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Abstract. In the past years, research on Shor’s algorithm for solving
elliptic curves for discrete logarithm problems (Shor’s ECDLP), the ba-
sis for cracking elliptic curve-based cryptosystems (ECC), has started to
garner more significant interest. To achieve this, most works focus on
quantum point addition subroutines to realize the double scalar multi-
plication circuit, an essential part of Shor’s ECDLP, whereas the point
doubling subroutines are often overlooked. In this paper, we investigate
the quantum point doubling circuit for the stricter assumption of Shor’s
algorithm when doubling a point should also be taken into consideration.
In particular, we analyze the challenges on implementing the circuit and
provide the solution. Subsequently, we design and optimize the corre-
sponding quantum circuit, and analyze the high-level quantum resource
cost of the circuit. Additionally, we discuss the implications of our find-
ings, including the concerns for its integration with point addition for a
complete double scalar multiplication circuit and the potential opportu-
nities resulting from its implementation. Our work lays the foundation
for further evaluation of Shor’s ECDLP.

Keywords: Elliptic curve discrete logarithm problem · Point doubling
· Quantum circuit · Quantum cryptanalysis · Shor’s algorithm

1 Introduction

Over the decade, there has been a growing interest in Shor’s algorithm for solving
the elliptic curve discrete logarithm problems (i.e., Shor’s ECDLP) [17,18]. Ac-
knowledged to render existing elliptic curve-based cryptosystems (ECC) break-
able in polynomial time [16], this algorithm has the potential to accomplish its
objective of cracking existing public-key cryptography (PKC) sooner than its
more popular counterpart, i.e., Shor’s factoring algorithm for cracking RSA, due
to its lower quantum resource requirement for the same security level [9,14]. In
particular, the advantage of lower key size in ECC is —ironically —the reason
why it is in graver danger in the presence of a quantum computer, considering
the current development of quantum computing that is still in the early stage,
which often favors the number of qubits as the most essential metric.
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To date, several works have discussed how to concretely realize Shor’s ECDLP
for quantum cryptanalysis purposes [16,5,1,3,11], with heavily referenced state-
of-the-art works [16,5,1] primarily assessing the implementation for the supercon-
ducting qubits architecture as arguably the most prominent quantum hardware
platform. Starting from the works by Roetteler et al. [16] and perfected by Haner
et al. [5], which both consider prime curves implementation, the landscape then
extends to binary elliptic curves by Banegas et al. [1],

All those advancements are based on the pioneering efforts of Proos and Zalka
[14], one of the earliest works to translate the high-level Shor’s ECDLP algorithm
into the description of their possible quantum circuit derivation. Over time, their
paper has established itself as the standard reference for subsequent papers in the
literature that aims to optimize the quantum circuit implementation of Shor’s
ECDLP, which has been made easier for testing, verification, and concretely
estimating the quantum resource requirement by leveraging reversible circuit
and quantum computing simulators that have emerged in the past decade (e.g.,
RevKit, LIQUi |⟩, and the more recent ProjectQ, Qiskit, Microsoft QDK/Azure
Quantum, and Q-Crypton).

From our observation, these papers preserve the scope provided by Proos
and Zalka [14]. That is, for cracking ECC via Shor’s ECDLP, the rule can be
simplified by considering only the generic case (i.e., for points P + R where
P,R ̸= O, and P ̸= ±R) for the elliptic curve group operation [14]. In other
words, to achieve the double scalar multiplication, the essential components in
Shor’s ECDLP circuit (see Fig. 1), computation will be done solely by a series
of point addition operations. Meanwhile, the other operation to perform a more
special case where P = R, namely the point doubling operation, is set aside. The
authors of [14] argued that the expected loss of fidelity from the absence of this
operation would still be negligible, which was also agreed upon by succeeding
papers, e.g., [8].

