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Abstract. This paper explores the optimization of quantum circuits for
Argon2, a memory-hard function used for password hashing and other
applications. With the rise of quantum computers, the security of clas-
sical cryptographic systems is at risk. It emphasizes the need to accu-
rately measure the quantum security strength of cryptographic schemes
using optimized quantum circuits. The proposed method focuses on two
perspectives: qubit reduction (qubit optimization) and depth reduction
(depth optimization). The qubit-optimized quantum circuit was designed
to find a point where an appropriate inverse is possible and reuses the
qubit through the inverse to minimize the number of qubits. The start
point and end point of the inverse are set by finding a point where qubits
can be reused with minimal computation. The depth-optimized quan-
tum circuit reduces the depth by using the minimum number of qubits
as necessary without performing an inverse operation. The trade-off be-
tween qubit and depth is confirmed by modifying the internal structure
of the circuits and the quantum adders. Qubit optimization achieved
up to a 12,229 qubit reduction, while depth optimization resulted in
approximately 196,741 (approximately 69.02%) depth reduction. In con-
clusion, this research demonstrates the importance of implementing and
analyzing quantum circuits from various optimization perspectives. The
results contribute to the post-quantum strength analysis of Argon2 and
provide valuable insights for future research on quantum circuit design,
considering the appropriate trade-offs of quantum resources in response
to advancements in quantum computing technology.

Keywords: Quantum Implementation · Quantum Computing · Quan-
tum Circuit Optimization · Argon2

1 Introduction

Quantum computers have gained attention for their ability to solve specific prob-
lems faster than classical computers due to the properties of qubits. The emer-
gence of large-scale quantum computers is anticipated to pose a threat to existing
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cryptographic systems. In 1994, Peter Shor proposed an algorithm[16] capable
of efficiently solving fundamental problems in public-key cryptography, such as
integer factorization and discrete logarithms, thereby compromising the security
of public-key cryptography. Consequently, the security of target public-key cryp-
tography is no longer guaranteed when large-scale quantum computers capable
of performing specific cryptographic attacks appear. In 1996, Lov Grover intro-
duced an algorithm[8]. This algorithm can accelerate brute-force attacks and
pre-image attacks on symmetric-key cryptography and hash functions. As a re-
sult, it achieves a computational complexity ofO(

√
2n) for finding specific data in

unsorted n-bit data. To counter this, the length of the encryption key (hash out-
put length) can be doubled to maintain resistance. However, classical computers
and quantum computers differ in their operation, required resources, and feasible
computations, making the security strength of classical computers not directly
correspond to the quantum security strength of quantum computers. Accurately
measuring the quantum security strength in the context of quantum computers
requires optimizing the necessary operations of the specific cryptographic scheme
using quantum circuits and accurately verifying the utilized quantum gates and
circuit depth. In previous studies, ciphers were implemented as quantum circuits,
and required quantum resources were estimated[7, 1, 2, 5, 17, 12, 4, 14, 10, 15, 13,
9, 11, 20, 19, 22, 18, 21].

Optimization of quantum circuits can be pursued from two perspectives:
reducing the number of qubits and minimizing the circuit depth, with qubit and
depth being inversely proportional in each implementation. While the number
of physically implemented qubits is important in quantum circuit operation, in
the Noisy Intermediate-Scale Quantum (NISQ) era, reducing depth, which helps
mitigate errors, is crucial to obtaining desired quantum computing results. As the
depth of quantum circuits increases, the computation time also increases, which
is influence the error rate of qubits. In other words, as the depth of quantum
circuits increases, the error rate of qubits also increases.

