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Abstract. We present cryptanalysis of the inhomogenous short integer
solution (ISIS) problem for anomalously small moduli q by exploiting the
geometry of BKZ reduced bases of q-ary lattices.
We apply this cryptanalysis to examples from the literature where taking
such small moduli has been suggested. A recent work [Espitau–Tibouchi–
Wallet–Yu, CRYPTO 2022] suggests small q versions of the lattice signa-
ture scheme Falcon and its variant Mitaka. For one small q parametrisa-
tion of Falcon we reduce the estimated security against signature forgery
by approximately 26 bits. For one small q parametrisation of Mitaka we
successfully forge a signature in 15 seconds.

1 Introduction

The Short Integer Solution (SIS) problem is a computational problem that
requires one to find a non-zero short vector in a lattice from a specific class
of random lattices, known as random q-ary lattices. It was first introduced
by Ajtai [1,20] along with reductions to worst-case lattice problems. The
SIS problem has emerged as fundamental to lattice-based cryptography
in both theory and practice. The above worst-case hardness reductions
require the modulus q of the SIS instance to be significantly larger than
ν, its Euclidean length bound on solutions. Given that concrete crypto-
graphic design can be thought as a rarefied game of chicken, one sees
this requirement on q ignored with parameters pushed towards maximal
efficiency, and only constrained by documented cryptanalytic attacks.

The SIS problem has an inhomogeneous variant (ISIS), which often
holds greater relevance in cryptanalytic contexts. In particular, forging a
signature in lattice-based signature schemes commonly constitutes solving
a particular ISIS instance.

One notable difference between the SIS and ISIS problems is that SIS
becomes trivial once q ⩽ ν. This can be demonstrated by the solution vec-
tor q ·e1 which is non-zero, in all random q-ary lattices and has length not
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greater than ν. However, q ·e1 is not a solution vector for ISIS provided its
target u is not the zero vector. If u = 0 then SIS and ISIS coincide. Never-
theless, ISIS also eventually becomes trivial as q decreases. For example,
consider the ISIS instance Ax = u mod q, where A ∈ Zn×m

q with m ⩾ n
and u ∈ Zn

q \ {0} are chosen uniformly. Assuming that A = (A1 |A2)

is such that A1 ∈ Zn×n
q is invertible over Zq, then xt = (utA−t

1 |0) is
non-zero and satisfies Ax = u mod q. The first n entries of x are uniform
in Zn

q \ {0}. By reducing the coefficients of x modulo q around 0 this
solution has an expected square length of nq2/12.1 If this is sufficiently
below ν2 then it is likely that x is an ISIS solution. As such, the following
approximate observations can be made:

1. for ν < q, SIS and ISIS are similar problems and are both subject to
lattice reduction attacks,

2. for ν ⩾ q, SIS becomes trivial, but not necessarily ISIS, and
3. for ν ⩾ q

√
n/12, ISIS also becomes trivial.

This naturally leads to the question of the security of ISIS in the
regime where ν ∈ (q, q

√
n/12). We do not expect ISIS to be hard as

soon as ν < q
√
n/12. Indeed, if ν is slightly below q

√
n/12 then one can

attempt an Information Set Decoding (ISD) style of attack by randomis-
ing the columns of A1 and hoping that after a few trials the solution
xt = (utA−t

1 |0) reduced modulo q around 0 has a length slightly below
its expectation.

While we find this gap in our cryptanalytic knowledge to be motivat-
ing in its own right, recent works have proposed ISIS parameters where
ν > q. In particular small q parameter sets for the lattice signatures Fal-
con [22] and its variant Mitaka [15] were proposed in [16], as well as for
early parameters of a blind signature scheme [11].2

Contributions. For the regime ν ∈ (q, q
√
n/12) we give an attack that

is essentially a hybrid of the standard lattice reduction attack when ν < q
with the ISD style attack when ν ≈ q

√
n/12. We improve this hybrid by

exploiting the many short vectors given by a lattice sieve, providing in
essence many ISD attempts with a single lattice reduction effort.

The core of the attack lies in noticing that after lattice reduction
on a SIS lattice basis, we get a profile often referred to as having a Z-
shape. This reduced basis has a number of q vectors as its first columns,
q · e1, . . . , q · eℓ−1. By performing lattice sieving in the first projected

1 For simplicity we consider the expected square length of the region [−q/2, q/2]n.
2 Given early communication with the authors the parameters of [11] were revised.
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sublattice after the q vectors and lifting the discovered short vectors to
the non-projected lattice, we reduce the first ℓ − 1 entries of these short
vectors modulo q around 0. The square length of a vector lifted in this
manner is then the square length of the projected vector that lifted to it,
plus the square length of its first ℓ− 1 entries. These first ℓ− 1 entries lie
in ⌈−(q − 1)/2⌉, . . . , ⌊q/2⌋.

On the technical level, our attack requires us to model the Z-shape
of a SIS lattice basis after lattice reduction and to count the number of
integer points in the intersection of certain hyperballs and hypercubes.
We achieve the first by using models that exist in the literature [2,14]
and the latter via the efficient convolution of truncated theta series of Z.
Our model also assumes that the lifted entries of projected vectors are
independently and uniformly distributed in ⌈−(q−1)/2⌉, . . . , ⌊q/2⌋. Both
our modelling of the Z-shape after reduction and our assumption on the
uniformity of lifted entries are verified experimentally.

As another technical contribution we introduce an intermediate prob-
lem between SIS and ISIS that we call SIS∗. The SIS∗ problem is identical
to SIS except it disallows solutions that are 0 mod q. In particular, if
ν < q then SIS and SIS∗ coincide, and if ν ⩾ q then it allows us to argue
about the homogeneous version of our attack. We give a generic reduction
from ISIS to SIS∗ that increases the rank of the instance by one from m to
m+ 1 and has a probability loss factor approximately mq. We then give
a reduction using the SIS∗ attack we outline above that performs better:
it still increments the rank but has a probability loss factor of q/2.

As a final contribution, we present the performance of our attack
against several small q parameter sets suggested in [16]. For one parameter
set suggested for Falcon we reduce the forgery security in the CoreSVP
model [4] from 118 to 92 bits. For another parameter set suggested for
Mitaka we reduced the BKZ blocksize required for forgery to β ≈ 40
and implement the attack. We also explicitly state that we believe the
attacks presented in this work are far from optimised. As such, we suggest
that appealing to the practical security of ISIS instances with ν ⩾ q
is approached with great care and, if possible, not at all. Our code is
available at https://github.com/verdiverdiverdi/ISIS-small-q.

Application beyond SIS. An alternative interpretation of our attack
can be made directly on SIS in systematic form; A = (In ∥ A2) ∈ Zn×m

q

and one searches for a short x ∈ Zm \ {0} such that Ax = 0 mod q.
The attacker may ignore carefully chosen rows or columns of A. Ignoring
columns is standard, and is equivalent to fixing entries of x to 0. Let A′
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denote A with some rows removed. Assuming solutions to the original
SIS instance exist, we may find a short non-zero x ∈ {0}n × Zm−n such
that A′x = 0 mod q. Such an x does not guarantee Ax = 0 mod q. Due
to the systematic form of A one can choose xi for 1 ⩽ i ⩽ n to ensure
Ax = 0 mod q, but these xi may not be small. Our attack consists of
using the many outputs of a sieve to brute force this approach, hoping
that one solution has small enough xi.

However, we find our geometric description preferable, because it also
hints that this attack is not fundamentally limited to SIS type problems.
For example, this attack would also be applicable to Hawk [13,9] if the
parameter σpk (η in the specification version) was small. One would need
to replace reduction modulo q by Babai lifting [7], and it might no longer
be possible to calculate the success probability of the attack via theta
series, but the principle remains valid. That is, if the adversary is given
vectors that are shorter than what they can find using generic lattice
reduction, then these vectors may be abused to improve attacks. The
design of Hawk anticipated this, and set σpk precisely so that the vectors
given to the attacker are not too short. To account for the variance in the
length of sampled vectors, keys that would be too short are also rejected.

