
Secure Multiparty Computation with
Identifiable Abort from Vindicating Release

Ran Cohen
cohenran@runi.ac.il
Reichman University

Jack Doerner
j@ckdoerner.net

Technion

Yashvanth Kondi
yash@ykondi.net
Aarhus University

abhi shelat
abhi@neu.edu

Northeastern University

July 22, 2023

Abstract
In the dishonest-majority setting, generic secure multiparty computa-

tion (MPC) protocols are fundamentally vulnerable to attacks in which
malicious participants learn their outputs and then force the protocol to
abort before outputs are delivered to the honest participants. In other
words, generic MPC protocols typically guarantee security with abort.

This flavor of security permits denial-of-service attacks in many ap-
plications, unless the cheating participants who cause aborts are identi-
fied. At present, there is a substantial performance gap between the best
known protocols that are secure with non-identifiable abort, and the best
known protocols that achieve security with identifiable abort (IA). Known
constructions with IA rely on generic zero-knowledge proofs, adaptively
secure oblivious transfer (OT) protocols, or homomorphic primitives.

We present a novel approach for realizing functionalities with a weak
form of input-revealing IA, which is based on delicate and selective re-
vealing of committed input values. We refer to this new approach as
vindicating release. When our approach is applied to several well-known
protocols—including a variant of PVW OT, Softspoken OT extension,
DKLs multiplication, and MASCOT generic MPC—the resulting proto-
cols can be combined to realize any sampling functionality with (standard)
IA. Such a realization is statistically secure given a variant of statically-
corruptable ideal OT, and it differs minimally in terms of cost, techniques,
and analysis from the equivalent realization (using the same well-known
protocols, unmodified) that lacks identifiability.

Using our protocol to sample the correlated randomness of the IOZ
compiler reduces the compiler’s requirements from an adaptively secure
OT protocol to a variant of statically-corruptable ideal OT.

Contents
1 Introduction 1

1.1 Identifying Cheaters by Revealing One’s Inputs 2
1.2 Our Contributions . 3
1.3 Related Work . 5

2 Preliminaries 6
2.1 Notation . 6
2.2 Security and Communication Model 7
2.3 Notions of Security . 7
2.4 Building-Block Functionalities . 8

3 Sender-Committed OT 9
3.1 Functionality with Sender-Input-Revealing IA 10
3.2 Information-Theoretic Realization from Correlated Randomness . 11
3.3 Direct Computational Realization via PVW 13
3.4 Building Blocks for PVW . 14
3.5 The Modified PVW Scheme, with a Proof of Security 19

4 Extending SCOT-SIRIA 29
4.1 SCOT Extension Extension . 38

5 From SCOT-(S)IRIA to CVOLE-IRIA 39
5.1 Special Case for Booleans . 40
5.2 For Any Finite Field . 41
5.3 CVOLE with Single-Sided Input Revealing 48

6 From CVOLE-IRIA to Sampling Functionalities and a Security-
Enhancing Protocol Compiler 48

1 Introduction
When a majority of participants in a secure multiparty computation protocol be-
have dishonestly, it is not generally possible to guarantee the delivery of output
to the honest parties [Cle86]; consequently, the standard definition of security
permits the adversary to halt the protocol after first learning the outputs of
any dishonest parties. Correctness and privacy are still guaranteed for honest
paries, and in some cases it is also guaranteed that the honest parties agree on
whether or not an abort has occurred. If they are guaranteed to agree, then
the protocol is said to achieve security with unanimous abort and otherwise it
achieves security with selective abort. This security regime has been well-studied
beginning with classic feasibility results [Yao82, GMW87, BMR90] and recently
many asymptotic improvements [IPS08, DPSZ12, BGIN22] culminating in sev-
eral concretely efficient protocols [HSS17, WRK17, YWZ20].

Unfortunately, protocols that are secure with abort are exposed to denial-
of-service (DoS) attacks. Even a single corrupted party can cause the pro-
tocol to abort repeatedly, and the honest parties have no recourse, since the
corrupted party cannot be identified. Such attacks are tolerable in some
specific use-cases [FLNW17], but in many they are not. As a key exam-
ple, while DoS attacks can be tolerated in small, closed systems where in-
vestigation can be performed out-of-band, they cannot be tolerated in large-
scale and/or permissionless MPC applications, such as the distributed sam-
pling of structured reference strings (SRSes) for public consumption, or thresh-
old signing for blockchains. Among the most commonly used SRSes are RSA
moduli [BF01, HMRT12, CCD+20, CHI+21, dMRT21, BDF+23] and “the
powers of τ” [BCG+15, BGM17, GKM+18, KMSV21, CDKs22], and indeed,
works on the distributed sampling of these objects and on threshold signa-
tures [CGG+20, CCL+23] aim to prevent DoS attacks by achieving the stronger
notion of identifiable abort (IA), which guarantees that in the case of an abort,
all honest parties agree upon the identity of at least one corrupted party.

The identifiable abort (IA) notion of security is less explored than the stan-
dard security with abort, although it is just as old: feasibility for both notions
was shown by Goldreich, Micali, and Widgerson [GMW87]. The GMW com-
piler transforms any protocol that is secure against semi-honest adversaries into
a protocol that is secure with IA against malicious adversaries. At a high level,
the parties commit to their inputs and then run an augmented coin-tossing pro-
tocol to sample a committed random tape for each party, after which they run
the original protocol over a broadcast channel, but include with each message a
zero-knowledge proof that the message has been computed correctly. This ap-
proach is simple, but inefficient due to its non-black-box usage of cryptographic
primitives.

A line of follow-up work demonstrated that in the dishonest-majority set-
ting, MPC with unanimous abort can withstand computationally unbounded
adversaries (i.e., it can make no cryptographic assumptions) if given access to
an ideal oblivious transfer (OT) functionality [Kil88, IPS08]. Furthermore the
OT oracle need not be accessed online; instead it is sufficient to access it of-

1

fline, before the parties know their inputs [Bea95]. On the other hand, Ishai,
Ostrovsky, and Seyalioglu [IOS12] ruled out information-theoretic MPC with
identifiable abort given any pairwise correlation. This implies that IA is sepa-
rated from any ideal oracle that only interfaces with two parties, even if that
oracle has guaranteed output.

Ishai, Ostrovsky, and Zikas [IOZ14] overcame this barrier by construct-
ing a complex n-wise correlation that enables information-theoretic MPC with
IA. Specifically, they presented a compiler like the one of GMW, which uses
information-theoretic signatures for commitments, along with a distributed
version of the IKOS zero-knowledge proof [IKOS07] that is information-
theoretically secure given their correlation. They also present a protocol for
the distributed sampling of their correlation that makes black-box use of an
adaptively secure OT protocol,1 and ideal commitments.

Successive works have abandoned the compiler-oriented approach and com-
bined various n-wise correlations with specific online protocols to achieve bet-
ter efficiency. Baum et al. [BOS16] presented a variant of the BDOZ proto-
col [BDOZ11] that uses homomorphic information-theoretic signatures, and
a correlation-sampling protocol based upon somewhat homomorphic encryp-
tion; this approach avoids zero-knowledge proofs in the online phase. Spini
and Fehr [SF16] and Cunningham et al. [CFY17] adjusted the SPDZ proto-
col [DPSZ12] to achieving IA. Baum et al. [BOSS20] focused on boolean (rather
than arithmetic) circuits and relaxed the problem to allow computational as-
sumptions in the online phase. Their approach is based upon multi-party gar-
bling [BMR90, HSS17], and makes black-box use of a statically secure OT pro-
tocol, a pseudorandom function (PRF), and additively homomorphic commit-
ments. Their approach also opens up a number of well-known concrete opti-
mizations such at OT extension and free-XOR.

1.1 Identifying Cheaters by Revealing One’s Inputs
One can view any information-theoretic online phase that requires input-
independent correlated randomness (e.g. those of Ishai et al. [IOZ14] or Baum
et al. [BOS16]) as reducing the problem of achieving IA for general tasks to the
problem of achieving IA for distributed sampling. As we have argued above, dis-
tributed sampling with identifiable abort is also important for sampling SRSes.
Our work focuses on this problem.

In distributed sampling protocols, the only private inputs of the participants
are their random coins; in the case of an abort, these coins can safely be re-
vealed, since neither they nor any output derived from them are used by the
honest parties. This fact leads to a natural and seemingly simple approach:
the parties simply commit to their randomness, and, in the case of an abort,
reveal it. By using the opened commitments to emulate the protocol they
could identify (and agree upon) the first player to cheat. This approach would

1When we say black-box use of a protocol, we mean access to an oracle computing the
protocol’s next-message function. This usage was introduced by Ishai et al. [IKOS07]

2

eliminate the need for zero-knowledge statements concerning the output of the
next-message functionality, and could thus be substantially more efficient and
simpler to implement.

This approach, though intuitive, is difficult to simulate: if the adversary
causes an abort after learning the outputs, then the simulator must produce a
view for each of the honest parties that is consistent with both the outputs that
the adversary has learned and the messages that have been sent on the honest
parties’ behalves, which were simulated without knowledge of the output.

Ishai et al. [IOZ14] defined a setup compiler which takes any generic MPC
protocol in the OT-hybrid model that has security with abort against adap-
tive adversaries, and produces a sampling protocol for an arbitrary efficiently-
sampleable distribution, with identifiable abort. They addressed the challenge
of output consistency by introducing a technical trick to ensure the random
coins are never revealed once the output has been learned: instead of comput-
ing the output directly, they first compute a secret sharing of the output that is
authenticated with information-theoretic signatures, then they reconstruct by
broadcasting the shares and verifying the signatures. If an abort occurs before
the reconstruction, then no output has yet been defined and the simulator can
choose any set of random coins: by the correctness of the protocol, they cor-
relate to an output from the appropriate distribution. An abort occurs during
reconstruction (i.e. after the adversary learns the output) only if the adversary
broadcasts a share/signature pair that does not verify, and this condition is
identifiable without opening any random coins. They address the challenge of
equivocating protocol messages in the case of a pre-reconstruction abort by re-
quiring both the input protocol of the setup compiler and the OT protocol that
realizes the input protocol’s OT oracle to be secure against adaptive corruptions.

Baum et al. [BOSS20] devised a different simulation strategy that only re-
quires statically secure OT. They claim that it is tailored to the particular sam-
pling protocol that realizes the particular sampling functionality they require for
their main protocol. Much like Ishai et al., they address the challenge of output
consistency by indirectly revealing the output: their protocol uses homomorphic
commitments instead of information-theoretic signatures, the entire computa-
tion is performed in committed and secret-shared form, in parallel, and they
use statistical checks to ensure the equivalence of the committed outputs and
the secret-shared outputs before opening the commitments. Instead of equiv-
ocating protocol messages, their simulator produces messages on behalf of the
honest parties by running the actual honest parties’ code (for the secret-shared
components). This prevents direct extraction of the corrupt parties’ coins, but
the parallel committed computation can be used to extract instead.

1.2 Our Contributions
In this work we present a new and efficient approach for constructing MPC with
identifiable abort that follows the spirit of modern MPC protocols with unan-
imous abort. We begin by defining a weakened form of identifiable abort that
is sufficient for sampling functionalities. We dub this property input-revealing

3

identifiable abort (IRIA), and we present a novel approach for realizing sampling
functionalities with IRIA that is based upon delicately, selectively, and asym-
metrically revealing committed inputs in a specific order to vindicate honest
parties when an abort occurs. Unlike prior works, we do not rely upon generic
zero-knowledge proofs, adaptively secure primitives, homomorphic primitives,
or protocol compilers. Instead, we show that under our approach, messages and
randomness can be equivocated when (and sometimes only when) they must be.

We revisit several well-known protocols from the MPC literature, and show
that they can be modified in straightforward ways to achieve IRIA. Specifically:

• We modify the PVW [PVW08] OT protocol to give the OT sender the abil-
ity to decommit both of its inputs to the public. Our protocol achieves an
intermediate form of security, between IA and IRIA, that involves reveal-
ing only the sender’s inputs to the adversary when an abort occurs. Thus
our protocol realizes Sender-Committed OT with Sender-Input-Revealing IA
(SCOT-SIRIA) and Public Verifiability (PV). Relative to the unmodified
PVW protocol, our modification is essentially additive, with the exception
that all messages are sent via broadcast. We also give a simple n-wise corre-
lation with a multiplicative depth of 1 from which SCOT (with PV and any
flavor of IA) can be trivially realized. Details are given in section 3.

• We demonstrate that the Softspoken OT extension protocol of Roy [Roy22]
can be enhanced to make it sender committing and to achieve SIRIA, using
only an ideal SCOT-SIRIA oracle, a local random oracle, and a broadcast
channel. In other words, SCOT-SIRIA (with PV) can be extended in much
the same way as standard OT, and with essentially identical concrete cost.2
Our enhancement is general enough to be applicable to other OT-extension
protocols. Details are given in section 4.

• We revisit the vectorized multiplication (otherwise known as Vector Oblivious
Linear Evaluation, or VOLE) protocol of Doerner et al. [DKLs18, DKLs19].
We show that if the protocol’s OT oracle is replaced by a SCOT-SIRIA oracle,
the protocol becomes committing for both participants. Only a few extra
instructions are required to decommit, and the modified protocol statistically
realizes Committed VOLE with IRIA (CVOLE-IRIA) and PV in any finite
field. This protocol provides an intuitive argument that IRIA is in some
sense easier than full adaptive security, because achieving adaptive security
for the same protocol would require the simulator to solve an adversarially-
influenced instance of an NP-hard problem. Details are given in section 5.

• We rewrite the preprocessing protocol of MASCOT [KOS16] in terms of an
ideal CVOLE-IRIA oracle. This modularizes the MASCOT preprocessing
protocol, which simplifies it considerably relative to its original presentation
and reveals the essence of the mechanism by which authenticated Beaver
2As in standard OT extension, the number of invocations of the SCOT-SIRIA oracle de-

pends only on the security parameter, and the number of invocations of the random oracle
depends upon the size of the extension.

4

triples are generated with an unauthenticated multiplication primitive. This
change alone is sufficient to statistically realize the SPDZ preprocessing func-
tionality with IRIA, and with the property that all parties are committed to
their outputs. Details are given in section 6.

• Finally, we argue that when the SPDZ preprocessing is generated by a func-
tionality with output-committingness and IRIA (as previously realized), then
the SPDZ online protocol can realize any sampling functionality with (stan-
dard) IA. We find this surprising, since the chain of realizations we have
proposed involves few changes, no new assumptions, and little concrete over-
head relative to plain MASCOT.

Since we can realize any sampling functionality with IA, we can realize the
sampling functionalities that generate the correlated randomness required by
the security-enhancing compiler of Ishai et al. [IOZ14] (hereafter referred to as
the IOZ compiler). This leads to two theory-oriented interpretations of our
results:

• Whereas the IOZ compiler as originally presented required an adaptively-
secure OT protocol to sample its correlated randomness, we show the suf-
ficiency of a statically-corrupteable ideal OT variant involving n parties, of
which which n − 2 are passive “listeners.” This implies that our n-party
ideal functionality is complete for identifiable abort.3 Plain OT has often
been considered the fundamental primitive of multiparty computation with
abort [Kil88, IPS08]. We offer SCOT-IRIA4 as a candidate for the funda-
mental primitive of MPC with IA.

• Our result can be viewed as factoring the complex n-wise correlated ran-
domness required by the IOZ compiler5 into many copies of a very simple
n-wise correlation with a multiplicative depth of 1. In section 3, we give an
informal argument that no correlation complete for MPC with IA can be
too much simpler. This serves as evidence that SCOT-IRIA is a reasonable
fundamental primitive.

1.3 Related Work
Security with identifiable abort was first explicitly recognized by Aumann and
Lindell [AL10] in the context of covert security. It been used implicitly in a
large number of works both before and after it was named, particularly in the
domain of fairness [GK09, BLOO11, GK12, BOO15, AO16, BHLT17, CL17,
HT17, Dac20, CHOR22], and as a stepping stone to stronger security-notions
[HMZ08, ZHM09, IKK+11].

3That is, ideal SCOT-SIRIA yields a statistical realization for any functionality with (plain)
IA, in constant rounds.

4That is, a variant of SCOT with (double-sided) IRIA, which is strictly weaker than SCOT-
SIRIA.

5Or, for that matter, any other MPC that achieves IA, such as the one proposed by Baum,
Orsini, and Scholl [BOS16].

5

Identifiable abort has been well-studied in the literature. One line of work
has focused on round-efficiency, yielding two-round protocols in the CRS model,
with a precise understanding of when and how many times broadcast must oc-
cur to achieve specific security guarantees [CGZ20, DMR+21, DRSY22], and
yielding (optimal) four-round protocols in the plain model [CRSW22]. Round-
efficient protocols are also known for quantum computations [ACC+21]. These
works, however, focused on theoretical feasibility within those round and setup
constraints, and are not suitable for practical implementation. While our proto-
cols yield generic MPC with IA and constant round complexity, we do not focus
on optimizing the precise number of rounds, and instead prioritize the simplic-
ity, modularity, and (where concrete performance is concerned) computational
efficiency of our construction.

Another line of work has focused on the complexity of the correlated random-
ness required to achieve generic MPC with identifiable abort in the information-
theoretic setting. Ishai and Ostrovsky proved with Zikas [IOZ14] that n-wise
correlations suffice, and with Seyalioglu [IOS12] that pairwise correlations do
not. Simkin et al. [SSY22] proved that for any number of corruptions up to n−2,
correlations with cardinality n − 1 are required, and Brandt et al. [BMMM20]
showed that for n − 1 corruptions, a correlation with cardinality n − 1 is (sur-
prisingly) sufficient. In our work we achieve security in the presence of n − 1
corruptions via a correlation of cardinality n; we make no attempt to reduce
the cardinality to n− 1.

2 Preliminaries
2.1 Notation
We use = for equality, ..= for right-to-left assignment, =.. for left-to-right assign-
ment, and← for sampling from a distribution. In general, single-letter variables
are set in italic font, function names are set in sans-serif font, and string literals
are set in slab-serif font. We use X for an unspecified domain, G for a group,
F for a field, Z for the integers, and N for the natural numbers. We use λc and
λs to denote the computational and statistical security parameters, respectively.

Vectors and arrays are given in bold and indexed by subscripts; thus ai is the
ith element of the vector a, which is distinct from the scalar variable a. When
we wish to select a row or column from a multi-dimensional array, we place a ∗
in the dimension along which we are not selecting. Thus b∗,j is the jth column
of matrix b, bj,∗ is the jth row, and b∗,∗ = b refers to the entire matrix. We
use bracket notation to generate inclusive ranges, so [n] denotes the integers
from 1 to n and [5, 7] = {5, 6, 7}. On rare occasions, we may use one vector
to index another: if a ..= [2, 7] and b ..= {1, 3, 4}, then ab = {2, 4, 5}. We use
|x| to denote the bit-length of x, and |y| to denote the number of elements in
the vector y. By convention, elliptic curve operations are expressed additively,
and elliptic curve points are typically given capitalized variables. We use Pi

to indicate an actively participating party with index i; in a typical context,

6

there will be a fixed set of active participants denoted P1, . . . ,Pn. A party that
observes passively but remains silent is denoted V.

2.2 Security and Communication Model
We consider a malicious PPT adversary who can statically corrupt a dishonest
majority of parties. All of our proofs are expressed in the Universal Composition
framework of Canetti [Can01]. We note that our techniques do not rely on any
specific properties of the framework, and be applied to any security framework
that supports synchronous communication and composability.

We consider all messages to be sent over an authenticated broadcast channel,
often denoted by FBC but here left implicit, and we do not consider any point-to-
point communication. Since MPC with identifiable abort implies such a channel
[CL17], we believe this to be reasonable.

By convention, we assume that obvious protocol blunders are handled ap-
propriately. For example, if a particular party is expected to send a message
in a protocol with identifiable abort, but does not do so (or sends a message
that fails to type-check), then we assume the other parties abort and identify
the silent party as a cheater.

2.3 Notions of Security
In the introduction, we introduced a number of security notions that an ideal
functionality can express through the interface that it presents to the ideal
adversary S. Here we collect and explain them in one place, for the sake of
clarity.

Security with Abort. The adversary may cause the protocol to terminate
without producing output for the honest parties, and may condition termination
on the corrupt parties’ outputs value. Such failures cannot be attributed to any
particular party. This is the most basic notion of security against malicious
adversaries. If the parties are guaranteed to agree on whether an abort has
occurred, then the abort is unanimous; otherwise it is selective. Any protocol
with selective abort can be modified to achieve unanimous abort via a single
broadcast round at the end.

Security with Identifiable Abort (IA). The adversary may cause the pro-
tocol to terminate without producing output for the honest parties, and may
condition termination on the corrupt parties’ outputs. When causing an abort,
the adversary must identify one of its corrupt parties consistently to the honest
parties.

Security with Input-Revealing Identifiable Abort (IRIA). We intro-
duce this notion; it is similar to but strictly weaker than plain identifiable abort.
In the case of an abort, the adversary learns the inputs of all honest parties and
any random coins sampled by the functionality.