With this research motivation, this paper proposes two perspectives of op-
timized quantum circuits for Argon2 and presents estimations of the required
quantum resources. The optimization perspectives in quantum circuit implemen-
tation involve attempts to reduce the number of qubits and the circuit depth.
Each quantum circuit is divided into qubit optimization implementation and
depth optimization implementation for specific operations. To further analyze
this, we modify the internal addition to examine the trade-off between qubits and
depth and make efforts to find the most optimized quantum circuit for qubits
and depth, respectively. In evaluation confirm and analyzes the estimations of
the required quantum resources for qubit optimization and depth optimization
quantum circuits in relation to this. In a qubit-optimized implementation, we
find and set points where inverse operations are possible, and continue to use
reusable qubits. In the depth optimization implementation, the minimum num-
ber of qubits required for computation is allocated and used without including
inverse computation. In addition, an attempt was made to further reduce the
depth by changing the adder structure to parallel operation.
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As a result of optimizing the quantum circuit from both perspectives, the
qubit-optimized quantum circuit reduced up to 12,229 qubits, and the depth-
optimized quantum circuit showed a maximum 196,741 (approximately 69.02%)
depth reduction.

The structure of this paper is as follows: In Section 2, related research on
quantum computers, Grover algorithm, and Argon2 was written to help un-
derstand the paper, and Section 3 describes the implementation of the proposed
Argon2 quantum circuit. Section 4 estimates and analyzes the resources required
for the proposed quantum circuit. Finally, Section 5 concludes the paper with a
conclusion.

2 Background

2.1 Quantum computer

Quantum computers process data using quantum mechanical phenomena of
qubits. These quantum computers can express and process 2n data at once with
n qubits due to the superposition and entanglement properties of qubits, en-
abling faster calculations than classic computers. Qubits are controlled through
quantum gates, and because of the reversible nature of quantum gates, inverse
operations are possible. The following shows H, X, CNOT, and Toffoli matrices
among representative quantum gates that control qubits:

H =
1√
2

[
1 1
1 −1

]
X =

1√
2

[
0 1
1 0

]

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



The quantum gate operation of each gate is shown in Figure 1.
(a) H gate: The H gate works with a single qubit and makes the input a

superposition.
(b) X gate: The X gate works with a single qubit and reversed the input.
(c) CNOT gate: The CNOT gate works with two qubits: control qubit and

target qubit. The state of the target qubit y is reversed when the control
qubit x is one.

(d) Toffoli gate: The Toffoli gate works with three qubits: two control
qubits and one target qubit. The state of the target qubit z is reversed
when the control qubits x and y are both one.
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x H |ψ⟩

(a) H gate

x x

(b) X gate

x • x

y x⊕ y

(c) CNOT gate

x • x

y • y

z xy ⊕ z

(d) Toffoli gate

Fig. 1: Quantum gates

2.2 Grover algorithm

Quantum computers have the potential to significantly improve the efficiency of
certain computational tasks compared to classical computers. One such task is
searching for specific n-bit data in an unsorted list, where classical algorithms
typically require O(2n) operations. However, by employing the Grover algorithm
on a quantum computer, the search complexity can be reduced to O(

√
2n).

The Grover algorithm for pre-image attacks consists of two main components:
an Oracle and a Diffusion operator shown in Figure 2. This is designed for
known-plaintext attacks (KPA) in block ciphers(hash functions), where both the
plaintext-ciphertext pairs are known. The Oracle function includes both the hash
function fg(x) = y and its inverse operation f†g (x) = y. When the result of fg(x)
matches the target hash value y, the Oracle sets x = 1. The Diffusion operator
Us = 2|s⟩⟨s| − I is then applied to enhance the probability of observing this
state. Through approximately ⌊π4

√
N⌋ iterations of the Grover algorithm, the

probability of measuring the correct solution qubit can be significantly increased.

Oracle Diffusion operator

|0⟩ H

fg

•

f†
g

H X • X H

|0⟩ H • H X • X H
...

... ...
...

|0⟩ H • H X • X H

|0⟩ H • Z Z

|1⟩

Fig. 2: Grover algorithm with fg : {0, 1}n → {0, 1}n
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2.3 Argon2: a memory-hard function for password hashing and
other applications

Argon2 is a key derivation function that won the 2015 Password Hashing Com-
petition. Argon2, a memory-hard function for password hashing and other ap-
plications, can be used to hash for credential storage, key derivation, or other
applications. It has a simple design that targets fast fill rates of memory and
effective use of multiple computing devices while providing defense against trade-
off attacks. Argon2 offers three variants: Argon2d, Argon2i and Argon2id, each
variant has the following characteristics:

1. Argon2d: Argon2d uses fast, data-dependent memory accesses, making it
highly resistant to GPU cracking attacks and suitable for applications where
side-channel timing attacks are not the threat.

