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Abstract. One of the central questions in cryptology is how efficient
generic constructions of cryptographic primitives can be. Gennaro, Gert-
ner, Katz, and Trevisan [GGKT05] studied the lower bounds of the num-
ber of invocations of a (trapdoor) oneway permutation in order to con-
struct cryptographic schemes, e.g., pseudorandom number generators,
digital signatures, and public-key and symmetric-key encryption.
Recently quantum machines have been explored to construct crypto-
graphic primitives other than quantum key distribution. This paper stud-
ies the efficiency of quantum black-box constructions of cryptographic
primitives when the communications are classical. Following Gennaro
et al., we give the lower bounds of the number of invocations of an
underlying quantumly-computable quantum-oneway permutation (QC-
qOWP) when the quantum construction of pseudorandom number gen-
erator (PRG) and symmetric-key encryption (SKE) is weakly black-box.
Our results show that the quantum black-box constructions of PRG and
SKE do not improve the number of invocations of an underlying QC-
qOWP.
keywords: Quantum reduction, black-box construction, efficiency.

1 Introduction

It is widely believed that showing the existence of (trapdoor) oneway
permutations/functions is incredibly hard. If it is shown, then the long-
standing open problem P = NP is solved negatively and we notice that
we live in Minicrypt/Cryptomania of Impagliazzo’s five worlds [Imp95].
Cryptographers assume the existence of (trapdoor) oneway permuta-
tions/functions and construct various useful cryptographic schemes upon
them.

Since cryptographic tools and protocols are used in the real world,
the efficiency of the constructions is also an important target of stud-
ies. For example, Kim, Simon, and Tetali [KST99], Gennaro and Tre-
visan [GT00], and Gennaro, Gertner, and Katz [GGK03] (and their jour-
nal version [GGKT05]) studied the efficiency of cryptographic construc-
tions based on general assumptions.



Example: pseudorandom generator from oneway permutation. As an ex-
ample, let us consider the basic construction of pseudorandom generator
(PRG) from oneway permutation (OWP) (See e.g. [KL20]): By using the
Goldreich-Levin hardcore function [GL89], we can construct PRG : {0, 1}ℓ →
{0, 1}ℓ+k from OWP : {0, 1}n → {0, 1}n, where ℓ = 2n. If we let the range
of the hardcore function {0, 1}O(lg(n)), this basic construction requires
O(k/ lg(n))-invocations of the underlying OWP in the black-box way to
extend k-bits. Gennaro and Trevisan [GT00] showed that this is optimal
up to constant factor; they showed that if there exists a PRG of exten-
sion length k that invokes the underlying OWP o(k/ lg(n))-times in a
black-box way, then there exists unconditionally-secure PRG, which im-
mediately implies the existence of unconditionally-secure OWF, DistNP ̸⊆
AvgP, and P ̸= NP. 1 2

Quantum adversary, quantum construction, and quantum reduction: Crytp-
graphic researches exploit the properties of quantum machines and chan-
nels to advance the classical counterparts; see e.g., certified deletion [BI20,
HMNY21] and MPQC [BCKM21a, BCKM21b, GLSV21].

We here consider the moderate setting where the machines are quan-
tum but the channels are classical, which is called the quantum-computation
classical-communication (QC-CC) model. This model has the benefit that
we can reuse strings (e.g., secret key, public key, ciphertext, and signature)
since we can copy classical strings easily. While the channels are classi-
cal, the quantum power of computation would improve the constructions
and reductions; for example, if the construction is quantum, we can fac-
tor an integer and solve the discrete logarithm problem in polynomial
time, which is already exploited by Okamoto, Tanaka, and Uchiyama
for construction [OTU00] and by Gentry for reduction [Gen10]. More-
over, Ananth, Gulati, Qian, and Yuen [AGQY22] constructed quantumly-
computable secret-key encryption with classical keys/ciphertexts from
pseudorandom state generator (PRS) [JLS18] which produces quantum
states.

Let us turn back our example on PRG from OWP, where we con-
sider post-quantumly-secure OWP (qOWP). In the case of the generic
construction of PRG, we already know that the above PRG construc-

1 Later, Holenstein and Sinha [HS12] improved the results as any black-box construc-
tion with fully-black-box reduction of PRG requires Ω(n/ lg(n)) queries to (regular)
OWF.

2 Reingold, Trevisan, and Vadhan [RTV04] also gave an unconditional black-box con-
struction of PRG from OWF with at most one invocation of OWF. We note that
the construction strongly depends on whether OWF exists or not.
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tion using the quantum version of the Goldreich-Levin hardcore func-
tion [AC02, KY10] yields a similar upperbound for quantum-secure PRG
from classical access to qOWP, while it improves the tightness. Our ques-
tion is:

Can quantum access to qOWP improve the efficiency of the con-
struction?

1.1 Our Contribution

In this paper, we give the lower bounds of the number of quantum invo-
cations of underlying quantum-oneway permutation (qOWP) when the
quantum construction of pseudorandom number generator (PRG) and
symmetric-key encryption (SKE) is quantum-black-box. Our quantum
lower bounds are asymptotically equivalent to those classical lower bounds
in [GGKT05].

OWP-to-PRG: Roughly speaking, we show that if there exists a quantumly-
computable PRG of extension length k that invokes the underlying qOWP
secure against S-size adversaries o(k/ lg(S))-times in a quantum-black-
box way, then there exists unconditionally-secure quantumly-computable
PRG. This implies the existence of quantumly-computable qOWF (QC-
qOWF in short), the proof of (QCMA,BQP-Samp) ̸⊆ AvgBQP in the
average-case complexity, and the proof of BQP ̸= QCMA, quantum analogs
of OWF, DistNP ̸⊆ AvgP, and P ̸= NP. (The seed of new PRG is the clas-
sical witness of QCMA and it is verified by the quantum computation of
new PRG.)

