
On the Cost of Post-Compromise Security in

Concurrent Continuous Group-Key Agreement∗

Benedikt Auerbach , Miguel Cueto Noval , Guillermo Pascual-Perez , and Krzysztof
Pietrzak

ISTA, Austria
{bauerbac, mcuetono, gpascual, pietrzak}@ista.ac.at

Abstract

Continuous Group-Key Agreement (CGKA) allows a group of users to maintain a shared key. It
is the fundamental cryptographic primitive underlying group messaging schemes and related protocols,
most notably TreeKEM, the underlying key agreement protocol of the Messaging Layer Security (MLS)
protocol, a standard for group messaging by the IETF. CKGA works in an asynchronous setting where
parties only occasionally must come online, and their messages are relayed by an untrusted server. The
most expensive operation provided by CKGA is that which allows for a user to refresh their key material
in order to achieve forward secrecy (old messages are secure when a user is compromised) and post-
compromise security (users can heal from compromise). One caveat of early CGKA protocols is that
these update operations had to be performed sequentially, with any user wanting to update their key
material having had to receive and process all previous updates. Late versions of TreeKEM do allow for
concurrent updates at the cost of a communication overhead per update message that is linear in the
number of updating parties. This was shown to be indeed necessary when achieving PCS in just two
rounds of communication by [Bienstock et al. TCC’20].

The recently proposed protocol CoCoA [Alwen et al. Eurocrypt’22], however, shows that this overhead
can be reduced if PCS requirements are relaxed, and only a logarithmic number of rounds is required.
The natural question, thus, is whether CoCoA is optimal in this setting.

In this work we answer this question, providing a lower bound on the cost (concretely, the amount
of data to be uploaded to the server) for CGKA protocols that heal in an arbitrary k number of rounds,
that shows that CoCoA is very close to optimal. Additionally, we extend CoCoA to heal in an arbitrary
number of rounds, and propose a modification of it, with a reduced communication cost for certain k.

We prove our bound in a combinatorial setting where the state of the protocol progresses in rounds,
and the state of the protocol in each round is captured by a set system, each set specifying a set of users
who share a secret key. We show this combinatorial model is equivalent to a symbolic model capturing
building blocks including PRFs and public-key encryption, related to the one used by Bienstock et al..

Our lower bound is of order k · n1+1/(k−1)/ log(k), where 2 ≤ k ≤ log(n) is the number of updates
per user the protocol requires to heal. This generalizes the n2 bound for k = 2 from Bienstock et al..
This bound almost matches the k · n1+2/(k−1) or k2 · n1+1/(k−1) efficiency we get for the variants of the
CoCoA protocol also introduced in this paper.

∗A preliminary version of this paper appeared in the proceedings of TCC 2023. Refer to the published version via 10.1007/978-
3-031-48621-0 10. This is the full version.

1

https://orcid.org/0000-0002-7553-6606
https://orcid.org/0000-0002-2505-4246
https://orcid.org/0000-0001-8630-415X
https://doi.org/10.1007/978-3-031-48621-0_10
https://doi.org/10.1007/978-3-031-48621-0_10

Contents

1 Introduction 3
1.1 Our Bounds. 5
1.2 Our Proofs . 6
1.3 Overcoming Lower Bounds. 7
1.4 Related work . 8

2 Preliminaries 9
2.1 Definitions and Results from Combinatorics . 9
2.2 Continuous Group-Key Agreement . 9

3 Lower Bounds in the Combinatorial Model 13
3.1 The Combinatorial Model . 13
3.2 Lower Bound in the Combinatorial Model . 15

4 Lower Bounds in the Symbolic Model 19
4.1 The Symbolic Model . 19
4.2 Lower Bounds on the Update Cost in the Symbolic Model . 28

5 Upper Bound on the Update Cost 30
5.1 Preliminaries and CoCoA . 30
5.2 Generalized CoCoA healing in k rounds . 31
5.3 CoCoALight . 32
5.4 Post Compromise Security proof . 34
5.5 Efficiency and tradeoffs . 36

2

1 Introduction

A fundamental task underlying various cryptographic protocols is to agree upon, and maintain, a secret key
amongst a group of users. A prominent example is continuous group-key agreement (CGKA) [ACDT20],
which underlies group messaging applications. Here, a group of users wants to maintain a shared secret key,
that then can be used for private communication amongst the group members.

CGKA is defined in an asynchronous setting, where parties are online only occasionally, and the exchanged
messages are relayed through an untrusted server (only trusted to provide liveness and thus correctness).
CGKA allows for users to be added or removed from the group. Moreover users can update their keys, which
allows the group to achieve forward secrecy (FS) and post-compromise security (PCS). FS guarantees that,
should a user’s secrets be compromised, messages sent in the past remain secure. PCS, in turn, allows the
group to “heal”, i.e. to recover privacy after a compromise occurs.

The most efficient existing protocols for CGKA are TreeKEM [BBR18] and variants thereof [Mat19,
KPPW+21, ACDT20, AAN+22a, AAN+22b], which are inspired by logical key hierarchies (LKH) [WHA99],
a popular protocol for multicast encryption (ME) [CGI+99]. The study of these protocols has received a great
deal of attention recently, motivated by the IETF working group onMessage Layer Security (MLS) [BBR+23],
which aims to output standard for instant group messaging. Said standard employs TreeKEM as the under-
lying CGKA. These schemes all arrange keys from a public-key encryption scheme in trees, known as ratchet
trees, where each node is associated with a key, each user is associated with a leaf, and users should know
exactly the (secret) keys on the path from their leaf to the root (also known as the tree invariant).

A simple ratchet tree with four users is illustrated in Figure 1. The advantage of using such a hierarchical
tree structure is that replacing a user’s keys in a group of size n just requires the creation of ⌈log(n)⌉
ciphertexts, while e.g. maintaining pairwise keys between the users would require n− 1.

Concurrent Updates. Updating keys in a ratchet tree as illustrated in Figure 1 only works if updates
are sequential. That is, if two users want to update, then they need to do it in order, with the second
processing the first user’s update before creating their own. TreeKEM supports concurrent updates through
the “propose and commit” (P&C) paradigm, but handling concurrency in this way degrades the nice tree
structure and thus efficiency of the protocol. Indeed, after several users update concurrently, all of their paths
to the root but one will lose their keys, a.k.a. become blank, increasing the in-degrees of nodes in the tree
and thus the cost of that and subsequent operations. This incurs an overhead that is linear in the number
of updating parties, something which was shown to be optimal by Bienstock, Dodis and Rösler [BDR20],
whenever PCS is to be achieved as soon as all corrupted users update once.

CoCoA [AAN+22a] takes a different approach, and simply choses a “winner” whenever there is a conflict,
i.e., when two users want to concurrently replace the same key, as illustrated in Figure 2. As opposed to
the previous scenario, this does not immediately “heal” the state of the concurrently updating parties (in
the Figure, key K7̄ is not secure if Dave’s key K6 was compromised). However, in [AAN+22a] it is shown
that the group heals (i.e., achieves PCS) after all corrupted users participate in log(n) (possibly concurrent)
update rounds. This is a middle ground between the immediate concurrent healing of P&C TreeKEM, and
the n sequential rounds needed for non-concurrent versions of TreeKEM.

In this work we prove a lower bound on the communication cost of CGKA protocols that heal in any
number of (up to logarithmic in the group size) rounds.

A Combinatorial Model. Conceptually, our lower bound proof proceed in two steps. We first derive the
lower bounds in a clean and simple combinatorial model which proceeds in rounds. The state of the protocol
for n users in round t is captured by a set system St ⊆ 2[n], where S ∈ St means that after round t there
is a shared secret amongst the users S not known to the adversary. In particular, [n] ∈ St means the group
[n] = {1, . . . , n} shares a secret, which has to be satisfied in all rounds with a secure group key.

For example, in the ratchet tree example from Fig. 1 (where users are denoted {A,B,C,D} not {1, 2, 3, 4}),
the sets corresponding to the keys K1, ..,K7 are

St = {{1}, {2}, {3}, {4}, {1, 2}, {3, 4}, {1, 2, 3, 4}} .

3

K1 K2 K3 K4

K5 K6

K7

K1K1̄ K1 K2 K3 K4

K5K5̄ K5 K6

K7K7̄ K7

A B C D A B C D

Figure 1: Left: Illustration of a ratchet tree with n = 4 users {A,B,C,D} where each key Ki = (pki, ski) is
a public/secret key tuple. Right: To update and achieve PCS Alice rotates keys {K1,K5,K7} by sampling
new keys {K1̄,K5̄,K7̄} (blue, shaded background) and encrypting each secret key under the public key of
their parent (blue, dashed arrows), e.g. K2 → K5̄ corresponds to a ciphertext Encpk2(sk5̄). Given those
ciphertexts, all users can learn the new keys on their path to the root. For example Bob must decrypt the
ciphertexts Encpk2

(sk5̄) and Encpk5̄
(sk7̄). This requires 2⌈log(n)⌉ = 4 ciphertexts. However, by deriving the

keys {K1̄,K5̄,K7̄} deterministically from a single seed using a PRG as suggested in [CGI+99], we can save
the ciphertexts for the solid blue arrows and only need ⌈log(n)⌉ = 2 ciphertexts.

K1 K2 K3 K4

K5 K6

K7

K1̄ K1 K2 K3 K4 K4̂

K5̄ K5 K6 K6̂

K7̄ K7 K7̂

K1K1̄ K1 K2K2 K3K3 K4 K4K4̂

K5K5̄ K5 K6 K6̂K6̂

K7K7̄ K7 K7̂

A B C D A B C D A B C D

Figure 2: Illustration of CoCoA where Alice and Dave concurrently rotate their keys. Left: state of the
ratchet tree before the updates. Middle: Keys {K1̄,K5̄,K7̄} and {K4̂,K6̂,K7̂} generated by Alice and
Dave’s updates respectively. There’s a collision at the (root) key K7, and the server chooses a “winner” (any
rule for choosing winners will do), in this case Alice. Right: New state of the ratchet tree (Keys in the tree
depicted with shaded background). The new root key is K7̄ while Dave’s K7̂ is ignored. As K7̄ was encrypted
to K6 we do not achieve PCS if Dave’s state {K4,K6,K7} prior to the update was compromised. But latest
once all corrupted parties updated log(n) times PCS will be achieved (in particular, if Dave updates once
more PCS is achieved).

If a user u gets compromised, all secrets corresponding to sets containing u become known to the adversary
and thus the sets must be removed, e.g., if we compromise user 1, the set system becomes

St+1 = {{2}, {3}, {4}, {3, 4}} .