2. Argon2i: Argon2i uses data-independent memory access, but is slower as it
uses more memory to protect against trade-off attacks (suitable for password
hashing and cipher-based key derivation)

3. Argon2id: Argon2id is a hybrid of Argon2i and Argon2d, using a com-
bination of data-dependent and data-independent memory accesses, giving
Argon2i some resistance to side-channel cache timing attacks and most of
Argon2d’s resistance to GPU cracking attacks.

Figure 3 shows the operation of Argon2. Argon2 has two types of inputs:
Primary inputs and Secondary inputs or parameters. The Primary inputs are:
message P and nonce S, Secondary inputs are: Degree of parallelism p (integer
value from 1 to 224−1), Tag length τ (integer number of bytes from 4 to 232−1),
Memory size m (integer number of kilobytes from 8p to 232 − 1), Number of
iterations t (integer number from 1 to 232 − 1), Version number v (one byte
0x13), Secret value K (length from 0 to 232 − 1 bytes.), Associated data X
(length from 0 to 232 − 1 bytes.), Type y of Argon2 (Argon2d: 0, Argon2i: 1,
Argon2id: 2)

2.4 Compression function G

The compression function G used in Argon2 is based on the round function
P of Blake2b[3]. P operates on eight 16-byte registers (128-bit) inputs. The
compression function G(X,Y ) works with two 1024-byte blocks X and Y . After
first calculating R = X ⊕ Y , R is defined as 16-byte registers R0 to R63. Then,
apply to P in row-wise and column-wise order to obtain Z.

(Q0, Q1, · · · , Q7)← P (R0, R1, · · · , R7)
(Q8, Q9, · · · , Q15)← P (R8, R9, · · · , R15)

· · ·
(Q56, Q57, · · · , Q63)← P (R56, R57, · · · , R63)

(Z0, Z8, Z16, · · · , Z56)← P (Q0, Q8, Q16, · · · , Q56)
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Fig. 3: Operation process of Argon2

(Z1, Z9, Z17, · · · , Z57)← P (Q1, Q9, Q17, · · · , Q57)
· · ·

(Z7, Z15, Z23, · · · , Z63)← P (Q7, Q15, Q23, · · · , Q63)

The operation of the compression function G is shown in Figure 4.

Fig. 4: Operation process of compression function G

Finally, G outputs the result of Z ⊕R.

G : (X,Y )→ R = X ⊕ Y → Q→ Z → Z ⊕R
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3 Propose Method

This paper proposes quantum circuits for Argon2 and estimates the required
quantum resources for their operation.

This section provides a detailed explanation of the operation of the proposed
quantum circuits. For the implementation of quantum circuits for Argon2, we
divided the approach into two perspectives: qubit reduction (qubit optimization)
and depth reduction (depth optimization). The qubit-optimized quantum circuit
adopts a strategy of reusing qubits through inverse operations, while the depth-
optimized quantum circuit increases the number of qubits without using inverse
operations to maintain the same level of computations. Furthermore, the depth-
optimized quantum circuit reduces the depth by employing a parallel design of
addition with additional temporary qubits. We set the inverse point in a suitable
location for this task. The operating point and starting point of the inverse are
set by finding a point where qubits can be reused with minimal computation.

Regarding the quantum adders used within the compression function, we
apply both the (6n − 2)-depth adder (referred to as Ripple in this paper) and
the (2n + 3)-depth adder (referred to as Simple in this paper) proposed in [6].
Each adder is applied to both qubit and depth-optimized quantum circuits,
allowing for the examination of the trade-off between qubit and depth quantum
resources. In both perspectives, we adopt a common operation called Classic to
Quantum, where the X-gate operation is applied to quantum data based on the
positions where the corresponding classic data has an index of 1. This operation
is employed to reduce the number of qubits. To reduce quantum circuit depth,
the Shift operation is performed by changing the indices of the array rather than
using Swap gates.