Related Work. The general principle of considering the Z-shape basis
structure is not new and is discussed in the cryptanalysis of Dilithium [19].
Due to Dilithium’s use of the ℓ∞ version of ISIS the Z-shape structure did
not lead to the best attacks. We take inspiration to consider the Z-shape
in q-ary bases from [17,2,14].

Organisation of the paper. Section 2 introduces the necessary prelim-
inaries. Section 3 outlines our attack and our model for it against SIS∗,
and Section 3.5 describes how we mount it on ISIS. Section 4 outlines an
optimisation to the basic attack. Section 5 provides experimental verifi-
cation of two of the heuristics in our attack, namely our modelling of the
Z-shape of a SIS lattice basis after reduction and the distribution of lifted
entries. Section 6 discusses how our attack affects the security of recent
cryptosystems in the ν ⩾ q regime.

Acknowledgements. The authors thank Damien Stehlé and Yang Yu
for useful discussions, and the reviewers for their comments. The research
of L. Ducas and E.W. Postlethwaite was supported by the ERC-StG-
ARTICULATE project (no. 947821).
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2 Preliminaries

2.1 Lattices and computational problems

Definition 1 (Lattice). LetB ∈ Rd×m have linearly independent columns.
A lattice Λ is the integer span of the columns of B, {B ·x : x ∈ Zm}. We
say B is a basis for Λ, Λ has dimension d and rank m, and Λ is full rank
if d = m.

Definition 2 (Lattice Volume). The volume of lattice Λ with basis B is
vol(Λ) =

√
det(BtB).

IfΛ is full rank then vol(Λ) = det(B). Note that the lattices generated
by B,C ∈ Rd×m are equal if and only if there exists U ∈ Glm(Z) such
that B = CU, and therefore volume is well defined.

Definition 3 (First minimum). For lattice Λ we define

λ1(Λ) = min
x∈Λ\{0}

∥x∥.

We can estimate the first minimum via the Gaussian heuristic which
calculates the radius of ball whose volume equals that of the lattice.

Definition 4 (Gaussian heuristic). Let vm = πm/2/Γ (1 + m/2) be the
volume of the m dimensional unit ball. For rank m lattice Λ we estimate
λ1(Λ) as gh(Λ) = v

−1/m
m · vol (Λ)1/m ≈

√
m/2πe · vol (Λ)1/m.

Throughout we will consider projected sublattices, for which we need
the following projections.

Definition 5 (Projections). Given a lattice basisB ∈ Rd×m and an index
1 ⩽ i ⩽ m+1, define πB,i : Rd → Rd as the orthogonal projection against

spanR(b1, . . . ,bi−1) (i.e. onto spanR(b1, . . . ,bi−1)
⊥).

For any B we have πB,1 = IdRd and, if m = d, πB,m+1(Rd) = {0}. If
x ∈ spanR(b1, . . . ,bi−1) and y ∈ Rd then ⟨x, πB,i(y)⟩ = 0. If the basis is
clear from context we write πi. To compute these projections one can use
the Gram–Schmidt basis related to a lattice basis B.

Definition 6 (Gram–Schmidt). Given a basis B ∈ Rd×m the Gram–
Schmidt basis B∗ ∈ Rd×m has pairwise orthogonal columns and is related
toB via an upper triangular matrixM with a unit diagonal asB = B∗·M.
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For 1 ⩽ i ⩽ m we have spanR(b1, . . . ,bi) = spanR(b
∗
1, . . . ,b

∗
i ) and for

x ∈ Rd one can calculate πB,i(x) via

x1 = x, xj+1 = xj −
⟨b∗

j ,xj⟩
⟨b∗

j ,b
∗
j ⟩
b∗
j ,

for 1 ⩽ j ⩽ i − 1 so that πB,i(x) = xi. Note that πi(bi) = b∗
i and

vol(Λ) =
∏

i ∥b∗
i ∥. We use the following shorthand for projected lattices

and lattice bases.

Definition 7 (Projected lattices and bases). Given basis B ∈ Rd×m

and 1 ⩽ ℓ < r ⩽ m + 1 let B[ℓ:r] = (πℓ(bℓ)| · · · |πℓ(br−1)) and Λ[ℓ:r] =

{B[ℓ:r] · x : x ∈ Zr−ℓ}. If r = m+ 1 we write B[ℓ] and Λ[ℓ].

For example

B[1] = B,

B[1:r] = (b1 | · · · |br−1),

B[ℓ:r] = (b∗
ℓ |πℓ(bℓ+1) | · · · |πℓ(br−1)).

One quantity of a basis we use throughout it its profile.

Definition 8 (Basis profile). Given a basis B ∈ Rd×m its profile is the
tuple (log∥b∗

i ∥)
m
i=1 ∈ Rm.

Often we consider lattices of a particular form.

Definition 9 (q-ary lattice). For some q ∈ Z>0 a rank m lattice Λ is a
q-ary lattice if qZm ⊆ Λ ⊆ Zm.

Solving the following (I)SIS problems can be achieved by performing
certain lattice reduction tasks over related q-ary lattices.

Definition 10 ((I)SIS). Let n ∈ N, m, q, ν be functions with domain N
and A← U(Zn×m

q ). We supress the dependence of m, q and ν on n.

The SISn,m,q,ν problem is to find a vector x ∈ Zm \ {0} such that
∥x∥ ⩽ ν and Ax = 0 mod q.

Given also u ← U(Zn
q ) the ISISn,m,q,ν problem is to find a vector

x ∈ Zm \ {0} such that ∥x∥ ⩽ ν and Ax = u mod q.

If φA : Zm → Zn
q , x 7→ Ax mod q then ker(φA) forms a lattice called

the kernel lattice of A. Note that A is not in general a basis for this
lattice.
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Definition 11 (Kernel lattice and basis). Let Λ⊥
q (A) = {x ∈ Zm : Ax =

0 mod q} be the kernel lattice of A. If one can permute the columns of A
(which relates to a known entrywise permutation of the lattice Λ⊥

q (A))
to (A1 |A2) such that A1 ∈ Gln(Zq) then one can form the basis

BA =

(
qIn −A−1

1 A2

0 Im−n

)
,

of Λ⊥
q (A).

Throughout, we will assume that such a permutation of the columns
of A exists and note that for prime q, if m = 2n then one exists with
overwhelming probability in n. Note that Λ⊥

q (A) has (full) rank m and
volume qn. Solving a SISn,m,q,ν instance given byA is equivalent to finding
x ∈ Λ⊥

q (A) with ∥x∥ ⩽ ν. Solving an ISISn,m,q,ν instance given byA and u

is equivalent to finding b ∈ Zm such that Ab = u mod q and x ∈ Λ⊥
q (A)

with ∥b− x∥ ⩽ ν since A(b− x) = u− 0 mod q.

For clarity of exposition we introduce the SIS∗ problem, which we give
a reduction from ISIS to in Section 3.5. Trivial SIS solutions of the form
q · ei are disallowed for SIS∗.

Definition 12 (SIS∗). Let n ∈ N, m, q, ν be functions with domain N and
A ← U(Zn×m

q ). The SIS∗n,m,q,ν problem is to find a vector x ∈ Zm \ qZm

such that ∥x∥ ⩽ ν and Ax = 0 mod q.

If ν < q then SIS and SIS∗ are equivalent problems. We make use of a
particular instance of theta functions on a lattice.

Definition 13 (Theta function of a lattice). Given a lattice Λ we write

ΘΛ(τ) =
∑
x∈Λ

eπiτ∥x∥
2

,

for any τ ∈ C with Im τ > 0.