A user u can update and create new sets (keys) as follows. They can always locally sample a key, creating
the singleton {u}. For two sets S, S′ ∈ S, where u ∈ S (or u ∈ S′), they can create a new set S ∪ S′, by
deterministically deriving a secret from that of S using a PRF, and encrypting it under the public key of
S′. This would get added to S in the next round. Note that indeed all users in S ∪ S′ are able to derive
the secret either deterministically from the secret associated to S or by decrypting the ciphertext. In the
simplest version of TreeKEM, user 1 performs an update by creating {1}, then {1, 2} = {1} ∪ {2}, then
{1, 2, 3, 4} = {1, 2}∪{3, 4} (i.e., the keys K1′ ,K5′ ,K7′ in Fig. 1). Of course, u is not restricted to create new
sets as the union of only two sets, but could also encrypt the secret using the keys of sets S1, . . . , Sk to form
the set S ∪

⋃k
i=1 Si. The communication cost of this operation, i.e., the number of ciphertexts that have to

be uploaded to the server to communicate the new secret to all members of the corresponding set, would in
this example be k. In Section 3.1 we extend this idea into a self-contained combinatorial model consisting of

4

set system St and an accompanying cost function Cost required to satisfy properties matching the intuition
given above. In Section 3.2 we use it to prove our lower bounds.

The Symbolic Model. While the combinatorial model offers a clean model for proving lower bounds, it is
not obvious how it captures real-world protocols. We show that any lower bound in the combinatorial model
implies a lower bound in a symbolic model capturing pseudorandom functions and public-key encryption.
Most existing CGKA protocols can be captured in this symbolic model and the fact that lower bounds
in the combinatorial model carry over to the symbolic model justifies the interest of the combinatorial
model we propose. Symbolic models were introduced by Dolev and Yao [DY83] in public key encryption,
used in multicast encryption by Micciancio and Panjwani [MP04] and in CGKA by Bienstock, Dodis, and
Rösler [BDR20] and Alwen et al. [AAB+21]. In the symbolic model pseudorandom functions and public-key
encryption are treated in an idealized way by seeing their inputs and outputs as variables with a data type,
which, in turn, follow some grammar rules, and ignoring other considerations that an actual construction may
have. The functionality and security of these primitives are captured by the grammar rules and entailment
relations describedin Section 4.1.

1.1 Our Bounds.

In this work we prove lower bounds on the communication cost of CGKA protocols achieving PCS. Moreover,
in Section 5 we introduce a new protocol, a modification and generalization of CoCoA. It introduces the nec-
essary number of rounds to heal as a parameter and, in some cases, improves over the natural generalization
of CoCoA in this setting.

We measure the cost of a protocol in terms of the number of ciphertexts that users in a group must create
(and upload to a server for the other users to download) to achieve post-compromise security.1 Sometimes,
we additionally put a bound on the number of rounds required for parties to heal. We do not require
forward-secrecy and will also consider groups of a fixed size, i.e., without removals or additions of users,
just updates. Note that both of these make the lower bounds stronger, as an adversary could always choose
to not use add/removes. Additionally, FS is relatively well understood , and can be achieved without any
asymptotic overhead [ACDT20].

We consider the setting where the users do not know who is compromised or who else will update in any
given communication round, and the adversary schedules who does updates in each round. This is similar
to that of [BDR20].

When a user is corrupted, we assume its entire secret state is leaked to the adversary, who can also
observe all computations – in particular all local randomness – of the user during the corruption. We call
this the “randomness corruption” model (RC for short), but we will also consider a weaker “no-randomness
corruption” (¬RC for short) model, where only the secret state is leaked. In this model, a corrupted user
can still create encrypted secrets for other users. Most protocols are proven secure in the stronger RC model,
whereas lower bounds are naturally stronger in the ¬RC model. We point out that our lower bound require
some additional restrictions on the CGKAs. We expand on this at the end of the introduction.

Lower bound. The number k of updates a user is required to make before their state is guaranteed to
heal plays a crucial role. Our security game is parameterized by the number of users n and k. The adversary
schedules who updates in each round, and we require that, at any point, the group key is secure provided
every party who was corrupted in the past was asked to update at least k times (since their last corruption).
Table 1 states our lower bound and upper bound, as well as existing ones. Our lower bound is roughly
n1+1/k · k/ log(k).

The main message here is that we need to allow for logarithmically many rounds for healing (as in CoCoA)
if we want a small logarithmic sender communication cost per user. In particular, if we insist on a constant
number of rounds, the average cost per user will be of order n1/k.

1It is possible, as in [AAN+22a, AHKM22], to reduce recipient communication by introducing additional reliance on the
server. We focus on sender communication.

5

Upper bounds

Scheme Communication Rounds Rand. corr. See

TreeKEM and related n2 2 RC [BBR18]
Bienstock, Dodis, Rösler n2 2 ¬RC [BDR20]
CoCoA on k−1

√
n-ary trees nk2 k−1

√
n k RC Sec. 5.2

CoCoA on 2-ary trees n log(n)2 log(n) RC [AAN+22a]
CoCoALight on (k−1)/2

√
n-ary trees nk (k−1)/2

√
n k RC Sec. 5.3

Lower bounds

Restrictions Communication Rounds Rand. corr. See

None n2 2 ¬RC [BDR20]
NDW, NNE, PCU∗ n log(n)/ log(log(n)) log(n) ¬RC Cor. 10
NDW, NNE, PCU∗ ε · n · (1+ε)k−1

√
αεn · k/ log(k) k ¬RC Cor. 10

Table 1: Upper-bounds (top) and lower-bounds (bottom) in the no-information setting for Ω(n) corrupted
users. Communication is measured as total number of ciphertexts sent to recover from corruption, col-
umn “Rounds” indicates the number of update rounds after which schemes are required to recover from
corruption, column “Rand. corr.”, whether the security model allows the adversary to learn internal ran-
domness of algorithms. The protocol [BDR20] improves over TreeKEM in that concurrent operations do
not degrade future performance, which is not captured in the table. Our lower-bounds require CGKA to not
allow distributed work (NDW) and not use nested encryption (NNE). Our bound holds without the extra
assumption requiring the protocols to have publicly-computable update cost (PCU). However, additional
properties of it hold when this assumption is present. We refer the reader to the discussion in Section 1.3
below for more details. Here, αε ≈ ε is some constant depending on ε.

Upper bound. We introduce in Section 5 the protocol CoCoALight, a modification of CoCoA that achieves
PCS in k ∈ [4, 2 ⌈log(n)⌉+1] rounds. This protocol has a cost k ·n1+2/(k−1), which matches the lower bound
up to a factor log(k)/n1/(k−1). In particular, our protocol is only a factor of log(log(n)) from optimal for
k in the order of log(n). In turn, CoCoA (or rather, a straightforward generalization of it we propose for
k ∈ [2, ⌈log(n)⌉ + 1], as opposed to k = ⌈log(n)⌉ + 1 in the original protocol) has better efficiency for low
values of k. The key insight in our protocol is that users do not need to update all the keys in their path
to heal. In fact, it suffices for them to update keys one by one, as long as every key in the path is updated
twice. We formalize and discuss this further in Section 5 .

1.2 Our Proofs

Proof of the Lower Bound. To prove the lower bound we first show that, if the protocol can heal from
c corruptions in k rounds, then there is some user whose cost is c1/k. In particular, if c = Θ(n), we get a
cost of Θ(n1/k). The intuition for this is quite simple, let us give it for c = n. Initially everyone is corrupted,
so our set system is simply {1}, . . . , {n}, after the kth round [n] = {1, . . . , n} is in our set system. If we
denote with si the size of the largest set in round i, we have s1 = 1, sk = n, which means there must be a
round i where si+1/si ≥ n1/(k−1). Therefore, in this round, the user creating the new set of size si has cost
≥ n1/(k−1). A slightly more careful argument shows that the maximum cost of a user in each round adds up
to k · c1/(k−1).

To prove our bound we will show that for c = Θ(n) corruptions, we can adversarially schedule the updates
so that a 1/ log(k) fraction of users (and not just a single one) can be forced to pay close to the maximum
cost in each round, which then adds up to n1+1/(k−1) · k/ log(k).

This adversarial scheduling goes as follows: before each round, the adversary investigates each user’s
cost, should they be asked to update in the next round. Then, it simply picks a 1/ log(k) fraction of users,

6

all having either very small cost or, if such a set does not exist, a set of users with roughly the same cost
(we show that such a set of users always exists).

Proof of the Upper Bound. We prove our protocol secure by following the framework set by [KPPW+21],
which reduces the adaptive security of a CGKA protocol to that of a game played on graphs. One first
defines a so-called safe predicate, which captures the settings in which security should be guaranteed (i.e.
every corrupted user performed k updates since their last corruption, in our case). This is implicit in our
security game. Then, in order to apply previous results, one needs to essentially show that key satisfying the
safe predicate trivially leaked as a result of a user corruption during the execution. We do this in Theorem 12,
where we associateto each group key in the execution a recovery graph, made up of those keys that trivially
allow recovery of the group key. Then, through a combinatorial argument, we show that if the safe predicate
holds all keys ever leaked through a corruption cannot belong to the recovery graph of the challenge key.
Security of the protocol thus follows using the aforementioned framework, in a fashion similar to that of
previous works, such as [AAN+22a].

1.3 Overcoming Lower Bounds.

Proving lower bounds for important protocols serves several purposes. On the one hand, it can tell us when
constructions falling into the model of the lower-bound cannot be further improved. As we identify a protocol
that almost match our lower bound, this question is basically answered.

However, lower bound proofs can also hint as to where one should look for constructions overcoming
them. One such possibility is to consider building blocks not captured by the bounds, or seemingly technical
assumptions, which seem crucial for the lower-bound proofs to go through.

More Powerful Building Blocks. The symbolic model we consider (and which is captured by our
combinatorial model) allows the basic primitives of PRFs or public-key encryption, and thus does not rule
out protocols overcoming our lower bounds if they use more sophisticated tools.

The “big hammer” in this context is multiparty non-interactive key-agreement (mNIKE). With this
primitive, each user could simply create a single message to be broadcast, after which any subset of users
can locally compute a shared secret. While this overcomes our lower-bounds, it is just of theoretical interest,
as currently no practical instantiations of mNIKE exist.

There already do exist CGKA protocols using primitives not captured by our model, in particular
rTreeKEM [ACDT20] and DeCAF [AAN+22b]. The variant rTreeKEM uses secretly-updatable public-key
encryption [JMM19] (skUPKE), but this primitive is used to improve the forward secrecy of the protocol,
with no difference to the (asymptotic) communication cost of the protocol. The CGKA DeCAF also uses
skUPKE, but in order to improve the round complexity for healing: instead of log(n) rounds as in CoCoA,
DeCAF only needs log(c) rounds, with c being the number of users corrupted.

Note that our lower bound is independent of the number of corrupted users, but the proof argues based
on an adversary which corrupts c = Θ(n) parties. In this setting DeCAF’s cost matches that of CoCoA and
thus adheres to our lower bound. However, under the promise that veryfew, say constant, users are actually
corrupted, DeCAF heals in a constant number of rounds with cost O(n log(n)).

Finally, two recent works [HKP+21, AHKM22], explore the use of multi-recipient multi-message PKE
(mmPKE), which allows for much more efficient updates. However, the improvements save a constant factor
in the ciphertext size, and do not have an influence in the asymptotic cost of the protocols.