Gennaro and Trevisan [GT00] first showed that a random permutation
is oneway. They then observed that, if the number of queries is at most q,
then a random permutation can be simulated by random q strings, known
as lazy sampling. Using this simulation, they constructed a new PRG that
takes a random seed s and the random q strings and outputs the output
of PRG on the seed s where the random permutation is simulated by the
random q strings. Thus, this implies unconditionally-secure PRG if the
extension length k is longer than the length of the random q strings.

Let us consider the quantum version: In order to adopt their idea
to the quantum setting, we need two techniques; one is the quantum
onewayness of the random permutation; the other is the way to simulate
quantumly-queried random permutation with classical strings:

– For the former, we show that the random permutation is quantum-
oneway. We follow a simple proof following that in [GGKT05, NABT15,
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HXY19], while there are researches of quantum random oracle’s oneway-
ness (and more with advice), see e.g., [NABT15, HXY19, CGLQ20,
Liu23].

– For the latter, we need to emulate the random permutation quan-
tumly queried q-times with compact classical strings. We here use
the RF-RP switching lemma [Zha12a, Zha15] and Zhandry’s lemma
that a random function can be simulated with 2q-wise independent
functions [Zha12b], which can be described by random 2q+1 strings.

Using those two ideas, we solve the above two problems and obtain the
lower bound as we want.

OWP-to-SKE: Roughly speaking, we show that if there exists a quantumly-
computable SKE of message length m and key length k whose encryption
and decryption algorithms invoke the underlying qOWP secure against S-
size adversaries o((m−k)/ lg(S))-times in a quantum-black-box way, then
there exists unconditionally-secure quantumly-computable SKE. This im-
plies the proof of (QCMA,BQP-Samp) ̸⊆ AvgBQP and the proof of BQP ̸=
QCMA. If the underlying SKE computes a function, then further implies
the existence of QC-qOWF.

Gennaro et al. [GGKT05] showed the relation between OWTDP and
PKE and obtained the results for OWP and SKE as a corollary. For sim-
plicity, we here review the SKE version. Gennaro et al. [GGKT05] first
observed that the queried points of encryption and decryption may be
different. Thus, the simulations in new encryption and decryption algo-
rithms should share the information between the underlying encryption
and decryption. This is done by encrypting the list of pairs of queries
and answers by the one-time pad. The new encryption algorithm takes
a message M of length m and a new secret key K ′, which is parsed as
secret key K, random 2q strings for the answers, and a secret key for the
one-time pad; it outputs a ciphertext C of M by the underlying encryp-
tion algorithm with secret key K and message M and a ciphertext C ′

of the list produced by the simulation of the random permutation. The
new decryption algorithm takes a pair of ciphertexts C and C ′ and the
new secret key K ′; it decrypts the list from C ′ and outputs a message
M ′ by using the underlying decryption algorithm with secret key K and
a ciphertext C by simulating the random permutation with the list. The
length of a new secret key is k +O(q) lg(S). If m > k +O(q) lg(S), then
the new SKE scheme is non-trivial, that is, not the one-time-pad, and
unconditionally secure.
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Let us consider the quantum setting: We again adopt the simulation
of the random permutation by 2q-wise independent hash function. We
note that this simulation is the same in both encryption and decryption
algorithms and we have no need to send the list. The construction of a
new SKE scheme becomes simple. As in the classical case, if m > k +
O(q) lg(S), then there exists an unconditionally secure SKE with negligi-
ble decryption failure. Such an SKE scheme implies (QCMA,BQP-Samp) ̸⊆
AvgBQP and BQP ̸= QCMA. Roughly speaking, the secret key and mes-
sage are the classical witness of QCMA and the witness is verified by the
decryption algorithm. As previously mentioned, if the SKE computes a
function, then the SKE implies QC-qOWF.

1.2 Related works

Hosoyamada and Yamakawa studied the gap between collision-resistant
hash function and oneway (trapdoor) permutations [HY20]. Austrin et
al. studied the impossibility of quantum construction of key exchange
from oneway permutations [ACC+22]. Chung, Lin, and Mahmoody showed
that there is no quantum black-box construction of a quantum-computation
and classical-communication (QCCC) non-interactive commitment scheme
from OWP [CLM23].

1.3 Open Problems

Holenstein and Sinha [HS12] improved the parameter setting of the limit
of the black-box OWP-to-PRG construction of Gennaro and Trevisan [GT00].
It is interesting whether we can obtain a similar quantum lower-bound to
that in Holenstein and Sinha [HS12].

An extension to a quantum-computation and quantum-communication
(QCQC)-model is also interesting. Let λ be the security parameter. For
example, [AQY22] showed that if we have appropriate PRS which outputs
d = O(lg(λ)) qubits, then we have pseudorandom functional state gener-
ator (PRFS) by calling PRS at most O(2dλ)-times. It is very interesting
whether it matches the lower bound or not.

We also leave showing a general non-trivial unconditionally-secure
SKE scheme implies QC-qOWF as an interesting open problem. We also
have a question on the complete problems of (Q(C)MA,BQP-Samp) and
(Q(C)MA,BQP-Comp), and the relation between them.

Organization: Section 2 reviews basic notions and notations. Section 3
gives a generic quantum hardness of oneway permutations. Section 4 and
Section 5 give the lower bounds for PRGs and SKEs, respectively.

5



Appendix A reviews definitions of the average-case complexity class.
Appendix B discusses the relation between unconditionally-secure non-
trivial quantum SKE and the hard distributional problem in (QCMA,BQP-Samp).

2 Preliminaries

For a positive integer N , [N ] denotes the set {1, 2, . . . , N}. We use lg(·) :=
log2(·). For two finite sets D and R, Func(D,R) denotes a set of all func-
tions whose domain is D and whose range is R. For a distribution D,
d←↩ D indicates we take a random sample d according to D. For a finite
set S, U(F ) denotes the uniform distribution over F . If F = {0, 1}k, we
use Uk instead of U({0, 1}k).

