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Abstract

Column Parity Mixers, or CPMs in short, are a particular type of
linear maps, used as the mixing layer in permutation-based crypto-
graphic primitives like Keccak-f (SHA3) and Xoodoo. Although
being successfully applied, not much is known regarding their alge-
braic properties. They are limited to invertibility of CCPMs, and that
the set of invertible CCPMs forms a group. A possible explanation is
due to the complexity of describing CPMs in terms of linear algebra.
In this paper, we introduce a new approach to studying CPMs using mod-
ule theory from commutative algebra. We show that many interesting
algebraic properties can be deduced using this approach, and that known
results regarding CPMs turn out to be trivial consequences of module
theoretic concepts. We also show how this approach can be used to study
the linear layer of Xoodoo, and other linear maps with a similar struc-
ture which we call DCD-compositions. Using this approach, we prove that
every DCD-composition where the underlying vector space with the same
dimension as that ofXoodoo has a low order. This provides a solid math-
ematical explanation for the low order of the linear layer of Xoodoo,
which equals 32. We design a DCD-composition using this module-
theoretic approach, but with a higher order using a different dimension.

Keywords: Column parity mixers, Module theory, Local rings, Linear
algebra, Circulant matrices
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1 Introduction

Column parity mixers [3], or CPMs for short, are a particular type of linear
maps which are a generalization of the θ mixing layers in the cryptographic
permutations Xoodoo [1] and Keccak-f [2]. They provide a good trade-off
between implementation cost and mixing power, making them well suited for
lightweight cryptography.

A formal approach in studying CPMs as a stand alone topic is done in [3],
where CPMs were formulated as linear maps between spaces of matrices. Each
CPM θ, viewed as an endomorphism of the ring of m×n-matrices, is uniquely
determined by an n × n-matrix called the parity folding matrix of θ. There
has been some emphasis on studying CPMs where its parity folding matrix
belongs to the class of circulant matrices (see [4] for more details about circu-
lant matrices). These CPMs are called circulant CPMs which we abbreviate
by CCPMs. Due to the symmetric properties of circulant matrices, CCPMs
have a good worst-case behaviour for the purpose of mixing bits. The θ mixing
layers of Xoodoo and Keccak-f are examples of CCPMs.

In [3], a criterion was provided to determine the invertibility of a CCPM by
studying the corresponding parity folding matrix. It was also shown that the
set of invertible CCPMs forms a group. This is everything that is known so far
about the algebraic properties of CCPMs. A reason might be the complexity
of describing CCPMs in terms of linear algebra, which at first glance might
indicate that no strong conclusions can be drawn regarding their algebraic
structure. It turns out that viewing CCPMs as R-module homomorphisms,
where R is the ring of circulant matrices, is very effective in studying CCPMs.
As a result, many interesting properties can be extracted with this approach,
and some known results like the invertibility criterion resurfaced as trivial
concepts from module theory.

The order of the linear layer in the round function of a cryptographic
primitive is relevant in the resistance against invariant subspace attacks, where
low order indicates a potential weakness [5]. The linear layer of Xoodoo is
a composition of a circulant bit permutation, a CCPM and another circulant
bit permutation, and it was numerically determined that the linear layer has
an order of only 32. A mathematical explanation for this low order however
remained absent. As it turns out, such an explanation can be found by using
the module theoretic approach which we used for studying CCPMs. It would
be interesting to know if we can find variants of the linear layer of Xoodoo
with a higher order, by means of finding new compositions, and/or by changing
the dimensions of the state of the permutations.

Outline

In Section 2, we present a mathematical framework based on commutative
algebra as a foundation to studying column parity mixers, which includes
module theory and localization of rings.
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In Section 3, we introduce circulant rings, which are a generalization of
the ring of circulant matrices. We provide a full classification of local circulant
rings, as well the corresponding algebraic properties. Moreover, we give a geo-
metric interpretation of circulant rings by considering free modules over these
type of rings.

In Section 4, we introduce a generalization of CPMs where we define them
as R-linear maps of free R-modules, where R is a commutative ring with unity.
We exploit the algebraic properties of R to gain a deeper understanding of the
algebraic structure of CPMs. These include a full description of the eigenspaces
of a CPM viewed as an R-module homomorphism, and the order of a CPM.

In Section 5, we show that the linear layer of Xoodoo can be interpreted
as an R4,32-linear map of the free 3-dimensional R4,32-module R3

4,32, where
R4,32 is a local circulant ring. We introduce DCD-compositions, which are
compositions with a similar structure to that of the linear layer of Xoodoo.
We use the results of Sections 3 and 4 to construct DCD-compositions with a
higher order.

Contributions

The main contributions of this paper are the results presented in Sections 3, 4
and 5. These results combined provide a new point of view to CCPMs, which
is much more fruitful from an algebraic point of view compared to the original
definition .

Notation

The cardinality of a set S is denoted as #S. The set of all positive integers
strictly greater than 0 is denoted as Z>0.

Given a commutative ring R with unity, we denote the multiplicative
group of invertible elements of R by R∗. We refer to Spec(R) as the set
of all proper prime ideals, and MaxSpec(R) as the set of all maximal
ideals of R. Given an ideal a in R, the radical of a is denoted by r(a).

The ring- or set of all m × m-matrices over ring R is denoted by
Mm(R). The multiplicative group of m × m-invertible matrices over
a ring R is denoted by GLm(R). Moreover, SLm(R) is the set of matrices
M ∈ GLm(R) where det(A) = 1R. For a matrix A ∈ Mm(R), we say that
Aij is the entry in the i-th row and j-th column. Here we use to the
convention that the indexing of coordinates runs from 0 to m − 1, hence
0 ≤ i, j ≤ m − 1. We refer to Im as the identity matrix, and 0m×m as the
zero matrix in Mm(R).

For F a field, we denote Fn as the n-dimensional vector space over F. Its
vectors are considered as column (vertical) vectors, unless stated otherwise.
We index the coordinates of a (column) vector v ∈ Fn from 0 to n − 1.
Naturally, for 0 ≤ i ≤ n − 1, vi is the i-th coordinate of v. We denote the
transpose of v by vT. If for example v is a row vector, vT is a column vector.
We refer to ey as the y-th standard unit vector of Fn where 0 ≤ y ≤ n−1.
The zero vector is defined as 0n.
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Tor(G) is the torsion subgroup of a group G, i.e. the elements in G with
finite order. For f in some finite group G, we denote the order of f by ord(f).
When G = (Z/mZ)∗, we denote the multiplicative order of g ∈ (Z/mZ)∗
as ordm(g). Moreover, gcd and lcm represent the greatest common divisor
and the least common multiple respectively.

2 Algebraic Framework

This section contains a brief summary of the required algebraic prerequisites
for our research. We heavily rely on concepts from commutative algebra. See
[6], [7] and [8] for a more detailed treatment of these topics.

2.1 Local Rings and Localization

An important class of rings in commutative algebra are local rings. A ring R is
called local if it has a unique maximal ideal, which we denote by m. The field
F := R/m is defined as the residue field of R. We have the natural quotient
map

qR : R → R/m ∼= F, r 7→ r mod m. (1)

To ease notation, we denote qR(r) = r mod m as r. For local rings, it is known
that r ∈ R is invertible if and only if r /∈ m.