Letting X = eπiτ and suppressing the dependence on τ we see that
the coefficient of Xj2 in ΘΛ denotes the number of lattice vectors in Λ
with length j. We have

ΘZ = 1 + 2
∑

j∈Z>0

Xj2 ,

and note that (ΘZ)
m = ΘZm for m ∈ N.
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2.2 Reduction algorithms

Lattice reduction algorithms take as input a basis Bpre ∈ Rd×m of lat-
tice Λ, some control parameters, and upon termination output a pair
(B, U) ∈ Rd×m × Glm(Z) such that B = BpreU and B is a “better”
basis of Λ. For our cryptanalytic purpose we are interested in the prop-
erties of the profile after lattice reduction. We consider the celebrated
LLL [18] and BKZ [24] reduction algorithms and heuristics that describe
their behaviour on “random” lattices, see [2] for a survey. The relevant
information here is that LLL is an efficient form of prereduction, and that
BKZ is parametrised by a parameter β, where BKZ-β finds short vectors
in rank β lattices. As such, given that lattice sieves (see Section 2.3) are
the most efficient method known to achieve this, the cost of BKZ grows
exponentially in β.

An important quantity is the root Hermite factor which can be used
to determine ∥b1∥ of a basis after BKZ-β reduction.

Definition 14 (Root Hermite factor [10]). For β ⩾ 50 let

δβ =

(
β

2πe
(πβ)1/β

)1/2(β−1)

.

For smaller values of β the root Hermite factor δβ is determined ex-
perimentally. After BKZ-β reduction on basis B ∈ Rd×m of lattice Λ
we estimate ∥b1∥ ≈ δm−1

β · vol (Λ)1/m. The other heuristic we use is the
Geometric Series Assumption (GSA) [25]. This asserts that after lattice
reduction the Gram–Schmidt norms decrease as a geometric series.

Definition 15 (Geometric Series Assumption). After lattice reduction
on basis B ∈ Rd×m there exists γ ∈ (0, 1) such that for 1 ⩽ i ⩽ m we
have ∥b∗

i ∥ = γi−1∥b1∥.

Given a basis Bd×m of lattice Λ, and assuming both ∥b1∥ = δm−1
β ·

vol (Λ)1/m and the GSA after BKZ-β reduction, since vol(Λ) =
∏

i ∥b∗
i ∥ =

∥b1∥m−1 · (γ · · · γm−1) we have γ(β) = 1/δ2β.

For our final assumption we specialise to q-ary lattices, specifically
those of the form Λ⊥

q (A) for A ∈ Zn×m
q with basis BA, recall Defini-

tion 11. We note that for 1 ⩽ i ⩽ n we have πi(bi) = b∗
i = q · ei. Under

the root Hermite factor and GSA heuristics we assume that after BKZ-
β reduction ∥b∗

i ∥ = δm−1
β · vol (Λ) · γ(β)i−1 = δm−2i+1

β · vol (Λ)1/m [4,
Sec. 6.3]. However in Section 3, we assume that for 1 ⩽ i ⩽ n, if q <

δm−2i+1
β · vol (Λ)1/m then the q vector remains and the decrease in the
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profile begins only bounded away from the first indices of the basis. This
“Z-shape” phenomenon was first observed in [17] and is discussed more
in [2] and [19, App. C]; we give more detail on our use of it in Section 3.

2.3 Lattice sieves

In this work a lattice sieve is an algorithm that takes as input a basis
B ∈ Rd×m of lattice Λ and outputs in time exponential in m a con-
stant fraction, which we can control, of vectors in {x ∈ Λ \ {0} : ∥x∥ ⩽√
4/3 · gh(Λ)}. We call the set of vectors output by a sieve its database.

One expects (4/3)m/2 vectors in a sieve database and for their lengths to
concentrate around

√
4/3 · gh(Λ).

In our attack we sieve in projected sublattices Λ[ℓ] of Λ determined
by some B[ℓ] and then “lift” these vectors from Λ[ℓ] to Λ following [12].
Let 1 ⩽ ℓ − 1 < m and m′ be such that ℓ − 1 + m′ = m. If a sieve is
performed on B[ℓ] then we have a database of short vectors L ⊂ Λ[ℓ].
Let w ∈ Λ be such that w = Bv for some v ∈ Zm. We may split
B = (B′ |B′′) with B′ ∈ Rd×(ℓ−1) and B′′ ∈ Rd×m′

and v similarly.
Then πℓ(w) = πℓ(B

′v′) + πℓ(B
′′v′′) = 0 +B[ℓ]v

′′. We see therefore that
for w[ℓ] ∈ L with w[ℓ] = B[ℓ]v[ℓ], each lift of w[ℓ] to Λ is of the form

B′v′ +B′′v[ℓ] for v
′ ∈ Zℓ−1.

The shortest w ∈ Λ such that πℓ(w) = w[ℓ] is given by a particular
choice of v′. In our case, due to the geometry of our reduced bases, for
every w[ℓ] we are able to find this choice of v′. In particular, we consider

bases BA of Λ⊥
q (A) for A ∈ Zn×m

q . Let B = BAU be the basis after
BKZ-β reduction and ℓ be maximal such that B′ = (q · e1 | · · · | q · eℓ−1).
In this case we have

B′′ =

(
C
D

)
, B[ℓ] =

(
0
D

)
,

with C ∈ Z(ℓ−1)×m′
and D ∈ Zm′×m′

. If w[ℓ] = B[ℓ]v[ℓ] then its shortest
lift is some

w = B′v′ +B′′v[ℓ] =



qv′1
...

qv′ℓ−1

0
...
0


+


Cv[ℓ]

B[ℓ]v[ℓ]

. (1)

To find the shortest lift we reduce Cv[ℓ] modulo q centred around 0.
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2.4 Elements of high dimensional geometry

Definition 16. We define the following geometric figures for n ⩾ 1,

i. Bn(r) = {x ∈ Rn : ∥x∥ ⩽ r}, the n dimensional ball of radius r, i.e. the
dilatation of the ℓ2 norm unit ball by a factor of r,

ii. Cuben(q) =

{
{−(q − 1)/2, . . . , (q − 1)/2}n, q odd,

{−(q − 2)/2, . . . , q/2}n, q even.

Our Cuben(q) represents the region of shortest reductions of x ∈ Zn

modulo q, with an arbitrary choice made in the case of even q.

3 Attack on small modulus SIS

Our attack is based on two main ingredients: on the one hand a precise
prediction of the geometry of BKZ reduced bases of q-ary lattices, and
on the other calculating the number of integer points in the intersection
of hyperballs and hypercubes in high dimensions.

3.1 On the Z-shape of BKZ reduced bases for q-ary lattices

The three zones of the Z-shape. As in the SIS problem we consider
a uniform matrix A ∈ Zn×m

q and its associated kernel lattice Λ⊥
q (A). We

refer to its basis BA as B and apply some amount of lattice reduction to
it. Initially, the profile (ℓi)

m
i=1 of the basis has ℓi = log q for i ∈ [n] and

ℓi = 0 for i > n, resulting in a “Z-shape”, see Figure 1. The profile indices
are divided into three distinct zones: Zone I, comprising of the q vectors
with ℓi = log q, Zone II, the “slope”, currently empty, and Zone III, the
“flat tail”, with ℓi = 0.

LLL reduction. As lattice reduction is applied, starting with LLL, the
profile may change, with the vector corresponding to the last vector in
Zone I potentially having a projection shorter than q and the vector cor-
responding to the first index in Zone III potentially having a projection
longer than 1. These indices are now part of Zone II, where ℓi ∈ (0, log q).
Additionally, we assume that the GSA applies to Zone II. The LLL algo-
rithm is partially self-dual, reducing both the basis and the corresponding
dual basis, resulting in all ℓi falling into these three distinct and ordered
zones, as discussed in greater detail in [2, Sec. 4.3].
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Log (q)

n m

Zone I

Zone III
0

Fig. 1: Initial profile of basis B.

