
Combined Fault and Leakage Resilience:
Composability, Constructions and Compiler∗

Sebastian Berndt1, Thomas Eisenbarth2, Sebastian Faust3, Marc Gourjon4,5,
Maximilian Orlt3, and Okan Seker2,5

1 Institute for Theoretical Computer Science, University of Lübeck, Germany
s.berndt@uni-luebeck.de

2 Institute for IT Security, University of Lübeck, Germany
thomas.eisenbarth@uni-luebeck.de

3 TU Darmstadt, Germany, firstname.lastname@tu-darmstadt.de
4 Hamburg University of Technology, Germany, firstname.lastname@tuhh.de

5 NXP Semiconductors, Germany okan.seker@nxp.com

Abstract. Real-world cryptographic implementations nowadays are not
only attacked via classical cryptanalysis but also via implementation
attacks, including passive attacks (observing side-channel information
about the inner computation) and active attacks (inserting faults into
the computation). While countermeasures exist for each type of attack,
countermeasures against combined attacks have only been considered
recently. Masking is a standard technique for protecting against passive
side-channel attacks, but protecting against active attacks with additive
masking is challenging. Previous approaches include running multiple
copies of a masked computation, requiring a large amount of randomness
or being vulnerable to horizontal attacks. An alternative approach is
polynomial masking, which is inherently fault-resistant.
This work presents a compiler based on polynomial masking that achieves
linear computational complexity for affine functions and cubic complexity
for non-linear functions. The resulting compiler is secure against attackers
using region probes and adaptive faults. In addition, the notion of fault-
invariance is introduced to improve security against combined attacks
without the need to consider all possible fault combinations. Our approach
has the best-known asymptotic efficiency among all known approaches.

1 Introduction

In classical cryptography, the security of cryptographic primitives is often analyzed
in the black-box model. In this model, the adversary attacks the cryptographic
algorithm via access to inputs and outputs but has no knowledge and no control
over the inner workings of the algorithms. In particular, sensitive information

∗Full version

such as the secret key is hidden from and out of the control of the adversary.
Unfortunately, when running cryptographic algorithms on real-world devices
countless attacks demonstrate that the black-box model is far too optimistic. Ex-
amples include passive attacks, where the adversary exploits physical phenomena
such as the power consumption or running time of a device to extract sensitive
information; or active attacks, where the adversary modifies temporary values
via a laser or via heating up the device to introduce faulty computation.

Masking schemes. Masking schemes are a classical countermeasure to protect
against passive side-channel attacks. Masking conceals sensitive information by
secret sharing each value v from some finite field F into shares v0, . . . , vn−1 such
that d+ 1 shares are required to reconstruct the secret, while ≤ d shares reveal
nothing about the sensitive value v. The most common sharing scheme is additive
masking. Here, we choose v0, . . . , vn−2 randomly from F and define vn−1 such
that v = v0 ⊕ v2 . . . ⊕ vn−1, where ⊕ is the addition of the underlying field F.
The main challenge in designing masking schemes is to securely compute on the
shared values. To this end, we design masked subcircuits, called gadgets, that
securely compute on sharings and devise methods for securely composing such
gadgets without violating overall security.

The security of a masking scheme is typically analyzed in the so-called probing
model originally introduced by Ishai, Sahai and Wagner [ISW03]. In this model,
the adversary can learn up to d values that are produced during the computation.
The security proof is typically done by analyzing the d-probing security of the
gadgets and then extending it towards security of an entire masked circuit via
composition. To argue secure composition in the probing model, an important
property is (strong) non-interference (SNI). Intuitively, this property guarantees
that all information gained by the attacker by probing d internal values of a
gadget can also be obtained by probing at most d shares of the masked input.
Furthermore, probes on the output sharing can be simulated from scratch in the
case of the stronger notion.

Beyond passive security. As mentioned above, passive side-channel attacks are
not the only threat to cryptographic implementations. In practice, an adversary
may also be able to induce faults into the computation thereby breaking the
cryptographic implementation. Even worse, a physical adversary may launch
combined attacks, where the adversary both passively observes side-channel
leakage and introduces faults to break the cryptographic implementation. While
a masking scheme can be used to protect against the passive adversary, it
is easy to see that it fails to offer security against faults. For instance, if an
adversary succeeds in adding an offset c ∈ F to only one of the shares, the
result of the computation is faulty, which may have catastrophic consequences
for security [BS97]. Hence, we need to extend probing security to also include
fault attacks, where in addition to placing d probes, the adversary is allowed to
induce ϵ faults. In this work, we consider arbitrary adaptive faults that might
even depend on the information obtained via previous probes.

2

With adaptive faults, we cover attacks where the adversary uses information
from previous leakage to insert faults. While such attackers seem unrealistically
strong, they are possible in the context of side-channel attacks: Firstly, the
adversary has access to the device and could stop or slow down regions of
the devices similar as in cold boot attacks. Secondly, the adversary could use
the leaked information not immediately but in the next cycle of a circuit that
uses multiple cycles, such as AES and Present. Finally, we note that adaptive
adversaries are a stronger adversarial model. Thus, from a theoretical point of
view it is interesting to explore what security can be achieved in this model.

In order to protect against combined attacks, two main approaches have
been considered in the literature – duplicated masking and polynomial masking.
The most common one is duplicated masking to replicate the masked computa-
tion [DN20b,FRSG22].

Duplicated Approach. In this setting, the masked circuit Ĉ is executed ϵ + 1
times in parallel. After each gate, the masked outputs of the computation are
checked for equality to detect faults. This requires that the ϵ+ 1 copies use the
same randomness internally. Otherwise, the output sharings would not be equal.
Moreover, re-using the randomness has an additional advantage. As generating
randomness is costly, by re-using randomness in all ϵ + 1 copies, the overall
randomness used can be reduced by a factor of O(ϵ).

The duplication approach described above has two important shortcomings.
First, affine operations that traditionally can be masked at very low cost (typically
at an O(n) complexity overhead for n = ϵ+ d) get significantly more expensive
as each such masked affine operation is now computed ϵ + 1 times. This is
especially problematic, as many modern primitives, e.g., [BDPA13, GLR+20,
ARS+15,AGR+16,AAB+20,HKL+22,GKR+21] aim to reduce the number of
non-linear operations by increasing the number of affine operations significantly.
Even worse, in terms of security, the duplication approach is very vulnerable to
so-called horizontal attacks [BCPZ16].

Horizontal Attacks. Horizontal attacks are attacks in which an adversary exploits
the fact that multiple computations share the same randomness or secret key
material. In the context of side-channel attacks, horizontal attacks can be partic-
ularly devastating as the attacker can amplify the leaked information and thus
recover sensitive information more easily [CFG+10,ORSW12,VGS14,BS21]. To
protect against horizontal attacks, it is essential to ensure that different instances
of computation use independent and fresh randomness or secret key material.

Clearly, the duplication method is particularly vulnerable to horizontal attacks,
as all copies share the same randomness to ensure fault detection. This drawback
was already observed and explicitly stated in [FRSG22]. To illustrate this issue
more clearly, the appendix contains calculations describing the influence of the
duplication on attacks in the random probing model. The random probing model
is the standard method to analyze security of the masking countermeasure
against horizontal attacks. In this model, the adversary can choose an unbounded
number of wires and receives the value on each chosen wire with probability

3

p. Alternatively, such attacks can be modeled in the region probing model,
also introduced in [ISW03]. Here, the threshold model is extended so that the
threshold of probes applies to each gadget (or regions) in the circuit. In other
words, the total number of probes increases with the number of gadgets. It has
been shown by Duc et.al. [DDF14] that security in this model also implies security
in the random probing model. Recently, this property has been used to construct
secure compilers e.g. [ADF16,GPRV21]. In this work, we also allow up to t probes
in each gadget to model horizontal attacks. One possible way to improve security
against horizontal attacks is to use fresh randomness in each copy, but (a) it is
not straightforward to detect faults in such randomized computation, and (b)
the randomness complexity increases to O(|C|n3).

An alternative approach to executing the masked computation multiple times
is to use an different sharing scheme. Recall that additive secret sharing is highly
vulnerable to fault attacks as already a single fault is undetectable. Hence, using
an additive sharing intuitively requires a large number of independent copies of
the same computation to avoid these faults. To tackle this problem, an obvious
idea is to resort to error detection codes, where one of the most promising
candidates are Reed Solomon codes (often also called Shamir’s secret sharing),
which in addition to error detection also offer linearity. The latter is particularly
useful for carrying out computation with sharings. In the literature, masking
schemes based on Shamir’s secret sharing are often called polynomial masking.

Polynomial Masking. Here, we need |F| ≥ n+ 1 and choose pairwise different
support points α0, . . . , αd−1 ≠ 0. To share a value v, we construct a polynomial
f ∈ F[x] of degree d such that f(0) = v. The i-th share vi is now defined as
f(αi). Polynomial masking [CPR12,GM11,RP12] is a well-known countermeasure
against side channel attacks, which offers advantages over additive secret sharing
based schemes due to its higher algebraic complexity. Moreover, they allow for a
simple protection against faults: We can add redundant points αd, αd+1, . . . αn−1

and corresponding shares vd+1, vd+2, . . . , vn−1, but will still use a polynomial
of degree d. Due to the error-correcting properties of these polynomial codes,
valid codewords, i.e., those sharings describing a polynomial of degree d, will
differ in at least n− d positions. If an attacker modifies less than n− d shares,
the underlying polynomial (which can be interpolated from the shares vi) will
have degree at least d + 1 due to the fundamental theorem of algebra. Hence,
modification of only n− d shares results in an invalid sharing.

The idea of using polynomial sharing was already used in the context of
multiparty computations in the now classical work of Ben-Or, Goldwasser, and
Wigderson [BGW88]. Using a more complicated scheme, called verifiable secret
sharing, they show how to achieve perfect security if the number of corrupted
parties is strictly less than n/3. Inspired by this, Seker, Fernandez-Rubio, Eisen-
barth, and Steinwandt [SFRES18] adapted the BGW scheme to protect against
combined attackers. Their main idea is to simplify the BGW multiplication
to avoid using verifiable secret sharing in such a way that faulted inputs will
lead to a faulted output with high probability. This allowed them to show that
n = 2d+ϵ+1 shares are sufficient to protect against d probes and ϵ additive faults,

4

i.e., faults where the attacker can add an arbitrary value to a wire (independently
from the actual value on that wire). Both the randomness requirement and the
computational complexity of their multiplication gadgets are asymptotical identi-
cal to those using the duplication approach, i.e., O(n2) and O(n3) respectively.
But, due to their linear number of shares, they can compute affine operations
in linear time. In this work, we show that n = d + ϵ + 1 are both sufficient
and necessary to protect against combined attacks. In particular, in contrast
to earlier works [SFRES18,DN20b, FRSG22,RFSG22], we show security in a
stronger adversarial model where the adversary can induce adaptive faults into
the computation and security holds in the region probing model.

Our approach has the same asymptotical complexities for multiplication
as both the duplicated approach and the approach of [SFRES18] and a linear
complexity for affine operations. Furthermore, in contrast to the duplicated
approach, our solution is provably resistant against horizontal attacks.

1.1 Contribution.

Our contributions are threefold. First, we present combined security notions
suitable for polynomial masking. Second, we propose the notion of fault-invariance,
that allows us to transform gadgets secure against probing attacks into ones that
are secure against combined attacks. Third, we propose two new compilers which
use the optimal (linear) number of n = e+d+1 shares and show security against
horizontal attacks in the region probing model.

Combined Security Notions for Polynomial Sharing. In previous works [SFRES18,
DN20b,FRSG22,RFSG22], an (d, ϵ)-attacker was able to choose d wires for probes
and ϵ wires for faults (and corresponding fault operations from a class of possible
faults). Then, the circuit was faulted according to these faults and the values of
the d chosen wires were given to the attacker aiming to extract some sensitive
information from these values. We strengthen the attackers significantly with
regard to both probes and faults by allowing region probes and adaptive faults.
Informally, region probes allow to perform d probes per gadget, in contrast to d
probes in total. Furthermore, our attacker can choose the fault applied to a wire
based on the already observed probes adaptively. A formal description about the
attacker model is presented in Section 3.

A careful analysis of the differences between additive masking and polynomial
masking reveals that the previously used security definitions do not transfer
easily. In additive masking, we want to give an upper bound on the number of
faulty outputs, while in polynomial masking we want to give a lower bound on
the degree of the polynomial described by the sharing. We present new definitions
adapted to this difference that allow to argue the composability of two secure
gadgets. Here, composability means if gadgets satisfy certain security properties,
these properties also hold for more complex computation that is composed of
such gadgets.

5

Simplification of combined security analyzes. The previous approach to prove the
security against combined attackers was to verify probing security of these gadget
for all possible fault combinations [RFSG22]. This often leads to very complicated
proofs with many case distinctions and many optimizations developed cannot be
reused. We introduce the notion of fault-invariance of a gadget that allows us to
lift probing-secure gadgets to also be secure against combined attacks without
the need to consider all possible fault combinations. A fault-invariant gadget that
is (S)NI stays (S)NI even in the presence of faults and thus allows us to reuse
existing probing-secure gadgets.

A new countermeasure for combined attacks. Finally, we present two new com-
pilers secure against combined attackers using adaptive faults in the region
probing model. These are the first such compilers as the existing countermea-
sures using additive masking are very vulnerable to such attacks. Compared
to [SFRES18], we significantly reduce the number of needed shares from 2e+d+1
down to n = e + d + 1 (which we also show as optimal). Along the way, we
also show how to fix their approach by presenting an SNI-secure refresh. Com-
pared to [DN19], we significantly reduce the number of needed random values
down to O(n2) and the computational complexity down to O(n3). Finally, we
also show that our compilers are secure against horizontal attacks, a feature
explicitly not shared by [DN20b, FRSG22]. All of the approaches using du-
plicated sharing [DN20b, FRSG22] need a quadratic number of shares, hence
their complexity will always be suboptimal for affine circuits or circuits with
a very large number of affine gates, a feature of many modern blockciphers,
e.g., [AGR+16,AAB+20,HKL+22,GKR+21].

For a comparison of our work to other works protecting against combined at-
tacks, we refer to Table 1. Analysing the cryptographic primitives Keccak [BDPA13],
LowMC [ARS+15] or HadesMiMc [GLR+20] yields complexity estimations shown
in Table 2. These estimations show that our approach outperforms the duplication
approach due to the large number of linear operations.

Table 1: A comparison of the complexity of the addition, multiplication and
refresh gadgets with regard to n = e+ d.

Shares Multiplication Addition Refresh Horizontal Att.
Rand Compl Compl Rand Compl Security

[DN20b,FRSG22] O(n2) O(n2) O(n3) O(n2) O(n2) O(n3) é
[SFRES18] O(n) O(n2) O(n3) O(n) insecure é
[DN19]6 O(n) O(n3) O(n5) O(n) O(n3) O(n5) é

This Work O(n) O(n2) O(n3) O(n) O(n2) O(n3) O(n−2)

6 This result is only present in the version 20190603:070457 of the eprint paper.

6

Table 2: A rough estimation of the number of operations of our approach compared
to the duplication approach of [DN20b,FRSG22] for n = 8 for Keccack [BDPA13],
LowMC (R = 55,m = 20) [ARS+15], and HadesMiMc (RF = 10) [GLR+20].
The numbers given here depend on estimations given in the corresponding works.

#Add #Mult #Ops [DN20b,FRSG22] #Ops This Work

Keccak 422 400 38 400 46 694 400 23 040 000
LowMC 28 894 643 3 300 1 850 946 752 232 846 744
HadesMiMc 1 820 150 193 280 91 360

1.2 Related Work.

The study of private circuits was initiated by the work of Ishai, Sahai, and Wagner
who presented a generic compiler to protect against probing attacks [ISW03].
In a follow-up work, Ishai, Prabhakaran, Sahai, and Wagner also considered
fault attacks and presented a corresponding compiler [IPSW06]. Note that a
combination of two protection mechanisms against probing attacks and fault
attacks might actually lower the security of the protection mechanisms [REB+08,
LFZD14]. Similar to the work of Ishai, Prabhakaran, Sahai, and Wagner, the use
of error-detection codes together with threshold implementations was studied by
Schneider, Moradi, and Güneysu [SMG16] and by De Cnudde and Nikova [CN16].
Recently, the use of explicit multi-party computation protocols as protection
mechanisms was studied by Reparaz, De Meyer, Bilgin, Arribas, Nikova, Nikov,
and Smart [RDB+18] and by Dhooghe and Nikova [DN20a]. Closest to this
paper is the work of Seker, Fernandez-Rubio, Eisenbarth, and Steinwandt that
introduced the model of statistical security against fault attacks [SFRES18]7.
They also showed that the classical multi-party protocol of Ben-Or, Goldwasser,
and Wigderson [BGW88] can be adapted to this scenario and reduced the number
of shares need from n ≥ 3d+ 1 down to 2d+ e+ 1.

Previous security notion. The most common security notions against probing-
only attacks are non-interference (NI) and its stronger counterpart SNI. The
stronger security notion provides very useful composition results. Namely, it
guarantees that the composition of d-SNI gadgets is d-SNI again. Now, using
d-SNI gadgets prevents a probing-only attacker (where e = 0) from obtaining any
information, but faults might still be used to obtain information. Security notions
against probing-only attackers have been studied intensively and it was shown
that the non-interference notions indeed prevent realistic attacks (see also Duc,
Dziembowski, and Faust [DDF14]). An alternative approach, called probe-isolating
non-interference (PINI) was introduced by Cassiers and Standaert [CS20] and
also allows composability.

For fault attacks, the situation is not as easy, as different strategies might
lead to different properties that are non-comparable. The simplest behavior,

7 In this work we show that the construction has a bug, see Sec. B.5.

7

fault detection, aims to detect possible faults. Now, one can regularly check for
the existence of these faults and abort the computation to prevent information
leakage. In a more complex setting, fault correction, the computation would try
to correct possible faults. While fault correction is a very useful property, it
usually comes at prohibitive cost. We thus only focus on the detection of faults.
Adding fault checks after every gate would detect the presence of faults as early
as possible, but would increase the cost of the computation severely. Our first
goal is thus to minimize the number of fault checks. The existence of multiple
successive gates where no fault detection is used opens up the danger of ineffective
faults, i.e., faults that only change some parts of the computation, but do not
change the output. More informally, these faults cancel out at some point in
the computation. As shown, e.g., by Clavier [Cla07] or Dobraunig, Eichlseder,
Korak, Mangard, Mendel, and Primas [DEK+18] these (statistical) ineffective
faults can be used by attackers in a devastating way. To protect against such
faults, we design fault-robust gadgets: If these gadgets are given faulted inputs,
their outputs will also contain faults.

As described earlier, Dhooghe and Nikova [DN20b] introduced the notion of
(S)NINA, a combination of (strong) non-interference and non-accumulation, to
protect against combined attackers using d probes and ϵ faults. They showed that a
duplicate additive sharing is sufficient to obtain security by presenting a multiplica-
tion gadget and a refresh gadget that provided security against combined attacks.
Richter-Brockmann, Feldtkeller, Sasdrich, and Güneysu [RFSG22] extended the
(S)NINA notion to provide accurate definitions for the hardware context and
constructed a tool, VERICA, to analyze gadgets with regard to (S)NINA. Finally,
Feldtkeller, Richter-Brockmann, Sasdrich, and Güneysu [FRSG22] adapted the
related notion of probe-isolating non-interference (PINI) presented by Cassiers
and Standaert [CS20] to fault attacks and combined attacks. Similar to the work
of Dhooghe and Nikova, they also used duplicate additive sharing and designed
corresponding multiplication and refresh gadgets for these sharings that are
secure against combined attacks. In contrast to our work, they only allowed
static non-adaptive faults and a total number of d probes (i.e., their attacker only
worked in the classical threshold probing model and not in the region probing
model). Furthermore, as each copy of the computation uses the same randomness,
their approach is very vulnerable to horizontal attacks, as shown in Sec. B.3. We
summarize the efficiency with regard to n = e + d of the constructions of the
previous works in Table 1.

