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Abstract. Mimblewimble is a cryptocurrency protocol with good pri-
vacy and scalability properties. A trade-off of Mimblewimble is the re-
quirement that transactions are interactive between sender and receiver.
TariScript is presented as an extension to Mimblewimble that adds script-
ing capabilities to the protocol. We describe the theoretical basis for
TariScript and present the modifications required to make it secure. The
trade-offs and use cases for TariScript are briefly covered.
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1 Introduction

This paper introduces TariScript, a dynamic scripting extension for Mimblewim-
ble. Scripting unlocks many applications, including support for unilateral pay-
ments, covenants, atomic swaps, and side-chain pegs. We briefly review how
vanilla Mimblewimble handles transactions to illustrate why, for example, unilat-
eral payments are impossible. We touch on what other projects are doing to over-
come these limitations. We then detail the theoretical framework for TariScript
and conclude with a description of a concrete implementation of TariScript, its
use-cases and limitations.

1.1 Mimblewimble

Mimblewimble is a scalable, confidential cryptocurrency protocol developed by
the anonymous developer, Tom Jedusor [1].

Confidentiality comes from the use of Pedersen Commitments [2] to blind
values, rather than publishing transaction values in the clear, as in Bitcoin [3],
for example.

The key scalability advantage that Mimblewimble gains over Bitcoin is that
it is only necessary to know the emission schedule, the current unspent trans-
action output (UTXO) set, and some housekeeping data in order to verify that
the accounting is correct. In particular, data associated with spent transaction
outputs can be discarded without compromising the security guarantees of the
protocol [1].

The key to the protocol is the homomorphic balance over the expected supply
of coins and the set of outputs in circulation. The details are given in [1] and an



2 C. Sharrock, S.W. van Heerden

accessible explanation is available at [4], but we provide a simplified summary
of the key points here for convenience.

Given a blinding factor ki and value vi using generators from a suitable
elliptic curve G and H respectively, we denote the Pedersen commitment Ci as
the combination, Ci ≡ vi ·H + ki ·G.

The emission of new coins follows a pre-determined schedule such that sb are
the number of new coins minted in block b. For a chain containing M unspent
outputs after N blocks, the following balance must hold

M∑
i

Ci =

N∑
b

sb +∆N (1)

where ∆b = δb ·G is termed the total accumulated public excess after block
b. In general, the sum of all the blinding factors, ki must equal the total accu-
mulated excess, i.e.,

δb =
∑
i

kib ∀i ∈ UTXO set after block b (2)

There is a similar balance for every Mimblewimble transaction:∑
j∈outputs

Cj −
∑

i∈inputs

Ci ≡ fee ·H +∆ (3)

where ∆ = δ · G and the excess is again the sum of the blinding factors,
taking note of a sign change between outputs and inputs, i.e.,

δ =
∑

j∈outputs

kj −
∑

i∈inputs

ki

The public excess for the transaction is collectively calculated by the parties
in the transaction. A signature committing to the public excess, signed by each
party is stored in the blockchain data. A running total of the total accumulated
public excess is maintained by validators to verify the balance in Eq. (1) after
each block.

When miners validate a block, they lump every transaction into effectively a
single transaction and calculate the block-equivalent of Eq. (3):∑

j∈outputs

Cj −
∑

i∈inputs

Ci ≡
∑

m∈txs

(feem ·H +∆m) (4)

1.2 Tari

Tari [5][6] is a Mimblewimble-based proof-of-work blockchain. Tari aspires to
provide a scalable, private, digital assets network and smart contract platform.
To achieve this, the Tari protocol requires several features unsupported by Mim-
blewimble, including unilateral (i.e. non-interactive) payments, covenants and
side chain peg-in transactions [7].
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A review of the prior art finds that some, not all, of these features may
be possible to implement using “scriptless scripts” [8]. In particular, unilateral
payments are not possible with scriptless scripts since they cannot avoid the
interactive requirement of Mimblewimble transactions.

Unilateral payments were employed in LiteCoin extension blocks [9][10].
Beam [11], adds support for general smart contract applications via a virtual

machine extension. Neither approach directly augments the core protocol with
native scripting. We believe that Tari is unique in this approach.

In addition, we seek to devise a solution that unlocks all of Tari’s desired
use-cases with a single, generalised approach, hence TariScript.

2 TariScript

TariScript is a protocol extension that adds dynamic scripting capabilities to
Mimblewimble. Some implementation details are omitted in the interests of
brevity but a full description is available in the Tari specifications [12].

We begin with the observation that the balance equations (1) and (4) are nec-
essary but not sufficient to secure Mimblewimble. Additional rules, including the
inclusion of a range proof [13], proving that the value transferred is non-negative,
and the excess signature, reduces the set of all possible transaction expressions to
the subset of transactions considered secure under the Mimblewimble protocol.

