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Abstract. The Hidden Number Problem (HNP) has been extensively
used in the side-channel attacks against (EC)DSA and Diffie-Hellman.
The lattice approach is a primary method of solving the HNP. In EURO-
CRYPT 2021, Albrecht and Heninger constructed a new lattice to solve
the HNP, which converts the HNP to the SVP. After that, their approach
became the state-of-the-art lattice method of solving the HNP. But Al-
brecht and Heninger’s approach has a high failure rate for solving the
HNP with one bit of nonce (1-bit HNP) because there are enormous vec-
tors related to the modulus q shorter than the target vector in Albrecht
and Heninger’s Lattice.
To decrease the number of vectors that are shorter than the target vector
and avoid the duplicated reduction, we introduce the modulo-q lattice, a
residue class ring of the general lattice modulo q, where q is the modulus
of the HNP. We present a new sieving algorithm to search for the shortest
vectors in the modulo-q lattice. Our algorithm uses built-in modulo q
arithmetic and many optimization techniques. As a result, we can solve
a general 1-bit HNP (q = 2120) within 5 days and solve a general 1-bit
HNP (q = 2128) within 17 days.

Keywords: Hidden Number Problem (HNP) · lattice · sieving algorithm
· modulo arithmetic

1 Introduction

The Hidden Number Problem The Hidden Number Problem (HNP) was ex-
tensively used in the side-channel attacks against (EC)DSA and Diffie-Hellman.
In [15], the adversaries are supposed to know some significant bits of random
multiples of a secret integer modulo some known integer. This secret integer can
be constrained by a set of integer-linear modulo equations.

Since the creative works of Bleichenbacher [13] and Howgrave-Graham and
Smart [27], side-channel information about (EC)DSA nonces have been exten-
sively used by solving the Hidden Number Problem, including [42, 34, 9, 46, 50,
47, 40, 51, 28]. The former approach deploys a combinatorial algorithm that can
be cast as a variant of the BKW algorithm, [14, 4, 30, 23]. The latest improvement



is [10], which recovers a key from less than one bit of the nonce by Bleichen-
bacher’s algorithm. Recently, the authors in [35] found the first practical attack
scenario that was able to use Boneh and Venkatesan’s [15] original application
of the HNP to prime-field Diffie-Hellman key exchange.

The other efficient way of solving for the secret integer is based on lattice
reduction. The Hidden Number Problem can be reformulated as a lattice and
resolved by solving the Closest Vector Problem, also known as Bounded Distance
Decoding [42]. This conversion takes advantage of the fact that the unknown
parts of the random multiples of a secret integer are relatively smaller than the
modulus number. Thus, it suffices to find a relatively small solution to a set of
integer-linear modulo equations. In CVP, one must find a uniquely closest vector
in the lattice to some given point.

The work in [7] provided a more effective way of solving the HNP by breaking
the “lattice barrier” using a predicate. Albrecht and Heninger considered the
expected squared norms of the target vectors instead of the upper bounds, and
they also converted the HNP to the SVP by constructing a new lattice. Thus,
with the help of efficient lattice reduction tools, e.g., [6, 19], they solve many
HNPs which were considered infeasible previously. We will show more details
about Albrecht and Heninger’s method in Sec. 2.3.

Lattice algorithms Lattice reduction algorithms [33, 48, 49, 21, 39], are still
the primary tools for solving the HNP practically. The efficiency of lattice re-
duction algorithms determines the magnitude of the HNP that can be solved.
Lattice reduction algorithms also have numerous other applications in cryptanal-
ysis, including factoring RSA keys with partial information about the secret key
via Coppersmith’s method [16, 41], the (side-channel) analysis of lattice-based
schemes [36, 8, 26, 5, 17].

Given a lattice, two kinds of lattice algorithms are used to resolve the SVP.

Enumeration Enumeration approaches, including [44, 29, 20, 49, 24, 22, 38, 3], search
for vectors whose lengths are bounded by some given value R via lattice-vector
enumeration. Specifically, enumeration algorithms are based on the fact that any
vector in the lattice can be rewritten with respect to the Gram-Schmidt basis.
Lattice-vector enumeration uses a depth-first tree search through a tree to find
out all available vectors whose lengths are not longer than R, so the “pruning”
strategy is the primary way to speed up enumeration algorithms.

Sieving Sieving approaches, including [31, 1, 43, 37, 12, 32, 11, 25, 18, 6, 19], take
a list of vectors in the lattice as input and search for integer combinations of
these vectors that are short. Sieves that consider k vectors at a time are called
k-sieves. Specifically, given two vectors u and v in a lattice L with u 6= ±v,
2-sieves consider the integer combinations of the form u± v. As the size of the
list in the sieving algorithm is often very large (e.g., > 220), it is too expensive
to consider all pairs of points in the list. Researchers tend to select some of the
vectors in the list and put them into buckets. Next, only pairs of vectors in the
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same bucket are considered in practical computations, which saves much more
time than checking all pairs in the list. Thus, the techniques of bucketing play
an important role in the sieving approaches.

1-bit HNP We call the HNP with only one bit of nonce the 1-bit HNP. Some
theoretical analyses on 1-bit HNP were done in [2]. In [10], Aranha et al. recov-
ered a key from less than one bit of the nonce by Bleichenbacher’s algorithm.
This method relies on a search for heavy Fourier coefficients. “However, those
heavy Fourier coefficients only reveal the secret key in an HNP instance where
the most significant bits of nonces are constant (say identically zero)” [50]. Be-
sides, compared with the lattice approach, Aranha et al.’s method requires a
large number of nonces, e.g., at least 220, while the lattice approach only needs
a few nonces.