Local rings have been well studied in commutative algebra, resulting into
many interesting properties. For example, finitely generated modules over a
local ring are closely related to vector spaces over fields due to Nakayama’s
Lemma [6]. We utilize these properties to non-local commutative rings by
applying a technique called localization, which is a technique where given
a non-local ring R and for a chosen p ∈ Spec(R), one can construct a local
ring Rp where its maximal ideal is denoted by p ·Rp. Intuitively, we make all
elements in R outside p invertible. Details about this construction can be found
in [6]. For now, it suffices to know that we have a natural ring homomorphism

lp : R → Rp, r 7→ r

1R
.

More about local rings and localization can be found in many books treating
commutative algebra, like [7] and [6].

2.2 Modules and Linear Algebra

Modules can be considered as a generalization of vector spaces. In its most
general form, it is defined as follows:

Definition 1 ([6]) Let R be a ring. An R-module consists of the pair (V, µ) where
V is a commutative group and µ is a mapping of R× V to V such that, if we write
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ax for µ(a, x) where a ∈ R and x ∈ V , the following properties are satisfied:

r(x+ y) = rx+ ry

(r1 + r2)x = r1x+ r2x

(r1r2)x = r1(r2x)

1x = x (r, r1, r2 ∈ R and x, y ∈ V ).

Remark 1 A trivial but important example of an R-module is the ring R itself,
considered as a commutative group under addition, and where µ : R×R → R is the
multiplication map.

Definition 2 An R-submodule V ′ of V is a subgroup of V such that r · v′ ∈ V ′

for all r ∈ R and v′ ∈ V ′.

Example 1 Let a be an ideal of R and define

aV :=

{
t∑

i=0

ai · vi | ai ∈ a, vi ∈ V, t ∈ Z>0

}
,

which in words means that aV consists of finite sums of terms of the form a ·v where
a ∈ a and v ∈ V . Unless V = {0}, we have that aV is in many cases a proper R-
submodule of V . Nakayama’s Lemma [6] is very useful in studying these types of
submodules.

We are mainly interested in free modules of finite rank. An R-module V
if called free of rank m if there exist elements e0, ..., em−1 ∈ V such that every
element v ∈ V is uniquely expressed as

v =

m−1∑
i=0

ri · ei ri ∈ R. (2)

In algebraic terms, a free module V of rank m is of the form V =
⊕m−1

i=0 R,
which we also denote as Rm. We call {e0, ..., em−1} an R-basis of V . By
fixing a basis, every element v ∈ V is represented by the column vector v =
(r0, ..., rm−1)

T, where addition is defined coordinate-wise.

2.3 Endomorphisms

Free modules have a lot in common with vector spaces. Not only because of
the unique representation of elements as in (2), but also in terms of linear
transformations.

Definition 3 Let V1 and V2 be R-modules. Then an R-linear map from V1 to V2
is a map θ : V1 → V2 such that for all a, b ∈ V1 and r ∈ R, we have

θ(a+ b) = θ(a) + θ(b)
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θ(ra) = rθ(a).

When θ is bijective, we say that θ is an R-isomorphism. In the special case when
V1 = V2 = V , we say that θ is an R-endomorphism of V , and we denote the set of
all these endomorphism by EndR(V ).

When considering a free R-module V ∼= Rm, every R-endomorphism is
uniquely represented by an m×m-matrix with entries in R and vice versa by
applying the conventional matrix multiplication. In particular,

EndR(R
m) ∼= Mm(R).

For matrices A,B ∈ Mm(R), we have for the determinant that

det(A ·B) = det(A) · det(B).

Invertibility of a matrix in Mm(R) can be determined by the determinant.

Proposition 1 Let A ∈ Mm(R). Then A is invertible if and only if det(A) is
invertible in R.

Lemma 2 Let A ∈ Tor(GLm(R)). Then ord(det(A)) | ord(A).

The notions of eigenvectors and eigenvalues remain very similar as in linear
algebra: v ∈ V is an eigenvector of θ if there exists λ ∈ R such that θ(v) =
λ · v. λ is called the eigenvalue of v under θ. The concept of an eigenbasis is
also very similar: θ has an eigenbasis if there exists a basis of V consisting of
eigenvectors of θ.

2.4 Induced Homomorphisms and Eigenvectors

Let R and S be commutative rings with unity, and let φ : R → S be a ring
homomorphism. In particular, φ induces on S a natural R-homomorphism
where we define r · s := φ(r) · s for all r ∈ R and s ∈ S. Hence φ is also an
R-module homomorphism. This naturally extends to an R-linear map of free
modules, which we also denote by φ:

φ : Rm → Sm, (r0, ..., rm−1) 7→ (φ(r0), ..., φ(rm−1)).

φ also induces the (ring)-homomorphism of matrices

φ : Mm(R) → Mm(S), A = (Aij)0≤i,j≤m−1 7→ φ(A) := (φ(Aij))0≤i,j≤m−1.
(3)
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The homomorphism of matrices can be interpreted in terms of endomorphisms,
meaning that φ naturally induces a map

φ : EndR(R
m) → EndS(S

m), θ 7→ φ(θ),

satisfying the commutative diagram:

Rm Rm

Sm Sm

θ

φ φ

φ(θ)

.

For θ ∈ EndR(R
m), we denote φ(θ) the induced S-endomorphism induced

by φ. Induced endomorphisms behave well with respect to eigenvectors.

Lemma 3 Let v ∈ Rm be an eigenvector of θ ∈ EndR(Rm) with eigenvalue λ. Then
φ(v) is an eigenvector of φ(θ) ∈ EndS(S

m) with eigenvalue φ(λ).

Proof By commutativity of the above diagram, we get

φ(θ)(φ(v)) = φ(θ(v)) = φ(λ · v) = φ(λ) · φ(v),

which concludes the proof. □

If θ admits an eigenbasis in Rm, it is not always the case that φ(θ) also
admits an eigenbasis in Sm. In this paper however, we only consider two types
of induced homomorphisms which do preserve the eigenbases.

2.4.1 Type I: Quotient Map of Local Rings

Definition 4 For R a local ring with the quotient map qR : R → R/m ∼= F, we have
the isomorphism V/mV ∼= Fm, where V = Rm. For θ ∈ EndR(V ), we denote the
induced F-endomorphism by θ ∈ EndF(V/mV ).

The induced endomorphism θ satisfies the following commutative diagram:

Rm Rm

Fm Fm

θ

qR qR

θ

.

Proposition 4 Let R be a local ring, and assume that θ ∈ Mm(R) has an eigenbasis.
Then θ has an eigenbasis over F in V/mV .

Proposition 5 (Nakayama’s Lemma over local rings) Let R be a local ring,
and let V be a finitely generated R-module. Then any set of generators of V over R
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naturally induces a generating set of the F-vector space V/mV . Conversely, any set
of generators of V over R is induced by a unique basis of V/mV .