Distributing work. Our bound is restricted to schemes that do not “distribute the workload of commu-
nicating a secret on several users”, in the following sense. We require that, if in any round a user gets access
to a secret they did not previously possess, then they must have recovered it from a single update message,
or sampled it by themselves. In particular, for such schemes, it holds that whenever a user encrypts a secret,
they know which other users will have access to it at the end of the round. We point out that all CGKA
protocols we are aware of satisfy this requirement.

7

Nested encryption. Finally, we require that users do not create layered ciphertexts, i.e., those of the
form Enc(pk1,Enc(pk2,m)). Again, this is a property that is satisfied by all CGKA protocols we are aware
of. This condition has a similar flavor as the one of distributing work, with the difference being that, instead
of splitting the communication cost between several users, using this kind of layered encryption enablesa
user to spread out communication cost over several rounds.

Publicly-computable update cost. We show that there exists a sequence of updates such that the lower
bound holds. However, this does not mean that the sequence can be found using only public information.
We introduce this assumption to guarantee that the adversary can tell what cost a user will incur if asked
to update in round t using only public information available at the end of round t − 1 and this suffices to
find the update sequence used in the proof of the lower bound. We also introduce a stronger version of
this property, which we call offline publicly-computable update cost, that makes it possible to use public
information available at the end of the initialization phase and the sequence of users who have performed
updates in the previous rounds. While the strong property is satisfied by all protocols we are aware of, it
is conceivable that protocols exist that overcome our bound, by having a user toss a coin when asked to
update, with the outcome determining whether a “cheap” or “expensive” update is made.

1.4 Related work

Protocols. The primitive of CGKA was introduced by Alwen et al. [ACDT20], but constructions existed
earlier, notably ART [CCG+18] and TreeKEM [BBR18]. These two were the starting point for the Message
Layer Security (MLS) working group by the IETF. A variety of protocols have since been published, aiming
to improve TreeKEM across different axes.

First, in the non-concurrent setting, [ACDT20] propose the use of UPKE in order to improve on for-
ward secrecy; Klein et al. [KPPW+21] propose an alternative way to handle dynamic operations with a
lower communication cost in certain scenarios; Devigne, Duguey and Fouque [DDF21] propose to use zero-
knowledge proof to enhance the protocol robustness; Alwen et al. [AAB+21] initiates the study of efficiency of
CGKAs in the multi-group setting; Hashimoto, Katsumata and Prest [HKP22] provide a wrapper upgrading
non-metadata-hiding CGKAs into metadata-hiding ones.

Concurrency was already mentioned in the initial TreeKEM versions, and indeed, as mentioned, its
new versions allow for a certain degree of it. The first protocol to explore the idea was Weidner’s Causal
TreeKEM [Mat19] with the idea of updates by re-randomizing (and combining) key material, instead of
overwriting it. The work of Weidner et al. [WKHB21] puts forth the notion of decentralized CGKA. Alwen et
al.’s CoCoA [AAN+22a] analyzes a variant allowing for concurrent healing in log(n) rounds. A follow-up of
this work by Alwen et al. [AAN+22b] picked up the idea of [Mat19] and extended it and formally analyzed
it, showing that it allows for PCS in a logarithmic number of rounds in the number of corrupted parties.

Lowerbounds. The main approach is to make use of the symbolic security model, first introduced by
Dolev and Yao [DY83] and later used by Micciancio and Panjwani [MP04] to prove worst case bounds on
the update cost of multicast encryption schemes for a single group.

Regarding CGKAs, in the non-concurrent setting, Alwen et al. [AAB+21] provide lower bounds for the
average update cost of an update in any CGKA protocol in the symbolic model, following and generalizing
the approach of [MP04]. This shows TreeKEM or other related protocols are indeed optimal in this setting.
In the concurrent setting, i.e. that where we consider the case of healing c corruptions in less than c rounds,
the study of lower bounds was initiated by Bienstock, Dodis and Rösler [BDR20], who establish lower bounds
for protocols achieving PCS concurrently in exactly 2 rounds.2 Last, Bienstock et al. [BDG+22] establish a
lower bound on the cost arising from certain sequences of adds and removes. In particular, they show that
any CGKA has a worst-case communication cost linear in the number of users.

2Here, we have a tradeoff between the time needed to achieve PCS, and the communication needed to do so. The picture
is slightly more complicated, as in protocols like TreeKEM, or the protocol proposed in [BDR20], the bigger tradeoff is in the
increased cost of subsequent updates.

8

Security. Finally, security of CGKAs has been studied by multiple papers. Security against adaptive
adversaries with a sub-exponential loss was first proved by Klein et al. [KPPW+21]. Active security has
been studied by Alwen et al. [ACJM20, AJM22] in the UC model. PCS in the multi-group setting has
been studied by Cremers, Hale and Kohbrok [CHK21], who show shortcomings of a certain version of MLS
compared to the (inefficient) pairwise-channels construction. Brzuska, Cornelissen and Kohbrok [BCK21]
apply the State Separating Proofs methodology to analyze the security of a certain version MLS.

2 Preliminaries

2.1 Definitions and Results from Combinatorics

We define the minimal set cover of a set with respect to a set system and recall the well-known inequality of
arithmetic and geometric means.

Definition 1 (Minimal set cover). Let n ∈ N and S ⊆ 2[n]. Then for X ⊆ [n] we define the min cover of X
with respect to S. A minimal set cover (min cover) minCover⊇(X,S) of X with respect to S is a set T ⊆ S
of minimal cardinality such that X ⊆

⋃
T∈T T , i.e., a minimal subset of S that covers X. Note that we only

require S be contained in the union but no equality.

Proposition 1 (Inequality of arithmetic and geometric means). For k ∈ N let x1, . . . , xk ∈ R be non-negative

such that
∑k

i=1 xi = x. Then
k∏

i=1

xi ≤
(x
k

)k

.

2.2 Continuous Group-Key Agreement

We now establish syntax for continuous group-key agreement (CGKA) schemes. A CGKA scheme allows
a group G of users to agree on a group key that is to be used to secure communication within the group.
In order to be able to recover from corruption users can also, possibly concurrently, send update messages,
which rotate their key material. On top of this, CGKA schemes normally allow for group membership to
evolve throughout the execution, by adding or removing users. However, while schemes allowing for theses
additional operations are desirable in practice, the main goal of this work is to establish lower bounds on
the communication complexity of recovering from corruption by concurrent updates. Thus, we restrict our
view to static groups, i.e., we do not require the functionality of adding users to or removing users from the
group. Not considering adds and removes allows for less technical notation, and we point out that lower
bounds only profit from this restriction, as they hold even for schemes restricted to static groups. In doing
so, our syntax essentially follows that of [BDR20], with a couple of small differences mentioned below.

A continuous group-key agreement scheme CGKA specifies algorithms Setup, Init, Update, Process, and
GetKey. Algorithms Setup and Init can be used to initialize the a group G , that since we restrict our view
to static groups, throughout this work we simply identify with G = [n] for some n ∈ N. Here, Setup is used
to generate every user’s initial internal state and can be thought of as the users generating a key pair and
registering it with a PKI. Init, on the other hand, is called by one of the users to initialize the group. It
generates a control message that, when processed by the other users, establishes the initial group-key K 0

G .
Afterwards, the scheme proceeds in rounds t, in each of which a subset of users in G concurrently generate
update messages using algorithm Update. The update messages are in turn processed by the group members
resulting in a new group key K t

G that can be recovered from a user’s internal state using algorithm GetKey.
More formally,

- Setup(n; r) on input the group size n and random coins r belonging to randomness space Rnd outputs
public information pub, as well as an initial state stu for every user u ∈ G = [n].

- Init(stu, pub; r) receives as input a user’s (initial) state, the public information pub, and random coins r .
Its output (st ′u,MI u) consists of the initializing user’s updated state and a control message MI u.

9

Game CORRECTCGKA(n, u0, (Ut)
tmax
t=1)

00 t← 0
01 INIT(n, u0)
02 while t ≤ tmax:
03 t← t+ 1
04 ROUND(Ut)
05 return 0

Oracle INIT(n, u0)
06 (pub, (stu)u∈[n])← Setup(n)

07 (stu0 ,MI 0u0
)← Init(stu0 , pub, n; r)

08 for u ∈ [n]:
09 stu ← Process(stu, pub,MI 0u0

)
10 K u

G ← GetKey(stu)
11 if ∃u, v ∈ [n] : K u

G ̸= K v
G :

12 return 1

Oracle ROUND(Ut)
13 MU ← ∅
14 for u ∈ Ut:
15 (stu,MU

t
u)← Update(stu, pub)

16 MU ←∪ MU t
u

17 for u ∈ [n]:
18 stu ← Process(stu, pub,MU)
19 K u

G ← GetKey(stu)
20 if ∃u, v ∈ [n] : K u

G ̸= K v
G : \\disagreement on group key

21 return 1

Figure 3: Correctness game for continuous group-key agreement scheme CGKA.

- Update(stu, pub; r) in round t takes as input a user’s current state, the public information pub, and
random coins r . It returns updated state st ′u and a update message MU t

u.

- Deterministic algorithm Process(stu, pub,M) gets as input a user u’s state, the public information pub,
and a set M of control messages that either consists of a single group initialization message MI v, or a
family of update messages (MU v)v. Its output is the processing user’s updated state st ′u.

- Deterministic algorithm GetKey(stu) on input a user’s state returns u’s view of current group key KG

belonging to key space CGKA.KS.

When comparing to the syntax of [BDR20], one can find two differences. On the one hand, we chose not
to merge algorithms Setup and Init, as in [BDR20], although this would be possible since we consider the
simple setting where a single static group is created. On the other hand, we include the algorithm GetKey,
present in the original CGKA definition from [ACDT20]. This makes it easier to argue the connection
between the combinatorial and symbolic models. The two main properties that we require from a CGKA
scheme are correctness and security.

Correctness. For correctness we essentially require that, for every valid sequence of operations, in every
round t, all users agree on the current group key K t

G where G = [n] is a static group of cardinality n ∈ N.
We capture the notion of correctness formally in the game of Figure 3. The game gets as input n, the
user u0 ∈ G initializing the group, and a sequence (Ut)t of updates to be applied in every round where
Ut ⊆ G. The game returns the value 0 if the execution was correct and 1 otherwise. Accordingly, we say
that a scheme CGKA is perfectly correct if, for every input (n, u0, (Ut)

tmax
t=1) and all choices of random coins,

we have that 0 = CORRECTCGKA(n, u0, (Ut)
tmax
t=1). As, at every point in time, for a perfectly correct scheme,

all users agree on the current group key, we will denote it simply by KG , instead of K u
G .

Security. For security, we require that the group key of a CGKA scheme recovers from corruption as-
suming that every party did at least k updates since their last corruption. More formally, we consider the
security notions of indistinguishability of the group key from random (IND-k-PCSmode), and one-wayness
(OW-k-PCSmode). Here, mode ∈ {¬RC,RC} indicates whether the corruption of a user reveals only their
private state in the current round, or also additionally the random coins they sampled in the round. Thus,
we end up with 4 different security notions. The weakest, OW-k-PCS¬RC, is used for our lower bounds in
Section 3.2 and the strongest, IND-k-PCSRC, for our new upper bound of Section 5.