At present, there are no effective lattice approaches that can solve the 1-
bit HNP. Albrecht and Heninger’s method is the state-of-the-art lattice method
of solving the HNP, but their method fails to solve the 1-bit HNP. We believe
the main reason is that there are a vast number of vectors shorter than the
target vector in the lattice they constructed. Here the target vector is a vector
constructed by Albrecht and Heninger’s method, and the HNP will be solved once
the target vector is found in the lattice. Given m nonces of the 1-bit HNP with
the modulus q = 2128, we can construct the lattice by Albrecht and Heninger’s
method and calculate the value obtained by the Gaussian heuristic and the
expected squared lengths of target vectors. The data are shown in Fig. 1. The
target vector is supposed to be the shortest if m is 170, where the value obtained
by the Gaussian heuristic becomes larger than the expected squared length of
the target vector. Unfortunately, the target vector will not be the shortest in
Albrecht and Heninger’s lattice, no matter how many nonces are used. This is
because there is a special kind of vectors, say qi = (0, . . . , q, . . . , 0), existing
in Albrecht and Heninger’s lattice, where q is the modulus of the HNP. For
convenience, we call the vectors qi’s and

∑
ti · qi as q-vectors, where ti’s are

integers. If m is 170, there should be
(
169
3

)
· 23 +

(
169
2

)
· 22 +

(
169
1

)
· 2 = 6379074

q-vectors shorter than the expected squared length of the target vector, which
makes the target vector very difficult to be found.

Main idea and contribution Our key observation is that if there are only a
few vectors, e.g., no more than 104, that are shorter than the target vector, the
target vector will be found by lattice algorithms with a high success rate. Thus, to
solve 1-bit HNP by lattice approach, we need to decrease the number of vectors
that are shorter than the target vector. Hence, the q-vectors should be removed
first of all.

The introduction of qi to the lattice is to simulate the “modulo q” operation
in the HNP, such that general lattice tools, e.g., [6, 19], developed for general
lattices can be used to search for shortest vectors over integers. We realized that
if we could develop a sieving algorithm with built-in modulo q operation, then
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Fig. 1. Albrecht and Heninger’s method of solving 1-bit HNP (q = 2128).

qi’s are no longer needed. Hence, the number of vectors that are shorter than
the target vector will decrease significantly.

Therefore, to use the built-in modulo q operation, we introduce the modulo-
q lattice, which is a residue class ring of the general lattice modulo the model
generated by qi’s. We designed a sieving algorithm to search for short vectors
in the modulo-q lattice, including an efficient bucketing method in the modulo-
q lattice. All appeared integers in this algorithm are treated by the modulo q
operation automatically. This algorithm has been implemented by C++/CUDA.
As a result, we can solve a general 1-bit HNP (q = 2120) within 5 days and solve
a general 1-bit HNP (q = 2128) within 17 days.

Relations to Albrecht and Heninger’s work [7] and Aranha et al.’s
work [10] Our work is improved based on Albrecht and Heninger’s work. We
first construct Albrecht and Heninger’s lattice in our approach and then convert
it from the general lattice to the modulo-q lattice. Albrecht and Heninger’s target
vector also lies in the corresponding modulo-q lattice. We develop a new sieving
algorithm to search for the target vector in the modulo-q lattice. Compared with
Albrecht and Heninger’s method, our approach has two advantages for solving
the 1-bit HNP.

– q-vectors become zero vectors in the modulo-q lattice, so the number of
vectors that are shorter than the target vector decreases, which enables us
to find the target vector easier.

– The vectors in the modulo-q lattice are all residue class of integer vectors,
such that many distinct vectors in the general lattice become the same in
the modulo-q lattice. That is, the sieving algorithm in modulo-q lattice only
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needs to perform reduction to a vector v and can avoid all reduction to the
vectors v +

∑
ti · qi, which saves much time to find the target vector.

Compared with Aranha et al.’s work, which is based on Bleichenbacher’s
algorithm, our lattice approach only needs a few nonces. Specifically, Aranha et
al.’s method requires more than 220 nonces to solve the 1-bit HNP with q > 2100,
while less than 210 nonces are enough for our approach.

Open Source Code The codes of the algorithms reported in this work will be
released at GitHub publicly once this paper is published somewhere.

Outline We introduce some preliminaries on the lattice, the HNP, and Albrecht
and Heninger’s work to solve the HNP in Sec. 2. We give the definition of the
module-q lattice and the sieving algorithm in Sec. 3. Experiments come in Sec.
4, and we conclude this paper in Sec. 5.

2 Preliminaries

2.1 Lattice

Let Z be the ring of integers, and q ∈ Z be a modulus. Then Zq = Z/(qZ) is
the residue class ring of Z modulo q. In this paper, we also regard elements in
Zq as integers if no confusions occur, so we have Zq ⊂ Z.

In this work, all vectors are denoted by bold lowercase letters, and matrices
are denoted by bold capital letters. A lattice L is a discrete subgroup of Rd,
where R is the rational number field, and d is the dimension of the vectors.
When the rows b0, . . . ,bd−1 of a matrix B are linearly independent over the
field R, we regard B as the basis of the lattice L(B) = {∑ vi ·bi | vi ∈ Z}. That
is, row representations for matrices are used in this paper.

The Gram-Schmidt orthogonalization of B is B∗ = (b∗0, . . . ,b
∗
d−1), where

the Gram-Schmidt vector b∗i is πi(bi) and πi : Rd → span(b0, . . . ,bi−1) for
i = 0, . . . , d−1. Then b∗0 = b0 and b∗i = bi−

∑i−1
j=0 µi,j ·b∗j for i = 1, . . . , d−1 and

µi,j =
〈bi,b

∗
j 〉

〈b∗
j ,b

∗
j 〉
. The length of a vector v is the Euclidean norm of v, denoted by

‖v‖. The volume of a lattice L(B) is Vol(L(B)) =
∏

i ‖b∗i ‖, that is an invariant
of the lattice. The first minimum of a lattice L is the length of the shortest non-
zero vector, denoted by λ1(L). For simplification, we use Vol(B) = Vol(L(B))
and λ1(B) = λ1(L(B)) in this work.

The Gaussian heuristic predicts that the number |L ∩ B| of lattice points
inside a measurable body B ⊂ Rn is approximately equal to Vol(B)/Vol(L).
Applied to Euclidean d-balls, it leads to the following prediction of the length of
the shortest non-zero vector in a lattice.

Definition 1. We denote by gh(L) the expected first minimum of a lattice L
according to the Gaussian heuristic. For a full rank lattice L ⊂ Rd, it is given
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by:

gh(L) ≈
√

d

2πe
·Vol(L)1/d.

One of the most critical problems on lattices is to find the shortest vector in
a lattice.