Figure 5 shows (1)Qubit-optimized quantum circuit and (2)Depth-optimized
quantum circuit. For the two circuits in the figure, input m is pre-determined
classic data, sigma is pre-determined quantum data, and |a⟩ to |d⟩ is the quan-
tum data input to G. Detailed explanations of the two quantum circuits are
provided in Section 3.1 and Section 3.2. The order in which |a⟩ to |d⟩ is input
to G is as follows:

G(a, b, c, d) = G(v0, v4, v8, v12)
G(a, b, c, d) = G(v1, v5, v9, v13)
G(a, b, c, d) = G(v2, v6, v10, v14)
G(a, b, c, d) = G(v3, v7, v11, v15)
G(a, b, c, d) = G(v0, v5, v10, v15)
G(a, b, c, d) = G(v1, v6, v11, v12)
G(a, b, c, d) = G(v2, v7, v8, v13)
G(a, b, c, d) = G(v3, v4, v9, v14)

3.1 Qubit-optimized quantum circuit

Qubit-optimized quantum circuit reuses qubits through reverse operation, in-
creasing the depth at the cost of reducing the number of qubits. This method
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reuses the used 64-qubit sigma through inverse operation so that all compression
functions operate as a single 64-qubit sigma. The quantum circuit for this can
be seen in (1) of Figure 5. In this circuit, there are two reverse points to reduce
the number of qubits, and the sigma is reset to |0⟩ at both points. Allocated
qubits for sigma are not only reused in functions but are still available in all
rounds. Including the inverse operation, the quantum data |a⟩ to |d⟩ are updated
according to the order.

Algorithm 1 shows the operation of the Qubit-optimized quantum circuit for
the compression function G. Lines 3 and 19 are Reverse Points, and lines 6 and
22 indicate the timing of the reverse operation of each Reverse Point. In lines 2,
5, 12, 18, 21, and 26, ADD is implemented using two adders: depth 6n−2 adder
and depth 2n+3 adder, and the difference between each adder is shown in Section
4. The depth was not increased by adjusting the operation index order instead
of shift, and the depth was reduced by adjusting the physical location of qubits
using a logical array instead of a SWAP gate. The Classic to Quantum function
in lines 4 and 20 is designed so that m and Sigma are not quantum-to-quantum
operations between qubits, but classic-to-quantum operations according to the
state of classic constant values. This approach allows for reducing the number
of qubits and quantum gates used for m and sigma updates. Since constant m is
a known constant, m is stored in the pre-computation table, and the X gate is
operated at the same sigma index as the part where the index bit value of m is
one in each round. These operations are also very efficient in terms of quantum
resources as they can be replaced with the use of a low-cost X gate than the
CNOT gate.

3.2 Depth-optimized quantum circuit

Depth-optimized quantum circuits increase the use of temp qubits but decrease
the depth. The 64-qubit sigma used is not reused, it is allocated and used
whenever sigma is used in any function. The quantum circuit for this can be seen
in (2) of Figure 5. Since there are no reverse actions, there is no reverse point.
The qubits assigned to sigma are non-reusable, so it continues to be assigned
in all rounds, not just in the function. Without including the inverse operation,
the quantum data |a⟩ to |d⟩ are updated according to the order.

Algorithm 2 shows the pseudo-code for a depth-optimized quantum circuit
for compression function G. In lines 2, 4, 10, 16, 18, and 22, ADD is implemented
using two adders: depth 6n−2 adder and depth 2n+3 adder, and the difference
between each adder is shown in Section 4. The depth was not increased by
adjusting the operation index order instead of shift, and the depth was reduced
by adjusting the physical location of qubits using a logical array instead of a
SWAP gate. The Classic to Quantum function in lines 3 and 17 is designed so
that m and Sigma are not quantum-to-quantum operations between qubits, but
classic-to-quantum operations according to the state of classic constant values.
This method does not involve an inverse operation, allowing the total depth to
be reduced. As with qubit-optimized quantum circuits, the known constant m
is stored in the pre-computation table, and the X gate is operated at the same
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Sigma index as the part where the index bit value of m is one in each round.
These operations are also very efficient in terms of quantum resources as they
can be replaced with the use of a low-cost X gate than the CNOT gate.

