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Abstract. We introduce CorrGapCDH, the Gap Computational Diffie-Hellman problem in the
multi-user setting with Corruptions. In the random oracle model, our assumption tightly implies
the security of the authenticated key exchange protocols NAXOS in the eCK model and (a simplified
version of) X3DH without ephemeral key reveal. We prove hardness of CorrGapCDH in the generic
group model, with optimal bounds matching the one of the discrete logarithm problem.

We also introduce CorrCRGapCDH, a stronger Challenge-Response variant of our assumption.
Unlike standard GapCDH, CorrCRGapCDH implies the security of the popular AKE protocol HMQV
in the eCK model, tightly and without rewinding. Again, we prove hardness of CorrCRGapCDH in
the generic group model, with (almost) optimal bounds.

Our new results allow implementations of NAXOS, X3DH, and HMQV without having to adapt the
group sizes to account for the tightness loss of previous reductions. As a side result of independent
interest, we also obtain modular and simple security proofs from standard GapCDH with tightness
loss, improving previously known bounds.
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1 Introduction

Authenticated key exchange (AKE) is a fundamental cryptographic protocol where two users agree on
a joint session key. In a simple and efficient blueprint of Diffie-Hellman protocols, Alice (holding long-
term key ga) sends a random ephemeral key gx to Bob; Bob (holding long-term key gb) sends a random
ephemeral key gy to Alice. After receiving their input, both users derive the joint session key K from the
four Diffie-Hellman values gab, gay, gxy, gbx . The practically relevant protocols HMQV [Kra05], NAXOS
[LLM07], and X3DH− [CCG+19] (a simplification of Extended Triple Diffie-Hellman X3DH [MP16]) fall
into this class of Diffie-Hellman protocols, see Figure 1. They are all two message protocols with implicit
authentication, namely, only the designated users can share the same key and together with a MAC they
can confirm their session keys and authenticate each other explicitly.

We highlight that HMQV is the well-known “provably secure” variant of MQV [MQV95, LMQ+03]
which is included in the IEEE P1363 standard for key exchange [P1300]. X3DH− is essentially the
Extended Triple Diffie-Hellman (X3DH) key exchange protocol without involving any signature and
ignoring the server. The original X3DH protocol is used for the initial key exchange in Signal, where the
receiver publishes (signed) prekeys on a server which can be retrieved (asynchronously) by the sender.
The NAXOS protocol is X3DH− combined with the “NAXOS hashing trick” which is marked with a
dashed box in Figure 1.
AKE Security Model. Adversaries against AKE protocols can control all messages transferred among
involved users, and they can also reveal some of the shared session keys and the long-term secret keys
of honest users. These capabilities are captured by security models such as [BR94, CK01, LLM07]. The
goal of an adversary is to distinguish a non-revealed session key from a random key of the same length.
We use the extended Canetti-Krawczyk (eCK) model [BR94,CK01,LLM07] in a game-based formulation
of [JKRS21] that allows adversaries to register dishonest users, corrupt long-term secret keys of the
N ≥ 2 honest users, reveal ephemeral states and session keys of the S sessions. The adversary is allowed
to make T test queries based on the same random bit b. It captures weak forward secrecy (which is the
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Alice (a, A := ga) Bob (b, B := gb)

x $← Zp

y $← Zp

X3DH−, NAXOS : K := H(ctxt, Y a, Bx , Y x) K := H(ctxt, Ay, Xb, Xy)

HMQV : K := H(ctxt, (YBe)x+ad) K := H(ctxt, (XAd)y+be)

X := gx

Y := gy

ctxt := (A, B, X , Y )
d := H̄ (X , Bob); e := H̄ (Y , Alice)

eskA
$← {0, 1}λ; x := G(eskA, a)

eskB
$← {0, 1}λ; y := G(eskB, b)

Fig. 1. Overview of different AKE protocols, HMQV, X3DH−, and NAXOS. NAXOS computes exponents x and
y as shown in the dashed box. We make a small twist to HMQV that includes the context ctxt in computing the
session key K . This twist is to avoid the trivial winning of an adversary in the eCK model (see Section 6) and is
also applied in the analysis of [BCLS15].

strongest forward secrecy a two-pass implicit AKE protocol can achieve [Kra05]) and security against key-
compromise impersonation (KCI) attacks and reflection attacks. We stress that our model is using a single
challenge bit and hence allows for tight composition of the AKE with symmetric primitives [CCG+19].

Tightness. The security of AKE protocols is usually established by a security reduction. More precisely,
for any adversary A against an AKE protocol with success probability εAKE, there exists an adversary
B with roughly the same running time that breaks the underlying assumption with probability εAss =
εAKE/ℓ. The security loss ℓ plays an important role in choosing the system parameters. If ℓ is large, one
has to increase the size of the underlying group G to account for the security loss. Optimally, ℓ is a small
constant in which case we call the reduction tight.

Security proofs for AKE protocols are rather complex and the resulting bounds are highly non-
tight [Kra05,LLM07,CCG+19,Ust08,SE16,PW11]. A reduction B usually makes several case distinctions
and, by guessing the behavior of an adversary in each case, B embeds a problem instance into either
the protocol transcripts or the users’ public keys. In the end, this guessing strategy ends up with a
large security loss. Most of the AKE protocols lose a linear (or even quadratic) factor in the number
of users N , the number of sessions S , and the number of test sessions T . Even worse, HMQV and its
variants (such as [Ust08, SE16, PW11]) additionally require the Forking Lemma [PS00] to rewind the
adversary and bound its success probability, which ends up with an even larger security loss. X3DH− is a
noteworthy exception because it loses only a linear factor in N [CCG+19]. This linear loss in N is shown
to be optimal for a large class of Diffie-Hellman protocols [CCG+19], including our simple blueprint of
Diffie-Hellman protocols.

1.1 Our Contributions

In this paper, we simplify the difficulty of proving AKE protocols by introducing new variants of the
Computational Diffie-Hellman (CDH) problem in the multi-user setting:

– We introduce n-CorrGapCDH, the Gap Computational Diffie-Hellman problem in an n-user setting
with Corruptions. The hardness of (N + S)-CorrGapCDH tightly implies the security of NAXOS and
X3DH−.

– We introduce (n, QCh)-CorrCRGapCDH, a stronger Challenge-Response variant of n-CorrGapCDH.
The hardness of (N + S , QRO)-CorrCRGapCDH tightly implies the security of HMQV without rewind-
ing.

Recall that in the eCK model the variables N , S , T , and QRO correspond to the number of users, sessions,
test queries, and random oracle queries, respectively. For NAXOS and HMQV, we prove security with
state corruptions. For X3DH−, state corruption is not allowed, since it will lead to a trivial attack.

We prove our new assumptions based on the Gap Diffie-Hellman (GapCDH) assumption [OP01,
ABR01] via non-tight reductions. Combined with these non-tight reductions, we give simple, intuitive
and modular security proofs of X3DH−, NAXOS and HMQV. For NAXOS and HMQV, we obtain tighter
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Security Security loss wrt. GapCDH
wFS St tightly implied by Old New

NAXOS
√ √

(N + S)-CorrGapCDH T(N + S)2 (N + S)2

X3DH− √
– (N + S , N )-CorrAGapCDH N N

HMQV
√ √

(N + S , QRO)-CorrCRGapCDH QROT(N + S)2 QRO(N + S)2

Fig. 2. Security of the AKE protocols NAXOS, X3DH−, and HMQV in the eCK model. St stands for state reveal
attacks and wFS stands for weak forward secrecy. The “Security tightly implied by” column names the new
multi-user problem which tightly implies the AKE’s security. The last two columns contain old and new security
loss for the AKE protocols relative to the standard GapCDH problem, ignoring constants. HMQV additionally
incorporates the

√
εGapCDH loss due to the Forking Lemma.

security bounds, and for X3DH− we match the optimal bound from [CCG+19]. Our results in the random
oracle model are summarized in Figure 2.4

The main novelty of our new multi-user CDH assumptions lies in their practical applicability. We
show the quantitative hardness of CorrGapCDH in the Generic Group Model (GGM) [Sho97, Mau05],
which is optimal and matches the one of the discrete logarithm problem. We also prove the hardness
of CorrCRGapCDH in the GGM and it is (almost) optimal. Our new results in the GGM support the
implementation of NAXOS, X3DH−, and HMQV without increasing the group sizes to compensate the
security loss of the previous reductions. Our results in the generic group model are summarized in Figure 3
on page 5.

1.2 Multi-User CDH with Corruptions

Let par = (p, g,G) be system parameters that describe a group G of prime order p = |G| and a generator
g of G. Given ga1 , ga2 , the standard GapCDH problem (over par) requires to compute the Diffie-Hellman
key ga1a2 [OP01,ABR01]. Here Gap stands for the presence of a (decisional) Gap Oracle which on input
(X = gx , Y = gy, Z = gz) returns 1 iff xy = z mod p. We now describe our new assumptions in more
details. Formal definitions will be given in Section 3.
Multi-User GapCDH With Corruptions. For n ≥ 2, the n-user GapCDH problem with Corruptions
(n-CorrGapCDH) is a natural generalization of GapCDH to the n-user setting. The adversary is given the
n-tuple (ga1 , . . . , gan ) and is allowed to corrupt any user i to obtain its secret ai . In order to win, it must
output any of the n(n − 1) possible Diffie-Hellman keys gaiaj for two non-corrupted users i ̸= j. Even
though the two assumptions are asymptotically equivalent, they are quantitatively different: Due to the
corruptions, one can only prove the non-tight bound εCorrGapCDH ≤ O(n2) · εGapCDH.

For n1 ≤ n, we also consider an Asymmetric version of this assumption called (n, n1)-CorrAGapCDH.
It is asymmetric in the sense that n1 splits the set of users [n] in two disjoint sets [n1] and [n1 + 1, n],
where only the first n1 users can be corrupted. The adversary has to output any of the Diffie-Hellman
keys gaiaj for two non-corrupted users i ∈ [n1] and j ∈ [n1 + 1, n]. Note that CorrGapCDH tightly implies
CorrAGapCDH. However, the fact that the challenge set is split asymmetrically allows us to give a tighter
relation to GapCDH. In particular, we prove that εCorrAGapCDH ≤ O(n1) · εGapCDH.
Multi-User Challenge-Response GapCDH With Corruptions. The (n, QCh)-CorrCRGapCDH prob-
lem is a generalization of n-CorrGapCDH, where the adversary is additionally given QCh many challenge-
response pairs (Rk , hk), for adaptively chosen Rk ∈ G. To win, the adversary must output any of the
n(n − 1)QCh possible Diffie-Hellman Challenge-Response keys gaiajhk · Raj

k for two non-corrupted users
i ̸= j.

Another interpretation of the CorrCRGapCDH problem stems from canonical (three-round) identifi-
cation schemes (a.k.a. Σ protocols) with a designated Verifier, where the Prover (holding secret key aj)
sends commitment Rk , the Verifier (holding secret key ai) responds with a random challenge hk , and
finally the Prover sends the response C = gaiajhk · Raj

k . In this setting, the CorrCRGapCDH problem can

4 Our new and previously known bounds for HMQV in Figure 2 are stated in the eCK model disallowing reflection
attacks. The reason is that for reflection attacks, one additionally requires the hardness of Square Diffie-Hellman
(i.e., compute ga2

from ga) which is non-tightly equivalent to CDH. We remark that our generic group bounds
from Figure 3 can be shown in the full eCK model allowing reflection attacks.
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be seen as an n-user version with corruptions of Parallel IMPersonification against Key-Only Attack
(PIMP-KOA) [KMP16].

The interpretation in the context of identification schemes gives a hint that the (n, QCh)-CorrCRGapCDH
problem is again of qualitatively different nature than GapCDH and n-CorrGapCDH. Using techniques
from [KMP16], one can prove that GapCDH and (n, QCh)-CorrCRGapCDH are asymptotically equiva-
lent. However, since the proof involves the Forking Lemma [PS00], the resulting bound εCorrCRGapCDH ≤
QChn2 ·

√
εGapCDH is highly non-tight.

Generic Hardness. In the generic group model (GGM) [Sho97], the running time of an adversary is
captured by the number of queries to a group operation oracle. Ignoring constants, the advantages of an
adversary making QOp group operations to a generic group of order p are upper bounded by

εCorrCRGapCDH ≤ (QOp + n)2

p + n2QCh

p (1)

εCorrGapCDH ≤ (QOp + n)2

p . (2)

We note that εCorrGapCDH is the same as the generic hardness of the standard discrete logarithm (DL)
problem in [Sho97]. The generic hardness of CorrAGapCDH follows from that of CorrGapCDH.

1.3 Concrete Security of AKE Protocols

We will now state the concrete security bounds of the AKE protocols in the eCK model which depend on
the number of users N ≥ 2, the total number of sessions S ≥ 0, the total number of test queries T ≥ 0,
and the number of random oracle queries QRO.
Concrete Bounds from GapCDH. We summarize the previously known and our security loss of NAXOS,
X3DH−, and HMQV relative to GapCDH in Figure 2 on page 3. For HMQV [Kra05], we could not identify
a concrete security bound in the literature so we had to estimate it from [Kra05,BCLS15] and the one of
CMQV [Ust08]. The original bounds of NAXOS and HMQV are proven in a model that allows only a sin-
gle test query. The bounds from Figure 2 are derived using a hybrid argument inducing a multiplicative
factor of T , the number of test queries.

We stress that the multiplicative factor T seems to be unavoidable using the original proof strategies
of NAXOS [LLM07] and HMQV [Kra05]. Even using the random self reducibility of CDH, these strategies
still need to guess T possible test sessions out of S many sessions in total, resulting in an exponential
loss of

(S
T

)
. Thus, the best way is to apply a hybrid argument and replace the keys one by one for each

test query, which results in the security loss T . Our new assumptions resolve this issue and allow us to
get rid of the factor T . In particular, we can replace the session keys of all T test sessions at once as
the reduction can embed challenge instances in all sessions and then adaptively choose which instance
to solve, while allowing corruptions from adversaries.

We believe that improving the bound by the factor T is relevant in practice. When combining session
keys with a symmetric primitive, security should still hold for many sessions, thus T can be about 230,
e.g. in modern messaging applications.
Concrete Bounds in the GGM. The main novelty of our multi-user CDH problems is that they allow
us to give optimal security bounds for NAXOS, X3DH−, and HMQV in the GGM. Our bounds in the
eCK security model depend on the number of honest users N , sessions S , test sessions T , random oracle
queries QRO, and generic group operations QOp made by the adversary. Since N , S , and T correspond
to “online queries”, we will merge them into one single value ton = N + S + T , the time adversary
A spends on online queries. Similarly, toff = QRO + QOp counts the time that adversary A spends on
“offline queries”. (The reason is that offline queries are considerably less expensive than online queries,
see below.) Figure 3 summarizes the security bounds in the GGM expressed as functions in ton, toff.

We now explain the bounds for NAXOS in more detail. According to Figure 2, its security is tightly
implied by (N + S)-CorrGapCDH. This means that in practice one can just pick a group G where the
(N +S)-CorrGapCDH problem is hard (say, with 128-bit security) and implementing NAXOS in G directly
gives us the same level of security (namely, 128-bit security) without increasing the group size. Applying
(2) and using that QOp ≥ (N + S), the quantitative hardness of NAXOS in the GGM is (QOp+N+S)2

/p =
t2
off/p. This is optimal in the sense that it matches the generic bounds on the best attack on NAXOS
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Old GGM Bounds New GGM Bounds
εAKE(toff, ton) Bit security εAKE(toff, ton) Bit security

NAXOS t3
ont2

off
p 32 t2

off
p 128

X3DH− tont2
off

p 96 t2
off
p 128

HMQV t3
ont2

off√p 0 t2
off+t2

ontoff
p 128

Fig. 3. Security bounds in the GGM, where toff = QOp + QRO counts the number of offline queries and ton =
N + S + T counts the number of online queries. The “Bit security” columns refer to the bit security supported
by the respective bounds over generic groups of order p ≈ 2256 and assuming ton ≈ 232 and toff ≲ 2128.