2 Background

In this section, we fix the notation used throughout this paper and give the
needed background on polynomials and circuits.

Notation. We denote the set of the numbers between 0 and n − 1 by [n], i.e.,
[n] = {0, . . . , n− 1}. We write r ←$ S to denote that r is a random, uniformly
distributed element from the finite set S. To simplify notation, if we are given a

8

vector (v0, . . . , vn−1), we write (vi)i∈I to denote a vector only consisting of the
elements vi with i ∈ I for I ⊆ [n] and thus also (vi)i∈[n] instead of (v0, . . . , vn−1).
If D and D′ are probability distribution over domain X, we write D ≡ D′,
if D(x) = D′(x) for all x ∈ X, i.e., if the distributions agree at each point.
Random variables X0, X1, . . . Xn−1 over a set F are independent if it holds
for any a0, a1, . . . an−1 ∈ F that Pr[X0 = a0, X1 = a1, . . . Xn−1 = an−1] =∏

i∈[n] Pr[Xi = ai]. We write that X0, X1, . . . Xn−1 are k-wise independent if for
any subset I ⊂ [n] with |I| ≤ k, the random variables (Xi)i∈I are independent. For
a matrix A, its rank is denoted by rank(A) and its kernel by ker(A). The dimension
of a linear subspace H is denoted by dim(H). The weight of a vector (ai)i∈[n]

is the number of non-zero elements weight((ai)i∈[n]) = |{ai : ai ̸= 0}|. Further,
we use polynomials in F[x] that are functions f : F→ F with f(x) =

∑k
i=0 fix

i

for a natural number k and for all fi ∈ F. The degree deg(f) of f is the highest
index of the non-zero fi’s. In detail, deg(f) = maxi{i : with fi ̸= 0}.

We say that a probability distribution D is perfectly simulatable from a set
S, if there exists a simulator Sim such that the output of Sim(S) has the same
distribution as D. In detail, it holds for any possible x in the domain of D that
Pr[Sim(S) = x] = Pr[D = x] . In the following we denote this with Sim(S) ≡ D.

Polynomial sharing. Throughout this work, we will fix a finite field (F,⊕,⊙)
with addition ⊕ and multiplication ⊙ such that |F| ≥ n + 1, where n will
be clear from the application. For the sake of simplicity, we will often also
write · instead of ⊙ and + instead of ⊕. Throughout this paper, we fix n
pairwise different support points α0, . . . , αn−1 ∈ F with αi ̸= 0. We will often
represent a polynomial f ∈ F[x] via the shares (Fi)i∈[n] with Fi = f(αi) and
say that (Fi)i∈[n] is a degree d sharing. To see that (Fi)i∈[n] is indeed a valid
representation of f , consider the Vandermonde matrix Vn,d := Vn,d[α0, . . . , αn−1],
where the i-th row has the form (1, αi, α

2
i , . . . , α

d
i). It is now easy to see that

Vn,d · (f0, . . . , fd)T = (f(α0), f(α2), . . . , f(αn−1))
T = (F0, . . . , Fn−1)

T , i.e., the
Vandermonde matrix can be used to evaluate the polynomial on the public support
points αi. Furthermore, it is well known that det(Vn,d) =

∏
0≤i<j≤n−1(αi − αj).

As the αi are pairwise different and belong to a field F (which is free of nonzero
zero divisors), this determinant is non-zero. Hence, Vn,d is regular and the
inverse matrix V −1

n,d thus exists. As Vn,d · (f0, . . . , fd)T = (F0, . . . , Fn−1)
T , we

have (f0, . . . , fd)
T = V −1

n,d · (F0, . . . , Fn−1)
T . Hence, the inverse Vandermonde

matrix can interpolate the coefficients fi from the shares Fi via a linear operator.
To share a sensitive value s ∈ F into n shares, we will construct a polynomial

f with f(x) =
∑n−1

i=0 fix
i of degree n− 1 where the coefficients f1, f2, . . . , fn−1

are chosen randomly and f0 is equal to the sensitive value s. Then, the value
Fi = f(αi) is the ith share. We denote this randomized procedure that outputs
(Fi)i∈[n] from s by (si)i∈[n] ← Enc(s) with si = f(αi). To recover the sensitive
value f0 = s, we only need the first row of V −1

n,d . We denote the i-th element of the

first row of V −1
n,d by λ

(0)
i . To reconstruct the shared value, we use the well-known

interpolation lemma.

9

Lemma 1 (Interpolation Lemma). Let f ∈ F[x] be a polynomial of degree d ≤
n, let α0, . . . , αn−1 be pairwise different support points in F \ {0}, and let λ(0)

i be
the entries of the first row of the inverse Vandermonde matrix Vn,d[α0, . . . , αn−1].
Then (λ

(0)
1 , . . . , λ

(0)
n) · (f(α0), . . . , f(αn−1)) = f(0).

To simplify notation, we also write v ← Dec((vi)i∈[n]) with vi = f(αi) for this.
Since f is of degree d, the sensitive value v can be reconstructed from (vi)i∈I

with any subset I ⊂ [n] with |I| > d and (vi)i∈I is independent of v if |I| ≤ d.
An important fact that we will make use of throughout this paper is the

fact that a sharing (Fi)i∈[n] of a non-zero polynomial with many zero entries
corresponds to a polynomial of high degree, as captured by the following well-
known fact.

Lemma 2 (Fundamental Lemma). Let f ∈ F[x] be a polynomial of non-zero
degree. If f has k distinct roots, deg(f) ≥ k.

Circuit model. We represent the computation via a circuit on the field (F,⊕,⊙),
i.e., we consider directed acyclic graphs G where each node is labeled as (i) input
gate, (ii) output gate, (iii) random gate, (iv) addition gate, (v) multiplication
gate, or (vi) constant (transformation) gate. To compute the circuit on given
inputs x1, x2, . . . we first initialize the input gates with the according inputs.
Then, at each time step, we evaluate all gates that only have parents that are
already evaluated. Random gates are evaluated by sampling an element uniformly
at random from F. Constant transformation gates have two constants a and b
and evaluate a ·x+ b on input x. For a = 0 it is the usual constant gate initialized
with b. We denote the resulting output distribution y1, y2, . . . of circuit C with
inputs x1, x2, . . . by (y1, y2, . . .)← C(x1, x2, . . .). In order to simplify notation,
we also write CR(x1, x2, . . .) for the output of C if the samples from the random
gates are taken according to the random values R. A gadget is simply a subgraph
of a circuit. We stress that our definition allows for an arbitrary out-degree of a
gate. Hence, there is no need for copy gates or similar. Instead of outputting the
result of the computation, a circuit can also abort the computation by returning
the abort signal ⊥.

Compiler. A compiler C is a function transforming a circuit C into another circuit
C′. We are interested in compilers that output fault- and leakage-resilient circuits
C′. This can be done with polynomial sharing (Enc(·),Dec(·)) described above
such that the circuit C′ only computes on encoded values. Therefore, each gate is
transformed into a sub-circuit, a so-called gadget, that takes as input the encoded
inputs of the gate and outputs encodings such that the decoded output represents
the outputs of the gate. For security reasons, additional randomness can be
injected by so-called refresh gadgets that take as input an encoding and outputs a
randomized encoding in such a way that the decoded value of the input and output
is the same. For any circuit C : Fn → Fm with n inputs and m outputs, the result-
ing compiler C generates C′ ← C(C) such that for any input x0, x1, . . . xn−1 and
(y0i)i∈[n], (y

1
i)i∈[n], . . . (y

m−1
i)i∈[n] ← C′(Enc(x0),Enc(x0), . . .Enc(xn−1)) it holds

10

that Dec((y0i)i∈[n]),Dec((y
1
i)i∈[n]), . . .Dec((y

m−1
i)i∈[n]) = C(x0, x1, . . . xn−1). In

this case we also write that C and C′ are arithmetic circuits over F and Fn,
respectively to highlight the fact that C′ is working on the shared representation.
Further, we say that C′ is a masked circuit and has the same functionality as C.
Section 4 gives a more detailed construction of the compiler and defines all the
required gadgets.

Security Notions. When the adversary has access to a device to perform side-
channel and fault attacks, we assume that the adversary can run the device and
probe up to d intermediate values. The first and simplest security definition,
d-probing security requires that the observation of up to d intermediate values in
a masked circuit does not reveal anything about the unmasked variables.

Definition 1. A masked circuit C with k inputs (xj
i)i∈[n] ← Enc(xj) and j ∈ [k]

is d-probing secure if for any set L of d probes in

C((x0
i)i∈[n], (x

1
i)i∈[n], . . . , (x

k−1
i)i∈[n]))

there is a simulator Sim only having access to C(·) without the k secrets xj such
that L ≡ Sim(C(·)) for any secret x0, x1, . . . xk−1.

Note that Sim has only access to the circuit C but not to the secrets x0, x1, . . . xk−1.
In other words, the probes L are independent of the unmasked values. A stronger
security definition is the d-region-probing model that also takes the circuit size
into account. In detail it allows d-probes in each gadget of the masked circuit.

Definition 2. A masked circuit C with k inputs (xj
i)i∈[n] ← Enc(xj) and j ∈ [k]

is d-region-probing secure if for any set L of d probes in each gadget of

C((x0
i)i∈[n], (x

1
i)i∈[n], . . . , (x

k−1
i)i∈[n]))

there is a simulator Sim only having access to C(·) without the k secrets xj such
that L ≡ Sim(C(·)) for any secret x0, x1, . . . xk−1.

It turned out that probing security of two circuits does not always imply probing
security of its composition. Since composition results are very useful and allow the
construction of compilers that work on a gate-by-gate basis, stronger definitions
were subsequently developed. In the following, we give some stronger security
definitions, well suited to masked circuits (or gadgets). To simplify presentation,
we consider only gadgets having a single output sharing (yi)i∈[n]. We refer to
Cassiers and Standaert for discussion of gadgets with multiple outputs [CS20].
An important notion to achieve composability in the presence of probing attacks
is the notion of d-Non-Interference (d-NI) and d-Strong-Non-Interference (d-
SNI) [BBD+16]. Both definitions guarantee that the leakage of up to d probes is
independent of the shared secret.

Definition 3 (d-NI [BBD+15,BBD+16]). A gadget G with one output sharing
is d-non-interfering (d-NI) if and only if every set of d′ ≤ d internal probes can
be (perfectly) simulated with at most d′ shares of each input sharing.

11

The stronger d-SNI notion requires to distinguish between intermediate and
output probes and guarantees that only the number of intermediate probes
affects the number of inputs required by the simulator, easing the compilation of
circuits.

Definition 4 (d-SNI [BBD+16]). A gadget with one output sharing is d-
strong-non-interfering (d-SNI) if and only if for every set I of d1 internal probes
and every set O of d2 output probes such that d1 + d2 ≤ d, the set of probes I ∪O
can be (perfectly) simulated with d1 shares of each input sharing.

Note PINI is another useful security notion for compositions in the threshold
model. We omit this definition in the main body since it is vulnerable to horizontal
attacks, and thus does not provide good properties for proofs in the region probing
model. A detailed analysis is given in Section B.2.

3 Combined Security Model

As mentioned in the introduction, many countermeasures defending against fault
attacks or probing attacks have been studied in the literature, but the task to
protect against both attacks at the same time has only received more attention
in the last few years. In this section we analyze the combined security of both
fault resilience and probe resilience. To understand the influence of different
kind of faults, we will model these faults as set of functions. An adversary
with access to the class of faults F is able to change the value x to ζ(x) for
ζ ∈ F during the computation. For the sake of simplicity, we always assume
that the identity function id is part of every class F . A fault attack now applies
several of these faults to different wires of CR : Fk → Fl. More formally, if the
wires of the circuit CR are numbered by 1, . . . ,W , a fault attack T is a tuple
of functions T = (ζ1, . . . , ζW) with ζi ∈ F for all i = 1, . . . ,W that describes
how the value of each wire i is faulted. This means that such a wire i gets a
value zi from its output gate, but the following gate gets as input the faulted
value ζi(zi,ui), where ζi is the ith function in T = (ζ1, . . . , ζW) and ui are
the values already revealed by probes. We write A(F) to refer to the set of all
possible fault attacks using the fault-functions F . To simplify notation, we will
often only use the ordering of the wires implicitly. If we tamper the circuit CR

with a fault attack T ∈ A(F) we write T [CR]. Due to physical constraints, a
typical attacker cannot fault arbitrary many wires and is thus restricted (for
example, [SFRES18] considers at most 3 faults and [RDB+18] at most 8 faults).
For a fault attack T ∈ A(F), we write |T | for the number of non-identity faults
used, i.e., |T | = |{i ∈ {1, . . . ,W} | ζi ≠ id}| with T = (ζ1, . . . , ζW). In the
following we often consider different types of fault sets. In the most general case,
we use wire independent faults F ind := {all functions ζ : F × F∗ → F} to show
that the attacker can fault arbitrarily. We stress here that our model implies
that the faults performed on different wires are somewhat independent, as they
each only consider a single wire. An often studied restriction are additive faults
F+ := {ζ : ζ(x,u) = x+ a for all a ∈ F} that fault the wires value by adding an

12

arbitrary value. We give a detailed discussion about the fault sets in the appendix
(Sec. B.1).

Security Experiment We are now ready to give a formal description of the
underlying security experiment where an attacker is able to perform combined
attacks. Therefore, we adjusted the security game of Dhooge and Nikova [DN20b]
to allow adaptive faults and region probes. Let C : Fk → Fl be a circuit with
wires W = {wi}i that is split into regions R1, . . . , Rr with wires W1, . . . ,Wr.
An (d, e)-attacker A with respect to a fault class F takes part in the following
experiment:

– The experiment chooses b←$ {0, 1} uniformly at random
– A is given input C and outputs the following:
• a fault-attack T ∈ A(F) with |T | ≤ e
• for each region Rj , a subset W ′

j ⊆Wj of wires with |W ′
j | ≤ d

• two possible circuit inputs x0, x1 ∈ Fk

– The experiment runs ỹb ← T [C](xb) and the wire values corresponding to
W ′ =

⋃r
j=1 W

′
j are given to A. The attacker outputs a bit b′.

We say that C is ϵ-secure if Pr[b = b′] = 1/2 and Pr[ỹb ∈ {⊥, yb}] ≥ 1− ϵ for any
(d, e)-attacker A, where yb ← C(xb) is the output of a non-faulted run of C on xb.
In other words, the circuit is ϵ-secure if it is information-theoretic secure against
leakage and detects erroneous values with probability at least 1− ϵ.

In this work, we assume leakage-free encoding and decoding gadgets as defined
in Definition 1. As a consequence, it is sufficient to prove that the probes can be
simulated with less than d values of each masked input, if the circuit is masked
with a degree d masking. The existence of such gadgets is commonly used and
goes back to Ishai, Sahai, and Wagner [ISW03].

3.1 Privacy

First, we give a property that guarantees the (S)NI property of a gadget even in
the presence of fault attacks. We emphasize that this property only gives probing
security in the presence of faults, but ignores fault security notions such as error
preservation and detection. For the general fault resilience we refer to Section 3.2.
Next, we extend the probing security by requiring that a gadget is d-(S)NI even
if the adversary inserts faults into the computation.

Definition 5 (fault resilient SNI). A gadget G is d fault resilient (strong-)
non-interfering (d-fr(S)NI) with respect to F if T [G] is d-(S)NI for any fault
attack T ∈ A(F).

Note that an (S)NI gadget is not always (S)NI in the presence of faults. In
Section B.6, we give a detailed discussion and some examples. fr(S)NI is a relative
strong property and in some cases it might be sufficient (or needed) to slightly
weaken this notion. To do so, we will consider the situation introduced before
where (a) the number of faults are bounded and, furthermore, (b) we will treat

13

these faults additionally as probes. This is justified, e.g., in the context of constant
fault functions (also called stuck faults) that might set a random value to a fixed
value known by the adversary, as this can easily be seen to be strictly stronger
than a probe on this random value. If a circuit is fault resilient under these
restrictions, we say that the circuit is wfr(S)NI.

Definition 6 (weak fault resilient NI). A gadget G is d weak fault resilient
non-interfering (d-wfrNI) with respect to F if every set of d′ probes in T [G] can
be (perfectly) simulated with d′ + |T | shares of each input sharing for any fault
attack T ∈ A(F) with |T |+ d′ ≤ d.

Definition 7 (weak fault resilient SNI). A gadget G is d weak fault resilient
strong-non-interfering (d-wfrSNI) with respect to F if every set of d1 internal
probes and d2 output probes in T [G] can be (perfectly) simulated with d1 + ϵ1
shares of each input sharing for any fault attack T ∈ A(F) with ϵ1 internal faults
and ϵ2 output faults such that d1 + d2 + ϵ1 + ϵ2 ≤ d.

Note that this weaker notion does not imply that the faulted gadget T [G] is
(d − ϵ) − (S)NI with ϵ = |T |, as our d-wfr(S)NI definition gives ϵ more input
values to the simulator for the simulation. This new security notions allows us
to use the same composition results as the standard (S)NI gadgets even in the
presence of faults. For example, the composition of two d-frSNI gadgets is easily
seen to be d-frSNI again.

Theorem 1. The composition of two d-frSNI (or d-wfrSNI) gadgets with respect
to F is d-frSNI (or d-wfrSNI) with respect to F if F ⊆ F ind.

We write adaptive if the security still holds under the assumption that the
adversary can choose the function with the knowledge of the probes (before).
Theorem 1 implies that the composition of an arbitrary number of SNI gadgets
is SNI again. This easily follows by the fact that composed SNI gadgets can be
seen as SNI gadgets again, and we can compose step-by-step arbitrary many
gadgets together. Theorem 1 is only an example composition for SNI. Next, we
give a general proof that also implies this theorem8 and shows that all d-(S)NI
composition rules apply as well to the d-frSNI and d-wfrSNI.

Theorem 2. The composition rules for (S)NI also apply to d-fr(S)NI and d-
wfr(S)NI.

Proof. We start with the proof for the stronger security notion. The faults
F ⊆ F ind only allow independent faults on each wire, and this allows us to split
the adversary in multiple adversaries that tamper each gadget independently.
So let C be an arbitrary composed circuit only using d-fr(S)NI gadgets G0, G1,
. . . , Gm with respect to F and let T be any fault attack T ∈ A(F). Since we
keep the proof as general as possible we just assume that C has some security
properties (e.g. SNI) that follow from the (S)NI properties of G0, G1. Now we
show that the property also holds for any T . Since we can split the circuit attack
8 Alternatively, we give a straight forward proof of Theorem 1 in the appendix (Sec. B.7)

14

T to gadget-wise attacks T0, T1, . . . , Tm it holds that T [C] can be also described
as the composition of the (independently) faulted gadgets T0[G0], T1[G1], . . . ,
Tm[Gm]. The fr(S)NI properties still guarantees that each faulted gadget Tj [Gj]
has the same (S)NI property as its unfaulted version Gj . Hence, the faulted
gadgets T0[G0], T1[G1], . . . , Tm[Gm] have the same composition properties as
the unfaulted (S)NI gadgets G0, G1, . . . , Gm and the faulted circuit T [C] has
the same (S)NI properties as the original one C. Note that this holds for any
fault attack T ∈ A(F), and it follows that the same composition rules apply for
fr(S)NI as for (S)NI. The proof for the weaker notion is similar, only the fault
attack is limited and the faults are counted as probes. ⊓⊔

Remember that d-(S)NI gadgets are also d-probing secure as defined in Defini-
tion 1. Similarly to Theorem 2 it easily follows that any d-frSNI circuit C with
respect to F is also d-probing secure for any fault attack T ∈ A(F). More formally,
T [C] is d-probing secure for any T ∈ A(F). The probing security of d-wfrSNI
circuits is slightly weaker. Since the number of allowed probes in d-wfrSNI circuits
is reduced by the number of faults, a d-wfrSNI circuit C with respect to F is
only (d− e)-probing secure for any fault attack T ∈ A(F) with |T | = e ≤ d.