7

Security with Sender-Input-Revealing Identifiable Abort (SIRIA).
This notion is relevant only to functionalities with asymmetric roles for the
invoking parties, and lies between plain IA and IRIA. A functionality that has a
sender role and a receiver role has SIRIA if the adversary learns only the input
of the sender when an abort occurs.

Guaranteed Output Delivery (GOD). This is the strongest notion of se-
curity; it is unrealizable for many tasks [Cle86]. Guaranteed output delivery is
traditionally defined in the stand-alone model (e.g., [CL17]) and cannot be cap-
tured in the inherently asynchronous UC framework. Katz et al. [KMTZ13] pro-
posed a framework for modeling synchronous communication within UC which
captures guaranteed termination. When discussing guaranteed output, we im-
plicitly use this model.

Public Verifiability (PV). We model public verifiability as an abstract mod-
ifier for other functionalities. The parties interacting with any particular session
of an unmodified functionality become the active participants in the modified
functionality, but there may be additional observing verifiers who can register
to receive outputs, but cannot otherwise influence the functionality.
Functionality 2.1. JF KPV. Public Verifiability for F [CDKs22]

The functionality JF KPV is identical to the functionality F , except that
it interacts with an arbitrary number of additional observing verification
parties (all of them denoted by V, as distinct from the actively participating
parties P1, P2, etc.). Furthermore, if all actively participating parties are
corrupt, then JF KPV receives its random coins from the adversary S.

Coin Retrieval: Whenever the code of F requires a random value to
be sampled from the domain X, then sample as F would if at least one
of the active participants is honest. If all active participants are corrupt,
then send (need-coin, sid,X) to S, and upon receiving (coin, sid, x) such
that x ∈ X in response, continue behaving as F , using x as the required
random value.

Observer Registration: Upon receiving (observe, sid) from V, remem-
ber the identity of V, and if any message with the same sid is sent to all
active participants in the future, then send it to V as well.

2.4 Building-Block Functionalities
The constructions in this paper make use of a number of functionalities that
are well known from prior works. For completeness, enumerate them in this
section. We use the same one-to-many commitment functionality FCom as Cohen
et al. [CDKs22], which is similar to the one-to-many commitment functionalities
given by Canetti and Fischlin [CF01] and Canetti et al. [CLOS02], except that it
omits explicit destination parties in favor of allowing passive verifiers to receive

8

commitments when wrapped with J·KPV. We make use of the CRS-sampling
functionality FCRS introduced by Canetti et al. [CLOS02], which simply samples
a random value from the appropriate distribution when invoked, and outputs
it to all parties. We also make use of the correlation-sampling functionality
FCorr of Ishai et al. [IOZ14], which samples a set of correlated random values
when invoked, and outputs each of them to a different party. In both cases,
we assume the functionalities to have identifiable abort (though their original
descriptions do not); i.e. if the adversary wishes to prevent any honest party
from receiving output, it must identify one of its corrupt parties to the honest
parties. Finally, we use a standard n-party coin-tossing functionality FCT with
identifiable abort, which is similar to FCRS except that by convention it samples
uniformly from some domain, instead of from an arbitrary distribution.

3 Sender-Committed OT
Basic 1-out-of-2 oblivious transfer (OT) [EGL85] is a two-party functionality
to which a sender submits two messages and a receiver submits a single choice
bit. The receiver learns only the message corresponding to the single bit it
provided, and the sender learns nothing. Beaver [Bea95] realized that this simple
relationship can also be viewed as a two-party correlation: a trusted dealer
provides the sender with two random strings, and gives one of them at random
to the receiver as well. To realize OT information-theoretically by consuming
this correlation, the sender masks (or, in the computational setting, encrypts)
its two messages with the random strings, and the receiver can decrypt exactly
one. The receiver need only indicate to the sender via a single transmitted
bit whether the order of messages should be swapped, and since the choice bit
assigned to the receiver in the correlation is uniform, this gives the sender no
information about which message is actually recoverable.

OT is a complete primitive for multiparty computation with (non-
identifiable) abort [Kil88, IPS08], but Ishai et al. [IOS12] have shown a sepa-
ration between any two-party correlation (including OT) and identifiable abort
in the information-theoretic setting. We aim to make a minimal enhancement
to OT, such that the result is complete for IA, and the aforementioned sep-
aration tells us that it is necessary that this enhancement involves additional
parties. Intuitively, the minimal role in which additional parties can participate
is as passive observers, and they must at the very least observe whether the
enhanced functionality aborts, and who is responsible. This is not enough on
its own, however. Because neither of the active participants is bound to its
input in any way, if the enhanced OT functionality itself does not abort, but
incorrect inputs are provided6, then observers cannot determine which party
provided an incorrect input. The simplest way to bind a party to its input is
to send that input to the observers, but this too is not enough: if the honest
party’s inputs are sent to even one observer, then all-but-one security becomes

6Correctness here is defined with respect to some larger protocol that uses our enhanced
OT functionality.

9

impossible, because the honest parties’ secrets are immediately leaked to the ad-
versary. We can mitigate this by committing the inputs to observers, so that it
can be released only when an abort occurs and the parties must vindicate them-
selves. Specifically, it is enough to commit the sender ’s input only, because this
also makes the functionality weakly committing for the receiver: it receives the
message corresponding to its input bit, and is bound to that input bit by its
inability to guess the other message, so long as the messages have high enough
entropy. We propose that this n-party primitive is a minimal enhancement of
OT that is complete for MPC with IA.

3.1 Functionality with Sender-Input-Revealing IA
Our minimal enhancement blends standard OT with one-to-many commitment
as expressed by Canetti et al. [CLOS02]: by submitting its inputs to the func-
tionality, the sender also commits to them in such a way that they can be
decommitted to both the receiver and to external observers at a later time. We
refer to this enhancement as Sender-Committed OT or SCOT. It differs from the
previously studied notion of double-sided committing OT [CvdGT95, Gar04] in
a subtle way: double-sided committing OT allows the receiver to decommit to its
choice bit without the sender decommitting its inputs, whereas our functionality
does not.

The weakest form of identifiable abort is input-revealing for both active
participants, and we will prove that this weak form is complete for IA via
Theorems 5.2 and 6.3. However, the VOLE construction for arbitrary fields
that we introduce in section 5 requires that the receiver’s inputs remain hidden,
and so the variant we give formally has only sender-input-revealing IA.
Functionality 3.1. FSCOT-SIRIA(X): Sender-Committed OT

This functionality interacts with two active participants, PA and PB, who
we refer to as Alice and Bob, and with the ideal adversary S. It is param-
eterized by a domain X.

OT: On receiving (choose, sid, β) from Bob such that β ∈ {0, 1} and
PB‖PA‖sid′ = sid for some fresh sid′, send (choice-made, sid) to all par-
ties. On receiving (messages, sid, α0, α1) from Alice such that α0, α1 ∈ X,
store Alice’s message in memory and send (messages-loaded, sid) to all
parties. When both Alice and Bob’s messages have been received, send
(chosen-message, sid, αβ) to Bob and send (ot-done, sid) to all parties.

Opening: On receiving (open, sid) from Alice, if the record
(messages, sid, α0, α1) exists in memory, then send it to all parties and
ignore all future instructions with the same sid value.

10

Abort: On receiving (abort, sid) from S at any point, such that
PB‖PA‖sid′ = sid, if Pc is corrupt for some c ∈ {A, B}, then send
(messages, sid, α0, α1) to S if such a record exists in memory,a and regard-
less send (abort, sid,Pc) to all parties and ignore all future instructions
with the same sid value.

aThis functionality can be transformed into FSCOT-IRIA, with double-sided input-
revealing IA, simply by releasing β along with α0 and α1 in the case of abort, and
it can be transformed into FSCOT-IA, with standard IA, by releasing none of these values.

In Section 3.2 we explore a simple n-wise correlation, from which our func-
tionality can be realized information-theoretically, and in Section 3.3 we give a
direct computational realization.

3.2 Information-Theoretic Realization from Correlated
Randomness

Our enhanced OT functionality (with standard identifiable abort) can be re-
alized information-theoretically assuming an n-wise correlation where n is the
total number of participants (including passive verifiers), much as traditional
OT can be realized information-theoretically assuming a pairwise correlation.
Specifically, for some field F consider the distribution

DSCOT-(F,λs) =



(α̇0, α̇1, β̇, γ̇, δ0, δ1,η0,η1, α̊0, α̊1) :
{α̇0, α̇1} ← F2,

δ0‖δ1‖η0‖η1 ← F4n−4×dlog2(|F|)/λse,

β̇ ← {0F, 1F},
γ̇ = β̇ · α̇1 + (1F − β̇) · α̇0,

α̊0 = {{δ0
i,j · α̇0 + η0

i,j}j∈[dlog2 |F|/λse]}i∈[n−1],

α̊1 = {{δ1
i,j · α̇1 + η1

i,j}dlog2 |F|/λse}i∈[n−1]


where (α̇0, α̇1, α̊0, α̊1) is known to the sender, (β̇, γ̇, δ0

1,∗, δ1
1,∗,η0

1,∗,η1
1,∗)

is known to the receiver, and each ith passive verifier knows
(δ0

i+1,∗, δ1
i+1,∗,η0

i+1,∗,η1
i+1,∗). This is an n-wise correlation of degree 2

which could hypothetically be generated by a pseudorandom correlation
generator [BCG+19] or pseudorandom correlation function [BCG+20], or by
a more traditional interactive protocol. It comprises an ordinary random OT
correlation (α̇0, α̇1, β̇, γ̇) and, for every party except the sender, a statistical
MAC α̊b

i,∗ with dlog2(|F|)/λse repetitions on α̇b for b ∈ {0, 1} under the key
(δb

i,∗,ηb
i,∗).

Our simple information-theoretic protocol realizing FSCOT-IA(F) via the
above correlation combines the classic protocol for realizing OT from an OT
correlation with simple MAC checks during the opening phase. It cannot abort,
except if a party fails to send a message or if the MAC checks fail. Because we

11

model the correlation-sampling functionality as requiring the active participa-
tion of all parties who receive outputs, all parties in this protocol (even verifiers)
are active.
Protocol 3.2. πSCOT-SIRIA-PV-IT(n,F): Statistical SCOT

This protocol runs with n active participants, denoted P1, . . . ,Pn.
The parties have access to an ideal correlation-sampling functionality
FDSCOT-(F,λs)

Corr (n) that has identifiable abort. It is parameterized by a field F.

Initialization: On receiving (init, sid) from the environment such that
P1‖ . . . ‖Pn‖sid′ = sid for some fresh sid′,

• P1 sends (sample, sid, sender) to FDSCOT-(F,λs)
Corr (n) and receives

(correlation, sid, (α̇0, α̇1, α̊0, α̊1)) in response.

• P2 sends (sample, sid, receiver) to FDSCOT-(F,λs)
Corr (n) and receives

(correlation, sid, (β̇, γ̇, δ0
1,∗, δ1

1,∗,η0
1,∗,η1

1,∗)) in response.

• Pi for i ∈ [3, n] sends (sample, sid, verifier) to FDSCOT-(F,λs)
Corr (n) and

receives (δ0
i−1,∗, δ1

i−1,∗,η0
i−1,∗,η1

i−1,∗) in response.

On receiving these responses, they all output (setup-done, sid) to the en-
vironment.

OT:

1. On receiving (choose, sid, β) from the environment, P2 broadcasts
(swap, sid, β̇ ⊕ β) to all parties.

2. On receiving (messages, sid, α0, α1) from the environment and
(swap, sid, s) from P2, party P1 computes α̃0 ..= αs + α̇0 and α̃1 ..=
α1−s + α̇1 and broadcasts (transfer, sid, α̃0, α̃1).

3. On receiving (transfer, sid, α̃0, α̃1) from P1, party P2 computes γ ..=
β̇ · α̃1 + (1 − β̇) · α̃0 − γ̇ and outputs (chosen-message, sid, γ) to the
environment.

4. All parties, upon witnessing this sequence of broadcasts, output
(ot-done, sid) to the environment.

Opening: On receiving (open, sid) from the environment, P1 broadcasts
(opening, sid, (α̇0, α̇1, α̊0, α̊1)) to all parties. Every other party Pi for i ∈
[2, n] receives this message and verifies that α̊b

i−1,j = δb
i−1,j · α̇b +ηb

i−1,j for
b ∈ {0, 1} and j ∈ [dlog2(|F|)/λse]. If any of these equations do not hold,
then Pi outputs (abort, sid,P1) to the environment. If they all hold, then
Pi outputs (messages, sid, α̃s − α̇0, α̃1−s − α̇1).

Theorem 3.3. For any n ∈ N such that n ≥ 2 and any field F,

12

πSCOT-SIRIA-PV-IT(n,F) statistically UC-realizes JFSCOT-IA(F)KPV with exactly n−2
observing verifiers in the FDSCOT-(F,λs)

Corr (n)-hybrid model, in the presence of an un-
bounded malicious adversary statically corrupting any number of verifiers (de-
noted P3, . . . ,Pn in the protocol) and at most one of the active participants
P1 = PA and P2 = PB.

Proof Sketch. This theorem follows directly from the statistical security of the
linear MAC scheme and the perfect security of the OT protocol on which
πSCOT-SIRIA-PV-IT is based.

3.3 Direct Computational Realization via PVW
Peikert et al. [PVW08] proposed a composable OT framework (the PVW frame-
work) instantiable from the Decisional Diffie-Hellman (DDH), Quadratic Resid-
uosity (QR), or Learning with Errors (LWE) [Qua20] assumptions. We observe
that their protocol is already committing for the sender, and we need only add
an additional phase to the protocol by which the sender can decommit. Prior
works [JKO13, GKPS18] have added a similar decommitment capability simply
by revealing the sender’s randomness. However, this approach does not seem to
be simulation-secure: for example, in the DDH-based instantiation, simulation
of a decommitment for an arbitrary pair of messages seems to require breaking
the Discrete-Logarithm (DL) assumption, which invalidates the scheme.

We take a different approach: the sender reveals its inputs, and then proves
that they are correct decommitments with respect to the messages already
transmitted. Although our protocol achieves UC security, we do not require
a straight-line-extractable proof of knowledge to do this, because our simulator
does not require anything additional to be extracted from the sender. Instead,
we combine a simple sigma protocol with a commitment scheme that is bind-
ing and equivocable, but not extractable, and we show that if a corrupt sender
cheats, then there exists a rewinding reduction that breaks the binding prop-
erty of the commitment scheme. This allows our protocol to achieve composable
security while avoiding the compromises typically associated with composable
zero-knowledge proofs: specifically, the computation and communication over-
heads and the programming of the random oracle associated with straight-line
extractors [Pas03, Fis05, Ks22].7 Our approach is general: it can be applied to
any instantiation of the PVW framework, provided that the underlying dual-
mode encryption scheme supports a sigma protocol for proof of correct encryp-
tion, which we define below. In addition to a general modification of the general
PVW framework, we give an explicit construction of our approach based upon
the DDH instantiation of PVW, Pedersen commitments, and a variant of the
Schnorr protocol. We leave explicit constructions from other assumptions to
future work.

7We note that in the UC model, the simulator is forbidden to rewind the environment,
which precludes rewinding-based simulation techniques, but reductions run the whole exper-
iment, including the environment, as a subroutine, and thus they can make use of rewinding
in the usual way. See, for example, Dodis, Shoup, and Walfish [DSW08].

13

In the original PVW scheme, all messages correspond to valid inputs, and
aborts only occur if parties fail to speak. In our new decommitment phase, a
corrupt receiver can cause an abort after the sender’s inputs have been revealed.
Thus, our approach yields security with sender-input-revealing IA.

3.4 Building Blocks for PVW
Dual-Mode Encryption. Peikert et al. introduced a primitive that they re-
fer to as dual-mode encryption, a form of public-key encryption in the CRS
model with an added notion of branches and two modes. Given some public
key, messages can be encrypted to any branch. In messy mode, some branches
are decryptable in the usual sense with a corresponding secret key, whereas some
branches are messy, meaning that the resulting encryption contains no infor-
mation about the message. In messy mode, all public keys (including ill-formed
ones) contain some messy branches, and messy branches can be efficiently dis-
tinguished from decryptable ones if and only if the distinguisher has knowledge
of a trapdoor that is embedded in the CRS. In decryptable mode, on the other
hand, the trapdoor can be used to sample public keys that have only decrypt-
able branches. The two modes are efficiently distinguishable if and only if the
distinguisher has knowledge of the trapdoor.

More formally, a two-branch dual-mode encryption scheme is a tuple of algo-
rithms (DMSetup, DMKeyGen, DMEnc, DMDec, DMTrapKeyGen, DMFindMessy)
such that:

1. (crs, td) ← DMSetup(1λ, µ) samples a CRS and a trapdoor, given the mode
µ ∈ {0, 1}, where µ = 0 indicates messy mode, and µ = 1 indicates de-
cryptable mode. We require that CRSes produced in the two modes are
computationally indistinguishable unless the trapdoor is known. That is,{

crs : (crs, td)← DMSetup(1λ, 0)
}
≈c
{

crs : (crs, td)← DMSetup(1λ, 1)
}

2. (pk, sk) ← DMKeyGen(crs, β) samples a public key pk, along with the secret
key sk for branch β ∈ {0, 1}.

3. m̃ ← DMEnc(crs, pk, b, m) emits an encryption m̃ of message m ∈ M under
branch b ∈ {0, 1} of pk. If b is a messy branch of pk, then m̃ contains no
information about m. If b is a decryptable branch, then m̃ is semantically
secure in the usual way.

4. m ..= DMDec(crs, sk, m̃) emits a message m ∈ M if m̃ is the encryption of m
under a decryptable branch of the public key pk corresponding to sk. In other
words, we require that for every m in the message space and (β, µ) ∈ {0, 1}2

m = DMDec(crs, sk, DMEnc(crs, pk, β, m)) :
(crs, td)← DMSetup(1λ, µ), (pk, sk)← DMKeyGen(crs, β)

with probability 1 over the coins of the algorithms. This is perfect correctness.

14

5. (pk, sk0, sk1) ← DMTrapKeyGen(crs, td) samples a public key pk, along with
two secret keys, one for each branch. We require that keys generated via
the trapdoor be statistically indistinguishable from ordinary ones under the
same CRS mode. That is, for β ∈ {0, 1}, if (crs, td)← DMSetup(1λ, 1), then

{(pk, skβ) : (pk, sk)← DMKeyGen(crs, β)}
≈s {(pk, skβ) : (pk, sk0, sk1)← DMTrapKeyGen(crs, td)}

6. b← DMFindMessy(crs, td, pk) outputs the index of a messy branch of pk. We
require that for every β ∈ {0, 1},

1− β = DMFindMessy(crs, td, pk) :
(crs, td)← DMSetup(1λ, 0), (pk, sk)← DMKeyGen(crs, β)

with overwhelming probability over the coins of the algorithms.
In addition to the above mentioned properties, we note that ciphertext va-

lidity is a public property; i.e., it must be possible to determine from only the
CRS, public key, and ciphertext value whether decryption of a ciphertext is
possible. This is easily satisfied if all ciphertexts decrypt under all keys.

Finally, we will recall the DDH-based instantiation of Peikert et al. for mes-
sages in G. For a complete formal description of dual-mode encryption, includ-
ing its security properties, for proofs of the security of the DDH-based instanti-
ation we have recalled here, and for other instantiations, we refer the reader to
Peikert et al. [PVW08] and Quach [Qua20].
Algorithm 3.4. Dual-Mode Encryption from DDH [PVW08]

These algorithms are parameterized by (G, G0, q) = G ← GroupGen(1λ).
The message domain of this cryptosystem is G.

DMSetupG(µ) :
If µ = 0, then sample (τ0, τ1) ← Z2

q and G1 ← G, compute
Hb ..= τ b ·Gb for b ∈ {0, 1}, and output ((G0, H0, G1, H1), (τ0, τ1)).
If µ = 1, then sample τ ← Zq and H0 ← G, compute G1 ..= τ ·G0 and
H1 ..= τ ·H0, and output ((G0, H0, G1, H1), τ).

DMKeyGenG((G0, H0, G1, H1), β) :
Sample ρ ← Zq, compute G2 ..= ρ ·Gβ and H2 ..= ρ ·Hβ , and output
((G2, H2), ρ).

DMEncG((G0, H0, G1, H1), (G2, H2), b, M) :
Sample (r, s)← Z2

q, compute U ..= r ·Gb +s·Hb and V ..= r ·G2 +s·H2,
and output (U, M + V).

DMDecG((G0, H0, G1, H1), ρ, (U, M̃)) :
Output M̃ − ρ · U .

15

DMTrapKeyGenG((G0, H0, G1, H1), τ) :
Sample ρ ← Zq, compute G2 ..= ρ · G0 and H2 ..= ρ ·H0, and output
((G2, H2), ρ, ρ/τ).

DMFindMessyG((G0, H0, G1, H1), (τ0, τ1), (G2, H2)) :
Output 1 if H2 = τ0 ·G2. Otherwise output 0.