Nevertheless, when considering the stricter assumption where the occurrence
of P = R is more probable during computation and minimum fidelity loss is
expected from the construction, point doubling operation will also hold consid-
erable significance. In this case, exploring the point doubling operation, including
its quantum circuit construction and the analysis of its quantum resource, will
be very beneficial and insightful for more precise resource estimation of Shor’s
ECDLP.

In this study, we examine the point doubling operation as required for the
less relaxed case of Shor’s ECDLP, i.e., when the elliptic curve points happen
to be the same two points. To the best of our knowledge, this subject, including
the possible quantum circuit implementation, has so far been absent in state-of-
the-art works in quantum cryptanalysis. For this initial work, we focus on point
doubling circuit for binary elliptic curves, whose inherent characteristics make
it simpler for tinkering and constructing the operation compared to the prime
curves counterpart. To highlight our contributions, we start by analyzing the
point-doubling formula and identifying the challenges in its construction with
their possible solution. Subsequently, we design the quantum circuits for elliptic
curve point doubling to suit several scenarios and analyze its quantum resource
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Fig. 1: Quantum circuit of Shor’s algorithm for solving the elliptic curve discrete
logarithm problem (ECDLP). Figures adapted from [16,10].

cost in a high-level view. Furthermore, we also provide a more detailed discussion
of the aspects related to prime curves and the concerns when incorporating the
circuit for use in Shor’s algorithm.

The contribution of this paper can be summarized as follows:

– We examine the elliptic curve point doubling operation, which is rarely ex-
plored in literature. In particular, we discuss the challenges, analyze the
formula and the implementation possibility of point doubling circuits for
binary elliptic curves.

– We design the corresponding quantum circuit, incorporate several optimiza-
tion and address the uncomputation, then analyze the high-level quantum
resource cost of the circuit.

– We provide an in-depth discussion of our findings and other aspects relevant
to point doubling, the concerns when incorporating the circuit with point
addition for a complete double scalar multiplication circuit, as well as the
open possibilities arising from point doubling implementation.

2 Preliminaries

2.1 Shor’s ECDLP

The security of elliptic curve cryptography (ECC) is based on the hardness of
the elliptic curve discrete logarithm problem (ECDLP). In this problem, given
two points P and Q on an elliptic curve of order r, it is easy to compute the
point multiplication Q = kP when the scalar k and the base point P are known.
In contrast, the reverse problem of finding the scalar k given both points P and
Q is computationally intensive [16] and considered classically intractable.

How it works. Shor’s algorithm for solving elliptic curve discrete logarithm
problems (Shor’s ECDLP) works by essentially running a brute-force attack of
computing the scalar multiplication of all states, but intelligently utilizing quan-
tum interference to boost the likelihood of obtaining the desired result while



4 H.T. Larasati and H. Kim

suppressing the undesired value via quantum Fourier transform (QFT). As il-
lustrated in Fig. 1, the algorithm consists of three registers with two n+1-sized
quantum registers initialized in the state |0⟩ appended with the Walsh-Hadamard
(i.e., Hadamard gate on each qubit), which yields the state 1

2n+1

∑2n+1−1
k,l=0 k, l.

Subsequently, conditional to the state of the register containing k or l, the cor-
responding multiple of points P and Q are added via the double-scalar multipli-
cation circuit, performing the mapping as in Eq. 1 [16],

1

2n+1

2n+1−1∑
k,l=0

k, l 7→
2n+1−1∑
k,l=0

k, l |[k]P + [l]Q⟩ (1)

before appending QFT and measuring the result. Finally, classical post-processing
is performed, which theoretically can yield the sought value with high probability.
Consequently, this algorithm enables an adversary with a large-scale, full-fledged
quantum computer to obtain k by running the algorithm a few times.

Quantum scalar multiplication circuit. In existing works, as previously
shown in Fig. 1, the quantum (double) scalar multiplication circuit comprises
solely of (controlled) point addition operation, simplifying the operation by mak-
ing the added point fixed. However, this does not cover the case where both
points are the same, which necessitate the use of point doubling operation, there-
fore may yield incorrect result when doubling the points [14]. Even though it is
argued that the fidelity loss from this is small, the stricter case will require the
analysis of the point-doubling circuit as well. Therefore, it is beneficial to analyze
the point doubling circuit, which we start with this paper.

