
New Random Oracle Instantiations
from Extremely Lossy Functions

Chris Brzuska1, Geoffroy Couteau2, Christoph Egger2, Pihla Karanko1, and Pierre Meyer2,3

1 Aalto University, Finland. {chris.brzuska,pihla.karanko}@aalto.fi
2 Université Paris Cité, CNRS, IRIF, France. {couteau,christoph.egger,pierre.meyer}@irif.fr

3 Reichman University, Israel.

Abstract. We instantiate two random oracle (RO) transformations using Zhandry’s extremely
lossy function (ELF) technique (Crypto’16). Firstly, using ELFs and indistinguishabililty obfus-
cation (iO), we instantiate a modified version of the Fujisaki-Okamoto (FO) transform which
upgrades a public-key encryption scheme (PKE) from indistinguishability under chosen plain-
text attacks (IND-CPA) to indistinguishability under chosen ciphertext attacks (IND-CCA).
We side-step a prior uninstantiability result for FO by Brzuska, Farshim, and Mittelbach
(TCC’15) by (1) hiding the randomness from the (potentially ill-designed) IND-CPA encryption
scheme and (2) embedding an additional secret related to the hash-function into the secret-key
of the IND-CCA-secure PKE, an idea brought forward by Murphy, O’Neill, Zaheri (Asiacrypt
2022) who also instantiate a modified FO variant also under ELFs and iO for the class of lossy
PKE. Our transformation applies to all PKE which can be inverted given their randomness.
Secondly, we instantiate the hash-then-evaluate paradigm for pseudorandom functions (PRFs),
PRFnew(k, x) := wPRF(k,RO(x)). Our construction replaces RO by PRFold(kpub, elf(x)) with a
key kpub, that, unusually, is known to the distinguishing adversary against PRFnew. We start
by observing that several existing weak PRF candidates are plausibly also secure under such
distributions of pseudorandom inputs, generated by PRFold. Firstly, analogous cryptanalysis
applies and/or an attack with such pseudorandom inputs would imply surprising results such as
key agreement from the high-noise version of the Learning Parity with Noise (LPN) assumption.
Our simple transformation applies to the entire family of PRF-style functions. Specifically, we
obtain results for oblivious PRFs, which are a core building block for password-based authen-
ticated key exchange (PAKE) and private set intersection (PSI) protocols, and we also obtain
results for pseudorandom correlation functions (PCF), which are a key tool for silent oblivious
transfer (OT) extension.

Keywords: random oracle model, extremely lossy functions, Fujisaki-Okamoto transform,
pseudorandom functions, pseudorandom correlation functions

1 Introduction

The random oracle model (ROM) [BR93] is an idealised security model where all parties, honest or
otherwise, are given the same uniformly chosen random function as an oracle. Random oracles (ROs)
model ideal hash functions and have found a plethora of applications in cryptography, including the
Fiat-Shamir [FS87] transformation from 3-round interactive to non-interactive zero-knowledge proofs
(NIZK), key-dependent message (KDM) security [BRS03], adaptively secure garbled circuit [BHR12]
and many more. In this work, we are particularly interested in (1) RO-based transforms for turning
IND-CPA-secure PKE into IND-CCA-secure PKE as in the Fujisaki-Okamoto transform (FO) [FO13],
as well as (2) RO-based pre-processing of inputs as used, e.g. for password-based authenticated key
exchange (PAKE) [CHL22a] and private set intersection (PSI) constructions [HL08]. Concretely, both
PAKE and PSI first pre-process their inputs—a password for PAKE and database entries for PSI—
by applying a RO and then use secure multi-party computation to evaluate a weak PRF on the RO
result, a so-called oblivious PRF (OPRF) evaluation. This hash-then-evaluate paradigm, thus, pushes
some of the complexity of the PRF PRF(k, x) := wPRF(k,RO(x)) into a purely offline phase, outside
of the 2PC.

RO-based proofs for FO and the hash-then-evaluate paradigm make heavy use of the fact that the
reduction emulates the random oracle to the adversary and can therefore observe all queries to the
RO as well as program the RO. In effect, the reduction chooses the mapping of the RO adaptively
during the security experiment.

1.1 RO (Un)instantiability

The FO transform is a core building block for the post-quantum secure key encapsulation schemes
standardised by NIST [NIS16] and the hash-then-evaluate paradigm is at the heart of the currently
most efficient password-based authenticated key (PAKE) protocols and PSI schemes (cf. [CHL22a,
DGH+21]).

Despite the practical relevance of FO and the hash-then-evaluate paradigm, we do not know
how to instantiate the RO in the two transforms. Even worse, a strong uninstantiability result by
Brzuska, Farshim and Mittelbach (BFM [BFM15]) shows that the random oracle in FO is actually
uninstantiable. Namely, BFM build an IND-CPA-secure PKE based on indistinguishability obfuscation
(iO) such that its FO transform FORO1,RO2 [PKE,SE] is IND-CCA in the ROM, but becomes insecure
as soon as RO1 and RO2 are replaced by any concrete hash function (distribution).

Positive results. However, similarly to FO, the Fiat-Shamir (FS) transform also suffers from general
uninstantiability results [GK03,BDG+13] and yet, via correlation-intractable hash functions [CGH98],
a highly successful research line instantiates FS for specific proof systems (which is not ruled out by
the uninstantiability results), leading to new efficient NIZKs [CKU20], new constructions of SNARGs
and batch arguments [JKKZ21], insights on PPAD hardness [BCH+22], and more. Another line of
research circumvents impossibility results via the 2-stage assumption of Universal Computational Ex-
tractors [BHK13], resulting in KDM-secure encryption, and adaptive garbled circuits, among others.

Last, but not least, Zhandry [Zha16] introduces the brillant non-black-box framework of extremely
lossy functions (ELFs) to build secure point function obfuscation with auxiliary input, polynomially-
many hardcore bits for any one-way function and output intractable hash function—all inherently
hard in the standard model—and later also deterministic encryption [Zha19].

ELF. An ELF can be sampled either to be injective or lossy with a poly(λ)-size image, and yet, the
injective mode and the lossy modes are indistinguishable—if the adversary A is bounded by a fixed
polynomial poly′(λ) as long as poly′(λ) � poly(λ) and 1

poly(λ) � Adv(A), where Adv(A) denotes the
adversary’s advantage. Since the notion is central to this paper (and so the introduction remains
self-contained), we now formally define extremely lossy functions.

Definition 1 (Extremely Lossy Function (ELF), adapted from [Zha16]). An Extremely
Lossy Function (ELF) is a PPT algorithm ELF.Gen which, on inputs 1λ and r ∈ [2λ], outputs a
polynomial-time computable4 function elf : {0, 1}λ → {0, 1}∗ such that the following hold:

Injectivity. Prelf←$ELF.Gen(1λ,2λ)

[
|elf({0, 1}λ)| = 2λ

]
= 1− negl(λ).

Lossiness. ∀celf ∈ N: Prelf←$ELF.Gen(1λ,λcelf)

[
|elf({0, 1}λ)| ≤ λcelf

]
= 1− negl(λ).

Indistinguishability. ∀a, t ∈ N,∃c ∈ N such that for all A running in time ≤ λt∣∣Prelf←$ELF.Gen(1λ,2λ)

[
1 = A(1λ, elf)

]
− Prelf←$ELF.Gen(1λ,λc)

[
1 = A(1λ, elf)

]∣∣ < λ−a .

Enumerable image. ∀celf ∈ N, ∃ PPT(λcelf), C : Prelf←$ELF.Gen(1λ,λcelf)

[
elf({0, 1}λ) ⊆ C(1λ, elf)

]
≥

1− negl(λ)

The non-black-box property (via dependency on the adversary’s runtime) as well as the polynomial-
time enumerability of the image space are two powerful tools for instantiating random oracles.

1.2 Contribution

New RO instantiations in the standard model. Our first main contribution uses ELFs and indis-
tinguishability obfuscation to instantiate a slightly modified FO transform, side-stepping the BFM
impossibility result. We present a high-level technical overview of this construction in Section 2, and
provide the details in Section 6.

4 We here refer to a polynomial in λ, and this polynomial is global for all elf which are returned by
ELF.Gen(1λ, ∗)

2

Our second main contribution is to instantiate the hash-and-evaluate paradigm for a wide range
of “PRF-like” objects. We start with instantiating this approach for PRFs, which has direct implica-
tions for low-complexity OPRFs. We then move on to boosting pseudo-correlation functions (PCFs)5
from weak to strong via the hash-then-evaluate paradigm. PCFs were introduced by Boyle, Couteau,
Gilboa, Ishai, Kohl, and Scholl [BCG+20] and allow two parties6 who each hold one of two short
correlated seeds k0 and k1 to generate any polynomial number of correlated randomess by evaluating
pcf(k0, xi) and pcf(k1, xi) locally on the same public inputs xi such that the outputs are indistinguish-
able from the target correlation. Thus, PCFs allow to implement Beaver’s OT extension idea [Bea96]
in a silent manner, that is, without additional communication.

Revisiting the analysis of wPRFs when inputs are pseudorandom. Our instantiation of hash-then-
evaluate replaces the random oracle by the hash-function H(.) := PRF(kH, elf(.)) with a public PRF key
kH. That is, we replace the RO by a public pre-processing phase of the input so that wPRF(k,H(.)) is a
strong PRF, but the pre-processing does not depend on k and thus, in secure multi-party computation
applications, only the second wPRF part needs to be securely evaluated.

One caveat is that the outputs of H(.) are not random and wPRF expects random inputs. However,
when kH is not given, they are at least pseudorandom. Our third main result is the observation that the
cryptanalysis of several weak PRFs [BIP+18,BCG+20,BCG+22] actually also applies when the inputs
are pseudorandom, namely, for as long as they satisfy suitable statistical properties—or at least, that
violating the security of these wPRFs for pseudorandom inputs would have interesting consequences.
In slightly more details, we consider the weak PRF of [BIP+18], which is at the heart of the most
efficient (to date) oblivious PRF protocol [DGH+21], and the weak PRFs of [BCG+20, BCG+22],
which are at the heart of the most efficient PCFs known to date. For each of these candidates, we
analyze the most natural families of attacks, and obtain the following results:

– The wPRF candidate of [BIP+18] is secure against all statistical query algorithms (one of the
most common types of attacks against low-complexity PRF candidates, used e.g. to show that
there are no subexponentially secure wPRFs in AC0 [LMN89]) even when the wPRF inputs are
pseudorandom (instead of truly random). This extends the analysis of [BIP+18], which focused
on truly random inputs.

– Either the wPRF candidates of [BCG+20,BCG+22] are secure against attacks from the linear test
framework (the main framework used to study the security of “LPN-style” wPRFs, which both
these candidates are) even when the wPRF inputs are pseudorandom, or there exists an efficiently
samplable family of linear codes which have large (linear) pseudodistance (i.e. are computationally
indistinguishable from codes with a linear distance) but low (sublinear) minimum distance. The
existence of such codes is an open question which would have interesting consequences for low-
complexity cryptographic hash functions [AHI+17].

We expand on our analysis in Section 5. Given the background that several wPRFs are plausibly
secure against pseudorandom inputs, we introduce the concept of pseudorandom-input PRFs (PI-
PRFs) and pseudorandom input PCFs (PI-PCFs), and show that the above transform provably turns
PI-PRFs into strong PRFs. We here rely on the the property that in extremely lossy mode of the elf,
we can efficiently enumerate over all possible queries q = H(x) to the PI-PRF. Our core observation
is that the set of values Im(H) = PI-PRF(kH, Im(elf)) is pseudorandom, since Im(elf) does not depend
on the PRF key.

Organization.We start with a technical overview of our FO instantiation in Section 2. Then, we turn
to PRFs and OPRFs as our technical warm-up for the hash-then-evaluate paradigm instantiation in
Section 3, which also provides additional context, motivation and comparison to related work, notably
the closely related concept of public-coin PRFs by Pietrzak and Sjödin [PS08], which inspires our work.
We then apply out hash-then-evaluate technique to boost PCFs from weak to strong in Section 4.
We present our cryptanalysis and reflection on the plausibility of existing wPRF / wPCFs being
pseudorandom-input PRFs / PCFs in Section 5 and the technical details of the FO instantiation in
Section 6.

5 Sometimes described as a Correlated Pseudorandom Functions.
6 For simplicity of exposition, we only consider two-party PCFs, but the hash-then-evaluate is also compatible
with the multiparty setting.

3

2 Technical Overview of FO Instantiation

Fujisaki-Okamoto transformation. FO turns any IND-CPA-secure PKE and any 1-time-secure au-
thenticated encryption scheme SE into an IND-CCA-secure encryption scheme FORO1,RO2 [PKE,SE]
which uses two random oracles RO1 and RO2 as follows:

FORO1,RO2 [PKE,SE].Enc(pk,m;σ) := (PKE.Enc(pk, σ;RO1(σ||m)),SE.Enc(RO2(σ),m)) (1)

The decryption recovers σ from the PKE ciphertext, computes RO2(σ) to obtain m from the SE
ciphertext and then re-encrypts to check whether the same ciphertext is obtained. The FO reduction
to IND-CPA of PKE observes the adversary’s queries to RO1 to determine all possible message and
randomness candidates σ||m and can thereby simulate answers to the decryption oracle.

BFM uninstantiability result. BFM construct their counterexample PKEBFM from an IND-CPA-secure
scheme PKEcpa by appending an obfuscated circuit C[σ, rcpa], which has σ and the randomness rcpa
of PKEcpa.Enc hardcoded and works roughly as follows:

Inputs: candidate hash-functions H1,H2 Computation: m← SE.Dec(H2(σ), csym)

symmetric ciphertext csym if H1(σ) = rcpa then return m else return ⊥

Our construction. The BFM impossibility result needs that (i) σ is input to the PKE, and (ii) σ, H1

and H2 suffice to obtain randomness rcpa. In order to circumvent the BFM impossibility result, (i)
we encrypt H1(σ) instead of σ and (ii) encrypt m with H2(σ). Additionally, H1 takes σ instead of
σ||m as input since σ is uniformly random and thus a suitable input to a pseudorandom generator
(PRG). This change is w.l.o.g., since H1 could also just ignore m. We obtain the following modified
transform:

FO
H1,H2
mod [PKE,SE].Enc(pk︸︷︷︸

:=(pkcpa,H1,H2)

,m;σ) := (PKE.Enc(pkcpa,H2(σ);H1(σ)),SE.Enc(H2(σ),m))

(2)
Decryption can still be correctly performed by recovering ksym := H2(σ) and decrypting the symmetric
ciphertext. However, re-encryption requires recovering σ, and the PKE ciphertext only contains H2(σ)
instead of σ itself. Therefore—and that is the bigger change—our construction samples H1 and H2

together with (sk, pk) and then (i) includes H1 and H2 into the public-key (cf. (2)), and (ii) embeds a
secret into the secret-key such that given H2(σ), the decryptor can recover H1(σ) as well. Concretely,
the hash-function H1 consists of an indistinguishability obfuscation (iO) (cf. Definition 41) of

PPRF(kPPRF, elf(H2(·))),

i.e., H1 first applies H2 to its input, then an elf and then a puncturable pseudorandom function
(PPRF) (cf. Definition 40). Naturally, when the secret key includes kPPRF and elf, the decryption can
compute H1(σ) given H2(σ).

Our security reduction to IND-CPA-security of our modified FO-transform then uses that the elf
in lossy mode has a polynomial-size, enumerable image space,. Therefore, we can enumerate over all
possible randomness values H1(σ) that might have been used in encryption. If given the randomness,
encryption of PKE is invertible (more on this point shortly), then we can use inversion of encryption
to simulate the decryption oracle.

One caveat in this argument is that neither the decryption algorithm nor its simulation can check
whether ksym = H2(σ) is actually valid, i.e., whether a given value ksym is indeed in the image of H2 or
not. This is a problem since we’d like to use H2 as a PRG together with puncturing in Sahai-Waters-
style [SW14], and since we need to puncture the key both in the (obfuscated) code of H2 and in the
decryption oracle, it is a problem, if the decryption algorithm evaluates the PPRF also outside of the
image of H2 = PRG. Thus, for H2, we do not use an ordinary PRG, but rather a PRG where we can
check image membership using a secret-key. Such a PRG, in fact, is the same as a $-IND-CCA-secure
encryption scheme, namely, we define

H2(σ) := PKEcca.Enc(pkcca, w;σ)

4

for a fixed message w and a fixed public-key pkcca, treating the input to H2 as the randomness of
PKEcca.Enc. Although it is a bit counter-intuitive to use an IND-CCA-secure encryption scheme to
prove security of a transform for IND-CCA-security, it is meaningful for a feasibility result which,
otherwise, already relies on the very strong assumptions of ELFs and iO. Importantly, the construction
uses IND-CCA-secure encryption inside the IND-CPA-secure PKE, so that the non-malleability of
the combined scheme does not result from the underlying IND-CCA-secure scheme. For example, if
PKEcpa encapsulates a key kcpa and encrypts its payload x as kcpa ⊕ x, then the adversary can still
make arbitrary additive changes to the message. Similarly, if the CPA scheme adds some redundant
bits to the ciphertext, the adversary can still tamper with those.

Invertibility given randomness. Our transform works for all IND-CPA-secure PKE that are in-
vertible when given the randomness (Definition 37). This property is naturally satisfied by many
encryption schemes. E.g., given the exponent r for gr in El Gamal, one can compute pkr and thus
recover the blinding value. Similarly, given the noise value e, Learning Parity with Noise (LPN) and
Learning with Errors (LWE) both become easy. In fact, one can also simply transform every PKE into
an invertible one by (1) doubling the length of the randomness σ into σ and σ′ and then concatenating
m⊕ σ′ to the ciphertext. Since this is, information-theoretically, only a uniformly random string, all
other security properties of the PKE are preserved.

Comparison with MOZ. Murphy, O’Neill, Zaheri (MOZ) [MOZ22] gave an instantiation of an
FO-like transform which turns a lossy PKE into an IND-CCA one. Similar to our instantiation,
MOZ also include hash-function related secrets into the key of the new PKE. Interestingly, the MOZ
construction is dual to ours in that the complexity of their hash-functions is swapped compared to
ours. MOZ provide a complex—and very similar—instantiation of H1 and instantiate H2 simply by a
pairwise independent hash-function. This is possible in the MOZ work because the PKE is lossy and
thus, after switching to lossy mode, there is sufficient real randomness for both, the PKE and the key
ksym which the PKE encrypts. A minor difference between MOZ and our work is that MOZ needs
exponential security on additional primitives, including the iO, if the message is allowed to depend on
the public key. In turn, we only rely on polynomial security—except for Zhandry’s ELF construction
which inherently relies on exponential DDH.

Practicality. Finally, we remark that both MOZ and our work are intended to chart the territory
to see for which classes of PKE FO-like transforms can actually be based on established cryptographic
assumptions. MOZ show that the relevant class of lossy encryption schemes is included, and our result
for randomness-invertible schemes directly comprises most practically and theoretically considered
schemes in the literature. However, both MOZ and our result still require significant follow-up work
in order to derive practically efficient instantiations, our complex hash functions are not efficient, but
they show a promising way around the (very general!) BFM impossibility result.

2.1 Notation

In the following we will also make heavy use of the following notation. We write PPT(λ) for proba-
bilistic polynomial time where the time is polynomial in λ. Often, we just write PPT and the security
parameter λ is implicit. x←$ S denotes sampling a variable x uniformly from the set S and analo-
gously x←$A denotes that the variable x is chosen by a PPT algorithm A with implicit randomness.
For assigning a variable x according to a (not necessarily efficiently sampleable) distribution D, we
write x←↩ D. When the randomness is passed explicitly to an algorithm we separate it by a semi-
colon (;) as in c← Enc(pk,m ; r). We use y ← f(x) to emphasize that the assignment is deterministic.
Finally, when an algorithm A has access to an oracle ORACLE we annotate it as AORACLE.

3 Technical Warm-Up: Instantiating Hash-then-Evaluate PRFs

The Hash-then-Evaluate paradigm relies on the fact that, if wPRF is a weak PRF and RO is a
programmable random oracle, then wPRF ◦ RO is a strong PRF. This transformation truly shines
in distributed settings (e.g. distributed PRFs, oblivious PRFs, and correlated PRFs—better known
as pseudorandom correlation functions—), where the hash function is applied locally in an input
pre-processing phase, thereby limiting the use of expensive compilers (such as secure multiparty com-
putation) to securely evaluate only weak PRFs, which admit significantly lower-complexity candidates
than strong PRFs.

5

The goal of this section is to provide a gentle introduction to our instantiation techniques in
the simple setting of PRFs, without the additional difficulties tied to distributed considerations. Two
issues emerge when we try to instantiate RO in this weak-to-strong PRF transform using an extremely
lossy function. The first is conceptual, but the second is merely a technical inconvenience.

First issue: Programmability. The core reason programmability is required in the transformation
PRF := wPRF◦RO is the fundamental mismatch between the security games of weak and strong PRFs.
In the former, the evaluation points are sampled in the experiment and delivered as output to the
distinguisher, while in the latter the distinguisher provides its own queries. If we try and prove
strong PRF security of wPRF ◦ RO and wish to invoke the weak PRF security of wPRF, it seems the
reduction needs to first sample the value y and then, upon receiving an adversarial query x, ensure
that y = RO(x).

The first issue is that our instantiation techniques seem ill-suited to achieve such a strong notion
of programmability. Indeed, our approach is to first apply an extremely lossy function so as to force
a non-adaptive adversaries’ queries to be restricted to a polynomial-size set7—which is efficiently
enumerable, but not necessarily programmable—, and then apply a non-adaptive PRF in order to
(pseudo)randomise the image of the ELF.

We resolve this issue by weakening the scope of the transform, not starting from a weak PRF, but
from a slightly stronger notion, whose security game has the adversary sample the queries (but these
queries should be forced to remain “close enough to random” in order to not stray to far from the goal
of boosting weak PRFs to strong ones). Specifically, we introduce the notion of pseudorandom-input
PRF (PI-PRF), whose security is expected to hold if it is evaluated on points which are not truly
random but rather sampled pseudorandomly according to a public seed.