Privacy analyzes. Analysing the (S)NI property in itself is often tedious and
to study the (w)f-(S)NI notion means we also need to consider all possible
fault attacks. To avoid the combinatorial explosion, we present an additional
property such that the classical (S)NI property directly implies the faulty one.
This property is called fault-invariance, as the amount of information that a
probe gives is independent of the faults. As the internal values zi of a circuit only
depend on the internal randomness R and the inputs x0, xi, . . . , xl−1 we can also
write them as functions zi = fR

i (x0, x1, . . . xk−1).

Definition 8 (fault-invariance). A circuit C is fault-invariant with respect
to a fault set F if for any T ∈ A(F), any intermediate value f in CR and the
according value f̃ in T [CR] there are ζ, ζ0, ζ1, . . . , ζk−1 ∈ F such that it holds

f̃R(x0, x1, . . . xm−1) = ζ(fR(ζ0(x0), ζ1(x1), . . . , ζm−1(xm−1)))

for any input (x0, x1, . . . , xm−1) and randomness R.

In other words, Definition 8 says that all faults in F applied to a gadget can be
pushed to the input or the output of the gadget.

Gadgets that are (S)NI and also have this property are directly (S)NI in the
presence of faults.

Corollary 1. If a gadget is d-(S)NI and fault-invariant with respect to F ⊆ F ind,
the gadget is d-fr(S)NI with respect to F .

Proof. We will prove that we can take the classical leakage simulator of the
non-faulted gadget and transform it according to the faults due to the fault
invariance. Fix a gadget G and some probed values (p0, p1, . . . , pd−1)

T . Due to

15

the d-(S)NI property there is a simulator S(a0, a1, . . .) that perfectly simulates
the leakage with some input values (a0, a1, . . .). This means it holds that

S(a0, a1, . . .) = (S0(a0, a1, . . .), S1(a0, a1, . . .), . . . Sd−1(a0, a1, . . .))
T

has the same distribution as (p0, p1, . . . , pd−1)
T , where Si(a0, a1, . . .) is the pro-

jection of the output of S to the wire indexed by probe pi. Further, let any
T ∈ A(F) be a fault-attack and (p′0, p

′
1, . . . , p

′
d−1)

T be the according probes on
the same wires in T [G]. Due to the fault-invariance we know that there exist
functions ζi,j , ζ

′
i ∈ F such that the values

S′(a0, a1, . . .) =

ζ ′0(S0(ζ0,0(a0), ζ0,1(a1), . . .))
ζ ′1(S1(ζ1,0(a0), ζ1,1(a1), . . .)),

...
ζ ′p−1(Sp−1(ζp−1,0(a0), ζp−1,1(a1), . . .))

have the same distribution as (p′0, p

′
1, . . . , p

′
d−1)

T . Hence, the simulator S′ can
simulate the faulted gadget and with the same inputs as the simulator S of the
unfaulted (S)NI gadget. This proves that T [G] is also (S)NI for any T ∈ A(F). ⊓⊔

In the following, we show that the stronger definition with regard to the
additive faultset F+ directly implies the weaker definition for the more general
independent F ind, if we consider fault-invariant gadgets.

Corollary 2. If a gadget is d-fr(S)NI and fault-invariant with respect to F+, it
is adaptively d-wfr(S)NI with respect to F ind.

Proof. Let C be an d-fr(S)NI and fault-invariant circuit with respect to F+. We
give a reduction and prove that any simulator Sim for d-wfr(S)NI with respect
to F ind can be simulated by a simulator S̃im for d-fr(S)NI with respect to F+ if
the according gadget is fault-invariant with respect to F+.

So let Sim simulate a fault attack T ∈ A(F ind) with |T | = s and d− s probes.
Now we show that Sim can be simulated with a Simulator S̃im with fault attack
T̃ ∈ A(F+) with |T̃ | = s and d probes. Here, we use the fact that S̃im can simulate
d values, and we can also simulate the faulted values to transform all faults into
additive faults. In detail, let v1, v2,. . . vs the values faulted by the fault functions
ζ1, ζ2, . . . , ζs ∈ F ind due to T and vs+1, vs+2, . . . , vd the d− s values simulated
by Sim in T [C]. Now S̃im can simulate the according values ṽ1, ṽ2, . . . , ṽd in the
unfaulted C. Next, it computes for all fault functions ζj with aj = ζj(vj)−vj and
constructs the new additive fault function ζ̃j(x) = x+ aj . It follows that for all
faults it holds ζj(vj) = ζ̃j(vj). Due to the invariance S̃im can move all additive
faults to the inputs and outputs. In other words S̃im can compute how the additive
faults affect the simulated probes ṽ1, ṽ2, . . . , ṽd, and can compute the according
probes v′1, v′2, . . . , v′d in the circuit faulted with the fault functions ζ̃j(x). Since the
faults are the same as ζj(x), the values v′s+1, v

′
s+2, . . . , v

′
d and vs+1, vs+2, . . . , vd

have the same distribution. This implies the claim of the corollary because it

16

shows that if we have S̃im, we also have Sim. In other words if the gadget is
d-fr(S)NI and fault-invariant with respect to F+, it is d-wfr(S)NI with respect to
F ind.

Note that the simulator can choose the fault function with the knowledge of
the probes. This also means that if the adversary chooses the function adaptively,
it does not affect the simulator. Hence the adversary can be adaptive. ⊓⊔

3.2 Error Preservation and Detection

As described before, a general way to understand the countermeasures against
passive and active attacks, can be viewed as encodings. For a concrete (randomized)
encoding scheme Enc : F → Fn, a value y ∈ Fn is a valid encoding if there is
an x ∈ F and some randomness such that Enc(x; r) = y. Similar to the fr(S)NI
property we are interested in a property that guarantees that errors can be
detected even when we compose multiple gadgets. In our case, we want to
guarantee that errors are detected by the fact that the resulting encodings are
invalid. More concretely, if y and y′ are valid encodings, we want to increase
their Hamming distance, denoted by d(y, y′). To argue about the behavior of a
gadget in the presence of faults that can introduce computation errors, we need
to guarantee that errors already present in the computation (a) stay present in
the computation (to detect them) and (b) that these errors cannot accumulate
over time to lead to a valid encoding of an incorrect value. To model this, we
assume that the inputs (xi)i∈[n] of our gadgets might already be faulted by a
fault vector (vi)i∈[n], i.e., the inputs will always be (xi)i∈[n] + (vi)i∈[n], where
(xi)i∈[n] is a valid encoding. In a first approach, one might require that the input
of an invalid encoding, i.e., one where (vi)i∈[n] ̸= 0, always leads to an invalid
output encoding. But this is a very strict requirement that is nearly impossible to
fulfill if we consider an addition gadget: The attacker might add (vi)i∈[n] to one
of the inputs and then later add −(vi)i∈[n] to the output. Clearly, this gives a
valid encoding although the input was invalid. We thus also allow that our gadget
on input (xi)i∈[n] + (vi)i∈[n] with (vi)i∈[n] ̸= 0 can produce a valid encoding of
the correct value but this effect has to be independent of input (xi)i∈[n].

Definition 9 (e-f-robust). A gadget G with one output sharing and two input
sharings is e-fault-robust with respect to F , if for any valid encoding (x

(0)
i)i∈[n]

and (x
(1)
i)i∈[n], the output (yi)i∈[n] ← G((x

(0)
i)i∈[n], (x

(1)
i)i∈[n]) is also valid. Fur-

ther, it holds for any fault vectors (v
(0)
i)i∈[n], (v

(1)
i)i∈[n], and T ∈ A(F) with

(yi)i∈[n]+(w
(1)
i)i∈[n]+(w

(2)
i)i∈[n] ← T [G]((x(0)+v

(0)
i)i∈[n], (x

(1)+v
(1)
i)i∈[n]), that

there are numbers t1 and t2 with t1 + t2 ≤ |T | such that

(i) weight(w′) ≤ t1 with (w′
i)i∈[n] = (v

(0)
i)i∈[n] + (v

(1)
i)i∈[n] − (w

(1)
i)i∈[n];

(ii) and (w
(2)
i)i∈[n] is the zero vector or produced by the following random experi-

ment: A polynomial pw ∈ F[x] is chosen such that the coefficients xd+1, xd+2,
. . . , xn−t2 are drawn uniformly at random from F. Then, w(2)

i = pw(αi).

17

Note that any valid encoding (yi)i∈[n] and any fault vector (wi)i∈[n] with
weight(w) ≤ e cannot result in a valid encoding with (yi)i∈[n] + (wi)i∈[n] in
our setting, as we use d + 1 + e shares of a polynomial of degree d. Hence,
weight((yi)i∈[n] − (y′i)i∈[n]) ≥ e+ 1 for all valid sharings y and y′. Next we give
a useful composition result for e-f-robustness.

Theorem 3. The composition of two e-fault-robust gadgets with respect to F is
e-fault-robust with respect to F if F ⊆ F ind.

Proof. Let G and G′ be two gadgets such that G is given inputs (x
(0)
i)i∈[n] and

(x
(1)
i)i∈[n] and produces output (y

(0)
i)i∈[n]. Furthermore, let G′ have the inputs

(y
(0)
i)i∈[n] (i.e., the output of G) and (y

(1)
i)i∈[n] and output (zi)i∈[n]. Let G̃ be the

complete construction and vx(0) , vx(1) , vy(0) , vy(1) , vz be the fault vectors.
Fix any T̃ ∈ A(F). Due to the independence of these faults, we can split them

into two parts T and T ′, where T corresponds to the faults introduced in G and
T ′ corresponds to the faults introduced in G′.

As G is e-fault-robust, its output fault vector vy(0) is of the form vy(0) =

vx(0) + vx(1) + w(1) + w(2) where weight(w(1)) ≤ t1 and w(2) is the zero vector or
drawn randomly with highest coefficient xn−t2 for some numbers t1 and t2 with
t1 + t2 ≤ |T |. Furthermore, as G′ is e-fault-robust, its output fault vector vz is
of the form vz = vy(0) + vy(1) + w′(1) + w′(2) where weight(w′(1) ≤ t′1 and w′(2)

is drawn randomly with highest coefficient xn−t′2 for some numbers t′1 and t′2
with t′1 + t′2 ≤ |T ′|. Hence, vz = vx(0) + vx(1) + w(1) + w(2) + vy(1) + w′(1) + w′(2),
where weight(w(1) + w′(1)) ≤ t1 + t′1 and w(2) + w′(2) corresponds to a random
polynomial with highest coefficient xn−min{t2,t′2}. ⊓⊔

The definition of e-fault-robustness can be simplified for non-adaptive attackers:
We can then guarantee that either w(1) or w(2) are zero. The proof of compos-
ability is similar, but uses the fact that the sum of a random polynomial and a
deterministic, independent polynomial is again a random polynomial.

The notion of e-fault-robustness now directly allows us to give a bound on
the probability that a valid encoding of an invalid value is generated by a circuit.

Theorem 4. If a circuit is e-fault-robust, the probability that s ≤ e faults can
produce a valid encoding of an invalid value is at most qs−e−1 in the case of
non-adaptive attackers and qs−e · (d+e+1)t1 for all t1 ≤ s in the case of adaptive
attackers.

Proof. Let w(1) and w(2) be as in the definition of e-fault-robustness and let
p(1) and p(2) be the corresponding polynomials. Lemma 2 implies that the fault
polynomial p(1) has degree at least n− t1. Hence, if p(2) is identical to zero, the
attacker can not produce a valid encoding of an invalid value. Furthermore, if
p(1) is identical to zero, the sharing is valid if and only if all coefficients of xd+1,
xd+2, . . . , xn−s of p(1) are zero, which happens with probability qs−e−1.

If p(2) is not identical to zero, the polynomial p = p(1) + p(2) corresponding to
w = w(1)+w(2) needs to have degree at most d. As p(2) has degree at most n− t2,

18

this is only possible if n − t1 ≤ n − t2, i.e., if t1 ≥ t2 holds. We will now show
that the number of different polynomials p(1) and p(2) such that p has degree at
most d is very small. Clearly, the number of different polynomials possible for
p(2) is qe−t2 due to the fact that p(2) is randomly generated. Furthermore, the
number of different polynomials possible for p(1) is

(
n
t1

)
· qt1 ≤ nt1 · qt1 . Hence,

the probability that there is a vector w(1) matching to the random vector w(2) is
at most

qt1

qe−t2
· nt1 = qt1+t2−e · nt1 .

Hence, the probability that s ≤ e faults can produce a valid encoding of an
invalid value is at most qs−e · (d+ e+ 1)t1 . ⊓⊔

3.3 Combined Security

Equipped with our new notions of d-fr(S)NI and e-fault-robustness, it is easy
to see that the combination of these notions directly implies security against
(d, e)-attackers.

Theorem 5. If the circuit C is d-frSNI (or d-wfr(S)NI) and e-fault-robust, it
is qs−e−1-secure against any non-adaptive (d, s)-attacker (or (d− s, s)-attacker)
with s ≤ e. Furthermore, it is qs−e · (d + e + 1)t1-secure against any adaptive
(d, s)-attacker (or (d− s, s)-attacker) with t1 ≤ s ≤ e.

Proof. The perfect security with regard to the leakage (i.e., that the attacker is
not able to determine the challenge bit b) directly follows from the fact that the
circuit is d-SNI even in the presence of at most e faults. Furthermore, Theorem 4
directly implies that the probability that a valid encoding of an invalid value is
ever output is at most qs−e−1 in the non-adaptive case and qs−e · (d+ e+ 1)t1 in
the adaptive case. ⊓⊔

4 Compiler

This section gives a compiler transforming an unprotected circuit into a fault
and probe resilient circuit using a polynomial sharing with an optimal number of
shares. As described in the previous section, the sensitive data v is masked with
a d + 1-out-of-n polynomial sharing. Therefore, a polynomial f with degree d
such that f(0) = v is generated, and the shares are given by f(αi) for pairwise
different non-zero inputs α0, . . . , αn−1. The main goal of the compiler is now to
take an ordinary circuit and transform it into a circuit operating on shares such
that d probes and e faults do not reveal any sensitive data, i.e., into a circuit
that is ϵ-secure against (d, e)-attackers. As usual, this is done by replacing gates
of the original circuit with gadgets. For security reasons, refresh gadgets are also
inserted that guarantee that intermediate sharings become independent. Refresh
gadgets take as input an encoded secret and output a re-randomized encoding

19

of the same secret. This procedure reduces the dependencies that might occur
when one value is used as input for multiple gadgets.

In the following, let n = d+ e+ 1. Unary gates (such as addition or multipli-
cation with a constant) taking only a single input can be handled easily, as these
operations are linear and can thus be computed locally on the shares. We thus
only need to focus on binary gates, i.e., addition and multiplication gates that
take two inputs. Let us consider two d+1-out-of-n sharings (Fi)i∈[n] and (Gi)i∈[n]

of secrets f0, respectively g0. Similar to the unary gates, Algorithm 1 computes a
share-wise addition such that its output (Qi)i∈[n] represents the addition f0 + g0.
This algorithm is a gadget computing an addition since it outputs a d+1-out-of-n
sharing again, as the addition of two degree d polynomials also has degree d.

Algorithm 1 (n, d)-SWAdd for n = d+ ϵ+ 1

Input: Shares of f0 as (Fi)i∈[n] and g0 as (Gi)i∈[n] with degree d
Output: Shares of f0 + g0 as (Qi)i∈[n] with degree d.

1: for i = 0 to n− 1 do
2: Qi ← Fi +Gi

3: return (Qi)i∈[n]

Due to our attack model, all faults added to the input of any such share-
wise (linear) gadget can also be added to the output without any change in the
computation. Furthermore, as n ≥ d, these gadgets are secure against d probes,
as d values of a d+ 1-out-of-n sharing do not reveal any information. We can
thus state the following fact.

Theorem 6. Share-wise affine gadgets are d-frNI with respect to F+ (or d-wfrNI
with respect to F ind) and e-fault-robust with respect to F ind.

Proof. The e-fault-robustness immediately follows from Definition 9(i). Next, we
prove the frNI property. It is sufficient to show that a share-wise linear gadget
is NI and fault invariant with respect to F+ because Corollary 1 shows that
this implies d-frNI with respect to F+. Further, Corollary 2 shows that this also
implies d-wfrNI with respect to F ind. Hence, it remains to prove that a share-wise
linear gadget is (i) NI and (ii) fault invariant with respect to F+.

(i) It is well known that any share-wise gadget is NI, as all output (and interme-
diate) values only depend on input shares with the same index. For example,
the share-wise addition with ci ← ai + bi only depends on the ith share ai
and bi for any i ∈ [n]. It follows that any d probes can be simulated by at
most d shares of each input sharing because we never need more than one
share of each input sharing for each probe. This implies the NI property.

(ii) The shift invariance w.r.t F+ follows from the linearity. Since an additive
fault ζ only adds a constant value x on a wire, we can move the addition

20

x to the output or input due to the linearity. For example it holds for the
share-wise addition ci ← ai+bi that (ai+bi)+x = ai+(bi+x) = (ai+x)+bi.
In the first term, the fault is moved to the output ζ(ci) = ci + x and in the
second two terms it is moved to the inputs ζ(bi), and ζ(ai), respectively. This
is the property required for fault invariance. We give a more general proof in
the appendix (Theorem 17, Sec. A.2).

With (i) and (ii) we can conclude the proof. ⊓⊔

As usual, the remaining gate, the binary multiplication gate is the most
complicated gate, as it does not behave linearly. Nevertheless, Algorithm 2
computes a share-wise multiplication such that its output (Qi)i∈[n] represents
the multiplication f0 · g0. Unfortunately, the multiplication of two polynomials of
degree d results in a polynomial of degree 2d. Therefore, Algorithm 2 outputs a
2d degree polynomial. For n < 2d, this means that the shares can not represent
this polynomial properly and we thus lose the information about the shared value.
Furthermore, even if n > 2d, the next multiplication gadget in the circuit could
possibly lead to a polynomial of degree 4d and so on. Hence, Algorithm 2 can
not be used as a multiplication gadget alone and further work is required. The
classical approach due to Ben-Or, Goldwasser, and Wigderson [BGW88] performs
a degree reduction to reduce the polynomial to degree d after the share-wise
multiplication to prevent the exponential blowup of the degrees. Nevertheless,
the polynomial of degree 2d needs to be stored and their approach thus requires
at least 2d shares.

Algorithm 2 (n, d)-SWMult for n = d+ ϵ+ 1

Input: Shares of f0 as (Fi)i∈[n] and g0 as (Gi)i∈[n] with degree d
Output: Shares of f0g0 as (Q′

i)i∈[n] with degree 2d.

1: for i = 0 to n− 1 do
2: Q′

i ← Fi ·Gi

3: return (Q′
i)i∈[n]

To construct a multiplication gadget, the state-of-the-art gadget due to Seker,
Fernandez-Rubio, Eisenbarth, and Steinwandt [SFRES18] also follows the general
approach of Ben-Or, Goldwasser, and Wigderson: They first apply the share-wise
multiplication (Alg. 2) to compute sharing of degree 2d and then reduce the
degree back to d afterwards such that subsequent operations can be performed.
However, the degree reduction is relatively expensive and complex. We will discuss
this strategy in more depth in the following section, Section 4.1. But due to the
need to store a polynomial of degree 2d, their approach can not need less than
2d shares. Furthermore, they also need an additional e shares to handle faults.
Our solution circumvents the need for this large number of shares. Section 4.2
presents a new compiler that needs at most d+ e+ 1 shares.