Definition 2 (Shortest Vector Problem (SVP)). Given a lattice basis B,
find the shortest non-zero vector in L(B).

In this work, we frequently meet a special kind of vectors in Zd. Let q ∈ Z
be a modulus, and we denote qi = (0, . . . , q, . . . , 0) ∈ Zd which is a one-hot
vector with the ith coefficient being q. We call the vectors qi’s and

∑d−1
i=0 ti · qi

as q-vectors if no confusions occur, where ti ∈ Z for 0 ≤ i < d.

2.2 The Hidden Number Problem

To show our approach, we first give a mathematical definition of the Hidden
Number Problem (HNP), which was proposed in [15]. The Hidden Number Prob-
lem can be regarded as 1-dimensional LWE [45]. The notations in the following
definition will be used throughout this paper.

Definition 3 (the Hidden Number Problem (HNP)). Let q be a modulus
with 2n−1 < q ≤ 2n, and x be a secret integer in Zq = Z/(qZ) = {0, . . . , q − 1}.
Assume there are m pairs of (αi, βi) ∈ Z2

q , such that

βi + ki = αi · x mod q, (1)

where 0 ≤ ki < 2l for 0 ≤ i < m, and l is an integer smaller than n. In case that
(αi, βi)’s are known and ki’s, x are unknown, find an integer x′ ∈ Zq to make
Eq. (1) hold for all 0 ≤ i < m.

Generally, to ensure the found x′ is just the secret integer x, the constraint
m > n is required in the HNP. For convenience, we call the pair (αi, βi) ∈ Z2

q in
the above definition as nonce data in the rest of this paper.

By saying 1-bit HNP in this work, we mean the Hidden Number Problem
with l = n − 1 in Def. 3. That is, in 1-bit HNP, only one (most significant) bit
of nonce is known.

2.3 Solving the HNP by Lattice Approach

One important improvement on solving the Hidden Number Problem by lattice
is given in [7]. In that work, Albrecht and Heninger constructed a lattice in
the following way to convert the HNP in Def. 3 to the SVP in the lattice. Let
β̃i = βi + 2l−1 and k′i = ki − 2l−1, then Eq. (1) becomes

βi + ki = β̃i + k′i = αi · x mod q. (2)
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Note that 0 ≤ ki < 2l, thus −2l−1 ≤ k′i < 2l−1 holds.
Assume α0 and q are coprime1, then there exists a number α−10 , such that

α−10 · α0 = 1 mod q. Thus, we can get α−10 · (β̃0 + k′0) = x mod q, which can be
used to eliminate x in the other equations. Finally, the following equations are
obtained:

β′i + k′i = α′i · k′0 mod q, (3)

where β′i = β̃i − αi · α−10 · β̃0 and α′i = αi · α−10 for 0 < i < m.
Denote w = 2l−1, Albrecht and Heninger constructed an (m+1)-dimensional

lattice L(B), which is generated by

B =



q 0 0 · · · 0 0 0
0 q 0 · · · 0 0 0

...
. . .

0 0 0 · · · q 0 0
α′1 α

′
2 α
′
3 · · · α′m−1 1 0

β′1 β
′
2 β
′
3 · · · β′m−1 0 w


. (4)

The target vector is s = (−k′1,−k′2, . . . ,−k′m−1,−k′0, w), where −w ≤ k′i < w for
0 ≤ i < m. So the length of s is bounded by (m+ 1) · w2.

Clearly, the target vector s is in L(B), because of Eq. (3). Conversely, if
a vector v = (v0, . . . , vm−1, w) ∈ L(B) is found such that −w < vi ≤ w for
0 ≤ i < m, then let k′0 = −vm−1, we can recover an integer x′ by the equation
α−10 · (β̃0 + k′0) = x′ mod q, where α0 and β̃0 are already known. It is not hard
to verify that x′ could make Eq. (1) hold for 0 ≤ i < m, since −w < vi ≤ w. If
m > log2(q), we should have s = v.

If the length of the target vector s is not large, it can be found by lattice
algorithms with a high success rate [7]. The vector s is supposed to be the
shortest in L(B) when the dimension of L(B) is large enough. According to the
Gaussian heuristic, the shortest vector in the lattice should have the length of

gh(L(B)) ≈
√
m+ 1

2πe
·Vol(L(B))1/(m+1) =

√
m+ 1

2πe
· (nm−1 · w)1/(m+1). (5)

Instead of using the upper bound (m + 1) · w2 of s, Albrecht and Heninger
considered the expected squared length of s, i.e.

E
[
‖s‖2

]
= E

[
(

m−1∑
i=0

k′2i ) + w2

]
= m · w2/3 +m/6 + w2. (6)

Albrecht and Heninger observed that the squared lengths of target vectors are
close to the expected squared length, and if ‖s‖ < gh(L(B)), the vector s is the
shortest vector in L(B) with high probability. Besides, their method in [7] also
works for ‖s‖ ≥ gh(L(B)), but we found in our experiments that the success rate

1 This condition is not hard to meet, since there are m αi’s.
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of Albrecht and Heninger’s method drops quickly when ‖s‖ becomes far away
from gh(L(B)).

Assumption 1([7, 18])When a 2-sieve algorithm terminates, it outputs a database
L containing all vectors with norm ≤

√
4/3 · gh(L).

Theorem 1 ([7]). Let L ⊂ Rd be a lattice containing a vector v such that
‖v‖ ≤ R =

√
4/3 · gh(L). Under Assumption 1, Algorithm 1 is expected to find

the minimal v satisfying f(v) = 1 in 20.292d+o(d) steps and (4/3)d/2+o(d) calls to
f(·), where f(·) is a function to check whether v is the target vector.

Since the target vector is s = (−k′1,−k′2, . . . ,−k′m−1,−k′0, w), where −w ≤
k′i < w for 0 ≤ i < m. Thus, in the following algorithm, f(v) = 1 only if
v = (v0, . . . , vm, w) and −w < vi ≤ w for 0 ≤ i < m.

Algorithm 1: Sieving with Predicate [7]
Input: Lattice basis B = {b0, . . . ,bd−1}; Predicate f(·).
Output: v such that ‖v‖ ≤

√
4/3 · gh(L(B)) and f(v) = 1 or ⊥.