Proof This is a direct consequence of applying local rings to Nakayama’s Lemma [6],
which is a well-known result in commutative algebra. □

Lemma 6 Let R be a local ring with maximal ideal m and residue field F, let V = Rm

and let v ∈ V \mV be an eigenvector of θ ∈ Mm(R). Then v is a non-zero eigenvector
of θ with eigenvalue λ ∈ F.

Proof Since v /∈ mV , we have that v is non-zero in V/mV . The rest is an immediate
consequence of Lemma 3. □

Proof (Proposition 4) This is a direct consequence of Lemmas 5 and 6. □

2.4.2 Type II: Localization Map

Definition 5 Let R be any commutative ring and let V = Rm. For p ∈ Spec(R),
we define the localized free Rp-module Rm

p by Vp, where the ring homomorphism
lp : R → Rp induces the R-module homomorphism lp : V → Vp. For θ ∈ EndR(V ),
we denote the induced Rp-endomorphism by θp ∈ EndRp

(Vp).

The induced endomorphism θp satisfies the following commutative diagram:

Rm Rm

Rm
p Rm

p

θ

lp lp

θp

.

Proposition 7 Assume that θ ∈ Mm(R) has an eigenbasis, then θp has an
eigenbasis.

Lemma 8 Let p ∈ Spec(R), and let BV := {v0, ..., vm−1} ⊂ V a basis of V , then

BVp
:=
{

v0
1R

, ...,
vm−1

1R

}
is a basis of Vp.

Proof Let vp =
(
a0
b0

, ...,
am−1

bm−1

)
∈ Vp. Define b̂ :=

∏m−1
i=0 bi and b̂j :=∏

0≤i≤m−1,i̸=j bi, which are elements in R \ p since this set is multiplicative set.
Observe that

b̂ · vp =

(
b̂0 · a0
1R

, ...,
b̂m−1 · am−1

1R

)
,
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which in contained in the image of lp. Hence there exist r0, ..., rm−1 ∈ R such that

b̂ · vp =
∑m−1

i=0 ri ·
(

vi
1R

)
, which implies that

vp :=

m−1∑
i=0

ri

b̂
·
(

vi
1R

)
.

Hence BVp
is a generating set of Vp. Since BVp

has m elements, and Vp has dimension
m as a free Rp-module, we conclude that BVp

is a basis of Vp. □

Proof (Proposition 7) By Lemma 3, if v ∈ V is an eigenvector of θ ∈ EndR(V ) with
eigenvalue λ, then lp(v) is an eigenvector of θp with eigenvalue lp(λ) = λ

1R
. The

claim follows directly from the above lemma. □

2.5 Useful Matrix Identities

We show some matrix identities which are useful for studying column parity
mixers. These identities are valid for all commutative rings R with unity.

Definition 6 Let a = (a0, ..., am−1)
T ∈ Rm be an m-tuple viewed as a column

vector. We define the column matrix of a as the m×m-matrix

col(a) =


a0 a0 · · · a0
a1 a1 · · · a1
...

...
...

...
am−1 am−1 · · · am−1

 ∈ Mm(R).

Lemma 9 Consider the vector b = (b0, ..., bm−1)
T ∈ Rm, then

col(a) · b =

(
m−1∑
i=0

bi

)
· a.

Proof This is a matter of simple verification of matrix multiplication. □

Corollary 10 Let a, b ∈ Rm, then

col(a) · col(b) =

(
m−1∑
i=0

bi

)
· col(a).

Proposition 11 Let a ∈ Rm. Then for any t ∈ Z>0, we have that

col(a)t =

(
m−1∑
i=0

ai

)t−1

· col(a).
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Proof We use induction on t. Let t = 1, then(
m−1∑
i=0

ai

)t−1

· col(a) =

(
m−1∑
i=0

ai

)0

· col(a) = 1R · col(a) = col(a)1,

which concludes the first induction step.
Now assume our claim is true for t = k for some k > 1. For t = k + 1, we get

col(a)k+1 = col(a)k · col(a)

=

(
m−1∑
i=0

ai

)k−1

· col(a)2

=

(
m−1∑
i=0

ai

)k−1

·

(
m−1∑
i=0

ai

)
· col(a)

=

(
m−1∑
i=0

ai

)k

· col(a),

where the second equality is due to the induction hypothesis, and the third equality
due to Lemma 9. This concludes the induction hypothesis, and thus the proof. □

3 Circulant Rings

We introduce circulant rings, which are defined as follows:

Definition 7 Circulant rings are commutative rings of the form

Rm1,...,mn := F2[X1, ..., Xn]/⟨Xm1
1 − 1, ..., Xmn

n − 1⟩.
We denote the set of monomials of Rm1,...,mn as

Mm1,...,mn :=

{
n∏

i=1

Xqi
i | 0 ≤ qi ≤ mi − 1

}

In this section, we start by introducing an important class of modules over
circulant rings, followed by an algebraic analysis of local circulant rings. To
ease notation, we define the ideals

am1,...,mn := ⟨Xm1
1 − 1, ..., Xmn

n − 1⟩,
mn := a1,...,1 := ⟨X1 − 1, ..., Xn − 1⟩,

both being ideals of F2[X1, ..., Xn], and where mn is a maximal ideal.

3.1 Circulant Modules: A Geometric Interpretation

Consider the vector space

Vm1,...,mn
:=

n⊗
i=1

Fmi
2 .
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We define the standard basis of Vm as

Bm1,...,mn := {⊗n
i=1eji | 0 ≤ ji ≤ mi − 1} .

There is a natural Rm1,...,mn-module on the vector space Vm1,...,mn . To see
this, consider the map:

µ∗ : Mm1,...,mn
×Bm1,...,mn

→ Bm1,...,mn(
n∏

i=1

Xqi
i ,⊗n

i=1eji

)
7→ ⊗n

i=1eji−qi mod mi
,

for all 0 ≤ ji ≤ mi − 1, which F2-linearly extends to the map

µ : Rm1,...,mn × Vm1,...,mn → Vm1,...,mn .

Note that Vm1,...,mn
is an Rm1,...,mn

-module under µ.

Definition 8 The natural Rm1,...,mn -action on V ω
m1,...,mn

for some ω ∈ Z>0 induced
by µ is called the circulant module of rank ω.

Proposition 12 A circulant module of rank ω is a free Rm1,...,mn -module of rank ω.

Proof It suffices to show this for circulant modules of rank 1. Consider the following
natural 1-to-1 mapping ϑ : Bm1,...,mn → Mm1,...,mn such that

ϑ∗ : Bm1,...,mn → Mm1,...,mn : ⊗n
i=1eji 7→

n∏
i=1

Xji
i ,

which linearly extends to the bijective map

ϑ : Vm1,...,mn → Rm1,...,mn .

This map can be easily verified to be a Rm1,...,mn -linear map, hence we have con-
structed a natural Rm1,...,mn -isomorphism. □

Remark 2 From the above proposition, we have the commutative diagram

Rm1,...,mn × Vm1,...,mn Vm1,...,mn

Rm1,...,mn ×Rm1,...,mn Rm1,...,mn

µ

id×ϑ ϑ

·

,

where the dot in the lower row is the natural product operation of the ring Rm1,...,mn .
The vertical maps are one-to-one correspondences, which implies that the circu-
lant Rm1,...,mn -module Vm1,...,mn is indeed free of rank one, with corresponding
Rm1,...,mn -module isomorphism ϑ.
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Example 2 Consider the ring Rm = F2[X]/⟨Xm − 1⟩. The Rm-module on Fm2 is
equivalent to the action of m-dimensional circulant matrices over F2.