The security games are formally defined in Figure 4. They provide the adversary A with an initialization
oracle INIT that allows for a single query, that has to be made before using any of the other oracles. It enables
A to set up a universe of users and initialize a group. Using oracle ROUND, the adversary can specify sets of

10

users to concurrently perform updates. All operations are then processed by the members of the group, and
the round counter t is increased. Further, A can, at any point in time, use the corruption oracle CORR(u)
to reveal user u’s current internal state stu, and, in the case that mode = RC, additionally the random
coins u sampled in the current round while updating. Finally, A, at an arbitrary point in time t∗, can make
a single query to the challenge oracle CHALL, which in Game IND-k-PCSCGKAmode (A), depending on challenge
bit b∗, returns either the current group key or a uniformly random key. The adversary wins if it is able to
correctly guess b∗ and safety predicate safe-k-PCS holds. In Game OW-k-PCSCGKAmode (A), the oracle instead
stores the current group key as challenge key K ∗. This has to be computed by A in order to win, again with
the restriction that safe-k-PCS holds. The predicate safe-k-PCS verifies that, for every user that at time t∗

is a member of the group, (a) they were never corrupted after t∗ and (b) since their last corruption before t∗

they performed at least k updates.

Definition 2 (k-PCS security). Let CGKA be a continuous group-key agreement scheme, k ∈ N, and mode ∈
{RC,¬RC}. Then CGKA is IND-k-PCSmode secure, if for every PPT adversary the advantage function∣∣Pr[IND-k-PCSCGKAmode (A)⇒ 1 | b∗ = 1]− Pr[IND-k-PCSCGKAmode (A)⇒ 1 | b∗ = 0]

∣∣
is negligible.

Further, CGKA is OW-k-PCSmode secure, if for every PPT adversary the advantage function

Pr[OW-k-PCSCGKAmode (A)⇒ 1]

is negligible.

Remark 1. We make the following observation about the security model.

(i) In this work we are interested in the communication cost of achieving post-compromise security, and
thus ignore attacks breaching forward secrecy, i.e., learning group keys from previous rounds by cor-
rupting users. This is encoded in lines 35 and 36 of the safe predicate, which disallow corrupting users
after the challenged round t∗.

(ii) Our security model is quite weak. In particular, all initialization and update operations are honestly
generated and immediately processed by all users in synchronous rounds. We point out that this only
strengthens our lower bounds, as they hold even for a security notion far weaker than what one would
aim for in practice. While this leaves open the possibility of improving on our bounds by switching to
a stronger security notion, we point out that they are closely matched by the upper bound of Section 5,
which we expect to be easily made secure in asynchronous settings with a semi-honest server using
standard techniques to ensure consistency (e.g. signatures, a key schedule, transcript and parent hashes,
etc.[AAN+22a, BBR18, AJM22]).

Restrictions. Our lower bounds apply to CGKA schemes CGKA satisfying the following two restrictions.

- CGKA does not use nested encryption (NNE). This means that users do not create layered ciphertexts
of the form Enc(pk1,Enc(pk2,m)).

- CGKA does not distribute work (NDW). This means that, if in any round a user get access to a secret
they did not previously possess, then they must have either sampled it by themselves or recovered it
from the update message of a single user.

The properties are not directly exploited in our proofs in the combinatorial model. Instead, we use them to
show that bounds in the combinatorial model also hold in the symbolic model. We defer the restrictions’
formal definitions to Section 4 (Def. 5 and Def. 7), where we will also formally justify their impact on the
combinatorial model. We point out that all CGKA schemes that we are aware of satisfy both properties.

We also consider an additional property. We say that CGKA has publicly-computable update cost (PCU)
if it is always possible to determine the size |MU u| of an update that a user u would produce if asked to

11

Game IND-k-PCSCGKAmode (A)
00 b∗ ←$ {0, 1}
01 b← AINIT,ROUND,CORR,CHALL

02 return [b = b∗] ∧ safek-PCS

Game OW-k-PCSCGKAmode (A)
03 K ← AINIT,ROUND,CORR,CHALL

04 return [K ∗ = K] ∧ safek-PCS

Oracle INIT(n, u0) \\one call; called first

05 t← 0
06 Cor[u]← ∅, Upd[u]← ∅ for all u ∈ [n]
07 Coins[u, t]← ∅ for all u ∈ [n], ∀t
08 rsetup ←$ Rnd
09 (pub, (stu)u∈[n])← Setup(n; rsetup)
10 r ←$ Rnd ; Coins[u0, t]←∪ {r}
11 (stu0

,MI 0u0
)← Init(stu0

, pub, n; r)
12 for u ∈ [n]:
13 stu ← Process(stu, pub,MI 0u0

)
14 KG ← GetKey(stu)
15 return pub,MI 0u0

Oracle CHALL \\one call, Game IND-k-PCSCGKA
mode(A)

16 t∗ ← t
17 K0 ←$ CGKA.KS; K1 ← KG

18 return Kb∗

Oracle CHALL \\one call, Game OW-k-PCSCGKA
mode(A)

19 t∗ ← t
20 K ∗ ← KG

Oracle ROUND(Ut)
21 t← t+ 1
22 MU ← ∅
23 for u ∈ Ut:
24 require u ∈ [n]
25 Upd[u]←∪ {t}
26 r ←$ Rnd ; Coins[u, t]←∪ {r}
27 (stu,MU

t
u)← Update(stu, pub; r)

28 MU ←∪ MU t
u

29 for u ∈ [n]:
30 stu ← Process(stu, pub,MU)
31 KG ← GetKey(stu)
32 return MU

Predicate safek-PCS

33 for u ∈ [n]:
34 if Cor[u] ̸= ∅
35 if ∃t ∈ Cor[u] : t ≥ t∗: \\corruption after challenge

36 return 0
37 tcu ← max{t ∈ Cor[u]}
38 if |{t ∈ Upd[u] : tcu < t ≤ t∗}| < k: \\too few updates

39 return 0
40 return 1

Oracle CORR(u)
41 Cor[u]←∪ {t}
42 return (stu,Coins[u, t]) \\ if mode = RC

43 return stu \\ if mode = ¬RC

Figure 4: Security games IND-k-PCSmode for indistinguishability and OW-k-PCSmode for one-wayness of
group keys with respect to mode of randomness-corruption mode ∈ {RC,¬RC}. The game is defined with
respect to continuous group-key agreement scheme CGKA and adversary A. We require that the adversary’s
first call is to oracle INIT, which can only be queried once.

update given access only to public information, i.e., pub, as well as the sets of update messages sent so far.
With this additional property we can show that not only there exists a sequence of updates for which the
total communication cost is at least roughly n1+1/k · k/ log(k), but it is also possible to find the sequence
using only public information. Formally, CGKA schemes with publicly-computable update cost are defined
as follows.

Definition 3 (Publicly-computable update cost). Let CGKA be a CGKA scheme. Consider an execution
of game IND-k-PCSmode (or OW-k-PCSmode). We say that CGKA has publicly-computable update cost if,
for every round t and for every user u ∈ Gt with internal state st tu and public information pub, it is possible
to efficiently compute |MU |, where (st ′,MU)← Update(st tu, pub; r) would be the output of calling the update

procedure, from public information at the end of round t− 1 (i.e., all messages MI 0u0
and MU t′

u sent in any
round t′ ≤ t−1, the sequence (Ut′)t′≤t−1, n, k, pub and u0). Note that, in particular, the size of MU must be
independent of the random coins r used to generate the update message. We say that that CGKA has offline
publicly-computable update cost if the same property holds using only the initialization messages MI 0u0

, the
sequence (Ut′)t′≤t−1, n, k, pub and u0.

All CGKA schemes that we are aware of have offline publicly-computable update cost. For example, for
schemes based on ratchet trees, as for example TreeKEM or CoCoA, the size of every user’s next update is
fully determined by the position of blank and non-blank nodes in the ratchet tree, which can be determined
given just the sequence of update / propose-commit operations.

12

3 Lower Bounds in the Combinatorial Model

In this section we define a self-contained combinatorial model capturing CGKA schemes recovering from
corruption in k rounds of updates and then prove a lower bound on the communication complexity of such
schemes. The model is given in Section 3.1, the bound in Section 3.2.

3.1 The Combinatorial Model

We now present a purely combinatorial model capturing an adversary interacting with a correct and secure
CGKA scheme built from public-key encryption and pseudorandom functions. The interaction proceeds in
rounds, during which users schedule update operations and at the end of which a set of users is corrupted.

High-level structure. An instance of the combinatorial model is characterized by a tuple (n, k, tmax, C0)
and a sequence (Ut, Ct)

tmax
t=1 , where n, k, tmax ∈ N, C0 ⊆ [n], and Ut, Ct ⊆ [n] for all t. Intuitively, this

corresponds to setting up the group G = [n] and in round 0 corrupting the set of users C0. The se-
quence (Ut, Ct)

tmax
t=1 determines the operations performed in the following tmax rounds, where

- Ut is the set of users performing an update in round t, and

- Ct is the set of users corrupted at the end of round t.

Integer k determines the safety requirement imposed on the CGKA scheme. More precisely, we aim to
capture CGKA schemes that recover from corruption after k updates, meaning that if every user did at least
k updates since the last round in which they were corrupted, then the group must agree on a secure key.
Formally, consider an instantiation of the combinatorial model with respect to (n, k, tmax, C0) and (Ut, Ct)t
as described above. We say that a round t ∈ {0, . . . , tmax} is safe, if for every user u ∈ G such that u ∈ Ct′

for some t′ there exist rounds t1, . . . , tk such that

u ∈ Uti for all i ∈ {1, . . . , k} and max{tc ∈ {0, . . . , tmax} : u ∈ Ctc} < t1 < · · · < tk ≤ t . (1)

Recall that since we want to only argue about post-compromise security but not forward-secrecy the condition
also excludes the corruption of users after round t.

Set system and cost function. The main intuition behind the combinatorial model is to associate the
secure PKE and PRF keys present in the CGKA scheme in round t to the set of users in G that have access
to them at this point in time, i.e, can recover them from their internal state. 3 Here ‘secure key’ refers
to keys that were established by update operations and cannot be trivially recovered from the adversary.
The adversary is able to get access to keys directly by corrupting users’ states, or by recovering them from
protocol messages. The latter is possible if the message contains the key in plain, if it contains an encryption
of the key under a key the adversary has access to, or if the key is the result of a PRF evaluation under a
key the adversary has access to. In every round the sets S(sk) of users having access to secure keys sk form
a subset of 2G . Intuitively, security and correctness of a CGKA scheme imply that the system of associated
sets should satisfy certain properties, and that adding sets to it by scheduling updates comes at the cost of
sending ciphertexts. These properties are stated below and, looking ahead, will serve as the main tools to
derive our lower bound. For an illustration of the set system corresponding to a ratchet tree as described in
the introduction see Figure 5 (Top).