2.2 Binary Elliptic Curves in the Quantum Realm

From a quantum cryptanalysis perspective, an ordinary binary elliptic curve
is often considered instead of other stronger variants such as supersingular [1].
Here, we first describe the theoretical concept of binary elliptic curves. The
Weierstrass equation for an ordinary binary elliptic curve is described in Eq. 2,

y2 + xy = x3 + ax2 + b (2)

where a ∈ F2 and b ∈ F∗
2m (i.e., the extension field). Then, the points on this

elliptic curve, P = (x, y) ∈ F⊭
2m , form a set of points that can be computed

under the elliptic curve group law comprising point addition and point doubling
operations. In particular, point addition, e.g., P1 + P2 = P3, with P1 = (x1, y1),
P2 = (x2, y2) ̸= ±P1, and P3 = (x3, y3), can be computed by following Eqs. 3 to
5.

x3 = λ2 + λ+ x1 + x2 + a (3)
y3 = λ(x1 + x3) + x3 + y1 (4)

λ =
y1 + y2
x1 + x2

(5)
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|x1⟩ /n +x2 • • +a+ x2 • • +x2 • |x3⟩ or |x1⟩

|q⟩ • • • • • • |q⟩

|y1⟩ /n +y2 • M S • S M • +y2 |y3⟩ or |y1⟩

|0⟩ /n D • • • • • D |0⟩

Fig. 2: Point addition circuit for binary elliptic curves proposed by Banegas et
al [1].

Meanwhile, the point doubling calculation is as shown in Eqs. 6 to 8. [6,13].

x3 = λ2 + λ+ a = x1
2 +

b

x1
2

(6)

y3 = x1
2 + (λ+ 1)x3 (7)

λ = x1 + y1/x1 (8)

Constructing the quantum circuit. From the group law formula above,
the corresponding quantum circuit can be constructed. 1 Regarding the quantum
point addition circuit, the recent concrete construction is by Banegas et al. [1],
which is presented in Fig. 2. As inferred from the figure, the circuit requires three
registers of size n in which two serve as input/output registers and one as a clean
ancilla register, plus one qubit serving as the control —which in the full scheme
of Shor’s ECDLP circuit will be associated with the qubit in the upper registers
(the ones appended by Walsh-Hadamard). Additionally, the circuit utilizes two
multiplications, two divisions, and two squarings —all of which are conditionally
controlled, linked to the control qubit and other associated register —and several
(controlled) additions and addition by a constant.

Quantum resource cost. In terms of the exact resource count, however,
it will greatly depend on the underlying subroutines employed since the afore-
mentioned circuit is still a high-level architecture that will be broken down into
its finer-grained components. For instance, choosing to use between two different
inversion techniques: greatest common divisor (GCD) [1] or Fermat’s Little The-
orem (FLT) [1,10,19] for the division subroutines, or between Schoolbook [21]
and Karatsuba multiplication [20,15,2,7] will yield quite different performance
metrics, including in terms of the total number of qubits (i.e., qubit count or
circuit width), circuit depth (i.e., the longest path for the quantum operations
to run on the quantum hardware, gate count (i.e., the total number of quantum
gates), as well as the more specific terms like Toffoli depth and Toffoli count
[4,22].

1 All classical computation can be simulated on a quantum computer by reversible
gates, e.g., Toffoli (the most common), Fredkin, or Barenco gates [23]. However, how
to efficiently perform the operation is a whole different topic pursued by researchers.
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3 Quantum Circuit Designs of Point Doubling Operation
for Binary Elliptic Curves

In this section, we start by elaborating on the challenges in constructing point-
doubling operations. Furthermore, we provide three circuits for point doubling
to suit different design considerations. In this work, we aim to be clear also for
non-expert audiences; therefore, we describe our thought process to develop the
resulting circuit.