21

4.1 Fixed State-of-the-Art

Here, we give a more thorough explanation of the binary multiplication gadget con-
struction due to Seker, Fernandez-Rubio, Eisenbarth, and Steinwandt [SFRES18].
We note here that this gadget can only handle additive faults.

Figure 1b illustrates the high-level idea of the gadget. It first performs the
share-wise multiplication which outputs sharing (Q′

i)i∈[n] of degree 2d that
encodes the product of the secrets of (Fi)i∈[n] and (Gi)i∈[n] and then reduces
the degree of (Q′

i)i∈[n] such that (Qi)i∈[n] carries the same secret as (Q′
i)i∈[n] but

has degree d. This construction was proven to be d-SNI secure. As mentioned
above, this multiplication leads to the intermediate 2d degree sharing (Q′

i)i∈[n]

that requires n = 2d+ e+ 1 shares. To handle faults, the following idea is used:
Any attacker that can add e additive faults to the shares adds a polynomial of
degree at least n− e = d+1 to the sharing. As a valid sharing has degree at most
d, this means that the higher-order monomial d+1 is set to a non-zero value iff a
fault was added. These higher-order monomials are kept unchanged by share-wise
additions and by careful design, are also kept unchanged with probability at least
1− (1/q) in the multiplication gadget (or, more generally 1− q−e+s−1 for s ≤ e
faults). Unfortunately, their refresh gadget is not (S)NI, as shown in Sec. B.5,
and an alternative refresh is required. We remark that such a refresh gadget can
be seen as multiplication with a fresh sharing of the value 1. It is thus sufficient
to focus on addition and multiplication gadgets here. We refer to [BBD+16] for
more detailed explanations. The result by Seker, Fernandez-Rubio, Eisenbarth,
and Steinwandt [SFRES18] can thus be summed up via the following informal
theorem:

Theorem 7 (Fixed SotA). For any d, e ∈ N there is a compiler that is given
an arithmetic circuit C over F and outputs an arithmetic circuit C′ on Fn where
n = 2d+ e+ 1 with

– C′ has the same functionality as C
– C′ is d-probing-secure,
– C′ is e-fault-robust with respect to F+.

The proof follows from [SFRES18] with the multiplication use as SNI refresh,
and the compiler presented in [BBD+16]. The idea is that the multiplication
and refresh gadgets are error preserving and d-SNI and the addition gadget
is error preserving and d-NI. Applying the compiler of [BBD+16] results in a
d-probing secure circuit with error preserving gadgets and, consequently, the
compiler outputs an error preserving circuit that is information-theoretic secure
against d probes.

4.2 laOla Compiler

We improve our compiler in two steps. We first improve the (fr)SNI refresh, and
we give a new multiplication gadget to reduce the number of shares from 2d+e+1
to d+ e+ 1.

22

SplitRed

SplitRed

SWMult1

SWMult2

SWMult3

SWMult4

Comp

f

g

f ′

f ′

f ′′

f ′′

g′

g′

g′′

g′′

h0

h1

h2

h3

q

(a) Structure of the n, d-Multiplication de-
fined in Algorithm 6

SWMult d-Red

(Fi)i∈[n]

(Gi)i∈[n]

(Q′
i)i∈[n] (Qi)i∈[n]

(b) Structure of the n, d-
Multiplication used in [SFRES18].

Fig. 1: Our n, d-Multiplication and the multiplication in [SFRES18]

Refresh. We construct a new SNI refresh gadget only using d2 random values.
Therefore, we transform this problem to a gadget that generates a zero encoding.
Assuming a “secure” zero encoding (ei)i∈[n] ← Enc(0) it is easy to see that the
refreshed output (yi)i∈[n] of a sharing (xi)i∈[n] with yi = xi+ei is SNI. Any probe
yi is uniform random, and only the (additional) internal probe ei requires the
input xi for a perfect simulation. However, we still ignored the internal probes in
(ei)i∈[n] ← Enc(0) to generate the zero encoding. sZEnc depicted in Algorithm 4
is such a gadget that is SNI secure even in the presence of internal probes and
faults (Theorem 11).

Further, we can show that the resulting refresh gadget even gives region
probing security (Theorem 12). Using our new refresh gadget we can improve the
compiler of [SFRES18]. The improved compiler (Imp. SotA, listed in Table 3)
requires less randomness and guarantees higher security due to region probing
security.

Multiplication. In order to avoid the dependency on 2d, a trivial (insecure)
approach is to switch the order of operations: I.e., we first reduce the degree of
the input shares (Gi)i∈[n], (Fi)i∈[n] to sharings (G′

i)i∈[n], (F ′
i)i∈[n] of degree d/2.

The output of the share-wise multiplication SWMult((G′
i)i∈[n], (F

′
i)i∈[n]) then

has the right degree d again. However, it is easy to see that (G′
i)i∈[n], (F ′

i)i∈[n]

would reveal their secrets with d/2+ 1 ≤ d probes. Hence, this approach does not
guarantee privacy against d probes.

While a naive implementation of this idea is insecure, our new construction
depicted in Figure 1a still guarantees security. Instead of performing a simple
degree reduction, our gadget SplitRed simultaneously constructs an additive
sharing of the polynomials. Hence, an application of SplitRed on an input
sharing described by the polynomial f produces two polynomials f ′ and f ′′ both
of degree d such that the polynomial f ′ + f ′′ has only degree d/2. In other words,
we produce two polynomials f ′ and f ′′ where the coefficients of the monomials
x0, x1, . . . xd/2 are additive sharings of the corresponding coefficients of f and
the coefficients of the monomials xd/2+1, . . . , xd are additive sharings of the all-

23

zero vector. We compute g′ and g′′ similarly such that each polynomial f ′, f ′′,
g′, and g′′ considered individually is still a polynomial of degree d. Now we
can apply the share-wise multiplication four times to compute f ′ · g′, f ′ · g′′,
f ′′ · g′, and f ′′ · g′′ and sum all four outputs with our gadget Comp. It follows
that the output (Hi)i∈[n] describes a polynomial h of degree d again because
f ′ · g′ + f ′ · g′′ + f ′′ · g′ + f ′′ · g′′ = (f ′ + f ′′) · (g′ + g′′) is again a polynomial
of degree d. The formal description of the algorithm is given in Section 6 and
Section A provides a detailed security analysis against probes and faults.

Compiler The multiplication, and refresh, together with the share-wise addition,
lead to a compiler using only n = d+ e+ 1 shares against additive faults.

Theorem 8 (laOla (additive)). For any d, e ∈ N there is a circuit compiler
that is given an arithmetic circuit C over F and outputs an arithmetic circuit C′
over Fn where n = d+ e+ 1 with

– C′ has the same functionality as C,
– T [C′] is probing secure for any T ∈ A(F+) and
(i) up to d probes in T [C′] (threshold probing security), or
(ii) up to d/2 probes in every gadget of T [C′] (region probing security).

– C′ is e-fault-robust with respect to F+.

Furthermore, we also show that our approach can handle more general faults,
although this comes at the cost of needing more shares.

Theorem 9 (laOla-Compiler (general)). For any d, e ∈ N there is a circuit
compiler that is given an arithmetic circuit C over F and outputs an arithmetic
circuit C′ over Fn where n = d+ e+ 1 with

– C′ has the same functionality as C,
– T [C′] is probing secure for any T ∈ A(F+) with |T | ≤ e and

(i) up to d− e probes in T [C′] (threshold probing security), or
(ii) with up to d/2 probes in every gadget of T [C′] when the faults are counted

as probes (region probing security).
– T [C′] is d− e probing secure for any T ∈ A(F ind) with |T | ≤ e,
– C′ is e-fault-robust with respect to F ind.

In both cases, Theorem 5 implies qs−e−1-security against (d, s)-attackers.
Next, we will prove that our compiler is optimal for affine circuits. Since the

addition gadget is share-wise, and cannot be further optimized for any compiler9,
we only show that the number of shares n = d+ e+ 1 is optimal if one wants
to protect against d probes and e faults. If one assumes that the values are
polynomially masked, this is relatively easy to see. To protect against d probes,
the underlying polynomial needs to have degree at least d. If we use strictly less
9 Assume an addition gadget where both input sharings and the output sharing have n

shares. In total, we have 2n input shares and n output shares. It follows that at least
one input share does not effect the output if we have only n − 1 (xor-)operations
with two input wires. Hence, the gadget needs at least n operations.

24

Table 3: A concrete comparison with the compiler [SFRES18] fixed in this work,
the constuction in [DN19], and our new compiler.
Compiler # Shares Randomness Cost Comb. Sec. Opt. for

in the Reg. affine
Mult. Gadget SNI Refresh Prob. Model Circuits

[DN19] d+ e+ 1 Θ(n3) Θ(n3) é Ë
Fixed SotA [SFRES18] 2d+ e+ 1 2d2 + d(e+ 1) 2d2 + d(e+ 1) é é
Imp. SotA[This Work] 2d+ e+ 1 2d2 + d(e+ 1) d2 (Ë) é
laOla [This Work] d+ e+ 1 3d2 + 2d(e+ 1) d2 Ë Ë

than d+e+1 shares, an attacker can fault e of these shares, which corresponds to
adding a polynomial of degree strictly less than d+e+1−e = d+1 to the sharing.
Hence, the attacker can modify the valid sharing, described by a polynomial of
degree d, by adding a polynomial of degree d and thus obtain a valid sharing
of a different values. Hence, there is no way to detect these modifications and
fault-resilience is thus not possible.

One might now wonder whether this is an artifact of the polynomial sharing
or whether it is inherently impossible to use a lower number of shares. We will
show that the latter is true.

Theorem 10. The number of shares n of any sharing procedure that protects
against d probes and e faults is at least n ≥ d+ e+ 1.

This follows from [Lin98] (Theorem 5.2.1), and we give a detailed proof in the
appendix Sec. B.4.

5 Refresh Gadget

To construct a refresh gadget with input sharing (xi)i∈[n] it is sufficient to generate
a zero encoding (ei)i∈[n] and output its sum (yi)i∈[n] = (xi)i∈[n] + (ei)i∈[n]. In
this section we give two different gadgets to generate zero encodings. The first one
is sufficient to inject randomness in our multiplication gadget. The latter gadget
uses the weaker one and results in a d-SNI refresh gadget. Further we show that
the gadget is even stronger, and we can use it to transform our d-probing secure
circuit into a d/2-region-probing secure circuit.

ZEnc Gadget. The gadget ZEnc depicted in Algorithm 3 generates a random
zero encoding. We use the polynomial representation to describe the high level
idea of the gadget. Since g is a random polynomial with g(0) = 0, it holds
g(x) =

∑d
i=1 rjx

j with r1, r2, . . . rd ∈ F. Our gadget generates such polynomials
by choosing each ri uniform at random and outputs g. More precisely, we
use the polynomial masking where each polynomial is described by n points
g(α0), g(α1), . . . g(αn−1). Therefore, the algorithm does not compute g(x) but

25

each g(αi) =
∑d

i=1 rjαi, separately. Hence, the final output of Algorithm 3
represent an encoding of zero with (gi)i∈[n] := (g(αi))i∈[n].

Algorithm 3 ZEncdn
Output: A randomized (n, d)-Encoding of zero (gi)i∈[n].
1: for j = 1 to d do
2: rj ←$ F
3: for i = 0 to n− 1 do
4: gi+1 ← gi ⊕ rjα

j
i

5: return (gi)i∈[n]

In the appendix (Sec. B.5), we show that this encoding does not suffice for
an SNI refresh. However, next we show how to use ZEnc to construct an SNI
secure refresh.

sZEnc Gadget. The gadget sZEnc depicted in Algorithm 4 generates a zero
encoding because the sum of zero encodings is a zero encoding again.

Algorithm 4 sZEncdn
Output: A randomized (n, d)-Encoding of zero (gi)i∈[n].
1: for j = 0 to d do
2: (gi)i∈[n] ← ZEncd

n

3: (yi)i∈[n] ← (yi)i∈[n] + (gi)i∈[n]

4: return (yi)i∈[n]

Lemma 3 (Probing security). For any set P with d′ ≤ d probes it holds for
(ei)i∈[n] ← sZEncdn: There is a sub set A ⊂ [n] with |A| = n− d′ such that

(i) (ei)i∈A are still (d−d′)-wise independent, independent from P and (ei)i∈[n]\A,
(ii) P can be perfectly simulated with (ei)i∈[n]\A

The proof is given in the appendix (Lemma 4, Sec. A.1). It is easy to see that
a gadget with input sharing (xi)i∈[n] and output sharing (xi + ei)i∈[n] with
(ei)i∈[n] ← sZEncdn is an SNI refresh:

Theorem 11 (Refresh). The gadget G′
G (Alg. 5) with identity G is a d-frSNI

w.r.t. F+ (or d-wfrSNI w.r.t. F ind) and e-fault-robust w.r.t. F ind refresh gadget

Proof. In the appendix (Sec. A) we give a detailed proof for SNI (Theorem 14,
Sec. A.1) and fault-invariance w.r.t. F+ (Theorem 17, Sec. A.2). With Theorem 1
we get frSNI, and with Theorem 2 follows wfrSNI. Fault-robustness follows with
Theorem 20, Sec. A.3. ⊓⊔

26

Algorithm 5 G′
G with n ≥ d+ e+ 1

Input: The same input sharings as G. E.g., (xi)i∈[n] and (x′
i)i∈[n], or only (xi)i∈[n].

Output: A randomized output of G((xi)i∈[n], (x
′
i)i∈[n]) (or G((xi)i∈[n])).

1: (ei)i∈[n] ← sZEncd
n

2: (y′
i)i∈[n] ← G((xi)i∈[n], (x

′
i)i∈[n]) (or (y′

i)i∈[n] ← G((xi)i∈[n]))
3: (yi)i∈[n] ← (yi)i∈[n] + (ei)i∈[n]

4: return (yi)i∈[n]

However, this refresh gadget is even more secure. Next, we show how to construct
a region-probing secure compiler with the gadget depicted in Algorithm 5.

Theorem 12. A d probing secure composition with d-NI and d-SNI secure
gadgets Gi is d/2 region probing secure if each gadget is transformed into G′

G

(Alg. 5), and outputs refreshed sharings.

It immediately follows from Lemma 3, and the detailed proof is given in the
appendix (Theorem 15, Sec. A.1). Assuming a (w)frSNI and error preserving
multiplication, this theorem directly implies both Theorem 8 and Theorem 9.
Using Theorem 5 then implies qs−e−1-security against (d, s)-attackers.

Next, we give our frSNI and error preserving multiplication gadget only using
n = d+ e+ 1 shares.

6 Multiplication Gadget

In this section we introduce our new improved gadget which securely performs a
masked multiplication on a polynomial sharing with just n = d+ e+ 1 shares,
whereas the state-of-the-art requires 2d+ e+ 1 shares.

6.1 Concept and Overview

In the following we formally introduce the new multiplication gadget depicted in
Figure 1a, its formal description is given in Algorithm 6.

For a better intuition of the gadget Mult with inputs (Fi)i∈[n] and (Gi)i∈[n],
we use the polynomial representation f and g such that f(αi) = Fi and g(αi) = Gi.
As depicted in Figure 1a, the gadget SplitRed first splits the inputs g and f
with secrets f(0) = f0 and g(0) = g0 into polynomials f ′, f ′′, g′, and g′′ such that
each polynomial is uniform random with degree d but f ′ + f ′ and g′ + g′′ have
degree d

2 each and, furthermore, f ′(0) + f ′(0) = f0 and g′(0) + g′(0) = g0. This
allows to avoid the intermediate polynomials that require 2d shares. Furthermore,
we can use SWMulti to compute the four polynomials h0(x) = f ′(x)g′(x),
h1(x) = f ′(x)g′′(x), h2(x) = f ′′(x)g′(x), and h3(x) = f ′′(x)g′′(x). The last
gadget Comp refreshes the polynomials and sums them up into

f ′(x)g′(x) + f ′(x)g′′(x) + f ′′(x)g′(x) + f ′′(x)g′′(x).

27

The sum results in a polynomial q(x) with (Qi)i∈[n] = q(αi) which encodes the
correct value q(0) = f0 · g0, as

q(0) = f ′(0) · g′(0) + f ′(0) · g′′(0) + f ′′(0) · g′(0) + f ′′(0) · g′′(0)
= (f ′(0) + f ′′(0)) · (g′(0) + g′′(0)) = g(0) · f(0).

The next sections introduce the sub-gadgets SplitRed (Sec. 6.2), SWMult,
and Comp (Sec.6.3) needed for our multiplication gadget.

Algorithm 6 (n, d)−Mult
Input: Shares of f0 as (Fi)0≤i<n and shares of g0 as (Gi)0≤i<n.
Output: Shares of f0g0 as (Qi)0≤i<n.

1:
(
(F ′

i)i∈[n], (F
′′
i)i∈[n]

)
← SplitRed((Fi)i∈[n])

2:
(
(G′

i)i∈[n], (G
′′
i)i∈[n]

)
← SplitRed((Gi)i∈[n])

3: (H0
i)i∈[n] ← SWMult((F ′

i)i∈[n], (G
′
i)i∈[n])

4: (H1
i)i∈[n] ← SWMult((F ′

i)i∈[n], (G
′′
i)i∈[n])

5: (H2
i)i∈[n] ← SWMult((F ′′

i)i∈[n], (G
′
i)i∈[n])

6: (H3
i)i∈[n] ← SWMult((F ′′

i)i∈[n], (G
′′
i)i∈[n])

7: (Qi)i∈[n] ← Comp((H0
i)i∈[n], (H

1
i)i∈[n], (H

2
i)i∈[n], (H

3
i)i∈[n])

8: return (Qi)i∈[n]

6.2 SplitRedGadget

The general idea of SplitRed-LAOLA is best understood in the polynomial
representation, on which we focus here. We are given a sharing (Fi)i∈[n] of a
polynomial f =

∑
i fix

i, where f0 encodes the sensitive information. We now
want to split f into two polynomials f ′ and f ′′. To understand the general idea
behind the algorithm, we will first focus on the case that no faults are present
and later show how to adapt to faults. In this scenario, we aim for the following
two properties.

(*) The sum of the sensitive information of f ′ and f ′′ is an additive sharing of
the sensitive information of f , i.e., (f ′ + f ′′)0 = f0 (which is the split part of
the gadget).

(**) The degrees of both f ′ and f ′′ are equal to d = deg(f), but the degree of the
sum f ′ + f ′′ is only equal to d

2 (which is the reduce part of the gadget).

To obtain these properties, we proceed roughly as follows:
(i) We generate a random polynomial g =

∑
i gix

i of degree d with g0 = 0,
i.e., all coefficients gi are drawn uniformly at random for i > 0.

(ii) We generate another polynomial g′ =
∑

i g
′
ix

i of degree d with g′0 = 0.
For i ∈ [1, d

2], the coefficients g′i are drawn uniformly at random. For i > d
2 , we

set g′i = −gi. This means that deg(g) = deg(g′) = d, but deg(g + g′) = d
2 .