4 Evaluation

This paper proposed two perspectives of quantum circuits for Argon2, focusing
on qubit reduction and depth reduction. The qubit-optimized quantum circuit
reduces the number of qubits by reusing them through inverse operations, while
the depth-optimized quantum circuit increases the number of qubits without
using inverse operations to maintain the same level of computations. Addition-
ally, the internal structure of the quantum circuits is modified to explore the
optimal design for qubit and depth, analyzing the trade-off between the two.
Four distinct quantum circuits are presented, representing the two optimization
perspectives and two variations of adder circuits.

The estimated results are shown in Tables 1, 2, 3, 4, and 5. Table 1 provides
estimation results of quantum resources for each optimized function in Argon2.
Qubit Opt and Depth Opt represent the qubit-optimized and depth-optimized
quantum circuits, while Ripple and Simple refer to the adders proposed in [6]
with (2n+3)-depth and (6n−2)-depth, respectively. The results show that Qubit-
optimized G operates with 1,089 qubits, while Depth-optimized G operates with
13,318 qubits, demonstrating a reduction of up to 12,229 qubits through qubit
optimization. The depth per round for Qubit-optimized is 74,713 and 220,033,
depending on the adder used, while the depth per round for Depth-optimized G
is 23,401 (approximately 68.68% reduction) and 68,163 (approximately 69.02%
reduction) depending on the adder. This indicates a potential reduction of up
to approximately 69.02% in depth through depth optimization.

Operation Adder #Qubit #1qClifford #CNOT #Toffoli #Full Depth

G (Qubit Opt) Ripple 1,089 70,836 204,864 72,000 74,713

G (Qubit Opt) Simple 1,089 22 172,032 72,576 220,033

G (Depth Opt) Ripple 13,318 70,284 204,864 72,000 23,401

G (Depth Opt) Simple 13,318 12 172,032 72,576 68,163

Z ⊕R - 1,536 - 1,024 - 2

Table 1: Estimation results of quantum resources for each optimized function in
Argon2. The result is a measure of the amount of resources per round. (Qubit
Opt: Qubit-optimized quantum circuit, Depth Opt: Depth-optimized quantum
circuit)
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Tables 2, 3, 4, and 5 present the estimation of quantum resources for each step
of Argon2. Among the steps, blake2b utilizes the highest amount of resources.

In summary, selecting the qubit-optimized quantum circuit can reduce the
number of qubits by up to 12,740, with the flexibility to choose the adder based
on optimization needs. Choosing the depth-optimized quantum circuit can re-
duce the depth by up to approximately 89.59%, with the possibility to select
the adder based on the optimization perspective. The results of this paper in-
dicate that selecting the Ripple adder in the depth-optimized quantum circuit
minimizes the depth.

Function #Qubit #1qClifford #CNOT #Toffoli #Full Depth

Initial

1,090

(None)

Update (None)

Final 1.62× 217 1.17× 219 1.64× 217 1.71× 217

blake2b 1.51× 222 1.1× 224 1.54× 222 1.6× 222

Total 1.51× 222 1.14× 224 1.59× 222 1.65× 222

Table 2: Quantum resource estimation results for steps in Argon2. (Optimization:
Qubit, Adder: Ripple)

Function #Qubit #1qClifford #CNOT #Toffoli #Full Depth

Initial

1,090

(None)

Update (None)

Final 1.03× 26 1.98× 218 1.66× 217 1.25× 219

blake2b 1.93× 210 1.85× 223 1.55× 222 1.18× 224

Total 1.99× 210 1.91× 223 1.6× 222 1.21× 224

Table 3: Quantum resource estimation results for steps in Argon2. (Optimization:
Qubit, Adder: Simple)
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Function #Qubit #1qClifford #CNOT #Toffoli #Full Depth

Initial

13,830

(None)

Update (None)

Final 1.6× 217 1.17× 219 1.64× 217 1.42× 214

blake2b 1.5× 222 1.1× 224 1.54× 222 1× 221

Total 1.55× 222 1.14× 224 1.59× 222 1.01× 221

Table 4: Quantum resource estimation results for steps in Argon2. (Optimization:
Depth, Adder: Ripple)

Function #Qubit #1qClifford #CNOT #Toffoli #Full Depth

Initial

13,830

(None)

