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Abstract

A major challenge of any asynchronous MPC protocol is the need to reach an agreement
on the set of private inputs to be used as input for the MPC functionality. Ben-Or, Canetti
and Goldreich [STOC 93] call this problem Agreement on a Core Set (ACS) and solve it by
running n parallel instances of asynchronous binary Byzantine agreements. To the best of our
knowledge, all results in the perfect security setting used this same paradigm for solving ACS.
This leads to a fundamental barrier of expected Ω(log n) rounds for any asynchronous MPC
protocol (even for constant depth circuits).

We provide a new solution for Agreement on a Core Set that runs in expected O(1) rounds.
Our perfectly secure variant is optimally resilient (t < n/4) and requires just O(n4 log n) ex-
pected communication complexity. We show a similar result with statistical security for t < n/3.
Our ACS is based on a new notion of Asynchronously Validated Asynchronous Byzantine Agree-
ment (AVABA) and new information-theoretic analogs to techniques used in the authenticated
model.

In addition to the above, we also construct a new perfectly secure packed asynchronous
verifiable secret sharing (AVSS) protocol with communication complexity of O(nX + n3 log n)
for sharing X secrets (of size O(log n) bits each). The best prior required O(nX + n4 log n)
for X secrets. AVSS is an important building block for our ACS, and for asynchronous MPC.
We improve both communication complexity and round complexity in asynchronous MPC when
plugging our new ACS and new AVSS.
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1 Introduction
One of the core challenges for MPC protocols in the asynchronous setting is that they must reach
agreement on which private inputs to use as input for the circuit. Ben-Or, Canetti and Goldreich
(BCG) [10] call this problem Agreement on a Core Set (ACS). In this paper, we consider protocols
with optimal resilience in the asynchronous model against computationally unbounded adversaries.
From the lower bound of [4, 10, 12], perfect security for MPC implies that the number of corruptions
in this setting is at most t < n/4, so optimal resilience is when n = 4t+1. This is in contrast to the
optimal resilience of n = 3t + 1 in the synchronous perfect security setting and the asynchronous
statistical security setting. The seminal result of [10, 15] is the first work to obtain perfect security
with optimal resilience in the asynchronous model.

Before proceeding, we refine the problem definition. Our main motivating application for ACS
is in asynchronous secure computation. Each party shares its input at the beginning of the protocol
using asynchronous verifiable secret sharing (AVSS). When a dealer is honest, then all honest parties
will eventually receive valid shares. If the dealer is corrupted and one honest party terminates the
AVSS successfully, then all honest parties will eventually also receive valid shares. The parties then
wish to agree on a common core set of n− t parties whose AVSS has been successfully completed or
will eventually terminate. Clearly, each honest party can just wait for n− t AVSS instances of the
honest parties to be completed. However, if more than n− t AVSS instances have been completed,
the honest parties cannot be sure that all honest parties agree on the same set, with which instances
to proceed, and reaching an agreement is crucial for the sequel of the secure protocol. Using an
ACS protocol, parties agree on some set of n− t parties (“core”) whose AVSS has been terminated
or will eventually be terminated for all parties. The difficulty is that due to asynchrony, some of the
inputs of honest parties (which instances terminated) might arrive dynamically, and the corrupted
parties might input identities of instances that would never terminate.

In terms of round complexity, the best one can hope for is reaching agreement in constant
expectation [23]. However, to the best of our knowledge, all results in the asynchronous information-
theoretic setting run O(n) parallel asynchronous binary Byzantine agreement instances to agree
on a core set. Composing n parallel agreement protocols, where each protocol runs in constant
expected time, means that the expectation of the maximum is Ω(log n). So for over 30 years, the
best expected round complexity for asynchronous MPC has Ω(log n) overhead (even for constant
depth circuits)1. A natural question remained open:

Is there an asynchronous MPC with constant expected running time overhead? Or is
there an inherent Ω(log n) lower bound for ACS due to asynchrony?

1.1 Our Contributions

Our main contributions are (1) a novel protocol for agreement on a core set in constant expected
time via a new multi-valued agreement protocol with an asynchronous validity predicate; (2) Ef-
ficiency improvements in the communication complexity of asynchronous verifiable secret sharing.
Our new ACS and AVSS together significantly improve the communication complexity and round
complexity of asynchronous MPC.
Asynchronously Validated Asynchronous Byzantine Agreement (AVABA). We achieve
ACS via AVABA. Our AVABA protocol is perfectly secure and resilient to t < n/4 corruptions.

1Some papers have claimed that other papers obtained better results, see Section 1.2.
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For inputs of size O(n log n) bits, it runs in O(1) expected time and requires O(n4 log n) expected
communication complexity. Parties are guaranteed to reach an agreement on an input of one
of the parties, and the value is guaranteed to pass an asynchronous validity predicate. In the
MPC setting, this predicate checks that the input contains n− t parties who verifiably completed
the input-sharing phase. To the best of our knowledge, the most efficient agreement protocols
[9, 22] with constant expected rounds and t < n/4 currently require O(n6 log n) bits to be sent in
expectation. Furthermore, these protocols are binary agreement protocols. Our protocol improves
the efficiency of those protocols and allows for multi-valued agreement.

Theorem 1.1 (Asynchronously Validated Asynchronous Byzantine Agreement (informal)). There
exists a perfectly secure protocol for asynchronous Byzantine agreement with an asynchronous
validity predicate (AVABA) that is resilient to t < n/4 Byzantine corruptions. Each party has a
valid input of size O(n log n) bits. The protocol runs in constant expected time and O(n4 log n)
expected communication complexity.

Agreement on a Core Set (ACS). Using this AVABA protocol and an asynchronous validity
predicate checking which parties shared their inputs, we implement a perfectly secure, t < n/4
resilient constant expected time protocol for Agreement on a Core Set (ACS) with an expected
O(n4 log n) communication complexity. To the best of our knowledge, this is the first time ACS is
solved via a multi-valued agreement in the information-theoretic setting without using any binary
agreement building blocks. See Section 1.2 for more details.

Corollary 1.2. There exists a perfectly secure protocol for asynchronous agreement on a core set
(ACS) with an asynchronous validity predicate resilient to t < n/4 Byzantine corruptions. The
protocol runs in constant expected time and O(n4 log n) expected communication complexity.

As we elaborate in the related work section, the communication cost of ACS from [15] is
O(n7 log n).
Extensions for t < n/3 corruptions and statistical security. More generally, our AVABA
protocol requires O(n) secrets (each of size O(log n) bits) to be shared per party per round and
can be generalized to a protocol resilient to t < n/3 corruptions. Our ACS protocol uses packed
AVSS to generate randomness.

As proven in [4, 12], when n < 4t, any AVSS protocol must have some non-zero probability of
non-termination. The work of [16] constructs such an AVSS protocol with an adjustable security
parameter ε, allowing the protocol to fail or not terminate with ε probability. It is possible to
use such an AVSS protocol in our construction, resulting in an AVABA protocol with a similar
probability of non-termination, as described in the following:

Theorem 1.3 (General Asynchronously Validated Asynchronous Byzantine Agreement (infor-
mal)). Let c ∈ [3, 4]. Given a n > ct resilient protocol for asynchronous verifiable secret sharing
that has S(n, ε) communication complexity, ε ≥ 0 error, and 1− ε probability of termination, there
exists an agreement protocol that is resilient to t corruptions as long as n > ct. Moreover, the
protocol is Õ(ε) secure (and in particular for ε = 0 is perfectly-secure). With probability 1− Õ(ε),
the protocol runs in constant expected time (and in particular for ε = 0 is almost-surely terminating)
and has O(n3 log n+ n2S(n, ε)) expected communication complexity.

In the above theorem, setting c = 3, we get the first statistical ACS protocol for any n > 3t
parties that terminates in constant expected time, conditioned upon the success of the protocol.
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Corollary 1.4. There exists a statistically secure protocol for asynchronous agreement on a core
set with an asynchronous validity predicate resilient to t < n/3 Byzantine corruptions. Conditioned
upon the protocol succeeding with probability 1− ε, the protocol runs in constant expected time.

Asynchronous verifiable secret sharing. Our second main contribution is a new asynchronous
verifiable secret sharing (AVSS):

Theorem 1.5. There exists a perfectly secure protocol for asynchronous verifiable secret sharing
resilient to t < n/4 Byzantine corruptions. For sharing X secrets (of O(log n) bits each), the total
communication complexity is O(nX + n3 log n).

This means that we get O(n) overhead for sharing Ω(n2) secrets. Prior to our work, the AVSS
protocol of [10] achieves total communication complexity of O(n4 log n) for sharing one secret, and
the one by [28, 18] which obtains total communication complexity of O(nX + n4 log n) bits for X
secrets. That is, for obtaining O(n) overhead the dealer has to share Ω(n3) secrets. In our ACS
protocol, the dealer has to share just O(n) secrets, in which case our AVSS requires O(n3 log n) as
opposed to O(n4 log n) by [28, 18], improving the communication by a factor of O(n).
Conclusion: MPC. When plugging our new AVSS and new ACS in the recent asynchronous
MPC protocol of [3], we obtain the following corollary:

Corollary 1.6. For a circuit with C multiplication gates and depth D, there exists a perfectly se-
cure, optimally-resilient asynchronous MPC protocol with O((Cn+Dn2+n4) log n) communication
complexity and O(D) expected run-time.

Without our work, when combining the protocol of [3] with the ACS protocol of [15], together
with the AVSS protocol of [28, 18], the cost of the entire MPC is O((Cn + Dn2 + n7) log n) and
O(D + log n) expected-time. For a more detailed sketch of the MPC construction, see Section 9.
Synchronous vs. asynchronous MPC. We conclude this section by noting that the currently
most efficient perfect synchronous MPC [2] achieves the exact complexity as ours: O((Cn+Dn2+
n4) log n) with O(D) expected rounds.2 This poses a fundamental question regarding the relation-
ship between asynchronous and synchronous computation:

Is there a generic way to transform synchronous MPC protocol with optimal resilience
to an asynchronous MPC protocol with optimal resilience with the same communication
and round complexities?

Our work shows that the (current) state of the art is the same in both models, suggesting that there
might be an interesting connection. We remark that the synchronous and asynchronous protocols
are inherently different, have different structures, and are based on different techniques. Yet, since
the end result achieves the same complexities, perhaps there is a more generic, cleaner way to move
from one model to another while preserving the same complexities.

1.2 Related Work

Agreement on a core set via n parallel binary agreements. In the asynchronous setting, an
MPC protocol cannot wait for input from all parties. One important task of any MPC protocol in

2A somewhat incomparable result [25] removes the O(Dn2) in the communication complexity: O((Cn+n5) logn)
communication with O(D + n) expected rounds.
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the asynchronous setting is to reach agreement on the set of parties whose private input is used as
the input for the MPC circuit. To solve this, Ben-Or, Canetti and Goldreich [10] suggest a protocol
called Agreement on a Core Set (ACS). To the best of our knowledge, all previous asynchronous
MPC protocols (in the perfect and statistical security setting) use the same ACS protocol suggested
by [10]. This ACS is based on running n parallel binary agreements. Roughly speaking, parties
enter input 1 to the ith binary agreement when they see that party i has completed secret sharing
its input and enter all remaining instances with the value 0 once they see at least n− t agreements
terminate with a decision of 1.

On the positive side, this elegant solution requires just simple binary agreement as a building
block. On the negative side, each binary agreement instance has an independent constant prob-
ability of terminating in each round, so in isolation, each instance has a constant expectation.
However, the expectation of the maximum of n such independent instances is Ω(log n). Therefore
this approach of running separate binary instances seems to have a natural barrier for obtaining
O(1) expected round complexity. Lastly, the best known binary agreement protocols [9, 22] in this
setting require the expected total of O(n7 log n) for the ACS.
On Ben-Or and El-Yaniv’s work. The work of [10] claims that a result of Ben-Or and El-
Yaniv solves ACS in constant expected rounds. Here we explain why this is not the case. The
work by Ben-Or and El-Yaniv [11] (published 10 years after [10] cites them) deals with executing
n concurrent instances of Byzantine Agreement. The first part of [11] is for the synchronous model
and we believe it can be used to agree on a common subset in synchrony. The second part claims
that these techniques can be extended to solve some variant of multi-sender agreement in constant
expected rounds in the asynchronous model.

The situation for the asynchronous model is different. First, we note that [11] explicitly do not
mention that they can solve ACS in the asynchronous model. Indeed, the stated results of [11]
and the techniques of [11] do not provide a way to solve ACS (as needed for asynchronous MPC)
in constant expected rounds. They only solve an easier problem in which the input of each party
exists at the beginning of the protocol (unlike ACS, where due to asynchrony some of the inputs
may arrive dynamically over time).
The work of Ben-Or, Kelmer and Rabin [12]. In [12]’s ACS protocol, parties first invoke
the BA instances with input 1 for parties who are deemed valid according to a validity condition
(in the case of MPC, dealers whose VSS instances have been completed). Parties input 0 to the
remaining instances only after seeing n − t instances with output 1. Trying to naively apply the
techniques of [11] does not work because they require starting all BA instances at the same time
and synchronizing them using Select (the Select protocol in round r waits for all n log(n) BA
instances to reach round r+ 1) . It is possible that a less naive approach may work, synchronizing
some of the BA instances using Select, and then initiating the rest. This seems to require a much
more subtle approach since parties are required to wait for the agreed output for each party to be
1 before proceeding (while dealing with log(n) BA instances per party), and possibly using Select
several times.

A possible alternative approach is having each party set all inputs to the BA instances at once,
after seeing that at least n − t of those inputs are 1. Using this approach, it is possible that no
party has the unanimous support of all honest parties, meaning that each party has at least one
honest party input 0 to its BA instance. In this case, parties can output 0 in all instances and thus
output an empty set as the agreed core. Even protocols that strengthen the validity conditions are
likely to fail because it is possible that most BA instances have many 0 and 1 inputs, resulting in
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small cores (for example, of size t+ 1 as opposed to n− t). We believe that obtaining a less naive
protocol could potentially be an interesting follow-up work.
Recent and concurrent work. Two recent and concurrent works deal with tasks related to
information-theoretic agreement on a core set with constant round complexity. Duan et al. [21]
claims to have an information-theoretic construction of an ACS in constant expected rounds. How-
ever, their construction uses cryptographic hash functions and a threshold PRF, instantiated by
a threshold signature scheme. So while their work solves ACS with constant round complexity it
is not perfectly secure or statistically secure (it does not obtain O(1) expected rounds against an
unbounded adversary). Moreover, our core consensus protocol obtains the same efficiency while
requiring significantly weaker primitives. Our core consensus protocol obtains the same asymptotic
O(n3 log n) bit complexity but requires just a weak leader election (which can be implemented
information theoretically via AVSS, as we show). On the other hand, [21] requires a strong leader
election, which, to the best of our knowledge, requires a DKG and a computationally bounded
adversary for the required complexity.

Cohen et al. [19] construct a constant expected round protocol for a linear number of binary
Byzantine agreement protocols (where all inputs arrive at the beginning of the protocol). The first
version of [19] offhandedly remarks that this primitive can be used to construct a constant round
ACS protocol. However, as stated in our discussion of Ben-Or and El-Yaniv’s work, these protocols
require parties to know their inputs to all instances of binary agreement at the same time. The
currently known reductions from binary agreement to ACS in the asynchronus setting rely on this
not being the case. On a later version, [19] fixed this issue, but their ACS protocol requires at least
Ω(n5 log n) and is statistically secure.

2 Technical Overview
We provide a high level overview of our main techniques.
The model. Before we start, let us first introduce the model. We assume asynchronous communi-
cation, which means that the adversary can arbitrarily delay messages sent between honest parties,
while it cannot necessarily see their content. Messages between honest parties can be delayed but
must be delivered eventually. Honest parties, therefore, cannot distinguish between the case where
a message (from a corrupted party to an honest party) has never been sent or whether a message
(from an honest party to an honest party) is delayed. Thus, protocols must make sure that parties
do terminate and parties cannot wait to receive messages from all parties. Parties can wait to
receive messages from more than n − t parties only when they are certain that not all messages
from honest parties have been received.
Packed Asynchronous Verifiable Secret Sharing. Our packed AVSS protocol uses ideas from
the packed AVSS of [18, 28] but reduces the overall communication from O(nX + n4 log n) to
O(nX + n3 log n) for sharing X secrets. Looking ahead, in the ACS protocol, the dealer has to
share O(n) secrets, and so our protocol reduces the cost from O(n4 log n) to O(n3 log n).

The base line is the original protocol of [10] that provides O(n4 log n) overhead for sharing a
single secret. The protocol requires O(n2 log n) communication over the point-to-point channel in
addition to O(n2) (short) messages being broadcasted, resulting in an overall of O(n4 log n) when
implementing the broadcast over point-to-point. This protocol relies on standard techniques for
VSS where the dealer distributes shares on a bivariate polynomial of degree at most t in X and Y .
The protocol of [18, 28] improves [10] using the following two aspects:
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• Packing: The dealer can distribute a polynomial of degree-2t in X and degree at most t in Y .
This enables embedding t+ 1 (i.e.,O(n)) secrets in the polynomial, instead of just one;

• Batching: The main bottleneck in the protocol is the broadcast messages as there is some
asymmetry between the communication over point-to-point (O(n2 log n)) and those that are a
result of implementing the broadcast (O(n4 log n)). By batching O(n2) instances simultaneously,
i.e., running O(n2) instances in parallel but using the same broadcasted messages across all
instances, we balance between the two costs.

Overall, the above allows sharing O(n3) secrets with the cost of O(n4 log n), and in general, O(nx+
n4 log n) for X secrets. We improve this by optimizing further:

• No broadcast: We completely eliminate all broadcast messages in the protocol.

Specifically, we completely replace the broadcast with a multi-cast. This introduces some difficulty
and makes verifying the correctness of the sharing more challenging. However, the fact that we
do not have to pay the extra O(n2) for any broadcasted message (and instead pay an overhead of
O(n) overhead for multi-cast) reduces the basic communication complexity to O(n3). We refer the
reader to Section 4 for a more detailed discussion.
Agreement on a Core Set. We recall the problem statement: In a secure computation protocol,
parties first secret-share their inputs using an asynchronous verifiable secret-sharing scheme (AVSS).
When the dealer of the AVSS is honest, all parties will eventually terminate. If the dealer is
corrupted and one honest party accepts its share, then all honest parties will eventually accept its
share. The goal of the ACS is to reach an agreement on a core set of n− t dealers that distributed
valid shares, while the parties might receive confirmation for some dealers as the ACS proceeds,
and while corrupted parties try to deceive the honest parties and might input identities of dealers
whose sharing protocol never terminates.

We take a conceptually new approach to solving ACS in constant expected round complexity,
which takes advantage of recent advances in agreement protocols in the authenticated setting (as-
suming a PKI setup). Roughly speaking, we provide a new protocol that can be viewed as an
information-theoretic analog of these advances.

Instead of separating ACS into n parallel binary agreement, we run a single multi-valued in-
stance, where the input of each party is a set of parties that completed their input sharing. The
main challenge is that corrupt parties can suggest incorrect inputs. In the authenticated case (com-
putational settings), this is overcome using a Validated Asynchronous Byzantine Agreement which
uses an authenticated external validity function. Here we introduce a new information-theoretic
asynchronous validity predicate (AVP). When a party Pj calls validatej(i), then the predicate might
eventually terminate with the output 1, or never terminate. If validatej(i) terminates with an out-
put 1 for some honest party Pj , then validatek(i) will eventually terminate for every honest party
Pk. Moreover, if Pi is honest, then validatej(i) always terminates. Looking ahead, this predicate
comes to model which instances of AVSS terminate in the MPC protocol.

Given this asynchronous validity predicate, we provide a new type of multi-valued agreement
in the perfect security setting, which we call asynchronously validated asynchronous Byzantine
agreement (AVABA).
Implementing an AVABA protocol. The construction of an AVABA protocol follows the ideas
and construction of the No Waitin’ HotStuff (NWH) protocol of [5]. Seeing as the NWH protocol
is designed in the authenticated setting and uses a signature scheme, this work adapts these ideas
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to the information-theoretic setting, removing the need for cryptography. Roughly speaking, our
AVABA protocol has two parts, each with its separate challenges.

Verifiable leader election. The first challenge is constructing a verifiable leader election
protocol. In ordinary leader election, the goal is that all parties would agree on the identity of an
honest leader with some constant probability. In our setting, the chosen leader might be validated
by some (asynchronous) external validity predicate. Our protocol is inspired by the synchronous
leader election protocol of [26], its efficiency improvements [1], and the asynchronous authenticated
proposal election protocol in the computational setting of [5].

The main idea of leader election is to assign to each party a random value ci, and then pick as
the leader the party with the maximal random value. Each party cannot assign a random value to
itself, as corrupted parties will not choose their values uniformly at random. Instead, each party
Pj contributes a value cj→i to each Pi, and we define (for now) ci =

∑n
j=1 cj→i. We call each

cj→i as the contribution of Pj to Pi. We cannot just let parties contribute random values, as the
corrupted parties will wait to see the values that the honest parties contributed and then pick their
own values so that a corrupted leader will be elected. Instead, the parties first “commit” to the
values and later “reveal” them. The commitment is performed using verifiable secret sharing.

We borrow ideas from [1, 5] and instead of having O(n2) AVSS instances (i.e., ci→j for every i, j),
we use O(n) “packed” AVSS in which each dealer can share O(n) secrets at once. As mentioned,
we improve the cost of packed AVSS by a factor of O(n), leading to a more efficient VLE.