Log (q)

n m

Zone I

Zone III

Zone II

0

Fig. 2: Profile after some BKZ reduction.

BKZ profile. We then use the stronger lattice reduction algorithm BKZ.
Unlike LLL, BKZ does not possess this partially self-dual property. How-
ever, if BKZ-β fails to find a vector of length shorter than q within the
first β columns of the basis B, it can be asserted that ℓ1 = log q. It has
been observed that BKZ-β reduction preserves the Z-shape and its three
zones, up to a small “kink” just before Zone III [2], with the slope of
Zone II decreasing according to the GSA, see Figure 2. This observation
was first documented in [17]. Additionally, randomising B can remove the
q vectors from the first n columns of the basis. Applying BKZ to such
randomised bases is depicted in Figure 3. We note that the use of the q
vectors is fundamental to our attack, so we do not randomise bases in
this manner. The application of BKZ-β to bases of the form BA, with
and without randomisation, is discussed in more detail in [19, App. C].
In what follows we present a model for BKZ-β reduction on bases of the
form BA that captures the aforementioned Z-shape phenomenon, similar
to the model presented in [14, Heuristic. 2.8].
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Log (q)

n mZone III

Zone II

0

Fig. 3: Profile after rerandomisation and then some BKZ reduction.

A predictive model for BKZ profiles. Our model for predicting the
basis profile after BKZ reduction is based on the volume invariance of
a lattice under a change of basis, as in [19, App. C]. To determine the
output profile, we make two assumptions:

i. the GSA holds in Zone II, with the slope determined solely by the
BKZ blocksize β, specifically γ(β) = 1/δ2β,

ii. despite not being a self-dual algorithm, upon completion BKZ reduc-
tion preserves Zones I, II, and III, and their order.

Using these assumptions, we construct a preliminary “extended” pro-
file that has more indices than the rank of the lattice. Specifically, let nq,
nGSA, and n1 represent the number of vectors in Zone I, Zone II and Zone
III, respectively. The input basis has nq = n and n1 = m− n and we use
the GSA to determine nGSA. Under the GSA after BKZ-β reduction and
in a log scale, Zone II begins at index n + 1 with value log q − 2 log δβ
and decreases by −2 log δβ per subsequent index. This continues until the
profile takes a value in the range (2 log δ(β), 0], which allows us to calcu-
late nGSA as ⌊log q/(2 log δβ)⌋. On a profile plot, Zone II therefore consists
of the points (nq + i, log q − 2i log δβ) for i ∈ {1, . . . , nGSA}. The global
shape of the profile is quite accurate, but the resulting (logarithm of the)
volume, that is to say, the sum of all the values in the three zones

nq∑
i=1

log q +

nGSA∑
i=1

(log q − 2i log δβ) +

m∑
i=nq+nGSA+1

0

= (n+ nGSA) log q − nGSA(nGSA + 1) log δβ,

is not equal to that of the lattice; n log(q). What remains is to find the
correct starting index of Zone II, i.e. some index smaller than n. To do

https://orcid.org/0000-0003-2510-4829
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n m

Zone I

Zone III

Zone II

Log (q)

log(q)-2i logδ(β) for i = 1 to n
GSA

nGSA

m

0

Fig. 4: Illustration of the moving window technique to estimate the profile
of a BKZ reduced basis B. The initial profile is constructed by setting
the starting index of Zone II as n+1 and letting the subsequent slope be
given by the GSA. Zone III continues beyond m. Then a sliding window
of length m (the dashed box) moves from its leftmost position to the right
until the closest approximation to the lattice volume is found.

so we shift a window of indices of length m, the rank of the lattice, in
increments of one, right from {1, . . . ,m} to {1 + j, . . . ,m + j} for some
j ∈ N. The shift j is chosen such that the volume implied by the profile is
as close to the volume of the lattice as the discretisation of indices allows.
Finally, we renormalise the profile in Zone II so that the volume of the
profile we have constructed equals the volume of the lattice. A schematic
of the entire process is given in Figure 4. We note that one can directly
compute nq and nGSA by solving an easy system of equations, but that
this requires considering four different cases depending on the existence
of Zones I and III.

3.2 Exploiting the Z-shape

Let B be the output of BKZ-β reduction on some basis BA and let
r = min{nq + β + 1,m + 1}. Our ability to predict the behaviour of the
profile of B leads to the following observation. When the modulus q is
relatively small compared to the length bound ν in SIS∗n,m,q,ν instances,
the discovery of short vectors in Λ[nq+1:r] via sieving on B[nq+1:r] opens
up avenues for new attack strategies through the lifting techniques of [12].
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Lifting vectors in q-ary lattices. Recall the notation of (1) and let
ℓ = nq + 1. We make the slight alteration of considering B[ℓ:r] defining
the projected sublattice Λ[ℓ:r] rather than B[ℓ] defining Λ[ℓ], and so B′ ∈
Zm×(ℓ−1) and B′′ ∈ Zm×(r−ℓ). Let w[ℓ:r] = B[ℓ:r]v[ℓ:r] ∈ Λ[ℓ:r] have square
norm η2. Each lift w of w[ℓ:r] is of the form B′v′ +B′′v[ℓ:r] where B′ =
(q · e1 | · · · | q · eℓ−1).

Following (1) let w be the shortest lift of w[ℓ:r]. The maximum square
length of w is therefore η2 + nqq

2/4 and the average case length, when
the first ℓ − 1 entries of w are uniformly distributed mod q around 0, is
approximately η2 + nqq

2/12. We note this approach relies on q vectors
remaining at the beginning of the basis over which to lift.

Λ2

Fig. 5: Illustration of the attack in dimension 2, where we look at the
projection Λ[2] of the lattice Λ = Λ⊥

q (A) for A ∈ Z1×2
q against the q

vector (q 0)t. Lifts for the projections within an ℓ2 ball are depicted by
horizontal dotted lines. The only two points of Λ[2] which can be lifted
to a vector of Λ in the ℓ2 ball are highlighted by triangles.

On success probability. The above procedure returns a SIS∗n,m,q,ν so-

lution if ∥w∥2 ⩽ ν2, i.e. when the lifted entries have square norm less

https://orcid.org/0000-0003-2510-4829
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than ν2 − η2. We make the assumption, which we experimentally verify
in Section 5, that the first nq entries of w are uniformly distributed in
Cubenq(q), so this success condition is equivalent to a uniform element of

Cubenq(q) lying in Bnq

(√
ν2 − η2

)
. This probability is precisely

p(ν, η, q, nq) =

∣∣∣Cubenq(q) ∩ Bnq

(√
ν2 − η2

)∣∣∣
|Cubenq(q)|

, (2)

3.3 On balls and cubes

The denominator of (2) is qnq , but we require an efficient method to
compute the numerator. For this, we appeal to the theta series of Z.

Convolution of truncated theta. We now present a method to cal-
culate the number of lattice points of Znq contained in the intersection
of a centered cube and ball. Our method revolves around considering
convolutions of the function ΘZ.

We define ΘZ,N = 1+
∑

1⩽j⩽N 2Xj2 , and for any polynomial p(X) =∑
i∈N αiX

i ∈ Z[X], we define pN (X) =
∑

0⩽i⩽N2 αiX
i. Note this trun-

cates a polynomial at its degree N2 term, similar to ΘZ,N . By definition
of the product of polynomials, ΘZ,N · ΘZ,N is a polynomial whose jth

coefficient is the number of integer points of squared norm j and whose
coordinates are all smaller than or equal to N in absolute value. Hence,
truncating the polynomial at its degree M2 term and evaluating it at 1
gives exactly the number of points in Z2 inside the ℓ2 ball of radius M
and with coefficients smaller than or equal to N in absolute value. That
is to say, if N is even, the number of points in Cube2(2N + 1) ∩ B2(M).3

This simple observation leads to a recursive approach that generalises
it to arbitrary dimensions. We seek to compute Θ(n), defined by Θ(1) =
ΘZ,N and Θ(i) =

(
Θ(i−1) ·Θ(1)

)
M

for some n,N,M . In words, this process
counts the integer points introduced by increasing the dimension of the
cube and removes the points outside of the ball.