Second “issue”: The need for a CRS. We provide an instantiation of the random oracle which
turns a PI-PRF into a strong PRF. Unfortunately, since we do not provide a fixed hash function
H but rather a family of hash functions (Hr)r, the resulting construction is not a strong PRF, but
rather a strong PRF in the Common Random String model. It may seem that we could get rid of the
CRS by making r part of the key: sPRF(ksPRF = (kwPRF, r), x) := wPRF(kwPRF,Hr(x)). This solution
is unsatisfactory as it obfuscates the fact security of the resulting strong PRF holds if r is public,
and additionally does not accurately model the fact that applying Hr is merely client-side input
preprocessing. Using a CRS is not a problem per se (especially when the alternative is the random
oracle model, which essentially already assumes the existence of globally accessible setup), but it
makes formal theorem statements a bit awkward. In this section, which only deals with boosting
the security of PRFs in a centralised setting, we will mostly sweep the CRS formalism under the
rug so as to not distract away from the core ideas behind the instantiation. When instantiating
hash-then-evaluate OPRFs and sPCFs however, which are our main results, we will fully address this
technicality.

Very concretely our instantiation consists in a non-adaptive PRF, with its key hardcoded, com-
posed with an injective-mode ELF. As a side benefit, this transformation is modular in nature:
at a high level, only applying a non-adaptive PRF (with a hard-coded key) boosts security from
pseudorandom-input to non-adaptive, and applying the ELF then boosts security from non-adaptive
to adaptive. Because the first step is more lightweight (both in terms of efficiency and assumptions)
than the second, this is interesting in settings where adaptive security is not required. Unfortunately,
because of the aforementioned CRS technicality, things are not as simple as a transformation from
PI-PRF to non-adaptive PRF (in the CRS model) to strong PRF (in the CRS model); instead, the
intermediary object is not the standard notion of non-adaptive PRF but rather a “fully non-adaptive
PRF (in the CRS model)”, whose security only holds if the evaluation points are chosen non-adaptively
and before seeing the CRS. This intermediary notion has the downside of being less standard, but it
still captures the useful notion of security provided evaluation points are selected according to a pre-
agreed upon order. In particular, this is already how non-adaptive PCFs are used, so this restriction
is of little importance when it comes to MPC applications of our techniques.

7 More precisely, the construction always uses the ELF in injective mode, so this “restriction” is purely
hypothetical, and done only in the security proof.

6

3.1 Pseudorandom-Input PRF (PI-PRF)

In this section we introduce the notion of a pseudorandom-input PRF (PI-PRF), which can be seen
as a strengthening of a wPRF. Informally, a PI-PRF is a wPRF which remains secure if queried
on pseudorandom (instead of truly random) evaluation points, where the seed used as a source of
pseudorandomness is public. In order to define PI-PRF, we first need to define a sampler that produces
the “random looking” inputs. We call such samplers admissible, and provide a formal definition in
Definition 2.

Definition 2 (Admissible Sampler). We say that a polynomial time sampler Samλ,N : {0, 1}len →
{0, 1}N×λ, where len is polynomial in λ, is admissible if for all PPT A

|Prr←${0,1}len [1 = A(Samλ,N (r))]− Pr∀i:xi←${0,1}λ [1 = A(x1, ..., xN)]| = negl(λ).

Sometimes we might not write the randomness r explicitly, but instead consider Samλ,N as PPT
adversary that samples r uniformly itself and does not take any input. We write inLen(Samλ,N) := |r|
for the length of the randomness.

We can now define a pseudorandom-input PRF. Using the terminology of Pietrzak and Sjödin [PS08],
our notion of PI-PRF could alternatively be defined as a public coin wPRF with admissible samplers
(as defined in Definition 2)8. Note that in the definition of admissible sampler, the adversary A does
not see the sampler’s randomness r (only Sam output), but, in the definition of PI-PRF, the adversary
A is given r.

Definition 3 (Pseudorandom Functions (PRF)). Let λ ∈ N denote a security parameter. A
pseudorandom function is syntactically defined as a collection of functions fλ : {0, 1}λ × {0, 1}λ →
{0, 1}λ, where the output fλ(K,x) can be computed from (K,x) in polynomial time. When unambigu-
ous, we we will drop the λ index. We say that f is a:

– strong PRF [GGM84] if for all p.p.t. AEVAL who never queries the same input x twice to the
oracle EVAL: ∣∣∣Pr[1 = ExpsPRFA,f,0

]
− Pr

[
1 = ExpsPRFA,1

]∣∣∣ = negl(λ),

where ExpsPRFA,f,0 and ExpsPRFA,1 are defined in Figure 1a.

– non-adaptive PRF [NR95]9 for all p.p.t. A which output a vector ~x of unique input values x∣∣∣Pr[1 = ExpnaPRFA,f,0

]
− Pr

[
1 = ExpnaPRFA,1

]∣∣∣ = negl(λ),

where ExpnaPRFA,f,0 and ExpnaPRFA,1 are defined in Figure 1b.

– weak PRF [NR95] for all polynomials N , for all p.p.t. A∣∣∣Pr[1 = ExpwPRFN,A,f,0

]
− Pr

[
1 = ExpwPRFN,A,1

]∣∣∣ = negl(λ),

where ExpwPRFp,A,f,0 and ExpwPRFp,A,1 are defined in Figure 1c.

– pseudorandom-input PRF [this paper] if for all polynomials N , for all admissible samplers
Samλ,N (definition 2) and for all p.p.t. A∣∣∣Pr[1 = ExpPI-PRFN,A,f,0

]
− Pr

[
1 = ExpPI-PRFN,A,1

]∣∣∣ = negl(λ),

where ExpPI-PRFN,A,f,0 and ExpPI-PRFN,A,1 are defined as in Figure 1d. Alternatively, if f satisfies the above
property for a fixed Sam (and not necessarily for arbitrary admissible sampler), we say that f is
a Sam-PI-PRF.

8 However, the definition of [PS08] does not cover the full class of admissible samplers, since their definition
requires the samples to be independent, while we also allow correlated samples. Correlation is actually very
crucial to our application, since we will later use a PRF with a fixed random key as a sampler - PRF
outputs will be correlated, since they share the key.

9 A non-adaptive PRF can be cast as a synthesiser.

7

Experiment Strong, non-adaptive, weak, and pseudorandom-input PRFs

ExpsPRFA,f,0

k ←$ {0, 1}λ

return AEVAL(1λ)

EVAL(x)

assert x ∈ {0, 1}λ

y ← f(k, x)

return y

ExpsPRFA,1

return AEVAL(1λ)

EVAL(x)

assert x ∈ {0, 1}λ

y ←$ {0, 1}λ

return y

(a) Security experiments for (strong) PRFs.

ExpnaPRFA=(A0,A1),f,0

(~x, st)←$A0(1
λ)

k ←$ {0, 1}λ

for i = 1, ..., |~x|
~yi ← f(k, ~xi)

return A1(st, ~y)

ExpnaPRFA=(A0,A1),1

~x, st←$A0(1
λ)

for i = 1, ..., |~x|

~yi ←$ {0, 1}λ

return A1(st, ~y)

(b) Security experiments for naPRFs.

ExpwPRFp,A,f,0

~x←$ {0, 1}N·λ

k ←$ {0, 1}λ

for i = 1, ..., N

~yi ← f(k, ~xi)

return A(~x, ~y)

ExpwPRFp,A,1

~x←$ {0, 1}N·λ

for i = 1, ..., N

~yi ←$ {0, 1}λ

return A(~x, ~y)

(c) Security experiments for wPRFs.

ExpPI-PRFN,A,f,0

r ←$ {0, 1}inLen(Samλ,N)

~x← Samλ,N (r)

k ←$ {0, 1}λ

for i = 1, ..., N

~yi ← f(k, ~xi)

return A(~x, ~y, r)

ExpPI-PRFN,A,1

r ←$ {0, 1}inLen(Samλ,N)

~x← Samλ,N (r)

for i = 1, ..., N

~yi ←$ {0, 1}λ

return A(~x, ~y, r)

(d) Security experiments for PI-PRFs. Difference
to wPRF is highlighted.

Fig. 1: Security experiments for strong, non-adaptive, weak, and pseudorandom-input pseudorandom
functions.

It immediately follows from the definitions, that any non-adaptive PRF is also a pseudorandom-
input PRF (for all admissible samplers), and that any pseudorandom-input PRF is also a weak PRF.
However it may be a priori unclear how much stronger than a weak PRF a pseudorandom-input PRF
is. Fortunately, by adapting a result of Pietrzak and Sjödin [PS08], we are able to provide a conditional
argument towards closing the gap between the two notions. Namely, if there is a wPRF that is not
also a PI-PRF (for all admissible samplers), then we can build infinitely-often key agreement from
the wPRF and an adversary breaking its “PI-PRF properties”.

Theorem 4 (wPRF not PI-PRF implies io-KA, adapted from [PS08]). Let wPRF be a
weak PRF. If wPRF is not a pseudorandom-input PRF, then there exists an infinitely often two-party
key-agreement protocol.

Since this theorem is a straightforward adaptation of a known theorem from the literature, we
simply state it here and instead refer the reader to Appendix B.1 for a self-contained proof of Theo-
rem 4.

3.2 From PI-PRF to sPRF

We now provide our instantiation of the transformation from a PI-PRF to a sPRF, which can be
broken down modularly as a transformation from a PI-PRF to a naPRF and a transformation from
a naPRF to a sPRF.

Lemma 5 (PI-PRF ◦ naPRF is a naPRF, Informal). Let PI-PRF be a pseudorandom-input
PRF, and let naPRF be a non-adaptive PRF. Then f(ksPRF, x) := PI-PRF(ksPRF, naPRF(knaPRF, x))
is a “fully non-adaptive PRF in the CRS model” (whose security is only guaranteed for queries non-
adaptively chosen before seeing the CRS generated as Setup(1λ) : {knaPRF ←$ {0, 1}λ;Return knaPRF}).

8

Proof. In order to prove this lemma, we need to provide some formalism for the notion of a “fully non-
adaptive PRF in the CRS model”. Syntactically, it is defined as a pair of algorithms (fnaPRF,Setup)
where Setup(1λ) generates an (unstructured) CRS, while fnaPRF has the same syntax as a non-
adaptive PRF (but takes a CRS as an additional input). Security is very analogous to the definition
of a non-adaptive PRF, but with instead the following security experiments ExpfnaPRFp,A,f,0 and ExpfnaPRFp,A,1
(differences with the experiments for non-adaptive PRFs Figure 1b are highlighted):

ExpfnaPRF
p,A,(f, Setup),0 = Hyb0(1

λ)

~x, st←$A0(1
λ)

CRS←$ Setup(1λ)

ksPRF ←$ {0, 1}λ

for i = 1, ..., |~x|

~yi ← f(ksPRF, ~xi)

return A1(CRS, st, ~y)

ExpfnaPRF
p,A,Setup,1 = Hyb4(1

λ)

~x, st←$A0(1
λ)

CRS←$ Setup(1λ)

for i = 1, ..., |~x|

~yi ←$ {0, 1}λ

return A1(CRS, st, ~y)

Let us now show that the experiments ExpfnaPRFp,A,(f,Setup),0 and ExpfnaPRFp,A,Setup,1, where (f, Setup) are
defined as in lemma 5, are indistinguishable by considering the hybrids Hyb1,Hyb2,Hyb3 of Figure 2.

Hyb1(λ)

~x, st←$A0(1
λ)

knaPRF ←$ {0, 1}λ

ksPRF ←$ {0, 1}λ

for i = 1, ..., |~x|
~zi ← naPRF(knaPRF, ~xi)

~yi ← PI-PRF(ksPRF, ~zi)

return A1(knaPRF, st, ~y)

Hyb2(λ)

r ←$ {0, 1}inLen(Samλ,|~x|)

~z ← Samλ,|~x|(r)

ksPRF ←$ {0, 1}λ

for i = 1, ..., |~z|

~yi ← PI-PRF(ksPRF, ~zi)

return A(r,~y)

Samλ,|~x|(r)

st||knaPRF ← r

~x, st← A0(1
λ; st)

for i = 1, ..., |~x|
~zi ← naPRF(knaPRF, ~xi)

return ~z

Hyb3(λ)

r ←$ {0, 1}inLen(Samλ,|~x|)

~z ← Samλ,|~x|(r)

ksPRF ←$ {0, 1}λ

for i = 1, ..., |~x|

~yi←$ {0, 1}λ

return A1(r, ~y)

Samλ,|~x|(r)

st||knaPRF ← r

~x, st← A0(1
λ; st)

for i = 1, ..., |~x|
~zi ← naPRF(knaPRF, ~xi)

return ~z

Code Equivalence Security of PI-PRF

Fig. 2: Sequence of hybrids for proving naPRF security in the proof of Lemma 5.

– Hyb0 ≡ Hyb1: These hybrids are code-equivalent; we obtain Hyb1 by simply inlining the definition
of f (and of its setup knaPRF ←$ {0, 1}λ).

– Hyb1 ≡ Hyb2: Again, these hybrids are in fact code-equivalent. Indeed, w.l.o.g. the second stage
adversary’s state st is equal to the first stage adversary’s internal randomness. Thus, nothing
changes if we define r := st||knaPRF.

– Hyb2
c
≈ Hyb3: By naPRF security of naPRF, the sampler Samλ,|~x| is admissible. The hybrids are

therefore indistinguishable by PI-PRF security of PI-PRF.
– Hyb3 ≡ Hyb4: These hybrids are code-equivalent (by combining the same arguments used to show

that Hyb0 ≡ Hyb1 and Hyb1 ≡ Hyb2, except in reverse).

9

Lemma 6 (naPRF◦ELF is a sPRF, Informal). Let f be a “fully non-adaptive PRF in the CRS
model” and let ELF be an extremely lossy function. Then sPRF(ksPRF, x) := f(ksPRF, elf(x)) is a strong
PRF (in the CRS model), where the coins used to generate elf ←$ ELF.Gen(1λ, 2λ) and coins needed
for the fully non-adaptive PRF rf are in the public CRS (i.e. Setup(1λ) : {rELF ←$ {0, 1}λ; rf ←$

; Return rELF, rf} and elf ←$ ELF.Gen(1λ, 2λ; rELF)).

Proof. Again, in order to provide a meaningful proof we need to introduce some formalism describing
a strong PRF in the CRS model. The security experiments, which are analogous to those of a strong
PRF (in the plain model), are the following (differences with fig. 1a are highlighted):

ExpsPRF
A,(sPRF,Setup),0

= Hyb0

CRS←$ Setup(1λ)

ksPRF ←$ {0, 1}λ

return AEVAL(1λ,CRS)

EVAL(x)

assert x ∈ {0, 1}λ

y ← sPRFCRS(ksPRF, x)

return y

ExpsPRF
A,Setup,1 = Hyb5

CRS←$ Setup(1λ)

return AEVAL(1λ,CRS)

EVAL(x)

assert x ∈ {0, 1}λ

y ←$ {0, 1}λ

return y

We now show via several game hops that the experiments ExpsPRFA,sPRF,0 and ExpsPRFA,1 (as parame-
terised by the pair (sPRF,Setup) defined in lemma 6) are indistinguishable. Suppose for contradiction,
that a p.p.t. adversary A has non-negligible advantage in distinguishing the PRF games of sPRF. Let
r be a sufficiently large polynomial such that A cannot distinguish an ELF with image size r from
an injective ELF.

Hyb1(λ)

elf ←$ ELF.Gen(1λ, 2λ)

ksPRF ←$ {0, 1}λ

return AEVAL(1λ, elf, rf)

EVAL(x)

assert x ∈ {0, 1}λ

y ← f(ksPRF, elf(x))

return y

Hyb2(λ)

elf ←$ ELF.Gen(M, r)

ksPRF ←$ {0, 1}λ

return AEVAL(1λ, elf, rf)

EVAL(x)

assert x ∈ {0, 1}λ

y ← f(ksPRF, elf(x))

return y

Hyb3(λ)

elf ←$ ELF.Gen(1λ, r)

ksPRF ←$ {0, 1}λ

for z ∈ Im(elf) :

T [z]← f(ksPRF, z)

return AEVAL(1λ, elf, rf)

EVAL(x)

assert x ∈ {0, 1}λ

y ← T [elf(x)]

return y

Hyb4(λ)

elf ←$ ELF.Gen(1λ, r)

ksPRF ←$ {0, 1}λ

for z ∈ Im(elf) :

T [z]←$ {0, 1}λ

return AEVAL(1λ, elf, rf)

EVAL(x)

assert x ∈ {0, 1}λ

y ← T [elf(x)]

return y

Security of ELF Code Equivalence fnaPRF Security of f

Fig. 3: Sequence of hybrids for proving sPRF security in the proof of Lemma 6.

– Hyb0 ≡ Hyb1: These hybrids are code-equivalent, we simply inlined the definitions of sPRF and
Setup

– Hyb1
c
≈ Hyb2: These hybrids are indistinguishable by applying the security of ELF.

– Hyb2 ≡ Hyb3: These hybrids are code-equivalent; the only difference is pre-processing oracle calls
by generating a lookup table.

10

– Hyb3
c
≈ Hyb4: These hybrids are indistinguishable by fully non-adaptive PRF security (in the

CRS model) of f . More precisely, in the fnaPRF experiment, the first stage adversary Af0 samples
the ELF and chooses the image of the ELF as the vector ~x and the description of the ELF elf
as the state st = elf that is passed to the second stage adversary, in this case Af1 = AEVAL. Now,
since an arbitrary PPT Af1 cannot distinguish the naPRF f outputs from random, neither can
AEVAL who must run in time << r (note that arbitrary PPT adversary Af1 can emulate the EVAL
oracle calls by computing the full ELF image of size r).

– Hyb4
c
≈ Hyb5: The hybrids are equivalent, by ELF security of ELF, with the observation we applied

the reverse of the code-equivalent transform between games Hyb0 and Hyb1.

By combining Lemmas 5 and 6 we immediately obtain Corollary 7.

Corollary 7 (PI-PRF + naPRF + ELF is PRF, Informal). Let PI-PRF be a pseudorandom-
input PRF, let naPRF be a non-adaptive PRF, and let ELF be an extremely lossy function. Then

sPRF(ksPRF, x) := PI-PRF(ksPRF, naPRF(knaPRF, elf(x))︸ ︷︷ ︸
public pre-processing

)

is a strong PRF (in the CRS model), where knaPRF ←$ {0, 1}λ and the coins used to generate elf ←$

ELF.Gen(1λ, 2λ) are in a public CRS.

3.3 Direct Implications for Oblivious PRFs

We established in corollary 7 that the random oracle classically used to transform a weak PRF
to a strong one can be instantiated, provided we are willing to assume the weak PRF is in fact
a pseudorandom-input PRF. While we would argue this is already of theoretical interest, one may
pause and wonder why one would ever use this transformation given that a strong PRF can be built
in a black-box way from a weak PRF, and a fortiori from a pseudorandom-input PRF. Where the
hash-and-evaluate paradigm truly shines is in the distributed setting, where it allows us to only wrap
the compiler, that is secure multiparty computation, around a (low-complexity) weak PRF. This idea
of applying a random oracle to the input before performing the secure evaluation of only a weak PRF
is not merely of theoretical interest, but rather is a key ingredient in the state-of-the-art OPRF of
Dinur et al. [DGH+21].

An Oblivious PRF (OPRF) is a secure two-party protocol realising the functionality (k, x) 7→
(⊥, F (k, x)) for some pseudorandom function family F . If F is no longer assumed to be a strong PRF
but instead only a weak or pseudorandom-input PRF, we will call such a protocol a secure function
evaluation (SFE) of a weak (resp. pseudorandom-input) PRF. We refer to remark 8 for a discussion
on why we do not use the terms Oblivious weak/pseudorandom-input PRF.

Remark 8 (Defining an “Oblivious wPRF”). The problem of defining an “Oblivious weak PRF”10 is
a delicate one, which was explicitly left open by e.g. [JKR19,CHL22b]. A first attempt would be to
define it as Secure Function Evaluation (SFE) of a weak PRF, i.e. as a secure two-party protocol
realising the functionality (k, x) 7→ (⊥, F (k, x)) for some weak pseudorandom function family F .
This is a convenient solution from a design perspective, but it places the burden of not misusing
the primitive on the user (wishing to build some larger protocol). Indeed, using such a protocol only
guarantees server privacy over the randomness of the queries made by the client. When the primitive
of SFE of a wPRF is composed, it becomes unclear what this means11; in particular, in Canetti’s
Universal Composability framework [Can01] the inputs of even semi-honest parties are assumed to
have been provided by a malicious environment, so even “trusting a semi-honest party to use random
10 Not to be confused with a weak OPRF, a.k.a. a relaxed OPRF, which is a relaxation of an OPRF introduced

by Freedman et al. [FIPR05] which allows for some leakage of the key to the client.
11 Say a client and a server run tho parallel instances of SFE of a wPRF, and the client queries an random

input x in the first instance, and x + 1 in the next: the inputs used by the client in each instance are
random, but nevertheless correlated, and server security is not expected to hold.

11

inputs” is not necessarily sound, unless the protocol explicitly specifies how they should be sampled.
For this reason, one might argue that the ideal functionality of an Oblivious weak PRF should sample
the queries itself, and output them to the client, alongside their evaluations. This definition would be
analogous to those of random OT [Rab05] and random-input PIR [GHM+21]. The downside of this
alternative definition is that it does not seem possible to then use the hash-then-evaluate paradigm
to boost an oblivious wPRF to an OPRF.