Verifiable party gather. Since the model is asynchronous, the above protocol suffers from a
similar problem to our starting point: how can the parties know and agree on which AVSS instances
terminated successfully and can be considered as contributions? Parties do not know whether to
wait until a particular AVSS instance terminates, as it might never terminate; on the other hand,
agreeing on which AVSS instances were terminated is exactly the ACS problem!

Luckily, we do not have to reach an agreement fully. We avoid strong agreement using two
tools. First, we let each party Pi choose a set of t+1 dealers that have successfully shared secrets.
The value ci of Pi is defined to be the sum of their secrets. Since it is a sum of t + 1 parties, it
must include at least one honest dealer, which means that ci is uniformly distributed. Parties then
broadcast their choice of dealers, and wait to receive at least n− t such broadcasts.

However, if some broadcasts are delayed, we again run into a similar problem to ACS: different
parties might not consider the same set of parties as potential leaders, and as such parties might
not agree on the chosen leader. The parties have to agree on which broadcasts to consider. We now
employ our second tool to “roughly agree” on which broadcasts were received: the verifiable party
gather protocol. Verifiable party gather is a relaxation in which the parties might output distinct
sets, say C1, . . . , Cn, but with the following two guarantees: (1) All parties in all sets have been
validated by at least one honest party (which means that eventually, they will all be validated); (2)
The different sets are distinct, but are all supersets of some large “core”.

Since all of the ci values are uniform, each party has the same probability of having the maximal
value. If we are lucky and the party with the maximal random value is an honest party in the shared
core, all parties will see its ci value and elect it as a leader. Luckily, since the core is large, there
are many honest parties in the core, and this event happens with a large probability. The core is of
size n− t in our case, and thus it contains n− 2t honest parties, which yields a success probability
of n−2t

n ≥ 1
2 .

Our verifiable party gather protocol is inspired by [5]. Unlike [5], which relies on signatures and
authentication, we implement an information theoretic version of gather whose inputs comply with
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ACS: Agreement on a Core Set
(Section 8)

AVABA: Asynchronously Validated
Asynchronous Byzantine Agreement (Section 7)

VLE: Verifiable Leader Election
(Section 6)

Verifiable Party Gather
(Section 5)

AVSS: Packed Asynchronous
Verifiable Secret Sharing (Section 4)

n×

O(nX + n3 logn) for X secretsO(n3 logn)

O(n3 logn+ n · AVSS) (= O(n4 logn))

O(n3 logn+ VLE) (= O(n4 logn))

O(n3 logn+ AVABA) (= O(n4 logn))

Figure 1: The structure of our ACS protocol; In red: The communication complexity of each
primitive.

an asynchronous validity predicate. Moreover, our gather protocol is unique in that it outputs a
set of parties, while their values are inferred via an asynchronous validity predicate.

Verifiable leader election =⇒ AVABA. We now describe how to use verifiable leader election
to implement AVABA. Here the main challenge is working with asynchronously validated inputs
and maintaining both safety and liveness over the views. For safety, we use a common approach
in authenticated protocols [17, 29] of using lock certificates and adapt them to the information-
theoretic setting inspired by the approach of [7]. The protocol of [7] modifies the cryptographic
protocol of [29] to the information-theoretic setting in partial synchrony. Here we show how to
obtain liveness under fully asynchronous network conditions. For liveness in asynchrony, there are
two major challenges. The first is guaranteeing that all honest parties will reach agreement on the
leader’s proposal if a unique honest leader is elected. For this, we use the key certificate approach
of [6, 29] and adapt it to the information-theoretic setting. The second, more challenging problem
is guaranteeing that honest parties eventually proceed to a new view if the current view does not
lead to agreement. As in [5], we observe that there are two triggers to changing views: the first
is when two different parties have different leaders (equivocation event) and the second is when
the leader sends a proposal whose key is lower than a lock held by some party (blame event). In
[5] these two events can be verified cryptographically, so any honest party that observes this event
simply forwards it to all parties. In our setting, we adapt these two events into asynchronously
validated predicates. Roughly speaking, when an equivocation or blame message is sent, parties
record it and wait for it to be asynchronously validated.
Organization. Figure 1 shows the structure of our ACS protocol, the efficiency of each primitive,
and the organization of the rest of the paper. Due to a lack of space, some primitives are presented
in the appendices. We also give a sketch of asynchronous MPC construction of [3] in Section 9.

3 Definitions and Preliminaries

3.1 Network and Threat Model

This work deals with protocols for n parties with point-to-point communication channels. The
network is assumed to be asynchronous, which means that there is no bound on message delay, but
all messages must arrive in finite time. The protocols below are designed to be secure against a
computationally unbounded malicious (Byzantine) adversary. The AVSS protocol is secure when
the adversary controls t < n

4 parties, whereas the other protocols are secure even if the adversary
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controls t < n
3 parties (assuming an AVSS protocol). Furthermore, the adversary is adaptive in

the sense that it can choose to corrupt a party at any time given that it hasn’t already corrupted
t parties.

3.2 Asynchronous Validity Predicates

An asynchronous validity predicate is an asynchronous counterpart to an external validity function.
An external validity function receives an input and returns 1 or 0, corresponding to a Boolean true
or false. Similarly, in an asynchronous validity predicate, party i holds a predicate validatei, and
the value of validatei(v) can depend on i’s internal state. Unlike an external validity function,
validatei could potentially not terminate. Hence a validity predicate is an asynchronous version of
an external validity function checking the party’s internal state, and only returning a value when
specific conditions hold. Similar notions of stateful predicates have also been discussed in other
works requiring a dynamic property to be checked before outputting a value, such as the ones
in [12, 20, 24].

For such a predicate to be useful, we want two properties to hold. First, decisions are final
– parties do not change their minds about the validity of a given value. This allows parties to
confidently output a value without the possibility of it becoming invalid later (or thinking that
a value is invalid and then changing their mind later). Secondly, honest parties’ opinions will
eventually be consistent: if one honest party outputs an opinion on the validity of a given value,
eventually all honest parties will have the same opinion. This means that, eventually, opinions
about validity will be universal and thus available to all parties in the system. Formally, these
properties are captured in the following definition:

Definition 3.1 (Asynchronous Validity Predicate). Let V be a set of possible inputs and let every
party i have a predicate validatei : V → {0, 1}. We say that validate is a validity predicate if the
following properties hold:

• Finality. If validatei(v) terminates with the output b ∈ {0, 1} for some honest i, then any
call to validatei(v) terminates with the output b.

• Consistency. Let i be an honest party and v be some value such that validatei(v) terminates
with the output b ∈ {0, 1}. Eventually for every honest j, validatej(v) terminates as well with
the output b.

For brevity, when we say that some property holds for the predicate validate, we mean that it
holds for validatei for every i. As a shorthand, we say that validatei(v) = b at a given time for an
honest i if validatei(v) had already terminated at that time and output b or if it would immediately
terminate with the output b upon being called at that time.

In the above definition, note the similarity of these properties to those of a reliable broadcast
protocol (described below), which guarantees that if an honest party outputs a value, every honest
party outputs the same value. The properties of this predicate can be generalized to stateful
functions that can output one of many values, as opposed to just 0 or 1.

3.3 Reliable Broadcast

We assume the existence of a Reliable Broadcast protocol [13]. A Reliable Broadcast protocol is an
asynchronous protocol with a designated sender. The sender has some input value M from some
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known domain M and each party may output a value in M. A Reliable Broadcast protocol has
the following properties assuming all honest parties participate in the protocol:

• Agreement. If two honest parties output some value, then it’s the same value.

• Validity. If the dealer is honest, then every honest party that completes the protocol outputs
the dealer’s input value, M .

• Termination. If the dealer is honest, then all honest parties complete the protocol and
output a value. Furthermore, if some honest party completes the protocol, every honest
party completes the protocol.

Broadcasting L bits requires O(n2L + n2 log n) over point-to-point channel using the protocol of
[8].

4 Packed Asynchronous Verifiable Secret Sharing

4.1 Definition

A packed asynchronous verifiable secret sharing protocol (packed AVSS) over a finite field F consists
of a pair of protocols (Share,Reconstruct) with a designated party acting as dealer. The dealer has
inputs s0, . . . , sm ∈ F to the Share protocol, and the other parties have no input. On a later stage,
each party can call Reconstruct(k) for each k ∈ {0, . . . ,m}, which eventually returns some value.
Honest parties only call the Reconstruct protocol after having completed the Share protocol. A
packed AVSS protocol has the following properties:

• Correctness. Once the first honest party completes the Share protocol, there exist values
r0, . . . , rm such that:

– if the dealer is honest then ∀k ∈ {0, . . . ,m} rk = sk; and
– if some honest party completes Reconstruct(k) for some k ∈ {0, . . . ,m}, then its output is rk.

• Termination. If all honest parties participate in the Share protocol, then:

– if the dealer is honest, all honest parties complete the Share protocol; and
– if some honest party completes the Share protocol, then all honest parties complete the share

protocol.

In addition, if all honest parties participate in Reconstruct(k) then they all complete the protocol.

• Secrecy. If the dealer is honest and no honest party called Reconstruct(k) for k ∈ {0, . . . ,m},
the adversary’s view is distributed independently of sk.

4.2 Overview

In this section, we describe an information-theoretic packed AVSS protocol that requires O(nX +
n3 log n) for sharing X secrets.
A quick overview of the AVSS protocol of [10]. We start with a quick overview of the
protocol of the AVSS protocol of Ben-Or, Canetti and Goldreich [10]. As a first step, we present
an inefficient version where the dealer runs in exponential time.
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1. The dealer chooses a random bivariate polynomial S(X,Y ) of degree-t in both variables such
that S(0, 0) = s. It then gives to each party i the shares fi(X) = S(X, i), gi(Y ) = S(i, Y ).

2. After receiving their fi and gi polynomials, which we call their shares, and seeing that they are
of the correct degrees, every party i forwards the values fi(j), gi(j) to every j.

3. When a party i receives a forwarded pair of values fj(i), gj(i) from some party j, it verifies
that these values are consistent with the values it has received from the dealer. Namely, that
fi(j) = gj(i) (= S(j, i)) and gi(j) = fj(i) (= S(i, j)). If this is the case, then i broadcasts
〈“ok”, i, j〉, signifying that the i agrees with j.

4. The dealer initiates a graph G with V = [n] and E = ∅. Then, upon receiving broadcasted
messages 〈“ok”, i, j〉 and 〈“ok”, j, i〉 it adds the edge (i, j) to E. It then looks for a clique
K ⊆ [n] in G. If found, it broadcasts 〈“clique”,K〉. Otherwise, it continues to listen to more
“ok” messages, updates its graph, and repeats.

5. Each party also initiates a graph as the dealer and adds edges in a similar manner. Once the
dealer broadcasts 〈“clique”,K〉, the party verifies that K is a clique in its respective graph. If
so – it terminates. Otherwise, it continues to listen to more edges.

It is easy to see that if one honest party j terminates, all honest parties will eventually terminate.
This is because j terminates only after the dealer has broadcasted a clique and j has verified the
same clique in its respective graph. Since all the messages that j considers are broadcasted, each
other honest party will eventually see the same clique in its graph. Moreover, if the dealer is honest,
then the dealer will eventually see the clique of all honest parties in its graph, will broadcast it,
and all honest parties will eventually verify it as well.

To show binding, assume that the dealer has broadcasted some clique and an honest party has
verified that clique. Since the clique contains at least 3t + 1 parties, it contains at least 2t + 1
honest parties. Since each pair of honest parties has verified that their shares agree, they all lie
on the same bivariate polynomial S(x, y). Moreover, parties only consider members of the clique
during reconstruction. This implies that in the reconstruction phase, we will have at least 2t + 1
correct shares and at most t errors, and therefore reconstruction is guaranteed.
The star algorithm. To make the dealer computationally efficient, Canetti [15] defines the
FindStar algorithm that finds a large “star” [15] in a graph, which can be thought of as a relaxation
of a clique. It receives an undirected graph G = (V,E) as input and outputs a pair of sets
C,D ⊆ V such that C ⊆ D and there exists an edge (u, v) ∈ E for every u ∈ C, v ∈ D, and such
that |C| ≥ n− 2t (= 2t+ 1) and |D| ≥ n− t (= 3t+ 1). The algorithm might also output “no star
was found”. In addition, Canetti [15] showed a polynomial time algorithm such that, if there exists
a clique of size n − t then it finds such a STAR. The dealer then looks for a STAR in the graph
instead of a clique, and once found, it broadcasts 〈“star”, C,D〉. Each party verifies that (C,D) is
a STAR, and terminates if so.

This guarantees validity and binding: Validity: If the dealer is honest, then eventually, there
will be a clique in the graph of size n − t. The STAR algorithm then outputs such (C,D), and
all honest parties will eventually verify that (C,D) is a STAR. Binding: Once an honest party
terminates (regardless of whether or not the dealer is honest), the set C contains at least t + 1
honest parties, and all their shares must agree. Therefore, the set C defines a unique bivariate
polynomial S(X,Y ), and the shares of all honest parties in C lie on that polynomial. Moreover,
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the set D contains at least 2t+ 1 honest parties, and their shares agree with all parties in C and,
therefore, must also agree with S. We obtain that there are at least 2t + 1 honest parties with
valid shares, and therefore reconstruction is guaranteed even if t errors are introduced during the
reconstruction phase.
Cost. When considering also the costs of broadcast “ok” messages, the above protocol requires
O(n4 log n) bits transmitted over the point-to-point channels. This is because each message of size
L being broadcasted requires O(n2L) bit sent over the point-to-point channels. Since each party
i broadcasts (“ok”, i, j) we have O(n2) messages being broadcasted. This implies that overall, we
have O(n4 log n) overhead for sharing a single secret.
Reducing the cost. To reduce the cost, the protocol of [28] utilizes the following two tricks:

• Packing: Instead of having a bivariate polynomial of degree t in both variables, the dealer can
embed t+1 secrets in one bivariate polynomial. That is, the dealer holds secrets s0, . . . , st, and
uniformly samples a bivariate polynomial S(X,Y ) of degree 2t in X and degree t in Y such that
S(−k, 0) = sk for every k ∈ {0, . . . , t}.

• Batching: Instead of having one instance of AVSS, we can run O(n2) instances in parallel while
re-using the broadcast messages across all instances. That is, each i broadcasts 〈“ok”, i, j〉 only
after it verified the shares of j across all O(n) instances.

Those two ideas together lead to a protocol in which parties send O(nX + n4 log n) bits point-to-
point for sharing X secrets (of O(logN) bits each). This gives O(n) overhead per secret, starting
from Ω(n3) secrets. However, if the dealer has to distribute only O(n) secrets (as in our ACS
protocol), we get an overhead of O(n3).
O(n)-overhead for o(n3) secrets. To reduce the overhead when the dealer has to share o(n3)
secrets, we further improve the protocol and add one more optimization to packing and batching:

• No broadcast: We completely eliminate any broadcast message in the protocol.

To achieve this property, first, consider trying to replace any broadcast message with multicast (the
sender simply sends the message to all parties). Edges (i, j) between pairs of honest parties will
appear in all graphs and will be consistent. On the other hand, edges between corrupted parties
or between an honest party and a corrupted party might not be consistent in the different graphs.
Moreover, the dealer might announce different STARs among the different parties.

To overcome this difficulty, we instruct each party i to look for its own STAR (Ci, Di). Moreover,
in addition to those two sets, we look for an extended star (see, e.g.,[28]) (Ci, Di, Ei, Fi) which
satisfies the following properties:

• Ci: a clique of size (at least) n− 2t (i.e., 2t+ 1), as before.

• Di: a set of size (at least) n − t that agrees with all Ci (i.e., for all d ∈ Di and c ∈ Ci there
exists an edge – (c, d)). This is again as before.

• Fi: a set of size n− t of all vertices that have at least n− 2t edges to Ci.

• Ei: a set of size n− t of all vertices that have at least n− t edges to Fi.
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Each party finds an extended star in its graph. Then, the challenge is that parties might have
different graphs. Nevertheless, we claim that: (1) Validity: If the dealer is honest, then all honest
parties will eventually find extended stars in their respective graphs; (2) Binding: If “enough”
honest parties find extended stars - they all define the exact same bivariate polynomial although
they do not have the same graphs:
Validity: It is also easy to see that if the dealer is honest, then all honest parties will eventually
find such (Ci, Di, Ei, Fi): The clique of all honest parties will eventually appear in the respective
graphs of the honest parties. An extended star will then always be found.
Binding: First, we claim that for every honest party j, the honest parties in the sets that j has
found, i.e., the honest parties in the sets (Cj , Dj , Ej , Fj) define a unique bivariate polynomial.
Specifically:
1. The set Cj contains at least t+1 honest parties; take an arbitrary subset C ′

j ⊆ Cj of cardinality
t+1; their f -shares (each is of degree-2t) define a unique bivariate polynomial Sj(X,Y ) of degree
(2t, t);

2. The set Dj contains at least 2t+ 1 honest parties, and each such party agrees with all parties
in Cj ; As such, each such party must hold a g-share that lies on Sj(X,Y ). Since Dj contains at
least 2t+ 1 honest parties, it also implies that all the other honest parties (if exist) in Cj \ C ′

j

hold f -shares that lie on Sj .
3. The set Fj contains at least 2t+ 1 honest parties; each such honest party agrees with at least

n− 2t (i.e., ≥ 2t+ 1) parties in Cj , i.e., with at least t+ 1 honest parties in Cj . Thus, all the
g-shares of parties in Fj lie on Sj .

4. The set Ej contains at least 2t+ 1 honest parties; each such party agrees with at least 3t+ 1
parties in Fj , i.e., with at least 2t+ 1 honest parties. As such, all the f -shares of parties in Ej

lie on Sj .
Moreover, we claim that for two honest parties j and k that might have distinct extended stars
(Cj , Dj , Ej , Fj) and (Ck, Dk, Ek, Fk), the bivariate polynomial that each of them defines – Sj and
Sk, respectively, must be the same. This is because Ej and Ek are both sets of size 3t + 1 and,
therefore, must have an intersection of size at least 2t+1, i.e., at least t+1 honest parties in their
intersection. The f -shares of those parties uniquely define Sj and Sk, respectively, and it must
hold that Sk = Sj .

The rest of the protocol. In the rest of the protocol, parties that do have shares help the other
parties to reconstruct their values, and also hold shares on their polynomial. Since the shares of all
honest parties that have an extended star must define the same bivariate polynomial, we get that,
eventually, all parties would hold shares on that polynomial. Therefore, we get a complete secret
sharing – all honest parties have shares at the end of the protocol. This makes the reconstruction
phase almost trivial – parties just send their shares to one another, and use Reed Solomon decoding
to eliminate errors.

4.3 The Protocol

Before describing the protocol, we first overview two algorithms that the protocol uses: FindStar
and RobustInt.
FindStar. FindStar finds a large “star” [15] in a graph, which can be thought of as a weak version of
a clique. It receives an undirected graph G = (V,E) as input and outputs a pair of sets C,D ⊆ V
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such that C ⊆ D and there exists an edge (u, v) ∈ E for every u ∈ C, v ∈ D. Additionally, if
G contains a clique of size n − t, it is guaranteed that |C| ≥ n − 2t and |D| ≥ n − t. We also
require that if there is a clique of size n− t in the graph, then C will contain at least n−2t vertices
from the clique. This property was not originally formulated in [15] but is proven in [28]. In the
original formulations of the algorithm, FindStar either returns C,D such that C ⊆ D ⊆ [n] and
|C| ≥ n−2t, |d| ≥ n− t or outputs a failure message such as “star not found” if it fails to do so. For
simplicity, we assume that the algorithm always outputs C ⊆ D ⊆ [n]. This can be implemented
by simply outputting the sets C = D = ∅ instead of a failure message.
RobustInt. The RobustInt algorithm is a decoding algorithm for the Reed-Solomon encoding [27].
The algorithm receives three inputs S, d, e such that S is a set of tuples (j, yj), d ∈ N is a degree,
and e ∈ N is the number of allowed errors. It then outputs a polynomial p of degree d or less or the
value ⊥. If the algorithm outputs a polynomial p, then it is the unique polynomial of degree d or
less such that for at most e tuples (j, yj) ∈ S, p(j) 6= yj . This means that RobustInt always outputs
⊥ if |S| < d+ e+1 because otherwise there is no unique polynomial for which the above holds. In
addition, if for some m ∈ N, |S| ≥ d+ 2m+ 1 and for some polynomial p of degree d or less, there
are at most m tuples (j, yj) ∈ S such that p(j) 6= yj , then RobustInt outputs p. Intuitively this
means that if S defines the polynomial p and it has m errors in it, it is enough to get d+1 correct
points to define the polynomial, along with an additional correct point for each error.