28

(iii) Now, the second property (**) is fulfilled, but we still need to share the
sensitive information of f into g and g′. Now, remember that share j holds the
value f(αj). We now set g0 =

∑
j<n/2 λ

(0)
j f(αj) and g′0 =

∑
j≥n/2 λ

(0)
j f(αj). The

interpolation lemma then implies the correctness, as g0 + g′0 =
∑

j λ
(0)
j f(αj) =

f(0) = f0.
While the correctness of this idea directly follows from the interpolation

lemma, we need to be careful to secure the algorithm against both probes and
faults. To obtain probing security, we simply need to generate more random
polynomials and include the values λ

(0)
j f(αj) more carefully over time. More

concretely, for j = 1, . . . , n/2, we first generate random polynomials ĝ(j) of
degree d (with absolute term 0), and for j = 1, . . . , n, we first generate random
polynomials g̃(j) of degree d

2 (with absolute term 0). For j < n/2, we compute
g(j) = g̃(j) + ĝ(j) and for j ≥ n/2, we compute g(j) = g̃(j) − ĝ(j−n/2). Then, for
j = 1, . . . , n, we set g(j) = g(j) + λ

(0)
j f(αj) and finally, obtain f ′ =

∑
j<n/2 g

(j)

and f ′′ =
∑

j≥n/2 g
(j). A careful inspection of the construction shows that the

sensitive information is always sufficiently hidden against up to d probes.
To handle faults, we need to make sure that the error coefficients of f are

also preserved. To do so, we do not only incorporate the terms λ
(0)
j f(αj), but

the term
(
λ
(0)
j +

∑
k>d λ

(k)
j αk

i

)
f(αj), which we will denote by λ̂

(i)
j · f(αj) in the

following. Note that the interpolation lemma implies that
∑

j

∑
i λ̂

(i)
j f(αj) =

f0 +
∑

k>d fkx
k.

We show in the appendix that SplitRed is d-NI (Sec. A.1, Lem. 5) and
transfers faults from its inputs to the output (Sec. A.3, Thm. 21).

6.3 Share-wise Multiplication and Compression Gadgets

The share-wise multiplication SWMult (Alg. 2) works similar to the addition.
Remember that SplitRed shares two polynomials f(x) and g(x) into f ′(x), f ′′(x),
g′(x), and g′′(x) such that for f̃(x) = f ′(x) + f ′′(x) and g̃(x) = g′(x) + g′′(x) it
holds f̃(x) and g̃(x) have degree d

2 and f(0) = f̃(0), g(0) = g̃(0). The share-wise
multiplication now might lead to degrees larger than d when they compute
h0(x) = f ′(x) · g′(x), h1(x) = f ′(x) · g′′(x), h2(x) = f ′′(x) · g′(x), h3(x) =
f ′′(x) · g′′(x), but the final gadget Comp sums up all hi and this results into
a polynomial

∑3
i=0 h

i with degree d. This follows from the fact that we can
alternatively write

∑3
i=0 h

i(x) = (f ′(x) + f ′′(x)) · (g′(x) + g′′(x)) = f̃(x) · g̃(x).
Since f̃(x) and g̃(x) have degree d

2 , the product f̃(x) · g̃(x) has degree d. Hence
the sum of the hi results in a degree d polynomial with secret f0 · g0. Note
that we also add an encoding of zero in Comp to re-randomize the values, but
this does not change the correctness of the gadget. We show in the appendix
that all values of Comp can be simulated from a few inputs (Corollary 3) and
both SWMult and Comp transfer faults from their inputs to their outputs
(Theorem 22 and Theorem 23).

29

Algorithm 7 (n, d)-SplitRed for n = d+ ϵ+ 1.
Input: Shares of f0 as (Fi)i∈[n].
Output: Shares of f ′

0 as (F ′
i)i∈[n] and shares of f ′′

0 as (F ′′
i)i∈[n] , such that f0 = f ′

0+f ′′
0 .

1: for j ∈ [n
2
] do

2: (ĝji)i∈[n] ← ZEncd
n

3: for j ∈ [n
2
] do

4: (g̃ji)i∈[n] ← ZEnc
d
2
n

5: (gji)i∈[n] ← (g̃ji)i∈[n] + (ĝji)i∈[n]

6: for j ∈ [n
2
] do

7: for i ∈ [n] do
8: F ′j

i ← λ̂i
j · Fj

9: for j ∈ [n
2
] do

10: (Fj
i)i∈[n] ← (F ′j

i)i∈[n] + (gji)i∈[n]

11: for j ∈ [n
2
] do

12: (F ′
i)i∈[n] ← (F ′

i)i∈[n] + (Fj
i)i∈[n]

13: for j ∈ [n
2
] do

14: (g̃
j+n

2
i)i∈[n] ← ZEnc

d
2
n

15: (g
j+n

2
i)i∈[n] ← (g̃ji)i∈[n] − (ĝji)i∈[n]

16: for j ∈ [n
2
] do

17: for i ∈ [n] do
18: F ′j+n

2
i ← λ̂i

j+n
2
· Fj+n

2

19: for j ∈ [n
2
] do

20: (Fj+n
2

i)i∈[n] ← (F ′j+n
2

i)i∈[n] + (g
j+n

2
i)i∈[n]

21: for j ∈ [n
2
] do

22: (F ′′
i)i∈[n] ← (F ′′

i)i∈[n] + (Fj+n
2

i)i∈[n]

23: return (F ′
i)i∈[n], (F

′′
i)i∈[n]

30

Algorithm 8 Comp for n = d+ ϵ+ 1

Input: 4 Sharings (Hj
i)i∈[n] of hj

Output: Sharing (Qi)i∈[n] with h0 + h1 + h2 + h3

1: (Qi)i∈[n] ← sZEncd
n

2: (Qi)i∈[n] ← [[[(Qi)i∈[n] + (H0
i)i∈[n]] + (H1

i)i∈[n]] + (H2
i)i∈[n]] + (H3

i)i∈[n]

3: return (Qi)i∈[n]

6.4 Security Analysis of the Multiplication Gadget

In this section we show that the multiplication Mult is frSNI and e-fault-robust.
Corollary 1 shows that SNI and fault-invariance implies frSNI. The detailed
security proofs can be found in the appendix.

Theorem 13. The multiplication gadget Mult depicted in Algorithm 6 is d-
fr(S)NI with respect to F+ or (d-wfr(S)NI with respect to F ind) and e-fault-robust
with respect to F ind.

Proof (sketch). In Appendix A.3 (Theorem 24) we prove e-fault-robustness with
respect to F ind. It remains to prove the frSNI property. Due to Corollary 1, it
is sufficient to show that the multiplication gadget is SNI and fault invariant
with respect to F+ because this implies d-frSNI with respect to F+. Further,
Corollary 2 shows that this also implies d-wfrSNI with respect to F ind. Hence, it
remains to prove that the gadget Mult is (i) SNI and (ii) fault invariant with
respect to F+.

(i) We give the detailed proof in Appendix A.1 (Theorem 16): We first analyze
the different subroutines of Mult separately. Combining these results shows
that the complete gadget is t-SNI.

(ii) We give the detailed proof in Appendix A.2 (Theorem 17): The proof is
similar to the fault-invariance proof of linear gadgets. The only difference is
that the gadget has (only) one non-linear layer – the share-wise multiplication.
However, the remaining computation of the multiplication gadget is linear
again and the definition of fault-invariance only requires that we can move
the faults to the inputs or outputs. The idea is that all faults before the
non-linear layer can be moved to the inputs, and the faults after the non-liner
layer can be moved to the outputs as in step (ii) of the proof of Theorem 6.

Acknowledgment

This work was partly supported by the German Research Foundation (DFG) via
the DFG CRC 1119 CROSSING (project S7), by the German Federal Ministry
of Education and Research and the Hessen State Ministry for Higher Education,
Research and the Arts within their joint support of the National Research Center
for Applied Cybersecurity ATHENE, and by the European Commission(ERCEA),

31

ERC Grant Agreement 101044770 CRYPTOLAYER. This work has been partially
supported by BMBF through the VE-Jupiter project grants 16ME0231K and
14ME0234.

References

[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and
Alan Szepieniec. Design of symmetric-key primitives for advanced crypto-
graphic protocols. IACR Trans. Symm. Cryptol., 2020(3):1–45, 2020.

[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Cir-
cuit compilers with O(1/ log(n)) leakage rate. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 586–615. Springer, Heidelberg, May 2016.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. MiMC: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 191–219.
Springer, Heidelberg, December 2016.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 430–454. Springer, Heidelberg, April 2015.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order mask-
ing. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part I, volume 9056 of LNCS, pages 457–485. Springer, Heidelberg, April
2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 116–129. ACM Press, October 2016.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal side-channel attacks and countermeasures on the ISW
masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
CHES 2016, volume 9813 of LNCS, pages 23–39. Springer, Heidelberg,
August 2016.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak. In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 313–314. Springer, Heidelberg,
May 2013.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation (extended
abstract). In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryp-
tosystems. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of
LNCS, pages 513–525. Springer, Heidelberg, August 1997.

[BS21] Olivier Bronchain and François-Xavier Standaert. Breaking masked im-
plementations with many shares on 32-bit software platforms. IACR

32

TCHES, 2021(3):202–234, 2021. https://tches.iacr.org/index.php/
TCHES/article/view/8973.

[CFG+10] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and
Vincent Verneuil. Horizontal correlation analysis on exponentiation. In
Miguel Soriano, Sihan Qing, and Javier López, editors, ICICS 10, volume
6476 of LNCS, pages 46–61. Springer, Heidelberg, December 2010.

[Cla07] Christophe Clavier. Secret external encodings do not prevent transient fault
analysis. In Pascal Paillier and Ingrid Verbauwhede, editors, CHES 2007,
volume 4727 of LNCS, pages 181–194. Springer, Heidelberg, September 2007.

[CN16] Thomas De Cnudde and Svetla Nikova. More efficient private circuits II
through threshold implementations. In FDTC 2016, pages 114–124. IEEE
Computer Society, 2016.

[CPR12] Jean-Sébastien Coron, Emmanuel Prouff, and Thomas Roche. On the use of
shamir’s secret sharing against side-channel analysis. In CARDIS, volume
7771 of Lecture Notes in Computer Science, pages 77–90. Springer, 2012.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE
Trans. Inf. Forensics Secur., 15:2542–2555, 2020.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
423–440. Springer, Heidelberg, May 2014.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: Exploiting ineffective fault
inductions on symmetric cryptography. IACR TCHES, 2018(3):547–572,
2018. https://tches.iacr.org/index.php/TCHES/article/view/7286.

[DN19] Siemen Dhooghe and Svetla Nikova. My gadget just cares for me - how
NINA can prove security against combined attacks. Cryptology ePrint
Archive, Report 2019/615, 2019. https://eprint.iacr.org/2019/615.

[DN20a] Siemen Dhooghe and Svetla Nikova. Let’s tessellate: Tiling for security
against advanced probe and fault adversaries. In Pierre-Yvan Liardet and
Nele Mentens, editors, CARDIS 2020, volume 12609 of Lecture Notes in
Computer Science, pages 181–195. Springer, 2020.

[DN20b] Siemen Dhooghe and Svetla Nikova. My gadget just cares for me - how NINA
can prove security against combined attacks. In Stanislaw Jarecki, editor,
CT-RSA 2020, volume 12006 of LNCS, pages 35–55. Springer, Heidelberg,
February 2020.

[FRSG22] Jakob Feldtkeller, Jan Richter-Brockmann, Pascal Sasdrich, and Tim
Güneysu. CINI MINIS: domain isolation for fault and combined security.
In CCS, pages 1023–1036. ACM, 2022.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. Poseidon: A new hash function for zero-knowledge
proof systems. In Michael Bailey and Rachel Greenstadt, editors, USENIX
Security 2021, pages 519–535. USENIX Association, August 2021.

[GLR+20] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Rotaru,
and Markus Schofnegger. On a generalization of substitution-permutation
networks: The HADES design strategy. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 674–704.
Springer, Heidelberg, May 2020.

33

[GM11] Louis Goubin and Ange Martinelli. Protecting AES with Shamir’s secret
sharing scheme. In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011,
volume 6917 of LNCS, pages 79–94. Springer, Heidelberg, September / Oc-
tober 2011.

[GPRV21] Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien Vergnaud.
Probing security through input-output separation and revisited quasilinear
masking. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(3):599–640,
2021.

[HKL+22] Jincheol Ha, Seongkwang Kim, ByeongHak Lee, Jooyoung Lee, and Mincheol
Son. Rubato: Noisy ciphers for approximate homomorphic encryption. In Orr
Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I,
volume 13275 of LNCS, pages 581–610. Springer, Heidelberg, May / June
2022.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private
circuits II: Keeping secrets in tamperable circuits. In Serge Vaudenay,
editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 308–327. Springer,
Heidelberg, May / June 2006.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003.

[LFZD14] Pei Luo, Yunsi Fei, Liwei Zhang, and A. Adam Ding. Side-channel power
analysis of different protection schemes against fault attacks on AES. In
ReConFig 2014, pages 1–6. IEEE, 2014.

[Lin98] J. H. Van Lint. Introduction to Coding Theory. Springer-Verlag, Berlin,
Heidelberg, 3rd edition, 1998.

[ORSW12] Yossef Oren, Mathieu Renauld, François-Xavier Standaert, and Avishai
Wool. Algebraic side-channel attacks beyond the hamming weight leakage
model. In Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012,
volume 7428 of LNCS, pages 140–154. Springer, Heidelberg, September 2012.

[RDB+18] Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla
Nikova, Ventzislav Nikov, and Nigel P. Smart. CAPA: The spirit of beaver
against physical attacks. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 121–151.
Springer, Heidelberg, August 2018.

[REB+08] Francesco Regazzoni, Thomas Eisenbarth, Luca Breveglieri, Paolo Ienne,
and Israel Koren. Can knowledge regarding the presence of countermeasures
against fault attacks simplify power attacks on cryptographic devices? In
Cristiana Bolchini, Yong-Bin Kim, Dimitris Gizopoulos, and Mohammad
Tehranipoor, editors, DFT 2008, pages 202–210. IEEE Computer Society,
2008.

[RFSG22] Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, and Tim
Güneysu. VERICA - verification of combined attacks automated formal ver-
ification of security against simultaneous information leakage and tampering.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):255–284, 2022.

[RP12] Thomas Roche and Emmanuel Prouff. Higher-order glitch free implementa-
tion of the AES using secure multi-party computation protocols - extended
version. Journal of Cryptographic Engineering, 2(2):111–127, September
2012.

[SFRES18] Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth, and Rainer
Steinwandt. Extending glitch-free multiparty protocols to resist fault injec-

34

tion attacks. IACR TCHES, 2018(3):394–430, 2018. https://tches.iacr.
org/index.php/TCHES/article/view/7281.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI – towards
combined hardware countermeasures against side-channel and fault-injection
attacks. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part II, volume 9815 of LNCS, pages 302–332. Springer, Heidelberg, August
2016.

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert.
Soft analytical side-channel attacks. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 282–296.
Springer, Heidelberg, December 2014.

35

Appendix

A Detailed Security Analysis

In this section we analyze the security of the refresh gadget defined in Section 5,
and multiplication gadget Mult defined in Section 6. In Section A.1, we first
analyze the probing-resilience of our constructions, and then, in Section A.2, we
show fault-invariance. Using Corollary 1 and Corollary 2, this implies that the
gadgets are d-(w)fr(S)NI, i.e., it does not reveal any sensitive information even in
the presence of faults. Then, in Section A.3, we analyze the error preservation of
our refresh and multiplication gadgets and prove that it is e-fault-robust. Using
Theorem 4 then implies that the probability that faults introduced into the circuit
lead to a valid sharing of an invalid value is bounded.

A.1 Probe-Resilience

In this section we prove the probe resilience of Refresh and Mult. In detail, we
analyze the underlying gadgets sZEnc, SplitRed, Comp, and SWMult. This
results in the d-SNI property of Mult (Theorem 16), and Refresh (Theorem 14).
In Theorem 17, we furthermore show that the constructions are fault-invariant,
which implies that the gadgets are also d-fr(S)NI.

Algorithm 9 ZEnc2d
n

Output: d+ 1-out-of-n sharing (yi)i∈[n] of zero.
1: for j ∈ [d] do
2: (gji)i∈[n] ← ZEncj+1

n

3: (yi)i∈[n] ← (yi)i∈[n] + (gji)i∈[n] ▷ Noted as (y(j)
i)i∈[n]

4: return (yi)i∈[n]

Probe-Resilience of sZEnc – Proof of Lemma 3. Next we prove Lemma 3.
Therefore, we do not give a concrete simulator but we prove that such a simulator
exists. In detail, let (ei)i∈[n] ← sZEnc, and P the probes in sZEnc with |P | = d′.
It is clear that there is a simulator that perfectly simulates P with (ei)i∈[n]. Due
to the redundancy there is such an simulator only requiring (ei)i∈C with C ⊂ [n]
and |C| = d as well. To show that there is a simulator that can simulate P only
using d′ output values we do the opposite – We show which values the simulator
does not need. Let (ei)i∈A be the outputs that the simulator does not need with
|A| = n− d′. Hence, we want to argue that there is a simulator that simulates P

36

with (ei)i∈[n]\A. In other words we have to show that all (ei)i∈A are not effected
by the choices of of P and (ei)i∈[n]\A. Formally, this proves the following claim.

Algorithm 10 sZEncdn
Output: d+ 1-out-of-n sharing (yi)i∈[n] of zero.
1: for j ∈ [d] do
2: (gji)i∈[n] ← ZEncd

n

3: (yi)i∈[n] ← (yi)i∈[n] + (gji)i∈[n] ▷ Noted as (y(j)
i)i∈[n]

4: return (yi)i∈[n]

Lemma 4 (Lemma 3). For any set P with d′ ≤ d probes it holds for (ei)i∈[n] ←
sZEncdn: There is a sub set A ⊂ [n] with |A| = n− d′ such that

(i) (ei)i∈A are still (d− d′)-wise independent, and
(ii) (ei)i∈A are independent of P and (ei)i∈[n]\A

Note that this means that an adversary only learning P can be upper-bounded
with an adversary that knows P and (ei)i∈[n]\A. However, such an “upper-bound
adversary” does not learn more about the output of (ei)i∈[n] ← sZEncdn than an
adversary only probing the outputs (ei)i∈[n]\A. In other words it exist a simulator
that can simulate P only using values in (ei)i∈[n]\A, since (ei)i∈A are independent
of P and (ei)i∈[n]\A. Hence, an adversary that only probes the outputs can learn
the same about the outputs as a simulator that can also probe internal values.
This is exactly what we want to have when we consider an gadget as leakage-free.
Next we prove the leakage-free property:

Proof. We show that for any set P of d′ probes there is an index set A ⊂ [n]
with |A| = n− d′ such that the outputs (ei)i∈A are still d− d′-wise independent
and independent of the probes and the other outputs (ei)i∈[n]\A. In detail, we
show that for any A′ ⊂ A with |A′| = d− d′ the values (ei)i∈A′ are independent
and independent of P and (ei)i∈[n]\A.

Group K: All probes in the set K =
⋃

l∈[n] Kl with Kl the internal values
in (gli)i∈[n] ← ZEncdn and (gli)i∈[n]. We write probes of Group K when we
refer to all probes that form a subset of K.
Group J: All probes in the set J =

⋃
i∈[n] Ji with

Ji = {y(0)i , y
(1)
i , . . . y

(n
2 −1)

i } ,

where (y(j)i)i∈[n] is jth loop iteration with (y(j)i)i∈[n] =
∑j

k=0(g
j
i)i∈[n]. We

write probes of Group J when we refer to all probes that form a subset of J .