1 begin
2 r←− ⊥
3 Run sieving algorithm on b0, . . . ,bd−1 and denote output list as L
4 for v in L do
5 if f(v) = 1 and (r =⊥ or ‖v‖ < ‖r‖) then
6 r←−v

7 return r

3 Modulo-q Lattice

Given the numberm which is the number of pairs (αi, βi)’s, the expected squared
length of the target vector s in Albrecht and Heninger’s lattice is E[‖s‖2] =
m · w2/3 + m/6 + w2, where w = 2l−1. Particularly, for 1-bit HNP, we have
w = q/4. Note that

– the squared length of ±qi is q2 = 16 · w2;
– the squared length of ±qi ± qj where i 6= j is 2 · q2 = 32 · w2;
– the squared length of ±qi ± qj ± qk where i 6= j 6= k is 3 · q2 = 48 · w2;
– . . ..

That is, if 144 ≤ m < 192, then there are
(
m−1
1

)
· 2 +

(
m−1
2

)
· 22 +

(
m−1
3

)
· 23

q-vectors shorter than the target vector s whose squared length is E[‖s‖2], which
will make the target vector very difficult to be found successfully.

To remove the q-vectors from the lattice, we introduce the modulo-q lattice
in Sec. 3.1. We show how to solve the HNP by the modulo-q lattice in 3.2. We
present a sieving algorithm to search for the target vectors in Sec. 3.3. We discuss
Albrecht and Heninger’s “breaking the ‘lattice barrier’ ” technique in Sec. 3.4.
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3.1 The Definition of the Modulo-q Lattice

In fact, the modulo-q lattice is a residue class ring of the general lattice modulo
q, where q ∈ Z is a modulus. For simplification, we use the operator [·]q to
denote the modulo q operator in this paper.

Definition 4. Let q ∈ Z be a modulus and a be an integer in Z. We denote

[a]q = a mod q.

Thus, we have [a]q ∈ Zq = Z/(qZ). Similarly, let v = (v0, v1, . . . , vd−1) ∈ Zd.
Then [v]q is defined as

[v]q = ([v0]q, [v1]q, . . . , [vd−1]q) ∈ Zd
q .

If no confusions occur, we always regard [a]q as an integer in {0, . . . , q − 1} in
this paper, i.e. Zq ⊂ Z.

Let q ∈ Z be a modulus and a, b, t ∈ Z. It is easy to verify that

[a]q + [b]q = [a+ b]q, [a]q − [b]q = [a− b]q, t · [a]q = [t · a]q.

Similarly, let a,b ∈ Zd and t ∈ Z, we have

[a]q + t · [b]q = [a + t · b]q.

The major difference between the general lattice and the modulo-q lattice is
the definition of the lengths of vectors. The motivation of the following definition
is to ensure the target vector has the same length in both the general lattice and
the modulo-q lattice.

Definition 5. Let q ∈ Z be a modulus, and v = (v0, v1, . . . , vd−1) ∈ Zd. The
length of the vector [v]q is defined as

‖[v]q‖ =

√ ∑
[vi]q≤q/2

([vi]q)2 +
∑

[vi]q>q/2

(q − [vi]q)2. (7)

Here [vi]q is an integer in {0, . . . , q − 1}, and the operators “·” and “+” in Eq.
(7) are conducted over Z without modulo q.

For example, let q = 16 and v = (−3, 25, 8, 11, 16). Then we have

‖[v]q‖2 = (16− [−3]16)2 + (16− [25]16)2 + ([8]16)2 + (16− [11]16)2 + ([16]16)2

= 9 + 49 + 64 + 25 + 0
= 147.

Since q − [vi]q < [vi]q if [vi]q > q/2, we have ‖[v]q‖ ≤ ‖v‖. Besides, we also
have ‖[v]q‖2 ≤ d · (q/2)2 for all v ∈ Zd.

Definition 6 (Modulo-q lattice). Let q ∈ Z be a modulus and B = {b0, . . .,
bd−1} ⊂ Zd. The modulo-q lattice generated by B is

Lq(B) = {
d−1∑
i=0

(vi · [bi]q) | vi ∈ Z} ⊂ Zd
q . (8)

The dimension of the modulo-q lattice Lq(B) is d.
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Lattice vs. modulo-q lattice The modulo-q lattice Lq(B) is a residue class
ring of L(B) modulo the model generated by {(q, 0, . . . , 0), (0, q, . . . , 0), . . .,
(0, 0, . . . , q)} over Z. If we abuse the notation that Zq ⊂ Z, we have Lq(B) ⊂
L(B).

As a result, let v ∈ L(B) and qi = (0, . . . , q, . . . , 0), then v and v + qi are
distinct vectors in L(B), but [v]q = [v + qi]q in Lq(B). Besides,

∑
ti · [qi]q =

(0, . . . , 0) ∈ Lq(B) for all ti ∈ Z.
Note that the number of distinct vectors in the modulo-q lattice is limited,

because Lq(B) ⊂ Zd
q and |Zd

q | = qd, while there are infinite vectors in L(B).
Since all vectors in the modulo-q lattice are in Zd

q instead of Rd, float op-
erations are not needed in the computations in the modulo-q lattice. Moreover,
the orthogonal projection πi used in [18, 6, 19] as well as SubSieve algorithms
cannot be applied to the modulo-q lattice. We need to develop a new algorithm
for computing shortest vectors in the modulo-q lattice, which will be shown in
Sec. 3.3. Before presenting the sieving algorithm, we show how to solve the HNP,
including 1-bit HNP, by the modulo-q lattice.

3.2 Resolving the HNP by the Modulo-q Lattice

To solve the HNP, we first use Albrecht and Heninger’s method to construct
the lattice. And next, instead of finding short vectors in a general lattice, our
approach searches for short vectors in the modulo-q lattice.

Specifically, the basis B in Eq. (4) becomes:

B =



q 0 0 · · · 0 0 0
0 q 0 · · · 0 0 0

...
. . .

0 0 0 · · · q 0 0
α′1 α

′
2 α
′
3 · · · α′m−1 1 0

β′1 β
′
2 β
′
3 · · · β′m−1 0 w


[·]q
=⇒



0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0

...
. . .