One may think of this truncated convolution as a product in the ring
Z[X]/(XM ). It is therefore tempting to accelerate the calculation of Θ(n)

using fast exponentiation (square-and-multiply). It turns out that the
näıve iterative approach is also competitive for the parameters at hand
if one exploits the fact that Θ(1) is a rather sparse polynomial with only

3 Even N relates to odd q = 2N + 1. Allowing for even q, where Cuben(q) is non-
symmetric, requires slightly more care. We are concerned with odd q in this work.
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√
N non zero coefficients out of M > N . Indeed, the former approach

has a complexity of O(M2 log n) arithmetic operations and the latter
O(n ·M ·

√
N). With some implementation effort, the former approach

could be accelerated using the Fast Fourier Transform for convolution,
leading to O(M logM log n) complexity, though this was not necessary for
our parameters. Furthermore, to explore the attack parameters, we will
generally want to compute Θ(n) for increasing values of n; the iterative
approach with caching perfectly fits this use case.

Alternative Approach. We also mention an alternative approach we
considered for computing this numerator, at least approximately. One
might forget the discrete aspect of the problem, and simply compute
the volume of the intersection between a hyperball and a hypercube.
An efficient method exists [23,5] and we implemented it,4 but found it
difficult to use: it requires floating-point computation with high precision
and the careful truncation of infinite series. This approach might still be
preferable when the modulus q is large.

3.4 Putting it all together

We now give the full attack in Algorithm 1. We then outline how we
estimate the success probability of our attack, which is experimentally
verified in Section 5, and give its cost.

To estimate the success probability of Algorithm 1, we propose with
two conservative assumptions:

i. the maximum length of vectors in the projected sieve database P is√
4/3 q, rather than the slightly smaller

√
4/3 ∥b∗

ℓ∥ that we would
approximately expect via the Gaussian heuristic,

ii. all (4/3)(r−ℓ)/2 vectors in P are of this maximum length.

Recalling (2) and setting nq = ℓ−1 and η =
√
4/3 q, given that (q, ν)

are parameters of our SIS∗ instance, we compute p = p(ν, η, q, nq) via the
methods of Section 3.3. We now make the assumption that the first ℓ− 1
entries of each shortest lift w of w[ℓ:r] ∈ P are independent and identically
distributed, implying in particular that each lift has length shorter than ν
with probability p. Hence, the expected number of successes of the lifting
event over the 4/3(r−l)/2 candidates of P corresponds to the expectation of

a binomial random variable with (4/3)(r−ℓ)/2 trials and success probability

p. It is therefore (4/3)(r−ℓ)/2p.

4 https://github.com/verdiverdiverdi/ball-box
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Algorithm 1: Z-attack outline

Input: A matrix A ∈ Zn×m
q , a threshold value ν > 0, a

BKZ blocksize β.
Output: A solution x ∈ Zm \ qZm such that Ax = 0 mod q

and ∥x∥ ⩽ ν, or ⊥ if the attack is unsuccessful.

1 Write A as (A1 |A2) ∈ Zn×n
q × Zn×(n−m)

q

2 Assert A1 ∈ Gln(Zq)

3 BA ←
(
qIn −A−1

1 A2

0 Im−n

)
4 Run BKZ-β algorithm on BA, receive B
5 Let ℓ be maximal such that B begins (q · e1 | · · · | q · eℓ−1)
6 if ℓ = 1 then return b1 when b1 ⩽ ν else ⊥
7 Let r ← min{ℓ+ β,m+ 1}
8 Let B = (B′ |B′′ | ∗ ) ∈ Zm×(ℓ−1) × Zm×(r−ℓ) × Zm×(m−r+1)

9 P ←Sieve
(
Λ[ℓ,r]

)
using B[ℓ:r]

10 for w[ℓ:r] ∈ P do
11 Let v[ℓ:r] ∈ Zr−ℓ such that w[ℓ:r] = B[ℓ:r]v[ℓ:r]

12 Find shortest w = B′v′ +B′′v[ℓ:r], i.e. reduce the first

ℓ− 1 entries of B′′v[ℓ:r] around 0 mod q

13 if ∥w∥ ⩽ ν then return w

14 end for
15 return ⊥

If this expected value is less than one, we rerandomise Zone II of B
(in particular, leaving the q vectors and Zone III unaltered) and repeat
once again lattice reduction to retrieve the Z-shape profile and restart the
attack. Note that p is non-decreasing if the number of q vectors remaining
at the beginning of the basis decreases. We assume that performing the
sieving and lifting operation again is independent of previous attempts.

The cost of the attack under consideration is evaluated by adopting
the CoreSVP methodology [4]. Specifically, we assume that the total cost
of the BKZ reduction and sieve in the projected sublattice can be ap-
proximated by a single SVP oracle call. By leveraging lattice sieves, we
estimate this cost to be of the order 2cβ+o(β), where c = 0.292 [8] for a
classical lattice sieve. We acknowledge that this estimate is a simplifica-
tion and underestimate, but we employ it to facilitate comparisons to the
security levels of signature schemes proposed in [16]. We note the con-
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ventional technique of unbalancing the reduction and sieving dimensions
could, in a more precise cost model, optimise our attack.

3.5 Extension to ISIS

For convenience, the attack under consideration has thus far been dis-
cussed in the homogeneous setting. Cryptanalysing signature schemes
typically requires one to solve ISIS. From a complexity-theoretic perspec-
tive, we demonstrate that the inhomogeneous variant is not inherently
more difficult. However, our proposed reduction loses a factor of approx-
imately mq in the success probability of the attack. We contend that
this loss is largely a consequence of the reduction and posit that we can
achieve the significantly smaller factor q/2.

A reduction from ISIS to SIS∗. While the following reduction from
ISIS to SIS in instances where ν < q seems folklore, it has not been
extensively documented beyond a comment by Peikert.5 Below we give a
similar reduction that does not require ν < q.

Lemma 1. For prime q, if there exists adversary A solving SIS∗n,m+1,q,ν

in time T with success probability p, then there exists adversary B solving
ISISn,m,q,ν in time T + poly(n,m, log q) with probability at least

p

(m+ 1)(q − 1)
− 1

qn
.

Proof. Set m′ = m+ 1. For an ISISn,m,q,ν instance (A,u), B proceeds by
sampling f ← U(Z×

q ) and a uniform permutation matrix P ∈ Zm′×m′
.

Subsequently, B creates A′ = [A|fu] ·P and transmits it to A. Note that
the invertibility of f and P implies that the distribution of A′ remains
uniform based on the uniformity of (A,u). Furthermore, the distribution
of A′ is independent of P and f and follows the correct input distribution
for A.