3.1 Challenges on Quantum Point Doubling Construction

Before going into detail about the point-doubling circuit itself, it would be better
to start with the differences between point addition and point doubling from the
quantum perspective that we are able to identify. Constructing a point-doubling
circuit poses relatively more difficulties than a point-addition circuit. Firstly, to
implement point addition, previous works [14] proposed simplification by making
one of the two points constant, which is added conditionally depending on the
state of the control qubit (which represents each qubit that is appended by
Hadamard gates in the upper registers of Shor’s ECDLP, see Fig. 1).

With this, the point to be added (i.e., P2(x2, y2)) is appended conditionally
as a constant; hence can be pre-set and precomputed classically. Furthermore,
by making the point a constant, the uncomputation process can be performed
with ease since the added point can be immediately subtracted or uncomputed
as soon as they are no longer needed in the calculation, making it practical and
more efficient. Secondly, as mentioned in [14] and further elaborated in [16], by
looking further at the point addition formulas (Eqs. 3 to 5), the value of λ in
point addition has a direct, clear relation with both x1 and x3, as well as y1 and
y3 (i.e., x3 can be obtained from appending x2 and λ to x1 with other relevant
operations (Eq. 3), and similarly, y3 can be obtained from appending y1 and
λ to y1 with other relevant operations (Eq. 4)). Here, we say that the initial
state of x1 and y1 can be "consumed" to obtain the final desired computation.
Then, by intelligently arranging the circuit, we can straightforwardly transform
the initial state (x1, y1) to the subsequent state (x3, y3). As a result, an efficient
computation (and uncomputation) can be achieved, and a clear reversibility
relationship can be maintained.

On the other hand, the construction of point doubling is relatively tricky.
First, we will discuss point doubling in a broader view without restricting our-
selves to the case of Shor’s algorithm requirement. In the case of point doubling,
both points involved in the computation share identical values (P = R). Unlike
point addition, where it is reasonable to assume that the second point is constant
and its value is known in advance, the same assumption does not hold for point
doubling. Intuitively, if the point to be doubled were known beforehand, then
the whole point doubling operation would serve no purpose.

Hence, the practice of appending the value of the second point, as seen in
point addition, is not applicable in this scenario. Consequently, an extra place-
holder (register) will be required to store or append the same point, which can be
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achieved through a "fan-out" or "copy" operation using CNOT gates. Moreover,
due to both input points being quantum and the operations being condition-
ally dependent on the state of a controlled qubit q, many of the operations will
ultimately require "elevation,": CNOT becomes CCNOT (controlled-controlled
NOT gate a.k.a. Toffoli gate), CCNOT becomes CCCNOT (multi-controlled
Toffoli gate), and so on, leading to more complex operations.

Furthermore, examining the point doubling formula in Eqs. 6 to 8, obtaining
x3 from x1 and y3 from y1, is not as straightforward. The term x1 does not
directly evolve into x3, and similarly for y1 and y3. In detail, as inferred from Eq.
6, obtaining x3 from x1 requires "copying" x1 to be squared and then appended
(i.e., x2

1 +
b
x2
1
), while obtaining it from λ does not require any x1. Hence, we say

that it does not "consume" the initial state. Similarly for y3 as obtaining it does
not make use of y1 at all. As a consequence, the initial value of y1 may need to
be preserved in the circuit as it can not be erased, hence requiring a placeholder
(such as an ancilla register) to hold its value. This makes it challenging to devise
an efficient design for its quantum circuit implementation.

3.2 Proposed Quantum Circuits

Despite the challenges, there are still opportunities from the point-doubling for-
mula that we can leverage to implement the circuit rather efficiently. We observe
that there exists an indirect relation that can be taken advantage of. In partic-
ular, notice that x1 has a direct relation to y3, while y1 has a direct relation
to x3. By utilizing this correlation, it is possible to transform x1 and y1 into y3
and x3, respectively. Thereby, a relatively efficient circuit can still be obtained,
albeit with a "twisted" input-output relation (i.e., where x1 maps to y3 and y1
maps to x3 instead of the aligned mapping of x1 to x3 and y1 to y3).