Conceptually, the Share protocol described in Protocol 4.2 proceeds as follows:
Round 1: In the first round, the dealer uniformly samples a bivariate polynomial S(X,Y ) of
degree 2t or less in X and degree t or less in Y such that S(−k, 0) = sk for every k ∈ {0, . . . , t}.
It then defines the polynomials fi(X) = S(X, i), gi(Y ) = S(i, Y ) and sends these polynomials to
every party i.
Round 2: After receiving their fi and gi polynomials and seeing that they are of the correct
degrees, every party i forwards the values fi(j), gi(j) to every j.
Round 3: When party i receives a forwarded pair of values fj(i), gj(i) from another party j, it
checks that these values are consistent, i.e. fi(j) = gj(i), gi(j) = fj(i). This should be the case
because fi(j) = S(j, i) = gj(i) and gi(j) = S(i, j) = fj(i) should hold if the dealer is correct. If
this is the case, i sends an “ok” message about j to all parties, signifying that their values are
consistent.
Round 4: When parties receive “ok” messages from both i and j about each other, they consider
those parties as being consistent with each other. They can then form a graph whose vertices are
all the parties [n], and any pair of parties has an edge if they are consistent with each other. Every
party then attempts to find a star C,D in the graph using the FindStar algorithm. If such a star
is found such that C is of size n − 2t and D is of size n − t, parties attempt to find additional
sets E,F that expand this star. Concretely, F is defined to be the set of parties that have n − 2t
neighbors in C, and E is defined to be the set of parties that have n − t neighbors in F . Parties
wait for both of these sets to be of size n− t and then send them to each other. For simplicity, we
will call the four sets C,D,E, F a star instead of just the pair C,D.
Round 5: After receiving a star from another party j, every party i attempts to use the star to
interpolate a polynomial gi,j . It does so by using the fj(i) values sent in round 2 but only considers
the parties in Ej . It waits to receive enough values for the RobustInt algorithm to succeed when
trying to find a polynomial of degree t with up to t errors. After this happens, i stores the resulting
polynomial gi,j . Once there are t + 1 successful interpolations from t + 1 different stars that all
output the same polynomial, i stores that polynomial as qi and sends the value qi(j) to every j.
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Round 6: After receiving qj(i) from different parties, i attempts to interpolate these values to a
polynomial pi. Once RobustInt succeeds in interpolating these values to a polynomial of degree 2t
with up to t errors, i stores that polynomial as pi.
Round 7: In parallel to previous rounds, as a tool for termination, party i sends a “done” message
to all parties after receiving n− t stars, or after receiving t+ 1 “done” messages. This guarantees
that the first party that sent such a message did so after seeing at least n − 2t stars from honest
parties. Moreover, if some honest party receives n − t “done” messages, every honest party will
receive at least t+1 (in fact they will eventually receive 2t+1), and forward that message as well.
Termination: After receiving n−t “done” messages and having pi and qi polynomials, every party
completes the protocol, using its pi and qi polynomial as shares for the reconstruction protocol.

Protocol 4.1: Deal(s0, . . . , st)

1: uniformly sample a bivariate polynomial S(X,Y ) of degree 2t in X and t in Y such that
∀k ∈ {0, . . . , t} S(−k, 0) = sk

2: for all i ∈ [n] do
3: fi(X) = S(X, i), gi(Y ) = S(i, Y )
4: send 〈“polynomials”, fi, gi〉 to every i ∈ [n]

Protocol 4.2: Sharei()

1: fi ← ⊥, gi ← ⊥, pi ← ⊥, qi ← ⊥
2: pointsg,i ← ∅, edgesi ← ∅, starsi ← ∅, interpolatedi ← ∅, pointsp,i ← ∅
3: Ci ← ∅, Di ← ∅, Ei ← ∅, Fi ← ∅
4: if i is the dealer with secrets s0, . . . , st then
5: call Deal(s0, . . . , st)
6: upon receiving a 〈“polynomials”, f ′

i , g
′
i〉 message from the dealer, do

7: if deg(f ′
i) ≤ 2t,deg(g′i) ≤ t then

8: fi ← f ′
i , gi ← g′i

9: send 〈“values”, fi(j), gi(j)〉 to every j ∈ [n]

10: upon receiving a 〈“values”, fj(i), gj(i)〉 message from party j, do
11: pointsg,i ← pointsg,i ∪ {(j, fj(i))}
12: upon fi 6= ⊥, gi 6= ⊥, do
13: if fi(j) = gj(i), gi(j) = fj(i) then
14: send 〈“ok”, j〉 to all parties
15: upon receiving both 〈“ok”, k〉 from j and 〈“ok”, j〉 from k, do
16: edgesi ← edgesi ∪ {(j, k)}
17: if |Ei| < n− t or |Fi| < n− t then
18: Ci, Di ← FindStar(([n], edgesi)
19: if |Ci| ≥ n− 2t, |Di| ≥ n− t then
20: Fi ← {j ∈ [n] s.t. |{k ∈ Ci|(j, k) ∈ edgesi}| ≥ n− 2t}
21: Ei ← {j ∈ [n] s.t. |{k ∈ Fi|(j, k) ∈ edgesi}| ≥ n− t}
22: if |Ei| ≥ n− t, |Fi| ≥ n− t then
23: send 〈“star”, Ci, Di, Ei, Fi〉 to all parties
24: upon receiving a 〈“star”, Cj , Dj , Ej , Fj〉 message from party j, do
25: starsi ← starsi ∪ {(j, Cj , Dj , Ej , Fj)}
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26: upon starsi or pointsg,i being updated and qi = ⊥, do
27: for all (j, Cj , Dj , Ej , Fj) ∈ starsi do
28: if there is no tuple (j, gi,j) ∈ interpolatedi then
29: gi,j ← RobustInt({(k, yk) ∈ pointsg,i|k ∈ Ej}, t, t)
30: if gi,j 6= ⊥ then
31: interpolatedi ← interpolatedi ∪ {(j, gi,j)}
32: upon updating interpolatedi, do
33: if there exists a polynomial q′i such that |{j|(j, q′i) ∈ interpolatedi}| ≥ t+ 1 then
34: qi ← q′i
35: send 〈“col”, qi(j)〉 to every j ∈ [n]

36: upon receiving a 〈“col”, qj(i)〉 message from j, do
37: pointsp,i ← pointsp,i ∪ {(j, qj(i))}
38: p′i ← RobustInt(pointsp,i, 2t, t)
39: if p′i 6= ⊥ then
40: pi ← p′i
41: upon |starsi| = n− t or receiving 〈“done”〉 messages from t+ 1 parties, do
42: send 〈“done”〉 to all parties
43: upon receiving 〈“done”〉 from n− t parties and pi 6= ⊥, qi 6= ⊥, do
44: terminate

Reconstruction. The reconstruction protocol is straightforward. When reconstructing the k’th
secret, every party sends pi(−k) to all other parties. Parties then try to interpolate the received
values to a polynomial q−k(Y ) of degree t in Y with up to t errors. Once they succeed in the
interpolation using the RobustInt algorithm, they output q−k(0) as the k’th secret.

Protocol 4.3: Reconstructi(k)

1: pointsi ← ∅
2: send 〈“rec”, k, pi(−k)〉
3: upon receiving a 〈“rec”, k, yj〉 message from j, do
4: pointsi ← pointsi ∪ {(j, yj)}
5: q−k ← RobustInt(pointsi, t, t)
6: if q−k 6= ⊥ then
7: output q−k(0) and terminate

4.4 Security Analysis

In order to prove the correctness of the protocol we show that each star collected by an honest party
defines a unique bivariate polynomial G of degree 2t in X and t in Y . We then show that every
two honest parties’ stars define the same polynomial and that parties’ stored fi and gi polynomials
are consistent with this polynomial.

Lemma 4.4. Assume some honest party i sent a 〈“star”, Ci, Di, Ei, Fi〉 message. Then every honest
party j ∈ Ci ∪Di ∪Ei ∪ Fi has fj 6= ⊥, gj 6= ⊥. In addition, there exists a unique polynomial G of
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degree 2t in X and t in Y such that for every honest j ∈ Ci ∪ Ei fj(X) = G(X, j) and for every
honest j ∈ Di ∪ Fi gj(X) = G(j, Y ).

Proof. Since i sent the “star” message, it computed Ci, Di using FindStar and found that Ci is
at least of size n − 2t and Di, Ei, Fi are at least of size n − t. By the definition of the FindStar
algorithm, for every j ∈ Ci, k ∈ Di, there exists an edge (j, k) ∈ edgesi. Party i only adds such
an edge to edgesi after receiving an 〈“ok”, j〉 message from k and an 〈“ok”, k〉 message from j.
Note that if j and k are honest, they only send such messages after having non-⊥ fj , fk and gj , gk
polynomials of degrees 2t and t respectively, sending each other “values” messages and seeing that
fj(k) = gk(j), gj(k) = fk(j). Since |Ci| ≥ n− 2t, |Di| ≥ n− t, Ci has indices of at least t+1 honest
parties and Di has indices of at least 2t+1 honest parties. In other words, for every honest j ∈ Ci

and k ∈ Di, fj is a polynomial of degree 2t, gk is a polynomial of degree t and fj(k) = gk(j). In
such a setting, there exists a unique bivariate polynomial G(X,Y ) of degree 2t in X and t in Y
such that for every such j, k, fj(X) = G(X, j) and gk(Y ) = G(k, Y ).

Now, observe an honest party j ∈ Fi. For similar reasons, its fj , gj fields contain polynomials
of degrees 2t and t respectively. Similarly, for every honest k ∈ Ci, gj(k) = fk(j) = G(j, k). There
are t + 1 such honest parties k ∈ Ci, so gj(Y ) and G(j, Y ) are two polynomials of degree t or less
that agree on at least t + 1 points, and thus gj(Y ) = G(j, Y ). Following very similar reasons, for
every j ∈ Ei, there are at least 2t+ 1 honest parties k ∈ Fi for which fj(k) = gk(j) = G(k, j) and
thus fj(X) = G(X, j).

Lemma 4.5. Assume two honest parties i, j sent “star” messages and let Gi, Gj be the polynomials
defined for them in Lemma 4.4. It is the case that Gi = Gj.

Proof. As in Lemma 4.4, the Ei, Ej , Fi, Fj sets sent by i, j are of size n − t. Since Ei ∪ Ej ⊆ [n],
|Ei ∩ Ej | ≥ 2t+ 1, and at least 2t+ 1− t = t+ 1 of the shared indices those of honest parties. For
each such honest k ∈ Ei∩Ej , Gi(X, k) = fk(X) = Gj(X, k). Therefore, for honest k ∈ Ei∩Ej and
for every possible v, Gi(v, k) = Gj(v, k). Both Gi and Gj have degree t in Y , and for every value
v, Gi(v, Y ) agrees with Gj(v, Y ) at t + 1 points. Therefore, for every value v, Gi(v, Y ) = Gj(Y )
and thus the polynomials are equal.

Lemma 4.6. Assume some honest party i has pi 6= ⊥ or qi 6= ⊥ . Then some honest party j sent a
〈“star”, Cj , Dj , Ej , Fj〉, and i has pi(X) = G(X, i) or qi(Y ) = G(i, Y ) respectively for the G defined
in Lemma 4.4.

Proof. First, assume i had qi 6= ⊥. It updates qi after adding at least t+ 1 tuples to interpolatedi,
which it does after receiving a 〈“star”, Cj , Dj , Ej , Fj〉 from at least t + 1 different parties j and
successfully interpolating a polynomial for each one. At least one of the parties is honest. Let
that party be j and the sent values be Cj , Dj , Ej , Fj , and let G be the polynomial defined for j
in Lemma 4.4.

Party i updates qi after successfully interpolating gi,k polynomials for different parties k, adding
tuples of the form (k, gi,k) to interpolatedi, and seeing that for t+1 of those tuples gi,k = qi. It does so
after receiving a message 〈“star”k,Ck, Dk, Ek, Fk〉 for each such k and adding a (k,Ck, Dk, Ek, Fk)
tuple to starsi. Following that, it interpolates gi,k by calling RobustInt(S, t, t) for S = {(l, yl) ∈
pointsg,i|l ∈ Ek}. From the definition of RobustInt, gi,k is of degree t or less. In addition, RobustInt
only returns a non-⊥ value if it receives as input a set with at least t + t + 1 tuples, and returns
the unique polynomial gi,k such that gi,k(l) = yl for all but t tuples (l, yl) ∈ S. Party i adds tuples
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(l, yl) to pointsg,i after receiving a 〈“values”, vl, yl〉 message from l, and honest parties send such
a message with yl = gl(i). From Lemma 4.5, for every such honest l, gl(Y ) = G(l, Y ) and thus
yl = G(l, i). Therefore, for every (l, yl) ∈ S such that l is honest, yl = G(l, yl). In other words,
gi,k(Y ) = G(Y, i) is a polynomial of degree at most t such that gi,k(l) = yl for all but t tuples
(l, yl) ∈ S, and thus it must also be the unique such polynomial output by RobustInt. Since this
is the case for every honest party k, interpolatedi contains tuples of the form (k,G(Y, k)) for every
honest k, and thus there are at most t tuples (k, gi,k(Y )) for which gi,k(Y ) 6= G(Y, k). Finally, this
means that when i updated qi it did so to the polynomial qi(Y ) = G(Y, i).

Now assume that pi 6= ⊥. Party i updates pi after successfully interpolating it using RobustInt(
pointsp,i, 2t, t). It only adds tuples of the form (k, yk) to pointsp,i after receiving a 〈“col”, yk〉message
from party k, and honest parties only send such a message with yk = qk(i) = G(k, i). As in the
above argument, RobustInt only outputs pi after pointsp,i contains at least 2t+ t+1 tuples. Out of
those, at least 2t+ 1 are tuples of the form (k,G(k, i)) added after receiving messages from honest
parties. This means that the polynomial G(X, i) is a polynomial of degree 2t or less such that
at most t tuples in pointsp,i disagree with it. Since pi(X) is the unique polynomial for which this
holds, pi(X) = G(X, i).

The following lemmas are used to prove that the protocol maintains secrecy. This is done
by first showing that the adversary’s view, in conjunction with any set of secrets, defines a unique
polynomial sampled by the adversary, and then showing that there is an identical number of possible
polynomials for each set of secrets. This means that any given view has the same probability of
having been produced under any set of secrets.

Lemma 4.7. Let f1, . . . , ft be univariate polynomials of degree 2t or less and g−t+1, . . . , gt be
polynomials of degree t or less such that for every i ∈ {1, . . . , t} and j ∈ {−t+1, . . . , t} fi(j) = gj(i).
Then for every st ∈ F, there exists a unique bivariate polynomial S(X,Y ) of degree 2t in X and
degree t in Y such that S(−t, 0) = st and ∀i ∈ {1, . . . , t}, j ∈ {−t+ 1, . . . , t}, S(X, i) = fi(X), and
S(j, Y ) = gj(Y ).

Proof. First define f0(X) to be the unique polynomial of degree 2t such that ∀j ∈ {−t+ 1, . . . , t}
f0(j) = gj(0) and f0(−t) = sf . By Lagrange interpolation, there is exactly one such polynomial.
Let ai,j be the coefficient of Xj in the polynomial fi(X). Now let the matrix A be the (t+1)×(2t+1)
matrix for which Ai,j = ai,j . In addition, define V1 to be the (t+1)× (t+1) Vandermonde matrix
such that for every i, j ∈ {0, . . . , t}: (V1)i,j = ij . Finally, define V2 to be the (2t + 1) × (2t + 1)
Vandermonde matrix such that for every i, j ∈ {0, . . . , 2t}:

(V2)i,j =

{
ij i ≤ t

(t− i)j i > t

In both of these cases, 00 is defined to be 1. Let B = (V1)
−1A and S(X,Y ) be the bivariate

polynomial that has bi,j as the coefficient of the term XiY j . Now observe (V1BV T
2 )i,j for any
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i ∈ {−t+ 1, . . . , t}, j ∈ {0, . . . t}:

(V1BV T
2 )i,j =

2t∑
l=0

(V1B)i,l · (V T
2 )l,j

=
2t∑
l=0

(
t∑

m=0

(V1)i,m · Fm,l)(V
T
2 )l,j

=
2t∑
l=0

t∑
m=0

Bm,l · (V1)i,m · (V T
2 )l,j

For every j ≤ t, evaluating this expression results in:

(V1BV T
2 )i,j =

2t∑
l=0

t∑
m=0

Bm,l · (V1)i,m · (V T
2 )l,j

=

2t∑
l=0

t∑
m=0

Bm,l · im · jl = S(j, i)

On the other hand, for every j > t:

(V1BV T
2 )i,j =

2t∑
l=0

t∑
m=0

Bm,l · (V1)i,m · (V T
2 )l,j

=
2t∑
l=0

t∑
m=0

Bm,l · im · (t− j)l = S(t− j, i)

Computing these values differently:

(V1BV T
2 )i,j = (AV T

2 )i,j =

2t∑
l=0

Ai,l · (V T
2 )l,j

Again, if j ≤ t:

(V1BV T
2 )i,j =

2t∑
l=0

Ai,l · (V T
2 )l,j

=
2t∑
l=0

ai,l · jl = fi(j)

And if j > t:

(V1BV T
2 )i,j =

2t∑
l=0

Ai,l · (V T
2 )l,j

=
2t∑
l=0

ai,l · (t− j)l = fi(t− j)
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In other words, for every i ∈ {0, . . . , t}, j ∈ {−t, . . . , t}, S(j, i) = fi(j). Since both are univariate
polynomials of degree 2t or less, S(X, i) = fi(X). Similarly, for every i, j ∈ {1, . . . , t}, S(j, i) =
fi(j) = gj(i), and thus S(j, Y ) = gj(Y ). Note that S(−t, 0) = f0(−t) and by definition f0(−t) = st.
Finally, note that every bivariate polynomial S′ which fulfills the requirements of the lemma must
also have (V1S

′V T
2 )i,j = (AV T

2 )i,j , where S′ is the coefficient matrix for S′. Since V1 is invertible,
there is only one such matrix S′ = (V1)

−1A = S, and thus S is unique.

Lemma 4.8. For every s0, . . . , st ∈ F there exist exactly |F|2t(t+1) bivariate polynomials S(X,Y )
of degrees no greater than 2t in X and t in Y such that ∀k ∈ {0, . . . , t} S(−k, 0) = sk.

Proof. A bivariate polynomial S(X,Y ) of degree no greater than 2t in X and t in Y is a function
of the form:

S(X,Y ) =

2t∑
k=0

t∑
l=0

ak,lX
kY l .

Since each of these polynomials is uniquely defined by the coefficients ak,l, it is enough to count the
number of distinct possible combinations of coefficients. We start by observing that we can rewrite
S(X,Y ) as:

S(X,Y ) =

2t∑
k=0

ak,0X
k +

2t∑
k=0

t∑
l=1

ak,lX
kY l .

The total number of possible combinations of coefficients in the expression
∑2t

k=0

∑t
l=1 ak,lX

kY l is
|F|(2t+1)t, because there are (2t + 1)t coefficients, and each one can be chosen independently from
the field F. To finish the proof, we only need to count the number of possible combinations of
coefficients in the polynomial S(X, 0) =

∑2t
k=0 ak,0X

k under the condition that S(−k, 0) = sk for
every k ∈ {0, . . . , t}. Since S(X, 0) is a polynomial of degree at most 2t, it is uniquely defined by
2t + 1 points (x, y) such that S(x, 0) = y. Since we require that S(−k, 0) = sk for k ∈ {0, . . . , t}
there are 2t+1− (t+1) = t points left that can be chosen freely to uniquely define S(X, 0). Thus
there are |F|t possible combinations of coefficients a0,0, . . . , a0,2t satisfying the required conditions.
Overall, the total number of possible polynomials is exactly:

|F|(2t+1)t · |F|t = |F|(2t+2)t = |F|2t(t+1) .

Using the above lemmas, we prove the following theorem. The efficiency of the protocol is
analyzed in Appendix A.2.

Theorem 4.9. The pair (Share,Reconstruct) is a packed AVSS protocol resilient to t < n
4 Byzantine

parties.

Proof. We will prove each property individually.
Correctness. Observe the time the first honest party completes the Share protocol. By that

time it has updated p and q to non-⊥ values. From Lemma 4.6, some party i sent a “star” message.
Let i be that party, and Ci, Di, Ei, Fi be the values sent. In addition, let G be the polynomial
defined in Lemma 4.4 for party i, and define rk = G(−k, 0) for every k ∈ {0, . . . , t}.

For the first part of the correctness property, we will show that if the dealer is honest, rk = sk
for every k ∈ {0, . . . , t}. The dealer starts by uniformly sampling a polynomial S(X,Y ) of degree
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2t in X and t in Y such that ∀k ∈ {0, . . . , t} S(−k, 0) = sk. It then sends every party j a
〈“polynomials”, fj , gj〉 message with fj(X) = S(X, j) and gj(Y ) = S(j, Y ). Upon receiving this
message, every honest party saves these polynomials in its fj , gj fields. The polynomial G(X,Y )
defined in Lemma 4.4 is the unique bivariate polynomial of degree 2t in X and t in Y such that for
every honest k ∈ Ci, l ∈ Di, fk(l) = gl(k), gk(l) = fl(k). Since S is such a polynomial, S = G, and
thus also sk = S(−k, 0) = G(−k, 0) = rk for every k ∈ {0, . . . , t}.

Now assume that some honest party i outputs rk from Reconstructi(k) for some k ∈ [n]. It
does so after successfully interpolating the polynomial q−k by computing RobustInt(pointsi, t, t).
Party i adds tuples (j, yj) to pointsi after receiving a 〈“rec”, k, yj〉 message from j, and honest
parties send such messages with yj = pj(−k). From Lemma 4.6, pj(X) = G(X, j) for every
such honest j, and thus pointsi contains at most t tuples (j, yj) such that yj 6= G(−k, j). As in
the above arguments, G(−k, Y ) is a polynomial of degree t or less such that for all but t tuples
(j, yj) ∈ pointsi yj = G(−k, j) and q−k(Y ) is the unique polynomial for which this holds, and thus
q−k(Y ) = G(−k, Y ). Party i then outputs q−k(0) = G(−k, 0) = rk, as required.

