sufficient, although not strictly necessary (cf. steps 3–5
of Section 4.1)

We took a brute-force approach to finding sequence parameters α, β for dif-
ferent values of t. We began with the smallest step size (α) and starting point
(β), incrementing β across a heuristically chosen intervals at each function size
t. For example, at t = 512, we searched in the range α < 6000, β < 100 and
recorded the parameters yielding the minimal bit-length |p|. These parameters
are not optimal. The goal was to demonstrate practical, concrete values of α, β.
Finding more efficient algorithms and computing optimal bounds on |p| is left
to future work.

For each candidate α/β, we generated the sequence [αx + β] for 0 ≤ x < t.
We factored each sequence element, and for each prime factor (sm)em for which
em is odd, we added sm to the set factors A as defined in Step 3 of Section 4.1.
Let the product of this set be

∏
A. Since p >

∏
A (see step 8 in Section 4.1),

we set |p| =
⌈
log2(

∏
A)
⌉

representing the lower bound of |p|. For each domain
cardinality t, we report the α, β leading to the smallest |p| found in our search.
For example, the linear sequence formed by α = 342, β = 787 contains unique
factors sufficient to produce sub 3000-bit primes for evaluating 8-bit Boolean
functions. See Table 1 for our experimentally found sequence parameters.

Generating prime p Once suitable α, β are found, the steps to find p are im-
plemented according to the key-generation algorithm described in Section 4.1.
We ran our implementation of the key generation function Gen for various func-
tion sizes. Our results are displayed in Table 2. As we can see, the most time
among all the steps is taken by iteratively finding the right set of bx’s to generate
the prime. To speed up this step, we built a look up table containing sets of all
quadratic residues and non-residues with respect to each ax and for each itera-
tion, the suitable bx is randomly chosen. Additionally, the CRT step has to be
computed each time we find a new set of bx’s. CRT has complexity O((S1+S2)

2),
where Si denotes the number of digits in the modulus we are trying to solve,
which is a product of all the moduli present in the system of congruences. So the
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Domain cardinality t α β |p| (bits)

8 2 27 46
16 6 29 97
32 20 53 263
64 84 305 719

128 90 197 1218
256 342 787 2858
512 1938 31 7066

Table 1: Sample sequence parameters α, β.

larger the number of congruences to be solved, the greater is its time taken and
computational complexity. The time taken for CRT as displayed in the table 2
is for a single round of CRT computation once the right set of bx’s are found.

Function size (domain cardinality t) 512 256 128 50

Gaussian Elimination 0.236 0.078 0.015 0.004

Test for consistency 0.016 0.009 0.002 0.001

Finding the right bx 87.30 21.00 3.900 0.560

CRT 25.24 3.6 0.142 0.062

Table 2: Run time for various steps in the the key generation in seconds

We also performed the comparison of our approach with that of the secure
function evaluation system introduced in [16]. Whereas the previous work fo-
cused on a specific function class (thresholds), our approach works across the
entire class of Boolean functions, and at larger domain sizes. In fact, due to the
usage of pre-determined α, β values, generating the right prime for the largest
function size of 512 took less than 2 minutes, including all the steps. The search-
based approach introduced in [16] takes more than 20 minutes to produce a
sequence of size 26.

7.2 An example case of secure function evaluation using π

Our scheme has several potential applications that involve secure function evalu-
ation. Specifically, our scheme aims to eliminate the need to display intermediate
computations to either party involved in the transaction. For example: in case
of similar patients query, the state of the art approaches [3, 9, 25, 28, 31] using
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either homomorphic encryption or other multiparty computation techniques re-
quire several communication rounds to retrieve the records of patients sharing
similar genetic makeup. To reduce the communication overhead, they display
the similarity score for each record directly to the querying party leading to
regression based database re-identification attacks. There is a scope for such at-
tacks in other applications such as secure machine learning inference, especially
in classification problems. Our scheme can be applied to display the class labels
while hiding intermediate scores. To test the performance of our parameters, we
implemented a simple secure function evaluation on threshold functions using
the protocol described in Section 6. The threshold function denoted as τt(x)
is similar to that of the one implemented in [16]. Note that we implemented
the same threshold function to demonstrate the efficiency of our protocol. How-
ever, we can implement any function with a boolean co-domain using the same
protocol. We adopt the definition for τt(x) from [16] where

τt(x) =

{
1 if x ⩾ t

0 Otherwise.

The range of a threshold function can be represented as {0, 0, 0, ...., 1, 1, 1}. In
other words, all the values below the threshold are mapped to 0 and above the
threshold are mapped to 1. Using this range with a maximum length of k and a
fixed threshold value t, the inputs to Gen would be

α, β, f(x) = {0}tx=0 ∥ {1}kx=t+1.