Lemma 9 (Oblivious Hash-then-Evaluate PRF). Let PI-PRF : {0, 1}λ×{0, 1}n(λ) → {0, 1}m(λ)

be a pseudorandom-input PRF, let ELF.Gen be an extremely lossy function, and let naPRF : {0, 1}λ ×
{0, 1}n(λ) → {0, 1}n(λ) be a non-adaptive PRF. Then the protocol of Figure 4 (defined in the
FSFE(PI-PRF)-hybrid model, where FSFE(PI-PRF(·, ·)) is the ideal functionality computing (k, x) 7→
(⊥,wPRF(k, x))) is a (semi-honest) OPRF in the CRS model for the following PRF:

PRF : {0, 1}3λ × {0, 1}n(λ) → {0, 1}m(λ)

(k = (kPI-PRF, knaPRF, r), x) 7→ PI-PRF(kPI-PRF, naPRF(knaPRF, f(x))),
where f = ELF.Gen(2n(λ), 2n(λ); r)

Proof Sketch. There are two statements to prove: the first is that PRF is a pseudorandom function
family, and the second is that the fig. 4 securely realises the functionality (k, x) 7→ (⊥,PRF(k, x)). We
already proved the former in corollary 7, and the latter follows immediately from the fact the only
interaction between C and S is through FSFE(PI-PRF(·, ·)).

Protocol ΠOPRF

Parties: C (the client) and S (the server)

Parameters: PI-PRF(·, ·) : {0, 1}λ × {0, 1}n(λ) → {0, 1}m(λ) is a pseudorandom-input PRF,
naPRF(·, ·) : {0, 1}λ × {0, 1}n(λ) → {0, 1}n(λ) is a non-adaptive PRF, and ELF.Gen is an ELF.

Hybrid Model: The protocol is defined in the FSFE(PI-PRF(·, ·))-hybrid model.

Input: S holds as input a PI-PRF key kPI-PRF ∈ {0, 1}λ, a naPRF key knaPRF ∈ {0, 1}λ, and
randomness r ∈ {0, 1}λ; and C holds as input x ∈ {0, 1}n(λ).

Setup: The CRS is a 2λ-bit random string.

The Protocol:

1. C parses the CRS as (knaPRF, r), where knaPRF, r ∈ {0, 1}λ
2. C computes computes f ← ELF.Gen(2n(λ), 2n(λ); r)
3. S and C send respectively (server, kPI-PRF) and (client, naPRF(f(x)) to FSFE(PI-PRF(·, ·)),

and C waits to receive y ∈ {0, 1}m(λ) from FSFE(PI-PRF(·, ·)).
4. S outputs ⊥, and C outputs y.

Fig. 4: OPRF (parameterised by the PRF of corollary 7) given secure function evaluation of a
pseudorandom-input PRF.

Remark 10 (Instantiating Sate-of-the-Art OPRF). We recall that the OPRF construction of Dinur et
al. [DGH+21], using only two rounds and 641 bits of online communication, boils down to providing a
special-purpose protocol for securely computing Boneh et al. s [BIP+18] weak PRF candidate. Under
the assumption that this candidate is in fact a pseudorandom-input PRF (for some class of admissible
samplers)—we discuss this assumption in section 5.1—then the construction of fig. 4 can be used to
instantiate Dinur et al.’s [DGH+21] OPRF while preserving the number of rounds and the amount
of communication. Depending on the desired level of security (e.g. malicious), some additional tools
will be required.

12

4 Instantiating Hash-then-Evaluate: From PI-PCF to PCF

Section 3.2 shows that the random oracle which boosts a weak PRF to a strong PRF—up to
the pseudorandom-input caveat—can be instantiated. Seeing function secret sharing (FSS) as a
compiler which turns a (weak, non-adaptive, strong) PRF into a (weak, non-adaptive, strong) PCF
(cf. [BCG+20, Theorem 5.5]), the results in Section 3.2 have direct implications to PCFs. In this
section, we show that our weak-to-non-adaptive-to-strong transforms can in fact be applied to any
PCF (without having to assume it was obtained by using FSS).

Section 4.1 recalls the existing notions of PCF from [BCG+20]: weak (wPCF), non-adaptive (naPCF),
and strong PCFs (sPCF). Section 4.2 introduces the notions of pseudorandom-input PCF (PI-PCF)
and fully non-adaptive PCF (fnaPCF). Sections 4.3 and 4.4 introduce transforms to boost a PI-PCF
to a fnaPCF, and a fnaPCF to a sPCF, respectively.

4.1 Existing flavours of Pseudorandom Correlation Functions

At a high level, a pseudorandom correlation function (PCF) cryptographically compresses (superpoly-
nomial-size) correlated random strings from some ideal correlation, e.g. generating long vectors of
Beaver triples [Bea92]12, down to short keys. Given a key, it should be possible to incrementally
recover parts of the long string, e.g. evaluating the PCF key at position i should yield a party’s share
of the ith Beaver triple. Prior works have considered three different flavours of PCFs, from weakest to
strongest: weak PCFs (wPCF), non-adaptive PCFs (naPCF), and strong PCFs (sPCF). Intuitively,
and analogously to their PRF counterparts, security is guaranteed (e.g. the pseudorandom Beaver
triples are “safe to use”) when evaluating the PCF keys at random (resp. non-adaptively chosen,
resp. any) points. Note that contrary to PRFs, the PCF literature treats weak PCFs (security w.r.t.
random inputs) as the default PCF which is motivated in part by [BCG+20, Theorem 4.5], which
shows that the hash-then-evaluate paradigm can be used to turn a weak PCF into a strong one.

For technical reasons, and in order to provide a meaningful definition of PCF for infinite families
of finite correlations, we only consider reverse sampleable correlations (Definition 11). We refer to
[BCG+20, Section 4] for more details.

Definition 11 (Reverse-Sampleable Correlation, [BCG+19]). Let 1 ≤ `0(λ), `1(λ) ≤ poly(λ)
be output-length functions. Let Y be a probabilistic algorithm on input 1λ, returns a pair of outputs
(y0, y1) ∈ {0, 1}`0(λ) × {0, 1}`1(λ), defining a correlation on the outputs.
We say that Y defines a reverse-sampleable correlation if there exists a PPT algorithm RSample which
takes as input 1λ, σ ∈ {0, 1}, and yσ ∈ {0, 1}`σ(λ), and outputs y`1−σ(λ)1−λ , such that for all σ ∈ {0, 1}

{(y0, y1) : (y0, y1)←$ Y(1λ)} and {(y0, y1) : (y′0, y′1)←$ Y(1λ), yσ ← y′σ, y1−σ ← RSample(1λ, σ, yσ)} .

are statistically close.

All the different flavours of PCF admit the same syntax, which we describe in Definition 12.

Definition 12 (Pseudorandom Correlation Function – Syntax [BCG+20, Definition 4.3]).
Let Y be a reverse-sampleable correlation with output length functions `0(λ), `1(λ) and let λ ≤ n(λ) ≤
poly(λ) be an input length function. Syntactically, a pseudorandom correlation generator is a pair of
algorithms PCF = (PCF.Gen,PCF.Eval) with the following syntax:

– wPCF.Gen(1λ) is a probabilistic polynomial time algorithm that on input 1λ, outputs a pair of keys
(k0, k1); we assume that λ can be inferred from the keys.

– wPCF.Eval(σ, kσ, x) is a deterministic polynomial time algorithm that on input σ ∈ {0, 1}, key kσ
and input value x ∈ {0, 1}n(λ), outputs a value yσ ∈ {0, 1}`σ(λ).

12 Recall that multiplication triples are linear shares [a], [b], [c] of some random multiplication triple (a, b, c =
ab) where a, b←$R where R is some ring. As shown by Beaver [Bea92] parties holding linear shares of two
different inputs x, y ∈ R can compute linear shares of x · y by: (1) locally computing shares of α = x − a
and β = y − b as [α]← [x]− [a] and [β]← [y]− [b], (2) broadcasting the shares of α and β to reconstruct
these values, (3) locally setting [x · y]← α · [y] + β · [x]− α · β + [c].

13

4.1.1 (Weak) Pseudorandom Correlation Function (wPCF). A PCF (with the syntax of
Definition 12) is said to be a secure weak pseudorandom correlation function (wPCF) if it satisfies the
properties of Definitions 13 and 14. At a high level, the property of (weak) pseudorandom Y-correlated
outputs states that the evaluations of the PCF (on truly random points) should look like samples
from the ideal distribution Y from the point of view of an external adversary (who does not hold a
PCF key). The (weak) PCF security property captures that a player holding a PCF key and seeing
the other PCF key’s evaluation at random points should learn “nothing about the other PCF key,
except for its evaluation at those points”.

Definition 13 ((Weakly) pseudorandom Y-correlated outputs of a PCF). For every non-
uniform adversary A of size B(λ), it holds that for all sufficiently large λ,∣∣∣Pr[Expw-prA,N,0(λ) = 1]− Pr[Expw-prA,N,1(λ) = 1]

∣∣∣ ≤ ε(λ)
where Expw-prA,N,b (b ∈ {0, 1}) is defined as in Figure 5. In particular, the adversary is given access to
N(λ) samples.

Experiment (Weakly) Pseudorandom Correlated Outputs

Expw-prA,N,0(λ)

for i = 1 . . . N(λ) :

x(i) ←$ {0, 1}n(λ)

(y
(i)
0 , y

(i)
1)←↩ Y(1λ)

b← A(1λ, (x(i), y(i)0 , y
(i)
1)i∈[N(λ)])

return b

Expw-prA,N,1(λ)

(k0, k1)←$ wPCF.Gen(1λ)

for i = 1 . . . N(λ) :

x(i) ←$ {0, 1}n(λ)

for σ ∈ {0, 1} :

y(i)σ ←$ wPCF.Eval(σ, kσ, x
(i))

b← A(1λ, (x(i), y(i)0 , y
(i)
1)i∈[N(λ)])

return b

Fig. 5: (Weakly) Pseudorandom Y-correlated outputs of a wPCF.

Definition 14 ((Weak) PCF Security). For every σ ∈ {0, 1} and every non-uniform adversary
A of size B(λ), it holds that for all sufficiently large λ,

|Pr[Expw-secA,N,σ,0(λ) = 1]− Pr[Expw-secA,N,σ,1(λ) = 1]| ≤ ε(λ)

where Expw-secA,N,σ,b (b ∈ {0, 1}) is defined as in Figure 6. In particular, the adversary is given access to
N(λ) samples (or simply N if there is no ambiguity).

Experiment (Weak) PCF Security

Expw-secA,N,σ,0(λ)

(k0, k1)←$ wPCF.Gen(1λ)

for i = 1 . . . N(λ) :

x(i) ←$ {0, 1}n(λ)

y
(i)
1−σ ←$ wPCF.Eval(1− σ, k1−σ, x(i))

b← A(1λ, σ, kσ, (x(i), y(i)1−σ)i∈[N(λ)])

return b

Expw-secA,N,σ,1(λ)

(k0, k1)←$ wPCF.Gen(1λ)

for i = 1 . . . N(λ) :

x(i) ←$ {0, 1}n(λ)

y(i)σ ←$ wPCF.Eval(σ, kσ, x
(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y(i)σ)

b← A(1λ, σ, kσ, (x(i), y(i)1−σ)i∈[N(λ)])

return b

Fig. 6: Security of a wPCF. RSample is the algorithm for reverse sampling Y as in Definition 11.

14

4.1.2 Non-Adaptive Pseudorandom Correlation Function (naPCF). A PCF naPCF =
(naPCF.Gen, naPCF.Eval) (with the syntax of Definition 12) is said to be a secure non-adaptive pseu-
dorandom correlation function (naPCF) if it satisfies the properties of Definitions 15 and 16. These
properties are analogous to the weak counterpart, but hold on non-adaptively chosen queries, instead
of only on truly random ones.

Definition 15 (Non-adaptively pseudorandom Y-correlated outputs). For non-uniform ad-
versary A = (A0,A1) of size B(λ) asking at most N(λ) non-adaptive queries to the oracle Ob(·) (as
defined in Figure 7), it holds that for all sufficiently large λ,∣∣∣Pr[Expna-prA=(A0,A1),N,0

(λ) = 1]− Pr[Expna-prA=(A0,A1),N,1
(λ) = 1]

∣∣∣ ≤ ε(λ)
where Expna-prA=(A0,A1),N,b

(b ∈ {0, 1}) is defined as in Figure 7.

Experiment Non-Adaptively Pseudorandom Correlated Outputs

Expna-prA=(A0,A1),N,0
(λ)

((x(i))i∈[N(λ)], state)←$A0(1
λ)

for i = 1 to N(λ) :

(y
(i)
0 , y

(i)
1)←$ Y

b←$A1(state, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Expna-prA=(A0,A1),N,1
(λ)

((x(i))i∈[N(λ)], state)←$A0(1
λ)

(k0, k1)←$ naPCF.Gen(1λ)

for i = 1 to N(λ) :

for σ ∈ {0, 1} :

y(i)σ ← naPCF.Eval(σ, kσ, x
(i))

b←$A1(state, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Fig. 7: Non-Adaptively Pseudorandom Y-correlated outputs of a naPCF.

Definition 16 (Non-Adaptive PCF Security). For every σ ∈ {0, 1} and every non-uniform
adversary A = (A0,A1) of size B(λ), it holds that for all sufficiently large λ,∣∣∣Pr[Expna-secA=(A0,A1),N,σ,0(λ) = 1]− Pr[Expna-secA=(A0,A1),N,σ,1(λ) = 1]

∣∣∣ ≤ ε(λ)
where Expna-secA=(A0,A1),N,σ,b (b ∈ {0, 1}) is defined as in Figure 8.

Experiment Non-Adaptive PCF Security

Expna-secA=(A0,A1),N,σ,0(λ)

(k0, k1)←$ naPCF.Gen(1λ)

((x(i))i∈[N(λ)], state)←$A0(1
λ, σ, kσ)

for i = 1 to N(λ) :

y
(i)
1−σ ← naPCF.Eval(1− σ, k1−σ, x(i))

b←$A1(1
λ, σ, state, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

Expna-secA=(A0,A1),N,σ,1(λ)

(k0, k1)←$ naPCF.Gen(1λ)

((x(i))i∈[N(λ)], state)←$A0(1
λ, σ, kσ)

for i = 1 to N(λ) :

y(i)σ ← naPCF.Eval(σ, kσ, x
(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y(i)σ)

b←$A1(1
λ, σ, state, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

Fig. 8: Security of a non-adaptive PCF. Here, RSample is the algorithm for reverse sampling Y as in
Definition 11.

15

4.1.3 Strong Pseudorandom Correlation Function (sPCF). A PCF sPCF =
(sPCF.Gen, sPCF.Eval) (with the syntax of Definition 12) is said to be a secure strong pseudorandom
correlation function (sPCF) if it satisfies the properties of Definitions 17 and 18. These properties are
analogous to the non-adaptive counterpart, but hold on adaptively chosen queries, instead of only on
non-adaptive ones.

Definition 17 (Strongly pseudorandom Y-correlated outputs). For every non-uniform ad-
versary A of size B(λ) asking at most N(λ) queries to the oracle Ob(·) (as defined in Figure 9), it
holds that for all sufficiently large λ,∣∣∣Pr[Exps-prA,0(λ) = 1]− Pr[Exps-prA,1(λ) = 1]

∣∣∣ ≤ ε(λ)
where Exps-prA,b (b ∈ {0, 1}) is defined as in Figure 9.

Experiment Strongly Pseudorandom Correlated Outputs

Exps-prA,b(λ)

(k0, k1)←$ sPCF.Gen(1λ)

Q ← ∅

b←$AOb(·)(1λ)
return b

O0(x)

if (x, y0, y1) ∈ Q :

return (y0, y1)

else :

(y0, y1)←$ Y(1λ)
Q ← Q∪ {(x, y0, y1)}
return (y0, y1)

O1(x)

for σ ∈ {0, 1} :

yσ ← sPCF.Eval(1λ, σ, kσ, x)

return (y0, y1)

Fig. 9: Strongly Pseudorandom Y-correlated outputs of a sPCF.

Definition 18 (Strong PCF Security). For every σ ∈ {0, 1} and every non-uniform adversary
A of size B(λ) asking at most N(λ) queries to the oracle Ob(·) (as defined in Figure 10), it holds that
for all sufficiently large λ,

|Pr[Exps-secA,0,σ(λ) = 1]− Pr[Exps-secA,1,σ(λ) = 1]| ≤ ε(λ)

where Exps-secA,σ is defined as in Figure 10.

Experiment Strong PCF Security

Expna-secA,b,σ(λ)

(k0, k1)←$ sPCF.Gen(1λ)

b←$AOb(·)(1λ, σ, kσ)
return b

O0(x)

y1−σ ← sPCF.Eval(1− σ, k1−σ, x)
return y1−σ

O1(x)

yσ ← sPCF.Eval(σ, kσ, x)

y1−σ ← RSample(1λ, σ, yσ)

return y1−σ

Fig. 10: Security of a strong PCF. Here, RSample is the algorithm for reverse sampling Y as in
Definition 11.

4.2 What is the weakest “useful” notion of a PCF?

The weakest flavour of PCF in the literature is that of weak PCF. Assume two parties wish to use
a weak PCF for OT correlations13 in order to generate correlated randomness to be used for secure
13 A 1-out-of-2 bit-OT correlation can be defined as being sampled as a pair (of pairs) (m0,m1) and (σ,mσ),

where (m0,m1) are the OT sender’s random messages in {0, 1}, and σ is the random choice bit given to
the receiver.

16

computation. They will need some way to agree on which OT correlations to use, i.e. on which points
their PCF keys should be evaluated. If they were using a non-adaptive PCF, they could simply use
some predetermined order, e.g. 1, 2, 3, etc. or (sid, 1), (sid, 2), (sid, 3), etc. for a session identifier sid.
However, with a weak PCF the OT correlations will only be guaranteed to be “safe to use”14 when
indices are chosen uniformly at random. Thus, the parties need to agree beforehand on a random
string or a CRS which grows with the size of the computation. This raises the following question:

Is there an intermediary notion, stronger than a wPCF but weaker than a naPCF, which
is directly useful for MPC applications without a CRS?

A natural idea is to replace a large random string by a pseudorandom string which can be generated by
a pseudorandom function using a small seed which is small enough to become a part of each party’s
PCF key. We thus introduce the concept of a pseudorandom-input PCF (PI-PCF), which remains
correct and secure even if the PCF inputs are chosen pseudorandomly, according to a public seed.

4.2.1 Defining a Pseudorandom-Input PCF (PI-PCF). Again, we rely on the concept of an
admissible sampler (Definition 2), which we previously introduced in the context of PI-PRFs.
We define a PI-PCF syntactically in the same way as a weak PCF (Definition 12), but demand the
stronger properties of pseudorandom Y-correlated outputs and PCF security, which we describe in
Definitions 19 and 20 (differences with the corresponding notions for a weak PCF are highlighted).
We refer to ?? for a complete and standalone definition.

Definition 19 (Pseudorandom Y-correlated outputs of a PI-PCF). For every non-uniform
PPT adversary A, it holds that for all polynomials N , for all admissible samplers Samn(λ),N ,

|Pr[ExpPI-prA,N,0(λ) = 1]− Pr[ExpPI-prA,N,1(λ) = 1]|

is negligible, where Figure 11 defines ExpPI-prA,N,b(λ) (b ∈ {0, 1}).

Experiment Pseudorandom Correlated Outputs for Pseudorandom Inputs

ExpPI-prA,N,0(λ)

r ←$ {0, 1}λ

(x(1), . . . , x(N(λ)))← Samn(λ),N(λ)(r)

for i = 1 . . . N(λ) :

(y
(i)
0 , y

(i)
1)←↩ Y(1λ)

b← A(1λ, (x(i), y(i)0 , y
(i)
1)i∈[N(λ)], r)

return b

ExpPI-prA,N,1(λ)

(k0, k1)←$ PI-PCF.Gen(1λ)

r ←$ {0, 1}λ

(x(1), . . . , x(N(λ)))← Samn(λ),N(λ)(r)

for i = 1 . . . N(λ) :

for σ ∈ {0, 1} :

y(i)σ ←$ PI-PCF.Eval(σ, kσ, x
(i))

b← A(1λ, (x(i), y(i)0 , y
(i)
1)i∈[N(λ)], r)

return b

Fig. 11: Pseudorandom Y-correlated outputs of a PI-PCF. Differences with a wPCF (Figure 5) are
highlighted.

Definition 20 (PI-PCF Security). For every σ ∈ {0, 1} and every non-uniform PPT A, it holds
that for all polynomial N , for all admissible samplers
Samn(λ),N ,

|Pr[ExpPI-secA,N,σ,0(λ) = 1]− Pr[ExpPI-secA,N,σ,1(λ) = 1]|

14 More precisely, correctness (i.e. parties hold tuples of the form (m0,m1) and (σ,mσ)) is tied to the wPCF
having (weakly) OT -correlated pseudorandom outputs, while security (i.e. m1−σ is hidden from the receiver
and σ is hidden from the sender) is tied to wPCF security.

17

is negligible, where ExpPI-secA,N,σ,b (b ∈ {0, 1}) is defined as in Figure 12.

Experiment PI-PCF Security

ExpPI-secA,N,σ,0(λ)

(k0, k1)←$ PI-PCF.Gen(1λ)

r ←$ {0, 1}λ

(x(1), . . . , x(N(λ)))← Samn(λ),N(λ)(r)

for i = 1 . . . N(λ) :

y
(i)
1−σ ←$ PI-PCF.Eval(1− σ, k1−σ, x(i))

b← A(1λ, σ, kσ, (x(i), y(i)1−σ)i∈[N(λ)], r)
return b

ExpPI-secA,N,σ,1(λ)

(k0, k1)←$ PI-PCF.Gen(1λ)

r ←$ {0, 1}λ

(x(1), . . . , x(N(λ)))← Samn(λ),N(λ)(r)

for i = 1 . . . N(λ) :

y(i)σ ←$ PI-PCF.Eval(σ, kσ, x
(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y(i)σ)

b← A(1λ, σ, kσ, (x(i), y(i)1−σ)i∈[N(λ)], r)
return b

Fig. 12: Security of a pseudorandom-input PCF. Here, RSample is the algorithm for reverse sampling
Y as in Definition 11.

We note that the requirement of tolerating any admissible sampler is a strong one (but admittedly
still weaker than a non-adaptive PCF). We discuss in Remark 24 a meaningful relaxation which is
still strong enough to allow our transformation to go through.