Termination. For the first part of the property, assume the dealer is honest. In that case, it
starts by sampling a bivariate polynomial S(X,Y ) of degree 2t in X and t in Y and sends every party
i the polynomials fi(X) = S(X, i), gi(Y ) = S(i, Y ). Every party i receives these polynomials, sees
that they are of the correct degree, and sends every party j a 〈“values”, fi(j), g(j)〉 message. Upon
receiving that message, j sees that fi(j) = S(j, i) = gj(i), gi(j) = S(i, j) = fj(i), adds (i, fi(j))
to points, and sends an 〈“ok”, i〉 message to all parties. This means that every two honest parties
j, k send “ok” messages about each other. Therefore, every honest party i eventually adds an edge
(j, k) to its edgesi set for every honest parties j, k. After party i does so, the graph ([n], edgesi) has
a clique of size n − t consisting of all honest parties, and thus eventually i computes Ci, Di using
FindStar such that |Ci| ≥ n − 2t and |Di| ≥ n − t. In addition, Ci contains at least n − 2t parties
from that clique of honest parties. Following that, computing Si, i sees that every honest party has
an edge to every honest party in Ci and thus has at least n − t neighbors in Ci. Therefore, every
honest party is added to Si. Similarly, every honest party has n− t honest neighbors in Si and is
thus also added to Ei. Following that, Si, Ei will both be of size n− t, and thus i will send a “star”
message to all parties if it hasn’t done so earlier. Every honest party i will eventually receive a
〈“star”, Cj , Dj , Ej , Fj〉 message from every honest j and send a “done” message to all parties if it
hasn’t done so before. In addition, as stated above, i eventually has a tuple (k, fk(i)) ∈ pointsg,i
for every honest k ∈ Ej . After that, it will successfully interpolate these points to gi,j(Y ) = S(i, Y )
for similar reasons as the ones above and add the tuple (j, S(i, Y )) to interpolatedi. After doing
so for t + 1 honest parties, i will have t + 1 tuples of that form in interpolatedi, update qi to
S(i, Y ) and send 〈“col”, qi(j)〉 to every j. Finally, every honest party i eventually receives such
a 〈“col”, qj(i)〉 message from every honest j with qj(i) = S(j, i) and adds a tuple (j, S(j, i)) to
pointsp,i. It then successfully interpolates its pointsp,i set to the polynomial pi(X) = S(X, i). At
that point, it received “done” messages from n − t parties and has pi 6= ⊥, qi 6= ⊥, and completes
the Share protocol.

For the second part of the property, assume that some honest party completes the Share protocol.
It does so after having its p and q polynomials not equal ⊥ and receiving n − t “done” messages,
with at least one of those being sent by an honest party. The first honest party that sent such
a message may have received “done” messages from at most t Byzantine parties at that time, so
it sent the “done” message as a result of having received n − t “star” messages and adding the
received values to its stars set. Out of these messages, at least n − 2t are sent by honest parties,
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so every honest party receives those messages as well and adds a tuple (j, Cj , Dj , Ej , Fj) to its
stars set. From Lemmas 4.4 and 4.5 all of those messages define the same bivariate polynomial
G(X,Y ) of degree 2t in X and t in Y . Following the same arguments as the ones for the previous
property, every honest i party eventually interpolates the polynomial gi,j(Y ) = G(i, Y ) for every
(j, Cj , Dj , Ej , Fj) ∈ starsi such that j is honest and adds (j,G(i, Y )) to interpolatedi. In addition,
interpolatedi contains at most t tuples (j, gi,j(Y )) such that gi,j(Y ) 6= G(i, Y ). Therefore, after
adding a tuple to interpolatedi for the n− 2t honest parties from which it received “star” messages,
i sees that there are t+1 tuples tuples of the form (j,G(i, Y )) in interpolatedi and updates qi(Y ) to
G(i, Y ). Now following the exact same argument as above, every honest party eventually updates
pi(X) to G(X, i). In addition, as stated above, the honest party that completed the protocol
received n − t “done” messages, and thus at least n − 2t ≥ t + 1 of those messages were sent by
honest parties. Every honest party receives those messages as well and sends a “done” message as
well. This means that every honest i eventually has pi 6= ⊥, qi 6= ⊥ and receives “done” messages
from at least n− t parties, and thus it completes the Share protocol as well.

For the final part of the property, assume that all honest parties completed the Share protocol
and called Reconstruct(k). Before completing the Share protocol, they each have pi 6= ⊥ and
qi 6= ⊥. From Lemma 4.6, there exists a bivariate polynomial G(X,Y ) of degree 2t in Y and t in
X such that for every honest i, pi(X) = G(X, i) and qi(Y ) = G(i, Y ). Every honest party j starts
Reconstructj(k) by sending a 〈“rec”, k, pi(−k)〉 with pj(−k) = G(−k, j). Every honest i receives
those messages and adds a tuple (j, yj) to pointsi for each. After receiving messages from 2t + 1
honest parties, pointsi contains 2t+1 tuples (j, yj) such that yj = G(−k, j) and at most t additional
tuples for which this doesn’t hold. The polynomial G(−k, Y ) is the unique polynomial of degree t
or less for which this is the case, so RobustInt outputs q−k(Y ) = G(−k, Y ). At that points i outputs
q−k(0) and terminates.

Secrecy. Assume the dealer is honest and observe the adversary’s view before some honest party
calls Reconstruct(k) for some k ∈ {0, . . . , t}. By that time, the adversary could gain information of
fi and gi for every Byzantine i directly from the dealer. Furthermore, every honest j sends every
Byzantine i the points fj(i) and gj(i). However, fj(i) = S(j, i) = gi(j) and gj(i) = S(i, j) = fi(j),
so these points do not reveal any information that fi and gi haven’t already revealed. In addition,
the honest parties might also send “ok”, “star”, and “done” messages with information that is
independent of S. Furthermore, they also send “col” messages, and as shown in the proof of
correctness these messages also contain the values gj(i) = fi(j). Finally, the honest parties might
have already participated in Reconstruct(l) for every l ∈ {0, . . . , t} \ {k}. During these calls, every
honest j sends the point fj(−l) = S(j,−l). Define the polynomial g−l(X) = S(X,−l). In that
case, the honest parties send points on the polynomial g−l, and thus the adversary could also gain
enough information to learn the polynomials g−l for every l ∈ {0, . . . , t} \ {k}.

Let the set of Byzantine parties be B and I = {−0, . . . ,−t} \ {−k}. In that case, for every
i ∈ B and j ∈ B ∪ I, fi(j) = gj(i). Using the exact same arguments as the ones in Lemma 4.7,
for every possible sk ∈ F, there exists a unique polynomial S which is consistent with all of these
polynomials and for which S(−k, 0) = sk. From Lemma 4.8, for every set of secrets s0, . . . , st,
the dealer samples a polynomial S uniformly from a set with p = |F|2t(t+1) possibilities, and
thus the probability of the adversary having a particular view is exactly 1

p regardless of the final
secret sk. Note that this discussion only dealt with the most information the adversary can gain
throughout the protocol. The fact that there exists a unique polynomial given this view and that
the dealer samples the polynomial S uniformly implies that in that case the adversary’s view is
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sampled uniformly and independently from the final secret sk. A uniform distribution on the most
information the adversary could learn also induces a uniform distribution on any lesser amount
of information the adversary might gain, meaning that the adversary’s view is always distributed
uniformly and independently of the final secret sk.

4.5 Additional Reconstruction Protocols

We are interested in protocols that also allow for reconstructing sums of secrets. That is, packed
AVSS schemes with an additional Sum− Reconstruct protocol that takes an input dealers ⊆ [n] and
an input k ∈ N and outputs a value. Parties call Sum− Reconstruct(k, dealers) only after having
completed the Share protocol with i as dealer for every i ∈ dealers. The Sum− Reconstruct protocol
has the following two properties:

• Correctness. If an honest party completes Sum− Reconstruct(k, dealers) for some k ∈ [m],
then its output is

∑
i∈dealers ri,k, with ri,k being the value rk defined for the dealer i in the

Correctness property above.

• Termination. If all honest parties call Sum− Reconstruct(k, dealers), then they all complete
the protocol.

It is possible to trivially construct a packed AVSS protocol from an AVSS protocol (i.e. a
protocol with m = 0) by simply sharing each value independently. However, some protocols share
several values more efficiently than sharing them each one independently. In addition, it is possible
to reconstruct the sum

∑
i∈dealers ri,k by simply reconstructing each of the ri,k values individually

and then summing the outputs. However, some protocols allow for more efficient reconstruction of
sums as well.

Two additional reconstruction protocols are provided for efficient reconstruction of all secrets
and of sums of secrets in Protocol 4.10 and Protocol 4.11. The below protocols have a total word
complexity of O(n2) for reconstructing either a sum or all secrets of a single dealer. As shown
above, the sharing protocol has a word complexity of O(n3). This means that when reconstructing
a sum of O(n) secrets, as done above, simply reconstructing each secret individually has a cost
of O(n3) words, which is efficient enough to not change the asymptotic behavior of the protocol.
Similarly, reconstructing each secret individually for batch reconstruction also doesn’t incur addi-
tional costs. These protocols are still provided for completeness and can be useful when parties
need to reconstruct sums without revealing each element in the sum individually, or when they
need to reconstruct a full degree 2t polynomial with the embedded secrets. In the description of
Sum− Reconstruct, pi,j is defined to be the field pi in the Share invocation with j as dealer.

Protocol 4.10: Sum− Reconstructi(k, dealers)

1: pointsi ← ∅
2: send 〈“rec”, k,

∑
j∈dealers pi,j(−k)〉

3: upon receiving a 〈“rec”, k, yj〉 message from j, do
4: pointsi ← pointsi ∪ {(j, yj)}
5: q−k ← RobustInt(pointsi, t, t)
6: if q−k 6= ⊥ then
7: output q−k(0) and terminate
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Protocol 4.11: Batch− Reconstructi()

1: pointsi ← ∅
2: send 〈“rec”, k, qi(0)〉
3: upon receiving a 〈“rec”, k, yj〉 message from j, do
4: pointsi ← pointsi ∪ {(j, yj)}
5: p0 ← RobustInt(pointsi, 2t, t)
6: if p0 6= ⊥ then
7: output p0(0), . . . , p0(−k) and terminate

In Sum− Reconstruct(k), parties output
∑

j∈dealers rk,j , where rk,j is the value rk defined in
the invocation of Share with j as dealer. In Batch− Reconstruct, parties output the entire set of
secrets r0, . . . , rt. The proof that this is the case follows the same reasoning as the one of the
correctness property of the original protocol, and is thus omitted. In addition, from counting the
above messages, one can see that the total word complexity is O(n2) since parties only send a single
message with a field element.

5 Verifiable Party Gather

5.1 Definition

Verifiable Party Gather is a variation of the Verifiable Gather protocol of [5]. The first difference is
that we only output a set of parties (no values) and the second difference is that the cryptographic
external validity function is replaced by an information theoretic asynchronous validity predicate
as defined in Section 3.2 that takes as input a party index. Intuitively, the goal of a party gather
protocol is to have some common core of parties such that each honest party outputs a set of parties
that is a super-set of this core. Intuitively, the goal of a verifiable party gather protocol is to make
sure that the set of parties that are output by an honest party can be verified to be correct outputs
of the protocol. Observe that different parties may output different super-sets of the core and there
is no agreement on who is in the core.

Formally, a verifiable party gather protocol consists of a pair of protocols (Gather,Verify) and
takes as input a validity predicate validate : [n] → {0, 1}. For Gather, each party i has a set of
parties Si ⊆ [n] as input such that validatei(x) = 1 for every x ∈ Si at the time i calls the protocol.
Each party may decide to output a set Xi. After outputting sets Xi, parties must continue to
update their local state according to the Gather protocol in order for the verification protocol to
continue working. The properties of Gather:

• Binding Core. Once the first honest party outputs a value from the Gather protocol there
exists a core set X∗ such that |X∗| ≥ n− t, and, if an honest party j outputs the set Xj , then
X∗ ⊆ Xj .

• Termination of Output. All honest parties eventually output a set of indices.

The Verify protocol receives a set X ⊆ [n] and can either terminate with the output 1 signifying
that X was verified, terminate with the output 0 signifying that X wasn’t verified, or not terminate
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at all. The verification protocol only allows the adversary to report sets of parties that contain
the binding core X∗, or not pass verification. A party i can check any set X, which we denote by
executing Verifyi(X). If the execution of Verifyi(X) terminates and outputs 1, we say that i has
verified the set X. The termination properties of Verify:

• Completeness. For any two honest parties i, j, if j outputs Xj from Gather, then Verifyi(Xj)
eventually terminates with the output 1.

• Agreement on Verification. For any two honest i, j, and any set X, if Verifyi(X) ter-
minates with the output b ∈ {0, 1}, then Verifyj(X) eventually terminates with the same
output.

The correctness properties of the Verify protocol:

• Includes Core. If Verifyi(X) terminates with the output 1 for some honest i, then X∗ ⊆ X
(for the core X∗ defined in the Binding Core property of Gather).

• Validity. If Verifyi(X) terminates with the output 1 for some honest i, then for each x ∈ X,
validatei(x) = 1 at the time i output X.

Combining the Includes Core and Completeness properties we can see that all honest parties
output sets that contain X∗.

As part of our verifiable leader election protocol, we require a “verifiable party gather”. In the
leader election protocol, we want to agree on a large set of parties that actively participated and
elect a leader among them. However, exactly agreeing on the set is non-trivial and potentially
expensive. Therefore we slightly relax our requirements: there exists some core C of size n − t or
greater such that the output of every honest party contains C. Furthermore, we would like parties
to be able to prove that they “acted correctly” and included C in their output.

5.2 The Protocol

The protocol takes place in two rounds. In the beginning, all parties broadcast their inputs Si ⊆ [n],
which are sets of parties. We also assume that all parties have access to an asynchronous validity
predicate validate and that for every honest i, validatei(x) = 1 for every x ∈ Si at the time it calls
the Gather protocol. After an honest Pi receives such a set Sj from party Pj , it waits to see that
validatei(x) = 1 for every x ∈ Sj . When this condition holds, Pi records Pj as a party from whom
it received a set and stores j in Ti. In addition, it adds all indices in Si to its eventual output value,
Ri. In the second round, Pi sends its set Ti once its size is at least n− t. When receiving a set Tj

from party Pj , i waits until it sees that Tj ⊆ Ti. After seeing that this is the case for n− t parties,
i terminates and outputs Ri.

In order to be able to verify reported values, when i accepts a set Tj from j, it also stores
all parties which j should have seen in S sets before sending Tj . In other words, it also stores
(j,∪k∈Tj

Sk) in a set Ui used for verification. In the discussion below, we show that there exists
some index i∗ that is included in at least t + 1 of the T sets broadcasted by parties. Since every
party waits to receive T sets from at least n− t parties before terminating, it will see at least one
with that index, and thus include Si∗ in its output. This is true for any honest party, so Si∗ can
serve as a common core in the output of all honest parties. Similarly, when verifying a set X, i
makes sure that it contains the values referenced by the T sets received from at least n− t parties,
and thus also includes Si∗ in it.
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Protocol 5.1: Gatheri(Si)

1: Ri ← ∅, Ti ← ∅, Ui ← ∅
2: broadcast 〈1, Si〉
3: upon receiving 〈1, Sj〉 from j such that |Sj | ≥ n− t, do
4: upon validatei(x) terminating with output 1 for every x ∈ Sj , do
5: Ri ← Ri ∪ Sj

6: Ti ← Ti ∪ {j}
7: if |Ti| = n− t then
8: broadcast 〈2, Ti〉 . T sets reference S sets
9: upon receiving 〈2, Tj〉 from j such that |Tj | ≥ n− t, do

10: upon Tj ⊆ Ti, do . relevant S sets and values are received
11: Ui ← Ui ∪ {(j,

⋃
k∈Tj

Sk)} . save all parties in the S sets referenced by Tj

12: if |Ui| = n− t then
13: output Ri, but continue updating internal sets and sending messages

Protocol 5.2: GatherVerifyi(X)

1: upon |{j|∃(j, Vj) ∈ Ui, Vj ⊆ X}| ≥ n − t and validatei(x) terminating with the output 1 for
every x ∈ X, do

2: output 1 and terminate

5.3 Security Analysis

We start by proving that many parties send T sets with an index i∗, which will later be used for
defining the common core of the protocol. We then show that parties eventually have consistent
views, and conclude with proving that (Gather,GatherVerify) is a Verifiable Party Gather protocol
in Theorem 5.5. The efficiency of the protocol is analyzed in Appendix A.1.

Lemma 5.3. Assume some honest party completed the protocol. There exists some i∗ such that at
least t+ 1 parties sent broadcasts of the form 〈2, T 〉 with i∗ ∈ T .

Proof. Assume some honest party completed the protocol. Before completing the protocol, it found
that |Ui| ≥ n− t, and thus it received n− t broadcasts of the form 〈2, Tj〉 such that |Tj | ≥ n− t. Let
I be the set of parties who sent those broadcasts. Now assume by way of contradiction that every
index k appears in at most t of the broadcasted sets Tj such that j ∈ I. Since there are a total of
n possible values, this means that the total number of elements in all sets is no greater than nt.
On the other hand, there are n− t such sets, each containing n− t elements or more, resulting in
at least (n− t)2 elements overall. Combining these two observations:

(n− t)2 ≤ nt

n2 − 2nt+ t2 ≤ nt

n2 − 3nt+ t2 ≤ 0
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However, by assumption n > 3t, and thus:

0 ≥ n2 − 3nt+ t2

= n2 − n · (3t) + t2

> n2 − n2 + t2

= t2 ≥ 0

reaching a contradiction. Therefore, there exists at least one value i∗ such that for at least t+1 of
the 〈2, T 〉 broadcasts sent, i∗ ∈ T .

Lemma 5.4. Let i, j be two honest parties. Observe the sets Ti, Ui at any time throughout the
protocol. Eventually Ti ⊆ Tj and Ui ⊆ Uj.

Proof. Observe some k ∈ Ti. Party i added k to Ti after receiving a 〈1, Sk〉 broadcast from k
such that |Sj | ≥ n − t and seeing that validatei(x) = 1 for every x ∈ Sk. From the Agreement
and Termination properties of the broadcast protocol, j eventually receives the same message, and
from the Consistency property of the asynchronous validity predicate, it will eventually see that
validatei(x) = 1 for every x ∈ Sk. At that point, j will add k to Tj as well. Similarly, observe some
(k, Vk) ∈ Ui. Party i received a 〈2, Tk〉 message such that |Tk| ≥ n− t and saw that Tk ⊆ Ti. Party
j will also receive that same message and eventually see that Tk ⊆ Ti ⊆ Tj , at which point it will
add a tuple (k, V ′

k) to Ui. Note that both parties compute Vk and V ′
k to be the union of the Sl sets

such that l ∈ Tk. Since both of them receive the same broadcasts 〈1, Sl〉, they both compute the
same set, and thus j adds the same tuple (k, V ′

k) = (k, Vk) to its Uj set.

Theorem 5.5. The pair (Gather,GatherVerify) is a verifiable reliable gather protocol resilient to
t < n

3 Byzantine parties.

Proof. Each property is proven separately.
Termination of Output. Assume that for every honest i and for every x ∈ Si validatei(x) = 1

at the time i calls Gather. Every honest party i starts the Gather protocol by broadcasting 〈1, Si〉.
Every honest j receives that message and from the Consistency property of the asynchronous
validity predicate eventually sees that validatej(x) = 1 as well for every x ∈ Si. At that point
j adds i to Tj . After adding such an index for every honest party, j sees that |Tj | = n − t and
broadcasts 〈2, Tj〉. Similarly, every honest party k eventually receives that broadcast and sees that
|Tj | ≥ n − t. From Lemma 5.4, eventually Tk ⊆ Tj , at which point k adds a tuple (j, Vj) to Uk.
After adding such a tuple for every honest j, every honest k sees that |Uk| ≥ n− t, outputs Rk and
terminates.

Completeness. Assume some honest party i completes the Gather protocol and outputs Ri.
At the time i output Ri, it found that |Ui| = n − t. We will start by showing that at that
time ∪(j,Vj)∈Ui

Vj ⊆ Ri. Before adding (j, Vj) to Ui, i received a 〈2, Tj〉 broadcast from j and
saw that Tj ⊆ Ti. It then added (j,∪k∈Tj

Sk) to Ui. Similarly, before adding k ∈ Tj to Ti, i
received a 〈1, Sk〉 broadcast from k and updated Ri to Ri ∪ Sk. In other words, for every k ∈
Tj , Sk ⊆ Ri and since Vj = ∪k∈Tj

Sk, also Vj ⊆ Ri. Let j be some honest party that called
GatherVerifyj(Ri). From Lemma 5.4, eventually Ui ⊆ Uj . At that time, for every (k, Vk) ∈ Ui ⊆ Uj ,
Vk ⊆ Ri. When i completes the Gather protocol, |Ui| = n − t and thus j will eventually see that
|{k|∃(k, Vk) ∈ Uj , Vk ⊆ Ri}| ≥ n − t. In addition, i only adds elements to Ri by updating Ri to
Ri ∪ Sk after seeing that validatei(x) = 1 for every x ∈ Sk. From the Consistency property of
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validate, for every x ∈ Sk eventually validatej(x) = 1 as well. Therefore, j will eventually see that
all of the conditions of the GatherVerify protocol hold, output 1, and terminate.