Example 3 Consider the ring R4,32. An interesting case is the free module action

of R4,32 over (F4
2 ⊗ F322 )3. By Proposition 12, this module is isomorphic to the free

module R3
4,32, which is in particular useful for studying the linear layer of Xoodoo

which will be covered later in this paper.

3.2 Classification of Local Circulant Rings

We prove that a circulant ring Rm1,...,mn
is a local ring if and only if mi is a

power of 2 for all 1 ≤ i ≤ m.

Lemma 13 mn is the unique maximal ideal containing the ideal a2l1 ,...,2ln , where
l1, ..., ln ∈ Z≥0.

Proof Since F2[X1, ..., Xn] has characteristic 2, we have that

X2li − 1 = (X − 1)2
li
, (4)

for each 1 ≤ i ≤ n, which immediately implies that a2l1 ,...,2ln ⊆ mn. Note that
(4) also implies that mn is contained in the radical of a2l1 ,...,2ln , which in turn
implies that mn = r(a2l1 ,...,2ln ). Since every maximal ideal containing a2l1 ,...,2ln
must contain r(a2l1 ,...,2ln ), it must also contain mn. But mn is already maximal,
hence uniqueness is proven. □

Theorem 14 A circulant ring Rm1,...,mn is a local ring if and only if mi is a power
of 2 for all 1 ≤ i ≤ m.

Proof ” ⇐ ” - Assume that mi is of the form 2li , where li ∈ Z≥0 for all 1 ≤ i ≤ n.
Since mn is the unique maximal ideal containing a2l1 ,...,2ln by the above lemma, we
have that mn must be the unique maximal in R2l1 ,...,2ln as shown in [7]. This shows
that R2l1 ,...,2ln is local.

” ⇒ ” - Assume that there exists mj for some 1 ≤ j ≤ n such that mj is not
a power of 2. We may assume without loss of generality that m1 is not a power of
2. Consider the ideal m′ := ⟨Φm1(X1), X2 − 1, ..., Xn − 1⟩ where Φm1 is the m1-th
cyclotomic polynomial. Note that Φm1 has degree larger than 1, since m1 is not a
power of 2. By the third isomorphism theorem for rings, we get

Rm1,...,mn/m
′ = (F2[X1, ..., Xn]/am1,...,mn)/(m

′/am1,...,mn)

∼= F2[X1, ..., Xn]/m
′ ∼= F2[X1]/Φm1(X1).

Since Φm1 is irreducible in F2[X], we have that F2[X1]/Φm1(X1) is a field isomorphic

to GF(2deg(Φm1 )). Hence m′ is a maximal ideal of Rm1,...,mn which is not equal to
mn, thus Rm1,...,mn is not a local ring. This concludes the proof. □
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Note 15 For the remainder of this section, we denote mn simply by mn, which will
not cause confusion due to uniqueness of mn.

Lemma 16 The residue field of a local circulant ring R is isomorphic to F2, with
quotient map

qR : R → F2, f 7→ f(1n).

Proof By the third isomorphism theorem for rings, we get

R2l1 ,...,2ln /mn = (F2[X1, ..., Xn]/a2l1 ,...,2ln )/(mn/a2l1 ,...,2ln )

∼= F2[X1, ..., Xn]/mn ∼= F2,
where by construction the last isomorphism is indeed the map f 7→ f(1n). □

Remark 3 For f ∈ R, we denote qR(f) by f .

Corollary 17 For R a local circulant ring, we have that f ∈ R is invertible if and
only if f(1n) ̸= 0.

Proof Since R is a local ring, we have that f is invertible if and only if f /∈ mn. This
is indeed equivalent to f(1n) ̸= 0 by the above lemma. □

Corollary 18 For R a local circulant ring, we have that f ∈ R is invertible if and
only if f contains an odd number of terms.

Proof By the above corollary, we conclude that every term is invertible. If f has t
terms, then f(1n) ≡ t mod 2 which is not equal to 0 if and only if t is odd. This
concludes the proof. □

3.3 General Linear Group over Local Circulant Rings

Let R := R2l1 ,...,2ln be a local circulant ring, and consider qR as in Lemma 16.
This map can be extended to the map of m×m-matrices

qm,R : Mm(R) → Mm(F2), A := (Aij)0≤i,j≤m−1 7→ (Aij)0≤i,j≤m−1.

Remark 4 Just as for the case of qR, for A ∈ Mm(F2), we denote qm,R(A) by A.

Observe that det(A) = det(A), since the expression of the determinant
consists of finite sums of finite products of entries of A, which split under qR.
This implies that qm,R maps GLm(R) to GLm(F2). Moreover, we have that
the preimage of GLm(F2) under qm,R is exactly GLm(R), as a result from the
following lemma:
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Lemma 19 Let A ∈ Mm(R). Then A ∈ GLm(R) if and only if A ∈ GLm(F2).

Proof Due to locality of R, we have the following equivalent statements:

A ∈ GLm(R) ⇔ det(A) ∈ R∗ ⇔ det(A) /∈ mn ⇔ det(A) ∈ F∗2 ⇔ A ∈ GLm(F2).
□

The above lemma implies that qm,R |GLm(R): GLm(R) → GLm(F2) is a
surjective group homomorphism. Let us denote qm,R |GLm(R) by q∗m,R. From
Lemma 19, we conclude that

ker(q∗m,R) = {Im +A : A ∈ Mm(mn)}.

This implies that

#ker(q∗m,R) = #Mm(mn) = (#mn)
m2

=
(
2(

∏n
i=1 2li )−1

)m2

, (5)

which in particular means that the order of the group ker(q∗m,R) is a power of
2. By Lagrange’s theorem, the order of an element Im +A ∈ ker(q∗m,R), where

A ∈ Mm(mn), is of the form 2λ where λ ∈ Z≥0. Note that

(Im +A)2
λ

= Im +A2λ ,

by the binomial theorem of Newton, and since R is of characteristic 2. Hence

ord(Im +A) is the smallest number of the form 2λ such that A2λ = 0m×m. In
particular, A is a nilpotent matrix.

Lemma 20 Let A ∈ Mm(mn) and define l = max(li : 1 ≤ i ≤ n). Then we have

An·2l = 0m×m.

Proof In this proof, we use Zn
≥0 as an index set, and we let ei be the i-th unit vector

in Zn
≥0 where 0 ≤ i ≤ n− 1.
By assumption of the lemma, there exist matrices Aei ∈ Mm(R) such that

A =

n∑
i=1

(Xi − 1) ·Aei . (6)

From this, we can construct matrices Aj1e1+···+jnen ∈ Mm(R) such that

A2 =
∑

0≤j1,...,jn≤2
j1+···+jn=2

Aj1e1+···+jnen ·
n∏

i=1

(Xi − 1)ji , (7)

where

Aj1e1+···+jnen =
∑

0≤j1,...,jn≤2
j1+···+jn=2

Aji
ei .
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Note that the matrices Aei satisfying (6) are not unique. For the proof, it suffices to
only knowing its existence.