(which computes one DL and breaks the scheme). From previously known reductions [LLM07], one can
only obtain the weaker GGM bound T(N+S)2(QOp+N+S)2

/p = t3
ont2

off/p. As for a concrete comparison, we
compute the bit security offered by NAXOS when implemented over prime-order elliptic curves with
log(p) = 256. According to [CKMS16], a scheme offers a security level of κ bits if ε/(ton+toff) ≤ 2−κ

for all adversaries running in time ton + toff where 1 ≤ ton + toff ≤ 2κ. A simple computation shows
that our new bounds offer κ = 128 bits security as long as ton + toff ≤ 2128. Using the bound from
previously known proofs, one obtains a provable security guarantee of 128 − 3 log2(ton) bits. Using the
conservative ton = 232 [CCG+19], this makes only 32 bits. Since (N + S , N )-CorrAGapCDH implies
(N + S)-CorrGapCDH, the computations for X3DH− are similar. The old GGM bound is obtained from
the bound in [CCG+19] which has a security loss linear in N .

The same computation shows that the quantitative hardness of HMQV in the GGM is (QOp+N+S)2
/p+

(N+S)2(QRO+1)/p = (t2
off+t2

ontoff)/p. Hence HMQV over prime-order elliptic curves of size log(p) = 256 offers
a security of 128 bits as long as ton ≤ 264. In contrast, from previously known proofs one can only obtain
t3
ont2

off/√p which means that we are left with −96 bits of security (meaning zero). If, to guarantee 128 bits
of security, group sizes were chosen according to this bound, they would be quite large, and the scheme
correspondingly slow.

1.4 Discussion and Prior Work

We showed that for HMQV, X3DH−, and NAXOS one can pay the price of stronger cryptographic as-
sumptions for the benefit of getting tighter bounds. One might argue that our new assumptions partly
“abstract away” the looseness of prior proofs and moreover come very close to a tautology of the AKE’s
security. While there is certainly some truth to the first statement, we would like to stress that our AKE
security proofs are still rather complex and non-trivially relate the AKE experiment involving multiple
oracles to the much simpler multi-user CDH experiment. Our new assumptions are purely algebraic and
do not involve any hash function. Hence, they precisely characterize the “algebraic complexity” of the
AKEs’ security which certainly improves our understanding of their security. As a matter of fact, as a
side result our approach also led to improved security reductions from the standard GapCDH assumption.
Furthermore, our new generic bounds are the only known formal argument supporting the security of
HMQV in 256-bit groups, c.f. Figure 3.

Another point of criticism might be that our new assumptions are non-falsifiable. We remark that
the full Gap oracle (i.e., oracle Ddh in Figure 4) is the only reason why our new assumptions (such
as CorrGapCDH) are non-falsifiable. Previous (non-tight) proofs for HMQV and NAXOS also relied on
the non-falsifiable GapCDH, whereas X3DH− was proved from the weaker and falsifiable Strong CDH
assumption, where the first input of the Ddh oracle is fixed. For simplicity we decided to analyze all
protocols with respect to a gap assumption. But we would like to stress that for NAXOS and X3DH− we
actually do not need the full power of the gap oracle in our proofs (see our comment in the beginning
to Section 5). This way we can prove the security of NAXOS and X3DH− from falsifiable assumptions.
Proving HMQV with respect to a falsifiable assumption remains an interesting open problem.

We analyzed the tightness of existing AKE protocols of practical relevance. The works [KMP16,
BD20, FPS20] took a similar approach in the context of the Schnorr (blind) signature scheme. For
example, [KMP16] proved that UF-CMA security of Schnorr signatures in the multi-user setting is tightly
implied by the interactive QRO-IDLOG assumption which in turn has optimal bounds in the GGM. In
a different line of work, new AKE protocols with a tight security reduction from standard assumptions
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were created from scratch, for example [BHJ+15,CCG+19,JKRS21]. All those schemes are considerably
less efficient than NAXOS, X3DH−, and HMQV.
Open Problems. We note that there are several variants of HMQV and NAXOS, such as [Ust08,PW11,
Ust09,YZ13]. We are optimistic that our analysis will carry over in a straightforward manner but leave
the concrete analysis as an open problem. While we only use our assumptions to analyze two-message
DH-based AKE protocols in this paper, we believe that our framework can be extended to analyze the
Noise framework [Per17, DRS20] in combination of suitable symmetric primitives. Another interesting
open problem is to improve the generic bound for HMQV to t2

off/p, or to show an attack matching our
slightly worse bound from Figure 3.

2 Preliminaries

Notation. For integers N , M ∈ N+, we define [N , M ] := {N , N + 1, . . . , M} (which is the empty set for
M < N ) and [N ] := [1, N ]. For an adversary A, we write a ← A(b) as the output of A on input b. To
express A’s random tape ρ explicitly, we write a := A(b; ρ). In this case, A’s execution is deterministic.
The notation JBK, where B is a boolean statement, refers to a bit that is 1 if the statement is true and
0 otherwise.
Games. We use code-based games in this paper, following [BR06]. In every game, Boolean values are all
initialized to false, numerical values to 0, sets to ∅, strings to undefined ⊥. For the empty string, we use
a special symbol ϵ. A procedure terminates once it has returned an output.
Idealized Models. In the Generic Group Model (GGM) [Sho97,Mau05], group operations in group G
can only be computed via an oracle Op (Op stands for operation) provided by the GGM, and adversaries
only receive unique handles for the corresponding group elements. The GGM internally identifies elements
in G with elements in Zp, since (G, ·) of order p is isomorphic to (Zp, +). Moreover, the GGM maintains
an internal list that keeps track of all elements that have been issued. In this paper, our GGM proofs
follow the work of Kiltz et al. [KMP16] which essentially uses the Maurer model [Mau05]. In the Random
Oracle Model (ROM) [BR93], a hash function is modeled as a perfectly random function. That is, an
adversary is only given access to the hash functions via an oracle H which (consistently) outputs uniform
random elements in the hash function’s range.

The running time of an adversary A in the GGM and ROM counts the number of calls to the Op
and H oracles. We define such calls to the hash and group operation oracles as offline queries, since these
operations can in practice be performed by an adversary offline, without any interaction with a server.
In contrast, we define all queries that require interaction with a server as online queries. (For example,
queries to a signing oracle in a digital signature scheme.) Adversary A’s offline (or online) running time
toff (or ton) is the time A spends on offline (or online) queries.
Bit Security. According to [CKMS16], a scheme has κ-bit security if ε/(ton+toff) ≤ 2−κ for all adversaries
that run in time ton + toff where 1 ≤ ton + toff ≤ 2κ.

3 Multi-User CDH Problems

We formally define our new multi-user CDH problems CorrGapCDH and CorrCRGapCDH, discuss their
relation to the standard CDH problem and analyze their generic bounds.

For the rest of this section, we fix parameters par = (p, g,G) that describe a group G of prime order
p = |G| and a generator g of G. For g, A ∈ G, we define DLg(A) as the unique a ∈ Zp satisfying ga = A.
Standard CDH. We first recall the standard CDH problem which is to compute ga1a2 given ga1 and ga2

for randomly chosen a1, a2
$← Zp. A popular variant for proving security of encryption and key exchange

protocols is the Gap CDH GapCDH [OP01,ABR01] problem. In GapCDH, the adversary can make queries
to a gap oracle Ddh(A, Y , Z ) returning the Boolean value JY DLg(A) = ZK.
Multi-User GapCDH. We now consider natural generalizations of GapCDH to a setting with n ≥ 2
users where the adversary is given the n-tuple (ga1 , . . . , gan ) and in order to win, it must output any
of the n(n − 1) possible CDH tuples in the winning set Win = {gaiaj | i ̸= j}. Formally, to n ≥ 2
and QDdh ≥ 0, we associate game GapCDHn,QDdh

of Figure 4 and define the advantage function of A as
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AdvGapCDH
n,QDdh

(A) := Pr[GapCDHA
n,QDdh

⇒ 1]. We let n-GapCDH be the problem with parameters n ≥ 2 such
that GapCDH = 2-GapCDH. (To simplify notation we ignore the value QDdh when naming assumptions.)
By a standard re-randomization argument [NR97] over the users, one can show that n-GapCDH is tightly
equivalent to GapCDH = 2-GapCDH .

GAME G
00 for i ∈ [n]
01 ai

$← Zp; Ai := gai

02 C ← AO(A1, · · · , An)
03 return JC ∈WinK

Win =


{(Aaj

i | (i, j) ∈ [n]2 ∧ (i ̸= j)} : G = GapCDHn,QDdh

{(Aaj
i | (i, j) ∈ ([n] \ LA)2 ∧ (i ̸= j)} : G = CorrGapCDHn,QDdh

{(Aaj
i | (i, j) ∈ ([n1] \ LA)× [n1 + 1, n]} : G = CorrAGapCDHn,n1,QDdh

{(Ahk
i · Rk)aj | (i, j, k) ∈ ([n] \ LA)2 × [QCh] ∧ (i ̸= j)} : G = CorrCRGapCDHn,QCh,QDdh

O =


Ddh(·, ·, ·) : G = GapCDHn,QDdh

Ddh(·, ·, ·),Corrn(·) : G = CorrGapCDHn,QDdh

Ddh(·, ·, ·),Corrn1 (·) : G = CorrAGapCDHn,n1,QDdh

Ddh(·, ·, ·),Corrn(·),Ch(·) : G = CorrCRGapCDHn,QCh,QDdh

Ddh(Xℓ, Yℓ, Zℓ) �ℓ-th query (ℓ ∈ [QDdh])
04 return JZℓ = Y DLg(Xℓ)

ℓ K

Ch(Rk ∈ G) �k-th query (k ∈ [QCh])
05 return hk

$← Zp

Corrn′ (i ∈ [n′])
06 LA := LA ∪ {i}
07 return ai

Fig. 4. Game G ∈ {GapCDHn,QDdh
, CorrGapCDHn,QDdh

, CorrAGapCDHn,n1,QDdh
, CorrCRGapCDHn,QCh,QDdh

} for
defining our Multi-User CDH problems.

Multi-User GapCDH With Corruption. We now generalize the n-GapCDH problem to allow for user
corruptions. Corruptions are modeled by oracle Corrn(i ∈ [n]) which returns ai , the discrete logarithm
of Ai = gai . To win, the adversary must output one of the Diffie-Hellman keys gaiaj for two distinct, non-
corrupted users i and j. More formally, to n ≥ 2, and QDdh ≥ 0, we associate game CorrGapCDHn,QDdh

of
Figure 4 and define the advantage function of A as AdvCorrGapCDH

n,QDdh
(A) := Pr[CorrGapCDHA

n,QDdh
⇒ 1]. We

let n-CorrGapCDH be the problem with parameters n ≥ 2 and QDdh. We note that due to the corruption
oracle a re-randomization argument as for the case without corruptions can no longer be applied and
therefore we can not prove tight equivalence between GapCDH and n-CorrGapCDH.
Multi-User Asymmetric GapCDH With Corruption. This problem is like n-CorrGapCDH, where
the corruption oracle Corrn1(i ∈ [n1]) is restricted to users i ∈ [n1], where parameter 0 ≤ n1 ≤ n splits
interval [n] in [n1] and [n1 +1, n]. To win, the adversary has to return one of the ≤ n1(n−n1) asymmetric
Diffie-Hellman values Aaj

i for non-corrupted users i ∈ [n1] and j ∈ [n1 + 1, n]. More formally, to n ≥ 2,
0 ≤ n1 ≤ n, and QDdh ≥ 0, we associate game CorrAGapCDHn,n1,QDdh

of Figure 4 and define the advantage
function of A as AdvCorrAGapCDH

n,n1,QDdh
(A) := Pr[CorrAGapCDHA

n,n1,QDdh
⇒ 1]. We let (n, n1)-CorrAGapCDH be

the problem with parameters n ≥ 2 and 0 ≤ n1 ≤ n.
Multi-User Challenge-Response GapCDH With Corruption. Our final problem is a generaliza-
tion of the n-CorrGapCDH problem. The adversary is given access to a challenge oracle Ch(Rk ∈ G)
(k ∈ [QCh]) which returns a response hk

$← Zp. In the winning condition, the adversary is required to out-
put any of the at most n(n−1)QCh elements of the winning set Win = {(Ahk

i ·Rk)aj | i ̸= j uncorrupted}.
Furthermore, we will give the adversary access to the full gap oracle Ddh. More formally, to integers
n ≥ 2, QCh ≥ 0, and QDdh ≥ 0, we associate game CorrCRGapCDHn,QCh,QDdh

of Figure 4 and de-
fine the advantage function AdvCorrCRGapCDH

n,QCh,QDdh
(A) := Pr[CorrCRGapCDHA

n,QCh,QDdh
⇒ 1]. We let (n, QCh)-

CorrCRGapCDH be the problem with parameters n ≥ 2 and QCh.
Relations. Figure 5 summarizes the relations between the multi-user CDH problems. We only state the
important ones for our analysis here, all other formal statement and proofs are postponed to Appendix
A.
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(n, n1)-CorrAGapCDH n-GapCDH

GapCDH n-CorrGapCDH

(2, 1)-CorrCRGapCDH (n, 1)-CorrCRGapCDH (n, QCh)-CorrCRGapCDH true

n1 (L. 3)
n2 (L. 2)

n2 (L. 7)
rew. (L. 6) (L. 1)

QCh (L. 8) GGM (Th. 2)

Fig. 5. Standard model relations between the standard problem GapCDH (CDH with full gap oracle) and our new
problems n-GapCDH, n-CorrGapCDH, and (n, QCh)-CorrCRGapCDH. Red arrows denote non-tight implications
with tightness loss as indicated; Green arrows denote tight implications; The black arrow denotes an unconditional
statement in the GGM. Formal statements and proofs (unless trivial) are referenced.

Theorem 1 (GapCDH non-tightly−−−−−−−−→ (n, QCh)-CorrCRGapCDH). For any adversary A against (n, QCh)-
CorrCRGapCDH, there exist an adversary B against GapCDH such that

AdvCorrCRGapCDH
n,QCh,QDdh

(A) ≤ QCh · n2
(√

AdvGapCDH
QDdh

(B) + 1
p

)
, and T(B) ≈ 2T(A), (3)

where T(A) and T(B) are the running times of adversaries A and B, respectively.

The proof of Theorem 1 and Lemmas 6 to 8 referred to in Figure 5 can be found in Appendix A.1. Proofs
of the following lemmas can be found in Appendix A.2.

Lemma 1 ((n, 1)-CorrCRGapCDH −→ n-CorrGapCDH). For any adversary A against n-CorrGapCDH,
there exists an adversary B against (n, 1)-CorrCRGapCDH with

AdvCorrGapCDH
n,QDdh

(A) ≤ AdvCorrCRGapCDH
n,1,QDdh

(B).

Lemma 2 (GapCDH n2

−→ n-CorrGapCDH). For any adversary A against
n-CorrGapCDH, there exists an adversary B against GapCDH with

AdvCorrGapCDH
n,QDdh

(A) ≤ n2 ·AdvGapCDH
QDdh

(B).

Lemma 3 (GapCDH n1−→ (n, n1)-CorrAGapCDH). For any adversary A against (n, n1)-CorrAGapCDH,
there exists an adversary B against GapCDH with

AdvCorrAGapCDH
n,n1,QDdh

(A) ≤ n1 ·AdvGapCDH
QDdh

(B).