Formally, consider an instantiation of the combinatorial model with respect to (n, k, tmax, C0) and (Ut, Ct)t.
We require the existence of a cost function Cost and a sequence (St)0≤t≤tmax of set systems St ⊆ 2G . The
cost function and sequences are required to satisfy three properties to be given further below. The cost
function takes as input

- the user u ∈ G performing the update operation,

3More precisely, in our translation to the symbolic model in Section 4 we will use the set of users that at some point between
the last time they were corrupted and round t had access to the key.

13

(pk1, sk1)
{1}

(pk2, sk2)
{2}

(pk3, sk3)
{3}

(pk4, sk4)
{4}

(pk5, sk5)
{5}

(pk5, sk5)
{5}

(pk6, sk6)
{6}

(pk7, sk7)
{7}

(pk c, sk c)
{3, 4, 5}
(pk c, sk c)
{3, 4, 5}

(pkdskd)
{5, 6, 7}
(pkd, skd)
{5, 6, 7}

(pka, ska)
{1, 2}

(pk b, sk b)
{6, 7}

(pke, ske)
{1, . . . , 7}
(pke, ske)
{1, . . . , 7}

S = {1, . . . , 7}
S1 S2 S3 S0 S4

S′ = {5, 6, 7}
S′
0 S′

1

Figure 5: Top: Illustration of a ratchet tree and its associated set system St. Vertices contain key-pairs
(above) and the associated set (below). Keys already present in the system at time t − 1 are depicted in
black and keys added by user 5 in round t in blue with shaded background. Edges indicate that knowledge
secret key of the source implies knowledge of the one of the sink. Dashed, blue edges correspond to cipher-
texts Encpksource

(sk sink) sent by user 5 in round t, solid edges either to keys derived using a PRF in round t
(depicted in blue) or to keys communicated in a previous round (depicted in black). Accordingly, user 5 gen-
erated key-pairs (pk5, sk5) and (pkd, skd) using fresh randomness, and (pk c, sk c) and (pke, ske) using a PRF.

Bottom: Depiction of the sets required to exist by property (iii) using the examples S = {1, . . . , 7} =
⋃k

i=0 Si

and S′ = {5, 6, 7} =
⋃k′

i=0 S
′
i with k = 4 and k′ = 1 corresponding to the secret keys ske and skd respectively.

We have S0 = {5} = S′
0, S1 = {1, 2}, S2 = {3}, S3 = {4}, and S4 = {6, 7} = S′

1. Note that the number of
ciphertexts sent to communicate the secret keys corresponding to S and S′ to their members are 5 > k and
1 = k′ respectively, thus satisfying the inequality on the user’s cost function required by property (iii).

- the round t with 1 ≤ t ≤ tmax, and

- the history Mt = (n, k, (Ut′)1≤t′<t) of sets of users performing updates in the previous rounds.

Its output is an integer Cost(u, t,Mt). For better legibility, we will simply write Cost(u, t) whenever the
third input is clear from context.

Note that while the cost of a user’s update in a given round depends on the operations performed in
previous rounds, it does not depend on the sets Ct′ of users corrupted in previous rounds. The latter is
justified, since, looking ahead, in the security game in the symbolic model, users are not aware whether they
are corrupted or not. However, if asked to update by the adversary, they may decide to create particular
ciphertexts depending on the history of operations performed so far, as these may have impacted their
internal state.

Requirements on set system and cost function. We now give three properties to be satisfied by the
cost function and the set system.

(i) Correctness of the CGKA scheme implies that group members share a common key. Further, by
security, whenever a round is safe, the corresponding shared key must not be known to the adversary
at this point in time.

Formally, if round t is safe we require that G = [n] ∈ St.

14

(ii) If a user is corrupted in some round, all keys they currently have access to can also be recovered by
the adversary and therefore should be considered insecure. This is represented by St not containing
any sets that include a party corrupted in round t.

Formally, for all t ∈ {0, . . . , tmax} and all u ∈ Ct we have that S ∈ St implies that u /∈ S.

(iii) The third property captures how users agree on new keys when using basic cryptographic primitives
(PRFs and PKE) and which cost in terms of ciphertexts sent is incurred by communicating these
keys to other users. A user u ∈ G can always sample a new key locally. Further, from such a key
or one already present in the system they can derive a chain of new keys using PRF evaluations. To
communicate the key sk to other users they can encrypt it under a public key pk ′ that must have either
been present in the system at the end of round t − 1 or been previously generated by u in round t.
From the resulting ciphertext, every user with access to the corresponding sk ′ is able to derive sk as
well as all keys derived from sk using PRF evaluations. Note that if sk ′ is insecure, then the adversary
can recover sk .

In terms of sets this essentially means that the set S ∈ St of users able to recover sk can be covered
by a union of sets in St−1 (and potentially a singleton {u} in case user u generated the starting point
of the PRF evaluation chain from fresh randomness) and that the cost of the user communicating sk
to the other members of S should be at least the number of sets forming the union (where sometimes
one ciphertext can be saved, as the key serving as a starting point of a chain of PRF evaluations needs
not be communicated).

Formally, for every t ≥ 1 and every S ∈ St we require that there exist h ∈ N≥0 and S0, . . . , Sh, such
that either

S0 = {u} for some u ∈ Ut or S0 ∈ St−1 , (2)

and if h ≥ 1 then Si ∈ St−1 for all i ∈ {1, . . . , h}. Further, we require that

S ∩ C≤t ⊆
h⋃

i=0

Si (3)

where C≤t =
⋃

0≤t′≤t Ct′ are the users that have been corrupted at least once in or before round t.
And, regarding the cost function, we require that

∃u ∈ S0 ∩ Ut such that Cost(u, t) ≥ h . (4)

Note that if in Equation 2 we have S0 = {u} then the user in Equation 4 must be u. Finally, we
can connect the cost of adding a set to the set system St to its MinCover with respect to St−1. Indeed,
for S ∈ St, if u is the user required to exist by Equation 4, then by Equations 2, 3, and 4 it holds that

Cost(u, t) ≥ |minCover⊇(S ∩ C≤t,St−1 ∪ {u})| − 1 . (5)

The precise connection between the combinatorial model and the symbolic model is established later
in Section 4. There, we essentially show that an adversary playing the one-wayness security game in the
symbolic model with respect to a correct and secure CGKA scheme that satisfies the restrictions described
in Section 2.2 implies the existence of a set system St satisfying Properties (i)-(iii) if one uses the number of
ciphertexts sent by a user u in round t as cost function Cost(u, t).

3.2 Lower Bound in the Combinatorial Model

We now give a lower bound on the communication cost required to recover from compromise within k rounds
in the combinatorial model. Conceptually, our proof proceeds in two steps. First, we lower bound the sum
of the maximal per-user update cost over all rounds. This bound is a best-case bound, i.e., it holds with
respect to every sequence (Ut)t of updating users. In a second step we then prove our main result, a bound
on the total cost required to recover from corruption. This bound is worst case, i.e., it holds with respect to
an adversarially chosen sequence of updating users. Concretely, we will exploit that the cost of a user u ∈ Ut

15

updating in round t does not depend on the cost of other members of Ut updating concurrently. This enables
us to find a sequence (Ut)t for which all members of Ut have roughly the same update cost, which yields the
desired bound as the bound on the maximal per-user update cost implies that the cost of the users in Ut in
sufficiently many rounds t must be quite large.

Lower bound on the maximal per-user update cost. We first consider the scenario that after an
arbitrary setup phase of tc rounds a set of c users in G = [n] is corrupted and that after m subsequent
rounds of updates we have G ∈ St (intuitively corresponding to the existence of a secure group key). Below,
we bound the sum of the maximal per-user update cost over the m rounds. Note that this bound holds
irrespective of how the sets Ut of updating users are chosen.

Proposition 2. Let n, k, tc,m ∈ N, C ⊆ [n], and c = |C| such that ln(c) ≥ m − 1. Let tmax = tc + m
and consider an instantiation of the combinatorial model with respect to (n, k, tmax, C0), (Ut, Ct)t, where
Ctc = C, Ct = ∅ for t ̸= tc, and (Ut)t is an arbitrary sequence.

If G = [n] is contained in the set-system Stmax at the end of round tmax = tc +m, then we have

m∑
t=1

max
u∈Utc+t

Cost(u, tc + t) ≥ (m− 1)
(

m−1
√
c− 1

)
.

Proof. For t ∈ {1, . . . ,m} let st = max{|S ∩ C| : S ∈ Stc+t} denote the largest number of (previously)
corrupted users that are contained in an element of Stc+t.

Let tmin ∈ {1, . . . ,m} be minimal such that stmin > 0. We now argue that stmin = 1. Note that by
Property (ii), in round tc no S ∈ Stc contains any of the users in C. Now, for contradiction assume stmin > 1,
implying the existence of a set S ∈ Stc+tmin

containing more than one formerly corrupted user. Let S0, . . . , Sh

be the sets guaranteed to exists by Property (iii). Then S0 must contain at most one user of C as C ∩S = ∅
for all S ∈ Stc+tmin−1. Further, if h ≥ 1 then all Si with i ≥ 1 are elements of Stc+tmin−1 and thus cannot
contain any users in C. This is in contradiction to stmin > 1. Thus, we have stmin = 1 as well as sm = c,
which directly follows from [n] ∈ Stc+m. This implies

m∏
t=tmin

st/st−1 = sm/stmin
= c . (6)

Further, we have maxu∈Utc+t Cost(u, tc+ t) ≥ st/st−1−1 for every tmin+1 ≤ t ≤ m. To see this consider

S ∈ Stc+t with |S ∩ C| = st. By Property (iii) we have that S ∩ C ⊆ S0 ∪
⋃h

i=1 Si and Cost(u, tc + t) ≥ h
for some user u ∈ Ut, h ∈ N≥0, S0 ∈ Stc+t−1 ∪ {u}, and Si ∈ Stc+t−1. Since every set in Stc+t−1 and in turn
also S0 contains at most st−1 users in C we have that the cover of S must consist of at least st/st−1 sets,
i.e., we have maxu∈Utc+t

Cost(u, tc + t) + 1 ≥ h+ 1 ≥ st/st−1 as desired.
To conclude, we will make use of the inequality of arithmetic and geometric means (Proposition 1). By

setting m′ = m− tmin and xt = stmin+t/stmin+t−1 for t = 1, . . . ,m′ and defining x =
∑m′

t=1 xt we obtain from

Equation 6 that c ≤
∏m′

t=1 xt ≤ (x/m′)
m′

. Solving for x gives

m∑
t=1

max
u∈Utc+t

Cost(u) ≥
m∑

t=tmin+1

(st/st−1 − 1) = x−m′ ≥ m′ (m′√
c− 1

)
≥ (m− 1)

(
m−1
√
c− 1

)
,

the statement of the proposition. Here, in the last step we used the fact that the function m′ 7→ m′ m′√
c is

monotonously decreasing on the interval [1, ln(c)] and that by assumption m− 1 ≤ ln(c).