Claim 3.5. If GroupGen(1λ) outputs a distribution of cyclic groups relative
to which the decisional Diffie-Hellman problem is hard, then the algorithms
(DMSetupG , DMKeyGenG , DMEncG , DMDecG , DMTrapKeyGenG , DMFindMessyG)
constitute a two-branch dual-mode encryption scheme for messages from G,
given (G, G0, q) = G ← GroupGen(1λ).

We direct the reader to Peikert et al. [PVW08] for proof of this claim.

Proof of Correct Encryption. Under our modification, the sender must
be able to prove that a ciphertext is a valid encryption of a particular input,
even when the ciphertext is messy. It does this by proving knowledge of the
coins used by the encryption algorithm. That is, if we let DMEnc(crs, pk, b, m; r)
be a deterministic algorithm that takes the randomness r as input rather than
sampling it internally, then the relation

RDMEnc((crs, pk, b, m, m̃), r) 7→ m̃ = DMEnc(crs, pk, b, m; r)

defines membership in a language for which we must construct a zero-knowledge
proof of knowledge of a witness:

LDMEnc = {(crs, pk, b, m, m̃) : ∃r s.t. RDMEnc((crs, pk, b, m, m̃), r) = 1}

For the Peikert et al.’s DDH-based instantiation of messy encryption, this
language is simply the language of double discrete logarithm equality with a
public offset, i.e.

LDMEncG ={
((G0, H0, G1, H1), (G2, H2), b, M, (U, M̃)) :
∃(r, s) ∈ Z2

q s.t. (U, M̃) = (r ·Gb + s ·Hb, r ·G2 + s ·H2 + M)

}

Sigma Protocols. A sigma protocol is a three-message protocol for proving
knowledge of the witness w for some element x of a language L. Formally, it
comprises a quartet of algorithms (Σ1

L, Σ2
L, Σ3

L, ΣV
L) such that:

1. The prover computes (a, s)← Σ1
L(x, w) and sends a to the verifier.

2. The verifier computes e← Σ2
L(x) and sends e to the verifier.

3. The prover computes z ← Σ3
L(x, w, s, e) and sends z to the verifier.

16

4. The verifier accepts if and only if ΣV
L(x, a, e, z) = 1

and such that the following properties hold:
• Completeness: If the prover runs honestly, and x ∈ L with witness w, then

the verifier always accepts.

• Special Soundness: There exists an efficient extractor algorithm ΣE
L such that

for any two transcripts (x, a, e, z) and (x, a, e′, z′), if ΣV
L(x, a, e, z) = 1 and

ΣV
L(x, a, e′, z′) = 1 and e 6= e′, then w ..= ΣE

L(x, a, e, e′, z, z′) such that w is a
witness that x ∈ L.

• Special Honest Verifier Zero Knowledge: There exists an efficient simulator
algorithm (a, z) ← ΣS

L(x, e) that produces simulated transcripts given an
instance x, with the same distribution as the transcripts produced by an
interaction between an honest prover and an honest verifier.
Our proof in section 3.5 will require the following generic lemma about sigma

protocols:
Lemma 3.6. For any (x0, a0, e0, z0) and (x1, a1, e1, z1), if e0 6= e1 and if for
b ∈ {0, 1} it holds that ΣV

L(xb, ab, eb, zb) = 1 and xb 6∈ L, then either x0 6= x1 or
a0 6= a1.
Proof. Suppose the lemma were false; i.e. e0 6= e1 and x0 = x1 and a0 = a1

and for b ∈ {0, 1}, ΣV
L(xb, ab, eb, zb) = 1 and xb 6∈ L. If this were the case, then

we could apply the extractor w0 ..= ΣE
L(x0, a0, e0, e1, z0, z1), and by the special

soundness of the sigma protocol, w0 must be a witness that x0 ∈ L. This is a
contradiction.

Finally, we note that the sigma protocol for LDMEncG —i.e. for the language
of correct encryptions under Peikert et al.’s DDH-based instantiation of dual-
mode encryption—is a simple extension of Schnorr’s famous identification pro-
tocol [Sch89]. In particular, omitting unused inputs we have:
Algorithm 3.7. Sigma Protocol for Membership in LDMEncG

These algorithms are parameterized by (G, G, q) = G ← GroupGen(1λ).

Σ1
DMEncG

(G0, H0, G1, H1, G2, H2, b) :
Sample (r̄, s̄)← Z2

q, compute Ū ..= r̄ ·Gb + s̄·Hb and V̄ ..= r̄ ·G2 + s̄·H2,
and output ((Ū , V̄), (r̄, s̄)).

Σ2
DMEncG

() :
Sample a uniform e← Zq and output it.

Σ3
DMEncG

(G0, H0, G1, H1, G2, H2, b, r, s, r̄, s̄, e) :
Compute y ..= e · r + r̄ and z ..= e · s + s̄ and output (y, z).

ΣV
DMEncG

(G0, H0, G1, H1, G2, H2, b, M, U, M̃, Ū , V̄ , e, y, z) :

17

Output 1 if e·U +Ū = y ·Gb+z ·Hb and e·(M̃−M)+V̄ = y ·G2+z ·H2.
Otherwise output 0.

ΣE
DMEncG

(e, e′, y, z, y′, z′) :
Compute r ..= y− y′/(e− e′) and s ..= z− z′/(e− e′) and output (r, s).

ΣS
DMEncG

(G0, H0, G1, H1, G2, H2, b, M, U, M̃, e) :
Sample (y, z) ← Z2

q, compute Ū ..= y · Gb + z · Hb − e · U and V̄ ..=
y ·G2 + z ·H2 − e · (M̃ −M) and output (Ū , V̄ , e, y, z).

Claim 3.8. The algorithms (Σ1
DMEncG

, Σ2
DMEncG

, Σ3
DMEncG

, ΣV
DMEncG

) constitute a
sigma protocol for the language LDMEnc with knowledge error 2−|q|.

We do not include a proof of this claim, since this protocol is a simple adaptation
of Schnorr’s protocol.

Equivocable Commitments in the CRS Model. Finally, we require a
commitment scheme that is much too weak to realize the ideal commitment
functionality FCom: one that has hiding, binding, and equivocation, but not
necessarily extractability. Informally, an equivocable commitment scheme in
the CRS model is a tuple of algorithms (CSetup, CCom, COpen, CTrapSetup,
CTrapCom, CEquiv) such that:

1. crs← CSetup(1λ) samples a CRS.

2. (c, d)← CCom(crs, m) samples a commitment c and an opening d for a mes-
sage m. We require that the commitment be hiding; i.e. that the adversary
have negligible advantage in distinguishing a commitment c to m from a
commitment c′ to m′, even given knowledge of crs and free choice of m and
m′.

3. COpen(crs, c, d) is a deterministic algorithm that outputs ⊥ if d not is a valid
opening for c, or m if d is a valid opening for c and c is a commitment to
m. We require that the commitment be binding; i.e. that it be infeasible for
the adversary to find two different valid openings d and d′ that cause one
commitment c to open to two different messages m and m′.

4. (crs, td)← CTrapSetup(1λ) samples a CRS with a trapdoor.

5. (c, t)← CTrapCom(crs, td) computes a fake commitment c with an equivoca-
tion trapdoor t.

6. d← CEquiv(crs, td, c, t, m) computes an opening to m for a trapdoored com-
mitment c. We require that for any m, the tuple (crs, m, c, d) produced in
this way be indistinguishable from the same tuple produced via CSetup and
CCom. This is equivocation.

18

The classic commitment scheme of Pedersen [Ped91] meets the above criteria
with security under the DDH assumption. Specifically, suppose GroupGen(1λ)
is a PPT algorithm that outputs a distribution of cyclic groups relative to
which the decisional Diffie-Hellman problem is hard, and suppose that CRHF :
{0, 1}|q| × {0, 1}∗ → Zq is a collision resistant hash function family, which is
straightforward to construct under the discrete logarithm assumption.
Algorithm 3.9. Pedersen’s Commitment Scheme [Ped91]

These algorithms are parameterized by (G, G, q) = G ← GroupGen(1λ).

CSetupG() :
Sample H ← G and k ← {0, 1}|q| and output (G, H, k).

CComG((G, H, k), m) :
Sample d ← Zq, compute C ..= CRHFk(m) · G + d · H, and output
(C, (m, d)).

COpenG((G, H, k), C, (m, d)) :
Output m if C = CRHFk(m) ·G + d ·H, or output ⊥ otherwise.

CTrapSetupG() :
Sample τ ← Zq and k ← {0, 1}|q|, compute H ..= τ · G, and output
(G, H, k).

CTrapComG((G, H, k), τ) :
Sample t← Zq, compute C ..= t ·G, and output (C, t).

CEquivG((G, H, k), τ, C, t, m) :
Output (m, (t− CRHFk(m))/τ).

Claim 3.10. If GroupGen(1λ) outputs a distribution of cyclic groups rel-
ative to which the decisional Diffie-Hellman problem is hard and CRHF :
{0, 1}|q| × {0, 1}∗ → Zq is a collision resistant hash function family, then the
algorithms (CSetupG , CComG , COpenG , CTrapSetupG , CTrapComG , CEquivG) con-
stitute an equivocable commitment scheme with perfect hiding and computational
binding, given (G, G, q) = G ← GroupGen(1λ).

We direct the reader to Pedersen [Ped91] for proof of this claim.

3.5 The Modified PVW Scheme, with a Proof of Security
Now we give our SCOT-SIRIA protocol based on PVW OT. We describe it and
prove it in terms of general primitives, much as Peikert et al. did, and present
a proof of security afterward. We define a simple functionality JFDME

CRS KPV that
samples common reference strings of the type required by the messy mode of
our dual-mode cryptosystem. We also define JFCom

CRS KPV that samples common

19

reference strings of the type required by our equivocable commitment scheme.
For the DDH-based instantiations of these primitives, both CRSes comprise sets
of uniformly chosen group elements, and the functionalities are easy to realize
with identifiable abort, given only one-to-many commitments [CLOS02].

We require one additional primitive, which is an efficiently invertible injective
map Map : X→ M from the message domain X of the protocol to the message
domain M of the dual-mode encryption scheme.
Protocol 3.11. πSCOT-SIRIA-PV-PVW(X, λc). Computational SCOT

This protocol involves two active participants, PA and PB, who we refer to
as Alice and Bob, an a-priori-unknown number of passive verifiers (collec-
tively denoted V), and the ideal functionalities JFDME

CRS KPV and JFCom
CRS KPV.

This protocol is parameterized by the sender’s message domain X. It makes
use of a dual-mode encryption scheme with a sigma protocol for the lan-
guage of correct encryptions and an equivocable commitment scheme as
defined in section 3.4.

Initialization: On receiving (init, sid) from the environment, Pi for
i ∈ {A, B} sends (sample, sid‖1) to both JFDME

CRS KPV and (sample, sid‖2)
to JFCom

CRS KPV and receives (crs, sid‖1, dmecrs) and (crs, sid‖2, comcrs) in
response.

OT:

1. On receiving (choose, sid, β) from the environment, PB samples
(pk, sk) ← DMKeyGen(dmecrs, β) and broadcasts (dmepk, sid, pk) to all
parties.

2. On receiving (dmepk, sid, pk), PA outputs (choice-made, sid) to the en-
vironment. On also receiving (messages, sid, α0, α1) from the environ-
ment, PA samples rb ← {0, 1}λc and computesa

α̃b ← DMEnc(dmecrs, pk, b, Map(αb); rb)

for b ∈ {0, 1}, and broadcasts (transfer, sid, α̃0, α̃1) to all parties.

3. On receiving the transfer message from PA, all parties output
(ot-done, sid) to the environment.

4. On receiving the transfer message from PA, party PB computes

γ ..= Map−1(DMDec(dmecrs, sk, α̃β))

and outputs (chosen-message, sid, γ) to the environment.

20

Opening:

5. On receiving (open, sid) from the environment, PA samples

(ab, sb)← Σ1
DMEnc((dmecrs, pk, b, Map(αb), α̃b), rb) for b ∈ {0, 1}

(c, d)← CCom(comcrs, (a0, a1))

and broadcasts (open-com, sid, α0, α1, c) to all parties.

6. On receiving the open-com message from PA, party PB samples

eb ← Σ2
DMEnc((dmecrs, pk, b, αb, α̃b))

for b ∈ {0, 1} and broadcasts (open-chal, sid, e0, e1) to all parties.b

7. On receiving the open-chal message from PB, party PA computes

zb ← Σ3
DMEnc((dmecrs, pk, b, Map(αb), α̃b), rb, sb, eb)

for b ∈ {0, 1} and broadcasts (open-resp, sid, z0, z1, d) to all parties.

8. Upon receiving (open-resp, sid, z0, z1, d) from PA, all other parties com-
pute

(a0, a1) ..= COpen(crscom, c, d)

and output (messages, sid, α0, α1) to the environment if

ΣV
DMEnc((dmecrs, pk, b, Map(αb), α̃b), ab, eb, zb) = 1

for b ∈ {0, 1}. On the other hand, if either of the aforementioned verifi-
cation equations does not hold, then the parties output (abort, sid,PA)
to the environment.

Verification:

9. If there is an observing verifier V, then upon receiving (observe, sid)
from the environment, V sends (observe, sid) to JFDME

CRS KPV andJFCom
CRS KPV. It then receives the broadcast messages and produces outputs

to the environment as described in the forgoing protocol.
aWe assume without loss of generality that the encryption routine requires only

security-parameter many random bits.
bIn the non-programmable global random-oracle model the parties can instead apply

the Fiat-Shamir transform [FS86]: they can calculate (e0, e1) ← RO(sid, c) instead of
receiving (e0, e1) from PB. This reduces the Open phase of the protocol to a single
message.

Theorem 3.12. If (DMKeyGen, DMEnc, DMDec) belong to a two-branch dual-
mode encryption scheme the domain M, and (CCom, COpen) belong to an equiv-
ocable commitment scheme, and (Σ1

DMEnc, Σ2
DMEnc, Σ3

DMEnc, ΣV
DMEnc) is a sigma

21

protocol for LDMEnc, and Map : X → M is an efficiently invertible injec-
tive map, then πSCOT-SIRIA-PV-PVW(X, λc) UC-realizes JFSCOT-SIRIA(X)KPV in the
(JFDME

CRS KPV, JFCom
CRS KPV)-hybrid model, in the presence of a malicious adversary

that statically corrupts any number of passive verifiers and at most one of the
active participants PA and PB.

Proof. Formally, we will prove that for every malicious adversary A that stati-
cally corrupts PA, PB, or neither active participant, there exists a PPT simulator
SA

SCOT-SIRIA-PV-PVW that uses A as a black box, such that for every environment
Z, {

RealπSCOT-SIRIA-PV-PVW(X,λ),A,Z (λ, z)
}

λ∈N,z∈{0,1}∗

≈c

{
IdealJFSCOT-SIRIA(X)KPV,SA

SCOT-SIRIA-PV-PVW(X,λ),Z (λ, z)
}

λ∈N,z∈{0,1}∗

There are two main cases that we must address: the case that PA is corrupt,
the case that PB is corrupt. The case that only passive verifiers are corrupt can
be treated as a variation of the case that PB is corrupt. We will specify two
separate simulators, and argue for the indistinguishability of each. The main
simulator SA

SCOT-SIRIA-PV-PVW(X, λ) simply selects among the two whichever is
appropriate, when A announces its (static) corruptions at the beginning of the
experiment. We begin with a simulator against a corrupt PA. For the moment,
assume that A corrupts only PA.
Simulator 3.13. SA

SCOT-SIRIA-PV-PVW-Alice(X, λc). Against Alice
This simulator has oracle access to the adversary A that corrupts
PA and possibly V, and emulates for it an instance of the protocol
πSCOT-SIRIA-PV-PVW(X, λc) involving the parties PA, PB, and V. The sim-
ulator forwards all messages from its own environment Z to A, and vice
versa. SA

SCOT-SIRIA-PV-PVW-Alice(X, λc) interacts with the ideal functionalityJFSCOT-SIRIA(X)KPV on behalf of PA, and in the experiment that it emulates
for A, it interacts with A and the corrupt parties on behalf of PB and the
ideal oracles JFDME

CRS KPV and JFCom
CRS KPV.

Initialization: On receiving (sample, sid‖1) from PA on behalf ofJFDME
CRS KPV and (init-req, sid,PB) directly from JFSCOT-SIRIA(X)KPV, sam-

ple (dmecrs, dmetd)← DMSetup(1λ, 1) and send (crs, sid‖1, dmecrs) to PA
on behalf of JFDME

CRS KPV.
On receiving (sample, sid‖2) from PA on behalf of JFCom

CRS KPV and
(init-req, sid,PB) from JFSCOT-SIRIA(X)KPV, sample comcrs ← CSetup(1λ)
and send (crs, sid‖2, comcrs) to PA on behalf of JFCom

CRS KPV.

OT:

1. On receiving (choice-made, sid) from JFSCOT-SIRIA(X)KPV on behalf of
PA, sample

(pk, sk0, sk1)← DMTrapKeyGen(dmecrs, dmetd)

22

and broadcast (dmepk, sid, pk) to all corrupt parties on behalf of PB.

2. On receiving (transfer, sid, α̃0, α̃1) message from PA via the broadcast
channel, compute

αb ..= Map−1(DMDec(dmecrs, skb, α̃b))

for b ∈ {0, 1} and send (messages, sid, α0, α1) to JFSCOT-SIRIA(X)KPV on
behalf of PA.

Opening:

3. On receiving (open-com, sid, α0′, α1′, c) from PA via the broadcast chan-
nel, sample

eb ← Σ2
DMEnc((dmecrs, pk, b, αb, α̃b))

for b ∈ {0, 1} and broadcast (open-chal, sid, e0, e1) to all corrupt parties
on behalf of PB.

4. On receiving (open-resp, sid, z0, z1, d) from PA via the broadcast chan-
nel, compute

(a0, a1) ..= COpen(crscom, c, d)

and then verify whether

ΣV
DMEnc((dmecrs, pk, b, Map(αb), α̃b), ab, eb, zb) = 1

for b ∈ {0, 1}. If these equalities hold, send (open, sid) toJFSCOT-SIRIA(X)KPV on behalf of PA. Otherwise, send (abort, sid) di-
rectly to JFSCOT-SIRIA(X)KPV.

Verification:

5. If there is a corrupt observing verifier V, then upon receiving either
(observe, sid‖1) from V on behalf of JFDME

CRS KPV or (observe, sid‖2) from
V on behalf of JFCom

CRS KPV, send (observe, sid) to JFSCOT-SIRIA(X)KPV on
behalf of V.

Our argument will proceed via a sequence of hybrid experiments, beginning
with the real world. We have:

H0 =
{

RealπSCOT-SIRIA-PV-PVW(X,λ),A,Z (λ, z)
}

λ∈N,z∈{0,1}∗

Hybrid H1. This hybrid experiment replaces all of the individual honest parties
and ideal functionalities in H0 with a single simulator machine S that runs
their code and interacts with the adversary, environment, and corrupt parties
on their behalf. Since S interacts with the adversarial entities on behalf of the
ideal functionalities, it learns any values they receive or that are defined by their

23

internal state. This is a purely syntactical change, and so it must be the case
that H1 = H0.

Hybrid H2. In this hybrid, S samples (dmecrs, dmetd)← DMSetup(1λ, 1) and
outputs dmecrs on behalf of JFDME

CRS KPV when queried. That is, it samples dmecrs
from the decryptable CRS distribution, rather than the messy CRS distribution
(as it did in H1). Under the computational indistinguishability of modes for
dual-mode encryption schemes, H2 ≈c H1

Hybrid H3. S samples (pk, sk0, sk1) ← DMTrapKeyGen(dmecrs, dmetd) and
transmits pk on behalf of PB instead of generating pk via DMKeyGen as in H2.
Under the statistical indistinguishability of keys generated with and without the
trapdoor (but using the same CRS distribution), H3 ≈s H2

Hybrid H4. This final hybrid differs from H3 in the following way: S no
longer acts on behalf of any honest parties. Instead, SA

SCOT-SIRIA-PV-PVW-Alice(X, λ)
is fully implemented in H4 (that is, S = SA

SCOT-SIRIA-PV-PVW-Alice(X, λ)), and
the experiment now incorporates JFSCOT-SIRIA(X)KPV. The honest parties run
dummy-party code as is standard for ideal-world experiments in the UC model,
and S speaks to JFSCOT-SIRIA(X)KPV on behalf of corrupt parties.

We argue that H4 ≈c H3. Observe first that in both H4 and H3, PB outputs
the decryption of α̃β in the OT phase, and by the correctness of the dual-mode
cryptosystem this is the value that PA encrypted. The distributions of this
value are identical in the two hybrids. Observe second that the simulator in H4
performs exactly the same verification steps in the Opening phase as PB and the
passive verifiers V perform in H3, and it instructs JFSCOT-SIRIA(X)KPV to abort
if and only if they fail. Thus the distributions of aborts are the same in both
hybrids. However, in H4, PB and the passive verifiers output the decryptions
of α̃0 and α̃1 in the Opening phase, because these are the values delivered to
them by JFSCOT-SIRIA(X)KPV, whereas in H3 they output the values α0 and α1

transmitted by PA in step 5 of πSCOT-SIRIA-PV-PVW(X, λc). Thus the adversary can
distinguish the two hybrids by transmitting a value αb that is not the decryption
of α̃b for some b ∈ {0, 1}, and avoiding an abort.