Theorem 2 (Generic Hardness of CorrCRGapCDH). For an adversary A against (n, QCh)-CorrCR-
GapCDH in the GGM that makes at most QOp queries to the group oracle Op, n′ queries to the corruption
oracle Corr, QDdh queries to the gap oracle Ddh, and QCh queries to the challenge oracle Ch, A’s
advantage is

AdvCorrCRGapCDH
n,QCh,QDdh,GGM(A) ≤ (QOp + n + 1)2

p + 2QDdh

p + (n − n′)2QCh

2p + QCh(n − n′)
p .

We analyze the hardness of (n, QCh)-CorrCRGapCDH in the generic group model (GGM) [Sho97,
Mau05]. In particular, our GGM proofs follow the work of Kiltz et al. [KMP16] which essentially uses
the Maurer model [Mau05]. Theorem 2 presents the hardness of (n, QCh)-CorrCRGapCDH in the GGM.
Before proving it, we recall a useful lemma.

Lemma 4 (Schwartz–Zippel Lemma). Let f (x1, .., xn) be a non-zero multivariate polynomial of
degree d ≥ 0 over a field F. Let S be a finite subset of F. Let α1, . . . , αn be chosen uniformly at random
from S. Then

Pr[f (α1, . . . , αn) = 0] ≤ d
|S | .
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At this point we also want to mention the non-triviality of applying Schwartz-Zippel in our proof which
was raised in the analysis of the one-more discrete logarithm assumption [BFP21]. In particular, we
cannot apply Schwartz-Zippel at the end of the proof since queries to Corr leak information about the
input (i.e., the challenge elements A1, . . . , An which will be represented by polynomials x1, . . . , xn) and
even allow the adversary to produce a collision.5 We account for this in our proof by removing corrupted
exponents from the challenge and transforming all polynomials accordingly. We also want to note that
our Corr oracle is more restricted then the DLog oracle in [BFP21] which can be queried on any group
element.

Proof (of Theorem 2). We construct a simulator B who interacts and plays a CorrCRGapCDHn,QCh,QDdh

game with A in the GGM. Group operation, corruption and Ddh oracle queries are simulated as in
Figure 6.

B �simulating in the GGM
00 LE := {(x0 := 1, Px0 := 1)} �set of polynomials
01 for i ∈ [n]
02 αi

$← Zp; LE := LE ∪ {(xi , Pxi := i + 1)}
03 x⃗ := (x1, . . . , xn)
04 α⃗ := (α1, . . . , αn)
05 cnt := n + 1 �size of LE
06 C ← AO(Px0 , . . . , Pxn )
07 if C /∈ [cnt]
08 return 0
09 fetch (z∗(x⃗), C ) ∈ LE
10 if ∃(f (x⃗), P), (g(x⃗), P ′) ∈ LE
11 and f (x⃗) ̸= g(x⃗) and f (α⃗) = g(α⃗)
12 BADG := 1; Abort
13 if z∗(α⃗) = (αi∗ hk + rk(α⃗))αj∗

14 if (i∗, j∗, k) ∈ ([n] \ LA)2 × [QCh] and i∗ ̸= j∗

15 return 1
16 return 0

Ddh(Pi , Pj , Pk)
17 if (Pi , Pj , Pk) /∈ [cnt]3
18 return ⊥
19 fetch (a(x⃗), Pi), (b(x⃗), Pj), (c(x⃗), Pk) ∈ LE
20 if c(x⃗) = a(x⃗) · b(x⃗)
21 return 1
22 if c(α⃗) = a(α⃗) · b(α⃗)
23 BADDdh := 1; Abort
24 return 0

Corr(i)
25 if i /∈ [n]
26 return ⊥
27 LA := LA ∪ {i}
28 if ∃(f (x⃗), P), (g(x⃗), P ′) ∈ LE
29 and f (x⃗) ̸= g(x⃗) and f (α⃗) = g(α⃗)
30 BADG := 1; Abort
31 let x⃗ ′ be the same as x⃗ but with xi = αi
32 ∀(f (x⃗), Pf (⃗x)) ∈ LE
33 replace (f (x⃗), Pf (⃗x)) with (f (x⃗ ′), Pf (⃗x′))
34 x⃗ := (xi)i∈[n]\LA
35 α⃗ := (αi)i∈[n]\LA
36 return αi

Ch(Rk) �k-th query (k ∈ [QCh])
37 if ∄(rk(x⃗), Rk) ∈ LE
38 return ⊥
39 hk

$← Zp
40 return hk

Op(P, P ′)
41 if (P, P ′) /∈ [cnt]2
42 return ⊥
43 fetch (a(x⃗), P), (b(x⃗), P ′) ∈ LE
44 z(x⃗) := a(x⃗) + b(x⃗)
45 if ∃(z(x⃗), Pz(⃗x)) ∈ LE
46 return Pz(⃗x)
47 cnt ++
48 Pz(⃗x) := cnt
49 LE := LE ∪ {(z(x⃗), Pz(⃗x))}
50 return Pz(⃗x)

Fig. 6. B simulates CorrCRGapCDHn,QCh,QDdh
in the Generic Group Model (GGM) and interacts with A. A has

access to oracles O := {Ddh,Corr,Ch,Op}.

Our overall idea is to simulate the CorrCRGapCDHn,QCh,QDdh
game in a symbolic way using degree-1

polynomials. More precisely, during the simulation our simulator keeps an internal list LE with entries
of the form (z(x⃗), Pz(x⃗)) where z is a degree-1 polynomial and Pz(x⃗) ∈ N identifies which entry it is. After
A outputs a forgery, our simulator replaces the un-corrupted variables (xi)i∈[n]\LA with αi

$← Zp.
Now we note that the simulator perfectly simulates the CorrCRGapCDHn,QCh,QDdh

in the GGM if both
BADDdh and BADG are equal to 0. Note that we check for collisions and thus for event BADG on every
query to Corr. This is to address the issue described above. If BADG has not happened, we transform
all polynomials in list LE by evaluating them on xi = αi and removing xi and αi from the respective
vectors.
5 The idea is to first query Corr on any index i and receive the exponent αi . Then the adversary produces

the constant polynomial αi . It should receive the handle for challenge xi , but instead it receives a new handle
(since f (x⃗) ̸= αi) and has successfully produced a collision.

9



To bound the probability that one of the bad events happens, we use Lemma 4:
For each Ddh query, Prα⃗[c(x⃗) ̸= a(x⃗) · b(x⃗) and c(α⃗) = a(α⃗) · b(α⃗)] ≤ 2/p, since c(x⃗)− a(x⃗) · b(x⃗) is

a non-zero polynomial of degree two. By the union bound, Pr[BADDdh] ≤ 2QDdh/p, where QDdh is A’s
maximum number of Ddh queries.

If event BADG happens, there are two distinct degree-1 polynomials zi(x⃗) and zj(x⃗) in LE that collide
on input α⃗ $← Zn

p . We want to bound that BADG happens any time during the game, that is, either
when Corr is queried or at the end of the simulation. Let n′ be the number of queries to Corr. For
this we define QOp := q0 + . . . qn′ , where qj is the number of QOp queries between the j-th and (j + 1)-th
Corr query and qn′ is the number of QOp queries from the last Corr query to the end of the game. Let
Eventj be the event that BADG is set to 1 on the j-th query to Corr (and BADG has not been set
to 1 during a previous query). Note that Eventn′ corresponds to BADG happening at the end of the
game. We have

Pr[Event0] ≤
(

q0 + n + 1
2

)
· 1

p ≤
(q0 + n + 1)2

2p and

∀j ∈ [n′] : Pr[Eventj ] ≤

(
qj

2

)
+ qj ·

 ∑
k∈[0,j−1]

qk + n + 1

 · 1
p ≤

qj(
∑

k∈[0,j] qk + n + 1)
p ,

where the 1/p factor comes from Lemma 4, and the fact that all our polynomials have degree one. For
Eventj and j > 0, either two new polyonmials may collide on input α⃗ or a new polynomial and one
from a previous sequence.
Now we can bound BADG by the sum of the individual probabilities and we additionally use that ∀j we
have

∑
k∈[0,j] qk ≤ QOp. In particular, we get

Pr[BADG] ≤
∑

j∈[0,n′]

Pr[Eventj ]

≤
(q0 + n + 1)(QOp + n + 1) +

∑
j∈[n′] qj(QOp + n + 1)

p

= (QOp + n + 1)2

p .

Recall that n′ := |LA| is the size of LA, i.e., the number of queries to Corr. The advantage function of
A in the GGM can be bounded as

AdvCorrCRGapCDH
n,QCh,QDdh,GGM(A) ≤ Pr[BADG] + Pr[BADDdh]

+ Pr
α⃗

[∃(i∗, j∗ ̸= i∗, k) ∈ ([n] \ LA)2 × [QCh] : z∗(α⃗) = (αi∗hk + rk(α⃗))αj∗ ]

≤ (QOp + n + 1)2

p + 2QDdh

p + (n − n′)2QCh

2p + (n − n′)QCh

p .

To bound the third probability statement above, we use the following general inequality for events A
and B:

Pr[A] = Pr[A | B] · Pr[B] + Pr[A ∧ ¬B] · Pr[¬B] ≤ Pr[A | B] + Pr[¬B].

This allows us to split the statement into two terms, for which we can apply Lemma 4 to both and get

Pr
α⃗

[∃(i∗, j∗ ̸= i∗, k) ∈ ([n] \ LA)2 × [QCh] : z∗(α⃗) = (αi∗hk + rk(α⃗))αj∗ ]

≤Pr
α⃗

[∃(i∗, j∗, k) : z∗(α⃗) = (αi∗hk + rk(α⃗))αj∗ | αi∗hk + rk(α⃗) ̸= 0]

+ Pr
α⃗

[∃(i∗, k) : αi∗hk + rk(α⃗) = 0]

≤
(

n − n′

2

)
·
(

QCh

1

)
· 1

p +
(

n − n′

1

)
·
(

QCh

1

)
· 1

p

=(n − n′)2QCh

2p + (n − n′)QCh

p .
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The following corollary is obtained by applying Lemma 1 to Theorem 2.

Corollary 1 (Generic Hardness of CorrGapCDH). For an adversary A against n-CorrGapCDH in
the GGM that makes at most QOp queries to the group oracle Op, n′ queries to the corruption oracle
Corr, and QDdh queries to the gap oracle Ddh, A’s advantage is

AdvCorrGapCDH
n,QDdh,GGM(A) ≤ (QOp + n + 1)2

p + 2QDdh

p + (n − n′)2

2p + n − n′

p .

4 Two-Message Authenticated Key Exchange

A two-message key exchange protocol AKE = (GenAKE, InitI, InitR, DerR, DerI) consists of five algorithms
which are executed interactively by two parties as shown in Figure 7. We denote the party which initiates
the session by Pi and the party which responds to the session by Pr . The key generation algorithm GenAKE
outputs a key pair (pk, sk) for one party. The initialization algorithms InitI and InitR input the long-term
secret key of the party running the algorithm and the corresponding peer’s long-term public key and
output a message I or R and a state stI or stR. The derivation algorithms DerI and DerR take as input the
corresponding long-term secret key, the peer’s public key, a message I or R and the state. It computes
a session key K . Note that the terms initiator and responder are used to identify the parties, but the
notation does not enforce an order of execution. In particular, the protocols we are looking at here allow
that messages can be sent simultaneously and both parties may store a state.

Party Pi (pki , ski) Party Pr (pkr , skr)

(I , stI)← InitI(ski , pkr) (R, stR)← InitR(skr , pki)

K := DerI(ski , pkr , R, stI) K := DerR(skr , pki , I , stR)

I

R
stI stR

Fig. 7. Running a key exchange protocol between two parties.

We give a security game written in pseudocode in the style of [JKRS21]. We define two models for
implicitly authenticated protocols achieving weak forward secrecy, where one is without and one is with
state reveals. The latter models the same security as the eCK model [LLM07], extended by multiple test
queries with respect to the same random bit b. The games IND-wFS and IND-wFS-St are given in Figures
8 and 9.
Execution Environment. We consider N parties P1, ..., PN with long-term key pairs (pkn, skn), n ∈
[N ]. Each session between two parties has a unique identification number sID and variables which are
defined relative to sID:

– init[sID] ∈ [N ] denotes the initiator of the session.
– resp[sID] ∈ [N ] denotes the responder of the session.
– type[sID] ∈ {“In”, “Re”} denotes the session’s view, i. e. whether the initiator or the responder com-

putes the session key.
– I [sID] denotes the message that was computed by the initiator.
– R[sID] denotes the message that was computed by the responder.
– state[sID] denotes the (secret) state information, i. e. ephemeral secret keys.
– sKey[sID] denotes the session key.

To establish a session between two parties, the adversary is given access to oracles SessionI and SessionR,
where the first one starts a session of type “In” and the second one of type “Re”. In order to complete
the session, the oracle DerI or DerR has to be queried. At any time, the adversary can register an
adversarially controlled party by providing a long-term public key via the oracle RegisterLTK. The
adversary does not need to know the corresponding secret key, but the party will be corrupted by defini-
tion. Note that oracles SessionI and SessionR cannot take an adversarially controlled party as owner.
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GAMES IND-wFS and IND-wFS-St
00 cntP := N
01 for n ∈ [N ]
02 (pkn , skn)← GenAKE
03 b $← {0, 1}
04 b′ ← AO(pk1, · · · , pkN )
05 for sID∗ ∈ S
06 if Fresh(sID∗) = false
07 return b �session not fresh
08 if Valid(sID∗) = false
09 return b �no valid attack
10 return Jb = b′K

SessionR((i, r) ∈ [cntP]× [N ])
11 cntS ++
12 sID := cntS
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “Re”
15 (R, st)← InitR(skr , pki)
16 (R[sID], state[sID]) := (R, st)
17 return (sID, R)

DerR(sID ∈ [cntS], I )
18 if sKey[sID] ̸= ⊥ or type[sID] ̸= “Re”
19 return ⊥ �no re-use
20 (i, r) := (init[sID], resp[sID])
21 st := state[sID]
22 K := DerR(skr , pki , I , st)
23 (I [sID], sKey[sID]) := (I , K)
24 return ε

Rev-State(sID)
25 revState[sID] := true
26 return state[sID]

SessionI((i, r) ∈ [N ]× [cntP])
27 cntS ++
28 sID := cntS
29 (init[sID], resp[sID]) := (i, r)
30 type[sID] := “In”
31 (I , st)← InitI(ski , pkr)
32 (I [sID], state[sID]) := (I , st)
33 return (sID, I )

DerI(sID ∈ [cntS], R)
34 if sKey[sID] ̸= ⊥ or type[sID] ̸= “In”
35 return ⊥ �no re-use
36 (i, r) := (init[sID], resp[sID])
37 st := state[sID]
38 K := DerI(ski , pkr , R, st)
39 (R[sID], sKey[sID]) := (R, K)
40 return ε

Reveal(sID)
41 revealed[sID] := true
42 return sKey[sID]

Corrupt(n ∈ [N ])
43 corrupted[n] := true
44 return skn

RegisterLTK(pk)
45 cntP++
46 pkcntP

:= pk
47 corrupted[cntP] := true
48 return cntP

Test(sID)
49 if sID ∈ S return ⊥ �already tested
50 if sKey[sID] = ⊥ return ⊥
51 S := S ∪ {sID}
52 K∗

0 := sKey[sID]
53 K∗

1
$← K

54 return K∗
b

Fig. 8. Games IND-wFS and IND-wFS-St for AKE. A has access to oracles O := {SessionI,SessionR,DerI,DerR,
Reveal,Corrupt,RegisterLTK,Test}. In game IND-wFS-St, A has additionally access to oracle Rev-State.
Helper procedures Fresh and Valid are defined in Figure 9. If there exists any test session which is not both
fresh and valid, the game will return the random bit b.