Agreement on Verification. Assume that some honest i completes the GatherVerifyi(X)
protocol on some set X and outputs b ∈ {0, 1}. Honest parties never output 0 from the GatherVerify
protocol, and thus i output 1. This means that it saw that |{k|∃(k, Vk) ∈ Ui, Vk ⊆ X}| ≥ n− t and
that for every x ∈ Sk, validatei(x) = 1. Let j be some honest party that called GatherVerifyj(X).
From Lemma 5.4, eventually Uj ⊆ Ui and thus eventually |{k|∃(k, Vk) ∈ Uj , Vk ⊆ X}| ≥ n − t. In
addition, from the Consistency property of validate, j will also eventually see that validatej(x) = 1
for every x ∈ X. After both of those conditions hold, j outputs 1 from the GatherVerify protocol
and terminates.

Binding Core. Assume the first honest party that completes the Gather protocol is j, and
observe the index i∗ as defined in Lemma 5.3. Party j only adds a tuple (k, Vk) to Uj after receiving
a 〈2, Tk〉 message from party k. Before completing the protocol, j received n − t such broadcasts
and found that Tk ⊆ Tj . From Lemma 5.3, t+1 of the parties broadcast some message 〈2, Tk〉 such
that i∗ ∈ Tk. Therefore, for at least one party k, i∗ ∈ Tk ⊆ Tj . Before adding i∗ to Tj , pj received
a 〈1, Si∗〉 broadcast from party i∗ such that Si∗ ⊆ Sj and |Si∗ | ≥ n− t. Let the binding-core X∗ be
Si∗ . Clearly |X∗| ≥ n− t because |Si∗ | ≥ n− t. The fact that X∗ is a subset of every honest party’s
output from the protocol is a direct corollary of the Completeness and Includes Core properties of
the Gather protocol.

Include Core. Let i be some honest party and X be some set such that GatherVerifyi(X)
terminates with the output 1. Party i found that |{k|∃(k, Vk) ∈ Uj , Vk ⊆ X}| ≥ n− t. As discussed
above, party i only adds (j, Vj) to Ui after receiving a 〈2, Tj〉 message from j. Let i∗ be defined as
it is in Lemma 5.3 and in the Binding Core property. Seeing as there are at least t+1 parties that
sent broadcasts of the form 〈2, T 〉 with i∗ ∈ T and n− t parties j such that (j, Vj) ∈ Ui and Vj ⊆ X,
for at least one of those parties i∗ ∈ Tj . By definition, Vj =

⋃
k∈Tj

Sk, and thus Si∗ ⊆ Vj ⊆ X, as
required.

Validity. Assume that for some honest i, GatherVerifyi(X) terminates with the output 1.
Before doing so, i checks that validatei(x) = 1 for every x ∈ X.

6 Verifiable Leader Election
We now turn our attention to verifiable leader election. The protocol uses the AVSS protocol
described and constructed in Section 4, and a Verifiable Party Gather protocol, described and
constructed in Section 5.

6.1 Definition

A perfect leader election would allow all parties to output one common randomly elected party.
Verifiable Leader Election (VLE) is an asynchronous protocol that tries to capture this spirit
but obtains weaker properties. Intuitively, there is only a constant probability all parties elect
the same honest party. As in the Verifiable Party Gather protocol, we also add a verification
protocol. Crucially, in the good event mentioned above, the only value that passes verification is
this commonly elected leader. In the remaining cases, the adversary can control the output and
even cause different parties to have different outputs. However, even in these cases, all parties
eventually output some verifying value.
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We assume a validity predicate validate : [n] → {0, 1} that given any index k ∈ [n] can check
the validity of k. A Verifiable Leader Election protocol consists of a pair of protocols (VLE,Verify).
When an honest i calls the VLE protocol, validatei(i) = 1 already holds. The output of the VLE
protocol is a pair (`, π) where ` ∈ [n] and π is a proof used in the Verify protocol. We model these
protocols as having some ideal write-once state `∗. We assume ⊥ is not valid and let `∗ ∈ [n]∪{⊥}.
Intuitively, if `∗ 6= ⊥ then the output of all parties will be `∗, but when `∗ = ⊥ then the adversary
can cause different parties to output different verifying values.

• α-Binding. For any adversary strategy, with probability α, `∗ is set to be the index of a party
that behaved in an honest manner when it started the VLE protocol.

In addition, the VLE protocol has a natural termination property:

• Termination of Output. All honest parties eventually output a pair (`, π).

A party i can check any pair of index and proof, (`, π), which we denote by executing Verifyi(`, π).
If Verifyi(`, π) terminates with the output 1, we say that i has verified `. If the binding value `∗

is not ⊥, then the only value for which the verify protocol can terminate and output 1 is `∗. This
limits the adversary to either reporting `∗ or remaining silent. The termination properties of Verify:

• Completeness. For any two honest parties i, j, the output (`, π) of party j from VLE will
eventually be verified by party i, i.e. Verifyi(`, π) eventually terminates with the output 1.

• Agreement on Verification. For any two honest parties i, j, and any index ` and proof π,
if Verifyi(`, π) terminates with the output b ∈ {0, 1} Verifyj(`, π) eventually terminates with the
same output.

Finally, the correctness properties of Verify:

• Binding Verification. If `∗ 6=⊥ then for every honest party i, and every (`, π), if Verifyi(`, π)
terminates with the output 1, then ` = `∗.

• Validity. If Verifyi(`, π) terminates with the output 1 for some honest i, then validatei(`) = 1
at the time Verifyi(`, π) terminated.

6.2 Overview

Informally, parties participate in a Verifiable Leader Election (VLE) protocol and elect some leader.
The goal is that with a constant probability, all honest parties output an honest leader. With the
remaining probability, parties might not agree on the leader’s identity or elect a dishonest leader.
In any one of the cases, every party’s output must be an asynchronously validated leader according
to an asynchronous validity predicate validate. Every honest party starts the protocol believing it
is a valid leader, i.e., with validatei(i) = 1. In addition, parties can verify each other’s output with
a verification protocol, VLEVerify. If a single honest leader is elected, that should be the only party
that can be verified. This means that if parties inform each other of their elected leaders, even
corrupt parties won’t be able to send any other party’s index and convince the honest parties that
it is a valid output from the protocol. For a formal definition of a VLE protocol, see Section 6.1.
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Overview. Our construction uses techniques inspired by synchronous weak leader election [26],
and cryptographic proposal election [5]. The protocol proceeds in 5 rounds described below:
Round 1: In the first round, every party shares n random values using a packed AVSS protocol,
one for each party. Parties then participate in the packed AVSS instances with every party as a
dealer.
Round 2: In the second round, after completing the Share protocol for t + 1 dealers, party i
broadcasts an “attach” message with the set dealersi for which it completed the sharing protocol.
After receiving such a message from party j with a set dealersj , i checks that it also completed
the Share protocol for the dealers in dealersj and waits until it considers j to be valid according to
validatei(j). That is, it checks that j is a valid leader that has committed to a random value, which
is the sum of the j’th secrets shared by the dealers in dealersj .
Round 3: In the third round, i waits to see that n − t parties are committed to their random
values and then inputs the set of those parties, attachedi, to the Gather protocol. It does so with an
asynchronous validity predicate checking that each party in attachedi is a valid candidate committed
to a random secret.
Round 4: After completing the Gather protocol, i outputs a set of parties that it considers to be
viable candidates who can be chosen as leaders and output from the VLE protocol. In order to
be able to choose a single leader, i broadcasts a “candidates” message with that set of candidates,
asking parties to help reconstruct their attached random value.
Round 5: After receiving a “candidates” message from party j with a set candidatesj , i checks
that candidatesj is a valid output from the Gather protocol by calling the GatherVerify protocol.
After the GatherVerify protocol returns 1 on the set candidatesj , i starts reconstructing the sum of
the k’th secrets shared by dealers in dealersk for every k ∈ candidatesj . In other words, it helps
reconstruct the random value for each candidate. Note that parties only start reconstructing the
secrets associated with a party k after seeing that k broadcasted its set of dealers. Since the set
of dealers must be at least of size t+ 1, one of those secrets was shared by an honest dealer. This
guarantees that the sum will be completely random and unknown to k, who has yet to see any k’th
secret reconstructed.
Output: Finally, after reconstructing the random values associated with each of its own candidates,
i outputs the candidate with the highest random value. As proof, it also outputs the set of
candidates candidatesi.

Intuitively, every party outputs a set of candidates from the Gather protocol who have already
committed to their random value. If the party with the maximal random value happens to be an
honest party `∗ in the binding core of the Gather protocol, then all honest parties will see that
random value and pick `∗ as their output. Since the values are sampled uniformly in an unbiased
manner, this means that every party has the same probability of having the maximal evaluation
associated with it. When counting the number of honest parties in the common core, we find that
the probability of the aforementioned event is at least 1

3 . This mechanism also allows to check
whether a given proposal could have been the correct output from the VLE protocol.

To convince an honest party that a value is a correct output from the VLE protocol, parties
can provide their output from the Gather protocol. Parties will then be able to check if that set of
parties is a possible output from Gather (i.e., if it contains the core) and if the correct leader was
elected based on that set. If the maximal random value is associated with a party in the core, then
only sets containing that party will verify, which means that only the honest leader `∗ will verify.
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6.3 The Protocol

Protocol 6.1: VLEi()

1: dealersi ← ∅, attachedi ← ∅, candidatesi ← ∅, ranksi ← ∅
2: s1, . . . , sn

$←− F
3: share s1, . . . , sn using a packed AVSS protocol and participate in the PAVSS instances with

every party as dealer
4: upon completing all Share calls with j as dealer, do
5: dealersi ← dealersi ∪ {j}
6: if |dealersi| = t+ 1 then
7: broadcast 〈“attach”, dealersi〉
8: upon receiving an 〈“attach”, dealersj〉 broadcast from j, do
9: upon dealersj ⊆ dealersi, |dealersj | ≥ t + 1 and validatei(j) terminating with the output 1,

do
10: attachedi ← attachedi ∪ {(j, dealersj)}
11: if |attachedi| = n− t then
12: call Gatheri({k|∃(k, dealersk) ∈ attachedi}) with checkValidityi as validity predicate
13: upon Gatheri outputting the set Xi, do . continue updating state according to Gather
14: candidatesi ← Xi

15: broadcast 〈“candidates”, candidatesi〉
16: upon receiving a 〈“candidates”, candidatesj〉 broadcast from j, do
17: upon GatherVerifyi(candidatesj) terminating with the output 1 and Gatheri terminating, do
18: for all k ∈ candidatesj do
19: call Sum− Reconstruct(k, dealersk) for (k, dealersk) ∈ attachedi

20: upon Sum− Reconstruct(j, dealersj) terminating with the output rj , do
21: ranksi ← ranksi ∪ {(j, rj)}
22: upon candidatesi 6= ⊥ and ∀j ∈ candidatesi ∃(j, rj) ∈ ranksi, do
23: `← argmax{rj |j ∈ candidatesi, (j, rj) ∈ ranksi} . ` is the party with the highest rank r`
24: πi ← candidatesi
25: output (`, πi), but continue updating internal sets and sending messages

Protocol 6.2: checkValidityi(k)

1: upon there being a tuple of the form (k, dealersk) in attachedi, do
2: output 1 and terminate

Protocol 6.3: VLEVerifyi(k, π)

1: upon ∀j ∈ π ∃(j, rj) ∈ ranksi, do
2: upon GatherVerifyi(π) terminating with the output 1 and Gatheri terminating, do
3: `← argmax{rj |j ∈ π, (j, rj) ∈ ranksi}
4: if k = ` then
5: output 1 and terminate
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6.4 Security Analysis

We start by proving that parties’ views are eventually consistent and that checkValidity, which
is used as an asynchronous validity predicate for the Gather protocol, is indeed one. We then
prove that (VLE,VLEVerify) are indeed a Verifiable Leader Election protocol in Theorem 6.6. The
efficiency of the protocol is analyzed in Appendix A.3.

Lemma 6.4. Let i and j be honest parties. Observe the sets dealersi,attachedi, and ranksi at any
time throughout the protocol. Eventually dealersi ⊆ dealersj, attachedi ⊆ attachedj and ranksi ⊆
ranksj.

Proof. Let k be some index in dealersi. Party i adds k to dealersi after completing all Share calls
with k as dealer. From the Termination property of the AVSS scheme, j completes those calls as
well and adds k to dealersj .

Let (k, dealersk) be a tuple in attachedi. Party i adds the tuple to attachedi after receiving an
〈“attach”, dealersk〉 broadcast from k, seeing that dealersk ⊆ dealersi, that |dealersk| ≥ t + 1 and
that validatei(k) = 1. Eventually, j receives the same broadcast and as shown above eventually
sees that dealersk ⊆ dealersi ⊆ dealersj and from the Consistency property of validate, validatej(k)
eventually terminates with the output 1 as well. It then adds (k, dealersk) to attachedj .

Finally, let (k, rk) be a tuple in ranksi. Party i adds such a tuple to ranksi for every (k, dealersk) ∈
attachedi after calling Sum− Reconstruct(k, dealersk), and the protocol terminating with the output
rk. Before calling the protocol, i receives a 〈“candidates”, candidatesl〉 broadcast from some party
l such that k ∈ candidatesl and that GatherVerifyl(candidatesl) terminates with the output 1. In
addition i completes its call to Gatheri, which it called after having |attachedi| = n− t. As shown
above, eventually attachedj ⊆ attachedi, so j will also see that |attachedj | = n − t at some point.
It will then call Gatherj , and from the Termination property of the Gather protocol complete the
call to Gatherj as well. In addition, j will receive the same “candidates” broadcast, and from the
Agreement on Verification property of GatherVerify, GatherVerifyj(candidatesl) will terminate with
the output 1, at which point j will call Sum− Reconstruct(k, dealersk). Finally, from the correctness
property of the AVSS protocol, the protocol will terminate with the output rk and j will add (k, rk)
to ranksj .

Lemma 6.5. checkValidity is an asynchronous validity predicate.

Proof. We will show that the predicate has the Finality and Consistency properties.
Finality. Assume that checkValidityi(k) terminated with the output b for some honest i. First

note that checkValidityi never outputs 0 so b = 1. In that case, i saw that there exists a tuple of
the form (k, dealersk) in attachedi. Parties never remove tuples from their attachedi sets, so i will
output 1 in any subsequent calls to checkValidityi(k).

Consistency. Assume that checkValidityi(k) = 1 for some honest k. Since checkValidityi(k) = 1,
i saw that there exists a tuple of the form (k, dealersk) in attachedi. From Lemma 6.4, eventually
(k, dealersk) will be added to attachedj as well, and checkValidityj(k) will terminate with the output
1.

Theorem 6.6. The pair (VLE,VLEVerify) is a Verifiable Leader Election protocol resilient to t < n
4

Byzantine parties with α = 1
3 .
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Proof. Each property is proven separately.
Termination of Output. If all honest parties participate in the VLE protocol, then they all

sample n values and share them using packed AVSS. From the Termination property of AVSS,
every honest party i will complete those calls, add every honest j to dealersi and broadcast
〈“attach”, dealersi〉 when it |dealersi| = t + 1. After an honest i receives an “attach” message
from an honest j, it sees that |dealersj | ≥ t + 1. In addition, from Lemma 6.4, eventually
dealersj ⊆ dealersi. By assumption, validatej(j) = 1 for every honest j at the time it starts
the VLE protocol, so from the Consistency property of the predicate validatei(j), will eventually
output 1 for every honest i. When these conditions hold, i adds (j, dealersj) to attachedi. After
adding such a tuple for every honest j, i sees that |attachedi| = n − t and it calls Gatheri with
the input Si = k|∃(k, dealersk) ∈ attachedi. Clearly, for every k ∈ Si there is a tuple of the form
(k, dealersk) in attachedi, so checkValidityi(k) = 1. From Lemma 6.5, checkValidity is an asyn-
chronous validity predicate and all honest parties eventually call the Gather protocol, so from the
Termination protocol of Gather they all eventually complete the protocol. When an honest i com-
pletes the Gather protocol with an output Xi, it updates its candidatesi set to Xi and broadcasts
〈“candidates”, candidatesi〉. Every honest j receives that broadcast and from the Completeness
property, Gatherj(candidatesi) eventually terminates with the output 1. At that point, j calls
Sum− Reconstruct(k, dealersk) for every k ∈ candidatesi with (k, dealersk) ∈ attachedj . Note that
honest parties add those tuples after receiving the same 〈“attach”, dealersk〉 broadcast, so they all
call Sum− Reconstruct with the same set of dealers. From the Termination property of the AVSS
protocol, i completes the Sum− Reconstructi(k, dealersk) call for every k ∈ candidatesi and adds a
tuple (k, rk) to ranksi. Finally, after having candidates 6= ⊥ and there being a tuple (k, rk) ∈ ranksi
for every k ∈ candidatesi, i performs local computations, outputs some value, and terminates.

Completeness. Assume some honest party i outputs the index ` and proof π from VLE. Party
i chooses ` to be the index ` such that ` = argmax{rj |j ∈ candidatesi, (j, rj) ∈ ranksi} and sets
π to candidatesi, which was i’s output from the Gatheri protocol. Observe some honest party j
that calls VLEVerifyj(`, π). Note that i only completes the VLE protocol after seeing that for every
k ∈ candidatesi there exists a tuple (k, rk) ∈ ranksi. From Lemma 6.4, eventually ranksj ⊆ ranksi
and thus ∀k ∈ π ∃(k, rk) ∈ ranksj . In addition, from the Completeness property of GatherVerify,
GatherVerifyj(π) eventually terminates with the output 1. As shown above, j eventually completes
Gatherj and proceeds to compute `. Both i and j compute ` to be argmax{rk|k ∈ candidatesi},
with rk being the output from Sum− Reconstruct(k, dealersk). From the Correctness property of
AVSS, both i and j receive the same output rk for every k, and thus they compute the same ` as
the index with maximal rk. Therefore, VLEVerifyj(`, π) outputs 1 and terminates.

α-Binding. From the Includes Core property of the Gather protocol, at the time the first honest
party completes the Gather protocol, there exists a binding core X∗ of at least n− t indices in [n]
such that if GatherVerifyi(X) terminates with the output 1 for an honest party i, then X∗ ⊆ X.
Note that at least n− 2t ≥ t+ 1 > n

3 of those indices are honest parties’ indices. Let I be the set
of all parties k for which at least one honest party j called Sum− Reconstructj(k, dealersk). Before
calling the protocol, j completes Gatherj , calls GatherVerifyj(candidates) and sees that it terminates
with the output 1 for some set candidates which includes k. From the Validity property of the
Gather protocol, there already existed a tuple (k, dealersk) ∈ attachedi at that time, and from the
Binding Core property of the Gather protocol X∗ is already defined at that time. Note that from
the Correctness property of Sum− Reconstruct, rk is the sum of the k’th secrets shared by the
dealers in dealersk. For each (k, dealersk) ∈ attachedj , dealersk has at least t + 1 indices, and thus
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at least one of the dealers was honest. That honest dealer shared a uniformly sampled value, and
no honest party started reconstructing rk or the uniformly sampled secret shared by the honest
dealer before receiving an “attach” broadcast from k. Therefore, from the Secrecy property of the
AVSS protocol, the value shared by the honest dealer is sampled uniformly and independently of
the adversary’s view at that time. This means that for every k ∈ I, rk is sampled uniformly and
independently from all other values and from the set X∗. Therefore, the probability of a given
party k ∈ I having the maximal rank rk is 1

|I| ≥
1
n

3. This means that the probability that there
exists an honest party `∗ such that `∗ ∈ X∗ and r`∗ is the maximal rank among all rk such that
k ∈ I is at least n

3 ·
1
n = 1

3 . If that is the case, define `∗ to be that party’s index, otherwise, define
it to be ⊥.

Binding Verification. If `∗ as defined in the α-Binding property equals ⊥, the property
trivially holds. Assume that `∗ 6=⊥ and that VLEVerifyi(`, π) terminates with the output 1 for
some honest i. Before VLEVerify terminates, i checks that for every k ∈ π there exists a tuple
(k, rk) ∈ ranksi. Afterwards, i calls GatherVerifyi(π), which eventually terminates with the output 1.
From the Includes Core property of the Gather protocol, X∗ ⊆ X and thus `∗ ∈ X. Now, note that
i only adds a tuple (k, rk) to ranksi if it completes Sum− Reconstruct(k, dealersk) with the output
k. By definition, `∗ has the maximal rank r`∗ and thus `∗ = argmax{rk|k ∈ π, (k, rk) ∈ ranksi}.
Party i eventually terminated, and thus it found that ` = `∗, as required.

Agreement on Verification Let i, j be two honest parties and `, π be two values such that
VLEVerifyi(`, π) terminates with the output b. Honest parties only output 1 from the VLEVerify pro-
tocol so b = 1. Party i starts VLEVerify by waiting until ∀k ∈ π, there exists a tuple (k, rk) ∈ ranksi.
From Lemma 6.4, eventually ranksi ⊆ ranksj , so j will see that this condition holds. Following that,
i sees that GatherVerifyi(π) terminates with the output 1 and that Gatheri terminates. From the
Agreement on Verification and Termination properties of the Gather protocol, j sees that these
conditions hold as well. At that time, checkValidityi(k) = 1 was true for every k ∈ π and thus there
was a tuple of the form (k, dealersk) ∈ attachedi. The same holds for j, which received the same
broadcast and added the same tuples to attachedj . In addition, both i and j add the tuples (k, rk)
to their respective ranks sets after reconstructing rk in the call to Sum− Reconstruct(k, dealersk).
From the Correctness property of the protocol, they both reconstruct the same value, so they have
the same tuples for every k ∈ π. They then compute ` in the same way with respect to the same
tuples (k, rk). For that index, i saw that k = `, and thus j will see that the same condition holds,
output 1, and terminate.