PPT (and QPT resp.) stands for probabilistic (quantum resp.) polynomial-
time. For gates of quantummachines, we employ Toffoli (CCX ), Hadamard
(H), and Rπ/4 gates as the basis of the universal computation due to Ki-
taev.

We say that a PPT oracle machine P (·) is a black-box construction
from OWP if for any OWP π, (1) P π satisfies the functionalities and (2)
P π is secure against ever efficient adversary Aπ. We consider its quantum
version: We say that a QPT oracle machine P |·⟩ is a quantum black-box
construction from qOWP if for any qOWP π, (1) P |π⟩ satisfies the func-
tionalities and (2) P |π⟩ is secure against ever quantum efficient adversary
A|π⟩.

We review k-wise independent functions and its property.

Definition 2.1. A family F of functions D → R is said to be k-wise in-
dependent if for any a, a1, . . . , ak−1 ∈ D and b, b1, . . . , bk−1 ∈ R satisfying
b ̸= bt for all t < k, the following holds:

Pr
f←↩F

[f(a) = b | f(a1) = bi ∧ · · · ∧ f(ak−1) = bk−1] = 1/|R|.

Lemma 2.1 ([Zha12b]). For any finite sets D and R of classical strings
and q-quantum query algorithm A, we have

Pr
H←↩Func(D,R)

[A|H⟩ = 1] = Pr
H←↩H2q(D,R)

[A|H⟩ = 1],

where H2q(D,R) is a family of 2q-wise independent hash functions from
D to R.
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2.1 Oneway Permutation/Function

We define the quantum onewayness of permutation and function in the
concrete security style:

Definition 2.2. We say that a function f : {0, 1}n → {0, 1}n is (S, ϵ)-
quantumly-oneway or quantumly-oneway function (qOWF) if for every
quantum circuit A of size at most S, we have

Pr
x←↩{0,1}n

[f(A(f(x))) = f(x)] ≤ ϵ.

When f is given as a quantum oracle, we will denote A|f⟩. We say if a
function is (S, 1/S)-qOWF, then we will call it S-qOWF.

If f is a permutation, then we use the term quantumly-oneway per-
mutation (qOWP).

We will denote the set of all permutations over {0, 1}n by Πn. For
t ≤ n, we defineΠt,n the subset ofΠn such that the set of all permutations
which keep n − t last bits unchanged; that is, Πt,n := {π ∈ Πn : ∃π̂ ∈
Πt such that ∀(a, b) ∈ {0, 1}t × {0, 1}n−t, π(a, b) = (π̂(a), b)}. We also
denote the set of all functions over {0, 1}t by Φn and define the set of
all functions which keep the n − t last bits unchanged by Φn,t; that is,

Φt,n := {ϕ ∈ Φn : ∃ϕ̂ ∈ Φt such that ∀(a, b) ∈ {0, 1}t×{0, 1}n−t, ϕ(a, b) =
(ϕ̂(a), b)}.

The following theorem is a quantum version of the RF-RP switching
lemma shown by Zhandry [Zha15].

Theorem 2.1 (The RF-RP quantum switching lemma ([Zha12a,
Thm. 7.3] and [Zha15, Thm. 7])). Let A be an oracle-aided quantum
algorithm that makes at most q quantum queries. Then we have∣∣∣∣ Pr

π←↩Πn

[A|π⟩() = 1]− Pr
ϕ←↩Φn

[A|ϕ⟩() = 1]

∣∣∣∣ ≤ (8π2/3) · (q3/2n).

2.2 Pseudorandom Number Generator

A pseudorandom number generator is an quantum polynomial-time al-
gorithm PRG which takes a seed s ∈ {0, 1}ℓ as input and outputs a
pseudorandom string y ∈ {0, 1}ℓ+k.

Definition 2.3. We say a function PRG : {0, 1}ℓ → {0, 1}ℓ+k is an (S, ϵ)-
secure pseudorandom number generator (PRG) if for any quantum circuit
A of size at most S, we have∣∣∣∣ Pr

s←↩{0,1}ℓ
[A(PRG(s)) = 1]− Pr

z←↩{0,1}ℓ+k
[A(z) = 1]

∣∣∣∣ ≤ ϵ.
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We call ℓ as the seed length and k as the stretch length.

2.3 Symmetric-Key Encryption

The symmetric-key encryption (SKE) scheme for m-bit messages us-
ing k-bit keys is a pair of quantum polynomial-time algorithms SKE =
(Enc,Dec);

– Enc takes a key K ∈ {0, 1}k and a message M ∈ {0, 1}m as input and
outputs a ciphertext C ∈ {0, 1}m′

.
– Dec takes a key K ∈ {0, 1}k and a ciphertext C ∈ {0, 1}m′

as input
and outputs a message M ∈ {0, 1}m or the rejection symbol ⊥.

We require statistical correctness as follows: SKE is statistically correct
if for any M ∈ {0, 1}m, PrK←↩{0,1}k,C←Enc(K,M)[Dec(K,C) = M ] is over-
whelming.

We consider the basic security notion of SKE:

Definition 2.4. We say that SKE is (S, ϵ)-secure if for any quantum
circuit A of size at most S and for any messages M0,M1 ∈ {0, 1}m we
have∣∣∣∣ Pr
K←↩{0,1}k,C←Enc(K,M0)

[A(C) = 1]− Pr
K←↩{0,1}k,C←Enc(K,M1)

[A(C) = 1]

∣∣∣∣ ≤ ϵ.