Update (None)

Final 1.12× 25 1.98× 218 1.66× 217 1.56× 217

blake2b 1.05× 210 1.85× 223 1.55× 222 1.46× 222

Total 1.08× 210 1.91× 223 1.6× 222 1.51× 222

Table 5: Quantum resource estimation results for steps in Argon2. (Optimization:
Depth, Adder: Simple)

5 Conclusion

This paper presents quantum circuits from two perspectives for Argon2. In the
qubit-optimized quantum circuit, the number of qubits is reduced by reusing
previously used qubits through inverse operations, but the depth increases due
to the computations required for the inverse. In contrast, the depth-optimized
quantum circuit increases the number of qubits by utilizing temp qubits and
parallel adder structures without performing inverse operations, resulting in a
significant reduction in depth. The analysis of quantum resources reveals a dif-
ference of up to 12,740 qubits and 196,741 depth between the four variations of
qubit-optimized quantum circuits and depth-optimized quantum circuits. Given
the current limitations of imperfect fault-tolerant quantum computers, it is nec-
essary to analyze the post-quantum resistance strength through the implemen-
tation of quantum circuits from various perspectives. By appropriately adjusting
the trade-off between qubits and depth, the most suitable quantum circuit can
be identified. Therefore, the implementation and analysis of quantum circuits
from various optimization perspectives are crucial research areas. The results
of this paper contribute to the post-quantum strength analysis of Argon2 and
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provide insights for future research on quantum circuit design with appropri-
ate trade-offs of quantum resources in response to advancements in quantum
computing technology.
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6 Appendix

Algorithm 1 Qubit-optimized quantum circuit for the compression function(G)

Input: a , b, c, d, sigma

1: a← ADD(b, a)

2: @Reverse Point
3: sigma← Classic to Quantum(m[sigma[r][2 ∗ i+ 0]])
4: a← ADD(sigma, a)
5: #Reverse

6: for (k=0 to length(d)) :
7: d[k]← CNOT(a[k], d[k])
8: for (k=0 to 64) :
9: dbox1.append(d[(k + 32)mod 64])
10: d = dbox1

11: c← ADD(d, c)

12: for (k=0 to length(b)) :
13: b[k]← CNOT(c[k], b[k])

14: for (k=0 to 64) :
15: bbox1.append(b[(k + 24)mod 64])
16: b = bbox1

17: a← ADD(b, a)

18: @Reverse Point
19: sigma← Classic to Quantum(m[sigma[r][2 ∗ i+ 1]])
20: a← ADD(sigma, a)
21: #Reverse

22: for (k=0 to 64) :
23: dbox2.append(d[(k + 16)mod 64])
24: d = dbox2

25: c← ADD(d, c)

26: for (k=0 to 64) :
27: bbox2.append(b[(k + 64)mod 64])
28: b = bbox2
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Algorithm 2 Depth-optimized quantum circuit for the compression function(G)

Input: a , b, c, d, sigma1, sigma2

1: a← ADD(b, a)

2: sigma1 ← Classic to Quantum(m[sigma1[r][2 ∗ i+ 0]])
3: a← ADD(sigma1, a)

4: for (k=0 to length(d)) :
5: d[k]← CNOT(a[k], d[k])
6: for (k=0 to 64) :
7: dbox1.append(d[(k + 32)mod 64])
8: d = dbox1

9: c← ADD(d, c)

10: for (k=0 to length(b)) :
11: b[k]← CNOT(c[k], b[k])

12: for (k=0 to 64) :
13: bbox1.append(b[(k + 24)mod 64])
14: b = bbox1

15: a← ADD(b, a)

16: sigma2 ← Classic to Quantum(m[sigma2[r][2 ∗ i+ 1]])
17: a← ADD(sigma2, a)

18: for (k=0 to 64) :
19: dbox2.append(d[(k + 16)mod 64])
20: d = dbox2

21: c← ADD(d, c)

22: for (k=0 to 64) :
23: bbox2.append(b[(k + 64)mod 64])
24: b = bbox2
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Fig. 5: Optimized Quantum circuit for G : (1)Qubit-optimized quantum circuit
(2)Depth-optimized quantum circuit