4.2.2 A conditional argument towards minimality. Let us now show that if there exists a
weak PCF which is not a pseudorandom-input PCF, then it can be used to build an infinitely-often
key-agreement scheme. This theorem is not trivial in the sense that a weak PCF can be seen a form
of silent (and incremental) OT extension, and is not known to imply the existence of infinitely often
key-agreement15. Moreover, as we discuss in Section 5.2, there are plausible candidates of weak PCFs
from assumptions not known to imply infinitely often key-agreement.

Theorem 21 (wPCF not PI-PCF implies io-KA). Let wPCF be a weak PCF (for some corre-
lation). If wPCF is not a pseudorandom-input PCF (for that same correlation), then there exists an
infinitely often two-party key-agreement protocol.

Proof sketch. If wPCF is a weak PCF for some correlation Y, but not a pseudorandom-input PCF for
Y, then this means that at least one out of (1) pseudorandom-input pseudorandom Y-correlated outputs
or (2) the pseudorandom-input PCF security is violated. The proof proceeds by case distinction and
shows that in either case, there is a key-agreement protocol which 1

2 + ε, for a non-negligible function
ε. The argument is analogous to Pietrak-Sjödin [PS08]. For completeness, we include the proofs of
both statements in Appendix B.2.

4.2.3 Defining a fully non-adaptive PCF (fnaPCF). The notion of PI-PCF we just introduced
is analogous to the notion of PI-PRF we introduced in Definition 3. In Section 3.2, we showed a
modular strengthening from PI-PRF to sPRF, via a naPRF; it is therefore a natural question to
ask whether the same transformation can be used to first turn a PI-PCF into a naPCF, and then
a naPCF into a sPCF. This would be interesting because the first transform, which does not even
require the application of an ELF, has the potential of being very lightweight. Unfortunately, for
technical reasons, the intermediary notion we obtain is not a non-adaptive PCF, but what we coin
as a fully non-adaptive PCF. The difference lies in the inputs of a non-adaptive PCF must be chosen
before seeing any of the evaluations of the honest party’s PCF key, but can be chosen after seeing
the corrupt party’s PCF key.
15 In fact, (interactive) OT extension is known to be in Minicrypt [IKNP03]. The minimal assumptions for

silent OT extension are unknown.

18

We now introduce the notion of a fully non-adaptive PCF (fnaPCF), which differs from a non-adaptive
PCF in that in the PCF security game, the adversary must produce the evaluation points before even
seeing the corrupt party’s PCF key. A fnaPCF is syntactically defined a non-adaptive PCF (??)
and satisfies the same notion of non-adaptively pseudorandom Y-correlated outputs (Definition 15)
as a non-adaptive PCF, but satisfies a stronger security property which we define in Definition 22
(differences with the security of a naPCF are highlighted).

Definition 22 (Fully Non-Adaptive PCF Security). For every σ ∈ {0, 1} and every non-
uniform adversary A = (A0,A1) of size B(λ), it holds that for all sufficiently large λ,

|Pr[Expfna-secA=(A0,A1),N,σ,0(λ) = 1]− Pr[Expfna-secA=(A0,A1),N,σ,1(λ) = 1]| ≤ ε(λ)

where Expna-secA=(A0,A1),N,σ,b (b ∈ {0, 1}) is defined as in Figure 13.

Experiment Fully Non-Adaptive PCF Security

Expfna-secA=(A0,A1),N,σ,0(λ)

(k0, k1)←$ fnaPCF.Gen(1λ)

((x(i))i∈[N(λ)], state)←$A0(1
λ, σ)

for i = 1 to N(λ) :

y
(i)
1−σ ← fnaPCF.Eval(1− σ, k1−σ, x(i))

b←$A1(1
λ, σ, state, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

Expfna-secA=(A0,A1),N,σ,1(λ)

(k0, k1)←$ fnaPCF.Gen(1λ)

((x(i))i∈[N(λ)], state)←$A0(1
λ, σ)

for i = 1 to N(λ) :

y(i)σ ← fnaPCF.Eval(σ, kσ, x
(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y(i)σ)

b←$A1(1
λ, σ, state, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

Fig. 13: Security of a fully non-adaptive PCF. Here, RSample is the algorithm for reverse sampling Y
as in Definition 11. Differences with Figure 13 are highlighted.

4.3 Boosting security from PI-PCF to fnaPCF.

Having defined the notions of pseudorandom-input and fully non-adaptive PCFs, we are ready to
introduce our transform.

fnaPCF Fully Non-Adaptive PCF from Pseudorandom-Input PCF + naPRF

Requires:

– Y is a reverse-sampleable correlation with input length function n(λ).
– PI-PCF = (PI-PCF.Gen,PI-PCF.Eval) is a pseudorandom-input weak PCF for Y.
– naPRF is a non-adaptive PRF with key space {0, 1}λ, input space {0, 1}n(λ), and output

space {0, 1}n(λ).

fnaPCF.Gen(1λ):

1. knaPRF ←$ {0, 1}λ
2. (kPI-PCF

0 , kPI-PCF
1)←$ PI-PCF.Gen(1λ)

3. For σ ∈ {0, 1}, set kσ ← (knaPRF, k
PI-PCF
σ)

4. Output (k0, k1)

fnaPCF.Eval(σ, kσ, x):

1. Parse kσ as kσ = (knaPRF, k
PI-PCF
σ)

2. x′ ← naPRF(knaPRF, x)
3. Set yσ ← PI-PCF.Eval(σ, kPI-PCF

σ , x′)
4. Output yσ

Fig. 14: Applying a non-adaptive PRF to a pseudorandom-input PCF’s input yields a fully non-
adaptive PCF.

19

Lemma 23 (PI-PCF ◦ naPRF is a fnaPCF). Applying a non-adaptive PRF to the input of
a pseudorandom-input weak PCF for some correlation Y yields a non-adaptive PCF for the same
correlation Y. More formally, the construction of Figure 14 is a non-adaptive PCF.

Remark 24 (A PI-PCF “for all admissible samplers” is not required). By careful inspection of the
proof of Lemma 23 (and specifically in the hop from hybrid Hyb1 to Hyb2 in Figure 15, and in the same
hop in Figure 16), one may observe that all is required of the PI-PCF is that it tolerates admissible
samplers of the form “Samn(λ),N(λ) : (x(i))i∈[N(λ)] ←$ A(1λ); knaPRF ←$ {0, 1}λ; For i ∈ [N(λ)],
(x′)(i) ← naPRF(knaPRF, x

(i)); Return ((x′)(i))i∈[N(λ)]”. This relaxation on the notion of a PI-PCF is
the key to plausibly instantiating it under variants of LPN, as discussed in Section 5.2.

Proof of Lemma 23. Let Y be a reverse-sampleable correlation with input length function n(λ), let
PI-PCF = (PI-PCF.Gen,PI-PCF.Eval) be a pseudorandom-input weak PCF for Y, let naPRF be a
non-adaptive PRF with key space {0, 1}λ, input space {0, 1}n(λ), and output space {0, 1}n(λ). Let
fnaPCF = (fnaPCF.Gen, fnaPCF.Eval) be defined as in Figure 14.
In order to show that it is a fully non-adaptive PCF, we need to show it has non-adaptively pseudo-
random Y-correlated outputs and that it satisfies fully non-adaptive PCF security. Both reductions
follow along the same lines as the proof of Lemma 5, showing an analogous transformation from
pseudorandom-input PRF to non-adaptive PRF.

1. Non-adaptively pseudorandom Y-correlated outputs. Let N be a polynomial function, and let
A = (A0,A1) be a non-uniform adversary of size B(λ)making at most N(λ) non-adaptive queries.
Without loss of generality, we assume that the state output by A0 are the random coins it used
(recall that A0 outputs N(λ) naPRF inputs as well as its state, to be passed to the distinguisher
A1); we denote `0 the length of this state/randomness.
Consider the sequence of hybrids Hyb0,Hyb1,Hyb2,Hyb3 as defined in Figure 15.
We now show these hybrids to be indistinguishable.

– H0 ≡ H1: This follows from the observation that H0 and H1 are code-equivalent; we simply
inlined the definitions of fnaPCF.Gen and fnaPCF.Eval, then introduced Samn(λ),N(λ).

– H1
c
≈ H2: By security of the non-adaptive PRF naPRF, the sampler Samn(λ),N(λ) is ad-

missible (Definition 2). Since the outputs of PI-PCF are PI-pseudorandom Y-correlated and
Samn(λ),N(λ) is admissible, H1

c
≈ H2.

– H2 ≡ H3: H2 and H3 are code-equivalent (as the highlighted lines define random variables
never subsequently used).

2. Fully Non-adaptive PCF security. Let σ ∈ {0, 1}. Let N be a polynomial function, and let A =
(A0,A1) be a non-uniform adversary of size B(λ) making at most N(λ) non-adaptive queries.
Without loss of generality, we assume that the state output by A0 are the random coins it used
(recall that A0 outputs N(λ) naPRF inputs as well as its state, to be passed to the distinguisher
A1); we denote `0 the length of this state/randomness.
Consider the sequence of hybrids Hyb0,Hyb1,Hyb2,Hyb3 as defined in Figure 16.
We now show these hybrids to be indistinguishable.

– H0 ≡ H1: This follows from the observation that H0 and H1 are code-equivalent.
– H1

c
≈ H2: By security of the non-adaptive PRF naPRF, the sampler Samn(λ),N(λ) is admis-

sible (Definition 2). By applying PI-PCF security of PI-PCF, with the admissible sampler
Samn(λ),N(λ), we immediately get that H1

c
≈ H2.

– H2 ≡ H3: This follows from the observation that H2 and H3 are code-equivalent (Completely
analogously to how H1 and H1, as these games use the same primitives of Samn(λ),N(λ),
fnaPCF.Gen, and fnaPCF.Eval).

4.4 Boosting security from fnaPCF to sPCF.

We now show a transform from a fully non-adaptive to a strong PCF.

20

Hyb0 = Expna-prA=(A0,A1),N,1
(λ)

((x(i))i∈[N(λ)], state)←$A0(1
λ)

(k0, k1)←$ fnaPCF.Gen(1λ)

for i = 1 to N(λ) :

for σ ∈ {0, 1} :

y(i)σ ← fnaPCF.Eval(σ, kσ, x
(i))

b←$A1(state, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

fnaPCF.Gen(1λ)

knaPRF ←$ {0, 1}λ

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

for σ ∈ {0, 1} :
kσ ← (knaPRF, k

PI-PCF
σ)

return (k0, k1)

fnaPCF.Eval(σ, kσ, x)

Parse kσ = (knaPRF, k
PI-PCF
σ)

x′ ← naPRF(knaPRF, x)

yσ ← PI-PCF.Eval(σ, kPI-PCF
σ , x′)

return yσ

Hyb1(λ)

r ←$ {0, 1}λ+`0

((x′)(i))i∈[N(λ)] ← Samn(λ),N(λ)(r)

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

for i = 1 to N(λ) :

for σ ∈ {0, 1} :

y
(i)
σ ← PI-PCF.Eval(σ, kPI-PCFσ , (x′)(i))

b←$A1(r0, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Samn(λ),N(λ)(r) :

knaPRF ← r[0, λ− 1]

r0 ← r[λ, λ+ `0 − 1]

(x(1), . . . , x(N(λ)))←$A0(1
λ; r0)

for i = 1 to N(λ) :

(x′)(i) ← naPRF(knaPRF, x
(i))

return ((x′)(1), . . . , (x′)(N(λ)))

Hyb2(λ)

r ←$ {0, 1}λ+`0

((x′)(i))i∈[N(λ)] ← Samn(λ),N(λ)(r)

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

for i = 1 to N(λ) :

(y
(i)
0 , y

(i)
1)←$ Y

b←$A1(r0, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Samn(λ),N(λ)(r) :

knaPRF ← r[0, λ− 1]

r0 ← r[λ, λ+ `0 − 1]

(x(1), . . . , x(N(λ)))←$A0(1
λ; r0)

for i = 1 to N(λ) :

(x′)(i) ← naPRF(knaPRF, x
(i))

return ((x′)(1), . . . , (x′)(N(λ)))

Hyb2(λ) (repeated)

r ←$ {0, 1}λ+`0

r0 ← r[λ, λ+ `0 − 1]

((x′)(i))i∈[N(λ)] ← Samn(λ),N(λ)(r)

(kPI-PCF0 , kPI-PCF1)←$ PI-PCF.Gen(1λ)

for i = 1 to N(λ) :

(y
(i)
0 , y

(i)
1)←$ Y

b←$A1(r0, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Samn(λ),N(λ)(r) :

knaPRF ← r[0, λ− 1]

r0 ← r[λ, λ+ `0 − 1]

(x(1), . . . , x(N(λ)))←$A0(1
λ; r0)

for i = 1 to N(λ) :

(x′)(i) ← naPRF(knaPRF, x
(i))

return ((x′)(1), . . . , (x′)(N(λ)))

Hyb3 = Expna-prA=(A0,A1),N,0
(λ)

((x(i))i∈[N(λ)], state)←$A0(1
λ)

for i = 1 to N(λ) :

(y
(i)
0 , y

(i)
1)←$ Y

b←$A1(state, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

fnaPCF.Gen(1λ)

knaPRF ←$ {0, 1}λ

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

for σ ∈ {0, 1} :
kσ ← (knaPRF, k

PI-PCF
σ)

return (k0, k1)

fnaPCF.Eval(σ, kσ, x)

Parse kσ = (knaPRF, k
PI-PCF
σ)

x′ ← naPRF(knaPRF, x)

yσ ← PI-PCF.Eval(σ, kPI-PCF
σ , x′)

return yσ

Fig. 15: Sequence of hybrids for proving non-adaptively pseudorandom Y-correlated outputs in the
proof of Lemma 23.

sPCF Strong PCF from Fully Non-Adaptive PCF + ELF

Requires:

21

Hyb0 = Expfna-secA=(A0,A1),N,σ,0
(λ)

(k0, k1)←$ fnaPCF.Gen(1λ)

((x(i))i∈[N(λ)], state)←$A0(1
λ, σ)

for i = 1 to N(λ) :

y
(i)
1−σ ← fnaPCF.Eval(1− σ, k1−σ, x(i))

b←$A1(1
λ, σ, state, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

fnaPCF.Gen(1λ)

knaPRF ←$ {0, 1}λ

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

for σ ∈ {0, 1} :
kσ ← (knaPRF, k

PI-PCF
σ)

return (k0, k1)

fnaPCF.Eval(σ, kσ, x)

Parse kσ = (knaPRF, k
PI-PCF
σ)

x′ ← naPRF(knaPRF, x)

yσ ← PI-PCF.Eval(σ, kPI-PCF
σ , x′)

return yσ

Hyb1(λ)

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

r ←$ {0, 1}λ+`0

r0 ← r[λ, λ+ `0 − 1]; rnaPRF ← r[0, λ− 1]

(x(i))i∈[N(λ)] ← Samn(λ),N(λ)(r)

for i = 1 to N(λ) :

y
(i)
1−σ ← PI-PCF.Eval(σ, kPI-PCF

1−σ , x
(i))

b←$A1(1
λ, σ, r0, r1, k

PI-PCF
σ , (x(i), y

(i)
1−σ)i∈[N(λ)])

return b

Samn(λ),N(λ)(r) :

knaPRF ← r[0, λ− 1]

r0 ← r[λ, λ+ `0 − 1]

(x(1), . . . , x(N(λ)))←$A0(1
λ; r0)

for i = 1 to N(λ) :

(x′)(i) ← naPRF(knaPRF, x
(i))

return ((x′)(1), . . . , (x′)(N(λ)))

Hyb2(λ)

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

r ←$ {0, 1}λ+`0

r0 ← r[λ, λ+ `0 − 1]; rnaPRF ← r[0, λ− 1]

(x(i))i∈[N(λ)] ← Samn(λ),N(λ)(r)

for i = 1 to N(λ) :

y
(i)
σ ← PI-PCF.Eval(σ, kPI-PCFσ , (x′)(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y

(i)
σ)

b←$A1(1
λ, σ, r0, r1, k

PI-PCF
σ , (x(i), y

(i)
1−σ)i∈[N(λ)])

return b

Samn(λ),N(λ)(r) :

knaPRF ← r[0, λ− 1]

r0 ← r[λ, λ+ `0 − 1]

(x(1), . . . , x(N(λ)))←$A0(1
λ; r0)

for i = 1 to N(λ) :

(x′)(i) ← naPRF(knaPRF, x
(i))

return ((x′)(1), . . . , (x′)(N(λ)))

Hyb2(λ)

(kPI-PCF0 , kPI-PCF1)←$ PI-PCF.Gen(1λ)

r ←$ {0, 1}λ+`0

r0 ← r[λ, λ+ `0 − 1]; rnaPRF ← r[0, λ− 1]

((x′)(i))i∈[N(λ)] ← Samn(λ),N(λ)(r)

for i = 1 to N(λ) :

y
(i)
σ ← PI-PCF.Eval(σ, kPI-PCFσ , (x′)(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y(i)σ)

b←$A1(1
λ, σ, r0, r1, k

PI-PCF
σ , (x(i), y

(i)
1−σ)i∈[N(λ)])

return b

Samn(λ),N(λ)(r) :

knaPRF ← r[0, λ− 1]

r0 ← r[λ, λ+ `0 − 1]

(x(1), . . . , x(N(λ)))←$A0(1
λ; r0)

for i = 1 to N(λ) :

(x′)(i) ← naPRF(knaPRF, x
(i))

return ((x′)(1), . . . , (x′)(N(λ)))

Hyb3 = Expfna-secA=(A0,A1),N,σ,1
(λ)

(k0, k1)←$ fnaPCF.Gen(1λ)

((x(i))i∈[N(λ)], state)←$A0(1
λ, σ)

for i = 1 to N(λ) :

y
(i)
σ ← fnaPCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ←$ RSample(1λ, σ, y(i)σ)

b←$A1(1
λ, σ, state, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

fnaPCF.Gen(1λ)

knaPRF ←$ {0, 1}λ

(kPI-PCF
0 , kPI-PCF

1)←$ PI-PCF.Gen(1λ)

for σ ∈ {0, 1} :
kσ ← (knaPRF, k

PI-PCF
σ)

return (k0, k1)

fnaPCF.Eval(σ, kσ, x)

Parse kσ = (knaPRF, k
PI-PCF
σ)

x′ ← naPRF(knaPRF, x)

yσ ← PI-PCF.Eval(σ, kPI-PCF
σ , x′)

return yσ

Fig. 16: Sequence of hybrids for proving fnaPCF security in the proof of Lemma 23.

– Y is a reverse-sampleable correlation with input length function n(λ) (we will be conflating
the sets [2n(λ)] and {0, 1}n(λ) via their natural bijection).

– fnaPCF = (fnaPCF.Gen, fnaPCF.Eval) is a non-adaptive PCF for Y.
– ELF.Gen is an extremely lossy function.

22

sPCF.Gen(1λ):

1. f ←$ ELF.Gen(2n(λ), 2n(λ))
2. (kfnaPCF

0 , kfnaPCF
1)←$ fnaPCF.Gen(1λ)

3. For σ ∈ {0, 1}, set kσ ← (f, kfnaPCF
σ)

4. Output (k0, k1)

sPCF.Eval(σ, kσ, x):

1. Parse kσ as kσ = (f, kfnaPCF
σ)

2. x′ ← f(x)
3. Set yσ ← fnaPCF.Eval(σ, kfnaPCF

σ , x′)
4. Output yσ

Fig. 17: Applying an ELF to a fully non-adaptive PCF’s input yields a strong PCF.

Lemma 25 (fnaPCF ◦ ELF is a sPCF). Applying an ELF to the input of a fully non-adaptive
PCF for some correlation Y yields a strong PCF for the same correlation Y. More formally, the
construction of Figure 17 is a strong PCF.

Proof. Let Y be a reverse-sampleable correlation with input length function n(λ), let fnaPCF =
(fnaPCF.Gen, fnaPCF.Eval) be a pseudorandom-input weak PCF for Y, let ELF.Gen be an extremely
lossy function. Let sPCF = (sPCF.Gen, sPCF.Eval) be defined as in Figure 17.
In order to show that it is a strong PCF, we need to show it has strongly pseudorandom Y-correlated
outputs and that it satisfies strong PCF security. Both reductions follow along the same lines as the
proof of Lemma 6, showing an analogous transformation from non-adaptive PRF to strong PRF.

1. Strongly pseudorandom Y-correlated outputs. Let A be an non-uniform adversary of size B(λ)
asking at most N(λ) queries to the oracle Ob(·) (as defined in Figure 9)
Consider the sequence of hybrids (Hybi)i∈[0,9], as defined in Figures 18 to 20.

Hyb0(1
λ)

(k0, k1)←$ sPCF.Gen(1λ)

b←$AO1(·)(1λ)

return b

O1(x)

for σ ∈ {0, 1} :
yσ ← sPCF.Eval(σ, kσ, x)

return (y0, y1)

Hyb1(1
λ)

f ←$ ELF.Gen(2n(λ), 2n(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

b←$AO1(·)(1λ)

return b

O1(x)

for σ ∈ {0, 1} :
yσ ← fnaPCF.Eval(σ, kfnaPCF

σ , f(x))

return (y0, y1)

Hyb2(1
λ)

f ←$ ELF.Gen(2n(λ), N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

b←$AO1(·)(1λ)

return b

O1(x)

for σ ∈ {0, 1} :
yσ ← fnaPCF.Eval(σ, kfnaPCF

σ , f(x))

return (y0, y1)

inline sPCF ELF indist. ELF enum. Im

Fig. 18: Sequence of hybrids for proving strongly pseudorandom Y-correlated outputs in the proof of
lemma 25 (Part 1/3). Hyb0 = Exps-prA,1(λ).

Let us now show these hybrids to be instinguishable.

– Hyb0 ≡ Hyb1: These hybrids are code equivalent, we simply “inlined” the codes of sPCF.Gen
and sPCF.Eval.

– Hyb1
c
≈ Hyb2: These hybrids are indistinguishable by security of ELF. Indeed otherwise, the

PPT process of running fnaPCF.Gen, emulating O1, and running AO1(·) would constitute an
efficient distinguisher for the ELF security game.