3 Hardness of Random Permutations

In what follows, we only consider purified quantum circuits with Toffoli
(CCX ), Hadamard (H), Rπ/4, and f gates, where f will be a function.
The following lemma gives the upperbound of the number of quantum
circuits.

Lemma 3.1. Let n ≥ 3. The number of quantum circuits of size S hav-
ing input/output length n (and n-qubits ancilla) and oracle access to a
function f : {0, 1}n → {0, 1}n is at most (4(2n)!/n!)S+1.

Proof. Let us count the number of possible quantum circuits. A quantum
circuit of size S is specified as follows: For i = 1, . . . , S, the i-th step is
specified by the type of gates (CCX , H, Rπ/4, and f) and the source
of input-output wires. The numbers of the possible sources are at most
(2n)!/n! because we consider f -gate with f : {0, 1}n → {0, 1}n. In ad-
dition, the numbers of the possible output wires are at most (2n)!/n!.
Thus, the upperbound of the number of quantum circuits is at most
(4(2n)!/n!)S · (2n)!/n! ≤ (4(2n)!/n!)S+1. ⊓⊔
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Remark 3.1. If we allow (S − n)-qubits ancilla, then we have the upper-
bound (4S!/n!)S+1.

3.1 Hardness of Random Permutations

Gennaro et al. [GGKT05] proved that a random π ∈ Πt is 2
t/5-hard with

probability at least 1−2−2t/2 for sufficiently large t. We prove its quantum
analog as follows:

Theorem 3.1. For sufficiently large t, a random π ∈ Πt is 2t/6-qOWP
with probability at least 1− 2−2

t/6
.

Corollary 3.1. For sufficiently large t ≤ n, a random π ∈ Πt,n is 2t/6-

qOWP with probability at least 1− 2−2
t/6

.

Remark 3.2. Nayebi et al. [NABT15] showed the onewayness of quantum
random permutations with classical advice. Moreover, there are studies of
more properties of quantum random functions/permutations with advice
(See e.g., [HXY19, CGLQ20, Liu23]).

Preliminaries: Before giving the proof, we review useful lemmas. The
first one is the randomized compression lemma.

Lemma 3.2 ([DTT10, Fact 8.1], Randomized Compression Lemma).
Suppose there is a randomized encoding procedure E : X × R → Y and
a decoding procedure D : Y × R → X. For any constant c ∈ [0, 1], if
Prr←↩R[D(E(x, r), r) = x] ≥ c, then |Y | ≥ c|X|.

The next one is taken from Hhan et al. [HXY19], while we adapt it
slightly.

Lemma 3.3 ([HXY19], Reduction to biased adversary). Let Π
be the set of all permutations over [N ] and let X be its subset. Suppose
that we have an adversary B of size S whose number of queries is at most
Q such that, for all π ∈ X, B inverts π with advantage at least ϵ, that is,

Pr
x←↩[N ],B

[B|π⟩(π(x)) = x] ≥ ϵ. (1)

Then, we have a biased adversary A of size S̃ whose number of queries is
at most Q̃ such that, for all π ∈ X, we have

Pr
x←↩[N ]

[
Pr
A
[A|π⟩(π(x)) = x] ≥ 2/3

]
≥ ϵ̃, (2)

where S̃ = S ·O(1/
√
ϵ), Q̃ = Q ·O(1/

√
ϵ), and ϵ̃ = ϵ/2.
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In order to verify how we can compute S̃, Q̃, and ϵ̃, we include the proof
of this lemma.

Proof. Fix π ∈ X. By applying the average argument to Eq. (1), we have

Pr
x

[
Pr[B|π⟩(π(x)) = x] ≥ ϵ/2

]
≥ ϵ/2.

Let us consider B̃, B̃−1, the unitaries corresponding to B without final
measurement. Using the amplitude amplification technique (see e.g., [BHMT00]),
with O(1/

√
ϵ/2) repetition of B̃ and B̃−1, the success probability is am-

plified to 2/3. The amplified circuit is called as A.
From the above arguments, we can set S̃ = S · O(1/

√
ϵ/2), Q̃ =

Q ·O(1/
√
ϵ/2), and ϵ̃ = ϵ/2. ⊓⊔

We finally review the main theorem of Nayebi et al. [NABT15], which
states that if there exists a biased adversary for π ∈ X, then we can
construct randomized encoding procedures.

Lemma 3.4 ([NABT15, Lemma 5], adapted). Let Π be the set of
all permutations over [N ] and let X be its subset. Let A be an adversary of
size at most S̃ that queries to π at most Q̃ times. Suppose that, for all π ∈
X, we have Prx←↩[N ]

[
Pr[A|π⟩(π(x)) = x] ≥ 2/3

]
≥ ϵ̃. Then, there exists a

randomized encoding procedure E : X ×R→ Y and a decoding procedure
D : Y ×R→ X such that, for all π ∈ X, we have Prr←↩R[D(E(π, r), r) =
π] ≥ 0.8 and lg(|Y |) ≤ lg(N !)−Ω(ϵ̃N/Q̃2) +O(lg(N)).

Proof of Main Theorem: We first show the following claim:

Claim. Let X be a subset of Π. Let δ be a fraction of X, that is, δ :=
|X|/N !. If there exists an adversary B of size S such that, for all π ∈ X,
B inverts π with a probability at least ϵ by making at most Q queries,
then we have

δ ≤ 2−Ω̃(ϵ2N/Q2).

Proof. Using Lemma 3.3, we can construct an adversary A of size S̃ =
S ·O(1/

√
ϵ/2) that queries to a permutation at most Q̃ = Q ·O(1/

√
ϵ/2)

such that, for any π ∈ X,

Pr
x←↩[N ]

[
Pr[A|π⟩(π(x)) = x] ≥ 2/3

]
≥ ϵ̃ = ϵ/2.