Furthermore, the adversary has access to oracles Corrupt and Reveal to obtain secret information.
In game IND-wFS-St, the adversary has additional access to Rev-State. We use the following boolean
values to keep track of which queries the adversary made:

– corrupted[n] denotes whether the long-term secret key of party Pn was given to the adversary.
– revealed[sID] denotes whether the session key was given to the adversary.
– revState[sID] denotes whether the state information of that session was given to the adversary.

The adversary can forward messages between sessions or modify them. By that, we can define the
relationship between two sessions:

– Matching Session: Two sessions sID and sID′ match if the same parties are involved (init[sID] =
init[sID′] and resp[sID] = resp[sID′]), the messages sent and received are the same (I [sID] = I [sID′]
and R[sID] = R[sID′]) and they are of different types (type[sID] ̸= type[sID′]).

As we look at implicitly authenticated protocols that consist only of group elements, they are not vul-
nerable to no-match attacks described in [LS17].

Finally, the adversary is given access to oracle Test, which can be queried multiple times and which
will return either the session key of the specified session or a uniformly random key. We use one bit b
for all test queries. We store test sessions in a set S. In general, the adversary can disclose the complete
interaction between two parties by querying the long-term secret keys, the state information and the
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Fresh(sID∗)
00 (i∗, r∗) := (init[sID∗], resp[sID∗])
01 M(sID∗) := {sID | (init[sID], resp[sID]) = (i∗, r∗) ∧ (I [sID], R[sID]) =

(I [sID∗], R[sID∗]) ∧ type[sID] ̸= type[sID∗]} �matching sessions
02 if revealed[sID∗] or (∃sID ∈M(sID∗) : revealed[sID] = true)
03 return false �A trivially learned the test session’s key
04 if ∃sID ∈M(sID∗) s. t. sID ∈ S
05 return false �A also tested a matching session
06 return true

Valid(sID∗)
07 (i∗, r∗) := (init[sID∗], resp[sID∗])
08 M(sID∗) := {sID | (init[sID], resp[sID]) = (i∗, r∗) ∧ (I [sID], R[sID]) =

(I [sID∗], R[sID∗]) ∧ type[sID] ̸= type[sID∗]} �matching sessions
09 for attack ∈ Table 2 Table 1
10 if attack = true return true
11 return false

Fig. 9. Helper procedures Fresh and Valid for games IND-wFS and IND-wFS-St defined in Figure 8. Procedure
Fresh checks if the adversary performed some trivial attack. In procedure Valid, each attack is evaluated by
the set of variables shown in Table 1 (IND-wFS-St, excluding trivial attacks) or Table 2 (IND-wFS) and checks if
an allowed attack was performed. If the values of the variables are set as in the corresponding row, the attack
was performed, i. e. attack = true, and thus the session is valid.

session key. However, for each test session, we require that the adversary does not issue queries such that
the session key can be trivially computed. We define the properties of freshness and validity which all
test sessions have to satisfy:

– Freshness: A (test) session is called fresh if the session key was not revealed. Furthermore, if there
exists a matching session, we require that this session’s key is not revealed and that this session is
not also a test session.

– Validity: A (test) session is called valid if it is fresh and the adversary performed any attack which
is defined in the security model. We capture this with attack tables (cf. Tables 1 and 2).

Attack Tables. We define validity of different attack strategies. All attacks are defined using variables
to indicate which queries the adversary may (not) make. We consider three dimensions:

– whether the test session is on the initiator’s (type[sID∗] =“In”) or the responder’s side (type[sID∗] =“Re”),
– all combinations of long-term secret key and state reveals (corrupted and revState variables),
– whether the adversary acted passively (matching session) or actively (no matching session).

This way, we capture all kind of combinations which are possible. From the 16 attacks in total, four are
trivial wins for the adversary and thus they are excluded:

– Attack (9.)+(10.): no implicitly authenticated key exchange can achieve full forward security, so that
we cannot reveal the long-term keys of both parties when there is no matching session.

– Attack (14.)+(15.): an adversary cannot reveal the long-term secret key of the test session’s peer
when there is no matching session, otherwise it can simply impersonate the party.

Instead of black-listing these trivial attacks, our model captures what the adversary is allowed to do.
Hence, all non-trivial attacks are covered in our model, in particular capturing weak forward secrecy
(wFS), key compromise impersonation (KCI) and maximal exposure (MEX) attacks. In more detail,
wFS covers passive adversaries that are allowed to corrupt both parties’ long-term keys after the session
is completed (1.+2.). KCI covers adversaries that will try to impersonate an honest party to a corrupted
party (13., 16.). MEX covers adversaries that have revealed any pair of long-term secret key and state,
except for both the long-term key and state of one party (5.-8., 11.+12.).

An attack is performed if the variables are set to the corresponding values in the table. Table 1 is
used for the IND-wFS-St security game, excluding trivial attacks highlighted in blue. For completeness,
we add the trivial attack in row (0b.), where an adversary may query all secret information of a session.
When not considering states, most of the attacks are redundant. This way, we obtain the distilled table
for the IND-wFS security game given in Table 2.

However, if the protocol does not use appropriate randomness, it should not be considered secure.
Thus, if the adversary is able to create more than one matching session to a test session, he may also
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0a. multiple matching sessions – – – – – > 1
*0b. trivial attack – – – – – –
1.+2. (long-term, long-term) – – – F F 1
3.+4. (state, state) F F – – – 1
5. (long-term, state) – F “In” F – 1
6. (long-term, state) – F “Re” – F 1
7. (state, long-term) F – “In” – F 1
8. (state, long-term) F – “Re” F – 1
*9.+10.(long-term, long-term) – – – F n/a 0
11.+12.(state, state) F F – – n/a 0
13. (long-term, state) – F “In” F n/a 0
*14. (long-term, state) – F “Re” – n/a 0
*15. (state, long-term) F – “In” – n/a 0
16. (state, long-term) F – “Re” F n/a 0

Table 1. Table of possible attacks for adversaries against implicitly authenticated two-message protocols with
ephemeral state reveals. Trivial attacks are highlighted in blue color (and additionally marked with an asterisk
*) and thus are NOT valid in our security definition. An attack is regarded as an AND conjunction of variables
with specified values as shown in the each line, where “–” means that this variable can take arbitrary value. F
means “false” and “n/a” indicates that there is no state which can be revealed as no matching session exists.

run a trivial attack. We model this in row (0a.) of Tables 1 and 2.
How to read the tables. As an example, we choose row (1.+2.) of Table 1. Then, if the test session is an
initiating session, the state was not revealed (revState[sID∗] = false) and there is a matching session
(|M(sID∗)| = 1) whose state was also not revealed, this row will evaluate to true. In this scenario, the
adversary is allowed to query both long-term secret keys.

For all test sessions, at least one attack has to evaluate to true. If not, the game will return a random
bit. The adversary wins if he does not make a trivial attack and distinguishes the session keys from
uniformly random keys which he obtains through queries to the Test oracle.

When proving the security of a protocol, the success probability for each attack strategy listed in
the corresponding table will have to be analyzed, thus showing that independently of which queries the
adversary makes, he cannot distinguish the session key from a uniformly random key.

In the protocols we look at, the state is defined as the ephemeral secret key (e.g., the exponent of
a group element) and thus equivalent with the randomness which is used to compute the first message.
Thus IND-wFS-St is exactly the same level of security as captured by the eCK model, extended by
multiple test queries to the same random bit b.

Definition 1 (Key Indistinguishability of AKE). We define games IND-wFS and IND-wFS-St as
in Figures 8 and 9. The advantage of an adversary A against AKE in these games is defined as

AdvIND-wFS
AKE (A) :=

∣∣∣2 Pr[IND-wFSA ⇒ 1]− 1
∣∣∣ and

AdvIND-wFS-St
AKE (A) :=

∣∣∣2 Pr[IND-wFS-StA ⇒ 1]− 1
∣∣∣ .

5 Protocols X3DH− and NAXOS

In this section, we want to analyze the X3DH− and NAXOS protocols (see Figure 1 in the introduction).
The protocols are defined relative to fixed parameters (p, g,G) that describe a group G of prime order
p = |G| and a generator g of G. G and H are hash functions with G : {0, 1}λ × Zp → Zp and H : G7 →
{0, 1}λ, where λ ≥ log(p).
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0a. multiple matching sessions – – – > 1
1.+2. (long-term, long-term) – – – 1
13. (long-term, –) – F “In” 0
16. (–, long-term) F – “Re” 0

Table 2. Distilled table of attacks for adversaries against implicitly authenticated two-message protocols without
ephemeral state reveals. An attack is regarded as an AND conjunction of variables with specified values as shown
in the each line, where “–” means that this variable can take arbitrary value and F means “false”.

We note that the original proof by Cohn-Gordon et al. [CCG+19] for X3DH− is based on the strong
Diffie Hellman Assumption, where the first input of the Ddh oracle is fixed. Our proof strategy does not
allow for that as we handle multiple attacks at a time and avoid guessing. However, we want to stress
that we do not require the full power of the gap oracle, but could restrict ourselves to queries to Ddh,
where the first value is one of the input elements of the corresponding multi-user CDH problem. The
same applies to the proof of NAXOS.

Also note that X3DH− is insecure under ephemeral key reveals, so we prove security in a weaker
model as done in the original proof by [CCG+19].

Theorem 3 ((N + S , N )-CorrAGapCDH + S-GapCDH tight, ROM−−−−−−−−→ X3DH− IND-wFS). For any IND-
wFS adversary A against X3DH− with N parties that establishes at most S sessions and issues at most
T queries to the Test oracle and at most QH queries to the random oracle H, there exist an adversary
B against (N +S , N )-CorrAGapCDH and an adversary C against S-GapCDH with running times T(A) ≈
T(B) ≈ T(C) such that

AdvIND-wFS
X3DH− (A) ≤ AdvCorrAGapCDH

N+S, N , 3QH
(B) + AdvGapCDH

S, QH
(C) + (N + S)2

p .

The proof is given in Appendix B.

Theorem 4 ((N + S)-CorrGapCDH tight, ROM−−−−−−−−→ NAXOS IND-wFS-St). For any IND-wFS-St adversary
A against NAXOS with N parties that establishes at most S sessions and issues at most T queries to the
Test oracle, at most QG queries to random oracle G and at most QH queries to random oracle H, there
exists an adversary B against (N + S)-CorrGapCDH with running time T(A) ≈ T(B) such that

AdvIND-wFS-St
NAXOS (A) ≤ AdvCorrGapCDH

N+S, 3QH
(B) + (N + S)2

p + S2

p + 2QGS
p .

Proof. Let A be an adversary against IND-wFS-St security of NAXOS, where N is the number of parties,
S is the maximum number of sessions that A establishes and T is the maximum number of test sessions.
Consider the sequence of games in Figure 10.
Game G0. This is the original IND-wFS-St game. In this game, we implicitly assume that all long-term
keys, all messages output by SessionI and SessionR, and all ephemeral secret keys are different. If such
a collision happens, the game will abort. Using the birthday paradox, the probability for that can be
upper bounded by (N + S)2/(2p) for N long-term key pairs and at most S messages, where exponents
are chosen uniformly at random from Zp, and S2/(2p) for ephemeral secret keys esk, which are chosen
uniformly at random from {0, 1}λ and λ ≥ log(p). This rules out attack (0a.), as there will be no two
sessions having the same transcript. We get

Pr[IND-wFS-StA ⇒ 1] ≤ Pr[GA
0 ⇒ 1] + (N + S)2

2p + S2

2p . (4)
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GAMES G0, G1, G2

00 cntP := N
01 for n ∈ [N ]
02 an

$← Zp; An := gan

03 (pkn , skn) := (An , an)
04 b $← {0, 1}
05 b′ ← AO(pk1, · · · , pkN )
06 for sID∗ ∈ S
07 if Fresh(sID∗) = false return b
08 if Valid(sID∗) = false return b
09 return Jb = b′K

SessionR((i, r) ∈ [cntP]× [N ])
10 cntS ++
11 sID := cntS
12 (init[sID], resp[sID]) := (i, r)
13 type[sID] := “Re”
14 eskr

$← {0, 1}λ

15 y := G(eskr , ar); Y := gy

16 (R[sID], state[sID]) := (Y , eskr)
17 return (sID, Y )

DerR(sID ∈ [cntS], X)
18 if sKey[sID] ̸= ⊥ or type[sID] ̸= “Re”
19 return ⊥
20 (i, r) := (init[sID], resp[sID])
21 (Y , eskr) := (R[sID], state[sID])
22 y := G(eskr , ar)
23 ctxt := (Ai , Ar , X , Y )
24 K := H(ctxt, Ay

i , Xar , Xy)
25 (I [sID], sKey[sID]) := (X , K)
26 return ε

Test(sID)
27 if sID ∈ S return ⊥
28 if sKey[sID] = ⊥ return ⊥
29 S := S ∪ {sID}
30 K∗

0 := sKey[sID]
31 K∗

0
$← K

32 K∗
1

$← K
33 return K∗

b

SessionI((i, r) ∈ [N ]× [cntP])
34 cntS ++
35 sID := cntS
36 (init[sID], resp[sID]) := (i, r)
37 type[sID] := “In”
38 eski

$← {0, 1}λ

39 x := G(eski , ai); X := gx

40 (I [sID], state[sID]) := (X , eski)
41 return (sID, X)

DerI(sID ∈ [cntS], Y )
42 if sKey[sID] ̸= ⊥ or type[sID] ̸= “In”
43 return ⊥
44 (i, r) := (init[sID], resp[sID])
45 (X , eski) := (I [sID], state[sID])
46 x := G(eski , ai)
47 ctxt := (Ai , Ar , X , Y )
48 K := H(ctxt, Y ai , Ax

r , Y x)
49 (R[sID], sKey[sID]) := (Y , K)
50 return ε

G(esk, a)
51 if G[esk, a] = z
52 return z
53 elseif ∃sID s. t. esk = st[sID]

and revState[sID] = false
54 BADState := true
55 abort
56 else
57 z $← Zp
58 G[esk, a] := z
59 return z

H(Ai , Ar , X , Y , Z1, Z2, Z3)
60 if H[Ai , Ar , X , Y , Z1, Z2, Z3] = K
61 return K
62 else
63 K $← K
64 H[Ai , Ar , X , Y , Z1, Z2, Z3] := K
65 return K

Fig. 10. Games G0-G2 for the proof of Theorem 4. A has access to oracles O := {SessionI,SessionR,DerI,DerR,
Rev-State,Reveal,Corrupt,RegisterLTK,Test, G, H}, where RegisterLTK, Corrupt, Rev-State and
Reveal are defined as in the original IND-wFS-St game (Fig. 8). G0 implicitly assumes that no long-term keys
or messages generated by the experiment collide.

Game G1. In game G1, we define event BADState which occurs if the adversary makes a query to random
oracle G on a string esk ∈ {0, 1}λ which was used in any session, but was not revealed to the adversary
yet (line 53). This will become important in the next game hop since we need to be able to reprogram G
in case there is a Rev-State query and Corrupt query for the party involved. If BADState happens,
the game aborts. The probability for this event to happen can be upper bounded by the number of oracle
queries and the number of sessions:

∣∣Pr[GA
1 ⇒ 1]− Pr[GA

0 ⇒ 1]
∣∣ ≤ Pr[BADState] ≤ QG · S

p .