– Hyb2 ≡ Hyb3: These hybrids are code-equivalent; observe that we simply moved the brunt of
the work of O1 to a pre-processing phase inside Hyb3.

– Hyb3 ≡ Hyb4: These hybrids are code-equivalent; we simply reorganised the code to introduce
A0 and A1.

– Hyb4
c
≈ Hyb5: These hybrids are indistinguishable by the property of non-adaptively pseudo-

random Y-correlated outputs of fnaPCF.

23

Hyb3(1
λ)

f ←$ ELF.Gen(2n(λ), N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

Q ← ∅
for z ∈ Im(f) :

y0 ← fnaPCF.Eval(0, kfnaPCF
0 , z)

y1 ← fnaPCF.Eval(1, kfnaPCF
1 , z)

Q ← Q∪ {(z, y0, y1)}

b←$AO1(·)(1λ)

return b

O1(x)

if (f(x), y0, y1) ∈ Q :

return (y0, y1)

else return ⊥

Hyb4(1
λ) Hyb5(1

λ)

((x(i))i∈[N(λ)], state)←$A0(1
λ)

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

for i = 1 . . . N(λ) :

y
(i)
0 ← fnaPCF.Eval(0, kfnaPCF

0 , x(i))

y
(i)
1 ← fnaPCF.Eval(1, kfnaPCF

1 , x(i))

(y
(i)
0 , y

(i)
1)←$ Y

b←$A1(state, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

A0(1
λ)

rELF ←$ {0, 1}λ

f ←$ ELF.Gen(2n(λ), N(λ); rELF)

state← rELF

return ((z)z∈Im(f), f)

A1(state, (y
(i)
0 , y

(i)
1)i∈[N(λ)])

f ←$ ELF.Gen(2n(λ), N(λ); state)

(x(i))i∈[N(λ)] ← (z)z∈Im(f)

Q ← {(x(i), y(i)0 , y
(i)
1) : i ∈ [N(λ)]}

Define: O1(·) : X 7→ (Y0, Y1)

s.t. (X,Y0, Y1) ∈ Q

b←$AO1(·)(1λ)

return b

Hyb6(1
λ)

f ←$ ELF.Gen(2n(λ), N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

Q ← ∅
for z ∈ Im(f) :

(y0, y1)←$ Y
Q ← Q∪ {(z, y0, y1)}

b←$AO0(·)(1λ)

return b

O0(x)

if (f(x), y0, y1) ∈ Q :

return (y0, y1)

else return ⊥

split adversary fnaPCF merge adversary ELF enum. Im.

Fig. 19: Sequence of hybrids for proving strongly pseudorandom Y-correlated outputs in the proof of
Lemma 25 (Part 2/3).

Hyb7(1
λ)

f ←$ ELF.Gen(2n(λ), N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

b←$AO0(·)(1λ)

return b

O0(x)

if (x, y0, y1) ∈ Q :

return (y0, y1)

else :

(y0, y1)←$ Y(1λ)
Q ← Q∪ {(x, y0, y1)}
return (y0, y1)

Hyb8(1
λ)

f ←$ ELF.Gen(2n(λ), 2n(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

b←$AO0(·)(1λ)

return b

O0(x)

if (x, y0, y1) ∈ Q :

return (y0, y1)

else :

(y0, y1)←$ Y(1λ)
Q ← Q∪ {(x, y0, y1)}
return (y0, y1)

Hyb9(1
λ)

(k0, k1)←$ sPCF.Gen(1λ)

Q ← ∅

b←$AO0(·)(1λ)

return b

O0(x)

if (x, y0, y1) ∈ Q :

return (y0, y1)

else :

(y0, y1)←$ Y(1λ)
Q ← Q∪ {(x, y0, y1)}
return (y0, y1)

ELF indist. inline sPCF

Fig. 20: Sequence of hybrids for proving strongly pseudorandom Y-correlated outputs in the proof of
lemma 25 (Part 3/3). Hyb9 = Exps-prA,0(λ)

24

– Hyb5 ≡ H6: These hybrids are code equivalent (this hop is essentially the reverse of the
transformation from Hyb3 to Hyb4).

– Hyb6 ≡ Hyb7: These hybrids are code equivalent (this hop is essentially the reverse of the
transformation from Hyb2 to Hyb3).

– Hyb7
c
≈ Hyb8: These hybrids are indistinguishable by security of ELF (with the exact same

argument used to show Hyb1
c
≈ Hyb2).

– Hyb8 ≡ Hyb9: These hybrids are code equivalent (this hop is essentially the reverse of the
transformation from Hyb0 to Hyb1).

2. Strong PCF security. Let σ ∈ {0, 1}. Let A be an non-uniform adversary of size B(λ) asking at
most N(λ) queries to the oracle Ob(·) (as defined in Figure 10).
Consider the sequence of hybrids (Hybi)i∈[0,9], as defined in Figures 21 to 23.

Hyb0 = Exps-secA,1,σ(λ)

(k0, k1)←$ sPCF.Gen(1λ)

b←$AO1(·)(1λ)

return b

O1(x)

yσ ← sPCF.Eval(σ, kσ, x)

y1−σ ← Rsample(1λ, σ, yσ)

return y1−σ

sPCF.Gen(1λ)

f ←$ ELF.Gen(2n(λ), 2n(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

for σ ∈ {0, 1} : kσ ← (f, kfnaPCF
σ)

return (k0, k1)

sPCF.Eval(σ, kσ, x)

Parse kσ as kσ = (f, kfnaPCF
σ)

x′ ← f(x)

yσ ← fnaPCF.Eval(σ, kfnaPCF
σ , x′)

return yσ

Hyb1(1
λ) Hyb2(1

λ)

f ←$ ELF.Gen(2n(λ), 2n(λ) N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

b←$AO1(·)(1λ)

return b

O1(x)

yσ ← fnaPCF.Eval(σ, kσ, x)

y1−σ ← Rsample(1λ, σ, yσ)

return y1−σ

Hyb3(λ)

f ←$ ELF.Gen(2n(λ), N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

Q ← ∅
for z ∈ Im(f) :

yσ ← fnaPCF.Eval(σ, kfnaPCF
σ , z)

y1−σ ← Rsample(1λ, σ, yσ)

Q ← Q∪ {(z, y1−σ)}

b←$AO1(·)(1λ)

return b

O1(x)

if (f(x), y1−σ) ∈ Q :

return y1−σ

else :

return ⊥

Fig. 21: Sequence of hybrids for proving strong PCF security in the proof of Lemma 25 (Part 1/3).

Let us now show these hybrids to be instinguishable.
– Hyb0 ≡ Hyb1: These hybrids are code equivalent, we simply “inlined” the codes of sPCF.Gen

and sPCF.Eval.
– Hyb1

c
≈ Hyb2: These hybrids are indistinguishable by security of ELF. Indeed otherwise, the

PPT process of running fnaPCF.Gen, emulating O1, and running AO1(·) would constitute an
efficient distinguisher for the ELF security game.

– Hyb2 ≡ Hyb3: These hybrids are code-equivalent; observe that we simply moved the brunt of
the work of O1 to a pre-processing phase inside Hyb3.

– Hyb3 ≡ Hyb4: These hybrids are code-equivalent; we simply reorganised the code to introduce
A0 and A1.

– Hyb4
c
≈ Hyb5: These hybrids are indistinguishable by the property of fully non-adaptive PCF

security of fnaPCF.
– Hyb5 ≡ Hyb6: These hybrids are code equivalent (this hop is essentially the reverse of the

transformation from Hyb3 to Hyb4).

25

Hyb4(λ)

((x(i))i∈[N(λ)], state)←$A0(1
λ, σ)

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

for i = 1 . . . N(λ) :

y(i)σ ← fnaPCF.Eval(σ, kfnaPCF
σ , x(i))

y
(i)
1−σ ← Rsample(1λ, σ, y(i)σ)

b←$A1(1
λ, σ, state, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

A0(1
λ, σ)

rELF ←$ {0, 1}λ

f ←$ ELF.Gen(2n(λ), N(λ); rELF)

state← rELF

return ((z)z∈Im(f), f)

A1(1
λ, σ, state, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

f ←$ ELF.Gen(2n(λ), N(λ); state)

(x(i))i∈[N(λ)] ← (z)z∈Im(f)

Q ← {(x(i), y(i)1−σ) : i ∈ [N(λ)]}
Define: O1(·) : X 7→ Y1−σ s.t. (X,Y1−σ) ∈ Q

b←$AO1(·)(1λ)

return b

Hyb5(λ)

((x(i))i∈[N(λ)], state)←$A0(1
λ, σ)

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

for i = 1 . . . N(λ) :

y
(i)
1−σ ← fnaPCF.Eval(1− σ, kfnaPCF

1−σ , x
(i))

b←$A1(1
λ, σ, state, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

return b

A0(1
λ, σ)

rELF ←$ {0, 1}λ

f ←$ ELF.Gen(2n(λ), N(λ); rELF)

state← rELF

return ((z)z∈Im(f), f)

A1(1
λ, σ, state, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

f ←$ ELF.Gen(2n(λ), N(λ); state)

(x(i))i∈[N(λ)] ← (z)z∈Im(f)

Q ← {(x(i), y(i)1−σ) : i ∈ [N(λ)]}
Define: O1(·) : X 7→ Y1−σ s.t. (X,Y1−σ) ∈ Q

b←$AO1(·)(1λ)

return b

Fig. 22: Sequence of hybrids for proving strong PCF security in the proof of Lemma 25 (Part 2/3).

Hyb6(λ)

f ←$ ELF.Gen(2n(λ), N(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

Q ← ∅
for z ∈ Im(f) :

y
(i)
1−σ ← fnaPCF.Eval(1− σ, kfnaPCF

1−σ , z)

Q ← Q∪ {(z, y1−σ)}

b←$AO1(·)(1λ)

return b

O1(x)

if (f(x), y1−σ) ∈ Q :

return y1−σ

else return ⊥

Hyb7(1
λ) Hyb8(1

λ)

f ←$ ELF.Gen(2n(λ), N(λ) 2n(λ))

(kfnaPCF
0 , kfnaPCF

1)←$ fnaPCF.Gen(1λ)

b←$AO0(·)(1λ)

return b

O0(x)

y1−σ ← fnaPCF.Eval(1− σ, k1−σ, x)
return y1−σ

Hyb9 = Exps-secA,0,σ(λ)

(k0, k1)←$ sPCF.Gen(1λ)

b←$AO0(·)(1λ)

return b

O0(x)

yσ ← sPCF.Eval(σ, kσ, x)

y1−σ ← Rsample(1λ, σ, yσ)

return y1−σ

Fig. 23: Sequence of hybrids for proving strong PCF security in the proof of Lemma 25 (Part 3/3).

26

– Hyb6 ≡ Hyb7: These hybrids are code equivalent (this hop is essentially the reverse of the
transformation from Hyb2 to Hyb3).

– Hyb7
c
≈ Hyb8: These hybrids are indistinguishable by security of ELF (with the exact same

argument used to show Hyb1
c
≈ Hyb2).

– Hyb8 ≡ Hyb9: These hybrids are code equivalent (this hop is essentially the reverse of the
transformation from Hyb0 to Hyb1).

By combining Lemmas 23 and 25 we immediately get Corollary 26.

Corollary 26 (PI-PCF◦naPRF◦ELF is a sPCF). Applying an ELF then a non-adaptive PRF
to the input of a pseudorandom-input weak PCF for some correlation Y yields a strong PCF for the
same correlation Y.

5 Candidate PI-PRFs and PI-PCFs

Our work introduces a strengthening of the wPRF notion, namely, the notion of a PI-PRF. In this
section, we overview several wPRF candidates, which are either at the heart of some of the most
efficient OPRFs, or the most efficient PCFs known to date. For each of these candidates, we analyze
the most natural families of attacks against their security:

– For the wPRF candidate of [BIP+18], which is a wPRF in a very low complexity class, we
analyze the candidate in the framework of security against satistical query algorithms. Attacks
from this framework capture the attacks that invalidated the existence of wPRF (with better
than superpolynomial security) in AC0, and were the main attacks studied in [BIP+18]. We
strengthen this result, and show that no statistical query algorithm can break the assumption
that the [BIP+18] candidate is a PI-PRF.

– For the PCFs, we analyze the two wPRFs at the heart of the two leading PCF candidates
in [BCG+20] and [BCG+22]. Since both are LPN-style constructions, we analyze their security
against attacks from the linear test framework, which captures most known attacks on the LPN
assumption and its many variants. For both, we establish win-win results, showing that finding
a linear attack against the assumption that these candidates are PI-PRF would have surprising
consequences.

Our analyzes provides support to the notion of PI-PRF, showing that natural wPRF candidates used
in leading applications are plausibly also wPRF. Furthermore, we note that all of the above candidates
are provably not strong PRFs.

5.1 Pseudorandom-Input PRF Candidates

In this section, we discuss the assumption that the wPRF candidate of [BIP+18] is also a PI-PRF. To
support the security of their candidate, one of the main arguments used by the authors of [BIP+18]
is that with high probability over K, the function FK does not correlate with any fixed sufficiently
small function family. This implies that their candidate cannot be broken by statistical query algo-
rithms [ABG+14]. More concretely, the candidate of [BIP+18] is of the form FK(x) = map(K · x),
where K is a matrix, x is a vector, K · x denotes matrix-vector multiplication, and map is some fixed
mapping which, on input a vector y, returns

∑
i[yi mod 2] mod 3. Note that the outputs of this wPRF

are over {−1, 0, 1}. The lack of correlation with any sufficiently small function family is formalized in
the following lemma:

Lemma 27 ([BIP+18]). Let H = {h : {0, 1}λ 7→ {−1, 0, 1}} be a collection of functions of size s.
Then

Pr
K

[
∃h ∈ H

∣∣∣∣ Prx [map(K · x) = h(x)] >
1

3
+

1

2λ−1
+ ε

]
≤ 5s

2λ · ε2
.

Because Lemma 27 refers to a probability over uniformly random inputs x to the function, it is
only meaningful when the function is used as a wPRF. In contrast, we are interested in the setting
where the inputs are given by an admissible sampler Sam. Nevertheless, we show that the candidate
of [BIP+18] is in fact also immunized against all correlation attacks against its PI-PRF security.

27

Theorem 28. Let H = {h : {0, 1}λ 7→ {−1, 0, 1}} be a collection of functions of size s. Then there
exists a negligible function negl(λ) such that

Pr
K

[
∃h ∈ H

∣∣∣∣ Prr,i [map(K · Sami(r)) = h(r, i)] >
1

3
+ negl(λ) + ε

]
≤ s

ε2
· negl(λ).

In the above theorem, the inner probability is over the random choice of the randomness r of the
sampler, and of the index i of the sampler output (i.e. is Sam(r) outputs (x1, · · · , xq), we write Sami(r)
for the function that returns xi). Theorem 28 implies that the PI-PRF security of the candidate
of [BIP+18] cannot be broken by statistical query analysis, an important class of attacks against
wPRFs. In particular, this captures the attack of Linial, Mansour, and Nisan [LMN89] which breaks
all candidates wPRFs in AC0 in quasipolynomial time.
The term negl(λ) in Theorem 28 directly comes from the negligible bound on the probability that any
polynomial-time adversary distinguishes the sampler output from random. Stronger assumptions on
the admissible sampler, such as subexponential or exponential pseudorandomness, directly translate
to a corresponding smaller negl(λ) term in Theorem 28.

Proof. Let Sam = Samλ,p : {0, 1}` 7→ ({0, 1}λ)p denote an admissible sampler. Fix any i ≤ p and let
Si denote Sam−1i (0) = {r ∈ {0, 1}` : Sami(r) = 0}.

Claim. For any i ≤ p, there exists a negligible function negl(λ) such that |Si|/2` = negl(λ).

Proof. Assume towards contradiction that there exists i ≤ p and a polynomial q(λ) such that |Si|/2` ≥
1/q(λ). Let Adv denote the following adversary against the pseudorandomness of Sam: given a tuple
(x1, · · · , xp), Adv outputs 1 if xi = 0, and returns a uniformly random bit otherwise. Observe that

|Prr←${0,1}` [1 = A(Samλ,p(r))]− Pr∀i:xi←${0,1}λ [1 = A(x1, · · · , xp)]| ≥
∣∣∣∣ 1

q(λ)
− 1

2λ

∣∣∣∣ > 1

2q(λ)
,

which contradicts the assumption that Sam is an admissible sampler.

Let TM ← maxi≤p |Sam−1i (0)| and Tm ← mini≤p |Sam−1i (0)|. Note that by the above claim, Tm/2`
and TM/2` are both negligible in λ. The rest of the proof largely follows the analysis of [BIP+18], and
adapts it to our setting. Along the way, we also fix a minor bug in the original analysis (we notified
the authors). Let 1(a, b) denote the indicator function which outputs 1 iff a = b, and 0 otherwise. Fix
a single h ∈ H; then, we will conclude with a union bound over all elements of H. First, we consider
the following expectation, which we bound in both directions:

EK

[
Pr
r,i
[map(K · Sami(r)) = h(r, i)]

]
= EK [Er,i[1(map(K · Sami(r)), h(r, i))]]

=Er,i[EK [1(map(K · Sami(r)), h(r, i))]] ≤ max
i

Er[EK [1(map(K · Sami(r)), h(r, i))]]

=max
i

1

2`
·

 ∑
r:Sami(r)=0

1(0λ, h(r, i)) +
∑

r:Sami(r) 6=0

EK [1(map(K · Sami(r)), h(r, i))]

≤TM

2`
+ max
r,i:Sami(r)6=0

EK [1(map(K · Sami(r)), h(r, i))], using 1(0λ, h(r, i)) ≤ 1.

Now, for any fixed r, i such that Sami(r) 6= 0, K · Sami(r) is uniformly distributed over {0, 1}λ,
independently of h(r, i). As shown in [BIP+18], 1/3−1/2λ ≤ Ey[1(y, b)] ≤ 1/3+1/2λ for any b, hence

EK

[
Pr
r,i
[map(K · Sami(r)) = h(r, i)]

]
≤ TM

2`
+

1

3
+

1

2λ
.

In the other direction:

28

EK

[
Pr
r,i
[map(K · Sami(r)) = h(r, i)]

]
≥ min

i
Er[EK [1(map(K · Sami(r)), h(r, i))]]

=min
i

1

2`
·

 ∑
r:Sami(r)=0

1(0λ, h(r, i)) +
∑

r:Sami(r)6=0

EK [1(map(K · Sami(r)), h(r, i))]

≥2` − Tm

2`
· min
r,i:Sami(r) 6=0

EK [1(map(K · Sami(r)), h(r, i))], using 1(0λ, h(r, i)) ≥ 0.

Using again the fact that whenever Sami(r) 6= 0, K · Sami(r) is uniformly distributed over {0, 1}λ,
since Ey[1(y, b)] ≥ 1/3− 1/2λ for any b,

EK

[
Pr
r,i
[map(K · Sami(r)) = h(r, i)]

]
≥ 2` − Tm

2`
·
(
1

3
− 1

2λ

)
.

To finish the proof, as in [BIP+18], we use the Bienaymé-Chebyshev inequality, which states that for
any random variable X with finite expected value µ and finite non-zero variance σ2, for any k > 0,
Pr[|X − µ| > kσ] ≤ 1/k2. This yields

Pr
K

[
∃h ∈ H

∣∣∣∣ Prr,i [map(K · Sami(r)) = h(r, i)] >
1

3
+

1

2λ
+
TM
2`

+ ε =
1

3
+ negl(λ) + ε

]
≤ σ2

ε2
,

and we need to bound the variance to conclude:

EK [Er,i[1(map(K · Sami(r)), h(r, i))]
2]

=EK [Er,i[1(map(K · Sami(r)), h(r, i))] · Er′,i′ [1(map(K · Sami′(r
′)), h(r′, i′))]]

≤max
i,i′

Er,r′ [EK [1(map(K · Sami(r)), h(r, i))] · Er′,i′ [1(map(K · Sami′(r
′)), h(r′, i′))]]

≤
(
1

3
+

1

2λ

)2

+
1 + 2TM

2`
,

where the last inequality follows from the fact that when r 6= r′, Sami(r) 6= 0, and Sami′(r
′) 6= 0

(which happens for a fraction at least (1+2TM)/2` of all strings), then K ·Sami(r) and K ·Sami′(r
′)

are uniformly and independently distributed. Eventually, using the definition of the variance,

σ2 ≤
(
1

3
+

1

2λ

)2

+
1 + 2TM

2`
−
(
2` − Tm

2`
·
(
1

3
− 1

2λ

))2

=

(
1

3
+

1

2λ

)2

−
(
1

3
− 1

2λ

)2

+
1 + 2TM

2`
+

(
Tm
2`
·
(
1

3
− 1

2λ

))2

≤ 4

3 · 2λ
+

1 + 2TM
2`

+
T 2
m

9 · 22`
.

Since TM/2` and Tm/2
` are both negligible in λ, this yields σ2 ≤ negl(λ). Eventually, we conclude

the proof via a straightforward union bound over the s functions h ∈ H.

5.2 Implications for Existing PCFs

In this section, we discuss the implications of our result for existing PCF constructions. Currently,
there are two main constructions of weak PCFs: a candidate put forth in [BCG+20] (recently refined
in [CD23]) and a candidate put forth in [BCG+22]. Both candidates follow a common template, which
(at a high level) wraps a particular cryptographic primitive (a function secret-sharing scheme for
multipoint functions, or MP-FSS) around a code-based low-complexity wPRF candidate. To apply
our compiler, the weak PCF candidates of [BCG+20, BCG+22] must satisfy the stronger PI-PCF
security notion, which directly translate to assuming that the underlying wPRF is a PI-PRF. Below,
we recall both candidates and show that falsifying the assumption that the underlying wPRF is a
PI-PRF would have interesting and surprising consequences.

29

5.2.1 The two wPRF candidates. Both the candidate of [BCG+20,CD23] and the candidate
of [BCG+22] apply the same transform to a base wPRF which reduces to a variant of the learning
parity with noise (LPN) assumption. These two assumptions are called respectively variable-density
LPN and expand-accumulate LPN. In the following, N = 2D is a bound on the maximum number of
samples that an adversary can obtain (where D = D(λ) is polynomial in the security parameter).