Fundamentally, there is no requirement for the input and the output to be
aligned. However, considering the conditional nature of the computation (i.e.,
if the control qubit q is in the state zero, the doubling does not occur and the
value remains as x1 instead of being transformed into y3) and the circuit will be
incorporated into a larger scheme of scalar multiplication, a direct alignment will
be helpful for clarity of the operations, which can be done simply by appending
(controlled) swap gates.

Nevertheless, as previously described, the construction of point doubling may
necessitate more space (i.e., ancilla registers) than that of point addition. While
the latter, as proposed by Banegas et al. [1], requires one ancilla register used
as a placeholder for division operation (see Fig. 2), two ancilla registers will
be required for performing point doubling. Below, we provide three schemes of
point-doubling circuits to suit different implementation preferences.

The proposed circuits for performing point doubling are illustrated in Fig. 3.
These circuits consist of two n-sized input/output registers, a control qubit q,
and two n-sized ancilla registers to store intermediate results. Additionally, the
presence of multiple multi-controlled gates throughout the circuit results from
the circuit’s conditional nature, wherein it remains in the initial state (i.e., x1 and
y1) when the control qubit is in the state |0⟩. It is important to highlight that our
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proposal focuses on the high-level structure of the circuit arrangement, whereas
the underlying field operations and subroutines (e.g., multiplication, squaring)
may employ existing techniques such as Schoolbook or Karatsuba multiplication
as proposed in [1,15,7], with necessary adjustments made to accommodate the
number of qubits required on each construction. The state change corresponding
to these circuits is presented in Table 1. In detail, the complete steps (up to line
15) are for the third scenario (Fig. 3c), while the second scenario (Fig. 3b) and
the first scenario (Fig. 3a) terminate at lines 10 and 12, respectively.

|q⟩ • • • • • • • |q⟩

|x1⟩ /n • • • S × |x3⟩ or |x1⟩

|y1⟩ /n • M S +a • • × |y3⟩ or |y1⟩

|0⟩ /n D • • • +1 • • |λ+ 1⟩

|0⟩ /n M • M |0⟩

(a) Proposed point doubling circuit, with clearing one ancilla register

|q⟩ • • • • • • • |q⟩

|x1⟩ /n • • • S × |x3⟩ or |x1⟩

|y1⟩ /n • M S +a • × |y3⟩ or |y1⟩

|0⟩ /n D • • • +1 • |λ+ 1⟩

|0⟩ /n M • |(λ+ 1)x3⟩ or
|(λ+ 1)y1⟩

(b) Alternative 1: Without uncomputation

|q⟩ • • • • • • • |q⟩

|x1⟩ /n • • • S × • • |x3⟩ or |x1⟩

|y1⟩ /n • M S +a • • × • |y3⟩ or |y1⟩

|0⟩ /n D • • • +1 • • +1 D |λ⟩ or |0⟩

|0⟩ /n M • M |0⟩

(c) Alternative 2: Fully uncompute when q = 0, otherwise leaving one ancilla as λ

Fig. 3: Our proposed point doubling circuits for binary elliptic curves: (a) bal-
anced version that clears one ancilla registers, and two alternatives of (b) without
uncomputation for lower depth and lower gate count, and (c) full uncomputation
when control qubit q = 0, and with a garbage ancilla in state λ when q = 1.
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Table 1: Point Doubling State Change
Step q = 1 q = 0

1 anc1 = y1
x1

anc1 = y1
x1

2 y = 0 y = y1
3 anc1 = y1

x1
+ x1 = λ anc1 = y1

x1
+ x1 = λ

4 y = λ2 y = y1
5 y = λ2 + λ y = y1
6 y = λ2 + λ+ a = x3 y = y1
7 anc1 = λ+ 1 anc1 = λ+ 1
8 anc2 = (λ+ 1)x3 anc2 = (λ+ 1)y1
9 x = x1