Next, we give a simulator to simulate all Probes P . We can group P into K̃ ⊂ K
and J̃ ⊂ J such that P = K̃ ∪ J̃ . For sake of simplicity, we use an upper-bound

37

for J̃ and simulate all values in Ji if at least one value is probed in Ji. In the
following C is the index set i of all sets Ji with at least one probe of J̃ . Hence
the simulator simulates all values in

⋃
i∈C Ji. In the following we show that

an adversary only probing (yi)i∈C with does not learn more than an adversary
probing the intermediate values

⋃
i∈C Ji and K̃. Next, we proof that A = [n] \C

is exactly the set described above. For this reason we do an upper-bound and
assume for any probe in K that all values leak of the according ZEncdn gadget.
With this assumption we can easily simulate all the according ZEncdn gadget.
However, we have at least d − |K̃| unleaked outputs (gli)i∈[n] that are still d-
wise independent and independent of K̃ (and the according ZEncdn gadget)
Next, we can simulate J̃ . If the according (gli)i∈[n] are already simulated due to
the probes in K̃ we simply take them. Otherwise we can choose the according
(gli)i∈[n] uniform random because the probe threshold is d and (gli)i∈[n] are d-wise
independent. Therefore, the remaining (gli)i∈[n] that are not fixed by K̃ sum
up to an output (ei)i∈A d − |C|-wise independent and independent of P and
(ei)i∈[n]\A.

Probe resilience of Refresh – Proof of Theorem 11 & 12. With Lemma 4
we can give the security results of our refresh gadget.

Theorem 14 (Theorem 11). The gadget G′
G (Alg. 5) with identity G is a

d-SNI refresh gadget

Proof. Let I the index set of output probes in (yi)i∈[n] and P the internal probes
in (ei)i∈[n] ← sZEnc (we also count the probes in (ei)i∈[n] as internal probes).
With Lemma 4 we get that there is an index set A with |A| = n− |P | such that
(ei)i∈A are (d− |P |)-wise independent and independent of P and (ei)i∈[n]\A.

(i) It follows we can choose (ei)i∈[n]\A according to P , and simulate P and
(ei)i∈[n]\A. Due to Lemma 4 this does not change the distribution of (ei)i∈A.

(ii) The simulator gets all input shares (xi)i∈[n]\A
(iii) We can choose a uniform random value to simulate any output probe in

(yi)i∈A due to the randomness of (ei)i∈A. Further, for any probe in (yi)i∈[n]\A
the simulator has both (ei)i∈[n]\A (Step (i)), and (xi)i∈[n]\A (Step (ii)), Hence
it can also simulate those values with yi = xi + ei.

It remains to argue that the number of required input values is the number of
internal probes:

|[n] \A| = n− |A| = n− (n− |P |) = |P | .

Further we know that (ei)i∈A are d−|P | wise independent. Hence, we can consider
them as uniform random for the simulation if the probe threshold is d.

Theorem 15 (Theorem 12). A d probing secure composition with d-NI and
d-SNI secure gadgets is d/2 region probing secure if each gadget outputs sharings
refreshed by sZEnc

38

Proof. The Simulator first splits the circuit C into the sub gadgets G̃l. The gadget
G̃l can be further split into the (S)NI sub-gadgets Gl and refresh sub-gadgets
sZEncl.

We first consider the probes Pl in sZEncl. Due to Lemma 3 we know that
we can simulate Pl with output sets (eli)i∈Al

of sZEncl with Al ≤ Pl.
First the simulator simulates all probes in the gadgets (yli)i∈[n] ← Gl together

with the outputs (yi)i∈Al
.

Note that all gadgets have such a simulator due to the (S)NI probes. Due
to the threshold of d/2 probes in each gadget the simulators need at most d/2
input values to simulate the probes. If the simulator simulates a gadget that uses
input wires of the circuit we take those values. (Hence we need at most d/2 input
shares of each input sharing of C).

For the other gadgets that use inputs that are not outputs of an other gadget,
we can do something that differs from proofs in the threshold model. In this case
we only choose uniform random values to feed the simulator.

Next we argue why we can feed the simulators of the intermediate Gl with
uniform random values. Therefore, we have to analyze the refresh gadgets sZEnc:
Note that the whole gadget G̃l first adds an zero encoding to the output of its
underlying (S)NI gadget Gl.

Let us assume we have simulated d/2 output probes of the previous sub gadget
Gl and need d/2 probes to simulate the probes of the next sub gadget Gl+1. We
can chose all outputs of sZEncl such that the final d/2 outputs of the whole
gadgets G̃l are consistent to the d/2 inputs in G̃l+1. Note that the outputs of
sZEncl are still uniform random since we have feed the intermediate simulators
with uniform random values. It remains to simulate all Pl with the simulator of
sZEncl, and the chosen Tl. Hence the simulator only needs d/2 inputs of each
input sharing of C to simulate d/2 probes in each gadget G̃l. However, we did not
use the property of sZEncl yet. Since an output of Gl is randomized by sZEncl
it is uniform random and

Probe-Resilience of SplitRed We get the following security results for the
gadget.

Lemma 5. SplitRed is d-NI.

Proof. In the proof we distinguish three groups of probes – Group K, Group I,
and Group J.

Group K: All probes in the set K = (
⋃

l∈[n] Kl) ∪ (
⋃

l∈[n/2] K
′
l) with

Kl – the internal values in (g̃li)i∈[n] ← ZEnc
d
2
n and (g̃li)i∈[n],

K ′
l – the internal values in (ĝli)i∈[n] ← ZEncdn and (ĝli)i∈[n].

Hence, K is the set of all values of the loops in Line 2, 4, 14, incl. the probes
in ZEnc. Further, we write probes of Group K when we refer to all probes
that form a subset of K = (

⋃
l∈[n] Kl) ∪ (

⋃
l∈[n/2] K

′
l).

39

Group I: All probes in the set I =
⋃

l∈[n] Il with

Il = {Fl,F l
0,F l

1, . . .F l
n−1, g

l
0, g

l
1, . . . g

l
n−1,F l

0 + gl0,F l
1 + gl1, . . . ,F l

n−1 + gln−1}

Further, let
Il(i) := {F l

i , g
l
i,F l

i + gli, }
be the set that depends on the input Fl and the random values gli. Again, we
write probes of Group I when we refer to all probes that form a subset of I.
Group J: All probes in the set J =

⋃
i∈[n](J

′
i ∪ J ′′

i) with

J ′
i = {y′

(0)
i , y′

(1)
i , . . . y′

(n
2 −1)

i } and J ′′
i = {y′′(0)i , y′′

(1)
i , . . . y′′

(n
2 −1)

i } .

We write probes of Group J when we refer to all probes that form a subset
of J .

Next, we discuss the three cases when a random value gli is not uniform random
due to probes in Group K.

D. Case 1: The first dependence case is a probe in Kl and K ′
l with l < n/2

because this means that g̃li and ĝli are not independent of the probes in K.
Hence, its sum gli = g̃li + ĝli depends on the probes in K as well.
D. Case 2: The second reason is a probe in Kl and K ′

l−n/2 with l ≥ n/2,

because it follows with the same argument as in Case 1 that gli = g̃li + ĝ
l−n/2
i

depends on the probes in K.
D. Case 3: The last dependence case is a probe in K ′

l and no probes in Kl

and Kl+n/2 (otherwise it is case one or two). Such a probe leads to a d′-wise
independence in (gli)i∈[n] and (g

l+n/2
i)i∈[n] with d/2 ≤ d′ < d, because we

need to assume that (ĝli)i∈[n] is not d-wise independent due to the probes
in K ′

l . However, (gli)i∈[n] is still randomized by the d/2-wise independent
random values (g̃li)i∈[n]; and (g

l+n/2
i)i∈[n] is still randomized by the d/2-wise

independent random values (g̃
l+n/2
i)i∈[n]. Note: If the probes do not depend

on more of then d/2 probes on (gli)i∈[n], the random values are still uniform
random and independent of (gl+n/2

i)i∈[n] (D. Case 3(a)). And vice verse:
If the probes do not depend on more of then d/2 probes on (g

l+n/2
i)i∈[n],

the random values are still uniform random and independent of (gli)i∈[n]

(D. Case 3(b)). Hence, in this case we only need to consider one of the two
encodings and can assume that the other provides uniform random values.

Next, we can give the input set S for the simulator. The high-level idea is
that S consists of all Fi that depend on the probes and cannot be randomized
by uniform random gli.

Input set S for the simulator:

(K) For probes in Group K: If at least two simultaneous probes are in the sets
Kl, Kl+n

2
,K ′

l with l ∈ [n/2] the simulator gets both Fl and Fl+n
2
.

S ← S ∪ {Fl, Fl+n
2
}

40

Note that we add at most one input share per probe in Group K. This
covers all cases where (two) probes lead to not uniform random (gli)i∈[n] and
(g

l+n/2
i)i∈[n] (D. Case 1 and 2).

(I) For probes in Group I: If there is a probe in Il, the simulator gets Fl.

S ← S ∪ {Fl}

Note that we add at most one input share per probe in Group I. This covers
all cases where probes in Il might reveal Fl.

(J) For probes in Group J: Here, we distinguish two events that are disjoint due
to the probe threshold (and disjoint from the upper event).
(i) The event that there are more than d/2 probes in the set

⋃n/2−1
i=0 (Ii∪J ′

i):
If there is a probe in K ′

l (and not in Kl, Kl+n
2
), the simulator gets Fl

(D. Case 3(b)).
S ← S ∪ {Fl}

(ii) The event that there are more than d/2 probes in the set
⋃n/2−1

i=0 (Ii+n
2
∪

J ′′
i): If there is a probe in K ′

l (and not in Kl, Kl+n
2
), the simulator gets

Fl+n
2

(D. Case 3(a)).
S ← S ∪ {Fl+n

2
}

This covers the case where (gli)i∈[n] and (g
l+n/2
i)i∈[n] are not d-wise indepen-

dent (D. Case 3). Since event (i) and (ii) are disjoint due to the probe
threshold we add at most one input share per probe in J.

Next, we can give the simulator using the input set S. For sake of simplicity, we
give an upper-bound and assume that the simulator simulates all intermediate
values y′

(j)
i with j = 0 . . . n/2 if at least one intermediate y′

(j)
i was probed.

Similarly, the simulator simulates all intermediate values y′′
(j)
i with j = 0 . . . n/2

if at least one intermediate y′′
(j)
i was probed. In other words, the simulator

simulates all values of J ′
i (or J ′′

i) if there is at least one probe in J ′
i (or J ′′

i).
Simulator with input set S:

(K) Simulation of Group K – Cases when (gli)i∈[n] is not a d-wise independent
zero encoding (D. Case 1-3): If there is at least one probe in K ′

l or two
simultaneous probes in Kl and Kl+n

2
with l ∈ [n/2], the simulator also

simulates the following gli:
(i) If there is a probe in Il(i) with l ∈ [n/2], and at least two simultaneous

probes are in the sets Kl, Kl+n
2
, K ′

l , the simulator simulates gli = g̃li + ĝli
by computing the distribution of g̃ji and ĝji (D. Case 1).

(ii) If there is a probe in Il+n
2
(i) with l ∈ [n/2], and at least two simultaneous

probes are in the sets Kl, Kl+n
2
, K ′

l , the simulator simulates g
l+n

2
i =

−g̃li + ĝ
l+n

2
i by computing the distribution of g̃li and ĝ

l+n
2

i (D. Case 2).
(iii) If there is a probe in K ′

l (and not in Kl, Kl+n
2
), and

41

(a) there are more than d/2 probes in the set
⋃n/2−1

i=0 (Ii ∪ J ′
i), the simu-

lator simulates gli = g̃li + ĝli by computing the distribution of g̃ji and
ĝji (D. Case 3(a)).

(b) there are more than d/2 probes in the set
⋃n/2−1

i=0 (Ii+n
2
∪ J ′′

i), the
simulator simulates gli = −g̃li + ĝ

l+n
2

i by computing the distribution
of g̃ji and ĝji (D. Case 3(b)).

In detail, all required g̃ji and ĝji mentioned above, and all probes in
(
⋃

l∈[n] Kl) ∪ (
⋃

l∈[n/2] K
′
l) can be simulated according to the algorithm.

(I) Simulation of Group I: For all probes in
⋃

l∈[n] Il the simulator does the
following: For any i ∈ [n] and l ∈ [n]: If there is a probe in Il(i) the simulator
has Fl due to the generation of S. Further, due to Step K, it has gli if it
depends on probes in K. Otherwise, it can choose in gli uniform random.
Hence, the simulator can simulate all elements in I =

⋃
i∈[n]

⋃
l∈[n] Il(i).

(J) Simulation of Group J: For all probes in
⋃

i∈[n](J
′
i ∪ J ′′

i) the simulator does
the following:

(J’) For any i ∈ [n]: If there is a probe in J ′
i , the simulator simulates all values

of J ′
i . Since all elements in J ′

i are sums of (λ̂i
lFl) + gli with l ∈ [n/2], we

only need to show how to simulate all (λ̂i
lFl) + gli.

(i) If gli is not uniform random due to the probes of Group K and I, the
simulator has generated gli in Step K or I. Further, it holds Fl ∈ S

and the simulator can perfectly simulate (λ̂i
lFl) + gli.

(ii) If gli is uniform random and independent of the probes in Group K and I,
the simulator can perfectly simulate (λ̂i

lFl)+gli by choosing a uniform
random value because it is randomized by the unknown gli.

(J”) For any i ∈ [n]: If there is a probe in J ′′
i , the simulator simulates all

values of J ′′
i . Since all elements in J ′′

i are sums of (λ̂i
l+n

2
Fl+n

2
)+g

l+n
2

i with

l ∈ [n/2] we only need to show how to simulate all (λ̂i
l+n

2
Fl+n

2
) + g

l+n
2

i .

(i) If gl+
n
2

i is not uniform random due to the probes of Group K and I,
the simulator has generated g

l+n
2

i in Step K or I. Further, it holds
Fl+n

2
∈ S and the simulator can perfectly simulate (λ̂i

lFl) + gli.
(ii) If gli is uniform random and independent of the probes in Group K and I,

the simulator can perfectly simulate (λ̂i
l+n

2
Fl+n

2
) + g

l+n
2

i by choos-
ing a uniform random values because it is randomized by the un-
known g

l+n
2

i .

42

For the security proof it remains to show that the simulator can perfectly
simulate any d probes P with at most d input values. We can split any set of
probes P in SplitRed into the three Groups K, I, J, and it holds |S| ≤ |P | ≤ d
due to the definition of the input set S. Next, we prove that the simulator can
perfectly simulate all values in P only using the set S.

Group K: The simulation of all probes in Group K are independent of the
inputs and can be perfectly simulated.
Group I: Due to the definition of S it holds that Fl ∈ S if there is a probe in
Il. Since the set consists of intermediate values that only depend on the input
value Fl and random values (gli)i∈[n], it can perfectly simulate all probes with
S. The gli is already simulated by the simulator (Step K) if it depends on
probes in Group K. Otherwise, it can be chosen uniform random. (Note that
each probe in Il only depends on one gli at most, and we will argue later why
gli can be chosen uniform random when it was not generated in Step K of
the simulator)
Group J: For every i ∈ [n] the simulator simulates all values in J ′

i (or J ′′
i) if

there is at least one probe in J ′
i (or J ′′

i).
• The simulation of all values in J ′

i is equivalent to simulate all (λ̂i
lFl) + gli

with l ∈ [n/2]. Due to the definition of the input set S the simulator
has Fl if gli was generated in Step K or Step I. Hence, it can perfectly
simulate (λ̂i

lFl) + gli in this case. If gli was not generated in Step K (and
it was not already chosen uniform random in Step I), the simulator can
chose uniform random value for (λ̂i

lFl) + gli because gli is unknown and
uniform random. (Note that all probes in J ′

i only depend on the ith

random value of each (gli)i∈[n] and we will argue later why all gli are still
uniform random when they are not generated in Step K of the simulator)

• The simulation of all values in J ′′
i is equivalent to simulate all values

(λ̂i
l+n/2Fl+n/2) + g

l+n/2
i with l ∈ [n/2]. Due to the definition of the input

set S the simulator has Fl+n/2 if g
l+n/2
i was generated in Step K or

Step I. Hence, it can perfectly simulate (λ̂i
l+n/2Fl+n/2) + g

l+n/2
i in this

case. If gl+n/2
i was not generated in Step K (and it was not already chosen

uniform random in Step I), the simulator can chose an uniform random
value for (λ̂i

lFl) + gli because gli is unknown and uniform random. (Note
that all probes in J ′

i only depend on the ith random value of each (gli)i∈[n].
Next, we argue why all gli are still uniform random when they are not
generated in Step K of the simulator)

Now we argue why we can consider the gli as uniform random if they are not
generated in Step K of the simulator. As mentioned above each probe only
depends on at most all ith random values of (gli)i∈[n] with l ∈ [n/2], or it
only depends on at most all ith random values of (gl+n/2

i)i∈[n] with l ∈ [n/2].
Note that d values in (gli)i∈[n] (or (g

l+n/2
i)i∈[n]) are still independent and

uniform random if there is no probe in K ′
l and Kl (or K ′

l and Kl+n/2). Here
the probe threshold d comes into account because for each probe there is an

43

Comp4× SWMult

SWMult1

sZEnc C

⊕
A1

(a1
i)i∈[n](xl,1

i)i∈[n]

(xr,1
i)i∈[n]

SWMult2 ⊕

B1

(b1i)i∈[n]

A2
(a2

i)i∈[n](xl,2
i)i∈[n]

(xr,2
i)i∈[n]

SWMult3 ⊕

B2

(b2i)i∈[n]

A3
(a3

i)i∈[n](xl,3
i)i∈[n]

(xr,3
i)i∈[n]

SWMult4 ⊕

B3

(b3i)i∈[n]

A4
(a4

i)i∈[n](xl,4
i)i∈[n]

(xr,4
i)i∈[n]

T c

(ei)i∈[n]

(b4i)i∈[n](= (yi)i∈[n])
B4

Fig. 2: Probe Propagation of Comp (Alg. 8)

i ∈ [n] such that the simulator uses at most the random values

M ′
i = {g0i , g1i , . . . , g

n
2 −1
i } or M ′′

i = {g
n
2
i , g

n
2 +1
i , . . . , gn−1

i }

to randomize the probes. Hence, the simulator never uses more then d random
values of each encoding, and the values in (gli)i∈[n] and (g

l+n/2
i)i∈[n] are d wise

independent if there is no probe in K ′
l , Kl, and Kl+n/2. It remains to argue

why we can also consider one of the encodings (gli)i∈[n] and (g
l+n/2
i)i∈[n] as

random in D. Case 3. Again this follows with the d threshold. The simulator
uses at most d/2 random values of at least one of the encodings. Hence those
values are still independent and uniform random. And at most one of the
encodings in only one of the encodings (gli)i∈[n] and (g

l+n/2
i)i∈[n] leads to

dependent random values. This case is covered by Step K(iii) in the simulator,
and the simulator has all dependent (and required) gli.

This completes the proof, and SplitRed is d-NI, because |S| ≤ |P | for any set
of Props P with |P | ≤ d.

Probe-Resilience of Comp and SWMult We analyze the final computation
of the gadget depicted in Figure 2. It consists of one sZEnc, four share-wise
addition gadgets SWAdd (⊕) and four SWMult. We labeled all edges with
its intermediate values (xl,j

i)i∈[n], (xr,j
i)i∈[n], (aji)i∈[n], (bji)i∈[n], (ei)i∈[n], and

(yi)i∈[n], as show in Figure 2. Let C be the set of internal probes in sZEnc.
Lemma 3 guarantees the existence of an index set T with |T | ≥ n− |C| such that
(ei)i∈T is uniform random and (n− |C|)-wise independent from C where (ei)i∈[n]

44

are the outputs of sZEnc. Hence, we can ignore C and analyze how to simulate
the remaining leakage with index sets Aj and Bj as depicted in Figure 2 with
(ei)i∈T . For the sake of simplicity, we assume that we have to simulate all three
values xl,j

i , xr,j
i , and aji if at least one value is probed and use the index set Aj

for such probes. The next corollary, Corollary 3, claims that all values (b1i)i∈B1
,

(b2i)i∈B2
, (b3i)i∈B3

, (b4i)i∈B4
and C can be simulated with

S =
⋃
i ̸=j

(Bi ∩Bj) ∪
4⋃

j=1

(Bj ∩ T c) ,

which also gives a index set for each (xr,j
i)i∈[n] and (xl,j

i)i∈[n] to simulate the
entire circuit.