From maximal per-user cost to total-communication cost. We now show that for an adversarially
chosen sequence (Ut)t of sets of updating users actually almost all users have to adhere to the bound derived
in the previous paragraph. Intuitively, after an arbitrary warm up phase of tc rounds and corrupting a linear
fraction of users in round tc, we construct (Ut)t such that either all updating users have roughly the same

16

update cost, or all users have a very small update cost. This procedure will then be repeated for sufficiently
many rounds to force that a linear fraction of all users in the group has updated at least k times. In this
case the final round tmax must be secure enforcing that G ∈ Stmax

. This allows us to use the bound derived
in the previous paragraph to show that the communication cost of rounds corresponding to the former case
must be substantial. We obtain the following.

Theorem 3. Let k, n, tc ∈ N and 0 < ε < 2/5 be a constant such that (1+ε)k ∈ N. Set αε =
ε−5/2ε2+ε3

8(1+ε) > 0

and tmax = tc + (1 + ε)k. If 3 ≤ k ≤ ln(αεn), then for every sequence (Ut)
tc
t=1 there exists a set C ⊆ [n] of

size ⌈αεn⌉ and a sequence (Ut)
tmax
t=tc+1 such that the instantiation of the combinatorial model with respect to

(n, k, tmax, ∅) and (Ut, Ct)
tmax
t=1 , where Ctc = C and Ct = ∅ if t ̸= tc, satisfies

(1+ε)k∑
t=1

Cost(Utc+t) ≥
(k − 1)

4
·
⌊

2εn

5(1 + ε) ⌈log(k)⌉

⌋(
(αεn)

1
(1+ε)k−1 − 1

)
.

Proof. We postpone the definition of C and first describe how the sets of updating users are chosen. In
round tc + t for every user u consider the communication cost Cost(u, tc + t) incurred if the user would
update in this round. Let δ = ((k − 1)/(2(1 + ε)k)) · ((1+ε)k−1

√
αεn)− 1). Given (U ′

t)t′<tc+t the set Utc+t of
users to update is chosen according to the following case distinction.

(a) Let n′ = n(1 − ε/(4 log(k))). If at least n − n′ users have an update cost Cost(u, tc + t) > k · δ, then
Utc+t is chosen to be a set of ⌈n− n′⌉ of those users.

(b) Else, if at least n′(1− ε/2) users have an update cost Cost(u, tc + t) < δ then Utc+t is chosen to be a
set of ⌈n′(1− ε/2)⌉ of those users.

(c) Else, as we will show below, we can find a set Utc+t ⊆ [n] of ⌈n′(1− ε/2)⌉ users u with update costs
for round tc + t satisfying∑

u∈Utc+t

Cost(u, tc + t) ≥ max
u∈Utc+t

Cost(u, tc + t) · 1
2

⌊
εn′

2 ⌈log(k)⌉

⌋
. (7)

Note, that if in any of the rounds case (a) occurs, then the total upload update cost is at least εn/(4 log(k)) ·
kδ = εn(k − 1)/(8(1 + ε) log(k))((1+ε)k−1

√
αεn− 1) and in particular exceeds the desired bound.

This allows us to restrict to the case, in which (a) never occurs, in the remainder of the proof. Note that in
this case in every round ⌈n′(1− ε/2)⌉ users update. We will show below, that this implies that after (1+ε)k
rounds of updates the set Uk-Update of users that updated in at least k of the rounds after tc must have size at
least ⌈nαε⌉. This, however, means that if we set C = Uk-Update, then the round tmax = tc + (1+ ε)k must be
safe as defined in Equation 1 which by Property (i) of the combinatorial model implies that G = [n] ∈ Stmax .
Thus we are in the setting of Proposition 2 for m = (1 + ε)k and c = ⌈nαε⌉ and obtain

(1+ε)k∑
t=1

max
u∈Utc+t

Cost(u, tc + t) ≥ ((1 + ε)k − 1) ((1+ε)k−1
√
αεn− 1) ≥ (k − 1) ((1+ε)k−1

√
αεn− 1) . (8)

In the following we denote the update cost of user u in round tc+t by ctu := Cost(u, tc+t). Note that in every
round tc+t, in which case (b) occurs, we have that the maximal update cost must be at most maxu∈Utc+t c

t
u <

δ = (k−1)/(2(1+ε)k)·((1+ε)k−1
√
αεn−1). Thus, if we denote the set of such rounds in {tc+1, . . . , tmax} by T(b)

and the set of rounds in which case (c) occurs by T(c), then we obtain
∑

t∈T(b)
maxu∈Utc+t

ctu ≤ (k − 1)/2 ·
((1+ε)k−1

√
αεn− 1). Plugging this in Equation 8 yields

∑
t∈T(c)

maxu∈Utc+t
ctu ≥ (k− 1)/2 · ((1+ε)k−1

√
αεn− 1).

This by Equation 7 implies the theorem’s statement, as

(1+ε)k∑
t=1

∑
u∈Utc+t

ctu ≥
∑

t∈T(c)

∑
u∈Utc+t

ctu ≥
1

2

⌊
εn′

2 ⌈log(k)⌉

⌋ ∑
t∈T(c)

max
u∈Ut

ctu

≥ (k − 1)

4
·
⌊

2εn

5(1 + ε) ⌈log(k)⌉

⌋
((1+ε)k−1

√
αεn− 1) ,

17

Users

Cost

nn′(1− ε/2)n′

δ

k · δ

2 · δ

4 · δ

I1 I2 I3

Figure 6: Existence of Ut satisfying the property of case (c) for k = 8. The interval [(1− ε/2)n′, n′], of users
with update cost between δ and k · δ is split into log(k) subintervals I1, I2, I3 of length n′ε/(2 log(k)). While
within the left and right subintervals the minimal and maximal cost of users differs by more than a factor
of 2, it does not for the middle subinterval. Such a subinterval must always exist as else the cost of user n′

would exceed k · δ. As a consequence the sum of the costs of the users in the middle interval (shaded in dark
gray) covers at least half of maxu∈I2 Cost(u, tc + t) · |I2|, the maximal cost of a user in the interval times the
interval length (area shaded in (dark and light) gray).

where in the last step we used that n′ = (1− ε/(4 log(k)))n ≥ 4n/5 for k ≥ 3, and that 1 + ε > 1.
Thus, it only remains to show that (A) in case (c) a set satisfying Equation (7) exists, and (B) that

|Uk-Update| ≥ ⌈αεn⌉.
Regarding (A), note that in case (c) at least ⌈n′⌉ users have an update cost of at most δk and at least

⌈εn′/2⌉ of these users have an update cost larger or equal to δ. Assume w.l.o.g. that the users are ordered
by update cost, i.e., ct1 ≤ ct2 ≤ · · · ≤ ctn. The intuition behind the statement we aim to prove is that
δ ≤ Cost(u, tc+ t) ≤ δk for the users in the interval [⌊(1− ε/2)n′⌋ , ⌈n′⌉]. Thus, if we divide the interval into
log(k) subintervals of length approximately n′ε/(2 log(k)) then for at least one of those intervals the cost of
the start uj−1 and end point uj must differ by at most a factor of 2. Thus if one lets the ⌈(1− ε/2)n′⌉ users
preceding uj update, already the sum of the update cost of the users contained in the subinterval satisfies
Inequality 7. For an illustration of this see Figure 6.

Formally, for i = 0, . . . , ⌈log(k)⌉ consider the update cost of user ui := ⌊(1− ε/2)n′⌋+i·⌊⌈n′ε/2⌉ / ⌈log(k)⌉⌋.
We then have ctuo

≥ δ and ctu⌈log(k)⌉
≤ kδ (since ⌊(1− ε/2)n′⌋ + ⌈log(k)⌉ · ⌊⌈n′ε/2⌉ / ⌈log(k)⌉⌋ ≤ ⌈n′⌉) im-

plying that there exists j ≥ 2 such that ctuj
/ctuj−1

≤ 2. Indeed, otherwise we would have ctulog(k)
/ctu1

=∏⌈log(k)⌉
i=1 ctui

/ctui−1
> 2⌈log(k)⌉ ≥ k. Now by choosing Utc+t = {uj − ⌈(1− ε/2)n′⌉+1, . . . , uj} and using that

(1− ε/2)n′ ≥ εn′/(2 log(k)) we obtain

∑
u∈Utc+t

ctu =

uj∑
u=uj−⌈(1−ε/2)n′⌉+1

ctu ≥
uj∑

u=uj−1

ctu ≥
⌊⌈

n′ε

2

⌉
· 1

⌈log(k)⌉

⌋
·
ctuj

2
≥ max

u∈U
(ctu) ·

1

2

⌊
εn′

2 ⌈log(k)⌉

⌋
.

We now show (B). Note that if case (a) never occurs, then in every round a set of ⌈(1− ε/2)n′⌉ users
updates. This implies that after (1 + ε)k rounds (1 + ε) ⌈(1− ε/2)n′⌉ k updates were issued. Let 0 ≤ α ≤ 1
denote the fraction of users in [n] that updated in at least k rounds. These users must have made at most
(1+ε)k ·αn updates, while the sum of updates of the remaining users must have been at most (k−1)·(1−α)n.
As the sum of these two terms must exceed the overall number of updates made, we obtain

(1 + ε)kαn+ (k − 1) · (1− α)n ≥ (1 + ε) ⌈(1− ε/2)n′⌉ k ≥ (1 + ε)(1− ε/2)(1− ε/(4 log(k)))nk ,

18

which by solving for α yields

α ≥ (1 + ε)(1− ε/2)(1− ε/(4 log(k)))k/(k − 1)− 1

(1 + ε)k/(k − 1)− 1

≥ (1 + ε)(1− ε/2)(1− ε/4)− 1

2 + 2ε
≥ ε− 5/2ε2 + ε3

8(1 + ε)
= αε .

finally, since the number αn of users updating in at least k rounds must be an integer, we even obtain that
αn ≥ ⌈αεn⌉.

While we phrased Theorem 3 as a single-stage experiment, i.e., only consider the communication required
to recover from corruptions made in a single round, it easily carries over to a repeated experiment consisting
of repeatedly corrupting a linear fraction of the users from which the group has to recover within (1 + ε)k
rounds of updates. Note, that the setting of Theorem 3 allows for an arbitrary setup phase (Ut)t≤tc of tc
rounds. Thus, by simply applying the arguments in the proof iteratively to each recovery phase, we obtain
that the derived bound holds even in an amortized sense, i.e., even in this setting the recovery from each
corruption requires communication of order nk (1+ε)k

√
n/ log(k).