2 x = x1

10 x = x1
2 + (λ+ 1)x3 = y3 x = x1

11 anc2 = 0 anc2 = 0
12 swap : x = x3, y = y3 none : x = x1, y = y1
13 anc1 = (λ+ 1)− 1 = λ anc1 = λ
14 anc1 = λ anc1 = λ− x1 = y1

x1

15 anc1 = λ anc1 = 0

In the first circuit (Fig. 3a), we propose a balanced approach that strikes
a tradeoff between the number of operations and the need to clear the ancilla
qubit. While this circuit involves a relatively smaller number of operations, it
requires an additional multiplication circuit for performing uncomputation upon
one of the ancilla registers. As a result, we obtain one cleared ancilla register that
can be used for subsequent computations, and one dirty (i.e., does not revert to
its initial state after use) ancilla register in the state (λ+1). This is our favored
version because we can secure one clean register with relatively minimal effort.

Alternatively, if circuit depth and gate count take precedence over qubit
count, the more suitable circuit would be as illustrated in Fig. 3b. Here, the
circuit only performs the expected point doubling operation without considering
any uncomputation for ancilla registers. This minimizes depth and the number
of subroutines, but we are left with two dirty ancilla registers.

Regarding the third case, our initial goal was to clear all ancilla registers.
However, we have not found a more efficient method to fully uncompute them
for all possible states of the control qubit (|0⟩ or |1⟩). A complete uncomputation
can be achieved when q = 0, but the state of λ remains a dirty ancilla when q = 1.
Note that λ from the previous state (i.e., x1+

y1

x1
) may not be in the same value

as λ in the subsequent operation (i.e., x3 +
y3

x3
); due to this potential differences

in value, we should not uncompute it by utilizing x3 and y3 when q = 1. Had it
been the same, it would allow us to obtain two perfectly-uncomputed, clean an-
cilla registers. This can be done by appending another controlled multiplication
circuit and Toffoli gate targeting that ancilla register.

Nevertheless, this third construction is still useful; Evidently, at the time
when q = 0 indicates that the point doubling does not occur —meaning that
most likely a point addition is taking place. This register can be repurposed
using a clever arrangement to substitute the ancilla register in the point ad-
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dition circuit (i.e., the one for performing division operation in Fig. 2). The
uncomputation itself can be performed by appending a series of Toffoli gates,
a multi-controlled and negative-controlled division operation, and an addition
by a constant. This circuit serves as a beneficial alternative construction when
circuit width or qubit utilization is the most prioritized quantum resource.

The high-level resource cost of the proposed circuits can be summarized as
follows. Compared to point addition, point doubling construction employs one
more ancilla register and significantly more controlled and multi-controlled op-
erations due to its non-fixed second point. In detail, for the first scenario (bal-
anced), a total of one division, three multiplications (including multi-controlled
version), and two squarings (one multi-controlled) are employed, one controlled
swap (i.e., Fredkin gate), as well as several (controlled and multi-controlled) ad-
ditions, with one clean ancilla registers and one dirty ancilla register. For the
second scenario, one less multiplication is employed, with the tradeoff of having
both ancilla registers dirty. Additionally, regarding the third alternative of having
two clean ancilla registers when the control qubit state is zero, it requires ad-
ditional subroutines of one negative-control Toffoli series (elevated control from
addition via CNOT gates), one negative multi-controlled division, and one addi-
tion by a constant. Note that we do not elaborate further on the exact resource
since the presence of multi-controlled operations requires a more complex cir-
cuit decomposition. Nevertheless, we plan to investigate it further on a quantum
simulator in our future work to obtain a more concrete resource estimation.