Corollary 3. All values (a1i)i∈A1
, (a2i)i∈A2

, (a3i)i∈A3
, (a4i)i∈A4

, (b1i)i∈B1
, (b2i)i∈B2

,
(b3i)i∈B3

, (b4i)i∈B4
, and C can be simulated from the inputs

(xr,j
i)i∈Aj∪S and (xl,j

i)i∈Aj∪S with j = 1, 2, 3, 4 .

Further, it holds |S| ≤ 1
2 t

′ where t′ is the number of probes in Comp (t′ =∑4
j=1 |Bj |+ |C|).

Proof. With Lemma 3, we can describe the probes C with an index set T such
that |T | ≥ n−|C| and (ei)i∈T are uniform random and (n−|C|)-wise independent
from C where (ei)i∈[n] are the outputs of sZEnc. If further probes depend on
k random values ei of the remaining values (ei)i∈T c , we can assume that the
adversary knows such ei and it follows that the values (ei)i∈T are still l-wise
independent from those probes with l = n − |C| − k (Lemma 3). Hence, we
can ignore C and define the remaining leakage with index sets Aj and Bj as
depicted in Figure 2 and analyze how to simulate them with (ei)i∈T . We split
the circuit into two sub-circuits Comp and the 4 × SWMult as depicted in
Figure 2. For each (aji)i∈[n] with j = 1, 2, 3, 4, we first analyze the needed index
set S′

j to simulate the leakage of Comp. Then we analyze the index set Sj of
all xl,j

i and xr,j
i that the simulator requires for the simulation of (aji)i∈Aj

and
(aji)i∈S′

j
. Hence, we give index sets S1, S2, S3, S4 such that we can simulate the

leakage of the entire circuit of Figure 2 with (xr,j
i)i∈Sj and (xl,j

i)i∈Sj :

S1 All probes in (b1i)i∈B1 , (b2i)i∈B2 , (b3i)i∈B3 , (b4i)i∈B4 depend on the sharings
(a1i)i∈[n] and (ei)i∈[n] we can distinguish two cases. The first case is that such
probe has an index i in T the other one is that i is in T c. If i ∈ T c, we assume
that ei is already known by the adversary. Hence, we need ai to simulate
the probe. This can be done due to Lemma 3 because the adversary never
probes more the t values and the values (ei)i∈T will always stay independent
enough. If i ∈ T we can randomize the probe with ei and do not need ai for
the simulation. Hence, we need all (a1i)i∈S1 with S′

1 =
(⋃4

j=1 Bj

)
∩ T c to

simulate the leakage in Comp and therefore, we need all xl,1
i and xr,1

i with

45

index in S′
1 or A1 to simulate the entire circuit of Figure 2. In other words

the simulator needs (xr,1
i)i∈S1

and (xl,1
i)i∈S1

with

S1 =

 4⋃
j=1

Bj

 ∩ T c

 ∪A1 .

S2 All probes in (b2i)i∈B2 , (b3i)i∈B3 , (b4i)i∈B4 depend on the sharings (a2i)i∈[n]

and (ei)i∈[n]. If we compare (a2i)i∈[n] with (a1i)i∈[n] it turns out that (b1i)i∈B1

does not depend on (a2i)i∈[n]. But if we have to simulate a probe in (b2i)i∈B2
,

(b3i)i∈B3
, (b4i)i∈B4

with index i ∈ B1 we cannot randomize such values with
a random value ei because the value is determined by bji . It follows that all
a2i with i ∈ T c ∪ B1 are required to simulate the leakage if the simulator
has to simulate at least on of the values b2i , b3i , b3i . The simulation of the
leakage in Comp requires all (a2i)i∈S′

2
with S′

2 =
((⋃4

j=2 Bj

)
∩ (B1 ∪ T c)

)
,

and the simulator of the entire circuit of Algorithm 2 needs all (xr,2
i)i∈S2 and

(xl,2
i)i∈S2

with

S2 =

 4⋃
j=2

Bj

 ∩ (T c ∪B1)

 ∪A2 .

S3 All probes in (b3i)i∈B3
, (b4i)i∈B4

depend on the sharings (a2i)i∈[n] and (ei)i∈[n].
If we compare (a3i)i∈[n] with (a2i)i∈[n] similar to S2 it turns out that also
(b2i)i∈B2

does not depend on (a2i)i∈[n]. But again we cannot randomize
(b3i)i∈B3

, (b4i)i∈B4
with index i ∈ B2 and thus we obtain the set S′

3 =((⋃4
j=3 Bj

)
∩
(⋃2

j=1 Bj ∪ T c
))

and the simulator needs the information

(xr,3
i)i∈S3 and (xl,3

i)i∈S3 with

S3 =

 4⋃
j=3

Bj

 ∩
 2⋃

j=1

Bj ∪ T c

 ∪A3 .

S4 With the same techniques we get S′
4 =

((⋃4
j=4 Bj

)
∩
(⋃3

j=1 Bj ∪ T c
))

and

the simulator needs (xr,4
i)i∈S4

and (xl,4
i)i∈S4

with

S4 =

 4⋃
j=4

Bj

 ∩
 3⋃

j=1

Bj ∪ T c

 ∪A4 .

S To simplify the results we give an upper-bound S′
i ⊂ S with

S =
⋃
i ̸=j

(Bi ∩Bj) ∪
4⋃

j=1

(Bj ∩ T c) .

46

S results in the first claim of the corollary because all Sj ⊂ S ∪Aj . For the
second claim we can give an upper-bound of |S| since |T c| ≤ |C| and an index
i is only in S if it is in at least two sets of Bi and T c.

This results in the claim of the corollary. ⊓⊔

Probe-Resilience of Mult (Alg 6) With the claims of the previous sections
we can finally prove the leakage-resilience of our gadget Mult.

Theorem 16. The multiplication gadget Mult depicted in Algorithm 6 is t-SNI.

Proof. As depicted in Figure 1a, the algorithm consists of three different sub-
gadgets SplitRed, SWMult, and Comp. Let t′ be the number of output probes,
t′′ the number of internal probes in SWMult and Comp, and t′′′ the number
of internal probes in SplitRed with t′ + t′′ + t′′′ ≤ t. In the following we give a
simulator that simulates all t′ + t′′ + t′′′ probes using only t′′ + t′′′ input shares of
each input sharing. We split the simulator into two sub-simulators: the first one
simulates the t′+ t′′ probes in SWMult and in Comp; the second one simulates
the t′′′ probes in SplitRed and the values that the first simulator requires.

With Corollary 3, it follows that the t′ + t′′ probes in SWMult and in
Comp can be simulated with at most t′′ output probes of each SplitRed. Since
SplitRed is a t-NI gadget (Lemma 5), there exists another simulator such that
the t′′ output probes and the t′′′ internal probes can be simulated with at most
t′′ + t′′′ shares of each input sharing. The composition of both simulators results
in a simulator that simulates all t′ + t′′ + t′′′ probes using only t′′ + t′′′ input
shares of each input sharing and this proves the claim of the theorem. ⊓⊔

A.2 Fault-invariance

In the previous section we have proven the (S)NI properties of our gadgets.
As proven in Corollary 1, it is sufficient to show the (S)NI property and fault-
invariance to prove the fr(S)NI property. Next, we show that all our gadgets are
fault-invariant.

Theorem 17. All gadgets of our compiler are fault-invariant with respect to F+.

Proof. Since all faults ζ ∈ F+ can be described with a a = aζ ∈ F such that the
faulted value is ζ(x) = x + a we can use the commutative property of ’+’. In
detail it holds for any x, x′ ∈ F that

x+ ζ(x′) = x+ x′ + a = x+ a+ x′ = ζ(x) + x′.

This means that gadgets only using addition gates are fault-invariant with respect
to F+ because we can step by step move such faults to an input or output values
and this is independent from the inputs. Hence, the share-wise addition gadget
is fault-invariant.

47

Next we consider the multiplication of value x with a public constant c. Here,
we have for ζ ∈ F+ with ζ(x) = x+ a that

c · ζ(x) = c · (x+ a) = (c · x) + (c · a) = ζ ′(c · x)

where ζ ′ ∈ F+ with ζ ′(x) = x + (c · a). As we consider multiplication with a
public and fix value c, the function ζ ′ can be easily derived from ζ and c. We
can ignore faults on c with ζ(c) here10 because the circuit consists of constant
transformation gates that compute a · x+ b for input x and constants a, b. This
means we can also move such faults step by step to the inputs and outputs. This
proves the fault-invariance of all gadgets except our multiplication gadget, which
uses multiplication gates with two sensitives inputs.

A close inspection of the multiplication gadget (Alg. 6) shows that the
only operations that are not a constant multiplication or addition are the four
share-wise multiplications in line 3 to 6. Note that all of these four share-wise
multiplications can be run in parallel and do not depend on each other. Hence,
there are no intermediate values computed in during the computation of these
share-wise multiplications. It is thus sufficient to consider the values immediately
before and immediately after this multiplication, which were produced by addition
and constant multiplication gates. All intermediate faults before the share-wise
multiplication can thus be moved step by step to an equivalent fault on the input
value and all intermediate faults after the share-wise multiplication can be moved
step by step to an equivalent fault on any intermediate value that depends on
the original faulted value.

Hence, we have shown for every faulted gadget that any intermediate value
f̃R(x0, x1, . . . xm−1) can be written as ζ(fR(ζ0(x0), ζ1(x1), . . . ζm−1(xm−1))) for
any input (x0, x1, . . . xm−1) and randomness R when fR(x0, x1, . . . xm−1) is the
according intermediate value of the unfaulted gadget. ⊓⊔

A.3 Fault-Resilience

In the following, we study the fault-resilience of our gadgets. We first analyze all
algorithms on themself and then combine the analysis of the parts to obtain Theo-
rem 24 that sums up the fault-resilience of a single iteration of our multiplication
gadget Mult. Our major workhorse will be the fundamental lemma that allows
to relate the number of faults with the degree of the underlying polynomial.

Fault-Resilience of ZEnc In order to guarantee fault-resilience, we will show
that every change to the output of Algorithm 3 introduced by s internal faults
can also be achieved by s direct faults on the output. For k = 0, . . . , n− 1, we
denote the value

∑k
j=1 rj · α

j
i by ei[k]. Now, an attacker can use the faults to

fault a set J ⊆ {1, . . . , t} of random values, i.e., rj is faulted to rj +∆j for j ∈ J .
Furthermore, they can fault a set I ⊆ {1, . . . , t} × {0, . . . , n− 1} of values ei[k],
10 We could also add such faults in the wfr(S)NI setting as shown in the proof of

Corollary 8

48

i.e., these values are now ei[k]+∆i,k. For two sets J and I, let DJ,I be the output
distribution of Algorithm 3 if the values are faulted according to these fault sets.

Lemma 6. For all J ⊆ {1, . . . , t} and all I ⊆ {1, . . . , t} × {0, . . . , n − 1}, we
have DJ,I ≡ D∅,I .

Proof. For (ei)i∈[n] ←$ DJ,I , it is easy to see that

ei =
∑
j ̸∈J

[
rjα

(j)
i

]
+
∑
j∈J

[
(rj +∆j)α

(j)
i

]
+

∑
(i,k)∈I

∆i,k.

Let r′j with r′j = rj for j ̸∈ J and r′j = rj +∆j for j ∈ J with

ei =
∑
j∈[n]

[
r′jα

(j)
i

]
+

∑
(i,k)∈I

∆i,k.

Since ri is i.i.d., it holds r′j ≡ rj , and hence

ei ≡
∑
j∈[n]

[
rjα

(j)
i

]
+

∑
(i,k)∈I

∆i,k.

This implies the statement. ⊓⊔

Lemma 7. For all I ⊆ {1, . . . , t}×{0, . . . , n−1}, there exists a sharing (fi)i∈[n]

with | supp (fi)i∈[n]| ≤ |I| such that D∅,I = D∅,∅ + (fi)i∈[n].

Proof. A short calculation shows that for (ei)i∈[n] ←$ D∅,I we have

ei =
∑
j

[
rjα

(j)
i

]
+

∑
(i,k)∈I

∆i,k.

Now, define fi =
∑

(i,k)∈I ∆i,k. Clearly, (ei)i∈[n]−(fi)i∈[n] is distributed according
to D∅,∅ and, furthermore, | supp (ei)i∈[n]| ≤ |I|. ⊓⊔

A combination of these lemmata implies the following theorem about the
fault-resilience of ZEnc, which allows us to concentrate only on outputs faults
of ZEnc.

Theorem 18. Every change to the output of ZEnc introduced by s internal
faults can also be achieved by s direct faults on the output.

Since the gadget sZEnc is only a share-wiese addition of ZEnc the claim of
Theorem 18 also hold for sZEnc

Theorem 19. Every change to the output of sZEnc introduced by s internal
faults can also be achieved by s direct faults on the output.

49

Fault-Resilience of Refresh With the fault resilience of sZEnc follows the
fault resilience of our refresh gadget.

Theorem 20 (Refresh). The gadget G′
G (Alg. 5) with identity G is an e-fault-

robust w.r.t. F ind refresh gadget

Proof. Due to Theorem 19 each fault can be transformed to a output fault. Hence
the e-fault-robustness follows from the security of the underlying encoding. Hence,
the gadget is e fault robust if n ≥ d+ e+ 1. ⊓⊔

Fault-Resilience of SplitRed To analyze the fault-resilience of SplitRed,
we first notice that all operations before Line 8 are simple shared-wise addition
operations or calls to ZEnc. Theorem 18 implies that we can ignore faults that
are internal to ZEnc. Hence, we can assume that the first time that a fault is
introduced in the run of SplitRed is in Line 8, i.e., in the computation of F ′(j)

i

by faulting the share Fj to the value Fj +∆i,j for a set J ⊆ [n]2. All operations
afterwards are share-wise additions (Theorem 6), which are easily fault-resilient,
i.e., all faults can be performed after the additions w.l.o.g. Hence, the remaining
faults are described by two sets I ′, I ′′ ⊆ {0, . . . , n − 1} where the value of F ′

i

is replaced by F ′
i +∆′

i for i ∈ I ′ and the value of F ′′
i is replaced by F ′′

i +∆′′
i

for i ∈ I ′′. For the sake of readability, we expand the definition of the values
∆i also for non-faulted shares: Let ∆̄′

i = 0 for i ̸∈ I ′ and ∆̄′
i = ∆i for i ∈ I ′,

and, similarly, be ∆̄′′
i = 0 for i ̸∈ I ′′ and ∆̄′′

i = ∆i for i ∈ I ′′. For simplicity, let
Ji = {j | (i, j) ∈ J}. We first show the following useful lemma.

Lemma 8. Let J ⊆ [n] and let ΛJ = (λ̂
(i)
j)i,j be a matrix containing the λ̂

(i)
j for

i ∈ [n] and j ∈ J . Then rank(ΛJ) = min{|J |, e+ 1}.

Proof. Consider the inverse Vandermonde matrix V −1
n,n that has full rank n. Now,

note that each column (λ̂
(i)
j)i in ΛJ can be written as A(λ

(i)
j)i for a column (λ

(i)
j)i

of V −1
n,n. Here, A is obtained by taking the the original Vandermonde matrix Vn,n

ad replacing all entries in the first d columns with 0. Clearly, for |J | ≤ e, we have
rank(A) = |J | and for |J | ≥ e, we have rank(A) = rank(Vn,n)−d = n−d = e+1.
As ΛJ = A · V −1

n,n, we have rank(ΛJ) = min{|J |, e+ 1}. ⊓⊔

Hence, the total result of the computation is

F ′
i =

∑
j∈[n/2]

[
g′

(j)
i

]
+

∑
j∈[n/2],j ̸∈Ji

[
F ′(j)

i

]
+

∑
j∈[n/2],j∈Ji

[
F ′(j)

i

]
+ ∆̄i

=
∑

j∈[n/2]

[
g′

(j)
i

]
+

∑
j∈[n/2],j ̸∈Ji

[
λ̂
(i)
j Fj

]
+

∑
j∈[n/2],j∈Ji

[
λ̂
(i)
j (Fj +∆j)

]
+ ∆̄i

=
∑

j∈[n/2]

[
g′

(j)
i

]
+

∑
j∈[n/2],j ̸∈Ji

[
λ̂
(i)
j Fj

]
+

∑
j∈[n/2],j∈Ji

[
λ̂
(i)
j (Fj +∆j)

]
+ ∆̄i

=
∑

j∈[n/2]

[
g′

(j)
i

]
+

∑
j∈[n/2]

[
λ̂
(i)
j Fj

]
+

∑
j∈[n/2],j∈Ji

[
λ̂
(i)
j ∆j

]
+ ∆̄i.

50

As a single fault value ∆j might now influence all shares F ′
i , we can not simply

define a corresponding fault polynomial as in the proof of Theorem 18. Nev-
ertheless, our choice of λ̂(i)

j will enable us still argue the fault resilience of the
construction. Applying the interpolation lemma to the faulted values shows that
the induced fault polynomial ∆ has the form

∆(x) =
∑
i∈[n]

∑
j∈Ji

∆j(x) +
∑
i∈I

∆̄i(x),

where each ∆j(x) has the form

∆j(x) =
∑
k≥0

∑
i∈[n]

λ
(k)
i λ̂

(i)
j ∆j

xk

and each ∆̄i(x) has the form

∆̄i(x) =
∑
k≥0

∑
i∈[n]

λ
(k)
i ∆̄i

xk.

Now, the fundamental lemma says that deg(
∑

i∈I ∆̄i(x)) ≥ n− |I|. Furthermore,
Lemma 8 implies that deg(∆) ≥ n− |J |.

Claim. We have deg(∆) ≥ n− |J | for J ̸= ∅.

Proof. Suppose that deg(∆) < n − |J |. Due to the interpolation theorem, we
have for each k > deg(∆) that∑

i∈[n]

∑
j∈Ji

λ
(k)
i λ̂

(i)
j ∆j

 = 0.

As all of these equations are linear in the variables ∆j , we can rewrite these
n−deg(∆) > |J | constraints into a linear equation system with constraint matrix
A. Here, A = V −1

n,n · ΛJ′ , where ΛJ′ = (λ̂
(i)
j)i,j is the matrix containing the λ̂

(i)
j

for i ∈ [n] and j ∈ J ′ where J ′ = {j | ∃i : j ∈ Ji}. Now, Lemma 8 shows that
rank(ΛJ′) = min{|J ′|, e + 1}, and as rank(V −1

n,n) = n, we have rank(A) = |J ′|,
as |J | ≤ e. The rank-nullity theorem then implies that dim(ker(A)) = 0, hence
ker(A) = {0}. Hence, ∆j = 0 for all j ∈ J , which is a contradiction to the
assumption that J ̸= ∅. ⊓⊔

As a consequence of our analysis, using sint faults against a polynomial
containing sinput input faults will always result in a polynomial of degree n −
sint − sinput.

Theorem 21. If the input to SplitRed has degree at least n−sinput, the outputs
have degree at least n − sint − sinput, if sint faults are performed during the
computation.

51

Fault-Resilience of Comp and SWMult As both Comp and SWMult are
share-wise algorithms, i.e., they operate on each share independently, faults from
the input polynomials will directly transfer to faults of the output polynomial of
the gadgets, as shown in Theorem 6.

Theorem 22. If the input to Comp has degree at least n− sinput, the outputs
have degree at least n − sint − sinput, if sint faults are performed during the
computation.

Theorem 23. If the input to SWMult has degree at least n−sinput, the outputs
have degree at least n − sint − sinput, if sint faults are performed during the
computation.