Upon receiving A′, A produces x′. With probability p, it holds that
A′x′ = 0 mod q, ∥x′∥ ⩽ ν, and x′ ̸∈ qZm′

. Specifically, at least one
coordinate of x′ must be non-zero modulo q. As such, with probability at
least 1/m′, Px′ is of the form (x, y), where x ∈ Zm and y ∈ Z \ qZ. It
further holds with probability 1/(q − 1) that f = −y−1. Notably, x has
∥x∥ ⩽ ∥Px′∥ = ∥x′∥ ⩽ ν, and if x ̸= 0, it constitutes a solution to the
ISISn,m,q,ν instance. To conclude, remark that x = 0 only when u = 0,
which occurs with probability 1/qn.
5 https://crypto.stackexchange.com/questions/87097/
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A heuristic improvement. We note that the above reduction trans-
forms generic adversaries. Our Z-shape attack implements a particular
SIS∗ solver, with a specific property on the distribution of its output:
in our model some number, greater than one, of the first entries of the
output solution x′ are uniform mod q around 0. Hence, let us assume
that the SIS∗ adversary A above has the same property and design a
better reduction. In the notation of Lemma 1 we fix f = 1 and P to a
be permutation matrix that sets u as the first column of A′ and ensures
the first n columns are in Gln(Zq), in particular let A′ = (u | Ā). Let
the SIS∗ solution be x′ = (x′1 |x′′). If x′1 ∈ {1,−1} then we have solved
our ISIS instance as A′x′ = ±u + Āx′′ = 0 mod q and one may use the
relevant submatrix of P and potentially negation to recover x such that
Ax = u mod q. Note ∥x∥ = ∥x′′∥ ⩽ ∥x′∥ ⩽ ν.

In the above our SIS∗ solver must function in one rank higher than
the original ISIS instance and the probability that a given x′1 ∈ {1,−1}
is 2/q, i.e. the success probability is 2/q rather than approximately 1/mq
as in Lemma 1.

4 Optimisations

In this section, we introduce an optimisation to enhance the generic attack
of Algorithm 1. It employs a technique from the lattice sieving literature
referred to as “on-the-fly lifting”. This approach considers more lifts over
the q vectors, albeit at slightly longer lengths.

4.1 On the fly lifting

During the execution of a lattice sieve, pairs of vectors are added together
to search for new and shorter vectors. There are two main methods for
this process: a double loop over the entire current database of vectors [21]
or the use of locality-sensitive techniques to consider only pairs of vectors
with a high probability of summing to a new, shorter vector [8]. Regardless
of the method used, the process is iterative, and the lengths of vectors
in the sieve database decrease over many such searches for pairs. This
means that many more vectors are considered than ultimately inhabit the
terminal sieving database. The on-the-fly lifting technique is introduced
to consider lifting some subset of these vectors, as well as those in the
terminal database, in the hope that some well-chosen excess computation
can improve the sieve’s performance [3].
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We model on-the-fly lifting by considering the terminal sieve database
and performing one more iteration. Each vector encountered in that iter-
ation, regardless of its length, is lifted. The number and length of these
extra vectors will vary depending on the style of sieve used. It is impor-
tant to note that this surplus iteration is not necessary in practice, as
vectors of the appropriate length can simply be lifted during the sieving
procedure. However, it is conceptually cleaner.

Nguyen–Vidick style sieves. In Nguyen–Vidick style sieves [21] each
iteration of the sieve is a double loop over the database where all dis-
tinct pairs of vectors are added and the shortest sums kept.6 Given our
assumption that a terminal sieving database on a rank β lattice Λ has
size (4/3)β/2 and maximum length

√
4/3 gh(Λ), performing a final siev-

ing iteration visits (4/3)β vectors of length less than
√
2 ·

√
4/3 gh(Λ).

Specialising to Algorithm 1 this means performing the lifting during the
sieve operation, and altering our conservative assumptions on the suc-
cess probability to stating that each vector we attempt to lift has length√
2 ·

√
4/3 q and that there are (4/3)r−ℓ of them. We note that while,

when not considering on the fly techniques, we took complexity exponent
c = 0.292 because there was no reason to not consider the fastest lattice
sieve, Nguyen–Vidick sieves have asymptotic time complexity given by
the exponent c = 0.415 [21].

The Becker–Ducas–Gama–Laarhoven sieve. Sieves that use locality
sensitive techniques achieve lower time complexities by considering fewer
pairs of vectors in an iteration [8]. This means that in our model that
considers repeating the final iteration of sieving on the terminal sieve
database, such sieves give fewer opportunities for on the fly lifting. On
the positive side, the ability of such sieves to forego trying so many pairs
of vectors comes from mechanisms to select only pairs that are more
likely to have a short sum. In particular, the distribution of the lengths
of sums of pairs that are selected is concentrated on shorter values than
for Nguyen–Vidick style sieves. The following lemma examines the time
optimal parameters of [8]. Here a vector u is compared only with vectors
w that take angular distance not more than π/3 with some vector r,
which itself takes angular distance not more than π/3 with u.

6 For simplicity, one may think of including 0 in the database to allow the iteration
to keep short vectors already present in the database.
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Lemma 2. Following the notation of [8, Sec. 2] let α = 1/2 and u ∈
Sn−1 be the centre of spherical cap Cu,α. Let r ∈ Cu,α be the centre of
another spherical cap Cr,α. The probability that uniform w ∈ Cr,α is such
that ∥u−w∥ ⩽

√
3/2 is at least one half.

Proof. Rotate such that r = e1 and decompose u = u′+u1r, w = w′+w1r
such that ⟨u′, r⟩ = ⟨w′, r⟩ = 0. We have ∥u−w∥2 = ∥u′ −w′∥2 +
(u1 − w1)

2 with u1 ∈ [1/2, 1] and ∥u′∥2 = 1−u21, and similarly for (w1,w
′).

Then ∥u−w∥2 = ∥u′∥2+∥w′∥2−2⟨u′,w′⟩+(u1 − w1)
2 ⩽ 3/2−2⟨u′,w′⟩.

We project u,w in the cap Cr,α onto the ball of one less dimension

Bn−1

(√
3/4

)
⊂ {0} × Rn−1. By the rotational symmetry of Cr,α around

the axis r, for any u and uniform w ∈ Cr,α, the angle between u′ and w′ is
uniform in [0, 2π), and therefore the inner product above is non negative
with probability one half. In this case, ∥u−w∥ ⩽

√
3/2.

By scaling onto the sphere of radius
√
4/3 gh(Λ) we have

√
3/2 ·√

4/3 gh(Λ) =
√
2 gh(Λ). We therefore change our assumptions on the

success probability of Algorithm 1, when using the sieve of [8], to each

vector we attempt to lift having length
√
2 q and there being (3/2)(r−ℓ)/2

of them. This number of vectors comes from the α = β = 1/2 case of [8,
Sec. 7] and is less than the (4/3)r−ℓ of the Nguyen–Vidick sieves. Here
we have complexity exponent c = 0.292.

A possible improvement. We note that when considering on the fly
lifting it is not necessarily the case that the lengths of vectors are con-
centrated around their maximum, as opposed to the terminal database
of a sieve. For example, in a Nguyen–Vidick style sieve, if the lengths of
the vectors considered during on the fly lifting have lengths concentrated
below

√
2 ·

√
4/3 gh(Λ) then our model is pessimistic; taking a shorter

length as an upper bound for our projected vectors would better match
reality and lower the cost of the attack.

5 Experimental verification

In this section we experimentally verify two heuristics used in our attack.
The first is on the behaviour of the lengths of lifted entries of vectors
from a projected sieve database, which are expected to follow the uniform
distribution over Cubenq(q). As an extension, we also verify that the total
lengths of lifted vectors match our expectations. The second heuristic of
our model relates to the simulation of the Z-shape after BKZ reduction.
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We note that we are considering the lengths of lifted vectors without
considering on-the-fly lifting, as introduced in Section 4.

Experimental toolkit. The fpylll library [26] is used for BKZ reduc-
tion algorithm and the general sieve kernel [27,3] is used for sieving in
projected sublattices. We use the progressive BKZ algorithm [6], in which
a subset of block sizes (β′

i)i ⊂ {3, . . . , β − 1} are used in some number of
BKZ-β′ tours as a prereduction process prior to BKZ-β.

5.1 The lengths of lifts

In these experiments we use progressive BKZ-β with a decreasing number
of iterations as β′ < β increases. Specifically, we denote the process of run-
ning t iterations of BKZ-β′ for β′ ∈ {l, . . . , u} by the pair (t, [l, u]), result-
ing in the following sequence: (8, [3, 5]), (4, [6, 10]), (2, [11, 20]), (1, [40,∞)).