According to Lemma 3.4, there exists a randomized encoding procedure
E and its decoder D such that for all π ∈ X, we have

Pr
r←↩R

[D(E(π, r), r) = π] ≥ 0.8 and lg(|Y |) ≤ lg(N !)−Ω(ϵ̃N/Q̃2)+O(lg(N)).
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Using Lemma 3.2, the former implies that |Y | ≥ 0.8|X|. Therefore, we
have the following inequality:

0.8|X| ≤ |Y | ≤ N ! · 2−Ω(ϵ̃N/Q̃2) · poly(N).

Recall that the relations |X| = δN !, ϵ̃ = ϵ/2, and Q̃ = Q · O(1/
√
ϵ/2).

Putting them into the above and dividing by N !, we obtain

δ ≤ 2−Ω(ϵ2N/Q2) · poly(N) ≤ 2−Ω̃(ϵ2N/Q2).

⊓⊔

Now, we can prove the theorem as follows: Let N = 2t. Let c > 1 be
a constant, which we will set later. Let A be an oracle quantum circuit of
size S = 2t/c = N1/c. This yields Q = 2t/c.

First, we recall that the number of circuits of size at most S with
2t-qubit register is at most (4(2t)!/t!)S+1. Due to the Stirling inequality,
we have (2t)! ≤ e

√
2t(2t/e)2t and t! ≥

√
2π · t(t/e)t. Therefore,

(
4(2t)!

t!

)S+1

≤

(
4e
√
2t(2t/e)2t√
2πt(t/e)t

)S+1

=

(
4e√
π
·
(
4t

e

)t
)S+1

= (2O(t lg(t)))S+1 = 2Õ(S) = 2Õ(N1/c),

where we use the definition S = 2Θ(t), which results in O(t lg(t)) · S =
Õ(S).

Second, according to our claim, if B of size S inverts for all π ∈ X
with a probability at least ϵ = 1/S, then the fraction of X should be

δ ≤ 2−Ω̃(ϵ2N/S2) ≤ 2−Ω̃(N/S4) = 2−Ω̃(N1−4/c).

Taking the union bound, the probability over a random choice of π
that there exists a quantum circuit of size S which will invert π with
a probability at least 1/S is at most the product of the number of cir-
cuits of size S and the maximum fraction of invertible X for S, that
is, 2Õ(N1/c) · 2−Ω̃(N1−4/c). By setting c = 6, the probability is at most
2Õ(N1/6) · 2−Ω̃(N1/3) ≤ 2−N

1/6
for sufficiently large N . Hence, a random

π ∈ Πt is S = 2t/6-hard with a probability greater than 1− 2−2
t/6

as we
wanted. ⊓⊔

Remark 3.3. If we use S-qubit register, we will get 2Õ(S2) as the upper-
bound of the number of the quantum circuits. In that case, we set S = 2t/7

and we still have 2Õ(N1/7) · 2−Ω̃(N3/7) ≤ 2−N
2/7

for sufficiently large N .
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4 The Bound on Pseudo-Random Number Generator

We show the lower bound for the number of invocations of qOWP to con-
struct PRG. We first review the definition of the black-box construction
of PRG from qOWP.

Definition 4.1. A construction of a PRG scheme based on qOWP is an
oracle procedure PRG|·⟩ : {0, 1}ℓ → {0, 1}ℓ+k. We refer k as the stretch
length of PRG.

We say that PRG|·⟩ is an (Sp, Sg, ϵ)-qOWP-to-PRG weak black-box

construction if for every π ∈ Πn that is Sp-hard, PRG
|π⟩ is (Sg, ϵ)-secure

PRG.

Intuition: First, we review the proof in the classical setting by Gen-
naro and Trevisan. We note that the answers of the random permu-
tation π ∈ Πt,n on q queries can be simulated with q random t-bit
strings y1, . . . , yq unless the strings y1, . . . , yq collide: On the i-th query
xi = (ai, bi) ∈ {0, 1}t × {0, 1}4t, we answer with (yi, bi). Based on PRG
with extension length k using OWF q-times, Gennaro and Trevisan con-
structed a new secure PRG with longer seed s, y1, . . . , yq which emulates
a random permutation by using y1, . . . , yq. Thus, if the extension length k
is larger than qt, then we have unconditionally-secure PRG, which implies
the unconditionally-secure OWF.

In the quantum setting, the black-box construction will access to the
random permutation with the superposition queries. Thus, the classical
pre-sampling strings y1, . . . , yq are not enough to answer those q superpo-
sition queries. Instead, we simulate the random permutation by 2q-wise
independent hash function. Zhandry showed that such hash function per-
fectly simulates the random function (Lemma 2.1). In addition, the ran-
dom function and the random permutation is indistinguishable up to 2t/2

queries (Theorem 2.1). Hence, we can construct an unconditionally-secure
PRG from secure PRG upon qOWF and this implies unconditionally-
secure QC-qOWF.

Theorem 4.1. Let PRG|·⟩ be an (Sp, Sg, ϵ)-qOWP-to-PRG weak black-
box quantum construction for message of length m using a key of length k
in which PRG makes q quantum queries to an oracle |π⟩, where π ∈ Πn.
Let t = 6 lgSp < n. If (2q + 1)t < k, then there exists an (Sp, ϵ +
2−Sp + ϵ0)-secure PRG scheme without any access to oracles, where ϵ0 =
(8π2/3)(q3/S6

p) is the maximum advantage of q-query distinguisher against
the random permutation in Πt and the random function in Φt.

12



Proof (Proof of Theorem 4.1). From the hypothesis, if π : {0, 1}n →
{0, 1}n is (Sp, 1/Sp)-hard, then for any distinguisher T of size at most
Sg, we have∣∣∣∣ Pr

z←↩{0,1}ℓ+k
[T (z) = 1]− Pr

s←↩{0,1}ℓ
[T (PRG|π⟩(s)) = 1]

∣∣∣∣ ≤ ϵ.