Corollary 4. Let k, n, tc, ε, and αε be as in Theorem 3. Let zmax ∈ N and for 0 ≤ z < zmax set
tc,z = tc + z · (tc + (1+ ε)k) and tmax = zmax · (tc + (1+ ε)k). For all collections of sequences (Ut)

tc,z
t=tc,z−tc+1

with 0 ≤ z < zmax, there exist sets Cz ⊆ [n] each of size ⌈αεn⌉ and collections of updates (Ut)
tc,z+(1+ε)k
t=tc,z+1 such

that for every instantiation of the combinatorial model with respect to (n, k, tmax, ∅) and (Ut, Ct)
tmax
t=1 , where

Ctc,z = Cz and Ct = ∅ if t /∈ {tc,z | 0 ≤ z < zmax}, we have

tc,z+(1+ε)k∑
t=tc,z+1

Cost(Utc,z+t) ≥
(k − 1)

4
·
⌊

2εn

5(1 + ε) ⌈log(k)⌉

⌋(
(αεn)

1
(1+ε)k−1 − 1

)
for very 0 ≤ z < zmax.

4 Lower Bounds in the Symbolic Model

In this section define CGKA in a symbolic model, an approach introduced for public key encryption by
Dolev and Yao [DY83], following the work on multicast encryption by Micciancio and Panjwani [MP04],
and generalized to CGKA by Bienstock, Dodis, and Rösler [BDR20], who considered concurrent updates
for schemes recovering in two rounds. A similar model was also used to lower bound the communication
incurred by users in CGKA schemes in order to achieve PCS, in a setting of multiple groups [AAB+21]. We
show how the questions we are interested in can be translated from the symbolic to the combinatorial model
of Section 3, which allows us to conclude that the bounds derived in the combinatorial model also hold with
respect to the symbolic model.

4.1 The Symbolic Model

We consider schemes constructed from pseudorandom functions and public-key encryption, both modeled
as idealized primitives that take as input symbolic variables, and output symbolic variables. To more easily
distinguish these from non-symbolic variables we use typewriter font. We use the following syntax.

(i) Pseudorandom function: Algorithm PRF takes as input a key K and a message m and returns a key K′ =
PRF(K, m).

(ii) Public-key Encryption: A PKE scheme consists of algorithms (PKE.Gen,PKE.Enc,PKE.Dec), where
PKE.Gen on input of secret key sk returns the corresponding public key pk. PKE.Enc takes as input a
public key pk and a message m, and outputs a ciphertext c← PKE.Enc(pk, m) with message data type.

19

PKE.Dec takes as input a secret key sk and a ciphertext c, and outputs a message m = PKE.Dec(sk, c).
We assume perfect correctness: PKE.Dec(sk,PKE.Enc(pk, m)) = m for all sk, pk = PKE.Gen(sk), and
messages m.

As data types, we consider messages, public keys, secret keys, symmetric keys, and random coins, the
latter being a terminal type. Which variables can be recovered from a set of messages M, is captured by the
entailment relation ⊢.

Data type Grammar rules

Message m ← sk, pk,PKE.Enc(pk, m)
Public key pk ← PKE.Gen(sk)
Secret key sk ← K

Key K ← r,PRF(K, m)
Random coin r terminal type

Entailment relation

m ∈ M ⇒ M ⊢ m
M ⊢ m, pk ⇒ M ⊢ PKE.Enc(pk, m)

M ⊢ K ⇒ M ⊢ PRF(K, m) for all m
M ⊢ PKE.Enc(pk, m), sk : pk = PKE.Gen(sk) ⇒ M ⊢ m

Note that the entailment relation captures (ideal) correctness and (ideal) security of PRF and PKE, as
recovering a PRF output or an encrypted message from a ciphertext requires knowledge of the secret key.
Security is effectively captured by the of a sequence of entailment relations that recover the appropriate
message. Examples and further comments (in the setting of multicast encryption) can be found in [MP04,
Section 3.2]. The set of messages which can be recovered from M using relation ⊢ is denoted by Der(M) :=
{m : M ⊢ m}.

We point out that the model of [BDR20] covers more primitives, concretely, dual PRFs, updatable
PKE, and broadcast encryption. It is an interesting open question to consider whether a translation to
our combinatorial model is also possible if one takes these additional primitives into account. For a brief
discussion on challenges to overcome if one would allow dual PRFs see Remark 3after the proof of this
section’s main result.

Continuous group-key agreement in the symbolic model. A CGKA scheme CGKA in the symbolic
model follows the syntax of Section 2.2. Additionally, we require some of the inputs to CGKA’s algorithms
to be symbolic variables. Concretely, we require that the group keys K, public and internal states pub

and st, random coins r as well as the control messages MI and MU are symbolic. They can also have a
non-symbolic counterpart which we omit as the properties we study and the security game we consider in
the symbolic model do not depend on the non-symbolic variables. However, we often distinguish between
symbolic random coins r and non-symbolic randomness r as this is used in some of the proofs. Intuitively,
symbolic randomness represents the new secrets being sampled, while non-symbolic randomness allows to
capture the fact that the algorithms may flip a coin in order to determine their actions (e.g., the update
algorithm might flip random coins to decide whether to generate certain ciphertexts or not). Further, we
assume that the context symbolic variables, e.g., which key corresponds to a certain ciphertext, or which
keys correspond to a particular set of users, are implicitly known to the algorithms.

We use the game of Figure 3 to define correctness of CGKA, where we additionally require that, for
every algorithm, each of its symbolic outputs can be derived from its symbolic inputs using the entailment
relation ⊢. E.g., if user u computes (st′u, MUu) ← Update(stu, pub; r, r), then we require that st′u, MUu ∈
Der({stu, pub, r}), and similarly if st′u ← Process(stu, pub, M) then it must hold that st′u ∈ Der({stu, pub, M}).

Regarding security, we target the notion of OW-k-PCS¬RC of Definition 2. As our goal is to prove lower
bounds, using one-wayness as the targeted security notion only makes our results stronger compared to using
indistinguishability.

20

We structure the game in rounds, that correspond to the oracle calls that occur between two subsequent
calls to oracle ROUND. We say a query to some oracle was made in round 0 if it was made before the first
query to ROUND, and in round t for t ∈ {1, . . . , tmax}, if it was either the tth query to ROUND, or, for calls
to CHALL or CORR, if it was made after the tth and before the (t+1)st query to ROUND. This allows us to
fully characterize adversaries A by the sequence of inputs to the oracles made in each round. For round 0,
these are the input (n,G0, u0) to INIT and the set C0 of corrupted users; for round t, the set Ut of updating
users queried to ROUND, as well as the set Ct of users corrupted during the round; and finally, t∗ indicating
in which round the single call to CHALL is made. An explicit description of the OW-k-PCS¬RC security
game in the symbolic model can be found in Figure 8.

Definition 4 (Symbolic k-PCS security). Let CGKA be a continuous group-key agreement scheme, k ∈ N.
Then CGKA is OW-k-PCS¬RC secure, if for all (n, u0, C0, (Ut, Ct)

tmax
t=1 , t∗) it holds that

Pr[OW-k-PCSCGKA¬RC (n, u0, C0, (Ut, Ct)
tmax
t=1 , t∗)⇒ 1] = 0

where the probability is taken over the non-symbolic randomness.

This notion of security, in which for any sequence (n, u0, C0, (Ut, Ct)
tmax
t=1 , t∗) the game is lost, is standard

in the literature of symbolic security and used, for instance, in [MP04] and [BDR20]. The requirement
that the probability be zero, implies that the game is not won for every possible choice of non-symbolic
randomness. The reason for this choice rather than requiring that it be a negligible function in log|R|, where
R denotes the set of non-symbolic randomness, is that it may very well be the case that |R| is small since
this is not the randomness used to sample new keys (when it would be reasonable to work with log|R| as a
security parameter). For instance, one could just flip a coin (i.e., R = {0, 1}).

In the game we require that all symbolic random coins used by users are generated disjointly. More
precisely, if rtu denotes the set of random coins used by user u in round t in the init/update procedures, then
we require that r ∈ rtu implies r /∈ rt

′

u′ for all (u, t) ̸= (u′, t′).
We now define a property of CGKA schemes that we will require for our bounds. It essentially forbids

schemes to generate layered ciphertexts of the form PKE.Enc(pk2,PKE.Enc(pk2, m)). For some intuition on
how it factors into our translation to the combinatorial model see Remark 3after the proof of this section’s
main result.

Definition 5 (No nested encryption). We say a scheme CGKA does not use nested encryption if, for all
ciphertexts c ← PKE.Enc(pk, m), the encrypted message is either a secret key or a random coin, i.e., of
type sk, K, or r.

Our goal for the remainder of this section is to show that the task of deriving lower bounds on the com-
munication complexity of correct and secure CGKA schemes translates to the analogue in the combinatorial
model. To this end, we define useful secrets, i.e., secret symbolic variables that the adversary is not able to
derive, and associate them to the set of users with knowledge of them. We prove that these sets satisfy the
properties of the combinatorial model described in Section 3.1 for a cost function that counts the number of
messages sent in a given round by a user.

Useful secrets and associated sets. First, we establish some notation. Consider an adversary playing
OW-k-PCS¬RC. We denote the set of public messages sent up to and including round t by Mt, i.e., for t = 0
we set M0 = {pub, MI0u0

} to be the output of oracle Init; and for every round t ≥ 1 we extend the set by
the output of oracle ROUND: Mt ← Mt−1 ∪ MU, where MU = ROUND(Ut). Further, for t ≥ 0 we track all
variables the adversary learned up to and including round t, via the corruption oracle, in a set CORt. I.e.,
at the beginning of round t, the set CORt is initialized to CORt−1 and, if user u is corrupted in round t, then
their current state stu (meaning the one after all oracle calls of the round) is added to the set. Note that
CORt matches the set CORt, defined in game OW-k-PCS¬RC, that tracks the values known to the adversary
via corruption. This allows us to define the notion of useful secrets s, i.e., variables of type r, K, and sk that
cannot be derived by the adversary, and in round t associate to them the set of users which between their
last corruption and round t at some point had access to s.

21

Definition 6 (Useful secrets and associated sets). Consider adversary A playing game OW-k-PCS¬RC in
the symbolic model and let t ∈ N, and s be a variable of type r, K, or sk generated during the game, before
or in round t. We say that s is useful in round t if s /∈ Der({Mt, CORt}). We define the associated set of a
secret s in round t as

S(s, t) := {u ∈ [n] | s ∈ Der(sttc,uu , (rt
′

u)tc,u+1≤t′≤t, Mt)} ⊆ [n]

where tc,u := max{t̃ | u ∈ Ct̃ and t̃ ≤ t} (tc,u = −1 if u has never been corrupted). We define the associated
set of s after the setup as

S(s,−1) := {u ∈ [n] | s ∈ Der(st−1
u , pub)} ⊆ [n] .

We define the set system in round t as

St := {S(s, t) | s is useful in round t} ⊆ 2[n] .

The intuition behind the definition of S(s, t) is that any user who can derive the secret s in a round t′

such that tc,u + 1 ≤ t′ ≤ t (i.e., s ∈ Der(stt
′

u , Mt′)) should belong to the set S(s, t). This is indeed the case

since stt
′

u ⊆ Der(stt
′−1
u , rt

′

u , Mt′) because symbolic outputs of algorithms can always be derived symbolically
from their symbolic inputs.