We argue that the case cannot occur with noticeable probability, by con-
structing a rewinding reduction that can use any distinguishing adversary to
break the binding property of the equivocable commitment scheme. Our reduc-
tion constructs a variant of H4 for (A,Z) in which the reduction itself plays
the role of S, and follows the code of S exactly until the protocol is complete.
The reduction then rewinds8 the experiment to step 6 of the protocol, samples
a fresh pair of challenges e0′ and e1′, and completes the protocol to receive z0′,
z1′, and the decommitment d′ which allows it to compute a0′ and a1′. The
remainder of our argument follows from two claims. First:

8Again, the reduction can rewind the environment because it runs the environment as a
subroutine. This distinguishes it from the simulator, which has no such power.

24

Claim 3.14. Suppose that in H4,

ΣV
DMEnc((dmecrs, pk, b, Map(αb), α̃b), ab, eb, zb) = 1

∧ (dmecrs, pk, b, Map(αb), α̃b) 6∈ LDMEnc

with probability p for some b ∈ {0, 1}. When the reduction runs the experiment,
then rewinds it to the point that eb is sampled and runs it to completion a second
time, with probability p2 − p/q the former event occurs and in addition

ΣV
DMEnc((dmecrs, pk, b, Map(αb), α̃b), ab′, eb′, zb′) = 1 ∧ eb′ 6= eb

This follows directly from the generalized forking lemma of Bellare and
Neven [BN06]. Combining this claim with lemma 3.6 and the fact that the
statement (dmecrs, pk, b, Map(αb), α̃b) is fixed before the rewinding point and
cannot be changed by the adversary yields our second claim:

Claim 3.15. Suppose that in H4,

ΣV
DMEnc((dmecrs, pk, b, Map(αb), α̃b), ab, eb, zb) = 1

∧ (dmecrs, pk, b, Map(αb), α̃b) 6∈ LDMEnc

with probability p for some b ∈ {0, 1}. When the reduction runs the experiment,
then rewinds it to the point that eb is sampled and runs it to completion a second
time, the adversary produces d and d′ such that

(a0, a1) ..= COpen(crscom, c, d) ∧ (a0′, a1′) ..= COpen(crscom, c, d′) ∧ ab′ 6= ab

with probability p2 − p/q.

Because we have assumed that (CCom, COpen) belong to a commitment
scheme that is binding against computationally-bounded adversaries, claim 3.15
implies that p2−p/q ∈ negl(λ), which in turn implies that p must be negligible,
and that H4 ≈c H3.

We now have

H4 =
{

IdealJFSCOT-SIRIA(X)KPV,SA
SCOT-SIRIA-PV-PVW-Alice(X,λ),Z (λ, z)

}
λ∈N,z∈{0,1}∗

and by transitivity we also have

H4 ≈c H0 =
{

RealπSCOT-SIRIA-PV-PVW(X,λ),A,Z (λ, z)
}

λ∈N,z∈{0,1}∗

which completes the first case.

Next we give a simulator against a corrupt PB. Assume henceforth that A
corrupts only PB.

25

Simulator 3.16. SA
SCOT-SIRIA-PV-PVW-Bob(X, λc). Against Bob

This simulator has oracle access to the adversary A that corrupts
PB and possibly V, and emulates for it an instance of the protocol
πSCOT-SIRIA-PV-PVW(X, λc) involving the parties PA,PB,V. The simula-
tor forwards all messages from its own environment Z to A, and vice
versa. SA

SCOT-SIRIA-PV-PVW-Bob(X, λc) interacts with the ideal functionalityJFSCOT-SIRIA(X)KPV on behalf of PB, and in the experiment that it emulates
for A, it interacts with A and the corrupt parties on behalf of PA and the
ideal oracles JFDME

CRS KPV and JFCom
CRS KPV.

Initialization: On receiving (sample, sid‖1) from PB on behalf ofJFDME
CRS KPV and (init-req, sid,PA) directly from JFSCOT-SIRIA(X)KPV, sam-

ple (dmecrs, dmetd)← DMSetup(1λ, 0) and send (crs, sid‖1, dmecrs) to PB
on behalf of JFDME

CRS KPV.
On receiving (sample, sid‖2) from PB on behalf of JFCom

CRS KPV and
(init-req, sid,PA) from JFSCOT-SIRIA(X)KPV, sample (comcrs, comtd) ←
CTrapSetup(1λ) and send (crs, sid‖2, comcrs) to PB on behalf of JFCom

CRS KPV.

OT:

1. On receiving (dmepk, sid, pk) from PB, compute

β ..= 1− DMFindMessy(dmecrs, dmetd, pk)

and send (choose, sid, β) to JFSCOT-SIRIA(X)KPV on behalf of PB.

2. On receiving (chosen-message, sid, γ) from JFSCOT-SIRIA(X)KPV on behalf
of PB, compute

α̃β ← DMEnc(dmecrs, pk, β, Map(αβ))
α̃1−β ← DMEnc(dmecrs, pk, 1− β, µ)

where µ ∈ M is an arbitrary element of the message space of DMEnc,
and broadcast (transfer, sid, α̃0, α̃1) to all parties on behalf of PA.

Opening:

3. On receiving (messages, sid, α0, α1) from JFSCOT-SIRIA(X)KPV on behalf
of PB, compute

(c, t)← CTrapCom(comcrs, comtd)

broadcast (open-com, sid, α0, α1, c) to all parties on behalf of PA.

26

4. On receiving (open-chal, sid, e0, e1) from PB via the broadcast channel,
compute

(ab, zb)← ΣS
DMEnc((dmecrs, pk, b, Map(αb), α̃b), eb)

for b ∈ {0, 1} and then compute

d← CEquiv(comcrs, comtd, c, t, (a0, a1))

and broadcast (open-resp, sid, z0, z1, d) to all parties on behalf of PA

Verification:

5. If there is a corrupt observing verifier V, then upon receiving either
(observe, sid‖1) from V on behalf of JFDME

CRS KPV or (observe, sid‖2) from
V on behalf of JFCom

CRS KPV, send (observe, sid) to JFSCOT-SIRIA(X)KPV on
behalf of V.

Again, our argument will proceed via a sequence of hybrid experiments,
beginning with the real world. We have:

H0 =
{

RealπSCOT-SIRIA-PV-PVW(X,λ),A,Z (λ, z)
}

λ∈N,z∈{0,1}∗

Hybrid H1. This hybrid experiment replaces all of the individual honest parties
and ideal functionalities in H0 with a single simulator machine S that runs
their code and interacts with the adversary, environment, and corrupt parties
on their behalf. Since S interacts with the adversarial entities on behalf of the
ideal functionalities, it learns any values they receive or that are defined by their
internal state. This is a purely syntactical change, and so it must be the case
that H1 = H0.

Hybrid H2. In this hybrid, S samples (dmecrs, dmetd)← DMSetup(1λ, 0) and
outputs dmecrs on behalf of JFDME

CRS KPV when queried. This does not change
the distribution of dmecrs. S also samples (comcrs, comtd) ← CTrapSetup(1λ)
and outputs comcrs on behalf of JFCom

CRS KPV when queried. In the Opening
phase, S samples (c, t) ← CTrapCom(comcrs, comtd) and then samples d ←
CEquiv(comcrs, comtd, c, t, (a0, a1)) rather than generating c and d as in step 5

of πSCOT-SIRIA-PV-PVW. Notice that the values a0 and a1 to which the commitment
opens remain unchanged. By the equivocation property of the commitment
scheme, H2 ≈c H1.

Hybrid H3. In this hybrid, S does not calculate a0 and a1 using Σ1
DMEnc or

z0 and z1 using Σ3
DMEnc, but instead waits until after receiving e0 and e1 from

PB, and then calculates (ab, zb) ← ΣS
DMEnc((dmecrs, pk, b, Map(αb), α̃b), eb) for

b ∈ {0, 1}. By the special honest verifier zero knowledge of the sigma protocol,
H3 = H2. Notice that the simulator no longer needs to use the randomness of
the dual-mode cryptosystem to generate the sigma protocol.

27

Hybrid H4. In H4, S computes β ..= 1 − DMFindMessy(dmecrs, dmetd, pk)
after it receives pk from PB, and then computes α̃1−β ← DMEnc(dmecrs, pk, 1−
β, µ) where µ ∈ M is an arbitrary element of the message space, rather than
computing α̃1−β using α1−β as in step 2 of the protocol. By the fact that
DMFindMessy identifies the messy branch with overwhelming probability, and
the fact that encryptions under messy branches contain no information about
encrypted values, H4 ≈s H3.

Hybrid H5. This final hybrid differs from H4 in the following way: S no longer
acts on behalf of any honest parties. Instead, SA

SCOT-SIRIA-PV-PVW-Bob(X, λ) is fully
implemented in H5 (that is, S = SA

SCOT-SIRIA-PV-PVW-Bob(X, λ)), and the exper-
iment now incorporates JFSCOT-SIRIA(X)KPV. The honest parties run dummy-
party code as is standard for ideal-world experiments in the UC model, and
S speaks to JFSCOT-SIRIA(X)KPV on behalf of corrupt parties. This is purely a
syntactical change, and so H5 = H4.

We now have

H5 =
{

IdealJFSCOT-SIRIA(X)KPV,SA
SCOT-SIRIA-PV-PVW-Bob(X,λ),Z (λ, z)

}
λ∈N,z∈{0,1}∗

and by transitivity we also have

H5 ≈c H0 =
{

RealπSCOT-SIRIA-PV-PVW(X,λ),A,Z (λ, z)
}

λ∈N,z∈{0,1}∗

which completes the second case.

The remaining case is the one in which only observing verifiers are corrupt.
In this case, the simulator works in a similar manner to SSCOT-SIRIA-PV-PVW-Bob,
with the messages of PB being generated using the honest protocol code of PB
and a random β, and both ciphertexts α̃0 and α̃1 being generated as encryptions
of an arbitrary µ ∈ M. The argument for this final simulator is similar to
our argument for SSCOT-SIRIA-PV-PVW-Bob, and by conjunction of the cases, the
theorem holds.

Corollary 3.17. If GroupGen(1λ) outputs a distribution of cyclic groups rela-
tive to which the decisional Diffie-Hellman problem is hard, and Map : X → G
is an invertible injective map, then there exists a protocol that UC-realizesJFSCOT-SIRIA(X)KPV in the (JFDME

CRS KPV, JFCom
CRS KPV)-hybrid model given (G, G, q) =

G ← GroupGen(1λ), in the presence of a malicious adversary that statically cor-
rupts any number of passive verifiers and at most one of the active participants
PA and PB.

Proof. This corollary arises by conjunction of theorem 3.12 and claims 3.5, 3.8,
and 3.10; that is, it arises by instantiating the dual-mode cryptosystem with
Peikert et al.’s DDH-based scheme (algorithm 3.4), instantiating the commit-
ment scheme with Pedersen’s commitment scheme (algorithm 3.9), and using
the appropriate variant of Schnorr’s sigma protocol (algorithm 3.7).

28

On CRS Reuse. We note that as written, our protocol samples individual
CRSes for each session, which is wasteful in practice. This is a notational con-
venience. The CRSes can be sampled once and safely reused, but the simulator
requires the CRS to be programmed differently when Alice is corrupt and when
Bob is corrupt, which means that each pair of parties will require two CRSes,
one for each direction in which an OT can be performed.

4 Extending SCOT-SIRIA
In this section, we describe how to construct OT extension with sender open-
ability, starting from OT with the same property. Since OT extension is only a
meaningful improvement over plain OT where concrete efficiency is concerned,
we allow ourselves the use of a programmable random oracle. We begin with a
functionality FSCOTE-SIRIA, which is in essence a vectorized version of FSCOT-SIRIA.
In the rest of this paper, we assume that any time a pair of parties instantiates
FSCOT-SIRIA multiple times (concurrently or sequentially), a single instance of
FSCOTE-SIRIA can be substituted.
Functionality 4.1. FSCOTE-SIRIA: SCOT Extension

This functionality interacts with two active participants, PA and PB, who
we refer to as Alice and Bob, and with the ideal adversary S.

Initialization: On receiving (init, sid) from Pi for i ∈ {A, B} such that
PB‖PA‖sid′ = sid for some fresh sid′, send (init-req, sid,Pi) to all parties.
On receiving (init, sid) from both Alice and Bob, send (initialized, sid)
to all parties and store (initialized, sid) in memory.

SCOT Extension: On receiving (choose, sid, eid, {X1, . . . ,XℓOTE},β)
from Bob, if eid is fresh, and β ∈ {0, 1}ℓOTE , and (initialized, sid)
exists in memory, but no record of the form (choice, sid, eid, ∗) ex-
ists in memory, then store (choice, sid, eid, {X1, . . . ,XℓOTE},β) and send
(choice-made, sid, eid, {X1, . . . ,XℓOTE}) to all parties. On subsequently re-
ceiving (messages, sid, eid,α0,α1) from Alice such thatαb ∈ X1×. . .×XℓOTE

for b ∈ {0, 1}, store her message in memory and:

1. Let γi
..= α

βi
i for every i ∈ [ℓOTE].

2. Send (chosen-messages, sid, eid,γ) to Bob.

3. Send (ote-req, sid, eid, {X1, . . . ,XℓOTE}) to S.

4. If no active participants are corrupt or S sends (proceed, sid, eid) in
response, then send (ote-done, sid, eid, {X1, . . . ,XℓOTE}) to all parties.

5. If Pc for some c ∈ {A, B} is corrupt and S sends (abort, sid, eid) in
response, then send (abort, sid,Pc) to all parties, find all records of the

29

form (messages, sid, ∗, ∗, ∗) in memory and send them to S, and ignore
all future messages with the same session ID.

Opening: On receiving (open, sid) from Alice send (open-req, sid) to all
parties and to S. If Alice is corrupt and S responds with (abort, sid), then
send (abort, sid,PA) to all parties. If Alice is honest, or S responds with
(proceed, sid), then find all records of the form (messages, sid, ∗, ∗, ∗), and
send them to all parties. Regardless, ignore all future messages with the
same session ID.

Now we give a protocol to realize the previous functionality, which is derived
from the SoftspokenOT protocol of Roy [Roy22]. Our specific treatment of the
SoftspokenOT protocol (i.e. the presentational aspects) is primarily derived
from the one of Keller et al. [KOS15]. Unlike some of the other protocols
introduced in this paper, our protocol does not merely append to SoftspokenOT,
but also makes other minor changes to the original. We annotate these where
we think them significant. Perhaps the most noticeable change (outside of the
Opening and Verification phases) is the transmission by PB of images of his
seed values under the random oracle in step 1. This change enables a technique
that we call OT extension extension, which we discussion section 4.1.
Protocol 4.2. πSCOTE-SIRIA-PV(λc, λs). SCOT-SIRIA Extension

This protocol involves two active participants, PA and PB, who we refer to
as Alice and Bob, an a-priori-unknown number of passive verifiers (collec-
tively denoted V), and the ideal functionalities JFSCOT-SIRIA({0, 1}λc)KPV
and JFComKPV. In addition, the parties have access to a (local) random
oracle with a parametric range, which is specified by its subscript:
ROX : {0, 1}∗ → X. Note that in this protocol, operations are performed
with respect to multiple fields, and so we specify in which field operations
are performed, where relevant.

Initialization:

1. When PB receives (init, sid) from the environment, he samples λc pairs
of random λc-bit seeds and computes their images under the random
oracle

κ0 ← {0, 1}λc×λc

σ0 ..= {RO{0,1}λc (sid,κ0
i)}i∈[λc]

κ1 ← {0, 1}λc×λc

σ1 ..= {RO{0,1}λc (sid,κ1
i)}i∈[λc]

and broadcasts (seed-images, sid,σ0,σ1) to all other parties.a

2. When PA receives (init, sid) from the environment and
(seed-images, sid,σ0,σ1) from PB, she samples ∆ ← F2λc uni-
formly and calculates ∆ ..= Bits(∆). For every i ∈ [λc], PA sends
(choose,PA‖PB‖sid‖i, ∆i) to JFSCOT-SIRIA({0, 1}λc)KPV.

30

3. When PB receives (choice-made,PA‖PB‖sid‖i) fromJFSCOT-SIRIA({0, 1}λc)KPV for some i ∈ [λc], he sends
(messages,PA‖PB‖sid‖i,κ0

i ,κ1
i) to JFSCOT-SIRIA({0, 1}λc)KPV.

4. On receiving (chosen-message,PA‖PB‖sid‖i,κ2
i) fromJFSCOT-SIRIA({0, 1}λc)KPV for every i ∈ [λc], PA verifies that

σ∆i
i = RO{0,1}λc (sid,κ2

i)

for every i ∈ [λc]. If all of these equations hold, then she broadcasts
(ok, sid) to all parties and outputs (initialized, sid) to the environ-
ment. Otherwise, she broadcasts (jaccuse, sid) to all parties and out-
puts (abort, sid,PB) to the environment.

5. On receiving (ok, sid) from PA, party PB outputs (initialized, sid) to
the environment.

6. On receiving (jaccuse, sid) from PA, PB sends (open,PA‖PB‖sid‖i) toJFSCOT-SIRIA({0, 1}λc)KPV for every i ∈ [λc]. He outputs (abort, sid,PA)
to the environment and performs no future instructions related to this
sid.

Extend:

7. When PB receives (choose, sid, eid, {X1, . . . ,XℓOTE},β) from the environ-
ment, where eid is fresh, he computes

ℓOTE
′ ..= dℓOTE/λse · λs + λs

β̇ ← {0, 1}ℓOTE
′

t0 ..= {RO{0,1}ℓOTE′ (sid, eid‖i‖1‖κ0
i,∗)}i∈[λc]

t1 ..= {RO{0,1}ℓOTE′ (sid, eid‖i‖1‖κ1
i,∗)}i∈[λc]

u ..=
{{

t0
i,j ⊕ t1

i,j ⊕ β̇j

}
j∈[ℓOTE′]

}
i∈[λc]

and sends (commit,PB‖sid‖eid, β̇) to JFComKPV, and broadcasts
(coded-choices, sid, eid, {X1, . . . ,XℓOTE}, u) to all parties.b

8. When PA receives (messages, sid, eid,α0,α1) from the environ-
ment and (coded-choices, sid, eid, {X1, . . . ,XℓOTE}, u) from PB and
(committed,PB‖sid‖eid) from JFComKPV, she samples χ ← FdℓOTE/λse

2λs

uniformly, broadcasts (challenge, sid, eid,χ) to all parties, and outputs
(choice-made, sid, eid, {X1, . . . ,XℓOTE}) to the environment.c

31

9. Upon receiving (challenge, sid, eid,χ) from PA, PB computes

β̂ ..=
∑

k∈[λs]

2k−1

β̇dℓOTE/λse·λs+k +
∑

j∈[dℓOTE/λse]

χj · β̇j·λs+k


t̂ ..=

 ∑
k∈[λs]

2k−1

t0
i,dℓOTE/λse·λs+k +

∑
j∈[dℓOTE/λse]

χj · t0
i,j·λs+k


i∈[λc]

with all operations being performed over F2λs , and broadcasts
(response, sid, eid, β̂, t̂) to all parties.

10. When PA receives (response, sid, eid, β̂, t̂) from PB, she computes

t2 ..= {RO{0,1}ℓOTE′ (sid, eid‖i‖1‖κ2
i,∗)}i∈[λc]

q ..=
{{

∆i · ui,j ⊕ t2
i,j

}
j∈[ℓOTE′]

}
i∈[λc]

q̂ ..=

 ∑
k∈[λs]

2k−1

qi,dℓOTE/λse·λs+k +
∑

j∈[dℓOTE/λse]

χj · qi,j·λs+k


i∈[λc]

with operations in the last of these computations being performed over
F2λs . Using these values, PA verifies that

q̂ =
{

t̂i + ∆i · β̂
}

i∈[λc]

with this check also being performed over F2λs . If the equation
holds, then PA broadcasts (ok, sid, eid), and if not, then she broadcasts
(jaccuse, sid, eid), outputs (abort, sid,PB) to the environment and per-
forms no future instructions related to this sid (halting other Extension
and Opening phases in the middle, if necessary).

11. When PB receives (ok, sid, eid) from PA, he computes β̃ ..= {βj ⊕
β̇j}j∈[ℓOTE] and broadcasts (adjust, sid, eid, β̃).d

12. When PA receives (adjust, sid, eid, β̃) from PB, she computes

α̃0 ..=
{

ROXj
(sid, eid‖j‖2‖(q∗,j + β̃j ·∆))⊕α0

j

}
j∈[ℓOTE]

α̃1 ..=
{

ROXj
(sid, eid‖j‖2‖(q∗,j + (1− β̃j) ·∆))⊕α1

j

}
j∈[ℓOTE]

and broadcasts (ciphertexts, sid, eid, α̃0, α̃1) to all parties and outputs
(ote-done, sid, eid, {X1, . . . ,XℓOTE}) to the environment.