Once the prime number p is generated based on these parameters, we use this
to build our cryptosystem CS as follows:

– We generate q such that q is a large prime and compute n = p2q,
– Compute g ∈ 2, · · · , n− 1 such that gp−1 ̸≡ 1 mod p2 and h = gn mod n,
– PK = (α, β, n, g, h) and SK = (p, q).

Similar to the work in [16], the protocol uses Dice coefficient as a similarity
metric to perform linkage between two datasets that consist of user names. The
records are linked approximately to address any variations or errors in the strings
being compared. For such an approach to work, the records will be considered a
match if the Dice coefficient between two strings is above a threshold value. The
protocol is performed between two parties PA, PB and is described below briefly.
The details for sub-protocols 1 and 2 can be referred from [16] as the steps are
the same. The difference with our protocol is during computing the evaluation
function, which is in Step 6 of sub-protocol 2 in [16]. Particularly, Protocol 1
in [16] is modified as follows:

– Public parameters: PK, α, β and for a threshold value t maximum set
cardinality µ, where µ = t

– Private parameters: Party PA holds a list of strings [a1, . . . , an] and pri-
vate keys. Party PB holds a list of strings [b1, . . . , bn]
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– Protocol:
• PA, PB produce set intersection cardinalities between the private inputs

using sub-protocol 1 from [16]
• By modifying the final step in sub-protocol 2 in [16] both parties com-

pute threshold dice coefficient dij such that dij = Eval(PK, α, β, JθℓbK) =
((JθℓbK)α · β)r

2
c

– Output: For all threshold dice coefficient values, if QR(Dec(SK, dij), p) = 1,
PA outputs the index.

For the particular case of threshold functions, due to the increase in domain
size of the function evaluated that is leading up to 8-bit numbers, we can com-
pute the dice-coefficient for more precise threshold values. The results of our
implementation are summarized in the Table 3 in comparison with other similar
studies that rely on quadratic residue symbols for secure function evaluation.
It can be observed that, due to the ability of our key generation algorithm to
generate primes as per the f(x)′s range, we can compute any kind of functions
securely unlike the approaches in [1, 16,30].

Performance
Indicator

Noisy Legendre
Symbol [1]

Yu’s
Protocol [30]

Residue
PHE [16]

Our Protocol

Domain
cardinality (t)

623 Ω(log(p)) 26 512

Residue symbol
sequence type

{1}t {1}t [0]t || [1]t {0, 1}t

Secure function
evaluation type

Specific (sign
functions)

Specific (sign
functions)

Specific
(thresholds)

General
(Boolean)

Table 3: Comparison between secure function evaluation protocols that rely on
the runs of quadratic residues.

8 Conclusion

This paper discusses a method to extend the functionality of additively homo-
morphic schemes in applications where the encrypted sum is below a threshold t
based on chosen patterns on quadratic residues modulo a prime. We developed a
novel algorithm to encode such patterns into the private keys of cryptosystems in
the integer factorization setting. We presented a protocol with concrete param-
eterizations for efficiently evaluating arbitrary Boolean functions on encrypted
sums up to t = 512.

Future work will seek to push the domain cardinality t to higher values
and will also explore the possibility of integrating of this technique in the fully
homomorphic setting.
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A Proof of Theorem 1

We present the proof of Theorem 1 below:

Proof. The proof proceeds in two parts. In the first part, we prove the existence
of an integer p′ containing the chosen residue symbol sequence. In the second
part, we prove the existence of p′ implies the existence of a prime p with the
same properties. Because each ax is prime, each 0 < bx < ax is to be co-prime to
ax, Chinese Remainder Theorem guarantees the existence of a unique solution
p′ to the system of congruences formed by [ax], [bx]:

p′ ≡ b0 mod a0

...
p′ ≡ bt mod at.

Since (
bx
ax

)
= ℓx, and p′ ≡ bx mod ax,

for each 1 ≤ x < t we have (
p′

ax

)
= ℓx.

Now we show the existence of an integer p′ implies the existence of a prime p with
the same congruences. Since p ≡ p′ mod Aprod, and therefore p ≡ bx mod ax,
then (

p

ax

)
= ℓx.

Finally, since p′ is relatively prime to Aprod, Dirichlet’s theorem guarantees there
are infinitely many primes of the form kAprod + p′. ⊓⊔
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