By inductively applying this reasoning, one can show that for all k ∈ Z>0, there
exists a family of matrices Aj1e1+···+jnen ∈ Mm(R) where j1+ · · ·+jn = k such that

Ak =
∑

0≤j1,...,jn≤k
j1+···+jn=k

Aj1e1+···+jnen ·
n∏

i=1

(Xi − 1)ji . (8)

When k ≥ n·2l, we must have that ji ≥ 2li for some i, which implies that
∏n

i=1(Xi−
1)ji ∈ mn for all j1, ..., jn satisfying j1+· · ·+jn = k. Hence we have An·2l = 0m×m ∈
Mm(R) by applying Equation (8), which concludes the proof. □

Corollary 21 For A ∈ ker(q∗m,R), we have that ord(A) | 2l+⌈log2(n)⌉.

Proof Every element A ∈ ker(q∗m,R) is of the form Im + B, where B ∈ Mm(mn).
Observe that

2l+⌈log2(n)⌉ = 2⌈log2(n)⌉ · 2l ≥ n · 2l.
From this identity together with the above lemma, we have

A2l+⌈log2(n)⌉
= (Im +B)2

l+⌈log2(n)⌉
= I2

l+⌈log2(n)⌉

m +B2l+⌈log2(n)⌉
= Im + 0m×m

= Im,

which concludes the proof. □

4 Column Parity Mixers

We introduce a new definition of CPMs which can be viewed as a generalization
of the ones defined in [3].

Definition 9 Let R be a commutative ring with unity. A column parity mixer
θz (or CPM for short) over R of dimension m where z = (z0, ..., zm−1)

T ∈ Rm, is an
R-endomorphism over Rm represented by the matrix

θz = Im + col(z) =


1R + z0 z0 z0 · · · z0

z1 1R + z1 z1 · · · z1
z2 z2 1R + z2 · · · z2
...

...
...

. . .
...

zm−1 zm−1 zm−1 · · · 1R + zm−1

 .

We say that z is the parity-folding matrix array, and z0, ..., zm−1 are the parity-
folding matrices of θz . The set of all CPMs over R of dimension m is denoted by
CPMm(R).

A CPM over a circulant ring R is called a circulant column parity mixer, or
CCPM for short.

Remark 5 The above definition of CPMs is a generalization of the ones defined in [3]
since it allows multiple parity-folding matrices. In the special case where z0 = z1 =
· · · = zm−1, we obtain the original definition of CPMs with only one parity folding
matrix.
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4.1 Characteristic Polynomial and Determinant

In this subsection, we give an expression of the characteristic polynomial and
the determinant of a CPM in terms of its parity-folding matrices. We assume
for the remainder of this subsection that θz ∈ CPMm(R) for some m ∈ Z>0

and commutative ring R.

Theorem 22 The characteristic polynomial pθz (λ) of θz is

pθz (λ) =

((
1R +

m−1∑
i=0

zi

)
− λ

)
· (1R − λ)m−1. (9)

Proof By definition, pθz (λ) := det(θz − λ · Im). To compute the determinant of
θz −λ · Im, we use the property that adding up rows (or columns) to other rows (or
columns) will not affect the determinant. By adding the first column vector to all
the other column vectors of θz , followed by adding up all the row vectors from the
second till the last row vector to the first row vector, we get

det(θz − λ · Im) =

∣∣∣∣∣∣∣∣∣∣∣

1R + z0 − λ z0 z0 · · · z0
z1 1R + z1 − λ z1 · · · z1
z2 z2 1R + z2 − λ · · · z2
...

...
...

. . .
...

zm−1 zm−1 zm−1 · · · 1R + zm−1 − λ

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1R + z0 − λ λ− 1R λ− 1R · · · λ− 1R
z1 1R − λ 0 · · · 0
z2 0 1R − λ · · · 0
...

...
...

. . .
...

zm−1 0 0 · · · 1R − λ

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

1R +
(∑m−1

i=0 zi

)
− λ 0 0 · · · 0

z1 1R − λ 0 · · · 0
z2 0 1R − λ · · · 0
...

...
...

. . .
...

zm−1 0 0 · · · 1R − λ

∣∣∣∣∣∣∣∣∣∣∣∣
.

Denote the last matrix by A and denote A(i,j) as the m − 1 × m − 1-matrix by
removing the i-th row and the j-th column of A. Then

det(θz − λ · Im) = det(A)

=

m−1∑
j=0

(−1)j ·A0,j · det(A(0,j))

= A0,0 · det(A(0.0)) +

m−1∑
j=1

(−1)j ·A0,j · det(A(0,j))

= A0,0 · det(A(0.0)), (10)
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where the last equation holds because A0,j = 0 for j > 0. Observe that A0,0 =(
1R +

∑m−1
i=0 zi

)
− λ and A(0,0) = (1R − λ) · Im−1, the latter implying that

det(A(0,0)) = (1R − λ)m−1. Substituting these values in (10), we obtain

det(θz − λ · Im) = A0,0 · det(A(0.0)) =

((
1R +

m−1∑
i=0

zi

)
− λ

)
· (1R − λ)m−1,

which concludes the proof. □

Corollary 23 The determinant of θz equals

det(θz) = 1R +

m−1∑
i=0

zi.

Proof The determinant equals the constant term of the characteristic polynomial of
θz , which from Equation (9) equals 1R +

∑m−1
i=0 zi. □

Note 24 By the above corollary, pθz (λ) can be expressed as

pθz (λ) = (det(θz)− λ) · (1R − λ)m−1. (11)

We will use this expression for the remainder of this paper.

4.2 Eigenvectors and Eigenspaces

Lemma 25 Define

E1 :=

{
v = (v0, ..., vm−1)

T :

m−1∑
i=0

vi = 0

}
.

Then all elements in E1 have eigenvalue 1R, and E1 is a free R-module of rank m−1.

Proof Observe that for all v ∈ E1, we have

θz(v) = (Im + col(z)) · v = v +

(
m−1∑
i=0

vi

)
· z = v + 0 · v = v,

which proves that all elements in E1 have eigenvalue 1R. Observe that E1 has m− 1
degrees of freedom, since every m− 1-tuple of elements in R uniquely determines an
element in E1. Hence E1 is a free R-module of rank m− 1. □

Lemma 26 The vector z = (z0, ..., zm−1)
T ∈ V is an eigenvector of θz with

eigenvalue det(θz).
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Proof Observe that

θz(z) = (Im + col(z)) · z = z + col(z) · z = z +

(
m−1∑
i=0

zi

)
· z =

(
1R +

m−1∑
i=0

zi

)
· z

= det(θz) · z,

which finishes the proof. □

Lemma 27 Assume that det(θz)− 1R is invertible in R, and define

E2 = {r · z : r ∈ R} .

Then E2 is a free R-submodule of rank 1, and E1 ∩ E2 = {0}.