32

13. On receiving (ciphertexts, sid, eid, α̃0, α̃1) from PA, PB computes

γ ..=
{

ROXj
(sid, eid‖j‖2‖t0

∗,j)⊕ α̃β̇j

j

}
j∈[ℓOTE]

and outputs to the environment both (chosen-messages, sid, eid,γ) and
(ote-done, sid, eid, {X1, . . . ,XℓOTE}).

14. If PB receives (jaccuse, sid, eid) from PA, then he sends
(decommit,PB‖sid‖eid) to JFComKPV and (open,PA‖PB‖sid‖i) toJFSCOT-SIRIA({0, 1}λc)KPV for every i ∈ [λc]. He outputs (abort, sid,PA)
to the environment and performs no future instructions related to this
sid (halting other Extension and Opening phases in the middle, if
necessary).

Opening:

15. Upon receiving (open, sid) from the environment, PA broadcasts
(open-keys, sid, ∆,κ2).

16. The other parties check that σ∆i
i = RO{0,1}λc (sid,κ2

i) for every i ∈
[λc]. If these equations do not hold, then they output (abort, sid,PA)
to the environment and perform no future instructions related to this
sid (halting other Extension and Opening phases in the middle, if
necessary).

17. For every eid value that has been associated with this session ID, the
parties use the revealed values of ∆ and κ2 to compute the value q
corresponding to eid using the same equations as PA used in step 10.
Then, using the values of α̃0, α̃1, and β̃ that correspond to eid, they
compute

α0 ..=
{

ROXj (sid, eid‖j‖2‖(q∗,j + β̃j ·∆))⊕ α̃0
j

}
j∈[ℓOTE]

α1 ..=
{

ROXj (sid, eid‖j‖2‖(q∗,j + (1− β̃j) ·∆))⊕ α̃1
j

}
j∈[ℓOTE]

and output (messages, sid, eid,α0,α1) to the environment.e After this,
they perform no future instructions related to this sid.

Verification:

18. If there is an observing verifier V, then upon receiving (observe, sid)
from the environment, V sends (observe,PA‖PB‖sid‖i) toJFSCOT-SIRIA({0, 1}λc)KPV for every i ∈ [λc].

33

19. If V observes PA to broadcast jaccuse in step 4, then V waits to receive
(messages,PA‖PB‖sid‖i,κ0

i ,κ1
i) from JFSCOT-SIRIA({0, 1}λc)KPV for every

i ∈ [λc]. If it holds that

σ0 = {RO{0,1}λc (sid,κ0
i)}i∈[λc] and σ1 = {RO{0,1}λc (sid,κ1

i)}i∈[λc]

then V outputs (abort, sid,PA) to the environment. If either of these
equations does not hold, then V outputs (abort, sid,PB). Regardless, V
performs no further instructions associated with this sid.

20. If V observes PB to broadcast (coded-choices, sid, eid, {X1, . . . ,XℓOTE}, u),
then V sends (observe,PB‖sid‖eid) to JFComKPV.

21. If V observes PA to broadcast jaccuse in step 10, then V
waits to receive (decommitted,PB‖sid‖eid, β̇) from JFComKPV and
(messages,PA‖PB‖sid‖i,κ0

i ,κ1
i) from JFSCOT-SIRIA({0, 1}λc)KPV for ev-

ery i ∈ [λc]. If

σ0 6= {RO{0,1}λc (sid,κ0
i)}i∈[λc] and σ1 6= {RO{0,1}λc (sid,κ1

i)}i∈[λc]

then V outputs (abort, sid,PB) to the environment. Next, V computes
u, β̂, and t̂ using the (honest) code of PB from steps 7 and 9. If these
values do not match the ones actually transmitted by PB, then V outputs
(abort, sid,PB) to the environment. If the recomputed messages of PB
match their expected values and

σ0 = {RO{0,1}λc (sid,κ0
i)}i∈[λc] and σ1 = {RO{0,1}λc (sid,κ1

i)}i∈[λc]

then V outputs (abort, sid,PA) to the environment. Regardless, V per-
forms no further instructions associated with this sid.

22. If V observes PA to broadcast open-keys in step 15, then it follows
along with the instructions in steps 16 and 17. Afterward, V performs
no further instructions associated with this sid.
aThe values σ0 and σ1 are new to our protocol and do not exist in the original. The

checks involving these values are similarly new.
bThis commitment was not made in the original SoftspokenOT protocol. Further-

more, the expansions of κ0 and κ1 to produce t0 and t1 were performed via a pseu-
dorandom generator in the original protocol, whereas we use the random oracle. The
original protocol used the input choice bits β extended with random bits, rather than
sampling a complete set of random bits β̇ and adjusting them later, as we do.

cThe Fiat-Shamir transform [FS86] can be applied here to reduce the number of
rounds: the parties compute

χ ..= RO
FdℓOTE/λse

2λs

(sid, u‖eid)

rather than receiving χ from PA. This reduces the number of rounds in the Extend
phase to two. Though we already require a random oracle for other reasons, we omit
this optimization from our formal description for simplicity of analysis.

34

dIn the original SoftspokenOT protocol, this step does not exist: PB uses his input
bits directly rather than sampling uniform ones and adjusting them later, meaning that
no adjustment is necessary, and PA simply aborts instead of producing output if the
check fails.

eHere we assume all extensions are opened simultaneously, but of course a version of
this protocol can be imagined that opens only some subset.

Theorem 4.3. πSCOTE-SIRIA-PV(λc, λs) UC-realizes JFSCOTE-SIRIAKPV in the
(JFSCOT-SIRIAKPV, JFComKPV)-hybrid local random oracle model, in the presence
of a malicious adversary that statically corrupts any number of passive verifiers
and at most one of the active participants PA and PB.
Proof Sketch. The proof of the original SoftspokenOT protocol is long and elab-
orate, and we do not feel that reproducing it here would add significant value to
this work. Therefore, we assume that the original protocol is secure, and argue
informally that our augmentations allow the protocol to realize our enhanced
functionality without compromising the existing proof.

• Steps 1 through 6. In the Initialization phase, the main distinction between
our protocol and the original SoftspokenOT protocol is that PB transmits
{σ1−∆i

i }i∈[λc] to PA. Since PA receives {κ∆i
i }i∈[λc] via the base OT instances,

it is already possible for PA to compute {σ∆i
i }i∈[λc] locally.

If PA is corrupt, the simulator can behave as an honest PB would, sampling
uniform values for {κ1−∆i

i }i∈[λc], transmitting their images under the random
oracle, and releasing them if PA demands it. The only means by which PA
can cheat is the inappropriate transmission of a jaccuse message, and in this
case it is easy to see that all verifiers will identify her as a cheater if PB has
behaved honestly. Under this simulation PA’s view is identical to her view
in the real world.
If PB is corrupt, then he might send a value of σb

i for some i ∈ [λc] and
b ∈ {0, 1} that is not calculated as the image of κb

i under the random oracle.
If ∆i = b, this cheat is detected (and an abort occurs) in the real world with
overwhelming probability, but if ∆i 6= b, then an honest PA will not complain,
and he learns the value of ∆i. By observing the random oracle queries and
extracting the values of κb

i for b ∈ {0, 1} and i ∈ [λc], the simulator can
detect in how many locations PB has cheated, and flip a matching number
of uniform coins to determine whether to send jaccuse on behalf of PA
(after which he will be identifies by the verifiers as a cheater with certainty).
The distribution of aborts implied by this simulation strategy is identical
to the distribution of aborts in the real world; the outstanding discrepancy
between the two is thus the leakage implied by a successful selective failure
attack on the part of PB. This leakage is of exactly the same flavor as the
leakage implied by the SoftspokenOT consistency check, and Roy proved that
the protocol remains simulation secure under such leakage [Roy22, Theorem
5.1].

• Steps 7 and 14. In this step, we add a commitment to PB’s random choice
bits β̇, which PA can compel PB to open. We must make two arguments:

35

first, that if a corrupt PA compels an honest PB to open the commitment,
this action is simulatable (and observing verifiers identify PA as a cheater),
and second, that an honest PA detects a failure in the consistency check in
step 10 and compels PB to open the commitment, then any observers identify
PB as a cheater with overwhelming probability.
In the case that a corrupt PA compels an honest PB to open his commitment,
we must give a simulation strategy. In particular, the simulator must emit
a uniform set of choice bits β̇ on behalf of JFComKPV and two sets of keys
κ0 and κ1 on behalf of JFSCOT-SIRIA({0, 1}λc)KPV that are consistent with the
values of u, β̂, and t̂ that it has already transmitted on behalf PB. Because
the simulator can program the random oracle, this is easy: it samples β̇, and
t0 uniformly subject to

β̂ =
∑

k∈[λs]

2k−1

β̇dℓOTE/λse·λs+k +
∑

j∈[dℓOTE/λse]

χj · β̇j·λs+k


t̂ =

 ∑
k∈[λs]

2k−1

t0
i,dℓOTE/λse·λs+k +

∑
j∈[dℓOTE/λse]

χj · t0
i,j·λs+k


i∈[λc]

and sample κ0 and κ1 uniformly, and then programs
RO{0,1}ℓOTE′ (sid, eid‖i‖1‖κ0

i,∗) 7→ t0
i,∗ for every i ∈ [λc]. The distribu-

tions of these values are all identical to their distributions in the real world:
the adversary can distinguish the two only if it queries the random oracle on
the value eid‖i‖1‖κ0

i,∗ for some i ∈ [λc] before the oracle is programmed, and
thus notices the reprogramming. The adversary can make at most polynomi-
ally many calls to the random oracle, and its chance of successfully guessing
the (as-yet-undefined) value κ0

i,∗ for any i ∈ [λc] is λc · 2−λc per query. Thus
the adversary’s probability of distinguishing based upon the values released
in this event is bounded overall by O(poly(λc)/2λc) ∈ negl(λc).
Toward our argument that a corrupt PB will be identified as a cheater with
overwhelming probability in the event that an honest PA compels him to
open his commitment to β̇, we partition the outcomes of the protocol into
three mutually exclusive cases:

1. PB acts honestly. In this case, by the correctness of the original Softspo-
kenOT protocol, PA will not compel him to open his commitment.

2. PB acts honestly, except that in step 7 he commits to a set of choice bits
that is inconsistent with the rest of his view. As in the previous case,
he will never be compelled to open his commitment, by the correctness
of the original SoftspokenOT protocol. It follows that his cheat will go
undetected, and his protocol execution is consistent with respect to some
set of choice bits so far as any other party is concerned. If the simulator
detects that this case has occurred, it behaves as though PB has acted
honestly.

36

3. PB deviates from the instructions in steps 7 and 9, in some way other than
simply committing to an inconsistent value of β̇. In this case, notice that
PB’s instructions in steps 7 and 9 are deterministic once β̇, κ0, and κ1

are fixed. Because we have excluded case 2, we know that PB’s protocol
execution is not consistent with any fixed set of choice bits. Therefore, if
PA compels PB to open his commitment, then regardless of which set of
bits he has committed to, the observing verifiers will notice an inconsis-
tency upon tracing his instructions forward, and he will be identified as a
cheater.

• Step 11. The adjustment of PB’s choice bits performed in this step is a
standard technique with perfect security. We also use it in section 3.2.

• Steps 15 through 17. This phase is completely independent of PB’s private
inputs. It remains only to show that a corrupt PA cannot open incorrect
values without detection, and that the view of an honest PA can be simulated
efficiently.
Our simulation argument is simple: the simulator, in its role asJFSCOT-SIRIA({0, 1}λc)KPV, has already extracted κ0, κ1 in their entirety from
PB, and the original simulation strategy of SoftspokenOT implies that it has
also extracted β̇, and therefore β. Due to the selective failure attacks in
the Initialization and Extension phases, some simulated choice bits may
already have been fixed. The simulator now flips coins to determine the re-
maining unfixed choice bits. Before releasing κ∆i

i for i ∈ [λc], the simulator
calculates the implied values of q, and programs the random oracle such that

ROXj
(sid, eid‖j‖2‖(q∗,j + (1− βj) ·∆)) 7→ α

1−β̇i
j ⊕ α̃1−β̇i

j

for every j ∈ [ℓOTE]. The adversary can distinguish this simulation from
the real world if it queries the random oracle on the value eid‖j‖2‖(q∗,j +
(1 − βj) ·∆) for some j ∈ [ℓOTE] before the oracle is programmed, and thus
notices the reprogramming. The adversary can make at most polynomially
many calls to the random oracle, and its chance of successfully guessing the
(as-yet-undefined) value q∗,j for any j ∈ [ℓOTE] is ℓOTE ·2−λc per query. Thus
the adversary’s probability of distinguishing based upon the values released
in this event is bounded overall by O(poly(λc)/2λc) ∈ negl(λc).
Finally, we argue that a corrupt PA must open the correct values, or else
be identified as a cheater. We observe first of all that fixing ∆, κ2, and
PB’s message u also fixes q, and thus implies a unique decryption αb of the
ciphertext α̃b for b ∈ {0, 1}. In order to trick the verifiers into decrypting
any other value, PA must convince them to accept incorrect values of ∆ and
κ2. Let the values actually transmitted by a corrupt PA be denoted ∆∗

and κ2∗; in order to be accepted by a verifier, they must satisfy the relation
σ

∆∗
i

i = RO{0,1}λc (sid,κ2∗
i) for every i ∈ [λc]. This implies that for every index

i at which PA cheats, she must find a first or second λc-bit preimage of σ∆∗
i

i

under the random oracle. She has no better strategy than brute force search

37

for doing so, and she can make at most polynomially many attempts, which
implies that the probability that she convinces passive verifiers to accept any
incorrect opening is in O(poly(λc)/2λc) ∈ negl(λc).

We have now covered each change or addition that we have made in our
protocol, relative to the original SoftspokenOT protocol, and in each case we
have given a simulation strategy. This concludes our proof sketch.

4.1 SCOT Extension Extension
As we discussed in section 1.1, the intuitive approach of revealing one’s ran-
domness is difficult to simulate. It has another disadvantage: once the secret
randomness of a protocol is revealed, it cannot be reused, nor can any pro-
tocol state derived from it. This is especially irksome if corrupt parties can
cause honest parties to reveal their randomness, because it means that expen-
sive setup procedures must be performed again in order for the protocol to
continue after the cheaters are eliminated. Our strategy mitigates this problem.
We observe that if an abort occurs within the context of πSCOTE-SIRIA-PV itself,
then the underlying instances of JFSCOT-SIRIAKPV are opened; in this case, either
PA or PB is certainly corrupt, which means that they will not need to interact
again. On the other hand, they may be compelled to use the open interface in
some larger protocol, even though they are both honest. In this case, the ran-
domness of πSCOTE-SIRIA-PV is revealed without opening the underlying instances
of JFSCOT-SIRIAKPV. This distinction becomes meaningful if the underlying in-
stances of JFSCOT-SIRIAKPV are replaced by a single call to the extension interface
of JFSCOTE-SIRIAKPV, and a single instance of JFSCOTE-SIRIAKPV is shared among
multiple instances of πSCOTE-SIRIA-PV. We refer to this technique as OT Exten-
sion Extension. In other words, if we use one root OT extension protocol to
supply the base OTs for many more leaf instances of the same OT extension
protocol, then opening a single one of the leaf instances does not imply opening
the root instance, and does not affect the other leaf instances. On the other
hand, if one of the leaf instances experiences an abort, then the root instance
is opened, which implies that all of the leaf instances are opened. When the
protocol is instantiated in this way, two honest parties need never re-run their
shared OT extension initialization, regardless of the adversary’s behavior. We
note that, under this instantiation, our protocol realizes a more complex func-
tionality in which blocks of messages can be opened selectively, and in which
unopened blocks can be extended but opened blocks cannot, and new blocks
can be created so long as no abort has occurred. We elide a formal specification
of this functionality from this work.

Corollary 4.4. There is a protocol that UC-realizes JFSCOTE-SIRIAKPV where the
number of public key operations is independent of the number of choose and
open queries.

Proof Sketch. The above corollary is achieved simply by instantiating the λc in-
dependent instances JFSCOT-SIRIAKPV used by πSCOTE-SIRIA-PV with a single call to

38

the choose interface of an instance of JFSCOTE-SIRIAKPV that is shared with other
similarly-modified instances of πSCOTE-SIRIA-PV. In other words, it is achieved
by using extended OTs to instantiate the base OTs for multiple instances of
πSCOTE-SIRIA-PV.

5 From SCOT-(S)IRIA to CVOLE-IRIA
In this section, we use the SCOT-SIRIA functionality introduced in section 3
to statistically UC-realize Committed Vector Oblivious Linear Evaluation with
(double-sided) Input-Revealing Identifiable Abort (CVOLE-IRIA) over any fi-
nite field. In section 5.3 we also discuss simple modifications to our functionality
and protocol that allow only one of the two inputs to be revealed (either the
vector, or the single value by which the vector is multiplied). First we introduce
the functionality.
Functionality 5.1. FCVOLE-IRIA(F, ℓ): Committed Vector OLE

This functionality interacts with two active participants, PA and PB,
who we refer to as Alice and Bob, and with the ideal adversary S. It is
parameterized by a field F and an integer ℓ.

VOLE: On receiving (correlation, sid, b) from Bob such that b ∈ F and
PB‖PA‖sid′ = sid for some fresh sid′, send (correlation-loaded, sid) to
all parties. On receiving (vector, sid, a) from Alice such that a ∈ Fℓ, send
(vector-loaded, sid) to all parties. When both Alice and Bob’s messages
have been received:

• If Alice is corrupt, then receive (adv-share, sid, c) from the adversary
and compute d ..= {b · ai − ci}i∈[ℓ].

• If Bob is corrupt, then receive (adv-share, sid, d) from the adversary
and compute c ..= {b · ai − di}i∈[ℓ].

• If neither active participant is corrupt, then sample c, d← Fℓ uniformly
subject for every i ∈ [ℓ] to b · ai = ci + di.

Finally, store (vole, sid, a, b, c, d) in memory and send (share, sid, c) to
Alice and (share, sid, d) to Bob and (vole-done, sid) to all parties.

Opening: On receiving (open, sid) from Pi for some i ∈ {A, B}, send
(open-req, sid,Pi) to all parties. On receiving such a message from both
Alice and Bob, if a record of the form (vole, sid, ∗, ∗, ∗, ∗) exists in memory,
then send it to all parties and ignore all future instructions with the same
sid value.

39

Abort: On receiving (abort, sid) from S at any point, such that
PB‖PA‖sid′ = sid, if Pc is corrupt for some c ∈ {A, B}, then send
(vole, sid, ∗, ∗, ∗, ∗) to S if such a record exists in memory, and regard-
less send (abort, sid,Pc) to all parties and ignore all future instructions
with the same sid value.

5.1 Special Case for Booleans
Before we move on to our main construction, we observe that if we were to
modify JFSCOT-SIRIA(Zℓ

2)KPV to reveal Bob’s inputs along with Alice’s, then it
would be identical to JFCVOLE-IRIA(Z2, ℓ)KPV up to renaming of the interfaces.
We first show that the latter functionality can be realized very simply using two
instances of the latter.

Theorem 5.2. For any ℓ ∈ N+, there is a protocol that statistically UC-
realizes JFCVOLE-IRIA(Z2, ℓ)KPV against a malicious adversary statically corrupt-
ing at most one active participant and any number of passive verifiers in theJFSCOT-SIRIA(Zℓ+λs

2)KPV-hybrid model. This protocol requires at most 2 invoca-
tions of JFSCOT-SIRIAKPV in total.

Proof Sketch. Let ℓ′ ..= ℓ + λs. We can realize JFCVOLE-IRIA(Z2, ℓ)KPV using two
instance of JFSCOT-SIRIA(Zℓ′

2)KPV in the following way: When Bob receives the
correlation instruction, he makes a corresponding choose instruction to the
first JFSCOT-SIRIA(Zℓ′

2)KPV instance. When Alice receives the vector instruction,
she makes a corresponding mesages instruction to the first JFSCOT-SIRIA(Zℓ′

2)KPV
instance, and concatenates each of her two inputs with a uniform λs-bit tag
(which Bob omits when computing his output).

When Bob receives the open instruction, he samples two XOR shares of
his output from the first instance JFSCOT-SIRIA(Zℓ′

2)KPV including Alice’s tag,
and then invokes a second instance of JFSCOT-SIRIA(Zℓ′

2)KPV as the sender, using
these shares as his input. This commits him publicly to the output of his firstJFSCOT-SIRIA(Zℓ′

2)KPV instance. When Alice receives the open instruction and a
notification that Bob is committed, she sends a corresponding open instruction
to the first instance of JFSCOT-SIRIA(Zℓ′

2)KPV, revealing her input. Then Bob
opens the second instance of JFSCOT-SIRIA(Zℓ′

2)KPV, which effectively decommits
his output from the first instance and in turn implies a specific set of choice
bits. Bob can cheat only by guessing the OT message that he did not receive,
which is as hard a guessing Alice’s tag.