TariScript adds another, strictly non-expansive, constraint to the spending
rules of UTXOs. This means that TariScript only reduces the subset of valid
transactions; never increases it. Therefore the security guarantees of Mimblewim-
ble are not affected. While this argument does not constitute a security proof
of TariScript, it is a strong intuitive argument that the approach is valid, with
some caveats that we will cover shortly. A rigorous security proof for TariScript
is an avenue for future work.

An outline of the TariScript specification is as follows:

1. Every UTXO must carry a script, α.
2. The script can accept arbitrary input parameters, θ, provided by the spender

of the UTXO. The script is executed to produce a result, r, i.e., α(θ) → r.
3. The result r must be singular (i.e. not an array) and must be a valid public

key under G. If this is the case,
4. we assign the result, r to a new variable introduced in TariScript, the script

public key, Ks,.
5. The UTXO may be spent if, other requirements notwithstanding, the spender

demonstrates knowledge of both the commitment blinding factor k (this is
the vanilla Mimblewimble requirement), and the script private key, ks, such
that Ks = ks · G. The latter is demonstrated by signing the script and its
input with ks.

There is an implicit caveat that the script and its metadata be non-malleable
(no parties can modify it once the sender has broadcast the transaction) and
immutable (it cannot be removed once it is in the blockchain).
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To address malleability, the script, α, is signed and the signature is included
with the UTXO. Additionally, a signature signing the script and the input pa-
rameters are provided when spending the UTXO.

To address immutability, we first review a feature of vanilla Mimblewimble
called cut-through [1]:

If Alice sends coins to Bob, and Bob sends the same coins to Charlie in the
same block, miners, at their discretion, may omit Bob’s UTXO entirely, and Eq.
(4) will still hold because Bob’s commitments simply cancel out. Note that, only
the commitment is cut-through. Since kernels are never cut through, and fees
are specified in the kernel, the fees paid by Bob are still tracked and the overall
accounting still balances.

Cut-through poses a problem for TariScript since Alice is required to provide
script with UTXO B. If B is cut-through, the script is lost and we violate the
immutability constraint of TariScript. Therefore a new mechanism, the script
offset, γ, is introduced to explicitly prevent cut-through in Tari blocks.

2.1 Preventing cut-through with the script offset

First, the sender chooses a new secret scalar, ko, from the curve which we call the
sender-offset private key. The sender calculates the corresponding sender-offset
public key, Ko = ko ·G and includes this key with the UTXO metadata.

As per the TariScript rules, the recipient must know the script private key,
ks, corresponding to the script public key, Ks = ks · G, which results from the
script execution, α(θ) → r = Ks. In other words, to spend an output, a spender
must provide input, θ, to the script such that it resolves to some Ks for which
spender knows the private key.

The recipient proves knowledge of ks, by signing the script and input data
with ks when spending the output.

Then, the script offset, γ, is calculated by summing all script private keys
for every input in the transaction, and subtracting the sum of all sender-offset
private keys in the transaction. That is,

γ =
∑

i∈ inputs

ksi −
∑

j∈ outputs

koj (5)

The script offset is broadcast along with the usual Mimblewimble transaction
data. Any third party can verify that the script offset is correct by ensuring that

γ ·G ≡
∑

i∈ inputs

Ksi −
∑

j∈ outputs

Koj (6)

When miners construct blocks, they do a similar aggregation for script offsets
that they do for transaction excess:

γtotal =
∑

m∈ txns

γm (7)
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It is a simple exercise to prove that Eqs. (5) and (6) apply for a transaction
block if γ is replaced by γtotal.

The block script offset, γtotal, is stored in the block header.
It naturally follows that the script offset γ means that no third party can

change or remove any input or output from a transaction or the block, since
doing so will invalidate the script offset balance equations, (6) or its block-
level equivalent. By extension, the script offset also prevents cut-through. In
the scenario above, if a miner cut out B from the transactions between Alice,
Bob, and Charlie, the script offset calculation would differ by ksB −koB and the
validation would fail.

To address malleability concerns, both the script and sender-offset public key
must be signed by the sender-offset private key. This signature is included with
the UTXO. In addition, every input contains a valid script signature, which signs
the script, the input data and the script public key with the script private key.

3 Implications and trade-offs

3.1 Script lock key generation

It may appear the burden for wallets has tripled since each UTXO owner has to
remember three private keys: the spend key, ki, the sender offset key ko and the
script key ks for every transaction. In practice, this is not the case.

Spend keys are typically deterministically derived from a single seed phrase,
for example, using hierarchical deterministic (HD) wallets [14].

On closer inspection of (6), the sender-offset private key does not actually
need to be stored at all. Once the script offset, γ and script signature are calcu-
lated and broadcast, the offset is never required again, and can be discarded.