Game G2. In game G2, the challenge oracle Test always outputs a uniformly random key, independent
from the bit b (line 31). We use that
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∣∣Pr[GA
2 ⇒ 1]− Pr[GA

1 ⇒ 1]
∣∣ = 1

2
∣∣Pr[GA

2 ⇒ 1 | b = 0] + Pr[GA
2 ⇒ 1 | b = 1]

− Pr[GA
1 ⇒ 1 | b = 0]− Pr[GA

1 ⇒ 1 | b = 1]
∣∣

= 1
2

∣∣Pr[GA
2 ⇒ 1 | b = 0]− Pr[GA

1 ⇒ 1 | b = 0]
∣∣ , (5)

where the last equation holds because Pr[GA
2 ⇒ 1 | b = 1] = Pr[GA

1 ⇒ 1 | b = 1].
Due to the exclusion of collisions, a particular (test) session cannot be recreated, i.e., the adversary

cannot create two sessions sID, sID′ of the same type that compute the same session key. Thus, the
adversary must query the random oracle H on the correct input to distinguish a session key from a
random key. We construct adversary B against (N +S)-CorrGapCDH in Figure 11 to interpolate between
the two games. We now describe adversary B in detail.
B gets as input (N + S) group elements and has access to oracles Corr and Ddh. The first N group

elements (A1, ..., AN ) are used as public keys for the parties P1, ..., PN (line 02). The remaining group
elements (B1, ..., BS) will be used as outputs for SessionI and SessionR. This means that whenever
A initiates a session sID, B increments the session counter and chooses the secret random string esk.
Instead of evaluating G, it outputs the group element BsID (lines 22, 14). Note that as long as esk is
unknown to A, this is a perfect simulation.

To identify queries to the random oracle with correct Diffie-Hellman tuples, B uses a flag f which is
added as additional entry in the list of queries to H. This helps to reduce the number of Ddh queries in
oracles DerI or DerR. In particular, whenever A calls one of the two oracles, B first checks the list of
queries to H (lines 70, 53) and if there is an entry with f = 1, it outputs the corresponding session key. If
this is not the case, it checks if there is an entry with unknown Diffie-Hellman tuples (lines 72, 55). This
is to keep session keys of matching sessions consistent. If there is no such entry, B chooses a session key
uniformly at random (lines 75, 58) and adds an entry with unknown Diffie-Hellman tuples to the list. If
A issues a query to H which has not been asked before, B checks if the Diffie-Hellman tuples are correct
using the Ddh oracle (line 36). In this case, it sets the flag f to 1. Furthermore, if there is an entry with
unknown values, it updates the entry (line 39) and outputs the corresponding key. Otherwise, f is set to
0. B chooses a key uniformly at random (line 43), adds an entry with f to the list and outputs the key.

We now describe how we patch random oracle G. As soon as the adversary has queried both
Rev-State and Corrupt for the owner of the session (i.e., the initiator in a session of type “In”
or the responder in a session of type “Re”), then it can query G on the respective inputs. Thus, we fix
the output value of G at exactly that time, i.e., on a corrupt query (after a state reveal query) as well as
on a state reveal query (after a corrupt query).

That is, whenever A calls Rev-State on sID, B checks if the owner of the session is corrupted
(Fig. 11, lines 27, 30). If this is the case, we have to patch the random oracle G by querying the Corr
oracle on BsID which is the message output by this session (lines 28, 31). Note that the corresponding
input has not been queried to G before because then event BADState would have occurred.

Further, whenever A corrupts a party Pn, B queries the Corr oracle on n (line 81). We then have
to patch G for all sessions where Pn is the owner and the state of that session was revealed (line 83).
Note that the corresponding input has not been queried to G before because then B would have already
aborted.

If A makes a query to G, where the input a equals the secret key of any user which was not corrupted
before (line 92), i.e., ga = An for some n ∈ [N ], then B is able to compute a solution for the CorrGapCDH
problem. It just looks for some An′ such that n′ was not queried to Corrupt or BsID such that bsID has
not been revealed via a Corr query. Then it can output C = (An′)a or C = (BsID)a as valid solution.
Note that such an An′ or BsID must exist. Note also that in this case, the adversary A can trivially
compute the session key for a valid test session.

We now show that if A queries to the random oracle on the correct input for at least one test session,
B is able to output a solution C ∈Win to the CorrGapCDH problem. Let sID∗ ∈ S be any test session and
H[Ai∗ , Ar∗ , X∗, Y ∗, Z∗

1 , Z∗
2 , Z∗

3 , 1] = sKey[sID∗] be the corresponding entry in the list of hash queries. B
has to find this query in the list and depending on which reveal queries A has made (i.e., which attack
was performed), B returns either Z∗

1 , Z∗
2 or Z∗

3 as described below. Therefore, we will now argue that for
each possible attack listed in Table 1, there will be a correct solution for CorrGapCDH.
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BCorr,Ddh(A1, ..., AN , B1, ..., BS)
00 cntP := N
01 for n ∈ [N ]
02 (pkn , skn) := (An ,⊥)
03 b $← {0, 1}
04 b′ ← AO(pk1, · · · , pkN )
05 for sID∗ ∈ S
06 if Fresh(sID∗) = false return b
07 if Valid(sID∗) = false return b
08 return C ∈Win (see text)

SessionI((i, r) ∈ [N ]× [cntP])
09 cntS ++
10 sID := cntS
11 (init[sID], resp[sID]) := (i, r)
12 type[sID] := “In”
13 eski

$← {0, 1}λ

14 X := BsID
15 (I [sID], state[sID]) := (X , eski)
16 return (sID, X)

SessionR((i, r) ∈ [cntP]× [N ])
17 cntS ++
18 sID := cntS
19 (init[sID], resp[sID]) := (i, r)
20 type[sID] := “Re”
21 eskr

$← {0, 1}λ

22 Y := BsID
23 (R[sID], state[sID]) := (Y , eskr)
24 return (sID, Y )

Rev-State(sID)
25 revState[sID] := true
26 (i, r) := (init[sID], resp[sID])
27 if type[sID] = “In” and corrupted[i]
28 bsID := Corr(N + sID)
29 G[state[sID], ai ] := bsID
30 elseif type[sID] = “Re” and corrupted[r ]
31 bsID := Corr(N + sID)
32 G[state[sID], ar ] := bsID
33 return state[sID]

H(Ai , Ar , X , Y , Z1, Z2, Z3)
34 if H[Ai , Ar , X , Y , Z1, Z2, Z3, · ] = K
35 return K
36 if Ddh(Ai , Y , Z1) = 1

and Ddh(Ar , X , Z2) = 1
and Ddh(X , Y , Z3) = 1

37 f := 1
38 if H[Ai , Ar , X , Y ,⊥,⊥,⊥,⊥] = K
39 replace (⊥,⊥,⊥,⊥) with (Z1, Z2, Z3, f )
40 return K
41 else
42 f := 0
43 K $← K
44 H[Ai , Ar , X , Y , Z1, Z2, Z3, f ] := K
45 return K

DerI(sID ∈ [cntS], Y )
46 if sKey[sID] ̸= ⊥ or type[sID] ̸= “In”
47 return ⊥
48 (i, r) := (init[sID], resp[sID])
49 X := I [sID]
50 ctxt := (Ai , Ar , X , Y )
51 if ∃sID′ s. t. (type[sID′], R[sID′]) = (“Re”, Y )
52 P := P ∪ {sID}
53 if ∃Z1, Z2, Z3 s. t. H[ctxt, Z1, Z2, Z3, 1] = K
54 sKey[sID] := K
55 elseif H[ctxt,⊥,⊥,⊥,⊥] = K
56 sKey[sID] := K
57 else
58 K $← K
59 H[ctxt,⊥,⊥,⊥,⊥] := K
60 sKey[sID] := K
61 (R[sID], sKey[sID]) := (Y , K)
62 return ε

DerR(sID ∈ [cntS], X)
63 if sKey[sID] ̸= ⊥ or type[sID] ̸= “Re”
64 return ⊥
65 (i, r) := (init[sID], resp[sID])
66 Y := R[sID]
67 ctxt := (Ai , Ar , X , Y )
68 if ∃sID′ s. t. (type[sID′], I [sID′]) = (“In”, X)
69 P := P ∪ {sID}
70 if ∃Z1, Z2, Z3 s. t. H[ctxt, Z1, Z2, Z3, 1] = K
71 sKey[sID] := K
72 elseif H[ctxt,⊥,⊥,⊥,⊥] = K
73 sKey[sID] := K
74 else
75 K $← K
76 H[ctxt,⊥,⊥,⊥,⊥] := K
77 sKey[sID] := K
78 (I [sID], sKey[sID]) := (X , K)
79 return ε

Corrupt(n ∈ [N ])
80 corrupted[n] := true
81 an ← Corr(n)
82 skn := an
83 ∀sID with ((init[sID], type[sID]) = (n, “In”)

or (resp[sID], type[sID]) = (n, “Re”))
and revState[sID]

84 bsID ← Corr(N + sID)
85 G[state[sID], an ] := bsID
86 return skn

G(esk, a)
87 if G[esk, a] = z
88 return z
89 elseif ∃sID s. t. esk = st[sID]

and revState[sID] = false
90 BADState := true
91 abort
92 elseif ∃n ∈ [N ] s. t. An = ga

and corrupted[n] = false
93 abort and return C ∈Win (see text)
94 else
95 z $← Zp
96 G[esk, a] := z
97 return z

Fig. 11. Adversary B against (N + S)-CorrGapCDH for the proof of Theorem 4. A has access to ora-
cles O := {SessionI,SessionR,DerI,DerR,Rev-State,Reveal,Corrupt,RegisterLTK,Test, G, H}, where
RegisterLTK, Reveal and Test are defined as in game G2 of Figure 10. Lines written in blue color highlight
how B simulates G1 and G2, respectively.
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Attack (1.)+(2.). There is a matching session sID′ and A has queried both long-term secret keys ai∗

and ar∗ . A is not allowed to query the state of those sessions. W.l.o.g. assume the test session is of type
“Re”. Then, messages X∗ and Y ∗ are chosen by the reduction B as BsID′ and BsID∗ . Thus, in order to
distinguish the session key, A has to compute Z∗

3 = DH(X∗, Y ∗) = DH(BsID′ , BsID∗).
Attack (3.)+(4.). There is a matching session sID′ and A has queried both states eski∗ and eskr∗ .
A is not allowed to query the long-term secret keys of both parties. Again, we assume that the test
session is of type “Re” (w.l.o.g). The states do not reveal any information about the exponents of X∗

and Y ∗ (i.e., BsID′ and BsID∗), as A has not made a query to G specifying the correct long-term secret
key. Also note that B never queried the Corr oracle to reveal the exponents of BsID′ and BsID∗ or Ai∗

and Ar∗ . Thus, in order to distinguish the session key, A has to compute all of the Diffie-Hellman tuples
Z∗

1 = DH(Ai∗ , BsID∗), Z∗
2 = DH(Ar∗ , BsID′) and Z∗

3 = DH(BsID∗ , BsID′).
Attack (5.)+(6.). There is a matching session sID′ and A has queried the initiator’s long-term secret
key ai∗ and the responder’s state eskr∗ , but neither the responder’s long-term secret key ar∗ nor the
initiator’s state eski∗ . Again, assume the test session is of type “Re” (w.l.o.g.). Message X∗ is chosen as
BsID′ . In order to distinguish the session key, A has to compute Z∗

2 = DH(Ar∗ , X∗) = DH(Ar∗ , BsID′).
Attack (7.)+(8.). This is the same as the case before, only that the adversary queried the other party’s
long-term key or state. Message Y ∗ is chosen as BsID∗ and in order to distinguish the session key, A has
to compute Z∗

1 = DH(Ai∗ , Y ∗) = DH(Ai∗ , BsID∗).
Attack (11.). The test session is of type “In” and there is no matching session. A has queried the
initiator’s state eski∗ . Message X∗ is chosen as BsID∗ , whereby Y ∗ is chosen by A. The state does not
reveal any information about the exponent of X∗ (BsID∗) as A has not made a query to G on (eski∗ , ai∗).
In order to distinguish the session key, A has to compute Z∗

2 = DH(Ar∗ , BsID∗).
Attack (12.). The test session is of type “Re” and there is no matching session. A has queried the
responder’s state eskr∗ . Message Y ∗ is chosen as BsID∗ , whereby X∗ is chosen by A. The state does not
reveal any information about the exponent of Y ∗ (BsID∗) as A has not made a query to G on (eskr∗ , ar∗).
In order to distinguish the session key, A has to compute Z∗

1 = DH(Ai∗ , BsID∗) .
Attack (13.). The test session is of type “In” and there is no matching session. A has queried the initia-
tor’s long-term secret keys ai∗ . Message X∗ is chosen by the reduction B as BsID∗ , whereby Y ∗ is chosen
by A. In order to distinguish the session key, A has to compute Z∗

2 = DH(Ar∗ , X∗) = DH(Ar∗ , BsID∗).
Attack (16.). The test session is of type “Re” and there is no matching session. A has queried the re-
sponder’s long-term secret keys ar∗ . Message Y ∗ is chosen by the reduction B as BsID∗ , whereby X∗ is cho-
sen by A. In order to distinguish the session key, A has to compute Z∗

1 = DH(Ai∗ , Y ∗) = DH(Ai∗ , BsID∗).

The number of queries to the Ddh oracle is upper bounded by 3 ·QH. Thus,∣∣Pr[GA
2 ⇒ 1 | b = 0]− Pr[GA

1 ⇒ 1 | b = 0]
∣∣ ≤ AdvCorrGapCDH

N+S, 3QH
(B) .

Finally, the output of the Test oracle in G2 is independent of the bit b, so we have

Pr[GA
2 ⇒ 1] = 1

2 .

Collecting the probabilities yields the bound stated in Theorem 4.

6 Protocol HMQV

The HMQV protocol was first presented in [Kra05]. Compared to the original protocol, we include the
context into the hash of the session key (see Figure 1 in the introduction). The protocol is defined relative
to fixed parameters (p, g,G) that describe a group G of prime order p = |G| and a generator g of G. G
and H are hash functions with G : G× {0, 1}∗ → Zp and H : G5 → {0, 1}λ, where λ ≥ log(p).

One reason to include the context into the hash is the definition of matching sessions. The original
proof is in the CK model which defines matching sessions solely based on the involved parties and
transcripts. The eCK model additionally includes the session’s type (initiator or responder). Now consider
an active adversary that initiates two sessions of the same type. In the first query, it starts a session
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between parties A and B and receives message X . In the second query, it starts a session between B and
A and receives message Y . Now it completes both sessions with the other message respectively. Both
sessions will compute the same key, but will not be matching sessions (as they are both of type “In”),
thus the adversary can trivially win. This issue also affects other role-symmetric protocols, as already
noted by Cremers in [Cre09]. We can avoid it by including the context inside the hash, as done in the
analysis of [BCLS15] and also in various variants of the protocol, e.g. [Ust08,YZ13,ZZ15].6

We give a tight reduction under CorrCRGapCDH. However, we cannot show security against reflection
attacks in general, which is why we require i∗ ̸= r∗ for all test sessions, indicated by the asterisk in
IND-wFS-St∗. Note that the original proof of HMQV needs the KEA assumption for the case that i∗ = r∗

and X ̸= Y and the squared CDH assumption7 for i∗ = r∗ and X = Y , which is implied by the standard
CDH assumption non-tightly.8

Theorem 5 ((N + S , QG + 2QH + 1)-CorrCRGapCDH tight, ROM−−−−−−−−→ HMQV IND-wFS-St). For any
IND-wFS-St∗ adversary A against HMQV with N parties that establishes at most S sessions and is-
sues at most T queries to the Test oracle and QG queries to random oracle G and QH queries to random
oracle H, there exists an adversary B against (N + S , QG + 2QH + 1)-CorrCRGapCDH with running time
T(A) ≈ T(B) such that

AdvIND-wFS-St∗

HMQV (A) ≤ AdvCorrCRGapCDH
N+S, QG+2QH+1, QH

(B) + (N + S)2

p .