Variable-Density LPN. Fix parameters par = (λ,D,N = 2D). Let Rλ,i be the distribution of random
λ-regular vectors over F λ·2

i

2 : that is, a sample from Rλ,i is obtained by concatenating λ independent
length-2i unit vectors. We let Hivd(par) denote the distribution over N × (λ · 2i) matrices over F2
where each row is sampled independently from Rλ,i, and Hvd(par) denote the distribution over FN×2N2

obtained by sampling Hi ←$ Hivd(par) for i = 1 to D and outputting H = H1|| · · · ||HD. Eventually,
we denote by Nvd(par) the noise distribution obtained by sampling ~eᵀi ←$ Rλ,i and outputting ~e ←
(~e1// · · · //~eD) ∈ F 2N

2 (that is, ~eᵀ is distributed as a row of H).

Definition 29 (VDLPN(λ,D,N)). The variable-density learning parity with noise assumption with
sparsity λ, D blocks, and number of samples N , denoted VDLPN(λ,D,N), states that

{(H,~b) | H ←$Hvd(par), ~e←$Nvd(par),~b← H · ~e}
c
≈ {(H,~b) | H ←$Hvd(par),~b←$ FN2 }.

The VDLPN assumption parametrized with any D = poly(λ) immediately yields a wPRF F :

– The vector ~e←$Nvd(par) defines the secret key of F .
– On input a random x←$ {0, 1}λ·

∑
i≤D i, parse x into D blocks xi of λ · i bits, each divided into λ

strings xi,j ∈ {0, 1}i. Map each xi,j to the length-2i unit vector which has a 1 at xi,j . Let map(x)
denote the concatenation of all these unit vectors. Output F~e(x) = map(x)ᵀ · ~e.

For a random x, by construction, map(x) is equally distributed to sampling a uniformly random
column of H. Therefore, breaking the security of the above wPRF after receiving N samples is
equivalent to breaking the VDLPN assumption.

Expand-Accumulate LPN. Fix parameters par = (λ, c,N). N is the number of samples, c is a matrix
sparsity parameter (typically c = Θ(logN) or ω(logN)), and λ is the Hamming weight of the noise.
Let ∆N denote a 5N -by-5N lower triangular matrix filled with ones. We let Hea(par) denote the
distribution obtained by sampling an N -by-5N matrix M whose entries are independent Bernoulli
sample equal to 1 with probability c/2N , and outputting H = M ·∆N . We denote by Nea(par) the
distribution obtained by concatenating t random unit vectors of length N/t.

Definition 30 (EALPN(λ, c,N)). The expand-accumulate learning parity with noise assumption
with noise weight λ, matrix sparsity c, and number of samples N , denoted EALPN(λ, c,N), states
that

{(H,~b) | H ←$Hea(par), ~e←$Nea(par),~b← H · ~e}
c
≈ {(H,~b) | H ←$Hea(par),~b←$ FN2 }.

5.2.2 Security against linear tests. Both the VDLPN and the EALPN assumptions are recent
assumptions, introduced in [BCG+20] and [BCG+22], respectively. To provide support for VDLPN
and EALPN, a natural approach is to analyze their security against standard attacks. In the context
of LPN variants, the linear test framework (which has its roots in the seminal works of Naor and
Naor [NN90] and of Mossel, Shpilka, and Trevisan [MST03], first explicitly put forth in [BCG+20]
and further used in multiple subsequent works [BCG+21,CRR21,BCG+22,CD23]) provides a unified
way to argue security against most standard attacks against LPN (such as Information-Set Decoding
(ISD), or Blum-Kalai-Wassermann-style attacks [BKW03], and many more). Concretely, an attack
against LPN in the linear test framework proceeds in two stages:

1. First, a matrixH is sampled from the matrix distributionH, and fed to the (unbounded) adversary
Adv. The adversary returns a (nonzero) test vector ~v = Adv(H).

2. Second, a noise vector ~e is sampled from the noise distribution N . The advantage of the adversary
Adv in the linear test game is the bias of the induced distribution ~v ·H · ~eᵀ.

To formalize this notion, we recall the definition of the bias of a distribution:

30

Definition 31 (Bias of a Distribution). Given a distribution D over F n and a vector ~u ∈ F n,
the bias of D with respect to ~u, denoted bias~u(D), is equal to

bias~u(D) =
∣∣∣∣ Pr~x∼D

[~u · ~xᵀ = 0]− Pr
~x∼Un

[~u · ~xᵀ = 0]

∣∣∣∣ = ∣∣∣∣ Pr~x∼D
[~u · ~xᵀ = 0]− 1

|F |

∣∣∣∣ ,
where Un denotes the uniform distribution over F n. The bias of D, denoted bias(D), is the maximum
bias of D with respect to any nonzero vector ~u.

We say that an instance of the syndrome decoding problem is secure against linear test if, with very
high probability over the sampling of H in step 1, for any possible adversarial choice of ~v = Adv(H),
the bias of ~v · H · ~eᵀ induced by the random sampling of ~e is negligible. Intuitively, the linear test
framework captures any attack where the adversary is restricted to computing a linear function of
the syndrome ~bᵀ = H · ~eᵀ, but the choice of the linear function itself can depend arbitrarily on the
code. Hence, the adversary is restricted in one dimension (it has to be linear in ~bᵀ), but can run in
unbounded time given H. Then, we say that an LPN-style assumption (ε, δ)-fools linear tests if

Pr
H
[bias(DH) > δ] ≤ ε,

where DH denotes the distribution which samples ~e and outputs the LPN samples H ·~e. The following
shows that VDLPN cannot be broken by attacks from the linear test framework, which provides strong
support for its security:

Theorem 32 ([BCG+20], informal). VDLPN(λ,D, 2D) with D = Ω(λ) (2−Ω(λ), 2−Ω(λ))-fools
linear tests.

5.2.3 From security against linear tests to large minimum distance. A statement regarding
security against linear tests is, under the hood, a statement about the minimum distance of a linear
code whose parity-check matrix H ′ is related to H. Below, we make this explicit for VDLPN and
EALPN. In the case of VDLPN, it requires a little bit of work to exhibit the right matrix.

For VDLPN. Given matrices M1, · · · ,Mn (for some n), we let BD(M1, · · · ,Mn) denote the block-
diagonal matrix whose diagonal blocks are the Mj ’s. Let Ii ∈ F 2i×2D

2 denote the horizontal con-
catenation of 2D−i identity matrices of size 2i × 2i (for any t), and let Bi ← BD(Ii, · · · , Ii) (where
the number of blocks is equal to λ). We observe that the distribution Nvd(par) can be equivalently
described as follows: sample ~u as the concatenation of λ · D length-2D unit vectors, and output
~e = BD(B1, · · · , BD) · ~u. Note also that BD(B1, · · · , BD) is a fixed matrix.
Now, sample H ←$ Hvd(par) and define H ′ ← H · BD(B1, · · · , BD). The VDLPN assumption is
equivalent to the following assumption: given (H ′,~b), it is hard to distinguish whether ~b is random,
or ~b = H ′ · ~u, where ~u is sampled as above. Then, we have the following simple lemma:

Lemma 33. The code generated by the rows of H ′ has minimum distance at least w = ln(1/δ)/4 =
Ω(λ), with probability at least 1− ε over the choice of H ′.

Proof. The proof is relatively simple. Assume towards contradiction that with probability larger than
ε, the code generated by the rows of H ′ does not have minimum distance w. This means that with
probability ε′ > ε, there exists a vector ~v such that ~vᵀ ·H ′ has Hamming weight less than w. Then,

bias~v(DH) =

∣∣∣∣1/2− Pr
~u
[~vᵀ ·H ′ · ~u = 1]

∣∣∣∣ ≥ (1− 2w

λD

)λD
> δ,

which is a contradiction. Above, the bound on the bias follows from the piling-up lemma (which
bounds the probability that a XOR of independent samples from a Bernoulli distribution equals 1,
with equality when the nonzero entries of ~vᵀ ·H ′ are spread equally among the λD blocks of length 2D)
and the second inequality follows from the standard inequality (1−1/n)n ≥ e−1 ·(1−1/n) > e−2.

31

For EALPN. In the case of EALPN, this is actually much more direct: the matrix H ′ is simply equal
to H = M · ∆N (where M is a random sparse matrix and ∆N a lower triangle of ones). In fact,
security against linear test is directly stated as a theorem about the minimum distance of the code
spanned by H in [BCG+22]:

Lemma 34 ([BCG+22], Theorem 3.10). Fix a parameter c = ω(logN). The code generated by
the rows of H = M ·∆N has minimum distance at least Ω(N), with probability at least 1 − N−ω(1)
over the choice of H.

5.2.4 A win-win result for PI-PRF security against linear tests. Equipped with the above
results, we return to our initial question: how plausible is the assumption that the weak PCFs
of [BCG+20,CD23] and [BCG+22] are PI-PCFs? As it turns out, this question is equivalent to asking
whether the wPRFs defined by VDLPN and EALPN are PI-PRFs. Since the main security argument
supporting VDLPN and EALPN is that they are secure against linear tests, it is meaningful to ask
whether the corresponding pseudorandom-input variants of VDLPN and EALPN resist linear tests,
too.
By our above lemmas, this is equivalent to the following problem (we state it for VDLPN for concrete-
ness, but the reasoning is similar for EALPN): given an admissible sampler Sam, if we sample each
row hj of the matrix H as map(xj)

ᵀ, where (x1, · · · , xN) ←$ Sam, does H ′ = H · BD(B1, · · · , BD)
have minimum distance Ω(λ)? Let us denote Dr the distribution of H ′ when random x1, · · ·xN are
used, and Dpr the distribution with (x1, · · · , xN) ←$ Sam. Now, because Sam is an admissible sam-
pler, it holds that the distribution of (x1, · · · , xN) is computationally indistinguishable from random.
Therefore, Dpr is computationally indistinguishable from Dr, which samples codes with a minimum
distance at least Ω(λ). That is, no polynomial time adversary can distinguish H ′ ←$ Dpr from a code
with a large minimum distance. Using the terminology from [BCG+22, Definition 3.12], Dpr has a
large pseudodistance.
The existence of codes with a large gap between their pseudodistance and their actual minimum
distance is an open problem which has received some attention in the literature. In particular, the
hardness of finding a low-weight codeword, when it exists, is equivalent to the binary SVP assumption
from [AHI+17]. The binary SVP assumption is known to have interesting consequences, such as the
existence of collision-resistant hash functions with very low complexity (constant algebraic degree).
Therefore, we obtain the following win-win result for PI-PCFs:

Either the VDLPN-based candidate wPRF of [BCG+20,CD23] is also a PI-PRF, or the binary SVP
assumption holds with respect to the distribution Dpr.

A similar win-win holds for the EALPN-based wPRF candidate of [BCG+22] as well.

5.2.5 Key-agreement from VDLPN or EALPN. We further note that for the transformations
to work, it suffices for the PI-PCF to be pseudorandom with respect to a specific admissible sampler
Sam. Namely, let the sampler Sam output (x1, · · · , xN) = PRFK(z1, · · · , zN), where (z1, · · · , zN) are
(non-adaptively) defined by the sampler, and PRF is a pseudorandom function (the key K of the PRF
can be sampled randomly by the PCF Gen algorithm, and appended to the PCF keys).
In Appendix B.1, we show analogously to Pietrzak-Sjödin [PS08] that if a wPRF is not also a
Sam-PI-PRF, then there exists a key-agreement protocol. Now, let PRFK be a PRF which is
pseudorandom under the VDLPN or EALPN assumption (since they imply one-way functions, they
also imply the existence of a PRF). Let us now instante the sampler Sam with PRFK and assume
that the wPRF is not also a Sam-PI-PRF. Then, under the VDLPN or EALPN assumption, the
sampler Sam instantiated with PRFK is an admissible sampler Sam, hence the construction from
Appendix B.1 yields a secure key-agreement protocol. Therefore, we get the following win-win result:

Either the VDLPN-based candidate wPRF of [BCG+20, CD23] is also a Sam-PI-PRF, or VDLPN
implies key agreement. The same holds for EALPN.

The problem of understanding whether VDLPN implies key agreement was explicitly put forth and
studied in [BCG+21]. They showed that some natural approaches which use the Razborov-Smolensky

32

lemma fail to yield key agreement, and could only obtain a positive result under an additional new
assumption, called random LPN is the hardest.

6 Fujisaki-Okamoto (FO) transform

We now present our modified FO transform as outlined in the technical overview, Section 2. We first
define all public-key encryption (PKE) properties that we rely on in this section.

6.1 PKE properties

First, recall that a Public-Key Encryption scheme (PKE) consists of three PPT algorithms (PKE.KGen,
PKE.Enc,PKE.Dec) with PKE.KGen(1λ)

$→ (sk, pk), PKE.Enc(pk,m)
$→ c and PKE.Dec(sk, c) → m′.

We consider PKE that are correct with overwhelming probability over the key sampling, i.e.,

Definition 35. A PKE is correct with overwhelming probability over the key sampling if

Pr(sk,pk)←$PKE.KGen(1λ)

[
∀m ∈ {0, 1}λ : PKE.Dec(sk,PKE.Enc(pk,m)) = m

]
= 1− negl(λ). (3)

Recall that the Fujisaki-Okamoto transform boosts indistinguishability under chosen plaintext attacks
(IND-CPA) of a PKE to indistinguishability under chosen ciphertext attacks (IND-CCA).

Definition 36 (IND-CPA and IND-CCA secure PKE). Let X ∈ {CPA,CCA}. PKE is IND-X
secure if for all PPT adversaries A = (A0,A1), the advantage AdvX(A0,A1),PKE(1

λ) :=∣∣∣Pr[1 = ExpXA=(A0,A1),PKE,0

]
− Pr

[
1 = ExpXA=(A0,A1),PKE,1

]∣∣∣ = negl(λ).

where the experiment ExpXA=(A0,A1),PKE,b are defined below.

Experiment IND-CPA and IND-CCA Security of a PKE

ExpCPACCA
A=(A0,A1),PKE,0

(pk, sk)←$ PKE.KGen(1n)

m, state←$ADEC
0 (pk)

c←$ PKE.Enc(pk,m)

b∗ ←$ADEC
1 (1n, state, pk, c)

return b∗

DEC(c∗)

if c∗ = c :

return ⊥
return PKE.Dec(sk, c∗)

ExpCPACCA
A=(A0,A1),PKE,1

(pk, sk)←$ PKE.KGen(1n)

m, state←$ADEC
0 (pk)

c←$ PKE.Enc(pk, 0|m|)

// c←$ {0, 1}|c| for $-IND-CCA

b∗ ←$ADEC
1 (1n, state, pk, c)

return b∗

DEC(c∗)

if c∗ = c :

return ⊥
return PKE.Dec(sk, c∗)

A notion which we put forward in this work and which our modified FO instantiation relies on is that
the PKE is invertible when given the randomness.

Definition 37 (Invertibility given Randomness). A PKE is invertible given randomness if there
exists a PPT algorithm I such that

Pr(sk,pk)←$PKE.KGen(1λ)

[
∀r,m ∈ {0, 1}λ : I(pk,PKE.Enc(pk,m; r), r) = m

]
≈ 1− negl(λ)

Remark. Note that Dec receives the secret-key sk, while the inverter I additionally knows randomness
r, but, in turn, only gets the public-key pk. Instead of I(pk, c, r), we write PKE.Enc(pk, ·; r)−1(c).

33

6.2 Instantiating modified FO

We first define what it means to instantiate our modified FO transform, then provide our construction
and then prove its security.

Definition 38 (Instantiating modified FO). A PPT sampleable distribution DH instantiates mod-
ified FO, if

– for all IND-CPA secure PKE that are invertible given randomness (Definition 37, and
– for all 1-time AE-secure SE (Definition 43),

construction FODH

mod[PKE,SE] (Fig. 24, middle) is and IND-CCA-secure PKE (Definition 36).

FO[PKE,SE]

KGen(1λ)

(skcpa, pkcpa)←$ PKEcpa(1
λ)

return (skcpa, pkcpa)

Enc(pk,m;σ)

ccpa ← PKE.Enc(pk, σ;RO1(σ||m))

csym ← SE.Enc(RO2(σ),m)

return (ccpa, csym)

Dec(skcpa, ccpa, csym)

σ ← PKE.Dec(skcpa, ccpa)

ksym ← RO2(σ)

m← SE.Dec(ksym, csym)

assert ccpa =

PKE.Enc(pk, σ;RO1(σ||m))

return m

FODH
mod[PKE,SE]

KGen(1λ)

(skcpa, pkcpa)←$ PKEcpa(1
λ)

H1,H2,H
′
1,P←$ DH(1

λ)

pk← (pkcpa,H1,H2)

sk← (skcpa,H
′
1,P)

return (sk, pk)

Enc(pk,m;σ)

(pkcpa,H1,H2)← pk

ccpa ← PKEcpa.Enc(pkcpa,H2(σ);H1(σ))

csym ← SE.Enc(H2(σ),m)

return (ccpa, csym)

Dec(sk, ccpa, csym)

(skcpa,H
′
1,P)← sk

ksym ← PKEcpa.Dec(skcpa, ccpa)

assert P(ksym) = 1

assert ccpa =

PKEcpa.Enc(pkcpa, ksym;H
′
1(ksym))

return SE.Dec(ksym, csym)

DH(1
λ)

(pkcca, skcca)←$ PKEcca.KGen(1
λ)

w ←$ {0, 1}λ

H2 ← PKEcca.Enc(pkcca, w; ·)

kPPRF ←$ {0, 1}λ

f ←$ ELF.Gen(1λ, 2λ)

H′1 ← PPRF(kPPRF(f(·)))
H1 ←$ iO(PPRF(kPPRF(f(H2(·)))))

P← (w
?
= PKEcca.Dec(skcca, ·))

return (H1,H2,H
′
1,P)

Fig. 24: FO transform and our instantiation of a modified FO transform

Theorem 39 (Instantiation of modified FO). Assuming that

– (PPRF,Punct) is a puncturable PRF (Definition 40),
– iO is an indistinguishability obfuscator (Definition 41),
– ELF is an extremely lossy function (Definition 1), and
– PKEcca is $-IND-CCA-secure PKE (Definition 36),

then distribution DH (Fig. 24, right) instantiates modified FO.

Proof overview. The proof proceeds via 20 hybrids, detailed in Fig. 25-28. We first inline the defini-
tion of FODH

mod[PKE,SE] and the distribution DH in game Hyb1, then pre-sample randomness for the
challenge ciphertext in game Hyb2.
Hybrids Hyb3 to Hyb6 use the Sahai-Waters [SW14] iO+PRG+PPRF trick to remove the randomness
of the challenge ciphertext from the circuit H2 which the adversary knows—recall from Section 2 that,
instead of the PRG, we use σ 7→ PKEcca.Enc(pkcca, w;σ) with a (random, but) fixed message w. As in
the iO+PRG+PPRF trick, we then argue that a random string of the same length as the ciphertext
is, with overwhelming probability not an encryption of w and thus not in the range of the function
Enc(pkcca, w; ·).

34

Hyb0(1
λ)

Hyb19(1
λ)

(pk, sk)←$ FODH
mod[PKE, SE].KGen(1

n)

m, state←$ADEC
0 (pk)

c←$ FODH
mod[PKE, SE].Enc(pk,m; 0|m|)

b∗ ←$ADEC
1 (1n, state, pk, c)

return b∗

DEC(c∗)

if c∗ = c :

return ⊥

return FODH
mod[PKE,SE].Dec(sk, c

∗)

t inline FO

reverse inline FO←−−−−−−−−−−−−

Fig. 25: Hybrids Hyb0 and Hyb19.

Hybrid Hyb7 replaces the injective ELF key by a suitably lossy
ELF key. Note that this step does not affect the randomness of
the challenge ciphertext which is uniformly random and inde-
pendent.
After applying the ELF, in Hyb8, we can replace decryption by
enumerating over all values in the image of the ELF which lead
to all possible values that can be legally used as randomness
in the IND-CPA-secure PKE. As the IND-CPA-secure PKE is
invertible given randomness (Definition 37), the DEC oracle can
try out all possible randomness and then run the inverter—and
check whether the inverter gave any correct value—there can
be at most one by correctness of the PKE (Definition 37).
From Hyb8 to Hyb9, we replace the key ksym by 0len, where len =
|ksym| and can now reduce to IND-CPA security of the PKE
since its decryption procedure is not used.
Finally, from Hyb9 to Hyb10, we replace message m by 0|m| and
reduce to 1-time AE-security, since ksym is not used anywhere.
Hybrids Hyb10 to Hyb19 are the analogous inverse steps of hybrids Hyb0 to Hyb9.