Script key management is application-dependent. For unilateral payments,
the script key is a static key associated with the recipient’s node or wallet,
similar to an Ethereum address, and so only a single private key is required. For
default payments, as shown in the examples, the recipient is free to provide any
value they like, which can be discarded once the transaction is finalised. In other
applications, the script key may derived from a suitable path in an HD wallet,
as per the spend keys.

3.2 Blockchain size

The most obvious drawback to TariScript is the effect it has on blockchain size.
UTXOs are substantially larger, with the addition of the script, metadata sig-
nature, script signature, and a public key to every output. The increase depends
on the script and its serialisation, but typically, UTXOs are 13% - 40% larger
than vanilla Mimblewimble. These can eventually be pruned but will neverthe-
less increase storage and bandwidth requirements. TariScript inputs are two to
four times larger than vanilla Mimblewimble inputs. The latter consist of a com-
mitment and output features. In TariScript, each input includes a script, input
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data, the script signature, and an extra public key. In addition, every block
header contains an extra field, the total script offset, that cannot be pruned
away.

In terms of performance, TariScript introduces two additional signature veri-
fication operations and an additional balance requiring a single curve operation.
Script evaluation, α(θ) → r, will depend on the implementation. Tari’s imple-
mentation, as discussed in the next section, is very efficient with strict upper
bounds on script size and complexity. In practice, we find that the Tari network
is limited by block space and network constraints during busy periods rather
than transaction processing speed [15].

3.3 Chain analysis

Another potential drawback of TariScript is the additional information that is
handed to entities wishing to perform chain analysis. Having scripts attached
to outputs will often clearly mark the purpose of that UTXO. Users may wish
to re-spend outputs into standard, default UTXOs in a mixing transaction to
disassociate TariScript funds from a particular script.

3.4 Horizon attacks

The Mimblewimble protocol allows outputs, and consequently, the output scripts
to be discarded (pruned) once they are spent.

In practice, nodes maintain a cache of full blocks before pruning outputs. The
depth of the cache is termed the pruning horizon. The horizon plays a key role in
simplifying node synchronisation and handling short chain forks that inevitably
arise in proof-of-work chains. Nodes are able to verify that scripts are respected
as long as chain re-organisations are not deeper than the pruning horizon.

In particular, when a new node joins the network, it will not be able to
know whether the scripts attached to spent transactions older than the pruning
horizon were faithfully executed to reach the current chain head.

The usual Mimblewimble guarantees remain, including the overall coin bal-
ance, but there is now an avenue of attack for a malicious party: Force a chain
re-organisation chain beyond the pruning horizon, and alter the script of a spent
output for which the attacker knows the spend key; thus enabling spending of
the output. This applies in the specific case of unilateral payments, where the
attacker knows the spend key, but not the script key.

This is termed a “horizon attack”. There are three ways to mitigate or prevent
it:

1. After receiving a unilateral payment, the receiver can spend the output to
herself with a standard interactive payment. This prevents the horizon attack
completely. Wallets can be programmed to do this automatically and peri-
odically, at the cost of an additional on-chain transaction, batching output
spends to reduce on-chain costs.
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2. Make the pruning horizon very deep, several weeks’ worth, say, to the point
that the cost of re-organising the chain for the horizon attack becomes un-
economical.

3. Run at least one node in archival node, meaning that UTXOs are never
pruned. Only a single honest archival node across the entire network is re-
quired to be able to eventually bring all other nodes back into the correct
consensus.

All three mitigations strategies can be run independently and in concert to
reduce the risk of a horizon attack to one of theoretical concern.

4 Examples

4.1 Standard Mimblewimble transactions

The simplest script that maintains the current Mimblewimble payment function-
ality is the identity script,

α(θ) → θ (8)

Here the spender can provide an arbitrary public key as the script input and
it will be interpreted as the script public key, Ks. In practice, a spender would
use a nonce, r = ks, with Ks = ks · G and the UTXO commitment’s blinding
factor, k, which they alone know, to spend the output in a transaction.

4.2 Unilateral payments

The strategy for leveraging TariScript for unilateral payments is as follows: As-
sume Alice wants to pay Bob at some static “address”. Mimblewimble does not
have addresses, per sè, but any public key, Ksb ≡ ksb ·G that Bob makes publicly
available will suffice.

The problem can be reduced to one in which Alice is able to publish the
transaction unilaterally, such that Bob can independently identify and claim
the output without any communication from Alice, and such that Alice cannot
spend the output herself.

The solution centers on Alice using Bob’s public key as the script public
key, Ks. Alice then combines her sender-offset key, kob, and Bob’s public key, to
derive a shared secret using a Diffie-Hellman key exchange [16]:

kb = H
(
kob ·Ksb

)
= H

(
ksb ·Kob

)
(9)

where H is a suitable hash function that produces a valid scalar under G.
Alice also encrypts the value of the commitment with the shared secret and
stores it at any convenient location in the transaction metadata.