We here drop the quantum oracle access of T , since this only makes
T weaker. Let t = 6 lg(Sp) < n. According to Corollary 3.1, a random

permutation π ∈ Πt,n is Sp-hard with probability greater than 1−2−2t/6 =
1− 2−Sp . Using the average argument, we have∣∣∣∣ Pr

z←↩{0,1}ℓ+k
[T (z) = 1]− Pr

π←↩Πt,n,s←↩{0,1}ℓ
[T (PRG|π⟩(s)) = 1]

∣∣∣∣ ≤ ϵ+ 2−Sp .

We next replace π ∈ Πt,n with ϕ ∈ Φt,n. Due to Theorem 2.1, we have∣∣∣∣ Pr
π←↩Πt,n,s←↩{0,1}ℓ

[T (PRG|π⟩(s)) = 1]− Pr
ϕ←↩Φt,n,s←↩{0,1}ℓ

[T (PRG|ϕ⟩(s)) = 1]

∣∣∣∣ ≤ ϵ0,

where ϵ0 := (8π2/3)(q3/2t) = (8π2/3)(q3/S6
p). Using the triangle inequal-

ity, we obtain∣∣∣∣ Pr
z←↩{0,1}ℓ+k

[T (z) = 1]− Pr
ϕ←↩Φt,n,s←↩{0,1}ℓ

[T (PRG|ϕ⟩(s)) = 1]

∣∣∣∣ ≤ ϵ+2−Sp+ϵ0.

Here, we note that PRG|ϕ⟩(s) may fail because the construction might
exploit the fact that π is the permutation. However, the failure probability
of PRG|ϕ⟩(s) is at most ϵ0 due to Theorem 2.1.

Recall that PRG queries to |π⟩ (and |ϕ⟩) at most q times. We construct
PRG′ : {0, 1}ℓ′ → {0, 1}ℓ+k, where ℓ′ := ℓ + (2q + 1)t < ℓ + k, as follows:
Parse s′ ∈ {0, 1}ℓ+(2q+1)t as (s, f0, . . . , f2q) ∈ {0, 1}ℓ × ({0, 1}t)2q+1 and
define f : {0, 1}t → {0, 1}t by f(z) :=

∑
i fiz

i ∈ GF(2t), which is 2q-wise
independent hash functions [WC81]. Using this f instead of a random
function ϕ̂ of ϕ, we define F (a, b) = (f(a), b).

Now, we define

PRG′(s′) := PRG′(s, f0, . . . , f2q) = PRG|F ⟩(s).

According to Zhandry’s lemma (Lemma 2.1), the 2q-wise independent
hash functions and the random functions are indistinguishable up to q-
queries and we have

Pr
ϕ←↩Φt,n,s←↩{0,1}ℓ

[T (PRG|ϕ⟩(s)) = 1] = Pr
s′←↩{0,1}ℓ′

[T (PRG′(s′)) = 1].

Combining the (in)equalities, we obtain our theorem. ⊓⊔
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Remark 4.1. We note that PRG′ : {0, 1}ℓ′ → {0, 1}ℓ′+k is efficiently com-
putable because it just runs PRG with simulation of F based on 2q-
wise independent hash function f(z) =

∑
i fiz

i. Thus, PRG′ yields an
unconditionally-secure QC-qOWF; if it is not qOWF, then it is not se-
cure PRG.

5 The Bound on Symmetric-Key Encryption

We show the lower bound for the number of invocations of qOWP to
construct SKE. We start with a review of the definition of the black-box
construction of SKE from qOWP.

Definition 5.1. Construction of an SKE scheme based on qOWP is a
pair of oracle procedures SKE|·⟩ = (Enc|·⟩,Dec|·⟩) such that, for all π ∈ Πn,
the resulting SKE|π⟩ satisfies the functional definition of an SKE scheme.

We say that SKE|·⟩ is an (Sp, Se, ϵ)-qOWP-to-SKE weak black-box con-

struction if for every π ∈ Πn that is Sp-hard, SKE
|π⟩ is (Se, ϵ)-hard.

We only consider a non-interactive SKE scheme.

Intuition: We start to review the proof in the classical setting by Gen-
naro, Gertner, and Katz [GGK03]: Let k be the key length and m be
the message length. We again note that the answers of the random per-
mutation π ∈ Πt,n on q queries can be simulated with q random t-bit
strings y1, . . . , yq unless the strings y1, . . . , yq collide: On the i-the query
xi = (ai, bi) ∈ {0, 1}t × {0, 1}4t, we answer with (yi, bi). However, SKE
involves two algorithms Enc and Dec which may ask different queries. In
order to maintain the queried points, they make a new encryption al-
gorithm Enc′ sends a ciphertext made by Enc plus the encrypted list of
queried points by the one-time pad. If the key length k is shorter than
m − O(qt), then we have unconditionally-secure SKE, which implies the
unconditionally-secure OWF [IL89, GGKT05].

In the quantum setting, we again simulate the random permutation
by 4q-wise independent hash function, since Enc and Dec make q queries.
Since this simulation allows us to share the same function in both al-
gorithms, we do not need to send the encrypted list and the simulation
becomes simple.

Using the same idea, we can show that if the key length k is shorter
than m− (4q+1)t, then we have unconditionally-secure non-trivial SKE.
While we tend to conclude this unconditionally-secure SKE implies the
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unconditional existence of qOWF, we cannot say so since the new en-
cryption algorithm and decryption algorithm are probabilistic, which we
discuss later.

Theorem 5.1. Let SKE|·⟩ be an (Sp, Se, ϵ)-qOWP-to-SKE weak black-box
construction for message of length m using a key of length k in which
Enc|·⟩ and Dec|·⟩ makes q queries to an oracle π ∈ Πn. Let t = 6 lg(Sp). If
m > k+(4q+1)t, then there exists an (Se, ϵ̃)-secure SKE scheme without
any access to oracles, where ϵ̃ = ϵ+ 2−Sp+1 + (16π2/3)(q3/S6

p).