Proof. Let A be an adversary against IND-wFS-St∗ security of HMQV, where N is the number of parties,
S is the maximum number of sessions that A establishes and T is the maximum number of test sessions.
Consider the sequence of games in Figure 12.
Game G0. This is the original IND-wFS-St∗ game. Similar to Equation (4), we implicitly assume that
all long-term keys and all messages output by SessionI and SessionR are different. If such a collision
happens, the game will abort. Using the birthday paradox, the probability for that can be upper bounded
by (N +S)2/(2p) as there are N long-term key pairs and at most S messages, where exponents are chosen
uniformly at random from Zp. This rules out attack (0a.), as there will be no two sessions having the
same transcript. We get

Pr[IND-wFS-St∗A ⇒ 1] = Pr[GA
0 ⇒ 1] + (N + S)2

2p .

Game G1. In game G1, the challenge oracle Test always outputs a uniformly random key, independent
from the bit b (line 56). To show the difference between G1 and G0, we can use that∣∣Pr[GA

1 ⇒ 1]− Pr[GA
0 ⇒ 1]

∣∣ = 1
2

∣∣Pr[GA
1 ⇒ 1 | b = 0]− Pr[GA

0 ⇒ 1 | b = 0]
∣∣ ,

as Pr[GA
1 ⇒ 1 | b = 1] = Pr[GA

0 ⇒ 1 | b = 1].
Due to the exclusion of collisions, a particular (test) session cannot be recreated, i.e., the adversary

cannot create two sessions sID, sID′ of the same type that compute the same session key. Thus, the
only way to distinguish G1 from G0 is to query the random oracle on the correct input. We construct
adversary B against (N + S , QG + 2QH + 1)-CorrCRGapCDH in Figure 13 to interpolate between the two
games. We now describe adversary B in detail.
B gets as input (N + S) group elements and has access to oracles Corr, Ch and Ddh. The first N

group elements (A1, ..., AN ) are used as public keys for the parties P1, ..., PN (line 02). The remaining
6 Even when dropping the session’s type from the definition of matching sessions (similar to the original CK

model), giving a tight proof for the original version of HMQV seems non-trivial since patching the random
oracle H requires more care. In particular, it is always necessary to check if the input corresponds to any session
for which the adversary can potentially compute the key, but the reduction itself cannot. In order to handle
these queries in a naive way, the reduction needs to query the Ddh oracle once for each session, leading to
O(QH · S) queries.

7 On input gx , the squared CDH problem requires to compute gx2
.

8 We could also show security of HMQV including reflection attacks under a variant of CorrCRGapCDH that does
not restrict the winning condition on i ̸= j and which can be reduced non-tightly to squared GapCDH.
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GAMES G0, G1

00 cntP := N
01 for n ∈ [N ]
02 an

$← Zp; An := gan

03 (pkn , skn) := (An , an)
04 b $← {0, 1}
05 b′ ← AO(pk1, · · · , pkN )
06 for sID∗ ∈ S
07 if Fresh(sID∗) = false
08 return b
09 if Valid(sID∗) = false
10 return b
11 return Jb = b′K

SessionR((i, r) ∈ [cntP]× [N ])
12 cntS ++
13 sID := cntS
14 (init[sID], resp[sID]) := (i, r)
15 type[sID] := “Re”
16 y $← Zp; Y := gy

17 (R[sID], state[sID]) := (Y , y)
18 return (sID, Y )

DerR(sID ∈ [cntS], X)
19 if sKey[sID] ̸= ⊥ or type[sID] ̸= “Re”
20 return ⊥
21 (i, r) := (init[sID], resp[sID])
22 (Y , y) := (R[sID], state[sID])
23 d := G(X , IDr)
24 e := G(Y , IDi)
25 σ := (XAd

i )y+ear

26 K := H((Ai , Ar , X , Y ), σ)
27 (I [sID], sKey[sID]) := (X , K)
28 return ε

G(Z , ID)
29 if G[Z , ID] = h
30 return h
31 else
32 h $← Zp
33 G[Z , ID] := h
34 return h

SessionI((i, r) ∈ [N ]× [cntP])
35 cntS ++
36 sID := cntS
37 (init[sID], resp[sID]) := (i, r)
38 type[sID] := “In”
39 x $← Zp; X := gx

40 (I [sID], state[sID]) := (X , x)
41 return (sID, X)

DerI(sID ∈ [cntS], Y )
42 if sKey[sID] ̸= ⊥ or type[sID] ̸= “In”
43 return ⊥
44 (i, r) := (init[sID], resp[sID])
45 (X , x) := (I [sID], state[sID])
46 d := G(X , IDr)
47 e := G(Y , IDi)
48 σ := (YAe

r)x+dai

49 K := H((Ai , Ar , X , Y ), σ)
50 (R[sID], sKey[sID]) := (Y , K)
51 return ε

Test(sID)
52 if sID ∈ S return ⊥
53 if sKey[sID] = ⊥ return ⊥
54 S := S ∪ {sID}
55 K∗

0 := sKey[sID]
56 K∗

0
$← K

57 K∗
1

$← K
58 return K∗

b

H(Ai , Ar , X , Y , σ)
59 if H[Ai , Ar , X , Y , σ] = K
60 return K
61 else
62 K $← K
63 H[Ai , Ar , X , Y , σ] := K
64 return K

Fig. 12. Games G0-G1 for the proof of Theorem 5. A has access to oracles O := {SessionI,SessionR,DerI,DerR,
Rev-State,Reveal,Corrupt,RegisterLTK,Test, G, H}, where RegisterLTK,Corrupt,Rev-State and
Reveal are defined as in the original IND-wFS-St∗ game (see Figure 8). G0 implicitly assumes that no long-
term keys or messages generated by the experiment collide.

group elements (B1, ..., BS) will be used as messages output by SessionI and SessionR. This means that
whenever A initiates a session sID, B increments the session counter and outputs the group element
BsID (lines 15, 45). To identify queries to the random oracle with σ, B uses a flag f which is added as
additional entry in the list of queries to H. This helps to reduce the number of Ddh queries in oracles
DerI or DerR. Thus, whenever A calls one of the two oracles, B first checks the list of random oracle
queries if there has already been a query on the correct σ indicated by f = 1 (lines 23, 53) and outputs
the corresponding session key. If this is not the case, it checks if there is an entry with unknown σ (lines
25, 55) to keep session keys of matching sessions consistent. If there is no such entry, B chooses a session
key uniformly at random (lines 28, 58) and adds an entry with unknown σ to the list. If A issues a
random oracle query later, B checks if σ is correct using the Ddh oracle (line 71). In this case, it sets
the flag f to 1. Furthermore, if there is an entry with unknown σ (line 73), it updates the entry with the
correct value and outputs the corresponding key. Otherwise, f is set to 0. B chooses a key uniformly at
random (line 78), adds an entry with f to the list and outputs the key.
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BCorr,Ch,Ddh(A1, ..., AN , B1, ..., BS)
00 cntP := N
01 for n ∈ [N ]
02 (pkn , skn) := (An ,⊥)
03 b $← {0, 1}
04 b′ ← AO(pk1, · · · , pkN )
05 for sID∗ ∈ S
06 if Fresh(sID∗) = false
07 return 0
08 if Valid(sID∗) = false
09 return 0
10 return C ∈Win (see text)

SessionR((i, r) ∈ [cntP]× [N ])
11 cntS ++
12 sID := cntS
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “Re”
15 Y := BsID
16 (R[sID], state[sID]) := (Y ,⊥)
17 return (sID, Y )

DerR(sID ∈ [cntS], X)
18 if sKey[sID] ̸= ⊥ or type[sID] ̸= “Re”
19 return ⊥
20 (i, r) := (init[sID], resp[sID])
21 Y := R[sID]
22 ctxt := (Ai , Ar , X , Y )
23 if ∃σ s. t. H[ctxt, σ, 1] = K
24 sKey[sID] = K
25 elseif H[ctxt,⊥,⊥] = K
26 sKey[sID] = K
27 else
28 K $← K
29 H[ctxt,⊥,⊥] = K
30 sKey[sID] = K
31 (I [sID], sKey[sID]) := (X , K)
32 return ε

Corrupt(n ∈ [N ])
33 corrupted[n] := true
34 an ← Corr(n)
35 skn := an
36 return skn

Rev-State(sID)
37 revState[sID] := true
38 bsID ← Corr(N + sID)
39 state[sID] := bsID
40 return state[sID]

SessionI((i, r) ∈ [N ]× [cntP])
41 cntS ++
42 sID := cntS
43 (init[sID], resp[sID]) := (i, r)
44 type[sID] := “In”
45 X := BsID
46 (I [sID], state[sID]) := (X ,⊥)
47 return (sID, X)

DerI(sID ∈ [cntS], Y )
48 if sKey[sID] ̸= ⊥ or type[sID] ̸= “In”
49 return ⊥
50 (i, r) := (init[sID], resp[sID])
51 (X , x) := (I [sID], state[sID])
52 ctxt := (Ai , Ar , X , Y )
53 if ∃σ s. t. H[ctxt, σ, 1] = K
54 sKey[sID] = K
55 elseif H[ctxt,⊥,⊥] = K
56 sKey[sID] = K
57 else
58 K $← K
59 H[ctxt,⊥,⊥] = K
60 sKey[sID] = K
61 (R[sID], sKey[sID]) := (Y , K)
62 return ε

G(Z , ID)
63 if G[Z , ID] = h
64 return h
65 else
66 h ← Ch(Z)
67 G[Z , ID] := h
68 return h

H(Ai , Ar , X , Y , σ)
69 if H[Ai , Ar , X , Y , σ, · ] = K
70 return K
71 if (Ai , Ar) ∈ {A1, ..., AN}

and Ddh(AG(X,IDr )
i X , AG(Y ,IDi)

r Y , σ) = 1
72 f := 1
73 if H[Ai , Ar , X , Y ,⊥,⊥] = K
74 replace (⊥,⊥) with (σ, f )
75 return K
76 else
77 f := 0
78 K $← K
79 H[Ai , Ar , X , Y , σ, f ] := K
80 return K

Fig. 13. Adversary B against (N + S , QG + 2QH + 1)-CorrCRGapCDH for the proof of Theorem 5. A has access
to oracles O := {SessionI,SessionR,DerI,DerR,Rev-State,Reveal,Corrupt,RegisterLTK,Test, G, H},
where RegisterLTK,Rev-State and Reveal and are defined as in Figure 12. Lines written in blue color
highlight how B simulates G0 and G1, respectively.

Whenever A calls Rev-State on sID, B queries the Corr oracle to reveal the exponent of BsID
which is the message output by this session (line 38) and returns the corresponding exponent. Similarly,
whenever A corrupts a party Pn, B queries the Corr oracle on n (line 34).

Whenever A queries the random oracle G on a new pair (Z , ID), B queries its Ch on Z (line 66) and
returns the output.

We now show that if A queries H on the correct input for at least one test session, B is able to output
a solution C ∈Win to the CorrCRGapCDH problem.

Let sID∗ ∈ S be any test session and (Ai∗ , Ar∗ , X∗, Y ∗) be the context of this test session. Then, A
must have queried σ∗ = DH(Ad

i∗X∗, Ae
r∗Y ∗) to H, where d = G(X∗, IDr∗) and e = G(Y ∗, IDi∗). Let d
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and e be the k1-th and k2-th output of G, which means that (hk1 , Rk1) = (d, X∗) and (hk2 , Rk2) = (e, Y ∗).
This means that there is an (updated) entry (Ai∗ , Ar∗ , X∗, Y ∗, σ∗, 1) in the list of queries to H. B has
to find this query in the list and depending on which reveal queries A has made (i.e., which attack was
performed), B outputs a solution to CorrCRGapCDH as described below. Therefore, we will now argue
that for each possible attack listed in Table 1, there will be a valid solution.

For the following cases, there is a matching session sID′ and we assume (w.l.o.g.) that the test session
is of type “Re”. Then, messages X∗ and Y ∗ are chosen by the reduction B as BsID′ and BsID∗ . In order
to distinguish the session key, A has to compute σ∗ = DH(Ad

i∗BsID′ , Ae
r∗BsID∗).

Attack (1.)+(2.). A has queried both long-term secret keys ai∗ and ar∗ . A is not allowed to query the
state of those sessions. When B recognizes a query on σ∗, it first computes

σ∗ · (Ae
r∗Y ∗)−dai∗ · (X∗)−ear∗ = DH(X∗, Y ∗)

and then, in order to get a valid forgery in the CorrCRGapCDH, it has to make another query to the Ch
oracle. Note that this is the only case where we need this. Let it be the k∗-th query. B can choose r ∈ Zp
arbitrary and query Ch on Rk∗ := gr . It will receive hk∗ and then computes

(DH(X∗, Y ∗))hk∗ · (Y ∗)r = DH((X∗)hk∗ Rk∗ , Y ∗)
= DH((BsID′)hk∗ Rk∗ , BsID∗)

Attack (3.)+(4.). A has queried both states bsID∗ and bsID′ , but is not allowed to query the long-term
secret keys of both parties. When B recognizes a query on σ∗, it computes(

σ∗ · (Ad
i∗X∗)−bsID∗

)1/e = DH(Ad
i∗X∗, Ar∗) (6)

= DH(Ahk1
i∗ Rk1 , Ar∗)

Attack (5.)+(6.). A has queried the initiator’s long-term secret key ai∗ and the responder’s state bsID∗ ,
but neither the responder’s long-term secret key ar∗ nor the initiator’s state bsID′ . When B recognizes a
query on σ∗, it computes

σ∗ · (Ae
r∗Y ∗)−dai∗ = DH(Ae

r∗Y ∗, X∗) (7)

= DH(Ahk2
r∗ Rk2 , BsID′)

Attack (7.)+(8.). This is the same as the case before, only that the adversary queried the other party’s
long-term key or state. B computes

σ∗ · (Ad
i∗X∗)−ear∗ = DH(Ad

i∗X∗, Y ∗) (8)

= DH(Ahk1
r∗ Rk1 , BsID∗)

For the remaining cases, there is no matching session.
Attack (11.). The test session is of type “In” and X∗ is chosen as BsID∗ , whereby Y ∗ is chosen by A.
A has queried the initiator’s state bsID∗ . When B recognizes a query on σ∗, it computes(

σ∗ · (Ae
r∗Y ∗)−bsID∗

)1/d = DH(Ae
r∗Y , Ai∗) (9)

= DH(Ahk2
r∗ Rk2 , Ai∗)

Attack (12.). The test session is of type “Re” and Y ∗ is chosen as BsID∗ , whereby X∗ is chosen by
A. A has queried the responder’s state bsID∗ . When B recognizes a query on σ∗, it makes the same
computation as in Equation (6).
Attack (13.). The test session is of type “In” and X∗ is chosen as BsID∗ , whereby Y ∗ is chosen by A.
A has queried the initiator’s long-term secret keys ai∗ . When B recognizes a query on σ∗, it makes the
same computation as in Equation (7).
Attack (16.). The test session is of type “Re” and Y ∗ is chosen as BsID∗ , whereby X∗ is chosen by A.
A has queried the responder’s long-term secret keys ar∗ . When B recognizes a query on σ∗, it makes the
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same computation as in Equation (8).

We showed that in each of these cases, the adversary outputs a correct solution for CorrCRGapCDH.
Note that the requirement that i∗ ̸= r∗ is needed for attacks (3.)+(4.), (11.) and (12.). The number of
queries to the Ch oracle is upper bounded by QG +2QH +1 and the number of queries to the Ddh oracle
by QH. Thus, ∣∣Pr[GA

1 ⇒ 1 | b = 0]− Pr[GA
0 ⇒ 1 | b = 0]

∣∣ ≤ AdvCorrCRGapCDH
N+S, QG+2QH+1, QH

(B) .