0 0 0 · · · 0 0 0
[α′1]q [α′2]q [α′3]q · · · [α′m−1]q [1]q 0
[β′1]q [β′2]q [β′3]q · · · [β′m−1]q 0 [w]q


,

where w = 2l−1. The lattice L(B) generated by B becomes the modulo-q lattice
Lq(B) generated by

a = ([α′1]q, . . . , [α
′
m−1]q, [1]q, 0) and b = ([β′1]q, . . . , [β

′
m−1]q, 0, [w]q).

Let s = (−k′1,−k′2, . . . ,−k′m−1,−k′0, w) be the target vector in L(B) as dis-
cussed in Sec. 2.3, where −w ≤ k′i < w for 0 ≤ i < m. It is easy to verify that
the vector

[s]q = ([−k′1]q, . . . , [−k′m−1]q, [−k′0]q, [w]q)
= −k′0 · ([α′1]q, . . . , [α

′
m−1]q, [1]q, 0) + ([β′1]q, . . . , [β

′
m−1]q, 0, [w]q)

is in the modulo-q lattice Lq(B). So [s]q is the target vector we need to find in
the modulo-q lattice Lq(B). Moreover, we also have

‖[s]q‖ = ‖s‖.
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Please note that the length of [s]q is computed by Def. 5 because of [s]q ∈ Lq(B),
while the length of s is the Euclidean norm.

Conversely, if we find a vector v = (v0, . . . , vm−1, w) ∈ Zm+1
q in Lq(B) such

that either vi ≤ w or q− vi < w holds for 0 ≤ i < m. Then let v′i = vi if vi ≤ w,
and v′i = vi − q if q − vi < w, then the vector

v′ = (v′0, . . . , v
′
m−1, w) ∈ Zm+1,

is a vector in L(B) such that −w < v′i ≤ w for 0 ≤ i < m. As discussed in
Sec. 2.3, the vector v′ should just be the target vector s and hence, v = [s]q if
m > log2(q). Thus, the target vector s in L(B) can be obtained by searching for
the above vector v in Lq(B).

When the target vector [s]q is shortest in the modulo-q lattice Lq(B)?
We studied this question through experiments. In Sec. 4.1, we will see that the
Gaussian heuristic does not work in the lattices constructed by Albrecht and
Heninger’s method when solving the 1-bit HNP. We think the reason is the
lattices are very special in the 1-bit HNP because the q-vectors are very short.

According to our experiments, we have the conjecture that If the dimension
of Lq(B) is large enough, the target vector [s]q is the shortest vector in Lq(B).
The difficulty in proving the above conjecture lies in that there are no theoretical
methods to estimate the length of the shortest vector in the modulo-q lattice.
But this conjecture is verified by experiments, and more details can be found in
4.1.

To reduce the time and space complexities in practical search for the target
vector [s]q, similarly to what is done in [7], we also decrease the dimension of
Lq(B), such that the target vector [s]q may not be the shortest. And the tradeoff
is that we need to check more vectors in the sieving list. The influences of the
dimensions will be studied in Sec. 4.2.

3.3 A Sieving Algorithm to Search for the Target Vector

We present a sieving algorithm to search for the target vector in the modulo-q
lattice. Consider the modulo-q lattice generated by

a = ([α′1]q, . . . , [α
′
m−1]q, [1]q, 0) and b = ([β′1]q, . . . , [β

′
m−1]q, 0, [w]q).

The goal of the algorithm is to search for a vector v = (v0, . . . , vm−1, w) ∈ Zm+1
q

in this modulo-q lattice such that either vi ≤ w or q−vi < w holds for 0 ≤ i < m.
In [7], the introduction of w in the last column of the vector (β′1, . . . , β

′
m−1, 0, w)

of Eq. (4) is to ensure the multiples of this vector are longer than itself, and hence,
to guarantee the target vector to be the shortest in the lattice. This technique is
necessary if general lattice algorithm tools, e.g., G6K [6, 19], are used to search
for short vectors because the vector (β′1, . . . , β

′
m−1, 0, w) may be multiplied by

integers during the computation. But in our sieving algorithm, we can control all
fundamental operations of vectors, and we do not need the last column anymore.

11



In our sieving algorithm, we consider the following two vectors

ā = ([α′1]q, . . . , [α
′
m−1]q, [1]q), b̄ = ([β′1]q, . . . , [β

′
m−1]q, 0) ∈ Zm

q ,

which are obtained from a and b by removing the last column. Correspondingly,
the target vector [s]q becomes

s̄ = ([−k′1]q, . . . , [−k′m−1]q, [−k′0]q) ∈ Zm
q .

In the algorithm, we need to search for a vector v = (v0, . . . , vm−1) ∈ Zm+1
q

such that v = t · ā + b̄, where t ∈ Z and either vi ≤ w or q − vi < w holds
for 0 ≤ i < m. Please note that the expected squared length of s is E

[
‖s‖2

]
=

m · w2/3 +m/6 + w2, but after removing the last column, we have

E
[
‖s̄‖2

]
= m · w2/3 +m/6.

In our sieving algorithm, to not consider the multiples of the vector b̄, we
require all appeared vectors to have the form

v = g · ā + h · b̄, (9)

where g ∈ Zq and h ∈ {0, 1}. We denote type(v) = h and multi(v) = g. Clearly,
we have type(ā) = 0, multi(ā) = 1, type(b̄) = 1, and multi(b̄) = 0.

The algorithm is given in Alg. 2.

Algorithm 2: Sieving with built-in modulo arithmetic
Input: Two vectors ā, b̄ ∈ Zm

q .
Output: A target vector v = t · ā + b̄ = (v0, . . . , vm−1) ∈ Zm

q such that either
vi ≤ w or q − vi < w holds for 0 ≤ i < m, where w = 2l−1.

1 begin
2 L←−{g · ā + h · b̄ | g ∈ Zq, h ∈ {0, 1}}
3 len←− the size of L
4 bound←− the length of the longest vector in L
5 while there is no v = (v0, . . . , vm−1) ∈ L s.t. either vi ≤ w or q − vi < w

holds for 0 ≤ i < m do
6 bucket0, . . . , bucketr←−Bucket(L)
7 for each bucketi do
8 L←−L ∪ Sieve(bucketi, bound)

9 L←− the first len short vectors in L
10 bound←− the length of the longest vector in L

11 return v

Please note that all operations of vectors in Alg. 2 should apply the modulo
operator [·]q automatically. That is, the implementation of this algorithm needs
built-in modulo q operations. For convenience, we call the steps 6 ∼ 10 as a

12



round of sieving. So the sieving list L is updated every round. We usually decide
whether to terminate the algorithm depending on the number of new vectors
generated in each round. For example, we can stop the program if less than 100
new vectors are generated in some round.