Uniformity in Cuben(q). Following the selection of parameters n,m, q,
and a reduction parameter β for BKZ reduction such that we expect q vec-
tors to remain at the beginning of the basis, we perform BKZ-β reduction
on a uniform BA, resulting in B. The number of remaining q vectors in B
is denoted by nq. Next, by setting ℓ−1 = nq and r = max{ℓ+β,m+1}, we
sieve in Λ[ℓ:r] usingB[ℓ:r], following Algorithm 1. We ensure that r ⩽ m+1
so that we sieve in a rank β projected sublattice. The number of vectors
having length less than or equal to 4/3 q is denoted as N , and we en-

sure that this quantity is greater than (4/3)β/2. Subsequently, the sieve
database is lifted to B over the q vectors, and the length of each lifted
vector, limited to its first nq entries, is recorded as {Li}Ni=1. As in Sec-
tion 3.3, we can calculate the fraction of Cubenq(q) having length less
than a given radius R, i.e.

p′(R, q, nq) =
|Cubenq(q) ∩ Bnq(R)|

|Cubenq(q)|
,

similarly to (2). Further, {Li}Ni=1 is sorted as L1 ⩽ · · · ⩽ Ln, and for any
i, if there exists j < i such that Lj = Li, then we remove Lj . Ultimately,
for the remaining Li the coordinates (Li, p

′(Li, q, nq)) and (Li, i/N) are
plotted. These represent the proportion of lifts with length that is less
than or equal to Li according to our model (“Modelled proportion” in
Figure 6), and observed in our experiments (“Experimental proportion”
in Figure 6).
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Fig. 6: For (n,m, q, β) = (120, 240, 257, 40) we check the distribution of
the length of only the lifted entries of lifted vectors, following the descrip-
tion of the first experiment in Section 5.1.

Distribution of total lengths. Given the above approach we can also
consider, given a particular distribution of lengths of projected vectors
in the database of Sieve

(
Λ[ℓ:r]

)
, the distribution of lengths of the full

lifted vectors expected by our model. Note that we must consider the
distribution of the lengths of the projected vectors since, under our model,
the distributions of the lifts of projected vectors of different lengths are
themselves different. In this case we let {Lproj,i}Ni=1 represent the lengths
of the vectors in the projected sieve database, and for each index i let
{Ltotal,i}Ni=1 represent the length of the respective entire lifted vector. We

sort {Ltotal,i}Ni=1 as Ltotal,1 ⩽ · · · ⩽ Ltotal,N and for all i if there exists
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j < i such that Ltotal,j = Ltotal,i we remove Ltotal,j . For given {Lproj,i}Ni=1
and length Ltotal,k, the expected number of lifted vectors of length less
than or equal to Ltotal,k is given by

Ek =
N∑
i=1

p′
(√

L2
total,k − L2

proj,i , q, nq

)
.

We plot coordinates (Ltotal,k, Ek) and (Ltotal,k, k) as “Modelled number”
and “Experimental number” respectively in Figure 7, the latter of which
represents the number of lifts from our experiments which have length
less than or equal to Ltotal,k.

5.2 The Z-shape basis

To achieve the Z-shape of Section 3.1 is unfortunately not a matter of
simply applying lattice reduction to a basis BA. As described in [2,
Fig. 6] there is a phenomenon whereby, rather than Zone III consist-
ing of Gram–Schmidt vectors of length 1, a kink appears with vectors
of Gram–Schmidt norm strictly less than 1. These shorter than expected
Gram–Schmidt vectors introduce, in the log scale, negative terms to the
sum

∑
i log∥b∗

i ∥ = n log q. This in turn, due to the invariance of the sum,
means some log∥b∗

i ∥ must be greater, potentially leading to more q vec-
tors than expected. Having a larger Zone I means that on average more
length is added during the lifting process, lowering the efficacy of our at-
tack. To avoid this we take the number of indices we expect to be in Zone
III according to our model of Section 3.1 and perform no lattice reduction
on them. These indices are then unchanged, and since lattice reduction
preserves the real span of the vectors of Zone I and Zone II, their Gram–
Schmidt norms remain 1. We also perform slightly heavier progressive
BKZ in these experiments, denoted by the single pair (8, [3,∞)). With
the above, slightly artificial, alterations we are able to experimentally
achieve the number of q vectors expected by our model, see Table 1. In
Figure 8 we also plot the average profile of the same experiments against
the Z-shape profile expected by our model in Section 3.1.

Our modified BKZ reduction process is seemingly capable of produc-
ing bases with the expected number of q vectors, as predicted by our
model. However, the aforementioned kinks are still to some degree present
for β ∈ {20, 30, 40}. The accurate modelling of Z-shape bases remains an
open question. Nevertheless, we maintain that it would be unsatisfactory
to rely on the presence of such kinks in a basis profile for the practical
security of a cryptographic scheme.
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Fig. 7: For (n,m, q, β) = (120, 240, 257, 40) we check the distribution of
the length of the entire lifted vectors, following the description of the
second experiment in Section 5.1.

6 Application and practical cryptanalysis

6.1 Small q hash and sign signatures

In [16] a simple technique to reduce the bandwidth of hash and sign based
signatures such as Falcon [22] and Mitaka [15] was proposed: reduce the
size of the modulus q. Even though this technique is simple and effective,
care must be taken with regards to the choice of q, as the best attacks
are dependent on q. By framing Falcon and Mitaka as particular ISIS
instances, we propose a revision of the cryptanalysis of [16] with the
attack and optimisations introduced in Section 3 and Section 4.
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Fig. 8: For (n,m, q, β) = (120, 240, 257, 40) we run the altered progressive
BKZ-β reduction described in Section 5.2 and plot the profile expected
by our Z-shape model against the average of 60 experimental profiles.
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β E[X]
√

V[X] Section 3.1

5 41.4 2.2 45
10 31.6 1.7 33
20 19.4 1.4 22
30 13.9 1.4 15
40 9.8 1.5 12

Table 1: For (n,m, q, β) = (120, 240, 257, β) we run the altered progressive
BKZ-β reduction described in Section 5.2. After β′ ∈ {5, 10, 20, 30, 40} we
compute the average number of q vectors and the standard deviation of
this number over 60 experimental trials and denote these quantities as
E[X] and

√
V[X]. In the final column we give the number of q vectors

expected by the model of Section 3.1.

On hash and sign signatures as ISIS. We review the underlying
principles of hash and sign signatures such as Falcon and Mitaka. The
scheme involves two keys: the signing key, which acts as a trapdoor, and
enables one to solve the approximate closest vector problem via discrete
Gaussian sampling over the lattice, and the verification key H, which can
only verify whether a point belongs to the lattice.

We provide a high-level, but incomplete, description of the signing
process for both Falcon andMitaka. In both schemes, the public keyH can
be expressed as an integer matrix with specific structure. While we do not
delve into the details of the matrix construction, the security argument
crucially relies on the decisional NTRU assumption, which loosely states
that H can be viewed as a random matrix.7

Let m = 2n. The signing algorithm hashes a message to c ∈ Zn
q and

employs the signing key to sample s1, s2 ∈ Zn such that s1 + Hs2 =
c mod q, as described in [22, Sec. 3.9.1]. If we concatenate s1 and s2
to form s, the signature is valid if ∥s∥ ⩽ ν for some length bound ν.
This can be viewed as an ISISn,m,q,ν instance with added structure, where
A = (In |H). If we can differentiate this ISIS instance from a uniform
A, we can break the decisional NTRU assumption discussed earlier. Note
that if we express A = (A1 |A2), where A1 ∈ Zn×n

q and A1 ∈ Gln(Zq),
we can transform this ISIS instance into one that is semantically similar
to those implied by Falcon and Mitaka via A−1

1 A = (In |A−1
1 A2). With

this view of Falcon and Mitaka as ISIS instances, we can apply our attack.