Since a corrupt party can cause either the first instance ofJFSCOT-SIRIA(Zℓ′

2)KPV to abort, revealing Alice’s inputs, or the second in-
stance, revealing Bob’s, this protocol realizes a functionality with (double
sided) IRIA.

40

5.2 For Any Finite Field
Now we move on to our main construction of Committed VOLE for any finite
field. This construction is based upon the two-round OT-multiplication protocol
of Doerner et al. [DKLs18, DKLs19]. Doerner et al. derived their technique in
turn from the semi-honest OT-based multiplication protocol of Gilboa [Gil99].
They observed that Gilboa’s protocol had perfect security against the party we
designate as Bob, in the OT-hybrid model. They combined Gilboa’s protocol
with a random linear check to ensure that Alice is forced to use consistent
inputs, and mitigated selective failure attacks on her part by using a bit-fixing
randomness extractor to encode Bob’s inputs in such a way that she cannot
learn enough bits to distinguish the encoding from uniform with non-negligible
probability, without triggering an abort with overwhelming probability.

We make a few simple modifications to adapt the Doerner et al. protocol
to our setting. First, we transform the basic two-input multiplier into a Vector
OLE; this has already been explored both in the original Doerner et al. [DKLs18]
incarnation and in the follow-up works of Chen et al. [CCD+20] and Doerner et
al. [DKLs23]. Since we only wish Bob to reuse his input, the technique is simple:
Alice uses the same batch of OT instances, corresponding to one encoded input
for Bob, to evaluate the protocol for all of the inputs that she wishes to multiply
by Bob’s one input.

Second, we generate the randomness for the linear check interactively, rather
than by using the random oracle. This increases the round count to four, but
allows the protocol to achieve statistical security in the OT-hybrid model. We
also repeat the random linear check enough times to achieve statistical security
even if the working field is small. This was previously explored by Chen et
al. [CCD+20].

Finally we add an input-decommitment phase, and specify that it is triggered
involuntarily in the case of an abort, or voluntarily if no abort occurs. While
Chen et al. [CCD+20] explored the addition of a similar (but purely voluntary)
decommitment phase, their method is substantially different from ours, and
faces an inherent barrier that prevents it from being used with fields of order
ω(λc). We evade this barrier.

The most obvious way to allow Bob to reveal his input is simply to have him
broadcast the messages he has chosen to receive from the relevant OT instances;
these messages bind him to his choice bits, and therefore to an encoding of his
input. If JFSCOT-SIRIAKPV is used instead of plain OT, then the OT functional-
ity can subsequently reveal the true OT messages, and any cheating on Bob’
part becomes obvious. However, if Alice is corrupt, then this simple method
is unsimulatable. If Alice behaves honestly in the multiplication protocol, then
the simulator can find an encoding of Bob’s input in the same way that an
honest Bob would. However, Alice might cheat in the multiplication protocol
by sending message pairs to some OT instances that are not correlated in the
correct way: in this case, the simulator must sample and fix the OT choice
bits of the corresponding instances in order to determine the impact of Alice’s
cheats. This effectively fixes some bits of Bob’s encoding; under the condition

41

that some bits are fixed ahead of time, finding an encoding of an arbitrary input
for Bob (in order to open his input, when it is later learned) involves solving
an adversarially-influenced instance of subset sum. We avoid this difficulty by
ensuring that Bob only reveals his choice bits (and thus the simulator only has
to find a valid encoding) when Alice has been honest. Since our security notion
only requires a single corrupt party to be identified in the case of an abort,
Bob’s behavior need not be investigated once it is determined with certainty
that Alice is corrupt.

We note that the success of the above strategy clearly illustrates the intuitive
notion that identifiable abort is easier than security against adaptive corrup-
tions. To our knowledge, the type of multiplication protocol we have presented
is not adaptively secure because an adversary corrupting Alice could cheat in
such a way that when it later corrupts Bob, the simulator is forced to solve an
instance of subset sum. The subset sum problem is NP-Complete in general,
and we do not know of any strategy under which it is efficiently solveable in the
specific parameter regime that an adaptive adversary induces.

Whereas a simulator against an adaptive adversary is required to produce ex-
planations for past messages on the spot, protocols that achieve identifiable can
execute additional instructions upon detection of inconsistencies in the protocol.
In our case, these extra instructions produce selective explanations for past mes-
sages, which are sufficient to vindicate honest parties, yet always simulatable,
because the case of explaining two corrupt parties’ messages simultaneously is
avoided.
Protocol 5.3. πCVOLE-IRIA-PV(Fq, ℓ, λs). Committed Vector OLE

This protocol involves two active participants, PA and PB, who we refer
to as Alice and Bob, an a-priori-unknown number of passive verifiers
(collectively denoted V), and the ideal functionality JFSCOT-SIRIAKPV. It
is parameterized by a finite field Fq of size q; unless otherwise stated all
mathematical operations in this protocol are defined over this field. It is
also parameterized by an integer ℓ and the statistical security parameter
λs. For convenience, we define ξ ..= 2|q|+ 2λs to be the bit-length of Bob’s
inputs after they have been encoded, and ρ ..= dλs/|q|e to be the number
of Fq elements required for a λs-bit MAC.

VOLE - Correlation Input:

1. When Bob receives (correlation, sid, b) from the environment such that
PB‖PA‖sid′ = sid and Bob has never interacted with Alice before, Bob
samples g′ ← F|q|+2λs

q and broadcasts (coefficients,PB‖PA, g′). Both
parties then compute g ..= {2i−1}i∈[|q|]‖g′.

2. When Bob receives (correlation, sid, b) from the environment such that
PB‖PA‖sid′ = sid where sid′ is a fresh value, he samples an encoding of

42

his input

β̇ ← {0, 1}|q|+2λs

ḃ ..=
⟨

g[|q|+1:ξ], β̇
⟩

β ..= Bits(b− ḃ)‖β̇

and then Bob sends (choose, sid‖i,βi) to JFSCOT-SIRIA(F(1+ρ)·ℓ
q)KPV for

every i ∈ [ξ] and outputs (correlation-loaded, sid). Note that the
Bits function outputs a little-endian bit-vector representation of its ar-
gument.

3. If Alice and Bob receive (abort, sid‖j,Pc) from JFSCOT-SIRIA(F(1+ρ)·ℓ
q)KPV

for any j ∈ [ξ], then they output (abort, sid,Pc) to the environment and
ignore all future instructions with the same sid.

4. Upon receiving (choice-made, sid‖j) from JFSCOT-SIRIA(F(1+ρ)·ℓ
q)KPV for

every j ∈ [ξ], Alice outputs (correlation-loaded, sid) to the environ-
ment.

VOLE - Vector Input:

5. When Alice receives (vector, sid, a) from the environment such that
PB‖PA‖sid′ = sid where sid′ is a fresh value, she computes

e← Fℓ×ρ
q

ȧ← Fξ×ℓ
q

ė← Fξ×ℓ×ρ
q

c ..= {〈g, ȧ∗,i〉}i∈[ℓ]

α0 ..= {ȧj,∗‖ėj,∗,1‖ . . . ‖ėj,∗,ρ}j∈[ξ]

α1 ..=
{
{ȧj,i + ai}i∈[ℓ] ‖ {ėj,i,1 + ei,1}i∈[ℓ] ‖ . . . ‖ {ėj,i,ρ + ei,ρ}i∈[ℓ]

}
j∈[ξ]

and sends (messages, sid‖j,α0
j,∗,α1

j,∗) to JFSCOT-SIRIA(F(1+ρ)·ℓ
q)KPV for

every j ∈ [ξ] and outputs (vector-loaded, sid) to the environment.

6. On receiving (chosen-message, sid‖i,γj,[(1+ρ)·ℓ]) fromJFSCOT-SIRIA(F(1+ρ)·ℓ
q)KPV for every j ∈ [ξ], Bob outputs

(vector-loaded, sid) to the environment. He samples f ← Fℓ
q,

and broadcasts (challenge, sid, f). a

43

7. When Alice receives (challenge, sid, f), she computes

u ..=
{
{ai · f i + ei,k}k∈[ρ]

}
i∈[ℓ]

v ..=
{{
{ȧj,i · f i + ėj,i,k}k∈[ρ]

}
j∈[ξ]

}
i∈[ℓ]

and then she broadcasts (checks, sid, u, v).b

8. Upon receiving (checks, sid, u, v) from Alice, Bob computes

v′ ..=
{{{

ui,k · βj − f i · γj,i − γj,i+ℓ·k
}

k∈[ρ]

}
j∈[ξ]

}
i∈[ℓ]

and checks whether v = v′.c If this relation holds, then Bob computes

d ..=
{⟨

g,γ∗,i

⟩}
i∈[ℓ]

and broadcasts (ok, sid), and then he outputs (share, sid, d) and
(vole-done, sid) to the environment. On the other hand, if v 6= v′

then Bob broadcasts (jaccuse, sid) and jumps to step 10.

9. If Alice receives (ok, sid) from Bob, then she outputs (share, sid, c) and
(vole-done, sid) to the environment. If she receives (jaccuse, sid) then
she jumps to step 10. Regardless, she sends (observe, sid) to JFComKPV.

Opening:

10. On receiving (open, sid) from the environment or jumping from step 8,
Bob sends (commit, sid, (β,γ)) to JFComKPV.

11. On receiving (committed, sid) from JFComKPV, if Bob did not previously
broadcast (jaccuse, sid), then Alice outputs (open-req, sid,PB) to the
environment.

12. On receiving (open, sid) from the environment from the environment or
jumping from step 9, Alice broadcasts (open, sid).

13. When Bob receives (open, sid) from Alice, if Bob did not previously
broadcast (jaccuse, sid), he outputs (open-req, sid,PA) to the environ-
ment.

14. When Alice completes steps 11 and 12, she sends (open, sid‖j) toJFSCOT-SIRIA(F(1+ρ)·ℓ
q)KPV for every j ∈ [ξ].

15. If Bob receives (abort, sid‖j,PA) from JFSCOT-SIRIA(F(1+ρ)·ℓ
q)KPV for

any j ∈ [ξ], then he outputs (abort, sid,PA) to the environment

44

and ignores all future instructions involving sid. If Bob receives
(messages, sid‖j,α0

j,∗,α1
j,∗) for every j ∈ [ξ], then he computes

a ..=
{
α1

1,i −α0
1,i

}
i∈[ℓ]

e ..=
{{
α1

1,i+k·ℓ −α0
1,i+k·ℓ

}
k∈[ρ]

}
i∈[ℓ]

and then for i ∈ [ℓ] and j ∈ [ξ] and k ∈ [ρ] he verifies that

ai = α1
j,i −α0

j,i

ei,k = α1
j,i+k·ℓ −α0

j,i+k·ℓ

ui,k = ai · f i + ei,k

vi,j,k = α0
j,i · f i +α0

j,i+k·ℓ

and if any of these conditions do not hold,d then he outputs
(abort, sid,PA) to the environment and ignores all future instructions
involving sid. If all of the conditions hold, then he sends (decommit, sid)
to JFComKPV and computes

c ..=
{⟨

g,α0
∗,i

⟩}
i∈[ℓ]

and outputs (vole, sid, a, b, c, d) to the environment. Afterward, he ig-
nores all instructions referencing sid.

16. On receiving (decommitted, sid, (β,γ)) from JFComKPV, Alice verifies for
i ∈ [ℓ] and j ∈ [ξ] that

(α0
j,i = γj,i ∧ βj = 0) ∨ (α1

j,i = γj,i ∧ βj = 1)

and if these equalities do not hold, or if Bob previously broadcasted
(jaccuse, sid), then Alice outputs (abort, sid,PB) to the environment.
If all of the aforementioned equalities do hold and Bob never sent
(jaccuse, sid), then Alice computes

b ..= 〈g,β〉

d ..=
{⟨

g,
{

ȧj,i + ai · βj

}
j∈[ξ]

⟩}
i∈[ℓ]

and outputs (vole, sid, a, b, c, d) to the environment. Afterward, she
ignores all instructions referencing sid.

45

Verification:

17. If there is an observing verifier V, then upon receiving
(observe, sid) from the environment, V sends (observe, sid‖j) toJFSCOT-SIRIA(F(1+ρ)·ℓ

q)KPV for every j ∈ [ξ].

18. If V receives (abort, sid‖j,Pc) from JFSCOT-SIRIA(F(1+ρ)·ℓ
q)KPV for any j ∈

[ξ], then it outputs (abort, sid,Pc) to the environment.

19. If V receives (choice-made, sid‖j) from JFSCOT-SIRIA(F(1+ρ)·ℓ
q)KPV for ev-

ery j ∈ [ξ], then it outputs (correlation-loaded, sid) to the environ-
ment.

20. If V receives (messages-loaded, sid‖j) from JFSCOT-SIRIA(F(1+ρ)·ℓ
q)KPV

for every j ∈ [ξ], then it outputs (vector-loaded, sid) to the environ-
ment.

21. When Bob broadcasts (challenge, sid, f) and Alice responds with
(checks, sid, u, v), V outputs (vole-done, sid) to the environment if Bob
subsequently broadcasts (ok, sid). If Bob broadcasts (jaccuse, sid) in-
stead, then V jumps to step 24. Regardless V sends (observe, sid) toJFComKPV.

22. On receiving (open, sid) from Alice, if Bob did not previously broadcast
(jaccuse, sid), then V outputs (open-req, sid,PA) to the environment.

23. When V receives (committed, sid) from JFComKPV, if Bob did not pre-
viously broadcast (jaccuse, sid), then V outputs (open-req, sid,PB) to
the environment.

24. If V receives (abort, sid‖j,Pc) from JFSCOT-SIRIA(F(1+ρ)·ℓ
q)KPV for any j ∈

[ξ] after it has received (committed, sid) from JFComKPV, then it outputs
(abort, sid,Pc) to the environment.

25. If after V has received (committed, sid) from JFComKPV, V receives
(messages, sid‖j,α0

j,∗,α1
j,∗) from JFSCOT-SIRIA(F(1+ρ)·ℓ

q)KPV for every j ∈
[ξ], then V checks the same conditions as Bob does in step 15, and if
they do not hold, then V outputs (abort, sid,PA) to the environment.

26. When V receives (decommitted, sid, (β,γ)) from JFComKPV, V checks
the same conditions as Alice does in step 16, and if they do not
hold, or if Bob previously broadcasted (jaccuse, sid), then V outputs
(abort, sid,PB) to the environment. Otherwise, V computes a and c as
Bob does in step 15 and b and d as Alice does in step 16, and outputs
(vole, sid, a, b, c, d) to the environment.

46

aIn the Random Oracle Model, this round of interaction can be eliminated by generat-
ing the challenge using non-interactive coin-tossing: the parties simply put the contents
of the broadcast channel into the random oracle to generate a challenge.

bHere again there is an optimization in the Random Oracle Model: Alice can send
v ..= RO(v) instead of sending v itself.

cOr v = RO(v′).
dIf the previously mentioned Random Oracle Model optimizations are applied, Bob

must modify the final equality in the natural way and also check that Alice computed f
correctly.

Theorem 5.4. For any finite field F and any ℓ ∈ N+, πCVOLE-IRIA-PV(F, ℓ, λs)
statistically UC-realizes JFCVOLE-IRIA(F, ℓ)KPV against a malicious adversary stat-
ically corrupting at most one active participant and any number of passive ver-
ifiers in the JFSCOT-SIRIAKPV-hybrid model.

Proof Sketch. The Correlation Input and Vector Input phases of
πCVOLE-IRIA-PV closely follow the OT-based multiplication protocols of Doerner
et al. [DKLs18, DKLs19] with the input reuse and check-value repetition modi-
fications of Chen et al. [CCD+20], differing only in that they are written in the
hybrid model of many individual OT instances rather than the hybrid model of
a single OT-extension instance, and in that Bob supplies the challenge f inter-
actively, whereas in the Doerner et al. protocols it is generated using a random
oracle. The simulation and security argument for our protocol follows theirs
exactly, until an abort occurs or the parties elect to open.

Since Alice and Bob’s roles are asymmetric, we have two different simula-
tion strategies in the case of an abort or opening. If Bob is corrupt, then the
simulator will have extracted β and for every j ∈ [ξ] and i ∈ [(1 + ρ) · ℓ] it
will have sampled a uniform value for γj,i = α0

j,i if βj = 0 or γj,i = α1
j,i if

βj = 1. When the simulator learns a, it computes ei,k
..= ui,k − ai · f for

every i ∈ [ℓ] and k ∈ [ρ] and it fixes the heretofore unfixed OT message values
such that they satisfy α1

j,i − α0
j,i = ai and α1

j,i+k·ℓ − α0
j,i+k·ℓ = ei,k for every

k ∈ [ρ], j ∈ [ξ], and i ∈ [ℓ]. These messages are then sent to Bob on behalf of
the relevant JFSCOT-SIRIAKPV instances. Apart from this, the simulator behaves
exactly as Alice would: aborting and identifying Bob if he decommits a value
for γj for some j that does not match either α0 or α1, and aborting similarly
if he accuses Alice of cheating.

If Alice is corrupt, the simulator will have extracted both α0 and α1. When
the opening process begins, the simulator learns Bob’s true input b. If after
Alice instructs all instances of JFSCOT-SIRIAKPV to open, it is revealed that she
has cheated (in a way that was not detected earlier), then the simulator instructs
the functionality to abort and identify her as corrupt. If she has not cheated,
then the simulator generates an encoding β of b in exactly the same manner
as Bob does in step 2 of the protocol. The simulator then computes γj,i

..=
α1

j,i · βj + α0
j,i · (1 − βj) for every j ∈ [ξ] and decommits every γ on behalf ofJFComKPV.

47

5.3 CVOLE with Single-Sided Input Revealing
A simple adjustment of FCVOLE-IRIA and πCVOLE-IRIA-PV allows us to create a one-
sided variant. This is in some sense analogous to the functionality we specify
for OT and OT extension in sections 3 and 4, where Alice is the sender. Thus
we refer to our modified functionality as SCVOLE-SIRIA.

The change to the functionality is simple: the functionality reveals only the
inputs and outputs of PA upon receiving the open instruction from PA alone.
That is, PB need send no message to trigger the Opening phase, and only a
and c are released. Likewise in the case of an abort, only the inputs and outputs
of PA are revealed. The protocol changes in the following way: steps 10, 11, and
13 are eliminated completely; in step 15, PB does not decommit anything; and
in step 16, PA does not check the values that PB no longer decommits. From
these modifications, the changes to the instructions of the passive verifiers V
can easily be inferred.

Given the above modification, it is possible to modify the functionality such
that the sender’s input (i.e. Bob’s input) is vectorized, rather than Alice’s.
Chen et al. [CCD+20] give a mechanism for forcing Alice to reuse her input
with more than one of Bob’s inputs. We simply apply this mechanism instead
of the mechanism for forcing Bob to reuse his inputs. All else follows directly
from what we have described.

6 From CVOLE-IRIA to Sampling Functionali-
ties and a Security-Enhancing Protocol Com-
piler

In this section we show how to use the Committed Vector OLE functional-
ity introduced in section 5 to construct generic MPC with plain identifiable
abort via purely information theoretic techniques. As our first stepping stone,
we construct generic MPC with input-revealing identifiable abort. We use the
well-known information-theoretically secure online phase of the SPDZ [DPSZ12]
protocol, which requires a certain type of correlated randomness and typically
achieves only security with abort. However, a simple modification allows it to be
upgraded to input-revealing identifiable abort: we use a “preprocessing” func-
tionality to sample the correlated randomness, which has IA and also supports
voluntary public opening of all parties’ outputs. In the case that there is an
abort in the online phase, the preprocessing functionality is instructed to open
its outputs, and afterward anyone can verify whether the protocol parties sent
messages that were consistent with their internal states. We begin by giving the
preprocessing functionality.
Functionality 6.1. FSPDZPrep-IA(n,Fq, λs): SPDZ Preprocessing

This functionality interacts with n active participants, P1, . . . ,Pn. In
addition to the party count, it is parameterized by a finite field Fq of size

48

q over which the correlated randomness is generated, and a statistical
parameter λs. For convenience, we define ρ ..= dλs/|q|e to be the number
of Fq elements required for a λs-bit MAC.

SPDZ Preprocessing: On receiving (prep, sid, u, v) from some Pi such
that P1‖ . . . ‖Pn‖sid′ = sid for some fresh sid′, send (prep-req, sid, u, v,Pi)
to all parties. On receiving (prep, sid, u, v) from every Pi for i ∈ [n], wait
for S to send (proceed, sid) or (abort, sid,Pc) such that c ∈ [n] and Pc

is corrupt. In the latter case, forward (abort, sid,Pc) to all parties and
ignore all future messages with the same sid. In the former case (i.e. when
S sends proceed):

1. For every i ∈ [n] such that Pi is corrupt, wait for S to send
(adv-shares, sid, i, δi,[ρ], mi,[ui], {wi,j,[uj]}j∈[n], xi,[v], yi,[v], zi,[v]).