Proof Observe that for all r1, r2 ∈ R such that (r1 − r2) · z = 0m, we have that

(r1 − r2) ·
(∑m−1

i=0 zi

)
= 0. Since

∑m−1
i=0 zi = det(θz) − 1R is invertible, it must be

true that r1 = r2. This shows that E2 is a free R-submodule of rank 1.
Let x ∈ E2, then there exists rx ∈ R such that x = rx · z ∈ E2. Note that

x = rx · z ∈ E1 ⇐⇒
m−1∑
i=0

rx · zi := rx ·

(
m−1∑
i=0

zi

)
:= rx · (det(θz)− 1R) = 0. (12)

Since by our assumption det(θz)− 1R is invertible in R, Equation (12) holds if and
only if rx = 0, which implies that x ∈ E1 if and only if x = 0. This implies that
E1 ∩ E2 = {0}, which concludes the proof. □

Proposition 28 Assume that det(θz)−1R is invertible in R, then V is a direct sum
of eigenspaces E1 and E2 of θz with eigenvalues 1R and det(θz) respectively.

Proof This is immediate from Lemmas 25, 26 and 27. □

Theorem 29 Assume that det(θz)− 1R is not invertible, then θz does not have an
eigenbasis.

Proof Since det(θz) − 1R is not invertible in R, there exists a maximal ideal m ∈
MaxSpec(R) such that det(θz)− 1R ∈ m. In particular, det(θz) ≡ 1R mod m.

Assume to the contrary that θz has an eigenbasis. Then by Proposition 7, the
induced Rm-endomorphism

(θz)m : Vm → Vm,

also has an eigenbasis.
Define the field Fm := Rm/mRm (this is a field because Rm is a local ring) and

consider the Fm-module Vm/(mRm)Vm. Note that Vm/(mRm)Vm is an m-dimensional
vector space over Fm, which implies that Vm/(mRm)Vm ∼= Fmm . By Proposition 4,
the vector space Fmm has an eigenbasis of the induced map (θz)m : Fm

m → Fm
m . Since

Fm := Rm/mRm ∼= R/m, the corresponding matrix of (θz)m is the matrix of θz
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where all entries are taken modulo m. For this reason, the characteristic polynomial
of (θz)m is the polynomial

p
(θz)m

(λ) =
(
det(θz)− λ

)
· (1− λ)m−1. (13)

Since det(θz) ≡ 1R mod m, we have that det(θz) = 1 which implies that the only
eigenvalue of (θz)m is 1. Let E1 be the eigenspace of (θz)m with eigenvalue 1. By
standard linear algebra over fields, we get

E1 := ker
(
(θz)m − Im

)
= ker(Im + col(z)− Im) = ker(col(z)).

Note that dim(E1) = m− 1 since col(z) has rank 1. But then

dim
(
E1
)
< dim(Vm/(mRm)Vm) = m,

which means that E1 is not an eigenbasis of (θz)m. This contradicts our assumption,
hence θz does not have an eigenbasis. □

4.3 Group of Invertible Column Parity Mixers

Lemma 30 Let θz , θz′ ∈ CPMm(R), then

θz · θz′ = θz′+det(θz′ )z
∈ CPMm(R),

which in particular implies that CPMm(R) is closed under multiplication.

Proof This is due to the following:

θz · θz′ = (Im + col(z)) · (Im + col(z′))

= Im + col(z) + col(z′) + col(z) · col(z′)

= Im + col(z) + col(z′) +

(
m−1∑
i=0

z′i

)
· col(z)

= Im + col

(
z′ +

(
1R +

m−1∑
i=0

z′i

)
· z

)
= Im + col(z′ + det(θz′) · z),

where the third equation is due to Corollary 10. □

Lemma 31 Let θz ∈ CPMm(R) be invertible, then

θ−1
z = θ−z·det(θz)−1 ∈ CPMm(R).

Proof Since θz is invertible, we have that det(θz) is invertible in R, hence det(θz)
−1

is well-defined. Then

θz′ · θz = Im ⇐⇒ z + det(θz) · z′ = 0 ⇐⇒ z′ = −z · det(θz)−1,

which concludes the proof. □
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Proposition 32 The set CPM∗
m(R) consisting of all invertible CPMs forms a

subgroup of GLm(R).

Proof By Lemma 30, CPM∗
m(R) is closed under multiplication. Moreover, the inverse

of a CPM is also a CPM by Lemma 31. This implies that CPM∗
m(R) is indeed a

subgroup of GLm(R). □

Lemma 33 Let R be a ring of prime characteristic p, and let θz ∈ CPM∗
m(R) such

that det(θz) = 1R and θz ̸= Im. Then ord(θz) = p.

Proof Observe that

θpz = (Im + col(z))p = Ipm + col(z)p = Im +

(
m−1∑
i=0

zi

)p−1

· col(z),

where the second equation is due to Newtons Binomial Theorem combined with the
fact that all multiples of p vanish in rings of characteristic p, and where the third
equation is due to the identity in Proposition 11. Since det(θz) = 1R, we have that∑m−1

i=0 zi = 0, which implies that θpz = Im. This means that ord(θz) | p, which
implies that ord(θz) equals either 1 or p since p is prime. Because θz ̸= Im, we have
ord(θz) ̸= 1, which means ord(θz) = p. □

Lemma 34 Let R be a ring of prime characteristic p, and let θz ∈ CPM∗
m(R). Then

ord(θz) is either ord(det(θz)) or p · ord(det(θz)).

Proof From Lemma 2, we have that

ord(det(θz)) | ord(θz).

Note that

ord(θz) = ord(det(θz)) · ord
(
θ
ord(det(θz))
z

)
.

Assuming ord(det(θz)) < ∞, we get

det
(
θ
ord(det(θz))
z

)
= det(θz)

ord(det(θz)) = 1R.

Hence by Lemma 33, ord
(
θ
ord(det(θz))
z

)
is either 1 or p, which concludes the proof.

□

Remark 6 The above lemma implies that θz ∈ Tor(CPM∗
m(R)) if and only if

det(θz) ∈ Tor(R∗).

Proposition 35 Let θz ∈ CPM∗
m(R) such that det(θz)− 1R ∈ R∗. Then

ord(θz) = ord(det(θz)).
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Proof By Proposition 28, θz admits an eigenbasis with eigenvalues λ1 = 1R and
λ2 = det(θz). From this, we conclude that

ord(θz) = lcm(ord(λ1), ord(λ2)) = lcm(1, ord(det(θz))) = ord(det(θz)),

which completes the proof. □

We conclude this section by briefly considering CPMs over F2 and over
local circulant rings.

Lemma 36 Let θz ∈ CPM∗
m(F2) such that θ ̸= Im. Then ord(θz) = 2.

Proof By Lemma 34, we have that ord(θz) is either equal to ord(det(θz)) or 2 ·
ord(det(θz)). Since θz is invertible, we know that det(θz) ∈ F∗

2, which means that
det(θz) = 1F2

. Hence ord(det(θz)) = 1, which means that ord(θz) is either 1 or 2.
Since θz ̸= Im, we must have that ord(θz) = 2, which completes the proof. □

Proposition 37 Let R = R2l1 ,...,2ln be a local circulant ring, and define l = max(li :

1 ≤ i ≤ n). Then for θz ∈ CPM∗
m(R), we have that ord(θz) | 2l+2.