Validity. Observe some honest party i, and `, π such that VLEVerifyi(`, π) terminates with
the output 1. This means that i saw that GatherVerifyi(π) terminated with the output 1 and
that ` = argmax{rj |j ∈ π, (j, rj) ∈ ranksi}. In other words ` ∈ π so from the Validity property
of the GatherVerify protocol, checkValidityi(`) = 1. This means that there exists a tuple of the
form (`, dealers) in attachedi. Honest parties only add such a tuple after seeing that validatei(`)
terminated with the output 1, completing the proof.

In the above theorem, the threshold t < n
4 stems from using AVSS protocols, for which this

threshold is necessary in order to guarantee their termination [4, 12]. Similar results can be achieved
by using AVSS protocols with an ε probability of failure or non-termination, resulting in proba-
bilistic guarantees.

3We ignore a negligible probability of two parties having the same rank. This can be accounted for by sampling
from a large enough F and noting that t+ 1 ≥ n

3
+ 1

n
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7 Asynchronously Validated Asynchronous Byzantine Agreement

7.1 Definition

In an Asynchronously Validated Asynchronous Byzantine Agreement protocol, there is some asyn-
chronous validity predicate validate that every party has access to. In addition, the protocol
has some success parameter α ∈ (0, 1). Each honest party i starts with an input xi such that
validatei(xi) = 1 at the time i calls the protocol. Every honest party outputs a value when com-
pleting the protocol. A Validated Asynchronous Byzantine Agreement protocol has the following
properties:

• Agreement. All honest parties that complete the protocol output the same value.

• Validity. If an honest party i outputs a value yi then validatei(yi) = 1 at that time.

• α-Quality. With probability α, all parties output the input xi of a party i that was honest
when starting the protocol.

• Termination. All honest parties almost surely terminate, i.e., with probability 1.

7.2 Overview

This section deals with constructing our AVABA protocol, which is built upon ideas in [5] and [7] and
adapts them to the asynchronous information-theoretic setting. For a full construction and proofs,
see Sections 7.3 and 7.4. Using this protocol, constructing an ACS protocol is straightforward. For
a construction and a proof of an ACS protocol, see Section 8.

The protocol of [5] heavily relies on cryptographic primitives (signatures) to obtain externally
valid outputs. Here, we use the framework of asynchronous validity predicates to replace external
validity with an information-theoretic counterpart. This requires redefining and adapting new
information-theoretic variants of verifiable gather (party gather) and verifiable leader election. The
protocol of [7] modifies the cryptographic protocol of [29] to the information-theoretic setting in
partial synchrony. Here, we show how to extend this to full asynchronous network conditions, which
requires a new information-theoretic view change protocol and consistency checks for sent values.

In the AVABA protocol, parties proceed in “views”. In each view, parties propose values on
which to agree and then try to choose an honest leader using the VLE protocol. Our VLE protocol
has α-Quality for α = 1

3 , so this event should take place with probability 1
3 or greater. Once this

happens, the AVABA protocol guarantees that all parties will terminate with the proposal suggested
by that honest party.

AVABA uses the “Key-Lock-Commit” paradigm used in previous HotStuff protocols (VABA,
IT-HS and NWH) to maintain safety and liveness. As explained in [5]:

• Key: Parties set a local key field that indicates that no other value was committed to in previous
rounds. The keys help maintain liveness: if at any point some party sets a lock (to be explained
later) in a view where no commitment takes place, then they will eventually see a key from that
view (or a later view) that will convince them to participate in the current view.
A key consists of two values: key, a view number, and key_val, the suggested value.
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• Lock: Before committing to a value in a given view, parties will wait to hear that enough other
parties have set a lock on the same value in that view. Before parties set a lock in a given view,
they make sure that enough other parties have set a local key field that indicates that no other
value was committed to in previous rounds. Parties that are locked on a value won’t only be
willing to participate in a later view in which another value was suggested unless a key from a
later view is provided. This mechanism helps in guaranteeing the safety of decision values. If a
commitment takes place, then there will be a large number of honest parties that are locked on
that value. Those parties won’t be willing to participate in views with different values, which
will prevent any party from setting a key in a later view with a different value. This, in turn, will
guarantee that no party will be able to provide erroneous proof that the locks can be opened.
A lock consists of two values: lock, which is a view number, and lock_val, which is the value
seen when setting the lock.

• Commit: If an honest party commits to a value, no other honest party ever commits to another
value, using the locking mechanism. Before terminating, parties ensure that every party will
hear many commit messages, which guarantees that they can also commit and terminate.

The parties proceed in 5 rounds in each view. The general idea is that parties will first confirm
that they all agree on the leader elected in the VLE protocol, set a lock to the elected leader’s
proposal, and confirm that they are all locked, commit to the lock, and terminate. If they see
that the VLE protocol failed at any point throughout the view, they move onto a new view and
announce that they are doing so (with proof). In the NWH protocol, parties provided cryptographic
proofs for their keys and locks in the form of signatures on “echo” and “key” messages, respectively.
These signatures are inherently transferable since they can be sent to any party who can verify
them independently. To allow the “transfer” of such proofs, parties broadcast their “echo” and
“key” messages. This allows a party that formed a key or a lock to know that any other party
will eventually hear the same “echo” and “key” messages and believe it could have formed that key
or lock. Similar techniques are employed when providing “blame” and “echo” messages, which are
used to inform parties of a failed VLE session. In more detail, the protocol proceeds as follows:
Round 1: The first round in each view begins with a viewChange protocol. In viewChange, parties
choose their proposals and broadcast them. They send their current key to all other parties in a
“suggest” message. Before accepting a key, parties ensure it could have been achieved in the relevant
view by waiting to receive the broadcasted messages required to form a key (“echo” messages to be
explained later). Upon accepting n− t keys, parties choose the key and value from the most recent
view and broadcast the chosen key and value in a “proposal” message. Following that, they call
the VLE protocol to choose a leader for the current view, using leaderCorrecti as an asynchronous
validity predicate. This guarantees that any chosen leader has broadcasted a proposal.
Round 2: In the second round, parties check whether the VLE was successful or not. If it was
successful, they continue in that view, but if unsuccessful, they inform each other and proceed to
the following view.
• Upon electing a leader using the VLE protocol, if the leader’s proposed value is correct, then

echo that message to all other parties and include proof that this is the leader elected in the
VLE protocol.

• If the leader’s proposed value is incorrect, send a “blame” message and proof that this is the
leader elected in the VLE protocol and that its proposed value is incorrect and proceed to the
next view. In this context, an incorrect proposal means its key was not high enough to open the
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receiving party’s current lock. Every party can check that the purported lock could have been
set in a later view by waiting to receive the same broadcasted “key” messages required to set a
lock.
Upon receiving a correct “blame” message and proof, send the “blame” message to all parties
and proceed to the following view.

• Upon receiving “echo” messages with two different values suggested by two different leaders who
were independently elected in the VLE protocol, send an “equivocation” message containing the
two values and the two proofs to all parties and proceed to the following view.
Upon receiving an “equivocation” message with different values and correct proofs, forward that
message and proceed to the following view.

Round 3: Parties proceed to this round if they have received many “echo” messages without seeing
an error in the form of a “blame” or an “equivocation” message. This also means that no other
value was committed to in an earlier view, meaning that a key can be formed. Upon receiving n− t
“echo” messages, update the key and key_val fields before sending a “key” message to all parties.
Round 4: Upon receiving n− t “key” messages, update the lock and lock_val fields before sending
a “lock” message to all parties. By doing this, every party ensures that at least t+1 honest parties
set their keys to the current value before setting a lock. This guarantees that when choosing which
value and key to input to the VLE protocol, all honest parties will hear of the current value and be
capable of opening any older lock an honest party might have.
Round 5: Finally, upon receiving n− t correct “lock” messages, parties send “commit” messages
with the same value. Such a message is sent after receiving “lock” messages from n − t parties,
guaranteeing that t+ 1 parties have set their lock in the current view. These parties will not echo
any message about any other value in subsequent views unless an adequate key is provided. Since
forming a key requires a message from one of those parties, we can reason inductively that no
correct key will be formed for a differing value in any subsequent view.
Output: In order to allow parties to terminate, a termination gadget is also run outside of any
specific view. Similarly to Bracha broadcast [14], every party echoes a “commit” message if it sees
t+1 such messages with the same value. Finally, parties terminate after seeing n− t such messages.

7.3 The Protocol

Protocol 7.1: AVABA(xi)

1: keyi ← 0, key_vali ← xi
2: locki ← 0, lock_vali ← ⊥
3: ∀v ∈ N proposalsi ← ∅, echoesi,v ← ∅, keysi,v ← ∅, locksi,v ← ∅
4: viewi ← 1
5: continually run checkTermination()
6: while true do
7: cur_view← viewi

8: as long as cur_view = viewi, run
9: delay any message from any view v such that v > viewi

10: call viewChange(viewi) and continually run the upon commands within it
11: continually run processMessages(viewi) and processFaults(viewi)
12: continue updating sets and participating in broadcasts from older views, but do not send

news messages or broadcasts or update keyi, key_vali, locki, lock_vali in previous views
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Protocol 7.2: processMessages(view)

1: upon VLEi,view outputting `, π, do . continue updating state according to VLEi,view

2: let (k, v) be a tuple such that (`, (k, v)) ∈ proposalsi,view
3: if k ≥ locki then
4: broadcast 〈“echo”, k, v, `, π, view〉
5: else
6: send 〈“blame”, k, v, `, π, locki, lock_vali, view〉 to every party j
7: viewi ← viewi + 1

8: upon receiving an 〈“echo”, k, v, `, π, view〉 broadcast from j, do
9: upon VLEVerifyi,view(`, π) terminating with the output 1, do

10: if (`, (k, v)) ∈ proposalsi,view then
11: echoesi,view ← echoesi,view ∪ {(j, k, v, `, π)}
12: if ∃(j′, k′, v′, `′, π′) ∈ echoesi s.t. (k, v) 6= (k′, v′) then
13: send 〈“equivocation”, k, v, `, π, k′, v′, `′, π′, view〉 to every party j
14: viewi ← viewi + 1
15: else if |echoesi,view| = n− t then
16: keyi ← view, key_vali ← v
17: broadcast 〈“key”, v, view〉
18: upon receiving a 〈“key”, v, view〉 broadcast from j, do
19: upon keyCorrecti,view+1(view, v) terminating with the output 1, do
20: keysi,view ← keysi,view ∪ {(j, v)}
21: if

∣∣keysi,view∣∣ = n− t then
22: locki ← view, lock_vali ← v
23: send 〈“lock”, v, view〉 to every party j

24: upon receiving the first 〈“lock”, v, view〉 message from j, do
25: upon lockCorrecti(view, v) terminating with the output 1, do
26: locksi,view ← locksi,view ∪ {(j, v)}
27: if |locksi,view| = n− t then
28: send 〈“commit”, v〉 to every party j

Protocol 7.3: leaderCorrecti,view(`)

1: upon there being a tuple of the form (`, (k, v)) in proposalsi,view, do
2: output 1 and terminate

Protocol 7.4: keyCorrecti,view(k, v)

1: if view > k then
2: upon validatei(v) terminating with the output 1, do
3: if k = 0 then
4: output 1 and terminate
5: else

39



6: upon |{j|∃k′, `, π s.t. (j, k′, v, `, π) ∈ echoesi,k}| ≥ n− t, do
7: output 1 and terminate

Protocol 7.5: lockCorrecti(k, v)

1: if k = 0 then
2: output 1 and terminate
3: else
4: upon

∣∣{j|(j, v) ∈ keysi,k}
∣∣ ≥ n− t, do

5: output 1 and terminate

Protocol 7.6: checkTermination()

1: upon receiving a 〈“commit”, v〉 message with the same value v from t+ 1 parties, do
2: send 〈“commit”, v〉 to every party j if no such message has been previously sent
3: upon receiving a 〈“commit”, v〉 message with the same value v from n− t parties, do
4: output v from the AVABA protocol and terminate AVABA

Protocol 7.7: viewChange(view)

1: suggestions← ∅ . suggestions is a multiset
2: send 〈“suggest”, keyi, key_vali, view〉 to every party j
3: upon receiving the first 〈“suggest”, k, v, view〉 message from party j such that k < view, do
4: upon keyCorrecti,view(k, v) terminating with the value 1, do
5: suggestions← suggestions ∪ {(k, v)}
6: if |suggestions| = n− t then
7: (k, v)← argmax(k,v)∈suggestions{k} . break ties arbitrarily
8: if k = 0 then
9: (k, v)← (0, xi)

10: broadcast 〈“proposal”, k, v, view〉
11: upon receiving a 〈“proposal”, k, v, view〉 broadcast from j, do
12: upon keyCorrecti,view((k, v)) terminating with the output 1, do
13: proposalsi,view ← proposalsi,view ∪ {(j, (k, v))}
14: if j = i then
15: call VLEi,view() with the validity predicate leaderCorrecti,view

Protocol 7.8: processFaults(view)

1: upon receiving the first 〈“blame”, k, v, leader, π, l, lv, view〉 message from j, do
2: upon lockCorrecti(l, lv) and VLEVerifyi,view(leader, π) terminating with the output 1, do
3: if k < l and (leader, (k, v)) ∈ proposalsi,view then
4: send 〈“blame”, leader, π, l, lv, view〉 to every party j
5: viewi ← viewi + 1

6: upon receiving the first 〈“equivocation”, k, v, `, π, k′, v′, `′, π′, view〉 message from j, do
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7: upon VLEVerifyi,view(`, π) and VLEVerifyi,view(`
′, π′) terminating with the output 1, do

8: if (`, (k, v)), (`′, (k′, v′)) ∈ proposalsi,view and (k, v) 6= (k′, v′) then
9: send 〈“equivocation”, k, v, `, π, k′, v′, `′, π′, view〉 to every party j

10: viewi ← viewi + 1

7.4 Security Analysis

In this section, we will show that AVABA is an Asynchronously Validated Asynchronous Byzantine
Agreement protocol in Theorem 7.19. We start by proving several lemmas. Lemma 7.10 and
Lemma 7.11 are instrumental for showing the safety of the protocol. By that we mean that if
some honest party outputs a value v, no other honest party outputs a differing value v′ 6= v. The
Correctness property of the protocol is then an immediate consequence of Lemma 7.17.

The remaining lemmas deal with the liveness of the protocol. By that we mean that eventually
some progress is made, leading to the termination of the protocol. More specifically, we start by
showing that parties don’t get stuck in any view without being able to output a value or progress
to the next view. We then show that once an honest party is chosen as a leader which is the unique
verifiable output from the VLE protocol (which happens with constant probability), all honest
parties will commit at the end of the view.

We start by defining what it means for a key or lock to be correct.

Definition 7.9. A “key” message of the form 〈“key”, v, view〉 is said to be correct if for some honest
i, keyCorrecti,view′(view, v) = 1 holds for every view′ > view. Similarly, a “lock” message of the form
〈“lock”, v, view〉 is said to be correct if lockCorrecti(view, v) = 1 for an honest i. In addition, the
value of each such message is said to be the field v.

As stated above, the following two lemmas are used in the proof that the protocol is safe. First,
we show that in any given view only one value can proceed into the later rounds, meaning that any
two values committed to in a single view must be the same. Following that, we show that if an
honest party committed to a value, there are t+ 1 honest parties that won’t send “echo” messages
for any other value in any subsequent view. This prevents any other value from being included in
correct “key” or “lock” messages, thus preventing other values from being committed to in later
views. This idea is explored more fully and proved in Lemma 7.17. The proofs for the lemmas are
provided in Section 7.5.

Lemma 7.10. If two messages from a given view are correct, they both have the same value v.

Lemma 7.11. If an honest party sends a 〈“commit”, v〉 message in line 28 of processMessages(view),
then for any view′ ≥ view there exist t+1 honest parties that never send an 〈“echo”, k′, v′, `′, π′, view′〉
message with v′ 6= v .

We now turn to deal with the liveness of the protocol, showing that parties either progress
through views or terminate.

Definition 7.12. An honest party i is said to reach a view if at any point its local viewi field equals
view. Similarly, an honest party i is said to be in view if its local viewi field equals view at that
time.
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We will start by showing that the methods used for validating leaders, keys, and locks are
asynchronous validity predicates and that keys and locks are always correct according to the party
holding them. This means that parties can use the VLE protocol with leaderCorrect as an asyn-
chronous validity predicate. In addition, this means that every honest party will be convinced of
the correctness of other parties’ keys and locks, allowing them to progress through views in the
case that “blame” messages are sent. The proofs of the lemmas are provided in Section 7.6

Lemma 7.13. Let keyCorrectview and leaderCorrectview be the predicates defined by keyCorrecti,view
and leaderCorrecti,view for every i respectively. keyCorrectview and leaderCorrectview are asynchronous
validity predicates for every view. Furthermore, for any view > keyi, keyCorrecti,view(keyi, key_vali) =
1 at any point in time.

Lemma 7.14. lockCorrect is an asynchronous validity predicate. Furthermore, at any point in time
lockCorrecti,view(locki, lock_vali) = 1.

The next lemmas show that progress is made. We start in Lemma 7.15 by showing that parties
don’t get stuck in a view. More precisely, if no honest party completes the protocol in a given view,
every honest party eventually reaches the next view. Lemma 7.16 then shows that if an honest party
is chosen as the unique verifiable leader using the VLE protocol, the adversary cannot convince any
honest party to proceed to the next view using a “blame” message. We then show in Lemma 7.17
that if some honest party terminates, every honest party does so as well. Finally, Lemma 7.18
shows that there is a constant probability of all parties terminating in any given view, using the
fact that there is a 1

3 probability that an honest party is elected in that view. The proofs of the
following lemmas are straightforward and mostly consist of showing that parties eventually send
the required messages and reach agreement. The lemmas are stated here but proved in Section 7.7.

Lemma 7.15. If every honest party i has an input xi such that validatei(xi) = 1 at the time it
calls AVABA, all honest parties participate in the protocol, and no honest party terminates during
any view′ such that view′ < view, then all honest parties reach view.

Lemma 7.16. If an honest j broadcasts a 〈“proposal”, k, v, view〉 message, then no honest party
sends a 〈“blame”, k, v, j, π, l, lv, view〉 message for any π, l, lv.

Lemma 7.17. If some honest party outputs v and terminates, then all honest parties eventually
do so as well.

Lemma 7.18. If all honest parties start view and every honest i has an input xi such that at the
time it calls the AVABA protocol validatei(xi) = 1, then with constant probability all honest parties
terminate during view.

Using these lemmas we prove the following theorem in Section 7.8. We analyze its efficiency
in Appendix A.4.

Theorem 7.19. Protocol AVABA is a Validated Asynchronous Byzantine Agreement protocol re-
silient to t < n

4 Byzantine parties.
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7.5 Proofs of AVABA Safety

Lemma 7.20. If two messages from a given view are correct, they both have the same value v.

Proof. First, observe two correct messages 〈“key”, v, view〉 and 〈“key”, v′, view〉. The messages are
correct, so keyCorrecti,view+1(view, v) = 1 for some honest i. Because view > 0, this must mean that
|{j|∃`, k′, π s.t.(j, k′, v, `, π) ∈ echoesi,view| ≥ n− t. Party i adds a tuple (j, k′, v, `, π) to echoesi,view
after receiving a broadcasted 〈“echo”, k′, v, `, π, view〉 message from j. This means that i received
such a broadcast with the same value v from at least n − t parties. For similar reasons, j also
received similar broadcasts with the value v′ from n− t parties. Since n ≥ 3t+ 1 at least t+ 1 of
those broadcasts must have been received from the same parties, and thus the received values v, v′

are the same value.
Now observe a correct “lock” message 〈“lock”, v′, view〉. Similarly to the case above, for some

honest i, lockCorrecti(view, v
′) = 1 with view > 0, so

∣∣{j|(j, v′) ∈ keysi,view
∣∣ ≥ n − t. Following

similar logic to above, this means that i received correct 〈“key”, v′, view〉 broadcasts from n − t
parties before adding those tuples to keysi,view. As shown above, all of those messages have the
same value v, and thus also v′ = v.

Lemma 7.21. If an honest party sends a 〈“commit”, v〉 message in line 28 of processMessages(view),
then for any view′ ≥ view there exist t+1 honest parties that never send an 〈“echo”, k′, v′, `′, π′, view′〉
message with v′ 6= v .

Proof. We will prove inductively that for any view′ ≥ view, there must exist t + 1 such honest
parties. First observe view′ = view. Since some honest i sends a 〈“commit”, v〉 in line 28, it added
n − t tuples (j, v) to locksi,view and saw that |locksi,view| = n − t. An honest i only does so after
receiving 〈“lock”, v, view〉 messages from n− t parties and seeing that lockCorrecti(view, v) = 1. Out
of those parties, at least t+1 were honest, and they sent their 〈“lock”, v, view〉 broadcast after seeing
that

∣∣keysj,view∣∣ ≥ n − t. Following similar logic, they received n − t 〈“key”, v, view〉 messages and
saw that they are correct. At least one of those messages was sent by an honest i that added n− t
tuples of the form (j, k, v, `, π) to its echoes set after receiving 〈“echo”, k, v, `, π, view〉 broadcasts
from n − t parties. Note that i sent a “key” message, so it did not change view before sending
the message, meaning that it did not send an “equivocation” message at that time, and thus at
that time every tuple (j, k, v, `, π) in echoesi,view had the same k and v. In other words, it sent
its 〈“key”, v, view〉 message after receiving an “echo” broadcast with the same value v from n − t
parties. Out of those parties, at least t+1 are honest and they only send one “echo” broadcast per
view. From Lemma 7.10, all correct “key” and “lock” messages from view had the same value v,
and thus the “commit” message had the same value as well.