Finally, the output of the Test oracle in G1 is independent of the bit b, so we have

Pr[GA
1 ⇒ 1] = 1

2 .

Collecting the probabilities yields the bound stated in Theorem 5.

7 Concrete Bounds in the Generic Group Model

7.1 Generic Hardness of NAXOS

When analyzing NAXOS and X3DH−, we obtain the following generic bound.

Corollary 2 (Generic Hardness of NAXOS and X3DH−). For any adversary A (B) against NAXOS
(X3DH−) in the generic group and the random oracle model running in time T(A) (T(B)), we have

AdvIND-wFS-St
NAXOS,GGM(A) = AdvIND-wFS

X3DH−,GGM(B) = Θ

(
T(A)2

p

)
.

Proof. Let A be an adversary against NAXOS with N parties that establishes at most S sessions and
issues at most T queries to the Test oracle, at most QG queries to random oracle G, at most QH queries
to random oracle H, and at most QOp queries to the group oracle. Then T(A) = QOp + N + S + T + QRO

is the running time of adversary A. Let λ ≥ log(p) be the output length of G. Combining Corollary 1
with Theorem 4 we obtain

AdvIND-wFS-St
NAXOS,GGM(A) ≤ (QOp + N + S + 1)2

p + 6QH
p + 3(N + S)2

p + S2

p + 2QGS
p

= O
(

T(A)2

p

)
,

where we bounded the term (N+S−n′)2

2p + N+S−n′

p + (N+S)2

p ≤ 3(N+S)2

p .
The lower bound Ω( T(A)2

p ) follows by a simple discrete logarithm attack on NAXOS. The same
analysis applies to X3DH− since CorrGapCDH(N + S) tightly implies (N + S , S)-CorrAGapCDH.

The corollary with matching upper and lower bounds shows that the generic bounds on NAXOS and
X3DH− are optimal.

7.2 Generic Hardness of HMQV

For HMQV, we split the running time of A into its offline running time by TOFF(A) = QOp + QRO and
its online running time by TON(A) = N + S + T . It is reasonable to assume that TOFF(A)≫ TON(A),
i.e., the adversary spends much more time on offline queries than on online queries.

Corollary 3 (Generic Hardness of HMQV). For any adversary A against HMQV in the generic
group and the random oracle model running in online time TON(A) and offline time TOFF(A), we have

AdvIND-wFS-St∗

HMQV,GGM(A) = O
(

TOFF(A)2 + TOFF(A) ·TON(A)2

p

)
.
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Proof. Let A be an adversary against HMQV with N parties that establishes at most S sessions and
issues at most T queries to the Test oracle, at most QRO := QG + QH queries to random oracles G and
H, and at most QOp queries to the group oracle. Then TOFF(A) = QOp +QRO and TON(A) = N +S +T
are the offline resp. online running times of adversary A. Combining Theorem 2 with Theorem 5 and
assuming QOp ≥ (N + S), we obtain

AdvIND-wFS-St∗

HMQV,GGM(A) ≤ (QOp + N + S + 1)2

p + 2QRO

p + 3(N + S)2(2QRO + 1)
p

= O
(

TOFF(A)2

p + TOFF(A) ·TON(A)2

p

)
,

where we bounded the term
(N + S − n′)2(2QRO + 1)

2p + (N + S − n′)(2QRO + 1)
p + (N + S)2

p ≤ 3(N + S)2(2QRO + 1)
p .

For HMQV we have an additive term in addition to the optimal bound Ω( TOFF(A)2

p ). We claim that as
long as TON(A) is not too large, there is no need to increase the size of group G.

We fix a group G where the DL problem has 128-bit security, meaning p ≈ 2256. Assuming TON(A) ≤
264 and TOFF(A) ≤ 2128, we obtain by the corollary

AdvIND-wFS-St∗

HMQV,GGM(A)
T(A) =

AdvIND-wFS-St∗

HMQV,GGM(A)
TON(A) + TOFF(A) ≲

TOFF(A) + TON(A)2

p ≲ 2−128 .

That is, HMQV has 128-bit security.
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A Omitted Proofs from Section 3

A.1 Proof of Theorem 1

Theorem 1 is proved by Lemmas 6 to 8. Proofs of these lemmas are very similar to those in Section 3.2
of [KMP16], and are fairly straightforward. Hence, we only sketch them here, instead of defining them
with pseudo-codes. We first recall the reset lemma from [BP02].

Lemma 5 (Reset Lemma [BP02]). Let H be a non-empty set. Let C be a randomized algorithm
that on input (I , h) returns a pair (b, σ), where b is a bit and σ is called the side output. The accepting
probability of C is defined as

acc := Pr[b = 1 | h $← H ; (b, σ) $← C(I , h)]

The reset algorithm RC associated to C is the randomized algorithm that takes input I and proceeds as
follows.

Algorithm RC(I ):
00 Pick random coins ρ
01 h $← H
02 (b, s) $← C(I , h; ρ)
03 if b = 0 return (⊥,⊥) �Abort in Phase 1
04 h′ $← H
05 (b′, s′) $← C(I , h′; ρ)
06 if h ̸= h′ and b′ = 1 return (s, s′)
07 else return (⊥,⊥)

Let
frk := Pr[(s, s′) ̸= (⊥,⊥) | (s, s′) $← RC(I )].

Then

frk ≥
(

acc− 1
|H |

)2
.

Lemma 6 (GapCDH rewind.−−−−−→ (2, 1)-CorrCRGapCDH). For any adversary A against (2, 1)-CorrCRGapCDH,
there exists an adversary B against GapCDH with T(B) ≈ 2T(A) and

AdvCorrCRGapCDH
2,1,QDdh

(A) ≤
√

AdvGapCDH
QDdh

(B) + 1
p .

Proof. We use the reset lemma (Lemma 5) with H := Zp and I := (A1, A2) := (ga1 , ga2). We first
define an algorithm C((A1, A2), h; ρ) with oracle access to Ddh that calls A((A1, A2); ρ). It answers
A’s single Ch(R) query with h and A’s Ddh queries with Ddh of GapCDH in a straightforward way.
In (2, 1)-CorrCRGapCDH, A cannot ask any queries to Corr, as then A cannot win any more. Upon
receiving A’s forgery C , C checks if C = (Ah

i R)aj with its Ddh oracle, where 1 ≤ i ̸= j ≤ 2. If it holds,
C returns (1, s := (R, h, C )); otherwise, C returns (0,⊥). Thus, C returns b = 1 as long as A wins:

acc := AdvCorrCRGapCDH
2,1,QDdh

(A).
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Now the reduction B that solves the GapCDH problem is constructed as follows. B gets the problem
instance (A1, A2) and has oracle access to Ddh from the GapCDH problem. Next, it runs (s, s′) $← RC(I :=
(A1, A2)) as described in Lemma 5, with C defined above. If (s, s′) ̸= (⊥,⊥), then both transcripts
s = (R, h, C ) and s′ = (R, h′, C ′) are (2, 1)-CorrCRGapCDH forgeries and h ̸= h′. Wlog. we assume
C = (Ah

1R)a2 and C ′ = (Ah′

1 R)a2 . B can compute Aa2
1 as

Aa2
1 :=

(
C
C ′

)(h−h′)−1

.

By construction, B is successful iff RC is successful. By Lemma 5, B’s success probability is bounded by

AdvGapCDH
QDdh

(B) = frk ≥
(

AdvCorrCRGapCDH
2,1,QDdh

(A)− 1
|Zp|

)2
.

During the simulation, B queries Ddh at most 2(QDdh + 1) times (QDdh + 1 times for each execution
of C). The running time of B, T(B), is that of RC , namely, 2T(A), plus the minor overhead of asking
additional Ddh and computing the final result Aa2

1 from C and C ′. We write T(B) ≈ 2T(A) to indicate
that this is the dominating running time of B.

Lemma 7 ((2, 1)-CorrCRGapCDH n2

−→ (n, 1)-CorrCRGapCDH). For any adversary A against (n, 1)-
CorrCRGapCDH, there exists an adversary B against (2, 1)-CorrCRGapCDH with

AdvCorrCRGapCDH
n,1,QDdh

(A) ≤ n2 ·AdvCorrCRGapCDH
2,1,QDdh

(B). (10)

Proof. The simulator receives B1, B2 from the challenger, and chooses a pair of indexes i∗, j∗ ∈ [n] at
random. For i ∈ [n] \ {i∗, j∗}, it chooses ai

$← Zp and computes Ai := gai . Finally, it sets (Ai∗ , Aj∗) :=
(B1, B2), and calls A(A1, . . . , An). Any query to Ddh is forwarded to the challengers oracle. The same is
done for the single challenge call Ch(R1), which returns h1. Calls to Corr(Ai) for i ̸= i∗, j∗ are answered
with the corresponding discrete logarithm ai . The queries Corr(Ai∗) and Corr(Aj∗) are forwarded to
the challenger (note that such a query will cause us to lose the game). This simulator perfectly simulates
a CorrCRGapCDHn,1,QDdh

game from A’s viewpoint. At some point, A will output a forgery

C ∈ {(Ah1
i · R1)aj | (i, j) ∈ ([n] \ LA)2 ∧ (i ̸= j)}.

For the simulator to win, we require that either (i∗, j∗) = (i, j) or (i∗, j∗) = (j, i), meaning that we chose
the correct pair of indexes from a set of

(n
2
)

pairs. This means that the probability of choosing correctly
is 2

n(n−1) ≥
1

n2 , which gives us the result.

Lemma 8 ((n, 1)-CorrCRGapCDH QCh−−→ (n, QCh)-CorrCRGapCDH). For any adversary A against (n,
QCh)-CorrCRGapCDH, there exists an adversary B against (n, 1)-CorrCRGapCDH with

AdvCorrCRGapCDH
n,QCh,QDdh

(A) ≤ QCh ·AdvCorrCRGapCDH
n,1,QDdh

(B). (11)

Proof. The simulation starts with B picking a random integer r $← [QCh]. Then, any query from A to
either Ddh or Corr is forwarded to the appropriate oracle by. When responding to calls to Ch, B keeps
track of how many such queries A has submitted. For every query Ch(Ri) with i ∈ [QCh]\{r}, B returns
hi

$← Zp. On the r ’th query, B submits a query to the challengers Ch oracle, and forwards the response
to A. At some point A will submit a forgery

C ∈ {(Ahk
i · Rk)aj | (i, j, k) ∈ ([n] \ LA)2 × [QCh] ∧ (i ̸= j)}.

Then we have that Pr[k = r ] ≤ 1
QCh

, in which case B forwards C and wins the game.

A.2 Proofs of Other Useful Lemmas

Lemmas 1 to 3 and Lemma 9 are about the relation among GapCDH, CorrGapCDH and CorrAGapCDH.
These lemmas complete Figure 5 of Section 3. We give their proofs here.
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Proof (of Lemma 1). B receives a tuple (A1, . . . , An) from the CorrCRGapCDHn,1,QDdh
challenger, and

forwards it to adversary A. When A submits a query to Corr or Ddh, B forwards it to the appropriate
CorrCRGapCDHn,1,QDdh

oracle, and returns the response. At some point, A will output a forgery C . We
assume that the forgery is valid, meaning that C = Aaj

i for i ̸= j and i, j /∈ LA. The reduction queries
Ch(R = 1), and receives a challenge h. Finally, B submits a forgery C h = (Aaj

i )h = (Ah
i · 1)aj , which is

clearly a valid forgery in the CorrCRGapCDHn,1,QDdh
game.

Proof (of Lemma 2). Let A be an adversary that solves the n-CorrGapCDH problem. Given a GapCDH
instance (B1, B2) := (gb1 , gb2) ∈ G2 and the oracle Ddh, B guesses two distinct i∗, j∗ from [n] and define
(Ai∗ , Aj∗) := (B1, B2) and, for i ∈ [n] \ {i∗, j∗}, B chooses ai

$← Zp and compute Ai := gai . Then B calls
A(A1, . . . , An) and answer A’s oracle queries in a straightforward way:

– Upon Corr(i ∈ [n]), if i = i∗ or i = j∗, B aborts; otherwise, B returns ai .
– Upon Ddh(X , Y , Z ), B answers with the Boolean value JZ = Y DLg(X)K.

When A outputs it forgery C and terminates, if B guessed (i∗, j∗) correctly and C is valid, namely,
C = Aaj∗

i∗ = Bb2
1 , then B submits C to break the GapCDH problem; otherwise, B aborts. Thus, B

wins if it guesses i∗, j∗ correctly and A wins. Moreover, since two distinct i∗, j∗ are chosen randomly
from [n], the probability that B correctly guesses these indices is bounded by 1/n2. Hence, we arrive at
AdvGapCDH

QDdh
(B) ≥ 1

n2 AdvCorrGapCDH
n,QDdh

(A).

Lemma 9 (GapCDH −→ n-GapCDH). For any adversary A against n-GapCDH (n > 2), there exists an
adversary B against GapCDH with

AdvGapCDH
n,QDdh

(A) ≤ 2AdvGapCDH
2,QDdh

(B).

Proof. We prove this tight implication by using a re-randomization argument. B is constructed in the
following way to break the GapCDH assumption: Upon receiving (B1, B2) from the GapCDH challenger,
for i ∈ [n], B chooses ri

$← Zp, flips a random coin δi ∈ {0, 1}, and computes Ai := B1 · gri if δi = 0
or Ai := B2 · gri if δi = 1. Then B calls the adversary A(A1, . . . , An). Queries to Ddh(X , Y , Z ) are
forwarded to the challengers Ddh oracle.

Eventually A outputs its forgery C . If C = Aaj
i and δi ̸= δj , then B breaks the GapCDH assumption

with C ′ := C/(Brj
1 Bri

2 grirj ), assuming δi = 0 and δj = 1 w.l.o.g.. We note that δi and δj are two
independent random coins and thus Pr[δi ̸= δj ] = Pr[(δi , δj) = (0, 1)] + Pr[(δi , δj) = (1, 0)] = 1/2. This
concludes the lemma.

Proof (of Lemma 3). We construct a reduction B as follows: B receives a GapCDH instance (B1, B2) :=
(gb1 , gb2) and guesses an index i∗ $← [n1] on which A will output a forgery. B defines Ai∗ := B1 and for
i ∈ [n1] \ {i∗} B chooses ai

$← Zp and computes Ai := gai . For i ∈ [n1 + 1, n] B re-randomizes B2 to
get Ai as in Lemma 9, namely, it chooses ri

$← Zp and computes Ai := B2 · gri . Then B calls A with
(A1, . . . , An) and answers A’s oracle queries as follow:

– Upon Ddh(X , Y , Z ), B forwards it to the corresponding GapCDH oracle.
– Upon Corrn1(i ∈ n1), if i = i∗ then B aborts; else, B stores i in LA and returns ai .

Eventually, A outputs its forgery C and terminates. If C is a valid forgery and B guesses i∗ correctly,
then C = Ab2+rj∗

i∗ = Bb2+rj∗
1 and B returns C ′ := C/Brj∗

1 as its forgery to GapCDH. We note that the
probability that i∗ is a correct guess is bounded by 1/n1, which concludes the proof.