Proof q∗m,R restricted to CPM∗
m(R) induces a surjective map to CPM∗

m(F2).
Let us first consider the case that θz ∈ ker(q∗m,R). Since θz = Im + col(z), we

have that z0, ..., zm−1 ∈ mn. Observe that

θ2
l+1

z = (Im + col(z))2
l+1

= Im + col(z)2
1+1

= Im +

(
m−1∑
i=0

zi

)2l+1

· col(z).

Since
∑m−1

i=0 zi ∈ mn, we have that
(∑m−1

i=0 zi

)2l
= 0R. Hence

(∑m−1
i=0 zi

)2l+1

=

0R, which implies that θ2
l+1

z = Im.
Now assume that θz /∈ ker(q∗m,R). This means that q∗m,R(θz) ∈ CPM∗

m(F2) is not
the identity, which means that q∗m,R(θz) has order 2. Hence θ2z ∈ ker(q∗m,R), which

implies that ord(θ2z) | 2l+1 as shown earlier. As a result, we have that ord(θz) |
2 · 2l+1 = 2l+2, which concludes the proof. □

5 Application: The linear layer of Xoodoo

In this section, we show that the linear layer of Xoodoo can be interpreted
as a module homomorphism over the local circulant ring R4,32. Moreover, we
introduce DCD-compositions, which are a type of composition with a similar
structure as the linear layer of Xoodoo.
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5.1 Xoodoo and Local Circulant Modules

An important observation is that the linear layer ofXoodoo is in fact an R4,32-
linear map of the free circulant module R3

4,32. To see this, note that the linear
maps ρwest, θ and ρeast described in [1] can be represented by the matrices

θ =

1 + f f f
f 1 + f f
f f 1 + f

 , ρwest =

1 0 0
0 X 0
0 0 Y 11

 , ρeast =

1 0 0
0 Y 0
0 0 X2Y 8

 ,

all contained in M3(R4,32) where f = XY 5 +XY 14 ∈ R4,32. Thus the linear
layer of Xoodoo is represented by the matrix

ρwest ◦ θ ◦ ρeast =

1 0 0
0 X 0
0 0 Y 11

 ·

1 + f f f
f 1 + f f
f f 1 + f

 ·

1 0 0
0 Y 0
0 0 X2Y 8


=

 1 + f Y · f X2Y 8 · f
X · f XY · (1 + f) X3Y 8 · f
Y 11 · f Y 12 · f X2Y 19 · (1 + f)

 .

Proposition 38 ρwest, θ and ρeast are contained in ker
(
q∗3,R

)
.

Proof Note that f(1, 1) = 1 · 15 + 1 · 114 ≡ 2 ≡ 0 mod 2. Using this, we get

q∗3,R(θ) = q∗3,R

1 + f f f
f 1 + f f
f f 1 + f


=

1 + f(1, 1) f(1, 1) f(1, 1)
f(1, 1) 1 + f(1, 1) f(1, 1)
f(1, 1) f(1, 1) 1 + f(1, 1)


=

1 0 0
0 1 0
0 0 1

 ,

hence θ ∈ ker(q∗3,R). In a similar fashion, we conclude that ρwest, ρeast ∈ ker(q∗3,R).
□

By the above proposition together with Corollary 21, we have that

ord(ρwest ◦ θ ◦ ρeast) | 25+1 = 26 = 64,

which is relative low. In fact, we verified using Sagemath that

ord(ρwest ◦ θ ◦ ρeast) = 32.

The corresponding code can be found in Appendix A.
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5.2 DCD-Compositions

In this subsection, we introduce DCD-compositions, which are maps with a
similar structure as the linear layer of Xoodoo.

Definition 10 Define D∗
3(R) as the set of all invertible diagonal matrices in M3(R)

over a circulant ring R, which forms a group under matrix multiplication. We say
that a map σ ∈ GL3(R) is a DCD-composition if there exist ρl, ρr ∈ D∗

3(R) and
θ ∈ CPM∗

3(R) such that

σ = ρl ◦ θ ◦ ρr.

Remark 7 The linear layer of Xoodoo is a DCD-composition since ρeast, ρwest ∈
D∗

3(R4,32) and θ ∈ CPM∗
3(R4,32).

We present two examples of DCD-compositions. In the first example, we
construct a DCD-composition with the same bit-state as the linear layer of
Xoodoo (also over R4,32), but with the highest possible order of such a DCD-
composition.

In the second example, we present a DCD-composition over a non-local
circulant ring, which resulted in a higher order.

Example 1: DCD-composition over R4,32.

Let R = R4,32, and define the group composition G3(R4,32) = D∗
3(R4,32) ·

CPM∗
3(R4,32) which is a subgroup of GL3(R4,32).

Theorem 39 For σ ∈ G3(R4,32), we have that ord(σ) | 27.

Proof Note that σ is of the form σ =
∏n

i=1 ρiθi where ρi ∈ D∗
3(R4,32) and θi ∈

CPM∗
3(R4,32). Observe that D∗

3(R4,32) ⊂ ker(q∗3,R), hence q∗3,R(σ) = q∗3,R(
∏n

i=1 θi)
which is contained in CPM∗

3(F2). By Lemma 36, all elements in CPM∗
3(F2) either

have order 1 or 2. This implies that ord(θ) must divide 2 · 26 = 27, since the order of
all matrices in ker(q∗3,R) divide 21+5 = 26 by Corollary 21 (note that 32 = 25). This
concludes the proof. □

Every DCD-composition is contained in G3(R4,32), which implies that the
order cannot exceed 27 = 128.

Consider

θ =

1 + f1 f1 f1
f2 1 + f2 f2
f3 f3 1 + f3

 , ρl =

1 0 0
0 X 0
0 0 Y 11

 , ρr =

1 0 0
0 Y 0
0 0 X2Y 8

 ,

where f1 = XY 5 +XY 11 + 1, f2 = XY 5 +XY 11 and f3 = XY 5 +XY 11 + 1.
We verified using SageMath that ord(ρl ◦ θ ◦ ρr) = 128, which is the maximal
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possible order of such a composition by the above theorem. The corresponding
code can be found in Appendix B.

Example 2: DCD-composition over Rn.

Consider circulant rings of the form Rn = F2[X]/⟨Xn − 1⟩, which represents
the ring of circulant matrices of dimension n.

Theorem 40 Let n be an odd number, and let f ∈ R∗
n. Then

ord(f) | 2ordn(2) − 1.

Proof ordn(2) is well-defined since n is odd. Let f = adX
d + ad−1X

d−1 + · · · +
a1X + a0 ∈ R∗

n. Since we work over F2, we have

f2
ordn(2)

= (adX
d + ad−1X

d−1 + · · ·+ a1X + a0)
2ordn(2)

(14)

= (adX
d)2

ordn(2)

+ (ad−1X
d−1)2

ordn(2)

+ · · ·+ (a1X)2
ordn(2)

+ a2
ordn(2)

0

(15)

= ad

(
X2ordn(2)

)d
+ ad−1

(
X2ordn(2)

)d−1
+ · · ·+ a1X

2ordn(2)

+ a0 (16)

By definition, we have 2ordn(2) ≡ 1 mod n, which implies that

X2ordn(2)

≡ X mod ⟨Xn − 1⟩.