4 Discussions and Limitations

In this study, we delve into the topic of elliptic curve point doubling circuits,
which has yet to be further examined in the literature. After presenting the
design and description of our approach in the previous section, we now provide
discussions related to the broader implications of our proposal.

Transforming to prime curves. We begin our study from the binary
elliptic curves, which are relatively simpler than prime curves. In the case of
prime curves, the quantum circuit will be more complicated because it cannot
make use of the simplicity of field operation in binary curves. For instance,
an addition in the prime fields requires a full adder, whereas binary fields only
necessitate one Toffoli gate for each bit. Additionally, FLT-based inversion, which
is comparable in performance to GCD-based inversion in quantum binary elliptic
curves, has also not been considered to date for its use on prime curves due to
the high resource requirements. Similarly, squaring operations are favorable in
the binary case due to their relatively efficient construction (i.e., by leveraging
a simple LUP decomposition), which are not applicable to prime curves. Even
though there is an advantage in prime curves in terms of intuitive verification
due to their nature of resembling decimal calculation, it requires more space and
operations that are arguably more complicated and resource-intensive.

Relation to scalar multiplication. To realize a quantum elliptic curve
scalar multiplication, existing methods rely upon a series of point addition cir-
cuits as the sole components. Therefore, the computation is in the form of
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Q = kP = P+P+. . .+P for k times. Considering a more general implementation
without limiting its use to Shor’s algorithm, performing scalar multiplication by
incorporating point doubling alongside point addition can potentially reduce the
depth of the circuit and the number of operations. Moreover, the availability of
designs for both point addition and point doubling opens up the opportunity to
explore various classical elliptic curve point/scalar multiplication (ECPM) tech-
niques (e.g., signed digit method, M-ary method) to be explored in the quantum
realm in search of more efficient circuits.

For use in Shor’s ECDLP. In order to create a more theoretically accurate
and complete Shor’s ECDLP circuit, point doubling will need to be integrated
into the existing double scalar multiplication (that currently consists entirely of
point addition subroutines) to cover the cases when the doubling of points occur.
Note that for this algorithm, the input comes from the Walsh-Hadamard, so that
the circuit is expected to be able to compute all possible cases (i.e., any combina-
tion of zero and one within the circuit). More importantly, the constant value k
is unknown. For this reason, a more thorough conditional mechanism is required
to control whether point doubling or point addition is in effect during the cer-
tain computation phase, resulting in more complex multi-control operations on
the circuit. Additionally, in scenarios where both points of interest are quantum
values, a comparator circuit may need to be employed to determine whether
both values are identical. Note that for the specific use in Shor’s ECDLP, both
point addition and point doubling may need to be employed altogether to cover
all cases, and other implementation requirements (e.g., unique representation
for history independence [5], uncomputing garbage outputs to prevent unwanted
interference [12]) will need to be taken into account, which will be explored in
our future work.

Limitations. Even though our work has provided an initial step to explore
further into point doubling, there are still various aspects that require further
investigation. This includes how to correctly integrate it with the point addition
circuit and whether the previous assumptions taken for Shor’s ECDLP regarding
the double-scalar multiplication still stand in this case, which is an interesting
research problem. We leave these topics for our future work.

5 Conclusions and Future Work

In this study, we have examined the point-doubling operation for binary elliptic
curves, which are required in the stricter case of Shor’s algorithm. We began
by analyzing the point doubling formula, identifying the inherent challenges in
its construction, and presenting a possible solution. Subsequently, we designed
quantum circuits for elliptic curve point doubling to cater to different scenarios,
which shows the need for one more ancilla register compared to point addition,
and while they may be comparable in terms of the number of subroutines, more
complex multi-controlled operations are required than that of point addition. In
addition, we provide a more in-depth discussion of the implications and concerns
in incorporating the circuit into Shor’s algorithm. To obtain a more detailed
resource estimation for point doubling and complete double scalar multiplication
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for Shor’s algorithm, we plan to construct the circuit in the existing quantum
computing simulators and run the resource analysis as our future work.
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