B Proof of Theorem 3

Proof. Let A be an adversary against IND-wFS security of X3DH−, where N is the number of parties, S
is the maximum number of sessions that A establishes and T is the maximum number of test sessions.
Consider the sequence of games in Figure 14.
Game G0. This is the original IND-wFS game. As in Equation (4), we implicitly assume that all long-
term keys and all messages output by SessionI and SessionR are different. If such a collision happens,
the game will abort. Using the birthday paradox, the probability for that can be upper bounded by
(N + S)2/(2p) as there are N long-term key pairs and at most S messages, where exponents are chosen
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GAMES G0, G1 , G2

00 cntP := N
01 for n ∈ [N ]
02 an

$← Zp; An := gan

03 (pkn , skn) := (An , an)
04 b $← {0, 1}
05 b′ ← AO(pk1, · · · , pkN )
06 for sID∗ ∈ S
07 if Fresh(sID∗) = false
08 return b
09 if Valid(sID∗) = false
10 return b
11 return Jb = b′K

SessionR((i, r) ∈ [cntP]× [N ])
12 cntS ++
13 sID := cntS
14 (init[sID], resp[sID]) := (i, r)
15 type[sID] := “Re”
16 y $← Zp; Y := gy

17 (R[sID], state[sID]) := (Y , y)
18 return (sID, Y )

DerR(sID ∈ [cntS], X)
19 if sKey[sID] ̸= ⊥ or type[sID] ̸= “Re”
20 return ⊥
21 (i, r) := (init[sID], resp[sID])
22 (Y , y) := (R[sID], state[sID])
23 if ∃sID′ s. t. (type[sID′], I [sID′]) =

(“In”, X)
24 P := P ∪ {sID}
25 ctxt := (Ai , Ar , X , Y )
26 K := H(ctxt, Ay

i , Xar , Xy)
27 (I [sID], sKey[sID]) := (X , K)
28 return ε

SessionI((i, r) ∈ [N ]× [cntP])
29 cntS ++
30 sID := cntS
31 (init[sID], resp[sID]) := (i, r)
32 type[sID] := “In”
33 x $← Zp; X := gx

34 (I [sID], state[sID]) := (X , x)
35 return (sID, X)

DerI(sID ∈ [cntS], Y )
36 if sKey[sID] ̸= ⊥ or type[sID] ̸= “In”
37 return ⊥
38 (i, r) := (init[sID], resp[sID])
39 (X , x) := (I [sID], state[sID])
40 if ∃sID′ s. t. (type[sID′], R[sID′]) =

(“Re”, Y )
41 P := P ∪ {sID}
42 ctxt := (Ai , Ar , X , Y )
43 K := H(ctxt, Y ai , Ax

r , Y x)
44 (R[sID], sKey[sID]) := (Y , K)
45 return ε

Test(sID)
46 if sID ∈ S return ⊥ �already tested
47 if sKey[sID] = ⊥ return ⊥
48 S := S ∪ {sID}
49 K∗

0 := sKey[sID]
50 if sID ∈ P
51 K∗

0 := sKey[sID]
52 else
53 K∗

0
$← K

54 K∗
0

$← K
55 K∗

1
$← K

56 return K∗
b

H(Ai , Ar , X , Y , Z1, Z2, Z3)
57 if H[Ai , Ar , X , Y , Z1, Z2, Z3] = K
58 return K
59 else
60 K $← K
61 H[Ai , Ar , X , Y , Z1, Z2, Z3] := K
62 return K

Fig. 14. Games G0-G2 for the proof of Theorem 3. A has access to oracles O := {SessionI,SessionR,DerI,
DerR,Reveal,Corrupt,RegisterLTK,Test, H}, where RegisterLTK, Corrupt and Reveal are defined
as in the original IND-wFS game (Fig. 8). G0 implicitly assumes that no long-term keys or messages generated by
the experiment collide.

uniformly at random from Zp. This rules out attack (0a.), as there will be no two sessions having the
same transcript. We get

Pr[IND-wFSA ⇒ 1] = Pr[GA
0 ⇒ 1] + (N + S)2

2p .

Game G1. In game G1, the challenge oracle Test outputs a uniformly random key for test sessions
which will not have a matching session. Therefore, we initialize a set P and each time DerI or DerR is
called, we check if there is a potential matching session (lines 23, 40), i.e., the input message was output
by SessionI or SessionR. If this is the case, we add the session ID to the set (lines 24, 41). A Test
query on such an sID will behave exactly as in G0, whereas for the other sessions, it outputs a random
key independently of bit b (line 53). Similar to Equation (5), it holds that

∣∣Pr[GA
1 ⇒ 1]− Pr[GA

0 ⇒ 1]
∣∣ = 1

2
∣∣Pr[GA

1 ⇒ 1 | b = 0]− Pr[GA
0 ⇒ 1 | b = 0]

∣∣ .
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BCorr,Ddh(A1, ..., AN , B1, ..., BS)
00 cntP := N
01 for n ∈ [N ]
02 (pkn , skn) := (An ,⊥)
03 b $← {0, 1}
04 b′ ← AO(pk1, · · · , pkN )
05 for sID∗ ∈ S
06 if Fresh(sID∗) = false
07 return b
08 if Valid(sID∗) = false
09 return b
10 return C ∈Win (see text)

SessionR((i, r) ∈ [cntP]× [N ])
11 cntS ++
12 sID := cntS
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “Re”
15 Y := BsID
16 (R[sID], state[sID]) := (Y ,⊥)
17 return (sID, Y )

SessionI((i, r) ∈ [N ]× [cntP])
18 cntS ++
19 sID := cntS
20 (init[sID], resp[sID]) := (i, r)
21 type[sID] := “In”
22 X := BsID
23 (I [sID], state[sID]) := (X ,⊥)
24 return (sID, X)

Corrupt(n ∈ [N ])
25 corrupted[n] := true
26 an ← Corr(n)
27 skn := an
28 return skn

Test(sID)
29 if sID ∈ S return ⊥
30 if sKey[sID] = ⊥ return ⊥
31 S := S ∪ {sID}
32 K∗

0 := sKey[sID]
33 if sID ∈ P
34 K∗

1 := sKey[sID]
35 else
36 K∗

1
$← K

37 return K∗
b

Fig. 15. Adversary B against (N + S , N )-CorrAGapCDH for the proof of Theorem 3. A has access to oracles
O := {SessionI,SessionR,DerI,DerR,Reveal,Corrupt,RegisterLTK,Test, H}, where RegisterLTK and
Reveal are defined as in game G1. Oracles DerI, DerR and H are defined as for adversary B in Figure 11. Lines
written in blue color highlight how B simulates G0 and G1, respectively.

We construct adversary B against (N + S , N )-CorrAGapCDH in Figure 15. B gets as input (N + S)
group elements and has access to oracles Corr and Ddh. The first N group elements (A1, ..., AN ) are
used as public keys for the parties P1, ..., PN (line 02). The remaining group elements (B1, ..., BS) will
be used as messages output by SessionI and SessionR. This means that whenever A initiates a session
sID, B increments the session counter and outputs the next group element BsID (lines 15, 22). Whenever
A calls DerI or DerR, B behaves exactly as adversary B in Figure 11. In particular, it keeps the session
keys consistent with the random oracle H using its Ddh oracle. Whenever A corrupts a party Pn, B
queries its own oracle Corr on n (line 26) and outputs the corresponding exponent.

The Test oracle outputs the real session key for all queries if b = 0 (line 32). If b = 1, it outputs a
random key for all those test session that will not have a matching session (line 36), and the real session
key otherwise (line 34). Due to the exclusion of collisions, a particular (test) session cannot be recreated,
i.e., the adversary cannot create two sessions sID, sID′ of the same type that compute the same session
key. Thus, the only way to distinguish the two games is to query the random oracle on the correct input
for a test session which does not have a matching session. Next we show that if this happens, B is able
to output a solution C ∈Win to the CorrAGapCDH problem.

Let sID∗ ∈ S be such a test session and H[Ai∗ , Ar∗ , X∗, Y ∗, Z∗
1 , Z∗

2 , Z∗
3 , 1] = sKey[sID∗] be the corre-

sponding entry in the list of hash queries. B has to find this query in the list and depending on which
reveal queries A has made (i.e., which attack was performed), B returns either Z∗

1 , Z∗
2 or Z∗

3 as described
below. Therefore, we will now argue that for those attacks in Table 2 which consider non-matching
sessions, there will be a valid solution for CorrAGapCDH.
Attack (13.). The test session is of type “In” and A has queried the initiator’s long-term secret keys
ai∗ . Furthermore, message X∗ is chosen by the reduction B as BsID∗ , whereby Y ∗ is chosen by A. In
order to distinguish the session key, A has to compute Z∗

2 = DH(Ar∗ , X∗) = DH(Ar∗ , BsID∗) which is a
correct solution for CorrAGapCDH.
Attack (16.). The test session is of type “Re” and A has queried the responder’s long-term secret keys
ar∗ . Furthermore, message Y ∗ is chosen by the reduction B as BsID∗ , whereby X∗ is chosen by A. In
order to distinguish the session key, A has to compute Z∗

1 = DH(Ai∗ , Y ∗) = DH(Ai∗ , BsID∗) which is a
correct solution for CorrAGapCDH.
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The number of queries to the Ddh oracle is upper bounded by 3 ·QH. Thus,∣∣Pr[GA
1 ⇒ 1 | b = 0]− Pr[GA

0 ⇒ 1 | b = 0]
∣∣ ≤ AdvCorrAGapCDH

N+S, N , 3QH
(B) .

Game G2. In game G2, the challenge oracle Test always outputs a uniformly random key, independent
from the bit b (Fig. 14, line 54). As Pr[GA

2 ⇒ 1 | b = 1] = Pr[GA
1 ⇒ 1 | b = 1], it holds that

∣∣Pr[GA
2 ⇒ 1]− Pr[GA

1 ⇒ 1]
∣∣ = 1

2
∣∣Pr[GA

2 ⇒ 1 | b = 0]− Pr[GA
1 ⇒ 1 | b = 0]

∣∣ .

We construct adversary C against S-GapCDH in Figure 16. C gets as input S group elements (B1, ..., BS)
and has access to oracle Ddh. The long-term key pairs are chosen by C (line 02). The input elements
will be used as messages output by SessionI and SessionR as in adversary B described before. Again,
we use a flag f to identify correct queries and thus reduce the number of queries to Ddh. Whenever A
calls DerI or DerR, C first computes the two Diffie-Hellman tuples which use the long-term secret keys
(lines 19, 37). For the third one, it checks the list of random oracle queries for an entry with f = 1 (lines
20, 38) and outputs the corresponding session key. If this is not the case, it checks if there is an entry
with an unknown Diffie-Hellman tuple (lines 22, 40) or chooses a session key uniformly at random (lines
25, 43) and adds such an entry to the list. If A issues a random oracle query which has not been asked
before, C checks if the third Diffie-Hellman tuple is correct using the Ddh oracle (line 59). In this case,
it sets the flag f to 1. Furthermore, if there is an entry with an unknown value, it updates the entry with
the correct value (line 61) and outputs the corresponding key. Otherwise, f is set to 0. C chooses a key
uniformly at random (line 66), adds an entry with f to the list and outputs the key.

The Test oracle outputs a random key for all queries if b = 1 (line 55). If b = 0, it outputs a random
key for all those test session that will not have a matching session (line 54), and the real session key
otherwise (line 52). As a particular (test) session cannot be recreated, the only way to distinguish the two
games is to query the random oracle on the correct input for a test session which is in the set P of potential
matching sessions. Let sID∗ ∈ P be such a test session and H[Ai∗ , Ar∗ , X∗, Y ∗, Z∗

1 , Z∗
2 , Z∗

3 , 1] = sKey[sID∗]
be the corresponding entry for such a test session in the list of hash queries. At this point, it does not
matter whether the adversary completes the potential matching session or not. What matters is that both
messages X∗ and Y ∗ are chosen by the reduction B as BsID∗ and BsID′ . We assume that the adversary
may query both long-term keys thus covering attacks (1.)+(2.) of Table 2. In order to distinguish the
session key, A has to compute Z∗

3 = DH(X∗, Y ∗) = DH(BsID∗ , BsID′) which is a correct solution C ∈Win
to the S-GapCDH problem.

The number of queries to the Ddh oracle is upper bounded by QH. Thus,∣∣Pr[GA
2 ⇒ 1 | b = 0]− Pr[GA

1 ⇒ 1 | b = 0]
∣∣ ≤ AdvGapCDH

S, QH
(C) .

Finally, the output of the Test oracle in G2 is independent of the bit b, so we have

Pr[GA
2 ⇒ 1] = 1

2 .

Collecting the probabilities yields the bound stated in Theorem 3.
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CDdh(B1, ..., BS)
00 cntP := N
01 for n ∈ [N ]
02 an

$← Zp; An := gan

03 (pkn , skn) := (An , an)
04 b $← {0, 1}
05 b′ ← AO(pk1, · · · , pkN )
06 for sID∗ ∈ S
07 if Fresh(sID∗) = false
08 return b
09 if Valid(sID∗) = false
10 return b
11 return C ∈Win (see text)

DerR(sID ∈ [cntS], X)
12 if sKey[sID] ̸= ⊥ or type[sID] ̸= “Re”
13 return ⊥
14 (i, r) := (init[sID], resp[sID])
15 Y := R[sID]
16 ctxt := (Ai , Ar , X , Y )
17 if ∃sID′ s. t. (type[sID′], I [sID′]) = (“In”, X)
18 P := P ∪ {sID}
19 (Z1, Z2) := (Y ai , Xar )
20 if ∃Z3 s. t. H[ctxt, Z1, Z2, Z3, 1] = K
21 sKey[sID] := K
22 elseif H[ctxt, Z1, Z2,⊥,⊥] = K
23 sKey[sID] := K
24 else
25 K $← K
26 H[ctxt, Z1, Z2,⊥,⊥] := K
27 sKey[sID] := K
28 (I [sID], sKey[sID]) := (X , K)
29 return ε

DerI(sID ∈ [cntS], Y )
30 if sKey[sID] ̸= ⊥ or type[sID] ̸= “In”
31 return ⊥
32 (i, r) := (init[sID], resp[sID])
33 X := I [sID]
34 ctxt := (Ai , Ar , X , Y )
35 if ∃sID′ s. t. (type[sID′], R[sID′]) = (“Re”, Y )
36 P := P ∪ {sID}
37 (Z1, Z2) := (Y ai , Xar )
38 if ∃Z3 s. t. H[ctxt, Z1, Z2, Z3, 1] = K
39 sKey[sID] := K
40 elseif H[ctxt, Z1, Z2,⊥,⊥] = K
41 sKey[sID] := K
42 else
43 K $← K
44 H[ctxt, Z1, Z2,⊥,⊥] := K
45 sKey[sID] := K
46 (R[sID], sKey[sID]) := (Y , K)
47 return ε

Test(sID)
48 if sID ∈ S return ⊥
49 if sKey[sID] = ⊥ return ⊥
50 S := S ∪ {sID}
51 if sID ∈ P
52 K∗

0 := sKey[sID]
53 else
54 K∗

0
$← K

55 K∗
1

$← K
56 return K∗

b

H(Ai , Ar , X , Y , Z1, Z2, Z3)
57 if H[Ai , Ar , X , Y , Z1, Z2, Z3, · ] = K
58 return K
59 if Ddh(X , Y , Z3) = 1
60 f := 1
61 if H[Ai , Ar , X , Y , Z1, Z2,⊥,⊥] = K
62 replace (⊥,⊥) with (Z3, f )
63 return K
64 else
65 f := 0
66 K $← K
67 H[Ai , Ar , X , Y , Z1, Z2, Z3, f ] := K
68 return K

Fig. 16. Adversary C against S-GapCDH for the proof of Theorem 3. A has access to oracles O := {SessionI,
SessionR,DerI,DerR,Reveal,Corrupt,RegisterLTK,Test, H}, where SessionI and SessionR are defined
as for adversary B in Figure 15. RegisterLTK, Reveal and Corrupt are defined as in game G1. Lines written
in blue color highlight how C simulates G1 and G2, respectively.
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