35

Hyb1(1
λ)

Hyb18(1
λ)

(pkcpa, skcpa)

←$ FODH
mod[PKE,SE].KGen(1

λ)

(pkcca, skcca)

←$ PKEcca.KGen(1
λ)

kPPRF ←$ {0, 1}λ

f ←$ ELF.Gen(1λ, 2λ)

H2 ← PKEcca.Enc(pkcca, w; ·)
H1 ←$ iO(C[kPPRF, f,H2])

m, state←$ADEC
0 ((pkcpa,H1,H2)))

σ ←$ {0, 1}λ

rcpa ← H1(σ); ksym ← H2(σ)

ccpa ← PKEcpa.Enc(pkcpa, ksym; rcpa)

csym ← SE.Enc(ksym,m 0|m|)

b∗ ←$ADEC
1 (1n, state, (ccpa, csym))

return b∗

DEC(c∗cpa, c
∗
sym)

if (c∗cpa, c
∗
sym) = (ccpa, csym) :

return ⊥

k∗sym ← PKEcpa.Dec(skcpa, c
∗
cpa)

if w 6= PKEcca.Dec(skcca, k
∗
sym)

return ⊥
r∗cpa ← PPRF(kPPRF, f(k

∗
sym))

c′cpa ← PKEcpa.Enc(pkcpa, k
∗
sym; r

∗
cpa)

if c′cpa 6= c∗cpa : return ⊥
return SE.Dec(k∗sym, c

∗
sym)

C[kPPRF, f,H2](σ)

PPRF(kPPRF, f(H2(σ)))

Hyb2(1
λ)

Hyb17(1
λ)

(pkcpa, skcpa)

←$ PKEcpa.KGen(1
λ)

(pkcca, skcca)

←$ PKEcca.KGen(1
λ)

σ ←$ {0, 1}λ

ksym ← PKEcca.Enc(pkcca, w;σ)

kPPRF ←$ {0, 1}λ

f ←$ ELF.Gen(1λ, 2λ)

rcpa ← PPRF(kPPRF, f(ksym))

H2 ← PKEcca.Enc(pkcca, w; ·)
H1 ←$ iO(C[kPPRF, f,H2])

m, state←$ADEC
0 (pkcpa,H1,H2)

ccpa ← PKEcpa.Enc(pkcpa, ksym; rcpa)

csym ← SE.Enc(ksym,m 0|m|)

b∗ ←$ADEC
1 (1n, state, (ccpa, csym))

return b∗

DEC(c∗cpa, c
∗
sym)

if (c∗cpa, c
∗
sym) = (ccpa, csym) :

return ⊥
if c∗cpa = ccpa :

return SE.Dec(ksym, c
∗
sym)

k∗sym ← PKEcpa.Dec(skcpa, c
∗
cpa)

if k∗sym = ksym : return ⊥
if w 6= PKEcca.Dec(skcca, k

∗
sym)

return ⊥
r∗cpa ← PPRF(kPPRF, f(k

∗
sym))

c′cpa ← PKEcpa.Enc(pkcpa, k
∗
sym; r

∗
cpa)

if c′cpa 6= c∗cpa : return ⊥
return SE.Dec(k∗sym, c

∗
sym)

C[kPPRF, f,H2](σ)

PPRF(kPPRF, f(H2(σ)))

Hyb3(1
λ)

Hyb16(1
λ)

(pkcpa, skcpa)

←$ PKEcpa.KGen(1
λ)

(pkcca, skcca)

←$ PKEcca.KGen(1
λ)

σ ←$ {0, 1}λ

ksym ← PKEcca.Enc(pkcca, w;σ)

kPPRF ←$ {0, 1}λ

f ←$ ELF.Gen(1λ, 2λ)

rcpa ← PPRF(kPPRF, f(ksym))

x∗ ← f(ksym)

k∗PPRF ← Punct(kPPRF, x
∗)

H2 ← PKEcca.Enc(pkcca, w; ·)
H1 ←$ iO(C[k∗PPRF, x

∗, rcpa, f,H2])

m, state←$ADEC
0 (pkcpa,H1,H2)

ccpa ←$ PKEcpa.Enc(pkcpa, ksym; rcpa)

csym ← SE.Enc(ksym,m 0|m|)

b∗ ←$ADEC
1 (1n, state, (ccpa, csym))

return b∗

DEC(c∗cpa, c
∗
sym)

if (c∗cpa, c
∗
sym) = (ccpa, csym) :

return ⊥
if c∗cpa = ccpa :

return SE.Dec(ksym, c
∗
sym)

k∗sym ← PKEcpa.Dec(skcpa, c
∗
cpa)

if k∗sym = ksym : return ⊥
if w 6= PKEcca.Dec(skcca, k

∗
sym)

return ⊥
r∗cpa ← PPRF(k∗PPRF, f(k

∗
sym))

c′cpa ← PKEcpa.Enc(pkcpa, k
∗
sym; r

∗
cpa)

if c′cpa 6= c∗cpa : return ⊥
return SE.Dec(k∗sym, c

∗
sym)

C[k∗PPRF, x
∗, rcpa, f,H2](σ)

if f(H2(σ)) = x∗ :

return rcpa

else PPRF(k∗PPRF, f(H2(σ)))

inline FO pre-eval+inline hash

pre-eval+inline hash

Punct. cor+iO+inj. f

Punct. cor+iO+inj. f

PPRF+PKEcca cor.

Fig. 26: Hybrids 1-3 and 16-18 for Theorem 39

36

Hyb4(1
n)

Hyb15(1
n)

(pkcpa, skcpa)

←$ PKEcpa.KGen(1
λ)

(pkcca, skcca)

←$ PKEcca.KGen(1
λ)

σ ←$ {0, 1}λ

ksym ← PKEcca.Enc(pkcca, w;σ)

kPPRF ←$ {0, 1}λ

f ←$ ELF.Gen(1λ, 2λ)

rcpa ←$ {0, 1}λ

x∗ ← f(ksym)

k∗PPRF ← Punct(kPPRF, x
∗)

H2 ← PKEcca.Enc(pkcca, w; ·)
H1 ←$ iO(C[k∗PPRF, x

∗, rcpa, f,H2])

m, state←$ADEC
0 (pkcpa,H1,H2)

ccpa ← PKEcpa.Enc(pkcpa, ksym; rcpa)

csym ← SE.Enc(ksym,m 0|m|)

b∗ ←$ADEC
1 (1n, state, (ccpa, csym))

return b∗

DEC(c∗cpa, c
∗
sym)

if (c∗cpa, c
∗
sym) = (ccpa, csym) :

return ⊥
if c∗cpa = ccpa :

return SE.Dec(ksym, c
∗
sym)

k∗sym ← PKEcpa.Dec(skcpa, c
∗
cpa)

if k∗sym = ksym : return ⊥
if w 6= PKEcca.Dec(skcca, k

∗
sym)

return ⊥
r∗cpa ← PPRF(k∗PPRF, f(k

∗
sym))

c′cpa ← PKEcpa.Enc(pkcpa, k
∗
sym; r

∗
cpa)

if c′cpa 6= c∗cpa : return ⊥
return SE.Dec(k∗sym, c

∗
sym)

C[k∗PPRF, x
∗, rcpa, f,H2](σ)

if f(H2(σ)) = x∗ :

return rcpa

else PPRF(k∗PPRF, f(H2(σ)))

Hyb5(1
n)

Hyb14(1
n)

(pkcpa, skcpa)

←$ PKEcpa.KGen(1
λ)

(pkcca, skcca)

←$ PKEcca.KGen(1
λ)

ksym←$ {0, 1}len

kPPRF ←$ {0, 1}λ

f ←$ ELF.Gen(1λ, 2λ)

rcpa ←$ {0, 1}λ

x∗ ← f(ksym)

k∗PPRF ← Punct(kPPRF, x
∗)

H2 ← PKEcca.Enc(pkcca, w; ·)
H1 ←$ iO(C[k∗PPRF, x

∗, rcpa, f,H2])

m, state←$ADEC
0 (pkcpa,H1,H2)

ccpa ← PKEcpa.Enc(pkcpa, ksym; rcpa)

csym ← SE.Enc(ksym,m 0|m|)

b∗ ←$ADEC
1 (1n, state, (ccpa, csym))

return b∗

DEC(c∗cpa, c
∗
sym)

if (c∗cpa, c
∗
sym) = (ccpa, csym) :

return ⊥
if c∗cpa = ccpa :

return SE.Dec(ksym, c
∗
sym)

k∗sym ← PKEcpa.Dec(skcpa, c
∗
cpa)

if k∗sym = ksym : return ⊥
if w 6= PKEcca.Dec(skcca, k

∗
sym)

return ⊥
r∗cpa ← PPRF(k∗PPRF, f(k

∗
sym))

c′cpa ← PKEcpa.Enc(pkcpa, k
∗
sym; r

∗
cpa)

if c′cpa 6= c∗cpa : return ⊥
return SE.Dec(k∗sym, c

∗
sym)

C[k∗PPRF, x
∗, rcpa, f,H2](σ)

if f(H2(σ)) = x∗ :

return rcpa

else PPRF(k∗PPRF, f(H2(σ)))

Hyb6(1
n)

Hyb13(1
n)

(pkcpa, skcpa)

←$ PKEcpa.KGen(1
λ)

(pkcca, skcca)

←$ PKEcca.KGen(1
λ)

ksym ←$ {0, 1}len

kPPRF ←$ {0, 1}λ

f ←$ ELF.Gen(1λ, 2λ)

H2 ← PKEcca.Enc(pkcca, w; ·)
H1 ←$ iO(C[kPPRF, f,H2])

m, state←$ADEC
0 (pkcpa,H1,H2)

ccpa←$ PKEcpa.Enc(pkcpa, ksym)

csym ← SE.Enc(ksym,m 0|m|)

b∗ ←$ADEC
1 (1n, state, (ccpa, csym))

return b∗

DEC(c∗cpa, c
∗
sym)

if (c∗cpa, c
∗
sym) = (ccpa, csym) :

return ⊥
if c∗cpa = ccpa :

return SE.Dec(ksym, c
∗
sym)

k∗sym ← PKEcpa.Dec(skcpa, c
∗
cpa)

if k∗sym = ksym : return ⊥
if w 6= PKEcca.Dec(skcca, k

∗
sym)

return ⊥
r∗cpa ← PPRF(kPPRF, f(k

∗
sym))

c′cpa ← PKEcpa.Enc(pkcpa, k
∗
sym; r

∗
cpa)

if c′cpa 6= c∗cpa : return ⊥
return SE.Dec(k∗sym, c

∗
sym)

C[kPPRF, f,H2](σ)

PPRF(kPPRF, f(H2(σ)))

PPRF+PKEcca cor. $-IND-CCA

$-IND-CCA

Punct. cor+iO+inj. f

Punct. cor+iO+inj. f

ELF

Fig. 27: Hybrids 4-7 and 13-15 for Theorem 39

37

Hyb7(1
n)

Hyb12(1
n)

(pkcpa, skcpa)

←$ PKEcpa.KGen(1
λ)

(pkcca, skcca)

←$ PKEcca.KGen(1
λ)

ksym ←$ {0, 1}len

kPPRF ←$ {0, 1}λ

f ←$ ELF.Gen(1λ, lossySize)

H2 ← PKEcca.Enc(pkcca, w; ·)
H1 ←$ iO(C[kPPRF, f,H2])

m, state←$ADEC
0 (pkcpa,H1,H2)

ccpa ←$ PKEcpa.Enc(pkcpa, ksym)

csym ← SE.Enc(ksym,m 0|m|)

b∗ ←$ADEC
1 (1n, state, (ccpa, csym))

return b∗

DEC(c∗cpa, c
∗
sym)

if (c∗cpa, c
∗
sym) = (ccpa, csym) :

return ⊥
if c∗cpa = ccpa :

return SE.Dec(ksym, c
∗
sym)

k∗sym ← PKEcpa.Dec(skcpa, c
∗
cpa)

if k∗sym = ksym : return ⊥
if w 6= PKEcca.Dec(skcca, k

∗
sym)

return ⊥
r∗cpa ← PPRF(kPPRF, f(k

∗
sym))

c′cpa ← PKEcpa.Enc(pkcpa, k
∗
sym; r

∗
cpa)

if c′cpa 6= c∗cpa : return ⊥
return SE.Dec(k∗sym, c

∗
sym)

C[kPPRF, f,H2](σ)

PPRF(kPPRF, f(H2(σ)))

Hyb8(1
n)

Hyb11(1
n)

(pkcpa, skcpa)

←$ PKEcpa.KGen(1
λ)

(pkcca, skcca)

←$ PKEcca.KGen(1
λ)

ksym ←$ {0, 1}len

kPPRF ←$ {0, 1}λ

f ←$ ELF.Gen(1λ, lossySize)

H2 ← PKEcca.Enc(pkcca, w; ·)
H1 ←$ iO(C[kPPRF, f,H2])

m, state←$ADEC
0 (pkcpa,H1,H2)

ccpa ←$ PKEcpa.Enc(pkcpa, ksym)

csym ← SE.Enc(ksym,m 0|m|)

b∗ ←$ADEC
1 (1n, state, (ccpa, csym))

return b∗

DEC(c∗cpa, c
∗
sym)

if (c∗cpa, c
∗
sym) = (ccpa, csym) :

return ⊥
if c∗cpa = ccpa :

return SE.Dec(ksym, c
∗
sym)

for r ∈ Im(PPRF(kPPRF, f(.))) :

k ← PKEcpa.Enc(pkcpa, .; r)
−1(c∗cpa)

if k 6= ⊥ : k∗sym ← k

if k∗sym = ksym : return ⊥
if w 6= PKEcca.Dec(skcca, k

∗
sym)

return ⊥
r∗cpa ← PPRF(kPPRF, f(k

∗
sym))

c′cpa ← PKEcpa.Enc(pkcpa, k
∗
sym; r

∗
cpa)

if c′cpa 6= c∗cpa : return ⊥
return SE.Dec(k∗sym, c

∗
sym)

C[kPPRF, f,H2](σ)

PPRF(kPPRF, f(H2(σ)))

Hyb9(1
n)

Hyb10(1
n)

(pkcpa, skcpa)

←$ PKEcpa.KGen(1
λ)

(pkcca, skcca)

←$ PKEcca.KGen(1
λ)

ksym ←$ {0, 1}len

kPPRF ←$ {0, 1}λ

f ←$ ELF.Gen(1λ, lossySize)

H2 ← PKEcca.Enc(pkcca, w; ·)
H1 ←$ iO(C[kPPRF, f,H2])

m, state←$ADEC
0 (pkcpa,H1,H2)

ccpa ←$ PKEcpa.Enc(pkcpa, 0
len)

csym ← SE.Enc(ksym,m 0|m|)

b∗ ←$ADEC
1 (1n, state, (ccpa, csym))

return b∗

DEC(c∗cpa, c
∗
sym)

if (c∗cpa, c
∗
sym) = (ccpa, csym) :

return ⊥
if c∗cpa = ccpa :

return SE.Dec(ksym, c
∗
sym)

for r ∈ Im(PPRF(kPPRF, f(.))) :

k ← PKEcpa.Enc(pkcpa, .; r)
−1(c∗cpa)

if k 6= ⊥ : k∗sym ← k

if k∗sym = ksym : return ⊥
if w 6= PKEcca.Dec(skcca, k

∗
sym)

return ⊥
r∗cpa ← PPRF(kPPRF, f(k

∗
sym))

c′cpa ← PKEcpa.Enc(pkcpa, k
∗
sym; r

∗
cpa)

if c′cpa 6= c∗cpa : return ⊥
return SE.Dec(k∗sym, c

∗
sym)

C[kPPRF, f,H2](σ)

PPRF(kPPRF, f(H2(σ)))

ELF Invertibility

Invertibility

IND-CPA

IND-CPA

AE

Fig. 28: Hybrids 8-12 for Theorem 39

6.3 Proof of Theorem 39.

We now discuss each of the 19 game-hops provided in Fig. 25-28 in more detail. Hyb 10-19 are
described jointly with Hyb 0-9, where message m is replaced by 0|m|, as is indicated by the box right
next to m. Let A = (A0,A1) by a PPT adversary with runtime p(λ) and integer cA such that for
infinitely many λ, its advantage is greater than 1

λcA .

38

First, note that

Hyb0 = ExpCCAA=(A0,A1),FO
DH
mod[PKE,SE],0

Hyb19 = ExpCCAA=(A0,A1),FO
DH
mod[PKE,SE],1

(4)

Hyb0 → Hyb1: Inlining the code of FODH

mod[PKE,SE] and, in particular, DH (cf. Fig. 24). Therefore,

Pr[1 = Hyb0] = Pr[1 = Hyb1] (5)

Hyb1 → Hyb2: We inline the code of the two applications of H1 and H2, and move the sampling of
σ, the computation of ksym, and the computation of rcpa further up in the game, since they do not
depend on the adversary’s output. Moreover, in the DEC oracle, we simplify the case c∗cpa = ccpa (so
it does not use the decryption algorithm) and directly abort when c∗cpa 6= ccpa, but still k∗sym = ksym,
since in this case, re-encryption fails. Consequently,

Pr[1 = Hyb1] = Pr[1 = Hyb2] (6)

Hyb2 → Hyb3: The change in DEC does not change the behaviour of the DEC oracle, since (i) the
case f(k∗sym) = f(ksym) is covered by the prior check whether k∗sym = ksym due to the injectivity
of f and (ii) the case that f(k∗sym) = f(ksym) is covered by puncturing correctness of the PPRF
(Definition 40). Similarly, puncturing correctness of the PPRF implies that the circuits C[kPPRF, f,H2]
and C[k∗PPRF, x

∗, rcpa, f,H2](σ) are functionally equivalent. We reduce to iO security (Definition 41)
using the sampler AiO

0 which runs the code of Hyb2 to create C0 := C[kPPRF, f,H2] and computes
k∗PPRF, x

∗, rcpa as in Hyb3 to compute C1 := C[k∗PPRF, x
∗, rcpa, f,H2](σ), and stores all computed values

in state, and AiO
1 then simulates Hyb2 for A, using H1 := C̃, where C̃ is the obfuscated circuit received

from the iO challenger. Since the DEC oracles are functionally equivalent, AiO
1 perfectly simulates Hyb2

when C̃ = iO(C0) and perfectly simulates Hyb3 when C̃ = iO(C1). We obtain

|Pr[1 = Hyb2]− Pr[1 = Hyb3]| ≤ AdviOAiO
0 ,AiO

1
(7)

Hyb3 → Hyb4: We reduce to PPRF security (Definition 40) where APPRF
0 samples x uniformly at

random and simulates Hyb3 around it. We obtain

|Pr[1 = Hyb3] = Pr[1 = Hyb4]| ≤ AdvPPRFAPPRF
0 ,APPRF

1
(8)

Hyb4 → Hyb5: We reduce to $-IND-CCA security of PKEcca (Definition 36) where ACCA
0 embeds the

public-key it receives as pkcca and forwards all decryption calls to its DEC oracle, and embeds its
challenge ciphertext as a challenge ciphertext in the game it simulates. Note that ksym is the challenge
ciphertext of PKEcca and the check whether k∗sym = ksym prevents the challenge ciphertext ksym from
being submitted to the DEC oracle of ACCA

0 and ACCA
1 . We obtain

|Pr[1 = Hyb4] = Pr[1 = Hyb5]| ≤ Adv$-CCA(ACCA
0 ,ACCA

1),PKE(1
λ) (9)

Hyb5 → Hyb6: We construct (BiO0 ,BiO1) analogously to the game-hop from Hyb2 to Hyb3 and obtain

|Pr[1 = Hyb5] = Pr[1 = Hyb6]| ≤ AdviOBiO
0 ,BiO

1
(10)

Hyb6 → Hyb7: We choose the ELF parameters adequately and obtain a reduction AELF with

|Pr[1 = Hyb6] = Pr[1 = Hyb7]| ≤ AdvELFAELF (11)

Hyb7 → Hyb8: Invertibility given randomness (Definition 37) and correctness of PKEcpa imply that if
c∗cpa is in the image of PKEcpa(pkcpa, k

∗
sym,PPRF(kPPRF, f(.))) for some k∗sym, then (i) k∗sym is unique by

correctness and (ii) the inverter finds k∗sym by invertibility given randomness.

39

Moreover, the DEC oracle returns ⊥ for everything outside the image of
PKEcpa(pkcpa, .,PPRF(kPPRF, f(.))) so it suffices to search through these values. Hence, in this
step, we only lose the correctness parameter and obtain

|Pr[1 = Hyb7] = Pr[1 = Hyb8]| ≈ negl(λ) (12)

Hyb8 → Hyb9: We reduce to IND-CPA security of PKEcpa (Definition 36) constructing an adversary
(ACPA

0 ,ACPA
1) which embeds the pk it receives as pkcpa and its challenge ciphertext as ccpa. We obtain

|Pr[1 = Hyb8] = Pr[1 = Hyb9]| ≤ AdvCPA(ACPA
0 ,ACPA

1),PKE(1
λ) (13)

Hyb9 → Hyb10: We reduce to 1-time AE security of SE (Definition 42) where ASE
0 uses m for its

challenge query. We obtain

|Pr[1 = Hyb9] = Pr[1 = Hyb10]| ≤ AdvAE(AAE
0 ,AAE

1),SE(1
λ) (14)

Hyb10 → Hyb19: Analogous to the corresponding game-hops, with the same reductions which replace
m by 0|m|. We denote the corresponding adversaries by an additional superscript rev for reverse
direction.
Putting Equations (5)-(14) together, we obtain that one of the advantages must be non-negligible
or the ELF advantage must be non-negligibly bigger than 1

λa (cf. Definition 1) for infinitely many
security parameters.

References

ABG+14. Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. Candidate weak
pseudorandom functions in AC0 o MOD2. In Moni Naor, editor, ITCS 2014: 5th Conference on
Innovations in Theoretical Computer Science, pages 251–260, Princeton, NJ, USA, January 12–14,
2014. Association for Computing Machinery.

AHI+17. Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz, and Vinod Vaikuntanathan.
Low-complexity cryptographic hash functions. In Christos H. Papadimitriou, editor, ITCS 2017:
8th Innovations in Theoretical Computer Science Conference, volume 4266, pages 7:1–7:31, Berke-
ley, CA, USA, January 9–11, 2017. LIPIcs.

BCG+19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
pseudorandom correlation generators: Silent OT extension and more. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part III, volume 11694
of Lecture Notes in Computer Science, pages 489–518, Santa Barbara, CA, USA, August 18–22,
2019. Springer, Heidelberg, Germany.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Correlated
pseudorandom functions from variable-density LPN. In 61st Annual Symposium on Foundations of
Computer Science, pages 1069–1080, Durham, NC, USA, November 16–19, 2020. IEEE Computer
Society Press.

BCG+21. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Low-
complexity weak pseudorandom functions in AC0[MOD2]. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, Part IV, volume 12828 of Lecture Notes in Computer
Science, pages 487–516, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

BCG+22. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch, and Peter
Scholl. Correlated pseudorandomness from expand-accumulate codes. In Yevgeniy Dodis and
Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, Part II, volume 13508 of
Lecture Notes in Computer Science, pages 603–633, Santa Barbara, CA, USA, August 15–18, 2022.
Springer, Heidelberg, Germany.