Assume the claim holds for every view′′ such that view′ > view′′ ≥ view. As shown above, there
are at least t + 1 honest parties that send 〈“lock”, v, view〉 broadcasts. Every honest party j only
sends such a message after setting its lockj field to view. Let the set of those honest parties be I.
It is important to note that the field lockj only grows throughout the protocol, so every one of the
parties j such that j ∈ I has lockj ≥ view from that point on. Now assume by way of contradiction
that some party j ∈ I sent an 〈“echo”, k′, v′, `′, π′, view′〉 message with v′ 6= v. Before doing
that, it output `′, π′ from VLEi,view′ . From the Completeness and Validity properties of the VLE
protocol, leaderCorrecti,view′(`′, π) = 1 at that time, so there was a tuple (`′, (k′, v′)) ∈ proposalsi,view′ ,
and k′ ≥ lockj ≥ view because i did not send a “blame” broadcast. Party i adds such a tuple
after receiving a 〈“proposal”, k′, v′, view′〉 from `′ and seeing that keyCorrecti,view′((k′, v′)) = 1, so
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view′ > k′ and
∣∣{j′|∃k′′, `′, π′′ s.t. (j′, k′′, v′, `′, π′′) ∈ echoesj,k′}

∣∣ ≥ n − t. As discussed above, each
honest party only adds a tuple (j′, k′′, v′, `′, π′′) to echoesj,k′ after receiving an “echo” message with
the value v′ from j′. However, view′ > k′ ≥ view, so by assumption there exist t + 1 parties that
never send such a message in view k′. Any set of n− t parties that sent the “echo” broadcasts must
have at least one party in common with the parties in I, reaching a contradiction.

7.6 Proofs of the Correctness of AVABA’s Asynchronous Validity Predicates

Lemma 7.22. Let keyCorrectview and leaderCorrectview be the predicates defined by keyCorrecti,view
and leaderCorrecti,view for every i respectively. keyCorrectview and leaderCorrectview are asynchronous
validity predicates for every view. Furthermore, for any view > keyi, keyCorrecti,view(keyi, key_vali) =
1 at any point in time.

Proof. Let i, j be two honest parties and assume that at some point in time keyCorrecti,view(k, v)
= b and leaderCorrecti,view(`) = b. Note that both keyCorrect and leaderCorrect only output 1, so
b = 1.

Finality. The first things that i does in keyCorrecti(k, v) are checking that view > k and that
validatei(v) = 1. From the Finality property of validate, validatei(v) will output 1 in the future as
well. This means that if k = 0, keyCorrecti,view(k, v) terminates with the output 1 at any time in
the future. If k 6= 0, then |{j|∃k′, `, π s.t. (j, k′, v, `, π) ∈ echoesi,k, }| ≥ n− t. Honest parties do not
remove values from echoesi,k, so this will continue to hold in the future and keyCorrecti,view(k, v)
will output 1 and terminate in any future call. Additionally, if leaderCorrecti,view(`) returned 1,
then there was a tuple of the form (`, (k, v)) in proposalsi,view. Parties don’t remove tuples from
proposalsi,k either, so this will continue to hold as well and thus leaderCorrecti,view(`) will return 1
in the future.

Consistency. As shown above, view > k and validatei(v) = 1. Therefore, from the Consistency
property of validate, validatej(v) = 1 will also eventually hold. If k = 0, then keyCorrectj,view(k, v)
will terminate at that time and output 1. We will now prove by induction on view that any
call keyCorrectj,view(k, v) eventually terminates and outputs 1 if keyCorrecti,view(k, v) does and that
any call leaderCorrectj,view(`) eventually terminates and outputs 1 if leaderCorrecti,view(`) does. For
view = 1, since keyCorrecti,view(k, v) = 1, view > k, and thus k = 0. In this case, we’ve already shown
above that keyCorrectj,view(k, v) will terminate with the output 1. In addition, if leaderCorrecti,view(`)
terminates with the output 1, then there exists a tuple of the form (`, (k′, v′)) in proposalsi,view.
i adds such a tuple after receiving a 〈“proposal”, k′, v′, view〉 broadcast from ` and seeing that
keyCorrecti,view(k

′, v′) = 1. j will receive the same broadcast and as shown above, eventually see
that keyCorrectj,view(k

′, v′) = 1. Following that j will add (`, (k′, v′)) to proposalsi,view and return 1
from leaderCorrectj,view(`).

Now assume that the claim holds for every view′ < view. This means that for every view′ < view,
keyCorrecti,view′ and leaderCorrecti,view have both the Finality and Consistency properties, and are
thus asynchronous validity predicates. As above, |{j|∃k′, `, π s.t. (j, k′, v, `, π) ∈ echoesi,k}| ≥ n− t.
Party i adds a tuple of the form (j, k′, v, `, π) to echoesi,k after receiving an 〈“echo”, k′, v, `, π, k〉
broadcast from a party `, having VLEVerifyi,k(`, π) terminate with the output 1 and seeing that
(`, (k′, v)) ∈ proposalsi,k. Party j will receive the same broadcasts and call VLEVerifyj,k(`, π). Note
that view > k and thus leaderCorrectk is an asynchronous validity predicate, so from the Agreement
on Verification property of VLEVerify, eventually VLEVerifyj,k(`, π) will terminate with the output 1
for every such tuple. From the Validity property of VLEVerify, at that time leaderCorrectj,k(`) = 1, so
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there is a tuple (`, (k′′, v′)) ∈ proposalsj,k. i and j add those tuples to proposalsj,k after receiving the
same 〈“proposal”, k′, v, k〉 broadcast from `. This means that j adds the same tuples to echoesi,k and
eventually sees that the same condition holds, at which point it will output 1 from keyCorrecti,view.

As for leaderCorrectview, similarly to above, there exists a tuple of the form (l, (k′, v′)) in
proposalsi,view because leaderCorrecti,view(`) = 1, so i received a 〈“proposal”, k′, v′, view〉 broadcast
from j and saw that keyCorrecti,view(k

′, v′) = 1. j will receive the same broadcast, and from the
Consistency property of keyCorrectview, eventually see that keyCorrectj,view(k

′, v′) = 1. At that
point, j will add (`, (k′, v′)) to proposalsj,view and return 1 from leaderCorrectj,view(`).

We will now show that keyCorrecti,view(keyi, key_vali) = 1 for any view > keyi at any point
in time. First, by definition view > keyi so the first condition checked in keyCorrecti,view holds.
If i has not updated keyi, key_vali throughout the protocol, then keyi = 0, key_vali = xi. By
assumption, validatei(key_vali) = 1 at the time i calls AVABA, so i will immediately see that
keyi = 0, output 1 and terminate. Otherwise, i updated both fields in the view keyi in line 16 after
seeing that

∣∣echoesi,keyi∣∣ = n − t. Party i only does so after receiving an 〈“echo”, k′, v′, `′, π′, keyi〉
broadcast and seeing (`′, (k′, v′)) ∈ proposalsi,view. It then updates its key_vali field to be v′.
Note that before adding such a tuple to proposalsi,keyi , i checks that keyCorrecti,keyi(k

′, v′) = 1,
and thus validatei(v

′) = 1 at that time. At that time for every (j′′, k′′, v′′, l′′, π′′) ∈ echoesi,keyi ,
(k′′, v′′) = (k′, v′). Otherwise, j would have seen an equivocation in line 12 and proceeded to the
next view before updating keyi. Therefore, |{j|∃k′′, `, π s.t. (j, k′′, v′, `, π) ∈ echoesi,keyi}| ≥ n− t at
that time, so i will output 1 and terminate from keyCorrecti(keyi, key_vali).

Lemma 7.23. lockCorrect is an asynchronous validity predicate. Furthermore, at any point in time
lockCorrecti,view(locki, lock_vali) = 1.

Proof. Let i, j be two honest parties and assume lockCorrecti(k, v) = b at some point in time. Note
that lockCorrect only outputs 1, so b = 1.

Finality. If k = 0, then i will always immediately output 1 and terminate. Otherwise, i saw
that

∣∣{j|(j, v) ∈ keysi,k}
∣∣ ≥ n − t. Honest parties do not remove elements from their keys sets, so

this condition will continue to hold and thus i will output 1 and terminate from lockCorrecti(k, v).
Correctness. If k = 0, then j immediately outputs 1 from lockCorrectj(k, v) as well. Otherwise,

k > 0. Since i output 1 from lockCorrecti(k, v), it saw that
∣∣{j|(j, v) ∈ keysi,k}

∣∣ ≥ n − t. i only
adds a tuple (j, v) to its keysi,k sets after receiving a 〈“key”, v, k〉 broadcast from j and seeing that
keyCorrecti,k+1(k, v) = 1. From Lemma 7.13, keyCorrectk+1 is an asynchronous validity predicate,
so eventually keyCorrectj,k+1(k, v) = 1 as well. At that point, j will add the same tuple (j, v) to
keysj,k. After adding all of those tuples, j will see that the same condition holds and return 1 from
lockCorrectj(k, v).

Finally, we will show that lockCorrecti(locki, lock_vali) = 1 at any point in time. If i did not
update those fields, then locki = 0, lock_vali = ⊥. In that case, when running lockCorrecti, i will
immediately see that locki = 0 and output 1. Otherwise, i updated its locki and lock_vali fields
after adding a tuple (j, v) to keysi,view and seeing that

∣∣keysi,view∣∣ = n − t. This happens after
receiving a 〈“key”, v, view〉 broadcast from j and seeing that keyCorrecti,view+1(view, v) = 1. From
Lemma 7.10, those messages have the same value v, and thus |{j|(j, v) ∈ keysi,view}| ≥ n− t at that
time, meaning that lockCorrecti(view, v) = 1.
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7.7 Proofs of AVABA Liveness

Lemma 7.24. If every honest party i has an input xi such that validatei(xi) = 1 at the time it
calls AVABA, all honest parties participate in the protocol, and no honest party terminates during
any view′ such that view′ < view, then all honest parties reach view.

Proof. We will prove the claim inductively on view. First, all honest parties start in view = 1.
Now observe some view > 1 and assume no honest party terminated in any view′ < view, and that
they all reached view − 1. Since they reached view − 1, they started off broadcasting “suggest”
messages with their current key, key_val fields. An honest i only updates its keyi field to the view
it is currently in, and thus at the beginning of view − 1, keyi < view − 1. From Lemma 7.13,
for every honest j, keyCorrectj,view−1(keyj , key_valj) at the time it sent those fields, and from the
Consistency property of keyCorrectview−1, eventually keyCorrecti,view−1(keyj , key_valj) terminates
with the output 1 for every honest i. After receiving such a message from every honest j and seeing
that the suggested keyj , key_valj are correct, every honest i adds a tuple to suggestions. After
adding a tuple for each honest party, i broadcasts 〈“proposal”, k, v, view〉 with (k, v) either being
a tuple from suggestions or (k, v) = (0, xi). Note that (k, v) is only added to suggestions after i
sees that keyCorrecti,view−1(k, v) = 1. In addition, 0 and xi are the first values to which keyi and
key_vali are set, so as argued in Lemma 7.13, keyCorrecti,view−1(0, xi) = 1 at that time. This means
that when receiving its own broadcast, i adds (i, (k, v)) to proposalsi,view and calls VLEi,view with the
asynchronous validity predicate leaderCorrecti,view−1. Since there is a tuple (i, (k, v)) ∈ proposalsi,view
at that time, leaderCorrecti,view(i) = 1. From the Termination of Output property of VLE, every
honest i outputs some index ` and a proof π from VLEi,view−1.

First, we will show that if some honest party sends an “equivocation” or a “blame” message,
then the claim holds. If some honest party i sends a 〈“blame”, k, v, leader, π, l, lv, view − 1〉 mes-
sage, then it either did so in line 6 or in line 4. In the first case, it did so after outputting
leader, π from VLEi,view−1 and seeing that there is a tuple (leader, (k, v)) ∈ proposalsi,view such
that k < locki. It then sent the “blame” message with l = locki, lv = lock_vali, and from
Lemma 7.14, lockCorrecti(locki, lock_vali) = 1 at that time. Every honest j will eventually re-
ceive the message and see that k < l. Then, from the Consistency property of lockCorrect and
from the Completeness property of VLEVerify, j will see that lockCorrectj(l, lv) = 1 and that
VLEVerifyj,view−1(leader, π) = 1. From the Validity property of VLEVerify, there exists a tu-
ple (leader, (k′, v′)) ∈ proposalsj,view−1. Both i and j added their respective (leader, (k, v)) and
(leader, (k′, v′)) after receiving the same broadcast, so (k, v) = (k′, v′) and thus j will also proceed
to the next view. Otherwise, i sent the message in line 4, after seeing that k < l and having
lockCorrecti(l, lv) = 1 and VLEVerifyi,view−1(leader, π) = 1. Similarly, from the Consistency prop-
erty of lockCorrect and Agreement on Verification property of VLEVerify, j will see that the same
conditions hold. In addition, i saw that (leader, (k, v)) ∈ proposalsi,view−1, so j will see that the
same holds and proceed to the next view.

Following similar arguments, i can either send an “equivocation” message in line 13 or in
line 9. In the first case, it does so after having received two “echo” messages with values k, v, `, π
and k′, v′, `′, π′ such that (k, v) 6= (k′, v′), having VLEVerifyi,view−1(`, π) and VLEVerifyi,view−1(`

′, π′)
terminate with the output 1, and that (`, (k, v)), (`′, (k′, v′)) ∈ proposalsi,view−1 and then sending the
message. In the second case, it received an 〈“equivocation”, k, v, `, π, k′, v′, `′, π′, view − 1〉 message
directly and saw that the same conditions hold, after which it forwarded the message. Every honest
j will then receive the 〈“equivocation”, k, v, `, π, k′, v′, `′, π′, view−1〉 message sent by i and see that

46



(k, v) 6= (k′, v′). From the Agreement on Verification property of VLEVerify, j will eventually see
that VLEVerifyj,view−1(`, π) = 1 and that VLEVerifyj,view−1(`

′, π′) = 1. From the Validity property
of VLEVerify, at that time leaderCorrectj,view−1(`) = 1 and leaderCorrectj,view−1(`

′) = 1. Therefore
there are tuples of the form (`, (k′′, v′′)) and (`′, (k′′′, v′′′)) in proposalsj,view−1. Following the same
logic as above, those are the same tuples that i added to proposalsi,view−1, so (`, (k, v)), (`′, (k′, v′)) ∈
proposalsj,view−1, and thus j proceeds to the next view. In other words, if some honest party sends
either a “blame” message or an “equivocation” in view − 1, and no honest party completes the
protocol in this view, then all honest parties proceed to view.

Now assume no honest party sends a “blame” or an “equivocation” message in view − 1. In
that case, after completing the call to VLEj,view with the output `, π every honest j broadcasts an
〈“echo”, k, v, `, π, view− 1〉 message since it did not send a “blame” message instead. Every honest
i receives that message, and from the Completeness property of VLEVerify eventually sees that
VLEVerifyi,view−1(`, π) = 1 and adds a tuple to echoesi,view−1. By assumption, i does not send an
“equivocation” in view−1, so after adding such a tuple for each honest party, i has |echoesi,view−1| ≥
n − t, and thus i updates keyi to view − 1 and key_vali to v and broadcasts a 〈“key”, v, view − 1〉
message during view − 1. From Lemma 7.13, at that time keyCorrecti,view(view − 1, v) = 1. Every
honest j receives that message and from the Consistency property of keyCorrectview, eventually
sees that keyCorrectj,view(view − 1, v) = 1 as well. After that, j adds a tuple to keysj,view−1 for
every honest party and sees that

∣∣keysj,view−1

∣∣ ≥ n− t, so j sends a “lock” message to every party.
Following identical reasoning, every honest i receives the “lock” message from every honest party,
eventually sees that lockCorrecti(view, v) = 1 and updates its locksi,view set. After doing so for
all honest parties, it sends a “commit” message. From Lemma 7.10, all correct “lock” messages
contain the same value, so all honest parties sent “commit” messages with the same value. Finally,
after receiving those messages from all honest parties, every honest i sees that it received n − t
such messages and completes the AVABA protocol in line 4. In other words, every honest party
completes the protocol, reaching a contradiction.

Lemma 7.25. If an honest j broadcasts a 〈“proposal”, k, v, view〉 message, then no honest party
sends a 〈“blame”, k, v, j, π, l, lv, view〉 message for any π, l, lv.

Proof. Assume by way of contradiction some honest party i sends such a message. It either
does so in line 6 or in line 4. In both cases, it first checked that k < l and that (j, (k, v)) ∈
proposalsi,view. i adds such a tuple to proposalsi,view after seeing that keyCorrecti,view((k, v)) = 1.
Since keyCorrecti,view(k, v) = 1, either k = 0 or there exist at least n−t tuples in echoesi,k with k > 0
and thus k ≥ 0. In addition, if i sent the message in line 6, then l = locki, lv = lock_vali, and from
Lemma 7.14, lockCorrecti(l, lv) = 1 at that time. If i sent the message in line 4, then it first checked
that lockCorrecti(l, lv) = 1 at that time. It cannot be the case that l = 0, because then k ≥ l,
reaching a contradiction. Therefore,

∣∣{j′|(j′, v) ∈ keysi,l}
∣∣ ≥ n− t. Each tuple (j′, v) was added to

keysi,l after receiving a 〈“key”, v, l〉 message from j′. At least t+1 of those tuples were added after
receiving a “key” message from honest parties. Note that an honest j′ sends such a message after
updating keyj′ to l and key_valj′ to v. Since the keyj′ field only increases throughout the protocol,
keyj′ ≥ l from this point on. Let I be the indices of the honest parties j′ that sent those “key”
messages, for whom it is guaranteed that keyj′ ≥ l from this point on. Now observe the pair (k, v)
that i chose to input into VLEi,view. At the time it chose (k, v), i had |suggestions| = n − t, so it
received 〈“suggest”, k′, v′, view〉 from n − t parties and added corresponding tuples to suggestions.
As shown above, |I| ≥ t + 1, so at least one of those messages was received from a party j′ such
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that j ∈ I, for whom k′ = keyj ≥ l. Party i chooses the tuple (k, v) to be the one with the maximal
k in suggestions. Therefore, k ≥ k′ ≥ l, reaching a contradiction.

Lemma 7.26. If some honest party outputs v and terminates, then all honest parties eventually
do so as well.

Proof. Assume some honest party output v and terminated. It first received 〈“commit”, v〉messages
from n− t parties, with t+ 1 of them being honest. Let i be the first honest party that sent such
a message. First we will show that no honest party sends a 〈“commit”, v′〉 message with any other
value v′ 6= v. Assume by way of contradiction that some honest party sends such a message, and let
j be the first honest party to send such a message. Since both i and j were the first honest parties
to send such messages, at the time they sent the message they received “commit” messages from at
most t parties. This means that both i and j sent their respective “commit” messages in line 28 at
the end of view and view′ respectively. Assume without loss of generality that view ≤ view′. From
Lemma 7.11, in view′, there are t + 1 honest parties that never send an “echo” message with any
value v′ 6= v. If some honest party sends a “key” message in view′, then it does so after receiving
n − t “echo” messages with the same value (i.e. without detecting equivocation and proceeding
to the next view). At least one of those messages was sent by the t + 1 honest parties described
above, so any “key” message sent by an honest party in view′ has the value v. For similar reasons,
any “lock” message sent by an honest party in view′ has the value v. Before sending a “commit”
message, j receives n− t correct “lock” messages and sends a “commit” message with the value v′

of a received correct “lock” message. From Lemma 7.10, those messages had the value v, and thus
v = v′, reaching a contradiction. Therefore, if two honest parties send “commit” messages, they
send messages with the same value v.

We will now turn to show that if i completes the protocol with the output v, every honest party
will do so as well. Since i completed the protocol, it received 〈“commit”, v〉 messages from n − t
parties, with t + 1 of them being honest. Those honest parties send their “commit” messages to
all parties, and thus every honest party receives 〈“commit”, v〉 messages from at least t+1 parties.
Once that happens, every honest party sends the same message to all parties in line 2. every honest
party then receives those messages from at least n− t honest parties and outputs v and terminates
in line 4. Note that if some honest party terminated before receiving the “commit” messages from
the t+1 honest parties specified above, it must have received “commit” messages from n− t other
parties with the same value v′. At least one of those was sent by an honest party, so v = v′.
Therefore, before completing the protocol every honest party also receives 〈“commit”, v〉 messages
from some n− t parties and also sends a 〈“commit”, v〉 message as described above.

Lemma 7.27. If all honest parties start view and every honest i has an input xi such that at the
time it calls the AVABA protocol validatei(xi) = 1, then with constant probability all honest parties
terminate during view.