Fault-Resilience of Mult (Algorithm 6) In the following, we focus on the
polynomial representation of the involved sharings. Consider Mult (Algorithm 6)
for this, which has inputs f(x) =

∑n
i=0 fix

i and g(x) =
∑n

i=0 gix
i. In the first

line, SplitRed (Algorithm 7) outputs two polynomials f ′ and f ′′ such that

f ′(x) = f ′
0 +

t∑
k=1

r
(f ′)
k xk +

d∑
k=1

n

2
r
(f)
k xk +

n∑
k=d+1

f ′
kx

k

f ′′(x) = f ′′
0 +

t∑
k=1

r
(f ′′)
k xk −

d∑
k=1

n

2
r
(f)
k xk +

n∑
k=d+1

f ′′
k x

k

with the following properties:

(*) Summing up f ′
k and f ′′

k gives the original value fk for k ∈ {0, d+1, d+2, . . . , n}
(**) The values r

(f ′)
k , r(f

′′)
k , and r

(f)
k are i.i.d. Note that both f ′ and f ′′ contain

the same terms
∑d

k=1
n
2 r

(f)
k xk.

Similarly, the second line uses SplitRed (Algorithm 7) to output two polynomials
g′ and g′′ such that

g′(x) = g′0 +

t∑
k=1

r
(g′)
k xk +

d∑
k=1

n

2
r
(g)
k xk +

n∑
k=d+1

g′kx
k

g′′(x) = g′′0 +

t∑
k=1

r
(g′′)
k xk −

d∑
k=1

n

2
r
(g)
k xk +

n∑
k=d+1

g′′kx
k.

If we allow faults during the computations of SplitRed (Algorithm 7),
this possibly introduces different polynomials at different positions. Instead of
computing f ′ ·g′, Line 3 in Mult (Algorithm 6) would thus compute (f ′+∆(f ′,g′))·
(g′+∆(g′,f ′)) for fault-induced polynomials ∆(f ′,g′) and ∆(g′,f ′). Similarly, Line 4
computes (f ′ +∆(f ′,g′′)) · (g′′ +∆(g′′,f ′)), Line 5 computes (f ′′ +∆(f ′,g′′)) · (g′′ +
∆(g′′,f ′)), and Line 6 computes (f ′′ +∆(f ′′,g′′)) · (g′′ +∆(g′′,f ′′)). Note that all
operations in SplitRed (Algorithm 7) and in ZEnc (Algorithm 3) are random

52

sampling, addition of shares, and multiplication of shares by public constants
(αj

i in Algorithm 3 or λ̂
(i)
j in Algorithm 7).

While the relation between these fault-induced polynomials might be compli-
cated, we know that the degree of all fault-induced polynomials ∆(·,·) is at least
d + 1 (or equal to 0, if no fault was induced) by assumption. Denote the k-th
coefficient of ∆(·,·) by ∆

(·,·)
k .

We now analyse the polynomial

h =

(f ′ +∆(f ′,g′)) · (g′ +∆(g′,f ′))+

(f ′ +∆(f ′,g′′)) · (g′′ +∆(g′′,f ′))+

(f ′′ +∆(f ′,g′′)) · (g′′ +∆(g′′,f ′))+

(f ′′ +∆(f ′′,g′′)) · (g′′ +∆(g′′,f ′′)),

corresponding to the output polynomial of Algorithm 6.

Lemma 9. If no faults are introduced, h(0) = f(0) · g(0) and deg(h) ≤ d.

Proof. Properties (*) and (**) imply that a non-faulted computation of Algo-
rithm 6 on non-faulted inputs f and g (i.e., inputs with degree at most d) outputs
a non-faulted polynomial (that represents the correct value). ⊓⊔

Similar to the discussion above, we will now show that h is constructed from
a polynomial of uniformly random distributed higher-order coefficients.

Theorem 24. The gadget Mult is e-fault-robust.

Proof. Consider the coefficient d+1 of h, which equals the sum of the coefficients
d+ 1 of the four polynomials, that themself are products of polynomials.

Let us first take a look at the coefficient d+ 1 of the first polynomial (f ′ +
∆(f ′,g′)) · (g′ +∆(g′,f ′)). The coefficient d+ 1 of this polynomial is given by the
sum of products

(f ′
0 +∆

(f ′,g′)
0) · (g′d+1 +∆

(g′,f ′)
d+1)+

(r
(f ′)
1 +

n

2
r
(f)
1 +∆

(f ′,g′)
1) · (n

2
r
(g)
d +∆

(g′,f ′)
d)+

. . .

(r
(f ′)
t +

n

2
r
(f)
t +∆

(f ′,g′)
t) · (n

2
r
(g)
t+1 +∆

(g′,f ′)
t+1)+

(
n

2
r
(f)
t+1 +∆

(f ′,g′)
t+1) · (r(g

′)
t +

n

2
r
(g)
t +∆

(g′,f ′)
t)+

. . .

(
n

2
r
(f)
d +∆

(f ′,g′)
d) · (r(g

′)
1 +

n

2
r
(g)
1 +∆

(g′,f ′)
1)+

(f ′
d+1 +∆

(f ′,g′)
d+1) · (g′0 +∆

(g′,f ′)
0).

53

The coefficients for the other three polynomials can be derived similarly.
Now, consider the terms of the coefficient d+ 1 of h that involve the random

coefficient r
(f ′)
1 , which are

(r
(f ′)
1 +

n

2
r
(f)
1 +∆

(f ′,g′)
1) · (n

2
r
(g)
d +∆

(g′,f ′)
d)+

(r
(f ′)
1 +

n

2
r
(f)
1 +∆

(f ′,g′′)
1) · (−n

2
r
(g)
d +∆

(g′′,f ′)
d).

Rearranging these terms shows that they are a sum of terms involving the
term r

(f ′)
1 · (∆(g′,f ′)

d +∆
(g′′,f ′)
d). For the sake of simplicity, we denote the error

polynomial involving φ ∈ {f ′, f ′′, g′, g′′} as ∆[φ], e.g., ∆[f ′] = ∆(g′,f ′) +∆(g′′,f ′).
Now, if the coefficient ∆d[f

′] of r(f
′)

1 is non-zero, the coefficient d + 1 of h
is uniformly distributed, as r

(f ′)
1 is uniformly distributed and does not appear

anywhere else in the coefficient d+ 1 of h. Following the same line of reasoning,
if a coefficient ∆d+i[f

′] is non-zero, it is paired into the coefficient d + i + j

of h with the random value r
(f ′)
j for all j ≥ 1. Similar arguments hold for the

coefficients of r(f
′′)

i , r(g
′)

i , and r
(g′′)
i and their corresponding error coefficients

∆d+1[f
′′], ∆d+1[g

′], and ∆d+1[g
′′].

Now, consider any φ ∈ {f ′, f ′′, g′, g′′} and the corresponding error polynomial
∆[φ]. By assumption, at most s ≤ e faults were used in the run of Algorithm 6 to
produce ∆[φ], The fundamental lemma then implies that deg(∆[φ]) ≥ d+e+1−s.
As s ≤ e, there is at least one index i ∈ {0, . . . , e} such that the coefficient d+ i
of ∆[φ] is non-zero. Ergo, the coefficients d+ i+ j of h are uniformly distributed
for all j ≥ 1. ⊓⊔

54

B Additional Examples and Motivations

B.1 Fault-sets F

In this work we consider wire independent faults F ind := {all functions ζ : F→ F}
and additive faults F+ := {ζ : ζ(x) = x+ a for all a ∈ F} that fault the wires
value by adding an arbitrary value. It is easy to see that

F+ ⊂ F ind .

Assuming the F2n this means that we can arbitrary flip the bits of an element
a ∈ F2n with additive faults. However, there are also other attacks such as set,
attacks those attacks are covered by F ind. Wire independent faults can do even
more when we consider larger fields. For example it could set the first half bits of
a to zero iff a has some special properties (e.g. the hamming weight is 2). Further,
assuming fields other fields (e.g. prime fields). It is clear that additive faults do
not describe bit flips. But the wire independent faults can also do bit-wise faults
such as flips and set-faults.

B.2 Threshold Probing model

In this section we discuss the limitations of the composition results in the threshold
probing model.

Probe-Isolating Non-Interference (PINI). This definition give the best known
composition results in the threshold model. The high-level idea is that the
definition describes the index relation of the probed output wires and the input
wires used for the simulation of the probes.

Definition 10 (PINI [CS20]). A gadget with m input shares (x
(j)
i)i∈[n] with

j ∈ [m] and l output shares (y
(j)
i)i∈[n] with j ∈ [l] is PINI if for any t1 ∈ N ,

any set of t1 intermediate variables and any subset O of output indices, there
exists a subset I ⊂ [n] of input indices with |I| ≤ t1 such that the t1 intermediate
variables and all output shares (y

(0)
i)i∈O, (y

(1)
i)i∈O, . . . (y

(l−1)
i)i∈O can be perfectly

simulated from the input shares (x
(0)
i)i∈O∪I , (x

(1)
i)i∈O∪I , . . . (x

(m−1)
i)i∈O∪I .

Note that share-wise operation fulfill the PINI definition. However it is quite
clear that the composition of such gadgets do not give region-probing security.
A trivial example is the composition of two share-wise copy gadgets for d + 1
shared secrets. If the adversary is allowed to probe d wires in total, the probes
are still independent of the secret. However, if the adversary probes d wires ind
each gadget (region), it can probe all shares and reconstruct the secret.

Probe-Isolating Non-Interference (PINI). The SNI Property defined in the main
body does not provide as good composition results as PINI when we consider the
threshold probing model. However, it already gives gives an countermeasure to
the attack describes in the PINI paragraph. In detail it showes that the number of

55

the simulator’s required input values only depend on the internal probes, and not
on the output probes. Unfortunately it is still not efficient to allow compositions
in the region probing model. As an example we consider a d-SNI multiplication,
where both outputs are refreshed by a d-SNI refresh gadgets. Assume we probe d′

values in the multiplication gadget, and we probe d′′ values in each refresh gadget
such that the simulator of both gadgets requires d′′ input values. Hence, (due to
the composition argument of SNI), the simulator of the multiplication gadget
has to simulate the d′ probes in the multiplication, the d′′ input values of the
first refresh and the d′′ input values of the first refresh. In total the simulator of
the multiplication gadget has to simulate d′ +2d′′ probes. In the threshold model
this works since we assume give a threshold for the whole circuit d′ + 2d′′ ≤ d,
and the simulator of the multiplication gadget can simulate all d′ + 2d′′ values
due to the SNI property. This is not the case if the adversary can probe up to d
values in each gadget (region). Here, the adversary can place the probes in such a
way that the simulator of the multiplication gadget has to simulate d′ +2d′′ = 3d
probes. It is obvious that the d-SNI property does not provide such a simulator.
Note that even the assumption that the adversary only probes d/2 bits in each
region (as we do in Theorem 9) leads to d′ + 2d′′ > d.

B.3 Leakage resilience of Error-detection codes

In the section we compare the random probing security of the polynomial sharing
used in this paper with the duplicated sharing. Therefore we analyze the encoding
itself without further computational leakage and assume a leakage probability
p. Let e be the number of allowed faults and d the number of allowed probes.
The duplicated sharing first shares a secret into d + 1 random values xi with∑d

i=0 xi = x, and then it copies it generates e+ 1 copies such that xj
i = xi for

all i ∈ [d] and j ∈ [e]. It follows (assuming a leakage probability of p) that we
learn xi with a probability of 1− (1− p)e because each xj

i leaks with probability
p. So the probability that we learn the secret x is the probability that we learn
all xi, i.e.,

(1− (1− p)e+1)d+1.

The polynomial sharing used in this work has only d + e + 1 shares and the
adversary learns the secret if at least d+ 1 values are leaked. This probability is

e+d+1∑
i=d+1

(
e+ d+ 1

i

)
pi(1− p)e+d+1−i.

As a reference we can use a sharing without any redundancy. Hence it has only
d+ 1 shares and the secret leaks with probability pd+1. In Figure 3 we illustrate
the improvement of polynomial sharing compared to the duplicated one when we
consider e, d = O(n). Note that the figure uses a logarithmic scale, otherwise the
graphs would divagate exponential.

56

10−2 10−1
10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−09

10−08

10−07

10−06

10−05

10−04

10−03

10−02

10−01

Leakage probability

Su
cc

es
s

pr
ob

ab
ili

ty

Successes probability to reconstruct the secret x

Add.
Dup.
Poly.

Fig. 3: The Figure gives the success probability to reconstruct the secret of a
single encoding with e = d = 4

B.4 Proof of Theorem 10 – Optimality of n = d + e + 1

If one assumes that the values are polynomially masked, this is relatively easy to
see. To protect against d probes, the underlying polynomial needs to have degree
at least d. If we use strictly less than d+ e+ 1 shares, an attacker can fault e of
these shares, which corresponds to adding a polynomial of degree strictly less
than d+ e+ 1− e = d+ 1 to the sharing. Hence, the attacker can modify the
valid sharing, described by a polynomial of degree d, by adding a polynomial
of degree d and thus obtain a valid sharing of a different values. Hence, there
is no possible way to detect these modifications and fault-resilience is thus not
possible.

One might now wonder whether this is an artifact of the polynomial sharing
or whether it is inherently impossible to use a lower number of shares. We will
show that the latter is true by making use of known bounds from coding theory.
An (n,m, dist)-code C over F is a subset C ⊆ Fn with |C| = m such that for all
c, c′ ∈ C, we have dH(c, c′) ≥ dist, where dH denotes the Hamming distance of
two strings, i.e., the number of positions where these strings differ. An abstract
way of looking at a sharing of a value v ∈ F is to see this sharing as a code over F.
With this perspective, the polynomial sharing used in this work is easily seen to be
a Reed-Solomon-Code. Suppose that we use a (n,m,dist)-code C over F to share
our values of F. Clearly, to prevent an attacker that is able to introduce e faults

57

from producing a valid codeword (sharing), we need dist ≥ e+ 1. Furthermore,
as we want to protect against d probes. As each probe reveals a value of F, we
need at least m ≥ qd+1 codewords: If we have less codewords, d probes will result
in an uncertainty clearly less than q and thus provide the attacker with some
information about the shared value. We can now apply the so called Singleton
bound.

Theorem 25 (Theorem 5.2.1 in [Lin98]). Let C be an (n,m, dist)-code over
F. Then m ≤ qn−dist+1.

Based on the inequalities dist ≥ e + 1 and m ≥ qd+1 derived earlier, we
immediately obtain the bound qd+1 ≤ m ≤ qn−dist+1 ≤ qn−e−1+1 = qn−e.
Rearranging these terms shows that n ≥ d + e + 1 and implies the following
theorem, which shows that the number of used shares in our approach is optimal.

B.5 Attack on the construction in [SFRES18]

In this section we attack the refresh gadget in [SFRES18]. The authors claim
to have a d-SNI secure refresh gadget depicted in Algorithm 11. Next, we give
an example to illustrate that this is actually not the case. Let us consider the
field Fp with a (large enough) prime number p and d = 3 where α0 = 1 and
α1 = −1(modp) and α2 ̸∈ {−1, 0, 1} arbitrary. Let us consider the output probes
y0, y1, and the intermediate probe r2. With the SNI property would follow that
there is a simulator that simulates all probes only using one input share. However
we will show that the simulator needs x0 and x1. It holds

y0 = r1 · (1)1 + r2 · (1)2 + r3 · (−1)3 + x0 and

y1 = r1 · (−1)1 + r2 · (−1)2 + r3 · (−1)3 + x0 .

When we add both shares, we get y0 + y1 = x0 + x1 − 2 · r2, and we can compute
x0 + x1 = y0 + y1 + 2 · r2. Hence the adversary can compute x0 + x1 if it probes
y0, y1 and r2. It is easy to see that the simulator of y0, y1 and r2 needs the inputs
x0 and x1.

Algorithm 11 Refresh given in [SFRES18]
Input: A (xi)i∈[n]

Output: A randomized (n, t)-Encoding (yi)i∈[n] of Dec((yi)i∈[n]).
1: (yi)i∈[n] ← (xi)i∈[n]

2: for j = 1 to d do
3: rj ←$ F
4: for i = 0 to n− 1 do
5: yi+1 ← yi ⊕ rjα

j
i

6: return (yi)i∈[n]

58

B.6 Non fault resilient SNI gadget

In this section we illustrate that not every SNI gadget stays SNI if an adversary
injects Faults. For example, the refresh gadget given in Algorithm 12. Let us
consider a probe on the output y0 and an additive fault ζ(x) = x − 1 on the
input wire when the gadget computes r0r1. Hence, we get

((r0ζ(r1)) + (r0(1− r1))) + x0 = ((r0(r1 − 1)) + (r0(1− r1))) + x0 = x0

and the gadget is not SNI anymore because the simulator needs x0 if it has to
simulate y0 of the faulted refresh. Mote that this only describes an attack that
brakes our stronger frSNI definition. However, this is only an example for the
intuition. Next we give an example where we can even break the weaker notion.
In detail we construct a secure gadget that is (S)NI but can be broken with a
single fault: Therefore, we use the same technique as before. Let

f(r′, r′′, r) = r′r + r(r′′)

be a sub gadget. It is easy to see that f(r′, 1−r′, r) = r and f(r′, r′, r) = 0. So let
Gr0,r1,...,rm be a (S)NI secure gadget with the internal randomness r0, r1, . . . , rm
to mask the computation. Let us consider a gadget that does the following.

r′, r0, r1, . . . , rm ←$ F
r′′ ← 1− r′

ri ← f(r′, r′′, ri) for all i = 0, 1, . . .m

run Gr0,r1,...,rmand also output its output

Clearly, it is easy to see that this gadget is (S)NI as well. Note that the probes on
r′ and r′′ do not affect the ri and we get the same probing security as Gr0,r1,...rm .
But a single fault ζ(r′′) with ζ(x) = x − 1 sets all ri to zero. This means that
whole gadget becomes deterministic because it always computes G0,0,...0. Hence
the construction is not SNI only with only one fault. In other word this shows
that we even break our wfr(S)NI definition. Note that the given example is
artificial, but it illustrates two things:

– The same random value should not effect the security of to many shares,
– and the we have to be careful when we consider faults in large circuits since

large circuits might produce unexpected randomness relations.

Algorithm 12 wRefresh

Input: A additive sharing (x0, x1)
Output: A randomized sharing (y0, y1) with x0 + x1 = y0 + y1.
1: r0, r1, r2 ←$ F
2: y0 ← ((r0r1) + (r0(1− r1))) + x0

3: y1 ← −r1 + x1

4: return (y0, y1)

59

B.7 Proof of Theorem 1

Proof. We start with the proof for d-frSNI compositions. Let C be a composition
of two d-f(S)NI gadgets G0, G1 with respect to F and let T be any fault attack
T ∈ A(F). Since F ⊆ F ind only allows independent faults on each wire, we can
split the complete attack T into gadget-wise attacks T0, T1. Hence, T [C] can be
described as the composition of the (independently) faulted gadgets T0[G0],T1[G1].
Due to the definition of fr(S)NI both faulted gadgets are still SNI and it follows
that the composition of the faulted gadgets T [C] is also SNI for any T ∈ A(F)
due to the composition result of SNI. The proof for d-wfrSNI compositions is
similar to the proof of d-frSNI, only the fault attack is limited and the faults are
counted as probes. ⊓⊔

B.8 Useful properties for frSNI

It is not hard to see that the stronger definition implies the weaker one.

Corollary 4. Any d-fr(S)NI Gadget with respect to a fault set F is a d-wfr(S)NI
gadget with respect to F .

Proof. If the gadget is secure even in the presence of arbitrary many faults it is
also secure against a limited number of faults. The simulation even might need
less input shares for the simulation. ⊓⊔

60