BCH+22. Nir Bitansky, Arka Rai Choudhuri, Justin Holmgren, Chethan Kamath, Alex Lombardi, Omer
Paneth, and Ron D. Rothblum. PPAD is as hard as LWE and iterated squaring. In Eike Kiltz
and Vinod Vaikuntanathan, editors, TCC 2022: 20th Theory of Cryptography Conference, Part II,
volume 13748 of Lecture Notes in Computer Science, pages 593–622, Chicago, IL, USA, Novem-
ber 7–10, 2022. Springer, Heidelberg, Germany.

BDG+13. Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, Adriana
López-Alt, and Daniel Wichs. Why “Fiat-Shamir for proofs” lacks a proof. In Amit Sahai, editor,
TCC 2013: 10th Theory of Cryptography Conference, volume 7785 of Lecture Notes in Computer
Science, pages 182–201, Tokyo, Japan, March 3–6, 2013. Springer, Heidelberg, Germany.

40

Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum,
editor, Advances in Cryptology – CRYPTO’91, volume 576 of Lecture Notes in Computer Science,
pages 420–432, Santa Barbara, CA, USA, August 11–15, 1992. Springer, Heidelberg, Germany.

Bea96. Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In
28th Annual ACM Symposium on Theory of Computing, pages 479–488, Philadephia, PA, USA,
May 22–24, 1996. ACM Press.

BFM15. Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Random-oracle uninstantiability from
indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015:
12th Theory of Cryptography Conference, Part II, volume 9015 of Lecture Notes in Computer
Science, pages 428–455, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

BHK13. Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles via UCEs.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II,
volume 8043 of Lecture Notes in Computer Science, pages 398–415, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Heidelberg, Germany.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applications
to one-time programs and secure outsourcing. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology – ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages
134–153, Beijing, China, December 2–6, 2012. Springer, Heidelberg, Germany.

BIP+18. Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. Exploring crypto dark
matter: New simple PRF candidates and their applications. In Amos Beimel and Stefan Dziem-
bowski, editors, TCC 2018: 16th Theory of Cryptography Conference, Part II, volume 11240 of
Lecture Notes in Computer Science, pages 699–729, Panaji, India, November 11–14, 2018. Springer,
Heidelberg, Germany.

BKW03. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and
the statistical query model. J. ACM, 50(4):506–519, 2003.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93: 1st Conference on Computer and Communications Security,
pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press.

BRS03. John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the presence
of key-dependent messages. In Kaisa Nyberg and Howard M. Heys, editors, SAC 2002: 9th An-
nual International Workshop on Selected Areas in Cryptography, volume 2595 of Lecture Notes in
Computer Science, pages 62–75, St. John’s, Newfoundland, Canada, August 15–16, 2003. Springer,
Heidelberg, Germany.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual Symposium on Foundations of Computer Science, pages 136–145, Las Vegas, NV,
USA, October 14–17, 2001. IEEE Computer Society Press.

CD23. Geoffroy Couteau and Clément Ducros. Pseudorandom correlation functions from variable-density
LPN, revisited. In Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023: 26th Inter-
national Conference on Theory and Practice of Public Key Cryptography, Part II, volume 13941 of
Lecture Notes in Computer Science, pages 221–250, Atlanta, GA, USA, May 7–10, 2023. Springer,
Heidelberg, Germany.

CGH98. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited (prelim-
inary version). In 30th Annual ACM Symposium on Theory of Computing, pages 209–218, Dallas,
TX, USA, May 23–26, 1998. ACM Press.

CHL22a. Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. Sok: Oblivious pseudorandom functions. In
7th IEEE European Symposium on Security and Privacy, EuroS&P 2022, Genoa, Italy, June 6-10,
2022, pages 625–646. IEEE, 2022.

CHL22b. Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. Sok: Oblivious pseudorandom functions. In
2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P), pages 625–646, 2022.

CKU20. Geoffroy Couteau, Shuichi Katsumata, and Bogdan Ursu. Non-interactive zero-knowledge in
pairing-free groups from weaker assumptions. In Anne Canteaut and Yuval Ishai, editors, Ad-
vances in Cryptology – EUROCRYPT 2020, Part III, volume 12107 of Lecture Notes in Computer
Science, pages 442–471, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany.

CRR21. Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE and oblivious
transfer from hardness of decoding structured LDPC codes. In Tal Malkin and Chris Peikert,
editors, Advances in Cryptology – CRYPTO 2021, Part III, volume 12827 of Lecture Notes in
Computer Science, pages 502–534, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Ger-
many.

DGH+21. Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna Kelkar, Vivek Sharma, and
Greg Zaverucha. MPC-friendly symmetric cryptography from alternating moduli: Candidates,
protocols, and applications. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology –

41

CRYPTO 2021, Part IV, volume 12828 of Lecture Notes in Computer Science, pages 517–547,
Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

FIPR05. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and obliv-
ious pseudorandom functions. In Joe Kilian, editor, TCC 2005: 2nd Theory of Cryptography
Conference, volume 3378 of Lecture Notes in Computer Science, pages 303–324, Cambridge, MA,
USA, February 10–12, 2005. Springer, Heidelberg, Germany.

FO13. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryp-
tion schemes. Journal of Cryptology, 26(1):80–101, January 2013.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology – CRYPTO’86, volume
263 of Lecture Notes in Computer Science, pages 186–194, Santa Barbara, CA, USA, August 1987.
Springer, Heidelberg, Germany.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended
abstract). In 25th Annual Symposium on Foundations of Computer Science, pages 464–479, Singer
Island, Florida, October 24–26, 1984. IEEE Computer Society Press.

GHM+21. Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and Sophia Yakoubov. Random-
index PIR and applications. In Kobbi Nissim and Brent Waters, editors, TCC 2021: 19th Theory
of Cryptography Conference, Part III, volume 13044 of Lecture Notes in Computer Science, pages
32–61, Raleigh, NC, USA, November 8–11, 2021. Springer, Heidelberg, Germany.

GK03. Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm. In
44th Annual Symposium on Foundations of Computer Science, pages 102–115, Cambridge, MA,
USA, October 11–14, 2003. IEEE Computer Society Press.

HL08. Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In Ran Canetti, editor, TCC 2008: 5th
Theory of Cryptography Conference, volume 4948 of Lecture Notes in Computer Science, pages
155–175, San Francisco, CA, USA, March 19–21, 2008. Springer, Heidelberg, Germany.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently.
In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes
in Computer Science, pages 145–161, Santa Barbara, CA, USA, August 17–21, 2003. Springer,
Heidelberg, Germany.

JKKZ21. Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. SNARGs for
bounded depth computations and PPAD hardness from sub-exponential LWE. In Samir Khuller
and Virginia Vassilevska Williams, editors, 53rd Annual ACM Symposium on Theory of Comput-
ing, pages 708–721, Virtual Event, Italy, June 21–25, 2021. ACM Press.

JKR19. Stanislaw Jarecki, Hugo Krawczyk, and Jason K. Resch. Updatable oblivious key management for
storage systems. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019: 26th Conference on Computer and Communications Security, pages
379–393, London, UK, November 11–15, 2019. ACM Press.

LMN89. Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform,
and learnability. In 30th Annual Symposium on Foundations of Computer Science, pages 574–579,
Research Triangle Park, NC, USA, October 30 – November 1, 1989. IEEE Computer Society Press.

MOZ22. Alice Murphy, Adam O’Neill, and Mohammad Zaheri. Instantiability of classical random-oracle-
model encryption transforms. In Shweta Agrawal and Dongdai Lin, editors, Advances in Cryptology
– ASIACRYPT 2022, Part IV, volume 13794 of Lecture Notes in Computer Science, pages 323–352,
Taipei, Taiwan, December 5–9, 2022. Springer, Heidelberg, Germany.

MST03. Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0. In 44th
Annual Symposium on Foundations of Computer Science, pages 136–145, Cambridge, MA, USA,
October 11–14, 2003. IEEE Computer Society Press.

NIS16. NIST. Post-quantum cryptography standardisation. 2016. https://csrc.nist.gov/projects/p
ost-quantum-cryptography.

NN90. Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applica-
tions. In 22nd Annual ACM Symposium on Theory of Computing, pages 213–223, Baltimore, MD,
USA, May 14–16, 1990. ACM Press.

NR95. Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction of
pseudo-random functions. In 36th Annual Symposium on Foundations of Computer Science, pages
170–181, Milwaukee, Wisconsin, October 23–25, 1995. IEEE Computer Society Press.

PS08. Krzysztof Pietrzak and Johan Sjödin. Weak pseudorandom functions in minicrypt. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, ICALP 2008: 35th International Colloquium on Automata, Languages
and Programming, Part II, volume 5126 of Lecture Notes in Computer Science, pages 423–436,
Reykjavik, Iceland, July 7–11, 2008. Springer, Heidelberg, Germany.

Rab05. Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint Archive,
Report 2005/187, 2005. https://eprint.iacr.org/2005/187.

42

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://eprint.iacr.org/2005/187

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory of Computing,
pages 475–484, New York, NY, USA, May 31 – June 3, 2014. ACM Press.

Zha16. Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology – CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer Science, pages
479–508, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

Zha19. Mark Zhandry. On ELFs, deterministic encryption, and correlated-input security. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part III, volume
11478 of Lecture Notes in Computer Science, pages 3–32, Darmstadt, Germany, May 19–23, 2019.
Springer, Heidelberg, Germany.

A Additional Preliminaries

A.1 Puncturable PRF

A puncturable PRF is a PRF with the additional feature that the PRF key k can be punctured at a
point x so that (1) the punctured key k∗ allows to compute the PRF everwhere except for x and (2)
the PRF value at point x is pseudorandom even when given k∗. We now state the definition formally.

Definition 40 (Puncturable PRF). A puncturable PRF (PPRF) consists of two algorithms PPRF
and Punct such that PPRF is a strong PRF and such that the following are satisfied:

Puncturing correctness. For all key k ∈ {0, 1}λ, all x, x′ ∈ {0, 1}λ with x 6= x′,

PPRF(k, x′) = PPRF(Punct(k, x), x′).

Security. For all PPT samplers A0 and PPT adversaries A1 , the advantage AdvPPRFA0,A1
(1λ) :=

|Prk←${0,1}λ,(x,state)←$A0(1λ),k∗←$Punct(k,x),y←PPRF(k,x)[1 = A1(x, k
∗, y, state)]

−Prk←${0,1}λ,(x,state)←$A0(1λ),k∗←$Punct(k,x),y←${0,1}λ [1 = A1(x, k
∗, y, state)]|

is negligible.

A.2 Indistinguishability Obfuscation

Definition 41. A PPT algorithm iO is an indistinguishability obfuscator if it satisfies the following
two properties for all integers c.

Correctness. For all circuits C with input length λ,

Prx←${0,1}λ,C̃←$iO(C,1λ,c)

[
C(x) = C̃(x)

]
= 1

Security. For all PPT samplers A0 with

Pr(C0,C1,1c,state)←$A0(1λ)

[
max{|C0|, |C1|} ≤ λc ∧ ∀x ∈ {0, 1}λC0(x) = C1(x)

]
= 1− negl(λ)

and all PPT algorithms A1, it holds that the advantage AdviOA0,A1
:=

|Pr(C0,C1,1c,state)←$A0(1λ),C̃←$iO(C0,1c,1λ)

[
1 = A1(C̃, state)

]
−Pr(C0,C1,1c,state)←$A0(1λ),C̃←$iO(C1,1c,1λ)

[
1 = A1(C̃, state)

]
| = negl(λ).

We omit 1λ and 1c from the input of the indistinguishability obfuscator for conciseness.

43

A.3 Symmetric Encryption

Definition 42 (Deterministic symmetric-key encryption scheme (SE)). A deterministic
symmetric-key encryption scheme (SE) consists of two PPT algorithms (SE.Enc,SE.Dec) such that

Encryption SE.Enc(k,m)→ c

Decryption SE.Dec(k, c)→ m′

and such that it is correct with high probability over the key sampling, i.e.,

Prk←${0,1}λ,c←$SE.Enc(k,m)[∀m ∈ {0, 1}∗ : SE.Dec(k, c) = m] = 1− negl(λ).

Definition 43 (AE secure SE). A symmetric encryption scheme SE is 1-time.AE secure if for all
PPT adversaries A = ∣∣∣Pr[1 = ExpAEA,SE,0

]
− Pr

[
1 = ExpAEA,SE,1

]∣∣∣ = negl(λ).

where the experiments ExpAEA=(A0,A1),SE,b are defined below. For cleaner presentation we assume w.l.o.g.
that A never submits ciphertexts received from ENC to the decryption oracle DEC.

Experiment 1-time AE Security of a SE

ExpAEA,SE,0

k ←$ PKE.KGen(1n)

b∗ ←$AENC,DEC(1n)

return b∗

ENC(m)

if c = ⊥
c← SE.Enc(k,m)

return c

DEC(c∗)

if c 6= c∗ :

return SE.Dec(k, c∗)

return ⊥

ExpAEA,SE,1

k ←$ SE.KGen(1n)

b∗ ←$AENC,DEC(1n)

return b∗

ENC(m)

if c = ⊥

c← SE.Enc(k, 0|m|)

return c

DEC(c∗)

return ⊥

B Win-Win-Results: infinitely often key agreement (io-KA)

B.1 wPRF not PI-PRF implies io-KA

Proof of Theorem 4. Let wPRF be a weak PRF. If wPRF is not a pseudorandom-input PRF, then
there exists an admissible sampler Samλ,p and a PPTA with advantage ε in the security game of
fig. 1d (as instantiated with wPRF as the “candidate PI-PRF”). Consider the protocol of Figure 29
(parameterised byA,Samλ,p,wPRF), which we will now show to be a (12+ε)-correct single-bit infinitely
often key-agreement protocol.

44

Protocol Infinitely Often Key Agreement

Alice Bob

k ←$ {0, 1}λ

r ←$ {0, 1}inLen(Samλ,p) b←$ {0, 1}

~x← Samλ,p(r) ~x

if b = 0 then

for xi ∈ ~x do

yi ← f(k, xi)

else

for xi ∈ ~x do

yi ←$ {0, 1}λ

~y

b← A(~x, ~y, r)
return b return b

Fig. 29: Infinitely often key-agreement protocol, assuming the existence of a weak PRF which is not
a pseudorandom-input PRF.

Correctness, i.e. the fact that Alice and Bob output the same bit with probability at least (12 + ε)
follows immediately from the success probability of A in breaking the security game of Figure 1d. As
for security, assume, for contradiction, that there is an eavesdropper B(~x, ~y) that can guess b with
probability 1/2+µ for some non-negligible µ, given only the transcript of the protocol, i.e. (~x, ~y). We
reach a contradiction by considering the following game hops:

– Game 0: Above protocol with b = 0
– Game 1: Same as Game 0, except ~x is sampled uniformly at random, instead of using Sam
– Game 2: Same as Game 1, except b = 1 (and hence the protocol samples ~y at random.)
– Game 3: Above protocol with b = 1. (Same as Game 2 but using Sam for sampling ~x.)

Now B must be able to distinguish a pair of consecutive games. However:
Game 0 is indistinguishable from Game 1 by admissibility of Sam. Game 1 is indistinguishable from
Game 2 by wPRF security of f . Game 2 is indistinguishable from Game 3 by admissibility of Sam.
So we reach a contradiction, so such B cannot exist.

B.2 wPCF not PI-PCF implies io-KA

Proof of Theorem 21. Let wPCF be a weak PCF for some correlation Y. If wPCF is not a
pseudorandom-input PCF for Y, then at least one of the following properties is not true:
pseudorandom-input pseudorandom Y-correlated outputs or pseudorandom-input PCF security. One
of the following statements is therefore true:

– There exists a non-uniform polytime adversary Apr and a non-negligible function ε(·), such that
for infinitely many λ ∈ N, there exists a polynomial N and an admissible sampler Samn(λ),N(λ)

such that:
|Pr[ExpPI-prApr,N,0(λ) = 1]− Pr[ExpPI-prApr,N,1(λ) = 1]| > ε(λ) (15)

where ExpPI-prApr,N,b (b ∈ {0, 1}) is defined as in fig. 11 (but parameterised by the PCF wPCF =
(wPCF.Gen,wPCF.Eval)).

45

– There exists σ ∈ {0, 1} and a non-uniform polytime adversary Asec
σ and a non-negligible function

ε(·), such that for infinitely many λ ∈ N, there exists a polynomial N and an admissible sampler
Samn(λ),N(λ)

|Pr[ExpPI-secAsec
σ ,N,σ,0

(λ) = 1]− Pr[ExpPI-secAsec
σ ,N,σ,1

(λ) = 1]| > ε(λ) (16)

where ExpPI-secAsec
σ ,N,σ,b

(b ∈ {0, 1}) is defined as in Figure 12 (but parameterised by the PCF wPCF =
(wPCF.Gen,wPCF.Eval)).

In either case, there is an infinitely often key-agreement protocol with correctness 1
2 + ε.

We now show that regardless which proposition holds there exists an infinitely often key-agreement
protocol with correctness 1

2 + ε.

– Given the existence of Apr. Consider the protocol of fig. 30. By eq. (15), Alice and Bob will
output the same bit with probability at least 1

2 + ε for infinitely many values of the security
parameter, hence infinitely often correctness (recall that ε is non-negligible). For security consider
an eavesdropper Eve with access to the transcript of the communication between Alice and Bob.
Let λ ∈ N be a security parameter. Because the sampler Samn(λ),N(λ) is admissible, Eve cannot
distinguish between the transcript of the real protocol, and that of a variant where Alice samples
the (x(i))i∈[N(λ)] uniformly at random. In that variant however, Eve’s advantage in guessing b
cannot be better than negligible, because the outputs of wPCF (on uniformly random inputs
(x(i))i∈[N(λ)]) are pseudorandomly Y-correlated. Hence security of the io-KA protocol.

Protocol Infinitely Often Key Agreement, given Apr

Alice Bob

r ←$ {0, 1}λ (k0, k1)←$ wPCF.Gen(1λ)

b←$ {0, 1}

(x(i))i∈[N(λ)] ← Samn(λ),N(λ)(r) (x(i))i∈[N(λ)]

if b = 0 then

for i ∈ [N(λ)] do

(y
(i)
0 , y

(i)
1)← Y(1λ)

else

for i ∈ [N(λ)] do

for σ ∈ {0, 1} do

y(i)σ ← wPCF.Eval(σ, kσ, x
(i)
σ)

(y
(i)
0 , y

(i)
1)i∈[N(λ)]

b← Apr(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)], r)

return b return b

Fig. 30: Infinitely often key-agreement scheme, assuming the existence of a wPCF which does not
satisfy definition 19.

– Given the existence of Asec
σ , for some σ ∈ {0, 1}. Consider the protocol of fig. 31. By eq. (16), Alice

and Bob will output the same bit with probability at least 1
2 + ε for infinitely many values of the

security parameter, hence infinitely often correctness (recall that ε is non-negligible). For security
consider an eavesdropper Eve with access to the transcript of the communication between Alice and
Bob. Let λ ∈ N be a security parameter. Because the sampler Samn(λ),N(λ) is admissible, Eve cannot
distinguish between the transcript of the real protocol, and that of a variant where Alice samples the
(x(i))i∈[N(λ)] uniformly at random. In that variant however, Eve’s advantage in guessing b cannot be
better than negligible, by weak PCF security of wPCF. Hence security of the io-KA protocol.

46

Protocol Infinitely Often Key Agreement, given Asec
σ

Alice Bob

r ←$ {0, 1}λ (k0, k1)←$ wPCF.Gen(1λ)

kσ b←$ {0, 1}

(x(i))i∈[N(λ)] ← Samn(λ),N(λ)(r) (x(i))i∈[N(λ)]

if b = 0 then

for i ∈ [N(λ)] do

y(i)σ ← wPCF.Eval(σ, kσ, x
(i))

y
(i)
1−σ ← RSample(1λ, σ, kσ)

else

for i ∈ [N(λ)] do

y
(i)
1−σ ← wPCF.Eval(1− σ, k1−σ, x(i))

(y
(i)
1−σ)i∈[N(λ)]

b← Asec
σ (1λ, σ, kσ,

b← Asec
σ ((x(i), y

(i)
1−σ)i∈[N(λ)], r)

return b return b

Fig. 31: Infinitely often key-agreement scheme, assuming the existence of a wPCF which does not
satisfy definition 20.

In either case, there exists an infinitely often key-agreement scheme.

47

	New Random Oracle Instantiations from Extremely Lossy Functions
	Introduction
	RO (Un)instantiability
	Contribution

	Technical Overview of FO Instantiation
	Notation

	Technical Warm-Up: Instantiating Hash-then-Evaluate PRFs
	Pseudorandom-Input PRF (PI-PRF)
	From PI-PRF to sPRF
	Direct Implications for Oblivious PRFs

	Instantiating Hash-then-Evaluate: From PI-PCF to PCF
	Existing flavours of Pseudorandom Correlation Functions
	(Weak) Pseudorandom Correlation Function (wPCF).
	Non-Adaptive Pseudorandom Correlation Function (naPCF).
	Strong Pseudorandom Correlation Function (sPCF).

	What is the weakest ``useful'' notion of a PCF?
	Defining a Pseudorandom-Input PCF (PIPCF).
	A conditional argument towards minimality.
	Defining a fully non-adaptive PCF (fnaPCF).

	Boosting security from PIPCF to fnaPCF.
	Boosting security from fnaPCF to sPCF.

	Candidate PI-PRFs and PI-PCFs
	Pseudorandom-Input PRF Candidates
	Implications for Existing PCFs
	The two wPRF candidates.
	Security against linear tests.
	From security against linear tests to large minimum distance.
	A win-win result for PI-PRF security against linear tests.
	Key-agreement from VDLPN or EALPN.

	Fujisaki-Okamoto (FO) transform
	PKE properties
	Instantiating modified FO
	Proof of Theorem 39.

	Additional Preliminaries
	Puncturable PRF
	Indistinguishability Obfuscation
	Symmetric Encryption

	Win-Win-Results: infinitely often key agreement (io-KA)
	wPRF not PI-PRF implies io-KA
	wPCF not PI-PCF implies io-KA