Proof. We set n = 6t and consider Πt,n ⊆ Πn.

The hypothesis of the theorem on SKE|·⟩ = (Enc|·⟩,Dec|·⟩) implies that
if π is Sp-hard, then for any circuit B of size Se and for any messages
M0,M1 ∈ {0, 1}m we have∣∣∣∣∣ Pr

s,v←↩Enc|π⟩(s,M0)
[B(v) = 1]− Pr

s,v←↩Enc|π⟩(s,M1)
[B(v) = 1]

∣∣∣∣∣ < ϵ.

We here drop the quantum oracle access of B, since this only makes B
weaker.

According to Theorem 3.1, π ∈ Πt,n is Sp-hard for all but except 2−Sp

fraction. By using the averaging argument, for any circuit B of size at
most Se and for any two messages M0,M1 ∈ {0, 1}m we have∣∣∣∣∣Prs,π←↩Πt,n,v←↩Enc|π⟩(s,M0)

[B(v) = 1]

−Prs,π←↩Πt,n,v←↩Enc|π⟩(s,M1)
[B(v) = 1]

∣∣∣∣∣ < ϵ+ 2−Sp+1.

Using Zhandry’s lemma (Theorem 2.1), we can replace π ←↩ Πt,n with
ϕ←↩ Φt,n as follows:∣∣∣∣∣Prs,ϕ←↩Φt,n,v←↩Enc|ϕ⟩(s,M0)

[B(v) = 1]

−Prs,ϕ←↩Φt,n,v←↩Enc|ϕ⟩(s,M1)
[B(v) = 1]

∣∣∣∣∣ < ϵ+ 2−Sp+1 + 2ϵ0 = ϵ̃, (3)

where ϵ0 = (8π2/3)(q3/S6
p).

Let us construct a new SKE scheme SKE′ for m-bit messages using a
random key of length k′ = k+ (4q+ 1) · t, which is (Se, ϵ̃)-secure and has
no oracle access. Again, we simulate the random function ϕ by 4q-wise
independent hash function. The simulation is very simple: We prepare
F (a, b) := (f(a), b), where f : {0, 1}t → {0, 1}t : f(a) =

∑4q
i=0 fia

i ∈
GF(2t). Now, SKE′ is defined as follows:
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– Enc′ parses the shared key s′ ∈ {0, 1}k′ as the original shared key s
and 4q-wise independent hash function f and encrypts a message into
C by C ← Enc|F ⟩(s,M).

– Dec′ parses the shared key s′ as s and f and decrypts a ciphertext C
by M ′ ← Dec|F ⟩(s, C).

The (Se, ϵ̃)-security of SKE′ directly follows from Eq. (3). ⊓⊔

Remark 5.1. We note that our SKE′ may have negligible decryption er-
rors because we replace a permutation with a 4q-wise independent hash
function. This is similar to the case that yi’s collide in the classical setting.
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A Complexity Class and Instance Generator

For the basic complexity classes (P, NP, BQP, and QMA), see the standard
textbooks.

We say a language is in QCMA if there exists QPT machine V , called
as a verifier, such that there exists a polynomial r(·) and 1) for any x ∈ L,
there is a classical sting w ∈ {0, 1}∗ of length polynomial in |x| such that
Pr[V (x,w) = 1] ≥ 1−2−r(|x|); and 2) for any x ̸∈ L, for all classical stings
w ∈ {0, 1}∗ of length polynomial in |x|, Pr[V (x,w) = 1] < 2−r(|x|).

We follow the terminology in Bogdanov and Trevisan [BT06]. A pair
(L, µ) is said to be a distributional problem if L ⊆ {0, 1}∗ and µ =
{µn}n∈Z≥0 is an ensamble of probability distributions. Following the def-
inition of P-sampleable distribution, we define its quantum version as
follows:

Definition A.1. A distribution µ is said to be BQP-sampleable if there
exists a QPT machine S such that Pr[S(1n) = x] = µn(x).

We define the quantum analogs of the average-case complexity (NP,P-Samp).

Definition A.2. (QMA,BQP-Samp) denotes the set of distributional prob-
lems (L, µ) with L ∈ QMA and BPQ-sampleable µ. (QCMA,BQP-Samp)
denotes the set of distributional problems (L, µ) with L ∈ QCMA and
BPQ-sampleable µ.

We here call a sampling machine an instance generator if it samples a pair
of an instance x in a language L and its corresponding witness w. We say
that a problem (L, µ) ∈ (QCMA,BQP-Samp) is (S, ϵ)-hard if 1) there
exists a QPT instance generator E such that E’s first output distributes
as µ and 2) for any quantum machine A of size at most S = S(n),
Pr(x,w)←↩E(1n)[V (x,A(x)) = 1] ≤ ϵ, where V is a verifier of (L, µ).

We also define the quantum analog of the average-case complexity
AvgBPP:
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Definition A.3. We say that a distributional problem (L, µ) is in AvgBQP
if there exists a quantum algorithm A such that 1) for every n, δ, x,
PrA[A(x, 1n, δ) ̸∈ {L(x),⊥}] ≤ 1/4 holds, where L(x) ∈ {0, 1} is an indi-
cator function; 2) for every n, δ, Prx∼µn [PrA[A(x, 1

n, δ) = ⊥] ≥ 1/4] ≤ δ
holds; 3) and A runs in a polynomial time of n/δ.