7 Strictly speaking, the NTRU assumption only states that the number ring element
from which the matrix H can be reconstructed is indistinguishable from uniform.
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(n, q, ν, scheme) no otf otf [16, Tab. 2]

(SIS∗) ISIS (SIS∗) ISIS

(512, 257, 801, F) (95) 98 (90) 92 118

(512, 257, 1470, M) (8) 14 (8) 12 94

(512, 521, 1141, F) (113) 115 (110) 111 121

(512, 521, 2094, M) (55) 58 (51) 54 97

(512, 1031, 1606, F) (117) 119 (120) 121 122

(512, 1031, 2945, M) (81) 84 (78) 80 99

Table 2: Classical complexities of variants of our attack against signature
forgery on small q parameter sets for Falcon and Mitaka. Our n relates
to d in [16], we fix m = 2n, and F and M denote Falcon and Mitaka
respectively. We report two pairs of complexities, one without on the fly
lifting and one with, denoted “no otf” and “otf” respectively. In each
pair we report in order the cost of the SIS∗ attack and the cost of the
ISIS attack, accounting for the reduction loss factor of q/2 on success
probability. The former is given between parenthesis. The final column
is the suggested bit security of the parameter set in the CoreSVP model
according to [16, Tab. 2]. The lowest ISIS attack cost is in boldface in
each row.

Attack costs. In Table 2 when considering on the fly lifting we only
consider the faster sieve of [8], and recall that this optimisation was not
subject to experimental validation in Section 5. For the second entry of
each pair of estimated costs we incorporate the probability loss factor
into our script by assumpting each lift is short enough with probability
reduced by a factor q/2.

An overestimated loss. In the next paragraph we report on exper-
iments that mount the above attack. In these experiments we did not
multiply by the randomising scalar f in Lemma 1 for the reasons dis-
cussed below the lemma. The success probability of the attack appears to
be higher than even the heuristic 2/q we suggest. This can be explained
by the fact that vectors output by SIS∗ solvers are short, hence their
coordinates are biased toward smaller values such as 1 and −1.

We therefore reiterate our warning that the concrete results given
in this paper are only meant as a cautionary tale, and certainly not as
definitive cost estimates usable for claiming concrete security. Most likely
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our attack and its analysis can be further improved. This optimisation
effort is left to whoever dares venture into the low modulus ISIS regime.

Practical attack on Mitaka with small q. As seen in Table 2 the cost
of the attack on the small q variant of Mitaka with n = 512 and q = 257
appears very low, so low that not mounting the attack in practice would be
indefensible. Without on the fly lifting our script proposes as the optimal
attack a blocksize of 25 repeated 26.5 times. Due to various overheads,
one might prefer to choose a blocksize of 45 and repeat only once.

In practice, it is generally preferable to run BKZ with a smaller block-
size and run a final sieve on a projected sublattice of a larger rank to better
balance the cost of the two procedures. We chose (by trial and error) a
BKZ blocksize of 12 and a sieving rank of 60 and did not perform any
on the fly lifting techniques, rather we lifted every vector in our terminal
sieve database. We also restricted the sloped portion of the Z-shape on
which we ran lattice reduction to dimension 160 to avoid having to resort
to high precision floating point arithmetic in LLL.

We implemented this attack on ISIS with parameters derived from the
small q parameters forMitaka of [16]:m = 1024, n = 512, q = 257 and ν =
1470. This implementation is provided in the sage script attack.sage,
and relies on the libraries fpylll and g6k [26,27,3]. It ran successfully on
all 20 random instances we launched, each taking less than 15 seconds on
a single core (Intel(R) Core(TM) i7-4790 CPU, 3.60GHz).
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shevsky’s signature scheme. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology
– ASIACRYPT 2022. pp. 34–64. Springer Nature Switzerland, Cham (2022)

12. Ducas, L.: Shortest vector from lattice sieving: A few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820,
pp. 125–145. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/
978-3-319-78381-9_5

13. Ducas, L., Postlethwaite, E.W., Pulles, L.N., Woerden, W.v.: Hawk: Module lip
makes lattice signatures fast, compact and simple. In: Advances in Cryptology–
ASIACRYPT 2022: 28th International Conference on the Theory and Application
of Cryptology and Information Security, Taipei, Taiwan, December 5–9, 2022, Pro-
ceedings, Part IV. pp. 65–94. Springer (2023)

14. Ducas, L., van Woerden, W.P.J.: NTRU fatigue: How stretched is overstretched?
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol.
13093, pp. 3–32. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/

978-3-030-92068-5_1

15. Espitau, T., Fouque, P.A., Gérard, F., Rossi, M., Takahashi, A., Tibouchi, M.,
Wallet, A., Yu, Y.: Mitaka: A simpler, parallelizable, maskable variant of falcon.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS,
vol. 13277, pp. 222–253. Springer, Heidelberg (May / Jun 2022). https://doi.
org/10.1007/978-3-031-07082-2_9

16. Espitau, T., Tibouchi, M., Wallet, A., Yu, Y.: Shorter hash-and-sign lattice-based
signatures. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol.
13508, pp. 245–275. Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/
978-3-031-15979-4_9

17. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle at-
tack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 150–169. Springer, Heidelberg (Aug 2007). https://doi.org/10.1007/

978-3-540-74143-5_9

18. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982). https://doi.org/
10.1007/BF01457454, https://doi.org/10.1007/BF01457454

https://orcid.org/0000-0003-2510-4829
https://orcid.org/0000-0003-2984-1332
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/BF02579403
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig
http://www.theses.fr/2013PA077242
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-15979-4_9
https://doi.org/10.1007/978-3-031-15979-4_9
https://doi.org/10.1007/978-3-031-15979-4_9
https://doi.org/10.1007/978-3-031-15979-4_9
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454


Finding short integer solutions when the modulus is small 31

19. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehlé,
D., Bai, S.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of Stan-
dards and Technology (2022), available at https://csrc.nist.gov/Projects/

post-quantum-cryptography/selected-algorithms-2022

20. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM Journal on Computing 37(1), 267–302 (2007). https://doi.org/
10.1137/S0097539705447360, https://doi.org/10.1137/S0097539705447360

21. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. J. Mathematical Cryptology 2(2), 181–207 (2008). https://doi.org/
10.1515/JMC.2008.009, https://doi.org/10.1515/JMC.2008.009

22. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2022), available at https://csrc.nist.

gov/Projects/post-quantum-cryptography/selected-algorithms-2022

23. Rousseau, C.C., Ruehr, O.G.: Problems and solutions. SIAM Review 39(4),
761–789 (1997). https://doi.org/10.1137/SIREAD000039000004000761000001,
https://doi.org/10.1137/SIREAD000039000004000761000001

24. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical Programming 66(1), 181–199
(Aug 1994). https://doi.org/10.1007/BF01581144, https://doi.org/10.1007/
BF01581144

25. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. pp. 145–156. Springer Berlin Heidelberg,
Berlin, Heidelberg (2003)

26. development team, T.F.: fpylll, a Python wrapper for the fplll lattice reduction
library, Version: 0.5.9 (2023), https://github.com/fplll/fpylll, available at
https://github.com/fplll/fpylll

27. development team, T.G.: The general sieve kernel, Version: 0.1.2 (2023), https:
//github.com/fplll/g6k, available at https://github.com/fplll/g6k

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1137/SIREAD000039000004000761000001
https://doi.org/10.1137/SIREAD000039000004000761000001
https://doi.org/10.1137/SIREAD000039000004000761000001
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://github.com/fplll/fpylll
https://github.com/fplll/fpylll
https://github.com/fplll/g6k
https://github.com/fplll/g6k
https://github.com/fplll/g6k

	Finding short integer solutions when the modulus is small