To ensure the target v can be found within finite rounds, we require the size
of the list L to be at least 20.2075m.

There are two functions in Alg. 2, Bucket(·) and Sieve(·).

Bucketing Like other sophisticated sieving algorithms, we do not check all pairs
of vectors in L and only deal with the pairs selected from a small subset of L.
Thus, the function Bucket(·) takes a list of vectors as input and outputs r sets
of vectors. We only need to consider the pairs in the output sets.

However, since the operations in the modulo-q lattice are not general vector
addition and multiplication by integers, the angles between vectors cannot be
used for bucketing. Thus, existing bucketing techniques, including [12, 11], do not
work in the modulo-q lattice. We need new bucketing methods in the modulo-q
lattice.

We think the key insight of bucketing techniques in [12], is that if c is a center
vector, then the vectors that are “close” to c are also “close” to each other. In
the general lattice, “close” implies the angle of two vectors is small. To develop
a new bucketing method in the modulo-q lattice, we only need to define “close”.
After many failed experiments, we find the naive definition of “close” is good
enough.

Let v and c be two vectors in the modulo-q lattice having the form of Eq.
(9), we define the difference vector of v and c as

Diff(v, c) =

{
v − c, type(v) ≥ type(c),
c− v, type(v) < type(c).

(10)

And the distance between v and c is

Dist(v, c) = ‖Diff(v, c)‖.

The above definition guarantees the coefficient of b̄ in the difference vector
Diff(v, c) is still in {0, 1}, which is important to our implementation. Please
remember that ‖ · ‖ is the length in the modulo-q lattice, defined in Def. 5. The
computation of ‖ · ‖ can be done efficiently using GPU devices. Therefore, given
two vectors v1 and v2, we say v1 is closer to c than v2 if Dist(v1, c) is smaller
than Dist(v2, c).

The idea of bucketing is that given a center vector c and the size of a bucket,
say bucket_size, we compute the distances between c and the vectors in the list
L and then choose the first bucket_size vectors that are closer to c than others.
The procedure is shown in Alg. 3.

Clearly, we have ci ∈ L and Dist(ci, ci) = 0, so ci ∈ bucketi holds.
Note that, in Alg. 3, to find the first bucket_size vectors in L that are close

to ci, it is not necessary to sort the set D, whose time complexity is log(|L|) · |L|.
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Algorithm 3: Bucketing in the modulo-q lattice
Input: a list L of vectors in the modulo-q lattice.
Output: r sets of vectors.

1 begin
2 c0, . . . , cr−1←− r center vectors from L
3 for each ci do
4 compute the set Di = {(Dist(v, ci),v) | v ∈ L}
5 bucketi←− find the first bucket_size vectors in L that are closer to ci

using Di

6 return bucket0, . . . , becketr−1

We use a sampling method whose time complexity is only log(bucket_size) ·
bucket_size.

For the value of bucket_size, we follow the strategy in G6K [19] and set
bucket_size as a power of 2 that approximates (2 · |L|)1/2. The value of r is
determined by the global memory size on GPU devices but is not bigger than
|L|/bucket_size.

Sieving We designed the sieving function following G6K [6], which will benefit
the GPU implementation. The pseudo codes are given in Alg. 4.

Algorithm 4: Sieving in the modulo-q lattice
Input: A set of vectors, bucketi; an integer bound.
Output: A set of new vectors.

1 begin
2 new←−∅
3 for vi,vj ∈ bucketi do
4 v = Diff(vi,vj)
5 if ‖v‖ < bound then
6 new←−new ∪ {v}

7 return new

In Alg. 4., the coefficient of b̄ in v is still in {0, 1} by the definition of
Diff(vi,vj) in Eq. (10). Unlike G6K [6], we do not check the vector vi +vj when
type(vi)+type(vj) ≤ 1, because the addition test costs equivalent computations
compared to the subtraction test but generates much fewer new vectors in our
experiments.
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3.4 Decrease the Dimension of the Modulo-q Lattice

The technique of breaking the “lattice barrier”, proposed in [7], shares the idea
of the technique of “dimensions for free”, proposed in [18]. Both techniques aim
to reduce the dimension of the lattice by using more short vectors in the sieving
list. Our method of solving 1-bit HNP by modulo-q lattice can also use this idea.
Specifically, instead of searching for the shortest vector in the m-dimensional
modulo-q lattice, we can reduce the dimension of this modulo-q lattice to m′ <
m. In this case, the target vector may not be the shortest anymore, but we could
expect the target vector is still relatively short if m′ is not far away from m. If
so, we could have a high probability of finding the target vector in the sieving
list.

4 Experiments on Solving the 1-bit HNP

As there are no existing sieving methods for solving the 1-bit HNP, we conduct
several experiments to study the characteristics of the 1-bit HNP and the perfor-
mance of the sieving algorithm. Through these experiments, we want to verify
the following two observations.

1. If the dimension of the modulo-q lattice is large enough, the target vector is
the shortest.

2. Increasing the dimension of the modulo-q lattice could lower the number of
vectors that are shorter than the target vector.

3. If the number of vectors that are shorter than the target vector is small,
then the target vector will be found with a high probability.

The first observation will be verified in Sec. 4.1. The second and third observa-
tions will be studied in Sec. 4.2 and 4.3. The performances of our implementation
on solving large 1-bit HNP are shown in Sec. 4.4.

The experiments in this section were conducted on two platforms.

– One computer with 1 AMD EPYC 7763 CPU (64 cores, 128 threads), 1 TB
RAM, and 2 NVIDIA RTX 3080Ti cards, running Ubuntu 20.04.

– Two computers, each has 1 AMD Threadripper 3990x (64 cores, 128 threads),
256 GB RAM, and 2 NVIDIA RTX 4090 cards, running Ubuntu 20.04. The
two computers communicate data with each other through the intranet.