Relations: If there exists qOWF, then we have FBQP ̸= FQCMA (and
BQP ̸= QCMA). Kretschmer [Kre21] showed that there exists an oracle
relative to which BQP = QMA but secure PRS exists. Aaronson, Ingram,
and Kretschmer [AIK22] showed that there exists an oracle relative to
which P = NP but BQP ̸= QCMA. They also showed that there exists an
oracle relative to which P ̸= NP but BQP = QCMA = QMA. Kretschmer,
Qian, Sinha, and Tal [KQST23] further showed that there exists an oracle
relative to which P = NP but single-copy-secure PRS exists [JLS18].

B SKE implies hard instance generator for QCMA

Unfortunately, unconditionally-secure non-trivial QC-SKE does not im-
ply qOWF. The existing proofs in [IL89, GGKT05] require an encryp-
tion algorithm to be a PPT machine, where we can treat a random
tape explicitly. Instead, we consider the class of average-case complex-
ity, (QCMA,BQP-samp), which consists of pairs of a language in QCMA
and a probability distribution of instances sampleable by a QPT machine,
and AvgBQP. Our unconditionally-secure non-trivial QC-SKE, QC-qSKE
in short, implies (QCMA,BQP-samp) ̸⊆ AvgBQP, quantum analogue of
(NP,P-samp) ̸⊆ AvgP.

The proof is essentially the same as that of [GGKT05]:

Theorem B.1. Let (Enc,Dec) be an (S, δ)-secure perfectly-correct quan-
tum SKE scheme whose message length is m and key length is k < m.
Let Se be the size of the circuit of Enc and let Sd be the size of the circuit
of Dec. For any ℓ, there exists a pair of a QPT instance generator and a
QPT verifier (E,D) that is (S−2ℓSe−2ℓSd−poly(m, k, ℓ), ℓδ+2−ℓ(m−k))-
hard.

We can easily extend the correctness to quantum SKE to statistical one.

Proof. Let SKEℓ = (Encℓ,Decℓ) be an intermediate quantum SKE scheme
whose message length and key length are ℓm and ℓk, respectively de-
fined as follows: Encℓ takes (sk1, . . . , sk ℓ) ∈ {0, 1}ℓk and (M1, . . . ,Mℓ) ∈
{0, 1}ℓm as input and outputs (C1, . . . , Cℓ) where Ci ←↩ Enc(sk i,Mi);
Decℓ takes (sk1, . . . , sk ℓ) ∈ {0, 1}ℓk and (C1, . . . , Cℓ) as input and outputs
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(Dec(sk1, C1), . . . ,Dec(sk ℓ, Cℓ)) ∈ {0, 1}ℓm. By the standard hybrid argu-
ment, it is easy to see that SKEℓ is (S − ℓSe, ℓδ)-secure quantum SKE
scheme.

We now define a QPT instance generator E and a QPT verifier D as
follows: E on input sk ∈ {0, 1}ℓk andM ∈ {0, 1}ℓm outputs Encℓ(sk ,M)∥M .
D on input (c,M) and sk ′ checks if M = Decℓ(sk

′, c) or not.
We want to show that the distribution E(Uℓk, Uℓm) generates average-

case hard instances. Let us assume the contrary; suppose that there exists
an algorithmB of size at most S′ breaking (S′, δ′)-hardness of E. Let advB
denote the advantage of B, that is,

advB := Pr
sk←↩{0,1}ℓk,M←↩{0,1}ℓm,c←Encℓ(sk ,M)

[D(c∥M,B(c∥M)) = 1] > δ′.

We then construct an algorithm A of size at most S′ − Sd − poly(m, k, ℓ)
with whose advantage against SKEℓ is at least ℓδ, where the advantage is∣∣∣∣Prsk←↩{0,1}ℓk,M0,M1←↩{0,1}ℓm,c←Encℓ(sk ,M0)[A(M0,M1, c) = 1]

−Prsk←↩{0,1}ℓk,M0,M1←↩{0,1}ℓm,c←Encℓ(sk ,M1)[A(M0,M1, c) = 1]

∣∣∣∣ .
A is defined as follows: Given M0, M1, and c, the algorithm A runs B
on input c and M0 and receives sk ′∥M ′. It then checks whether both
Decℓ(sk

′,M ′) = C and M ′ = M0 hold or not. If so, B succeeds to find
such sk ′ and M ′, and A outputs 1. Otherwise, A outputs 0.

By the definition of A, when c is produced by M0, A outputs 1 if B
succeeds. Thus, we have

Pr
sk←↩{0,1}ℓk,M0,M1←↩{0,1}ℓm,c←Encℓ(sk ,M0)

[A(M0,M1, c) = 1] = advB > δ′.

We also have

Pr
sk←↩{0,1}ℓk,M0,M1←↩{0,1}ℓm,c←Encℓ(sk ,M1)

[A(M0,M1, c) = 1]

≤ Pr
sk←↩{0,1}ℓk,M0,M1←↩{0,1}ℓm,c←Encℓ(sk ,M1)

[∃sk ′ s.t. Decℓ(sk ′, c) = M0]

≤
∑

sk ′∈{0,1}ℓk
Pr

sk←↩{0,1}ℓk,M0,M1←↩{0,1}ℓm,c←Encℓ(sk ,M1)
[Decℓ(sk

′, c) = M0]

≤
∑

sk ′∈{0,1}ℓk
2−ℓm = 2−ℓ(k−m),

where we use the fact that the distribution of M0 is independent of
Dec(sk ′, C).
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Thus, the advantage of A is at least δ′ − 2−ℓ(k−m). By setting S′ =
S − ℓSe and δ′ = ℓδ + 2−ℓ(k−m), we have SA = S′ − ℓSd − poly(m, k, ℓ) =
S−ℓSe−ℓSd−poly(m, k, ℓ) and δA = δ′−2−ℓ(k−m) = ℓδ as we wanted. ⊓⊔

We note that if Enc computes a function, then the above construction
implies QC-qOWF as in [GGKT05].
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