Proof. If at any point some honest party terminates with the value v, then from 7.17 every honest
party will do so as well. From this point on, we will not deal with the case that some of the parties
terminate early in view and some do not terminate at all. The first thing that an honest party does
in view is calling viewChange and sending a “suggest” message to every party with the local fields
keyi and key_vali. From Lemma 7.13, keyCorrecti,view(keyi, key_vali) = 1 at that time, and from
the Consistency of keyCorrectview, for every honest j eventually keyCorrectj,view(keyi, key_vali) = 1
as well. Therefore, when an honest party j receives that message, it eventually adds a tuple to
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suggestions. After receiving such a message from every honest party, j finds that |suggestions| ≥ n−t,
and it broadcasts a 〈“proposal”, k, v, view〉 message. At that time it either has (k, v) = (0, xj) and
as shown in Lemma 7.13 keyCorrectj,view((k, v)) = 1, or it has chosen a tuple (k, v) ∈ suggestions
for which it checked that keyCorrectj,view((k, v)) = 1. Therefore, when receiving its own “proposal”
broadcast, it adds a tuple (j, (k, v)) to proposalsj,view and thus leaderCorrectj,view(j) = 1 at that
time. j then calls VLEj,view.

Before an honest i sends a “blame” or an “equivocation” message it must either output a value
from VLEi,view, or find that VLEVerifyi,view terminates with the output 1 for some value. Both of
those things only happen after completing VLEi,view. In other words, all honest parties participate
in VLE and wait for it to terminate before any of them proceed to the next view. From the
Termination of Output property of VLE, all honest parties eventually output some value when
running VLE. We now prove that if the binding value `∗ of VLEview as defined in the α-Binding
property of the VLE protocol is the index of some honest party that acted honestly when it started
the VLE protocol, then all parties terminate during view. From the α-Binding property of VLE
this event happens with probability α = 1

3 , so all parties terminate during view with a constant
probability.

If the binding value is indeed the index of a party that acted honestly when it started VLE,
then from the Binding Verification property of VLE there is exactly one index `∗ for which it is
possible that VLEVerifyi,view(`

∗, π) terminates with the output 1 for an honest i. If an honest
i adds a tuple (j′, k′, v′, `′, π′) to echoesi,view, then it did so after receiving an “echo” message
and seeing that VLEVerifyi,view(`

′, π) = 1 and that (`′, (k′, v′)) ∈ proposalsi,view. Therefore, `′ =
`∗ for every such tuple. An honest i adds a tuple (`∗, (k′, v′)) to proposalsi,view after receiving
a 〈“proposal”, k′, v′, view〉 broadcast from `∗, and thus all tuples in the set echoesi,view have the
same values k′, v′, which prevents an honest party from sending an “equivocation” message in
line 13. In addition, no honest i sends an “equivocation” message in line 9 after receiving an
〈“equivocation”, k, v, `, π, k′, v′, `′, π′, view〉 message because ` = `′ = `∗, and thus (k, v) = (k′, v′).
We would now like to show that no honest party i sends a “blame” message in view. If an honest
party sends a 〈“blame”, k, v, `, π, l, lv〉 message, it does so either in line 6 or in line 4. In the
first case, it did so after outputting `, π from VLEi,view and from the Completeness and Binding
Verification properties of VLE, ` = `∗. In the second case, it checked that VLEVerify(`, π) = 1 and
for the same reasons ` = `∗. Before starting VLE, `∗ broadcasts 〈“proposal”, k, v, view〉. For similar
reasons as above, if an honest i has a tuple (`∗, (k′, v′)) ∈ proposalsi,view, then (k′, v′) = (k, v).
Therefore, i sends the message 〈“blame”, k, v, `∗, π, l, lv, view〉, contradicting Lemma 7.16.

Honest parties only proceed to view + 1 after sending either a “blame” or an “equivocation”
message, so no honest party proceeds to view + 1. Since no honest i sends a “blame” message,
each one sends an 〈“echo”, k, v, `∗, π, view〉 message after completing the VLEi,view call. From the
Completeness property of VLE, VLEVerifyi,view(`∗, π) eventually terminates with the output 1. Since
i doesn’t send an “equivocation” message in view, it then adds a tuple to echoesi,view. After such
a tuple is added for every honest party, i sees that |echoesi,view| = n − t and it sends a message
〈“key”, v, view〉 to all parties after updating keyj to view and key_valj to v. From Lemma 7.13,
at that time keyCorrecti,view+1(view, v) = 1 so eventually keyCorrectj,view+1(view, v) = 1 for every
honest j from the consistency property of keyCorrectview+1. Therefore, when receiving that message,
every honest j eventually sees that the message is correct and adds a pair (i, v) to keysi,view. After
adding such a pair for every honest party, j has

∣∣keysi,view∣∣ = n− t and it sends a “lock” message.
Using identical arguments, eventually every honest party sends a “commit” message. Finally, after
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receiving a “commit” from n− t parties, every honest party terminates.

7.8 Proof of AVABA

Theorem 7.28. Protocol AVABA is a Validated Asynchronous Byzantine Agreement protocol re-
silient to t < n

4 Byzantine parties.

Proof. Each property is proven individually.
Correctness. This property was proven in Lemma 7.17.
Validity. Before some honest i outputs a value v, it sends 〈“commit”, v, view〉 message. As

discussed in the proof of Lemma 7.17, at least n − t parties sent “key” messages in view with
the value v as well. At least one of those parties is honest. Party i only sends a 〈“key”, v, view〉
message after receiving an 〈“echo”, k, v, `, π, view〉message such that VLEVerifyi,view(`, π) terminates
and (`, (k, v)) ∈ proposalsi,view. Party i adds a tuple (`, (k, v)) to proposalsi,view after receiving a
〈“proposal”, k, v, view〉 from ` and having keyCorrecti,view(k, v) = 1. Before keyCorrecti,view(k, v)
terminates with the output 1, i sees that validatei(v) = 1. Therefore, validatei(v) = 1 at that time.

Termination. If at any point an honest party terminates, from Lemma 7.17, all honest parties
do so as well. Now assume that every honest party i has an input xi such that validatei(xi) = 1
at the time it calls AVABA and that all honest parties participate in the protocol. Observe some
view, and assume no honest party terminated during view′ for any view′ < view. In that case,
from Lemma 7.15 all honest parties eventually reach view. Then, from Lemma 7.18, with constant
probability all honest parties terminate during view. In order for an honest party not to terminate
by view, that constant probability event must not have happened in each one of the previous views.
The honest parties run the VLE protocol with independent randomness in each view and thus for
any adversary’s strategy, there is an independent constant probability of terminating in each view.
Therefore, the probability of reaching a given view decreases exponentially with the view number
and thus approaches 0 as view grows. In other words, all honest parties almost surely terminate.

Quality. Assume some honest party i completed the protocol, otherwise the claim holds triv-
ially. This means that it at least completed the VLE protocol in view = 1. From the α-Binding
property of VLE, with probability α or greater the binding value is the index `∗ of some party that
behaved honestly when starting VLE. From the Completeness and Validity properties of VLE, at
that time leaderCorrecti,view(`

∗) = 1 and thus there exists some tuple (`∗, (k, v)) ∈ proposalsi,view at
that time, which was added after receiving a 〈“proposal”, k, , v, view〉 broadcast from `∗. Using the
same arguments as the ones made in Lemma 7.18, in that case, no honest party sends a “blame”
or an “equivocation” message during view. Then, following similar logic to the one in Lemma 7.18,
every honest party that hasn’t committed due to a message from an earlier view eventually ter-
minates after sending a “commit” message with the value v proposed by party i. No party can
commit due to a message from an earlier view because there is no earlier view. Therefore, every
honest party that participates in view and outputs a value from VLE, terminates and outputs the
value v that `∗ proposed. Before sending its proposal, `∗ sees that |suggestions| = n − t. `∗ only
adds a tuple to suggestions after receiving the first 〈“suggest”, k, v, view〉 message from each party.
Each of those tuples must have k < view = 1 because keyCorrecti,1(k, v) = 1. At that time no
honest party updated its keyj and key_valj fields, so they send messages with k = 0. Since at least
one of the n− t messages was sent by an honest party, there exists some (k, v) ∈ suggestions such
that k = 0, and as shown above there is no such tuple with k > 0. Therefore, when computing
choosing the tuple (k, v), i sees that the tuple with maximal k in suggestions has k = 0. Party i
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then sets (k, v) = (0, xi, ), with xi being its input to the AVABA protocol. As shown above, with
constant probability all honest parties that start view output xi, completing the proof.

8 Agreement on a Core Set

8.1 Definition

An Agreement on a Core Set protocol is a protocol in which parties have no input, but they have
access to an asynchronous validity predicate validate : [n] → {0, 1}. Furthermore, it is guaranteed
that for each honest party i, there is a set Si such that |Si| ≥ n − t and eventually ∀k ∈ Si,
validatei(k) terminates with the output 1. Each party outputs a set S ⊆ [n] from the protocol. An
Agreement on a Core Set protocol has the following properties:

• Agreement. All honest parties that complete the protocol output the same set S from the
protocol.

• Validity. If an honest party i outputs S from the protocol then S ⊆ [n], |S| ≥ n − t, and
validatei(k) = 1 at that time for every k ∈ S.

• Termination. All parties almost-surely terminate.

Using the above AVABA protocol, we construct a protocol ACS for agreement on a core set.
Each party i has access to an asynchronous validity predicate validatei such that eventually for at
least n− t indices k ∈ [n], validatei(k) = 1.

Protocol 8.1: ACSi()

1: Si ← ∅
2: call validatei(k) for every k ∈ [n]
3: upon validatei(k) terminating with the output 1 for some k ∈ [n], do
4: Si ← Si ∪ {k}
5: if |Si| = n− t then
6: call AVABAi(Si) with the asynchronous validity predicate ACSValidityi
7: upon AVABA terminating with the output S, do
8: output S and terminate

Protocol 8.2: ACSValidityi(S)

1: if S ⊆ [n], |S| ≥ n− t then
2: upon S ⊆ Si, do
3: output 1 and terminate

8.2 Security Analysis

We start by showing that ACSValidity is indeed an asynchronous validity predicate and then show
that ACS is a protocol for agreeing on a core set. We then prove that the protocol described
in Protocol 8.1 is indeed a protocol for agreement on a core set.
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Lemma 8.3. ACSValidity is an asynchronous validity predicate.

Proof. Let i, j be two honest parties and assume ACSValidityi(S) = b at some point in time. Note
that ACSValidity only outputs 1, so b = 1. We will show each property independently

Finality. If ACSValidityi(S) = 1, then i saw that S ⊆ [n], |S| ≥ n − t and that S ⊆ Si. The
first two conditions clearly continue to hold. Honest parties never remove indices from their Si sets,
so S ⊆ Si will continue to hold, and thus ACSValidityi(S) will terminate with the output 1 in the
future as well.

Correctness. Similarly to above, i saw that S ⊆ [n], |S| ≥ n− t and that S ⊆ Si. Any honest
j that calls ACSValidityj(S) will also see that S ⊆ [n] and that |S| ≥ n − t. In addition, i added
indices k to Si after calling validatei(k) and getting the output 1. When starting the ACS protocol,
j also calls validatej(k) for every k ∈ [n], and from the Consistency of the validate, validatej(k) will
eventually return 1 for every k ∈ Si. After receiving such an output for every k ∈ Si, Si ⊆ Sj and
thus S ⊆ Sj as well, at which point ACSValidityj(S) terminates with the output 1 as well.

Theorem 8.4. ACS is an Agreement on a Core Set protocol resilient to t < n
4 Byzantine parties.

Proof. We will prove each property independently.
Agreement. Assume two honest parties output sets from the ACS protocol. Those sets are

the parties’ output from the AVABA protocol, and thus from the Agreement protocol of AVABA
they are equal.

Validity. Assume some honest party i outputs a set S from the ACS protocol. That set is its
output from the AVABA protocol, so ACSValidityi(S) = 1 at that time from the Validity property
of AVABA. This means that S ⊆ [n], |S| ≥ n − t and that at that time S ⊆ Si. Note that i only
adds indices k ∈ [n] for which validatei(k) = 1 to Si, and thus ∀k ∈ S, validatei(k) = 1 at that time.

Termination. Every honest i starts the protocol by calling validatei(k) for every k ∈ [n]. By
assumption, there exists a set S ⊆ [n] such that |S| ≥ n − t and for every k ∈ S, eventually
validatei(k) = 1. After i sees that this is the case for every k ∈ S, it adds each of those indices
to Si and sees that |Si| = n − t. Following that it calls the AVABA with the input Si. Note that
Si ⊆ [n], |Si| ≥ n− t and that at that time Si ⊆ Si. In other words, every honest party calls AVABA
with a valid input and uses the asynchronous validity predicate ACSValidity. From the Termination
property of AVABA, all honest parties complete the protocol, after which they output a value from
the ACS protocol and terminate.

9 Asynchronous Secure Computation
Plugging our new AVSS and the ACS protocols in the recent asynchronous MPC protocol of [3]
leads to an efficiency improvement. Specifically, instead of MPC with O((Cn + Dn2 + n7) log n)
communication and O(D + log n) expected-time using the ACS of [15] and the AVSS of [18], we
obtain O((Cn+Dn2 + n4) log n) communication and O(D) expected-time.

The MPC protocol of [3] has the following structure:
Offline: beaver triplets generation. The goal is to distribute (Shamir, univariate degree-t)
shares of random secret values a, b, and c, such that c = ab. This is performed as follows:

1. Triplets with and without a dealer. Each party first distributes secrets ai, bi, ci such that
ci = ai · bi. If the computation requires C multiplications in total, each dealer has to generate
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C/n such triplets. Using the previous best AVSS, this step requires O(n4 log n+ C log n) com-
munication for each dealer, i.e., a total of O(n5 log n+Cn log n) for all parties combined. Using
our AVSS protocol, this step is automatically reduced to O(n4 log n+Cn log n). Both protocols
are constant expected number of rounds.

2. Agreeing on a core set (ACS): The parties then have to agree on a core set of parties whose
beaver triplets generation terminated and will be considered in the sequel of the computation.
The communication cost of the ACS from [15] is O(n7 log n) with O(log n) rounds, which we
reduce to O(n4 log n) and expected constant time.

3. Triplets with no dealer: Once agreed on the core, there is a way to extract O(n) triplets
with no dealer (i.e., when no party knows the secrets a, b and c) from O(n) triplets with a dealer
(where the dealer knows the secrets a, b and c). This step costs O(n2 log n+ Cn log n).

To conclude, generating C multiplication triplets costs a total of O(n4 log n+ Cn log n).
Online. The second step follows the standard structure where each party shares its input (using
AVSS), and the parties evaluate the circuit gate-by-gate while consuming the multiplication triplets
they have generated, using the method of [18]. Using our AVSS, the sharing phase is reduced from
O(n5 log n) to O(n4 log n). The computation of the circuit using the multiplication triplets remains
O((Cn+Dn2) log n) with an O(D) time requirement.

In total, using our ACS and AVSS, we obtain a protocol that requires O((Cn+Dn2+n4) log n)
communication and O(D) time.
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A Efficiency
In all of the discussions below, we consider sets of O(n) indices as being of size O(n) bits. While
storing and sending these values as indices requires O(log n) bits per index, it is possible to represent
these sets as bitmaps ofO(n) bits instead, with 1 indicating that a value is in the set and 0 indicating
that it is not.

A.1 Verifiable Party Gather Efficiency

In the following discussion, we assume the existence of a broadcast protocol that terminates in
O(1) rounds with O(b(m)) bits sent when broadcasting inputs of size O(m) vits. Concretely, we
use the broadcast protocol of [8] in which parties send O(n2 log n+ n ·m) bits when broadcasting
a message of size O(m). In addition, we assume that if validatei(x) = 1 for some honest i at some
time, validatej(x) will terminate a constant number of rounds after that time for every honest j.

When using inputs of size O(n) and setting b(n) = n2 log n, as achieved by the above protocol,
we see in the following theorem that the Gather protocol requires O(n3 log n) bits and O(1) rounds.

Theorem A.1. The total number of bits sent in the Gather protocol is O(nb(n)) and all parties
terminate after O(1) rounds.

Proof. In the protocol, every party sends a constant number of broadcasts, totaling in O(n · b(n))
bits sent. In addition, every honest i will receive a broadcast 〈1, Sj〉 from every honest j after
O(1) rounds. By assumption, ∀x ∈ Sj validatej(x) = 1 at the time j calls the protocol, and thus
validatei(x) = 1 will hold O(1) rounds after that. Following that, every honest party will send
a second broadcast up to O(1) rounds later, and terminate after receiving those broadcasts O(1)
rounds after that.

A.2 Packed AVSS Efficiency

Theorem A.2. The total communication complexity of Share is O(n3 log n), and the communication
complexity of each call to Reconstruct(k) is O(n2 log n). In addition, if the dealer is honest, all
parties terminate after O(1) rounds, and if some honest party terminates for a Byzantine leader,
all parties terminate O(1) rounds after it. Furthermore, all parties complete Reconstruct(k) after
a constant number of rounds.

Proof. In the Share protocol, the dealer starts by sending every party two polynomials of degree
O(n), for a total of O(n2 log n) bits (assuming each field element in F can be represented in log n
bits). In addition, parties send each other “values” and “col” messages with a constant number of
field elements, “ok” messages with indices, “star” messages with a constant number of sets of size
O(n), and finally “done” messages. The largest of those messages contains O(n) bits, resulting in
a total of O(n3) bits. In each call to Reconstruct(k), parties only send a single “rec” message.

As can be seen in the proof of termination, when the dealer is honest all parties receive the
“polynomials” message, then send a “values” message, and then an “ok” message for every honest
party in 3 rounds. After receiving all of those honest messages in one round, parties find a star and
send a “star” message. After receiving those “star” messages and the “values” messages from all
honest parties, every honest party interpolates a polynomial qi and sends a “col” message, as well
as a “done” message. Parties receive those messages and interpolate pi, at which point they receive
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n − t “done” messages and have pi 6= ⊥, qi 6= ⊥, they then terminate after a constant number of
rounds.

Now assume some honest party completes the Share protocol. As shown in the proof of ter-
mination, at that time it already received n − t “done” messages and n − 2t honest parties sent
“star” messages. All parties receive these messages in a constant number of rounds, forward “done”
message to all parties, and start interpolating a polynomial for each received star. For the same
reasons as above, all parties now terminate in a constant number of rounds.

Finally, for the reconstruction protocol, all parties simply send a single “rec” message and
terminate a single round later, after receiving all honest parties’ messages.

A.3 Verifiable Leader Election Efficiency

As above, we assume the existence of a broadcast protocol that terminates in O(1) rounds with
O(b(n)) bits sent when broadcasting inputs of size O(n). We use the same broadcast protocol
with b(n) = n2 log n. In addition, we assume that if validatei(x) = 1 for some honest i at some
time, validatej(`) will terminate a constant number of rounds after that time for every honest j.
In the VLE protocol, we use the packed AVSS protocol described in Section 4. This protocol
has O(n3 log n) bit complexity for sharing O(n) secrets. We can either use the Sum− Reconstruct
protocol described in Protocol 4.10 to get an efficiency of O(n2 log) communication complexity per
reconstruction or can simply reconstruct each secret in the sum individually to achieve O(n3 log n)
complexity per sum reconstructed, which is good enough for our purposes.

Theorem A.3. The total number of bits sent in the VLE protocol is O(n · (b(n) + n3 log n)) and
all parties terminate after O(1) rounds.

Proof. Each party starts by sharing n values, for a total of O(n4 log n) sent bits. Each party broad-
casts a constant number of messages of size O(n) resulting in O(nb(n)) sent bits. The parties then
run the Gather protocol in which O(nb(n)) more bits are sent. Following that, parties reconstruct
O(n) sums of secrets, requiring a final O(n3 log n) bits. In total, parties send O(n(b(n)+n3 log n))
bits. Each call to the broadcast, reconstruct, or gather protocols terminates after O(1) rounds.
In addition, all honest parties complete the share invocations with honest dealers after a constant
number of rounds, and if some party completes a share invocation with a Byzantine dealer before
that (and adds it to its dealers set), every other honest party will complete it in a constant number
of rounds after that. Therefore, every call to the share protocol which honest parties use in their
dealers sets, and in their output from the gather protocol completes in a constant number of rounds,
totaling in a constant number of rounds in the whole protocol.

A.4 AVABA Efficiency

We set m to be the size of inputs to the protocol and we use the same broadcast protocol as
described in the previous efficiency sections. Similarly to above, define O(b(m)) to be the number
of bits sent when broadcasting messages with O(m) values, and have b(m) = n2 log n+n ·m. In the
theorem below, we get an Asynchronously Validated Asynchronous Byzantine Agreement protocol
with an efficiency of O(n4 log n+ n2 ·m).

Theorem A.4. The expected total number of bits sent in the AVABA protocol is O(n · (b(n+m) +
n3 log n+ n ·m)) and all parties terminate after O(1) rounds in expectation.
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Proof. In each view, every party sends a constant number of messages of size O(n + m) to all
parties, totaling in O(n3 + n2 ·m) bits. In addition, each party broadcasts messages of size O(n+
m), totaling in O(nb(n + m)) additional sent bits. Finally, each party calls VLE once in each
view, adding O(n · (b(n) + n3 log n)) total bits. Summing all of these terms gives the result of
O(n · (b(n + m) + n3 log n + n · m)) total bits in each view. In addition, each view consists of
protocols that terminate in O(1) rounds, yielding a constant number of rounds per view.

As shown in the proof of termination, all parties terminate in a given view with probability 1
3

or greater. This means that the expected number of views required in the protocol is at most 3,
meaning that the protocol also requires an expected constant number of rounds and O(n · (b(n +
m) + n3 log n+ n ·m)) words to be sent in expectation overall.

A.5 ACS Efficiency

In the ACS protocol, parties simply call the AVABA protocol with inputs of size O(n) without
sending additional messages. Therefore, the ACS protocol has the same efficiency as the AVABA
protocol, yielding an ACS protocol with O(n4 log n) communication complexity and O(1) expected
rounds.
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