2. For every i ∈ [n] such that Pi is honest, sample

δi,[ρ] ← Fρ
q mi,[ui] ← Fui

q wi,j,[uj] ← Fuj
q for j ∈ [n]

xi,[v] ← Fv
q yi,[v] ← Fv

q zi,[v] ← Fv
q

subject for ever k ∈ [v] to∑
j∈[n]

zj,k =
∑

j∈[n]

xj,k ·
∑

j∈[n]

yj,k

and subject to

m =

{{∑
i∈[n]

wi,j,k

}
k∈[uj]

}
j∈[n]

3. Sample

ẘ[n],j,[uj],[ρ] ← Fn×uj×ρ
q for j ∈ [n] x̊, ẙ, z̊← Fn×v×ρ

q

subject for every k ∈ [v] and l ∈ [ρ] to∑
i∈[n]

x̊i,k,l =
∑
i∈[n]

δi,l ·
∑
i∈[n]

xi,k

∑
i∈[n]

ẙi,k,l =
∑
i∈[n]

δi,l ·
∑
i∈[n]

yi,k∑
i∈[n]

z̊i,k,l =
∑
i∈[n]

δi,l ·
∑
i∈[n]

zi,k

49

and subject for every j ∈ [n] and k ∈ [uj] and l ∈ [ρ] to∑
i∈[n]

ẘi,j,k,l =
∑
i∈[n]

δi,l ·
∑
i∈[n]

wi,j,k

4. Output

(prep, sid, δi,∗, mi,∗, wi,∗,∗, ẘi,∗,∗,∗, xi,∗, x̊i,∗,∗, yi,∗, ẙi,∗,∗, zi,∗, z̊i,∗,∗)

to Pi for every i ∈ [n] and store (prep, sid, δ, m, w, ẘ, x, x̊, y, ẙ, z, z̊) in
memory.

Opening: On receiving (open, sid) from some Pi, send (open-req, sid,Pi)
to all parties. On receiving (open, sid) from some Pi for every i ∈ [n],
if S sends (proceed, sid) or all active participants are honest, then find
the record (prep, sid, δ, m, w, ẘ, x, x̊, y, ẙ, z, z̊) in memory and send it to
all parties. If S sends (abort, sid,Pc) such that Pc is corrupt, then send
(abort, sid,Pc) to all parties. Regardless, ignore all future instructions with
this sid.

The above functionality produces secret shares of a MAC key, δ, secret shares
of a set of Beaver triples, where each triple contains three elements (x, y, z) such
that x · y = z, secret shares of a set of masks (denoted m), and secret shares
of linear MACs on both the masks, and the Beaver triple components. To
realize the above functionality in the JFCVOLE-IRIAKPV-hybrid model, we adapt
the MASCOT protocol [KOS16]. Because we work with VOLE rather than
with OT, the original protocol can be simplified substantially: pairwise VOLE
instances can be used to compute shares of z given shares of x and y, and a
second set of pairwise VOLE instances can be used to calculate the MACs, while
enforcing that the MAC key shares are used consistently. Nothing enforces that
a cheating party uses the same share of z as input for the second set of VOLE
instances that it received as output from the first set, and so MASCOT includes
a statistical check to ensure that this is the case, which we retain.
Protocol 6.2. πMASCOT-IA-PV(n,Fq, λs): MASCOT with IA

This protocol involves n active participants, P1, . . . ,Pn, an a-priori-
unknown number of passive verifiers (collectively denoted V), and the ideal
functionalities JFCVOLE-IRIAKPV, JFComKPV, and JFCTKPV. In addition to the
party count, it is parameterized by a finite field Fq of size q over which
the correlated randomness is generated, and a statistical parameter λs.
For convenience, we define ρ ..= dλs/|q|e to be the number of Fq elements
required for a λs-bit MAC.

50

SPDZ Preprocessing:

1. When Pi receives (prep, sid, u, v) from the environment such that
P1‖ . . . ‖Pn‖sid′ = sid for some fresh sid′, Pi forwards this message on
the broadcast channel, computes u′ ..= {uj}j∈[n], samples

xi,[v] ← Fv
q and yi,[v] ← Fv

q

and for j ∈ [n]\{i} and k ∈ [v], Pi sends (vector,Pj‖Pi‖sid‖z‖k, {yi,k})
and (correlation,Pi‖Pj‖sid‖z‖k, xi,k) to JFCVOLE-IRIA(Fq, 1)KPV.

2. Pi sends (observe,Pj‖Pl‖sid‖z‖k) to JFCVOLE-IRIA(Fq, 1)KPV for every
j ∈ [n] \ {i} and l ∈ [n] \ {i, j} and k ∈ [v].

3. If Pi receives (abort,Pj‖Pl‖sid‖z‖k,Pc) from JFCVOLE-IRIA(Fq, 1)KPV for
any j ∈ [n] and l ∈ [n]\{j} and k ∈ [v], then Pi outputs (abort, sid,Pc)
to the environment and ignores all future instructions involving sid.

4. When Pi receives (share,Pi‖Pj‖sid‖z‖k, {di,j,k}) and
(share,Pj‖Pi‖sid‖z‖k, {ci,j,k}) and (vole-done,Pj‖Pl‖sid‖z‖k)
from JFCVOLE-IRIA(Fq, 1)KPV for every j ∈ [n] \ {i} and l ∈ [n] \ {i, j} and
k ∈ [v], Pi samples

δi,[ρ] ← Fρ
q wi,j,[u′

j
] ← Fu′

j
q for j ∈ [n] si,[v], ti,[v] ← Fv

q

and computes

w ..= 5v +
∑

j∈[n]

u′
j

zi,k
..= xi,k · yi,k +

∑
j∈[n]\{i}

(ci,j,k + di,j,k) for every k ∈ [v]

ri,[w]
..= wi,1,∗‖ . . . ‖wi,n,∗‖xi,∗‖yi,∗‖zi,∗‖si,∗‖ti,∗

and then Pi sends (correlation,Pi‖Pj‖sid‖mac‖k, δi,k) and
(vector,Pj‖Pi‖sid‖mac‖k, ri,∗) to JFCVOLE-IRIA(Fq, w)KPV for every
j ∈ [n] \ {i} and k ∈ [ρ].

5. Pi sends (observe,Pj‖Pl‖sid‖mac‖k) to JFCVOLE-IRIA(Fq, w)KPV for every
j ∈ [n] \ {i} and l ∈ [n] \ {i, j} and k ∈ [ρ].

6. If Pi receives (abort,Pj‖Pl‖sid‖mac‖k,Pc) from JFCVOLE-IRIA(Fq, w)KPV
for any j ∈ [n] and l ∈ [n] \ {j} and k ∈ [ρ], then Pi outputs
(abort, sid,Pc) to the environment and ignores all future instructions
involving sid.

51

7. When Pi receives (share,Pi‖Pj‖sid‖mac‖k, d̊i,j,[w],k) and
(share,Pj‖Pi‖sid‖mac‖k, c̊i,j,[w],k) and (vole-done,Pj‖Pl‖sid‖mac‖k)
from JFCVOLE-IRIA(Fq, w)KPV for every j ∈ [n] \ {i} and l ∈ [n] \ {i, j}
and k ∈ [ρ], Pi computes

r̊i,l,k
..= ri,l · δi,k +

∑
j∈[n]\{i}

(̊
ci,j,l,k + d̊i,j,l,k

)
for every l ∈ [w]

r̊i,∗,k =.. ẘi,1,∗,k‖ . . . ‖ẘi,n,∗,k‖̊xi,∗,k‖̊yi,∗,k‖̊zi,∗,k‖̊si,∗,k‖̊ti,∗,k

for k ∈ [ρ] and sends (sample, sid‖1) to JFCT(n,Fv×ρ
q)KPV.

8. On receiving (coins, sid‖1,σ) from JFCT(n,Fv×ρ
q)KPV, Pi computes

τ i,k,o
..= σk,o · xi,k − si,k

τ̊ i,k,l,o
..= σk,o · x̊i,k,l − s̊i,k,l

for every k ∈ [v] and l, o ∈ [ρ] and broadcasts (triple-check, sid, τ i,∗,∗).
Pi also broadcasts (masks, sid, j, wi,j,∗) for every j ∈ [n] \ {i}.

9. When Pi receives (triple-check, sid, τ j,[v],[ρ]) and (masks, sid, i, wj,i,∗)
from every Pj , Pi computes

ϕi,k,o
..= σk,o · zi,k − ti,k − yi,k ·

∑
j∈[n]

τ j,k,o

ϕ̊i,k,l,o
..= σk,o · z̊i,k,l − t̊i,k,l − ẙi,k,l ·

∑
j∈[n]

τ j,k,o

for every k ∈ [v] and l, o ∈ [ρ] and sends (observe,Pj‖sid) to JFComKPV

for every j ∈ [n]\{i} and (sample, sid‖2) to JFCT(n,Fu′
1×ρ

q ×. . .×Fu′
n×ρ

q ×
Fv×ρ

q × Fv×ρ
q)KPV.

10. On receiving (coins, sid‖2,χ) from JFCT(n,Fu′
1×ρ

q ×. . .×Fu′
n×ρ

q ×Fv×ρ
q ×

Fv×ρ
q)KPV, Pi computes

mi,k
..=
∑

j∈[n]

wj,i,k for k ∈ [u′
i]

ψi,o
..=

∑
k∈[u′

i
]

(
χi,k,o ·mi,k

)
for o ∈ [ρ]

and broadcasts (mask-check, sid,ψi,∗).

52

11. When Pi receives (mask-check, sid,ψj,[ρ]) from every Pj , Pi computes

ψ̊i,l,o
..=
∑

j∈[n]

∑
k∈[u′

j
]

χj,k,o · ẘi,j,k,l

+
∑

k∈[v]

(
χn+1,k,o · τ̊ i,k,l,o + χn+2,k,o · ϕ̊i,k,l,o

)

ωi,l,o
..= ψ̊i,l,o − δi,l ·

∑
j∈[n]

ψj,o +
∑

k∈[v]

χn+1,k,o ·
∑

j∈[n]

τ j,k,o


for every l, o ∈ [ρ] and sends (commit,Pi‖sid,ωi,∗,∗) to JFComKPV.

12. When Pi receives (committed,Pj‖sid) to JFComKPV for every j ∈ [n]\{i},
it sends (decommit,Pi‖sid) to JFComKPV.

13. When Pi receives (decommitted,Pj‖sid,ωj,[ρ],[ρ]) from JFComKPV for ev-
ery j ∈ [n] \ {i}, Pi verifies that∑

j∈[n]

ωj,l,o = 0

for every l, o ∈ [ρ]. If this equation holds, then Pi outputs(
prep, sid, δi,∗, mi,[ui],

{
wi,j,[uj]

}
j∈[n] ,{

ẘi,j,[uj],∗
}

j∈[n] , xi,∗, x̊i,∗,∗, yi,∗, ẙi,∗,∗, zi,∗, z̊i,∗,∗

)

to the environment broadcasts (ok, sid), and does not go on to step 16.
If the equation does not hold, then Pi broadcasts (jaccuse, sid) and
jumps to step 14.

Opening:

14. On receiving (open, sid) from the environment Pi, sends

• (open,Pi‖Pj‖sid‖z‖k) to JFCVOLE-IRIA(Fq, 1)KPV for k ∈ [v]
• (open,Pj‖Pi‖sid‖z‖k) to JFCVOLE-IRIA(Fq, 1)KPV for k ∈ [v]
• (open,Pi‖Pj‖sid‖mac‖k) to JFCVOLE-IRIA(Fq, w)KPV for k ∈ [ρ]
• (open,Pj‖Pi‖sid‖mac‖k) to JFCVOLE-IRIA(Fq, w)KPV for k ∈ [ρ]

for j ∈ [n] \ {i}.

53

15. On receiving the input and output records for all of theJFCVOLE-IRIAKPV instances associated specifically with Pj in the fore-
going protocol, if Pi did not jump to this phase from step 13, then
Pi outputs (open-req, sid,Pj) to the environment.

16. On receiving the input and output records for all of theJFCVOLE-IRIAKPV instances involved in the foregoing protocol, Pi checks
the work of all other parties in ascending order. If it finds a party
Pc that has sent a message inconsistent with the values revealed byJFCVOLE-IRIAKPV, it outputs (abort, sid,Pc). Otherwise, having calcu-
lated all input and output shares in the way the other parties would
have, it outputs (prep, sid, δ, m, w, ẘ, x, x̊, y, ẙ, z, z̊) to the environ-
ment. Regardless, Pi ignores all future instructions involving sid.

Verification:

17. If there is an observing verifier V, then upon receiving (observe, sid)
from the environment, V waits to receive (prep, sid, u, v) from any active
participant on the broadcast channel, and then sends (observe, sid‖1)
and (observe, sid‖2) to JFCTKPV and

• (observe,Pi‖Pj‖sid‖z‖k) to JFCVOLE-IRIA(Fq, 1)KPV for k ∈ [v]
• (observe,Pj‖Pi‖sid‖z‖k) to JFCVOLE-IRIA(Fq, 1)KPV for k ∈ [v]
• (observe,Pi‖Pj‖sid‖mac‖k) to JFCVOLE-IRIA(Fq, w)KPV for k ∈ [ρ]
• (observe,Pj‖Pi‖sid‖mac‖k) to JFCVOLE-IRIA(Fq, w)KPV for k ∈ [ρ]
• (observe,Pi‖sid) to JFComKPV

for i ∈ [n] and j ∈ [n] \ {i}.

18. If any active participant broadcasts (jaccuse, sid) in step 13, then V
jumps to step 14 and runs the same code as the active participants
would.

Theorem 6.3. For any finite field F and any n, λs ∈ N+, πMASCOT-IA-PV(n,F, λs)
statistically UC-realizes JFSPDZPrep-IA(n,F, λs)KPV against a malicious ad-
versary statically corrupting up to n − 1 active participants in the
(JFCVOLE-IRIAKPV, JFComKPV, JFCTKPV)-hybrid model.

Proof Sketch. Our protocol is simply the original MASCOT protocol, with
beaver triple and MAC generation performed in a black-box way byJFCVOLE-IRIAKPV, and the MAC repeated sufficiently many times to achieve sta-
tistical security regardless of the field size. We observe that under these changes,
the protocol is information theoretic, which makes simulation far easier than it
was in the case of the original MASCOT. Any time the simulator must send a
value on behalf of a functionality or honest party, and that value is not fixed by
the existing protocol transcript, it samples one uniformly; this fixes the outputs

54

of the corrupt parties in a way that the simulator can predict, and the simulator
then supplies these outputs to JFSPDZPrep-IAKPV using the adv-shares interface.

Given any well-formed protocol output and any adversarial observation of
the intermediate state of the protocol (which comprises the messages of honest
parties, the outputs of JFCTKPV, and the inputs and outputs to instances ofJFCVOLE-IRIAKPV in which corrupt parties were active participants), it is always
possible to retroactively compute a set of protocol-consistent inputs and outputs
for the honest parties in their interactions with JFCVOLE-IRIAKPV. When the sim-
ulator receives instructions to open the protocol and learns the honest parties’
ideal outputs from JFSPDZPrep-IAKPV, it does this, and then emits the calculated
intermediate values on behalf of JFCVOLE-IRIAKPV.

Next, we give the functionality for general MPC with IRIA, and argue that
it can be realized by using the SPDZ online phase to consume the preprocessing
generated by JFSPDZPrep-IA(n,F, λs)KPV, and opening everything in the case of an
abort.
Functionality 6.4. FMPC-IRIA(n,F). Reactive MPC with IRIA

This functionality interacts with n actively participating parties denoted
by P1 . . .Pn and with the ideal adversary S. It is also parameterized
by the description of a field F over which it operates. Whenever this
functionality receives a message from any party, it notifies the other parties
that the message was received, including in the notification the sender’s
ID, the session ID, and any subsession IDs.

Initialization: On receiving (init, sid, u, v) from each Pi for i ∈ [n]
such that P1‖ . . . ‖Pn‖sid′ = sid for some fresh sid′, u ∈ Nn, and v ∈ N,
send (init-req, sid, u, v) to S. If S responds with (abort, sid,Pj) and Pj

is corrupt, then send (abort, sid,Pj) to all parties and ignore all future
instructions with the same session ID. If S respond with (proceed, sid)
or Pj is honest, then send (initialized, sid, u, v) to all parties and store
(initialized, sid, u, v) in memory.

Input: On receiving (input, sid, ssid,Pi, x) for x ∈ F from Pi for some
i ∈ [n] and (input, sid, ssid,Pi) from Pj for every j ∈ [n] \ {i}, if ssid is
fresh for this sid and the record (initialized, sid, u, v) exists in memory,
and fewer than ui records of the form (wire, sid, ∗, i, ∗) exist in memory,
then store (wire, sid, ssid, i, x) in memory.

Addition: On receiving (add, sid, ssid1, ssid2, ssid3) from Pi for ev-
ery i ∈ [n], if ssid3 is fresh for this sid and records of the form
(wire, sid, ssid1, ∗, x) and (wire, sid, ssid2, ∗, y) are stored in memory, then
store (wire, sid, ssid3, add, x + y) in memory.

55

Multiplication: On receiving (mult, sid, ssid1, ssid2, ssid3) from Pi for
every i ∈ [n], if ssid3 is fresh for this sid and records of the form
(wire, sid, ssid1, ∗, x) and (wire, sid, ssid2, ∗, y) and (initialized, sid, u, v)
exist in memory, and fewer than v records of the form (wire, sid, ∗, mul, ∗)
exist in memory, then store (wire, sid, ssid3, mul, x · y) in memory.

Output: On receiving (output, sid, ssid) from Pi for every i ∈
[n], if at least one actively participating party is honest and a
record of the form (wire, sid, ssid, ∗, x) exists in memory, then send
(candidate-output, sid, ssid, x) to S, and receive either (proceed, sid, ssid)
or (abort, sid,Pj) in response. If abort is received and Pj is corrupt, then
send all records of the form (wire, sid, ∗, ∗, ∗) to S and send (abort, sid,Pj)
to all parties; if proceed is received or Pj is not corrupt, then send
(output, sid, ssid, x) to all parties.

Corollary 6.5. For any finite field F and any n ∈ N+, there exists a protocol
that statistically UC-realizes JFMPC-IRIA(n,F)KPV against a malicious adversary
statically corrupting up to n−1 active participants in the JFSCOT-SIRIAKPV-hybrid
model.

Proof Sketch. To realize JFMPC-IRIA(n,F)KPV, we use the SPDZ [DPSZ12] online
protocol (adjusted such that the MAC is repeated dλs/ log2 |F|e times, where
λs is the statistical security parameter), and generate the required correlated
randomness using JFSPDZPrep-IA(n,F, λs)KPV. Simulation is straightforward. Any
time the simulator must send a value on behalf of a functionality or honest party
that is not fixed by the existing protocol transcript, it samples one uniformly;
this fixes the outputs of the corrupt parties in a way that the simulator can
predict. If an abort occurs, the simulator learns the honest parties’ inputs and
outputs, and there are enough degrees of freedom that it can compute a set
of MACs that are consistent, which it outputs to the adversary on behalf ofJFSPDZPrep-IA(n,F, λs)KPV.

By sequentially applying theorems 6.3 and 5.4, we can UC-realize this func-
tionality in the (JFSCOT-SIRIAKPV, JFComKPV, JFCTKPV)-hybrid model.

In the JFComKPV-hybrid model, we can realize JFCTKPV with identifiable abort
in the following simple way: the parties locally sample XOR shares of the coins
to be tossed, and then commit and release them. JFComKPV is trivially realizable
in the JFSCOT-SIRIAKPV-hybrid model: the committer simply sends XOR shares
of the value to be committed to the OT functionality (playing the role of Alice).
To open the commitment, the committer instructs the functionality to open the
OT messages; otherwise, the receiver learns only one share. Using these two
realizations yields the corollary.

MPC with input-revealing identifiable abort cannot be used in any context
where the honest parties have sensitive inputs. In the context of inputless
sampling functionalities, however, it has no downside: the inputs and outputs
of a sampling functionality are discarded (and thus of no value to the adversary)
in the case of an abort. In other words, for inputless sampling functionalities,

56

IA and IRIA are equivalent. This fact will help us to realize MPC with IA for
all functions: we can use MPC with IRIA to sample the correlated randomness
required by an information-theoretic protocol for MPC with IA. We demonstrate
two pathways. The first involves a specific functionality for generic gate-by-gate
computation of any circuit.
Functionality 6.6. FMPC-IA(n,F). Reactive MPC with IA

This functionality is the same as FMPC-IRIA(n,F), except that S does not
receive any records of the form (wire, sid, ∗, ∗, ∗) in the case of an abort.