This concludes part one of the problem.
To prevent Alice being able to spend the transaction, she provides a script,

α(·) → Ksb. That is, the script returns the script public key when a null input is
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provided. Since Alice does not know ksb, she cannot sign the script when trying
to spend the input. However, Bob can and thus part two of the problem is solved.

Once broadcast, any node can verify that the transaction is complete, verify
the signature on the script, and verify the script offset.

Bob can scan all transactions looking for a script that matches α(·) → Ksb.
If so, he recovers the spend key using his private key (also the script private key
in this case) and the sender-offset public key as per the third term in Eq. (9).

4.3 TariScript script - a concrete α implementation

Tari [5] uses a simple Forth-like stack-based language [17], similar to Bitcoin
script in its implementation of α. We use the term TariScript to refer to both
the protocol modifications and the set of opcodes and execution rules that define
the script language.

Scripts contain opcodes representing commands that are executed sequen-
tially. The commands operate on a single data stack that initially contains the
input data. The set of commands include mathematical and cryptographic op-
erations, stack manipulation and conditional logic [18].

After the script completes, it is successful if and only if it has not aborted
and there is exactly a single element remaining on the data stack. The script
fails if the stack is empty, contains more than one element, or aborts early.

To prevent denial-of-service or resource exhaustion attacks, both the script
and stack are limited in size. Any stack overflow results in script failure. In
addition, there are no opcodes for loops or timing functions, guaranteeing that
every script will terminate.

Example script - time-locked spending conditions Interesting and com-
plex transactions can be constructed dynamically, and without needing to make
any further changes to the Mimblewimble protocol.

As an example, Alice wants to send some Tari to Bob. But, if he doesn’t
spend it within a certain time frame (up till block 4000), then she wants to be
able to spend it back to herself.

This type of transaction is impossible in vanilla Mimblewimble and, in fact,
is also outside the reach of scriptless scripts, which have no concept of blockchain
context, like the block height.

However, the TariScript script in figure 1 achieves the desired result.

Dup PushPubkey(P_b) CheckHeight(4000) GeZero IFTHEN
PushPubkey(P_a) OrVerify(2) Drop
ELSE EqualVerify ENDIF

Fig. 1. An example time-locked contract in TariScript. This script serialises to 84 bytes,
of which 64 bytes are taken up by the two public key representations.
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The spender (Alice or Bob) provides their public key, some P_x, as input to
the script. The first opcode, DUP, duplicates the top element of the stack, leaving
two copies of the public key. Then, PushPubkey(P_b), pushes Bob’s public key,
P_b, onto the stack.

Subsequently, CheckHeight(4000) pushes the difference between the cur-
rent block and block 4000 to the stack. GeZero replaces the top stack element
with 1 if the value was positive, or 0 if it was negative.

IFTHEN pops an element of the stack and executes the commands up until
the ELSE opcode if the value is equal to one, and the commands between ELSE
and ENDIF otherwise.

Let’s assume the chain is at block 3990. All the commands up to EqualVerify
are skipped. EqualVerify pops two items off the stack, which currently contains
P_b,P_x,P_x and does nothing if they are equal, or aborts if they are not. Thus,
the script will only continue if P_b == P_x.

The script is now complete, leaving the single value of P_x on the stack,
which must be Bob’s public key. This key is used as the script public key, Ks,
as per the TariScript rules. Bob will have signed the script and its input with ks
as part of the valid transaction.

Alternatively, if the block height is 4000 or above, then the expression in line
2 from Figure 1 is executed. First, PushPubkey(P_a) pushes Alice’s public key
onto the stack, leaving a data stack P_a,P_b,P_x,P_x.

Then OrVerify(n) pops n items off the stack. If the new top element is
equal to any of the popped elements, the script continues, otherwise the script
aborts. In this example then, both Alice and Bob’s public keys are popped and
the script will continue if, and only if, P_x matches one of them.

Assuming this is the case, the Drop opcode drops the superfluous key, leaving
P_x, which must be one of Alice or Bob’s public keys. As before the spender will
also have provided a suitable signature using their private key.

5 Conclusion

TariScript provides a novel way of extending Mimblewimble with dynamic script-
ing abilities, while retaining its scaling and confidential properties. This is offset
by larger outputs and blocks. The scripts are also subject to horizon attacks,
which must be mitigated with a long pruning horizon or prevented by output
sweeping and running at least one archival node. The benefits significantly out-
weigh the drawbacks, since this single extension enables multiple features needed
to give Mimblewimble generalised smart contract capabilities, including unilat-
eral payments, covenants and side-chain pegs.
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