Hence we can conclude from Expression (16) that f2
ordn(2)

≡ f mod ⟨Xn−1⟩, imply-

ing that f2
ordn(2)−1 ≡ 1 mod ⟨Xn−1⟩ by invertibility of f . Thus the order of f ∈ R∗

n

must divide 2ordn(2) − 1, which concludes the proof. □

Let us choose n = 167. Observe that ord167(2) = 83, which by the above
theorem means that the highest possible order of elements in R∗

167 equals
283 − 1. Consider

θ =

1 + f f f
f 1 + f f
f f 1 + f

 , ρl =

1 0 0
0 X 0
0 0 X11

 , ρr =

1 0 0
0 X 0
0 0 X10

 ,

where f = X6 +X15. Here we have

det(ρl ◦ θ ◦ ρr) = X12 · (X15 +X6 + 1) ·X11 = X38 +X29 +X23.

By using Sagemath, we verified that X27 + X18 + X12 is invertible (see
Appendix C for the code). Since 283 − 1 is a prime number (it is a Mersenne
prime number), it must be the order of X27 + X18 + X12. By Lemma 2, we
can conclude that 283 − 1 divides ord(ρl ◦ θ ◦ ρr).
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Remark 8 We managed to compute the exact order of the composition ρl ◦ θ ◦ ρr,

which equals
(
283 − 1

)
· λ where

λ = 301 541 899 055 510 925 582 216 169 150 861 286 153 081 761 757 331 612 351

867 575 029 327 375 019

≈ 1.33 · 2247.
This is significantly higher than 32. We illustrate a sketch on how we obtained λ,
which requires a bit of mathematical reasoning.

Observe that R167 can be naturally embedded in GF
(
283
)
[X]/⟨X167−1⟩. Note

that X167−1 fully splits in GF
(
283
)
, where we have the decomposition X167−1 =∏

ζ∈µ167
X − ζ, where µ167 is the set of 167-th roots of unity. Hence by the Chinese

Remainder Theorem, we obtain the isomorphism

GF
(
283
)
[X]/⟨X167 − 1⟩ →

⊕
ζ∈µ167

GF
(
283
)
, g 7→ (g(ζ))ζ∈µ167

.

From this isomorphism, we conclude that

GL3

(
GF

(
283
)
[X]/⟨X167 − 1⟩

)
∼=

⊕
ζ∈µ167

GL3

(
GF

(
283
))

.

By Lagrange, the order of every element in GL3

(
GF

(
283
)
[X]/⟨X167 − 1⟩

)
must

divide

#GL3

(
GF

(
283
))

=
(
23·83 − 1

)
·
(
23·83 − 283

)
·
(
23·83 − 22·83

)
, (17)

hence λ must be a divisor of (17).

Using Sagemath, we verified that λ |
(
23·83 − 1

)
·
(
23·83 − 283

)
. Note that(

23·83 − 1
)
·
(
23·83 − 283

)
=
(
283 − 1

)
·
(
22·83 + 283 + 1

)
· 283 ·

(
22·83 − 1

)
=
(
283 − 1

)
·
(
22·83 + 283 + 1

)
· 283 · (283 + 1) ·

(
283 − 1

)
=
(
283 − 1

)2
· 283 ·

((
22·83 + 283 + 1

)
·
(
283 + 1

))
.

Again using Sagemath, we verified that λ |
(
22·83 + 283 + 1

)
·
(
283 + 1

)
. By exhaus-

tive search over the divisors of
(
22·83 + 283 + 1

)
·
(
283 + 1

)
, we managed to find λ.

The details of the code used to compute λ can be found in Appendix C.

6 Concluding Remarks

There are two main reasons why the order of the linear layer of Xoodoo is
relatively low. These being that the linear layer of Xoodoo is contained in
ker(q∗3,R4,32

), and that the circulant ring R4,32 is local. Example 2 demonstrated
that for a non-local circulant ring, one can construct DCD-compositions with
a much higher order than the linear layer of Xoodoo. An interesting follow
up research topic would be to study algebraic properties of non-local circulant
rings, and to use these properties to experiment in constructing high order
DCD-compositions.
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Appendix A Computing the Order of the
Linear Layer of Xoodoo

#Setting up the ring R_{4,32}

R.<s,t> = GF(2)[]

S.<x,y> = R.quo([s^4 - 1, t^32 - 1])

#Defining \rho_{east}, \rho_{west} and \theta for the linear layer LN

f = x*y^5 + x*y^14

theta = matrix([[1+f,f,f],[f,1+f,f],[f,f,1+f]])

p_l = matrix([[1,0,0],[0,x,0],[0,0,y^11]])

p_r = matrix([[1,0,0],[0,y,0],[0,0,x^2*y^8]])

LN = p_l*theta*p_r

#Naively computing the order of LN using brute force

i = 1

while LN^i != matrix.identity(3):

i = i + 1

print(i)

Appendix B Computing the Order of
Alternative DCD-composition
over R4,32

#Setting up the ring R_{4,32}

R.<s,t> = GF(2)[]

S.<x,y> = R.quo([s^4 - 1, t^32 - 1])

#Defining \rho_l, \rho_r and \theta for the DCD-composition DCD

f1 = x*y^5 + x*y^11 + 1

f2 = x*y^5 + x*y^11

f3 = x*y^5 + x*y^11 + 1

theta = matrix([[1+f1,f1,f1],[f2,1+f2,f2],[f3,f3,1+f3]])

p_l = matrix([[1,0,0],[0,x,0],[0,0,y^11]])

p_r = matrix([[1,0,0],[0,y,0],[0,0,x^2*y^8]])

DCD = p_l*theta*p_r

#Naively computing the order of DCD using brute force

i = 1

while DCD^i != matrix.identity(3):

i = i + 1
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print(i)

Appendix C Computing the Order of
Alternative DCD-composition
over R167

#Setting up the ring R_167

R.<s> = GF(2)[]

S.<x> = R.quo([s^167 - 1])

#Defining \rho_l, \rho_r and \theta for the DCD-composition DCD

f = x^6 + x^15

theta = matrix([[1+f,f,f],[f,1+f,f],[f,f,1+f]])

p_l = matrix([[1,0,0],[0,x,0],[0,0,x^11]])

p_r = matrix([[1,0,0],[0,x,0],[0,0,x^10]])

DCD = p_l*theta*p_r

#Checking/verifying invertibility of DCD

DCD^-1

#Lifting DCD to the order of \det(DCD) = 2^83 - 1, which we call DCD1

ord_det_LN = 2^83 - 1

DCD1 = DCD^ord_det_LN

#Checking/verifying if the order of DCD1 divides a = (2^(2*83) + 2^83

+ 1)*(2^(83) + 1) by verifying if DCD1^a is the indetity matrix

a = (2^(2*83) + 2^83 + 1)*(2^(83) + 1)

DCD1^a

#Naively computing \lambda (the order of DCD1) using brute force

#\lambda must be a divisor of $a$
i = 0

while DCD1^(divisors(a)[i]) != matrix.identity(3):

i = i + 1

print(divisors(a)[i])
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