The experiments in Sec. 4.1 and 4.2 were performed on the first platform.
The times in Sec. 4.4 were obtained from the second platform.

4.1 Minimum Dimension such that the Target Vector Is the
Shortest

In this section, we study by experiments how many dimensions are necessary to
ensure the target vector is the shortest in the modulo-q lattice. For this goal,
our experiments were conducted in the following way, assuming the value of q is
given first.
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1. Choose a dimension m ≥ log2(q).
2. Generate a solution x and the data (αi, βi) for 0 ≤ i < m by choosing a seed

such that the squared length of the target vector s̄ equals approximately the
expected squared length of the target vectors.

3. Generate at least 20.2075m data randomly, and start sieving by Alg. 2.
4. If a vector v is found such that ‖v‖ < ‖s̄‖, then increase m to m+ 1 and go

to step 2.
5. If the number of new vectors generated in some round of Alg. 2 is smaller

than 100, then stop the program2, and m should be the minimum dimension
such that the target vector is the shortest.

In Tab. 1,m is the minimum dimension obtained from experiments. Although
s̄ is used in our sieving algorithm, to compare with the values obtained by the
Gaussian heuristic of L(B), we consider in this table the target vector s =
(−k′1,−k′2, . . . ,−k′m−1,−k′0, w) which is in the lattice generated by B in Eq. (4).
The values of E[‖s‖2] and gh(L(B))) are calculated by Eq. (6) and (5). “ #q
vectors” shows the number of q-vectors that are shorter than ‖s‖. Fig. 2 shows
the variations of m with respect to different q’s.

log2(q) m log2(E[‖s‖2]) log2(‖s‖2) log2
2(gh(L(B))) #q vectors

64 82 128.772590 128.772572 128.690487 162
68 86 136.841302 136.841309 136.739557 170
72 92 144.938599 144.938597 144.853570 182
76 99 153.044394 153.044391 152.989665 19208
80 102 161.087463 161.087440 161.000076 20402
84 107 169.156504 169.156505 169.068104 22472
88 115 177.260528 177.260524 176.538868 25992
92 120 185.321928 185.321926 184.382241 28322
96 126 193.392317 193.392316 192.223167 31250

Table 1. The minimum dimensions such that the target vectors are the shortest.

From Tab. 1, we can see that for any q, we can always find a dimension m
in our experiment. Although we cannot prove this dimension is the minimum
dimension in theory, we believe such a minimum dimension does exist, which
verifies the first observation in Sec. 4. Fig. 2 shows that the values of m vary
almost linearly with respect to log2(q), which is a bit surprising to us. From Tab.
1, we also note that the values obtained by the Gaussian heuristic are always
smaller than the squared lengths of the shortest vectors in the modulo-q lattice.
So we think the Gaussian heuristic probably fails to estimate the shortest vector
in L(B) because there are many short q-vectors in L(B), which makes the lattice
L(B) special.

2 We do not stop the program immediately after finding the target vector.
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Fig. 2. The variations of minimum dimensions with respect to different q’s.

4.2 Influences of the Dimensions of the Modulo-q Lattice

As discussed in Sec. 3.4, we can use Albrecht and Heninger’s idea in [7] to
decrease the dimensions of the lattices for speed-up. But the tradeoff is that
there may appear some vectors that are shorter than the target vector, which
makes the target vector hard to find. In this section, we study by experiments
the influences of dimensions on finding the target vectors. For this goal, we set
q = 2100 and solve the 1-bit HNP in the modulo-q lattices of different dimensions.

The experiments were conducted as follows.

1. Choose a dimension m in {100, 104, 108, 112, 116, 120}.
2. Generate a solution x and the data (αi, βi) for 0 ≤ i < m by choosing a seed

such that the squared length of the target vector s̄ equals approximately the
expected squared length of the target vectors.

3. Generate at least 20.2075m data randomly, and start sieving by Alg. 2.
4. Stop the program immediately after finding the target vector.
5. Repeat step 2 ∼ 4 for 5 times with respect to the same dimension to obtain

an average time.

In Tab. 2, m is the dimension of the modulo-q lattice, and log2(|L|) shows
the size of the sieving list L. Here the target vector is s̄ = ([−k′1]q, . . . , [−k′m−1]q,
[−k′0]q) in the modulo-q lattice, but is not s in L(B). We also show the number
of vectors that are shorter than s̄ in the column #(< ‖s̄‖). The vector vmin is
the shortest vector in the list when the target vector is found.

From Tab. 2, we can see that if the dimension increases, the number of vectors
that are shorter than the target vector drops quickly. But the cost is that the
size of the sieving list becomes larger, so the time for solving the HNP rises. In
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m log2(|L|) log2(E[‖s̄‖2]) log2(‖s̄‖2) log2(‖vmin‖2) #(< ‖s̄‖) time
100 23 201.058894 201.058894 200.635365 4771494 fail
104 23 201.115477 201.115477 200.664383 603260 2977s
108 24 201.169925 201.169925 200.855302 75458 4218s
112 24 201.222392 201.222392 200.971528 9414 7280s
116 25 201.273018 201.273018 201.054592 1156 9118s
120 25 201.321928 201.321929 201.219587 143 27817s

Table 2. Influences of dimensions. The times are given in seconds.

the above experiment, we cannot find the target vector when the dimension is
100. We think this is because many vectors are shorter than the target vector.
Tab. 2 also verifies the second observation in Sec. 4.

4.3 Influences of the Lengths of the Target Vectors

For a random 1-bit HNP, the squared length of the target vector s̄ approximates
E(‖s̄‖2). But we observed that the lengths of different target vectors do affect the
solving procedure of the HNP, particularly for large problems. In this section, we
study the influences of the lengths of the target vectors. In these experiments,
we set q = 2100 and m = 108.

Firstly, we study the distribution of the lengths of the target vectors, by the
following steps.

1. Generate a solution x and the data (αi, βi) for 0 ≤ i < m randomly.
2. Calculate the length of the target vector s̄ = ([−k′1]q, . . ., [−k′m−1]q, [−k′0]q).
3. Repeat step 1 ∼ 2 for 106 times.