Corollary 6.7. For any finite field F and any n ∈ N+, there exists a protocol
that statistically UC-realizes JFMPC-IA(n,F)KPV against a malicious adversary
statically corrupting up to n−1 active participants in the JFSCOT-SIRIAKPV-hybrid
model.

Proof Sketch. We can construct a protocol satisfying this corollary by us-
ing JFMPC-IRIAKPV to compute the correlated randomness for the information-
theoretic online phase of the protocol of Baum et al. [BOS16]. If the resulting
protocol aborts while the correlated randomness is being generated, then the
correlated randomness is published, but never used. If there is no abort during
the generation of the correlated randomness, then it is never revealed, and the
online phase identifies cheaters while hiding the honest inputs and outputs.

Our second pathway involves a protocol compiler, which transforms any
protocol with information-theoretic security in the semi-honest setting into a
protocol that achieves identifiable abort.

Corollary 6.8. Let πSH be a FD
Corr-hybrid protocol (for an efficiently computable

distribution D) that information-theoretically UC-realizes a functionality F in
the presence of a semi-honest adversary statically corrupting n− 1 participants.
There exists a compiler to turn πSH into an JFSCOT-SIRIAKPV-hybrid protocol that
information-theoretically UC-realizes F with publicly verifiable identifiable abort
in the presence of a malicious adversary statically corrupting n−1 participants.
Moreover, this compiler is asymptotically round-preserving.

Proof Sketch. We can construct a compiler satisfying this corollary by us-
ing JFMPC-IRIAKPV to compute the correlated randomness for the information-
theoretic online phase of the compiler of Ishai et al. [IOZ14]. If this compiler
is applied to an appropriate input protocol, and the compiled protocol aborts
while the correlated randomness is being generated, then the correlated ran-
domness is published, but never used. If there is no abort during the generation
of the correlated randomness, then it is never revealed, and the online phase
identifies cheaters while hiding the honest inputs and outputs.

Finally, we give an efficiency result for biased sampling functionalities with
guaranteed output. Our efficiency result is phrased in terms of the number of

57

instances of the JFSCOT-SIRIAKPV functionality that are required. This function-
ality is the only functionality whose realization requires public key operations:
specifically, each instance requires a constant number of public key operations
when our protocol from section 3 is used. Thus we effectively upper-bound the
number of public-key operations required by the same asymptotic figure.

Corollary 6.9. For any n ∈ N+ and any PPT sampling function, there exists a
protocol that performs rejection-biased distributed sampling using that sampling
function, with publicly verifiable and universally composable guaranteed output
delivery against a malicious adversary statically corrupting up to n − 1 active
participants, in the JFSCOT-SIRIAKPV-hybrid random oracle model. This protocol
requires each party to invoke JFSCOT-SIRIAKPV at most O(n · λc) times.

Proof Sketch. We begin with by combining JFMPC-IRIAKPV with the GMW player-
elimination technique [GMW87]. The parties invoke JFMPC-IRIA(n)KPV on secret,
uniform inputs of appropriate dimension, and then feed it a circuit description
of the sampling function. If an abort occurs, the party identified as having
caused it is eliminated, and the remaining parties try again.

If we realize JFMPC-IRIAKPV via corollary 6.5, the resulting protocol is in-
formation theoretically secure in the JFSCOT-SIRIAKPV-hybrid. Now the many
independent instances of JFSCOT-SIRIAKPV that are invoked by each pair of par-
ties can be replaced by a single pairwise invocation of JFSCOTE-SIRIAKPV that is
initialized once and reused to generate additional batches of OTs when required.
Because one of the two invoking paries is eliminated any time this functionality
aborts, no more than n instances will ever be initialized per party.

Via corollary 4.4, each instance of JFSCOTE-SIRIAKPV can be realized via O(λc)
instances of JFSCOT-SIRIAKPV in the random oracle model; this implies O(n · λc)
instances of JFSCOT-SIRIAKPV per party in total.

Acknowledgements
The authors of this work were supported variously by the NSF under grants
1646671, 1816028, and 2055568, by the ERC under projects NTSC (742754),
SPEC (803096), and HSS (852952), by ISF grant 2774/2, by AFOSR award
FA9550-21-1-0046, by the Algorand Centres of Excellence programme managed
by the Algorand Foundation, and by the Carlsberg Foundation under the Sem-
per Ardens Research Project CF18-112 (BCM). Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of any funding entity.

References
[ACC+21] Bar Alon, Hao Chung, Kai-Min Chung, Mi-Ying Huang, Yi Lee,

and Yu-Ching Shen. Round efficient secure multiparty quantum
computation with identifiable abort. In Advances in Cryptology –
CRYPTO 2021, part I, pages 436–466, 2021.

58

[AL10] Yonatan Aumann and Yehuda Lindell. Security against covert ad-
versaries: Efficient protocols for realistic adversaries. Journal of
Cryptology, 23(2):281–343, 2010.

[AO16] Bar Alon and Eran Omri. Almost-optimally fair multiparty coin-
tossing with nearly three-quarters malicious. In Proceedings of
the 14th Theory of Cryptography Conference, TCC 2016-B, part
I, pages 307–335, 2016.

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer,
and Madars Virza. Secure sampling of public parameters for suc-
cinct zero knowledge proofs. In Proceedings of the 36th IEEE Sym-
posium on Security and Privacy, (S&P), pages 287–304, 2015.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa
Kohl, and Peter Scholl. Efficient pseudorandom correlation gen-
erators: Silent OT extension and more. In Advances in Cryptology
– CRYPTO 2019, part III, pages 489–518, 2019.

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa
Kohl, and Peter Scholl. Correlated pseudorandom functions from
variable-density LPN. In Proceedings of the 61st Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 1069–
1080, 2020.

[BDF+23] Jakob Burkhardt, Ivan Damgård, Tore Kasper Frederiksen, Satrajit
Ghosh, and Claudio Orlandi. Improved distributed RSA key gen-
eration using the miller-rabin test. IACR Cryptol. ePrint Arch.,
page 644, 2023.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Za-
karias. Semi-homomorphic encryption and multiparty computa-
tion. In Advances in Cryptology – EUROCRYPT 2011, pages 169–
188, 2011.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Advances in
Cryptology – CRYPTO 1995, pages 97–109, 1995.

[BF01] Dan Boneh and Matthew K. Franklin. Efficient generation of shared
RSA keys. Journal of the ACM, 48(4):702–722, 2001.

[BGIN22] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Secure mul-
tiparty computation with sublinear preprocessing. In Advances in
Cryptology – EUROCRYPT 2022, part I, pages 427–457, 2022.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party
computation for zk-snark parameters in the random beacon model.
IACR Cryptol. ePrint Arch., 2017:1050, 2017.

59

[BHLT17] Niv Buchbinder, Iftach Haitner, Nissan Levi, and Eliad Tsfadia.
Fair coin flipping: Tighter analysis and the many-party case. In
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2580–2600, 2017.

[BLOO11] Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov. 1/p-
secure multiparty computation without honest majority and the
best of both worlds. In Advances in Cryptology – CRYPTO 2011,
pages 277–296, 2011.

[BMMM20] Nicholas-Philip Brandt, Sven Maier, Tobias Müller, and Jörn
Müller-Quade. Constructing secure multi-party computation with
identifiable abort. http://eprint.iacr.org/2020/153, 2020.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round
complexity of secure protocols (extended abstract). In Proceed-
ings of the 22nd Annual ACM Symposium on Theory of Computing
(STOC), pages 503–513, 1990.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain
public-key model and a general forking lemma. In Proceedings of the
13th ACM Conference on Computer and Communications Security,
(CCS), 2006.

[BOO15] Amos Beimel, Eran Omri, and Ilan Orlov. Protocols for multi-
party coin toss with a dishonest majority. Journal of Cryptology,
28(3):551–600, 2015.

[BOS16] Carsten Baum, Emmanuela Orsini, and Peter Scholl. Efficient se-
cure multiparty computation with identifiable abort. In Proceedings
of the 14th Theory of Cryptography Conference, TCC 2016-B, part
I, pages 461–490, 2016.

[BOSS20] Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo
Soria-Vazquez. Efficient constant-round MPC with identifiable
abort and public verifiability. In Advances in Cryptology –
CRYPTO 2020, part II, pages 562–592, 2020.

[Can01] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In Proceedings of the 42nd Annual
Symposium on Foundations of Computer Science (FOCS), pages
136–145, 2001.

[CCD+20] Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa
Lee, Schuyler Rosefield, and abhi shelat. Multiparty generation of
an RSA modulus. In Advances in Cryptology – CRYPTO 2020,
part III, pages 64–93, 2020.

60

http://eprint.iacr.org/2020/153

[CCL+23] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Bandwidth-efficient threshold EC-DSA
revisited: Online/offline extensions, identifiable aborts proactive
and adaptive security. Theor. Comput. Sci., 939:78–104, 2023.

[CDKs22] Ran Cohen, Jack Doerner, Yashvanth Kondi, and abhi shelat.
Guaranteed output in O(

√
n) rounds for round-robin sampling pro-

tocols. In Advances in Cryptology – EUROCRYPT 2022, part I,
pages 241–271, 2022.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commit-
ments. In Advances in Cryptology – CRYPTO 2001, pages 19–40,
2001.

[CFY17] Robert K. Cunningham, Benjamin Fuller, and Sophia Yakoubov.
Catching MPC cheaters: Identification and openability. In Proceed-
ings of the 10th International Conference on Information Theoretic
Security (ICITS), pages 110–134, 2017.

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos
Makriyannis, and Udi Peled. UC non-interactive, proactive, thresh-
old ECDSA with identifiable aborts. In Proceedings of the 27th
ACM Conference on Computer and Communications Security,
(CCS), pages 1769–1787. ACM, 2020.

[CGZ20] Ran Cohen, Juan A. Garay, and Vassilis Zikas. Broadcast-optimal
two-round MPC. In Advances in Cryptology – EUROCRYPT 2020,
part II, pages 828–858, 2020.

[CHI+21] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele
Micciancio, Tarik Riviere, abhi shelat, Muthu Venkitasubrama-
niam, and Ruihan Wang. Diogenes: Lightweight scalable RSA
modulus generation with a dishonest majority. In Proceedings of
the 42nd IEEE Symposium on Security and Privacy, (S&P), pages
590–607, 2021.

[CHOR22] Ran Cohen, Iftach Haitner, Eran Omri, and Lior Rotem. From fair-
ness to full security in multiparty computation. Journal of Cryp-
tology, 35(1):4, 2022.

[CL17] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output
delivery in secure multiparty computation. Journal of Cryptology,
30(4):1157–1186, 2017.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the
processors are faulty (extended abstract). In Proceedings of the
18th Annual ACM Symposium on Theory of Computing (STOC),
pages 364–369, 1986.

61

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai.
Universally composable two-party and multi-party secure compu-
tation. In Proceedings of the 34th Annual ACM Symposium on
Theory of Computing (STOC), pages 494–503, 2002.

[CRSW22] Michele Ciampi, Divya Ravi, Luisa Siniscalchi, and Hendrik Wald-
ner. Round-optimal multi-party computation with identifiable
abort. In Advances in Cryptology – EUROCRYPT 2022, part I,
pages 335–364, 2022.

[CvdGT95] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Com-
mitted oblivious transfer and private multi-party computation. In
Advances in Cryptology – CRYPTO 1995, pages 110–123, 1995.

[Dac20] Dana Dachman-Soled. Revisiting fairness in MPC: polynomial
number of parties and general adversarial structures. In Proceed-
ings of the 18th Theory of Cryptography Conference, TCC 2020,
part II, pages 595–620, 2020.

[DKLs18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Se-
cure two-party threshold ECDSA from ECDSA assumptions. In
Proceedings of the 39th IEEE Symposium on Security and Privacy,
(S&P), pages 980–997, 2018.

[DKLs19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Thresh-
old ECDSA from ECDSA assumptions: The multiparty case. In
Proceedings of the 40th IEEE Symposium on Security and Privacy,
(S&P), 2019.

[DKLs23] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Thresh-
old ecdsa in three rounds. Cryptology ePrint Archive, Paper
2023/765, 2023. https://eprint.iacr.org/2023/765.

[DMR+21] Ivan Damgård, Bernardo Magri, Divya Ravi, Luisa Siniscalchi, and
Sophia Yakoubov. Broadcast-optimal two round MPC with an hon-
est majority. In Advances in Cryptology – CRYPTO 2021, part II,
pages 155–184, 2021.

[dMRT21] Cyprien Delpech de Saint Guilhem, Eleftheria Makri, Dragos Ro-
taru, and Titouan Tanguy. The return of eratosthenes: Secure
generation of RSA moduli using distributed sieving. In Proceedings
of the 28th ACM Conference on Computer and Communications
Security, (CCS), pages 594–609, 2021.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption.
In Advances in Cryptology – CRYPTO 2012, pages 643–662, 2012.

62

https://eprint.iacr.org/2023/765

[DRSY22] Ivan Damgård, Divya Ravi, Luisa Siniscalchi, and Sophia Yak-
oubov. Minimizing setup in broadcast-optimal two round MPC.
http://eprint.iacr.org/2022/293, 2022.

[DSW08] Yevgeniy Dodis, Victor Shoup, and Shabsi Walfish. Efficient con-
structions of composable commitments and zero-knowledge proofs.
In Advances in Cryptology – CRYPTO 2008, pages 515–535, 2008.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A random-
ized protocol for signing contracts. Communications of the ACM,
28(6):637–647, 1985.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of
knowledge with online extractors. In Advances in Cryptology –
CRYPTO 2005, pages 152–168, 2005.

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-
throughput secure three-party computation for malicious adver-
saries and an honest majority. In Advances in Cryptology – EU-
ROCRYPT 2017, part II, pages 225–255, 2017.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical so-
lutions to identification and signature problems. In Advances in
Cryptology – CRYPTO 1986, pages 186–194, 1986.

[Gar04] Juan A. Garay. Efficient and universally composable committed
oblivious transfer and applications. In Proceedings of the First The-
ory of Cryptography Conference, TCC 2004, pages 297–316, 2004.

[Gil99] Niv Gilboa. Two party RSA key generation. In Advances in Cryp-
tology – CRYPTO 1999, pages 116–129, 1999.

[GK09] S. Dov Gordon and Jonathan Katz. Complete fairness in multi-
party computation without an honest majority. In Proceedings of
the 6th Theory of Cryptography Conference, TCC 2009, pages 19–
35, 2009.

[GK12] S. Dov Gordon and Jonathan Katz. Partial fairness in secure two-
party computation. Journal of Cryptology, 25(1):14–40, 2012.

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn,
and Ian Miers. Updatable and universal common reference strings
with applications to zk-snarks. In Advances in Cryptology –
CRYPTO 2018, part III, pages 698–728, 2018.

[GKPS18] Chaya Ganesh, Yashvanth Kondi, Arpita Patra, and Pratik Sarkar.
Efficient adaptively secure zero-knowledge from garbled circuits. In
Michel Abdalla and Ricardo Dahab, editors, Public-Key Cryptogra-
phy - PKC 2018 - 21st IACR International Conference on Practice
and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil,

63

http://eprint.iacr.org/2022/293

March 25-29, 2018, Proceedings, Part II, volume 10770 of Lecture
Notes in Computer Science, pages 499–529. Springer, 2018.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest
majority. In Proceedings of the 19th Annual ACM Symposium on
Theory of Computing (STOC), pages 218–229, 1987.

[HMRT12] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft.
Efficient RSA key generation and threshold Paillier in the two-party
setting. In Proceedings of the Cryptographers’ Track at the RSA
Conference (CT-RSA), pages 313–331, 2012.

[HMZ08] Martin Hirt, Ueli Maurer, and Vassilis Zikas. MPC vs. SFE : Un-
conditional and computational security. In Advances in Cryptology
– ASIACRYPT 2008, pages 1–18, 2008.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost
constant round MPC combining BMR and oblivious transfer. In
Advances in Cryptology – ASIACRYPT 2017, part I, pages 598–
628, 2017.

[HT17] Iftach Haitner and Eliad Tsfadia. An almost-optimally fair
three-party coin-flipping protocol. SIAM Journal on Computing,
46(2):479–542, 2017.

[IKK+11] Yuval Ishai, Jonathan Katz, Eyal Kushilevitz, Yehuda Lindell, and
Erez Petrank. On achieving the "best of both worlds" in secure
multiparty computation. SIAM Journal on Computing, 40(1):122–
141, 2011.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. In Proceed-
ings of the 39th Annual ACM Symposium on Theory of Computing
(STOC), pages 21–30, 2007.

[IOS12] Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. Identifying
cheaters without an honest majority. In Proceedings of the 9th
Theory of Cryptography Conference, TCC 2012, pages 21–38, 2012.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-
party computation with identifiable abort. In Advances in Cryp-
tology – CRYPTO 2014, part II, pages 369–386, 2014.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryp-
tography on oblivious transfer - efficiently. In Advances in Cryp-
tology – CRYPTO 2008, pages 572–591, 2008.

64

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
knowledge using garbled circuits: how to prove non-algebraic state-
ments efficiently. In Proceedings of the 20th ACM Conference on
Computer and Communications Security, (CCS), pages 955–966.
ACM, 2013.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Com-
puting (STOC), pages 20–31, 1988.

[KMSV21] Markulf Kohlweiss, Mary Maller, Janno Siim, and Mikhail Volkhov.
Snarky ceremonies. In Advances in Cryptology – ASIACRYPT
2021, part III, pages 98–127, 2021.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas.
Universally composable synchronous computation. In Proceedings
of the 10th Theory of Cryptography Conference, TCC 2013, pages
477–498, 2013.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure
OT extension with optimal overhead. In Advances in Cryptology –
CRYPTO 2015, part I, pages 724–741, 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT:
faster malicious arithmetic secure computation with oblivious
transfer. In Proceedings of the 23th ACM Conference on Computer
and Communications Security, (CCS), pages 830–842, 2016.

[Ks22] Yashvanth Kondi and abhi shelat. Improved straight-line extraction
in the random oracle model with applications to signature aggre-
gation. In Advances in Cryptology – ASIACRYPT 2022, part II,
pages 279–309, 2022.

[Pas03] Rafael Pass. On deniability in the common reference string and
random oracle model. In Advances in Cryptology – CRYPTO 2003,
pages 316–337, 2003.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In Advances in Cryptology –
CRYPTO 1991, pages 129–140, 1991.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A frame-
work for efficient and composable oblivious transfer. In Advances
in Cryptology – CRYPTO 2008, pages 554–571, 2008.

[Qua20] Willy Quach. Uc-secure OT from lwe, revisited. In Security and
Cryptography for Networks - 12th International Conference, SCN
2020, Amalfi, Italy, September 14-16, 2020, Proceedings, pages
192–211, 2020.

65

[Roy22] Lawrence Roy. Softspokenot: Quieter OT extension from small-
field silent VOLE in the minicrypt model. In Advances in Cryptol-
ogy – CRYPTO 2022, part I, pages 657–687, 2022.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for
smart cards. In Advances in Cryptology – CRYPTO 1989, pages
239–252, 1989.

[SF16] Gabriele Spini and Serge Fehr. Cheater detection in SPDZ multi-
party computation. In Proceedings of the 9th International Con-
ference on Information Theoretic Security (ICITS), pages 151–176,
2016.

[SSY22] Mark Simkin, Luisa Siniscalchi, and Sophia Yakoubov. On suf-
ficient oracles for secure computation with identifiable abort. In
Proceedings of the 13th Conference on Security and Cryptography
for Networks (SCN), pages 494–515, 2022.

[WRK17] Xiao Wang, Samuel Ranellucci, and John Katz. Global-scale secure
multiparty computation. In Proceedings of the 24th ACM Confer-
ence on Computer and Communications Security, (CCS), pages
39–56, 2017.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (ex-
tended abstract). In Proceedings of the 23rd Annual Symposium on
Foundations of Computer Science (FOCS), pages 160–164, 1982.

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC
from improved triple generation and authenticated garbling. In
Proceedings of the 27th ACM Conference on Computer and Com-
munications Security, (CCS), pages 1627–1646, 2020.

[ZHM09] Vassilis Zikas, Sarah Hauser, and Ueli Maurer. Realistic failures in
secure multi-party computation. In Proceedings of the 6th Theory
of Cryptography Conference, TCC 2009, pages 274–293, 2009.

66

	Introduction
	Identifying Cheaters by Revealing One's Inputs
	Our Contributions
	Related Work

	Preliminaries
	Notation
	Security and Communication Model
	Notions of Security
	Building-Block Functionalities

	Sender-Committed OT
	Functionality with Sender-Input-Revealing IA
	Information-Theoretic Realization from Correlated Randomness
	Direct Computational Realization via PVW
	Building Blocks for PVW
	The Modified PVW Scheme, with a Proof of Security

	Extending SCOT-SIRIA
	SCOT Extension Extension

	From SCOT-(S)IRIA to CVOLE-IRIA
	Special Case for Booleans
	For Any Finite Field
	CVOLE with Single-Sided Input Revealing

	From CVOLE-IRIA to Sampling Functionalities and a Security-Enhancing Protocol Compiler