The distribution of the squared lengths of the target vectors is shown in Fig. 3.
From Fig. 3, we can see that the distribution of the lengths is approximately

a Gaussian distribution. Interestingly, the expected squared length of the target
vector does not lie at the strict center. We think this is because the value E[‖s‖]2
is slightly smaller than E[‖s‖2]. Note that E[‖s‖] is a bit hard to estimate, which
is why the value E[‖s‖2] is used in [7].

Secondly, we study the differences when the target vectors have different
lengths, and the experiments were performed in the following way.

1. Let the 106 target vectors generated above be sorted with respect to their
lengths, and let the shortest one lie in the first position. Choose a target vec-
tor at the position p·106 where 1−(1−p)t = 0.5 and t ∈ {5, 4, 3, 2, 1, 1/2, 1/3}.

2. Generate at least 20.2075m data randomly, and start sieving by Alg. 2.
3. Stop the program only when the number of new vectors generated in some

round of Alg. 2 is smaller than 100, and store the final sieving list.
4. Repeat step 2 ∼ 4 for 5 times for each t to obtain an average time of finding

the target vector.
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Fig. 3. The distribution of the lengths of the target vectors.

Note that if a target vector s̄ is at the position p · 106 of the sorted list of target
vectors, it means that the target vector of a random HNP has the probability
p to be no longer than s̄. For simplification, we say the target vector s̄ is at the
position p or at p for short. The selection of p will be explained in the last part
of this subsection.

In Tab. 3, the values log2(E[‖s̄‖2]), log2(‖s̄‖2), and log2(‖vmin‖2) are the
expected squared lengths of the target vectors, and the squared lengths of true
target vectors, and the squared lengths of the shortest vectors in the list. Here,
#(< E[‖s̄‖2]) and #(< ‖s̄‖2) show the numbers of vectors in the final list whose
squared lengths are shorter than E[‖s̄‖2] and ‖s̄‖2, respectively. Please note that
the times in Tab. 3 are the running times for obtaining the target vectors but
not the time the programs stop.

t p log2(E[‖s̄‖2]) #(< E[‖s̄‖2]) log2(‖s̄‖2) #(< ‖s̄‖2) log2(‖vmin‖2) time
5 0.129449 201.169925 77406 201.022898 305 200.872789 3020s
4 0.159103 201.169925 77401 201.040397 623 200.838928 3257s
3 0.206299 201.169925 77135 201.063997 1471 200.873948 3682s
2 0.292893 201.169925 76798 201.099610 5497 200.742548 3674s
1 0.500000 201.169925 77294 201.168665 72933 200.878865 3988s
1/2 0.750000 201.169925 76729 201.251008 1381122 200.858196 4986s
1/3 0.875000 201.169925 77517 201.306621 8694745 200.888406 fail

Table 3. Influences of the lengths of target vectors. The times are given in seconds.
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Firstly, from Tab. 3, we can see that, the shorter the target vector, the faster
it can be found. In other words, if we could find a target vector at the position
p in time T , then we can find a target vector at the position p′ < p using no
more than the time T . We think there are two reasons for this phenomenon. The
first one is that the shorter the target vector, the fewer vectors are shorter than
the target vector, which is also shown in Tab. 3. The second reason is that our
sieving algorithm tends to generate shorter vectors in each round, as shown in
Fig. 4. The vectors generared in each round are obatined using 32 threads in
our implementation. We classify the new vectors generated in each round into
32 groups according to the lower and upper bounds. Some numbers of vectors in
the groups are shown in Fig. 4. We can see that the numbers of shorter vectors
are more than those of longer ones. Although the figures are only drawn based
on the data from two specific rounds, this phenomenon happens almost in every
round of our sieving algorithm. So in all, because fewer vectors are shorter than
the target vector at the position p′ than at p and our sieving algorithm tends to
generate more short vectors, the probability of finding the target vector at p′ is
relatively higher than finding that at p.

Fig. 4. The distributions of new generated vectors in the 30th and 100th rounds when
we solve the HNP with q = 2100 and m = 108. “new” refers to the number of vectors
not existing in the list, while “duplicate” is the number of vectors that are already in
the list.

Secondly, we can see from Tab. 3 that, the distributions of vectors in the final
lists are almost the same if q and m are fixed, no matter what the values of nonce
data are. We draw the distributions of the vectors in the seven final lists in Fig.
5. The bottom right figure is obtained by putting all 7 figures together. We can
see that the distributions of the lists match very well.

The last thing we can read from Tab. 3 is that the target vector is very
difficult to find if there are enormous vectors shorter than the target vector.

4.4 On Solving Large 1-bit HNPs

In this section, we show the performance of our implementation on solving large
1-bit HNPs. Our second platform is used for this computation, and the two
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Fig. 5. The distributions of vectors in the final lists. The x-axis gives the positions of
vectors in the lists, while the y-axis shows the squared lengths of the vectors.

computers communicate new short vectors with each other through the intranet.
Particularly, it costs about 100 GB memory on the host of each computer to solve
the 1-bit HNP (q = 2128).

We solved 1-bit HNP (q = 2120) and 1-bit HNP (q = 2128) where the lengths
of solutions equal to the expected lengths. The size of the list is set as a power
of 2 and is larger than 20.2075m.

log2(q) m log2(E[‖s‖2]) #(< E[‖s‖2]) log2(‖s‖2) #(< ‖s‖2) time
120 138 241.523562 11950 241.523562 11950 118.32h
128 140 257.544321 257804 257.544321 257804 388.21h

Table 4. On solving large 1-bit HNPs. The times are given in hours.

To verify the data in Tab. 4, we could provide the nonce data, the lattices,
as well as the vectors that are shorter than log2(E[‖s‖2]).
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5 Conclusion and Further Improvements

In this paper, we present a new sieving approach for solving the 1-bit HNP
using built-in modulo arithmetic. Compared with the previous state-of-the-art
lattice method of solving HNP, the proposed approach has two improvements.
Firstly, by using the residue class ring of the lattice, the number of vectors that
are shorter than the target vector is significantly reduced, such that the target
vector becomes easier to find. Secondly, the residue classes of vectors are used
instead of vectors during the computation; many duplicated computations are
avoided. Thus, the proposed algorithm is efficient for solving large 1-bit HNPs.
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