The definition of tc,u depends on the user u and the time t, but not the secret s. It is usually clear from
context what round t we are considering, but in some cases we may write tc,u,t to make it explicit. Observe
that for any t ≥ 0, tc,u ≤ t. The following property holds; if s is useful at time t, then for every u ∈ S(s, t) it
must be the case that tc,u < t (if for some u ∈ S(s, t) we have tc,u = t, then s ∈ Der(sttu, Mt) ⊆ Der(Mt, CORt)
and we get a contradiction with the definition of s being useful in round t). The notation st−1

u refers to the
state that u is assigned by the Setup algorithm.

We now define what it means for a scheme to not allow users to distribute work. Intuitively, this
requirement says that whenever a secret (be it already existing or newly generated) is communicated to a
set of users, who did not yet have access to it, then this communication must have been done by a single
user. For example, this notion excludes schemes in which two users u1, u2, already sharing a common key,
communicate this key to users u3 and u4 by having u1 encrypt it to u3, and u2 encrypt it to u4. See Figure 7
for an illustration of a scheme that does make use of distributed work at hand of a ratchet tree.

Definition 7 (No distributed work). Consider a scheme CGKA and an execution of game OW-k-PCS¬RC

with respect to CGKA in the symbolic model. For user u and round t let sttu denote the user’s state in
round t and rtu the random coins generated in round t. We say that CGKA does not allow users to distribute
work if, for all t and every secret symbolic variable s, we have that there exists a user u′ such that for every
u ∈ S(s, t) \ (S(s, t− 1) ∪ {u′}) it holds that s ∈ Der(stt−1

u , Mt−1, MU
t
u′) and s ∈ Der(stt−1

u′ , rtu′ , Mt−1).

Connection to combinatorial model. In the following we show that the three properties required in
the combinatorial model are satisfied by the symbolic model’s associated set system. The first two are quite
natural observations, the last essentially corresponds to a generalization of a statement that is shown in the
proof of [BDR20, Thm. 2] and can be seen as quantifying the cost of adding new sets to the set system St
by updating. We measure the cost in terms of the number of symbolic variables sent by a user u in round
t and denote this quantity |MUtu|. When interested in the cost of a round t, we take the sum over all users
u ∈ Ut.

Intuitively, Property (i) is enforced by correctness and security, as on one hand every member of Gt must
be able to derive the current group key from their state, and the safety predicate being satisfied implies that
the group key at time t∗ must be useful, i.e., Gt∗ ∈ St∗ . Property (ii) corresponds to the simple fact that
no secret derivable from stu can be useful in a round in which the user gets corrupted, as in this case it
can be derived by the adversary as well. Equivalently, a set S ∈ St cannot contain any users in Ct. Finally,
Property (iii) corresponds to the intuition, that the secret s belonging to a new set S = S(s, t) needs to

22

(pk1, sk1)
{1}

(pk1, sk1)
{1}

(pk2, sk2)
{2}

(pk3, sk3)
{3}

(pk4, sk4)
{4}

(pk5, sk5)
{5}

(pk6, sk6)
{6}

(pk7, sk7)
{7}

(pk c, sk c)
{1, 2, 3}
(pk c, sk c)
{1, 2, 3}

(pka, ska)
{4, 5} / {4, 5, 6, 7}

(pk b, sk b)
{6, 7}

(pkd, skd)
{1, . . . , 7}
(pkd, skd)
{1, . . . , 7}

S = {1, . . . , 7}
S0 S1 S2 S3 S4

Figure 7: Top: Example of a ratchet tree and its associated set system St making use of distributed work.
Vertices contain key-pairs (above) and the associated set (below). Edges indicate that knowledge of the
secret key of the source implies knowledge of the one of the sink. Dashed edges correspond to cipher-
texts Encpksource

(sk sink) sent by user 1 in round t, solid edges either to keys derived using a PRF in round t
or to keys communicated in a previous round. Keys already present in the system at time t− 1 are depicted
in black and keys added by user 1 in round t in blue with shaded background. The dotted edge corresponds
to a ciphertext sent by user 5 in round t. Note that the associated set of (pka, ska) changes in round t as
an effect of this ciphertext, and that users 6 and 7 need to decrypt ciphertexts sent by two different users,
namely users 1 and 5, in order to recover skd, implying that the scheme does indeed use distributed work.
Bottom: Depiction of the sets proven to exist in Theorem 9 using the example S = {1, . . . , 7} =

⋃k
i=0 Si

in the set system depicted above. Note that k = 4 matches the number of ciphertexts sent in round t to
establish S, which, however, stem from more than a single user (compare Theorem 9; (iii)).

be communicated to (at least) every member u of S. If s cannot be derived using PRF evaluations from
a secret already known to u, then either it, or a secret which can be derived from using PRF, must be
communicated to u by encrypting it to a useful key that was known to the party in the previous round,
i.e., in round t − 1. In other words, this determines a covering of the set S with sets in St−1 and possibly
a singleton {u} for some updating user u ∈ Ut with the property that the number of symbolic variables
contained in the messages exchanged in round t is at least the number of sets in the said cover minus one.
When we consider schemes in which users do not distribute work, we obtain a simpler statement for property
(iii) and it matches Equation 4 from the combinatorial model.

Lemma 5. If s is useful at time t ≥ 0 and u ∈ S(s, t), one of the following statements is true:

1. there exist a secret s′ and a message ad such that PRF(s′, ad) = s, s′ is useful at time t and s′ ∈
Der(st

tc,u
u , (rt

′

u)tc,u+1≤t′≤t, Mt),

2. s ∈ st
tc,u
u ,

3. s ∈ rt
′

u for some tc,u + 1 ≤ t′ ≤ t,

4. there exists c = Enc(pk, s) ∈ st
tc,u
u ∪ (rt

′

u)tc,u+1≤t′≤t ∪ Mt such that sk ∈ Der(st
tc,u
u , (rt

′

u)tc,u+1≤t′≤t, Mt)
and pk = Gen(sk).

Observe that case 2 is only possible if tc,u = −1, and case 4 does not consider the possibility of nested
encryption as we assume that our scheme does not use it.

Proof. If s is a PRF image, i.e., there exist a secret s′ and a message ad such that PRF(s′, ad) = s, s′ must

be useful at time t and we have two possibilities depending on whether s′ ∈ Der(st
tc,u
u , (rt

′

u)tc,u+1≤t′≤t, Mt).

23

If so, we are in the first case. Else, either PRF(s′, ad) = s ∈ st
tc,u
u ∪ (rt

′

u)tc,u+1≤t′≤t ∪ Mt or there exist
a ciphertext with the properties stated in case 4. By assumption s is useful at time t, so the case when
s ∈ st

tc,u
u ∪ (rt

′

u)tc,u+1≤t′≤t ∪ Mt reduces to only two options, namely, s ∈ st
tc,u
u or s ∈ rt

′

u for some
tc,u + 1 ≤ t′ ≤ t.

If s is not a PRF image, we get a similar case division. Indeed, either s ∈ st
tc,u
u ∪ (rt′u)tc,u+1≤t′≤t ∪ Mt or

there exists a ciphertext with the properties stated in case 4.
The observation that case 2 is only possible if tc,u = −1 follows from the fact that st

tc,u
u ∈ CORtc,u ⊆ CORt

when tc,u ≥ 0.

We now proceed to study case 4 in greater detail.

Lemma 6. If s is useful at time t ≥ 0 and u ∈ S(s, t) and there exists c = Enc(pk, s) ∈ st
tc,u
u ∪

(rt
′

u)tc,u+1≤t′≤t ∪ Mt such that sk ∈ Der(st
tc,u
u , (rt

′

u)tc,u+1≤t′≤t, Mt) and pk = Gen(sk), one of the following is
true:

4.1. c ∈ Mt and sk is useful at time t,

4.2. tc,u ≥ 0, c ∈ st
tc,u
u \ Mt and sk is useful at time t,

4.3. tc,u = −1, c ∈ st−1
u \ Mt and s ∈ Der(rsetup).

Observe that in case 4.3 sk is not guaranteed to be useful at time t.

Proof. By assumption c ∈ st
tc,u
u ∪ (rt

′

u)tc,u+1≤t′≤t ∪ Mt and c is not of type randomness, so it must be the

case that either c ∈ Mt or c ∈ st
tc,u
u \ Mt.

If c ∈ Mt, the fact that s is useful at time t implies that sk is useful at time t. This corresponds to
case 4.1.

If c ∈ st
tc,u
u \ Mt and tc,u ≥ 0, then c ∈ CORtc,u ⊆ CORt. The fact that s is useful at time t implies that so

must sk be. This is case 4.2.
If c ∈ st

tc,u
u \ Mt and tc,u = −1, then c = Enc(pk, s) ∈ st−1

u ⊆ Der(rsetup) because symbolic outputs of
algorithms can always be derived symbolically from their symbolic inputs. Therefore we have to consider
three cases: pk, s ∈ Der(rsetup) or c ∈ rsetup or there exists an encryption of c in rsetup. Only the first of
the three options is possible as c is not of type randomness.

We introduce some notation:

PRF−1(s) := {s′ | ∃k ∈ N≥0∃ad1, . . . , adk : s = PRF(·, adk) ◦ . . . ◦ PRF(·, ad1)(s′)}

Cases 1 in Lemma 5 and 4.1 and 4.2 in Lemma 6 yield a new useful secret sk that satisfies the same
conditions as s in Lemma 5. This makes it possible to repeatedly apply these two results until we reach
cases 2 or 3 or 4.3. This is captured in the following result.

Corollary 7. If s is useful at time t ≥ 0 and u ∈ S(s, t), there exists a sequence {s1,u, . . . , sℓu,u} such that

(i) every secret si,u is useful at time t and si,u ∈ Der(st
tc,u
u , (rt

′

u)tc,u+1≤t′≤t, Mt),

(ii) sℓu,u ∈ PRF−1(s),

(iii) if tc,u ≥ 0, s1,u ∈ rt
′

u for some tc,u + 1 ≤ t′ ≤ t,

(iv) if tc,u = −1, s1,u satisfies that s1,u ∈ st
tc,u
u or s1,u ∈ rt

′

u for some tc,u+1 ≤ t′ ≤ t or s1,u ∈ Der(rsetup),

(v) for every i ∈ {1, . . . , ℓu − 1}, there exist s′i,u such that si,u ∈ PRF−1(s′i,u) and a ciphertext ci,u =

Enc(pk′i,u, si+1,u) ∈ st
tc,u
u ∪ Mt where pk′i,u = Gen(s′i,u),

(vi) for any t∗ such that tc,u,t ≤ t∗ ≤ t we have that if ci,u ∈ st
tc,u,t
u ∪ Mt∗ and u ∈ S(si,u, t

∗) then
u ∈ S(si+1,u, t

∗),

24

(vii) If si,u ∈ Der(rt
′

u) for some tc,u < t′ ≤ t, then si,u ∈ rt
′

u and i = 1. Moreover if tc,u ≥ 0, for every i ≥ 2

it holds that si,u /∈ st
tc,u
u ∪

⋃
tc,u+1≤t′≤t Der(r

t′

u).

Proof. We set X = ∅ and x = s. Now we start a recursive process by considering the following case division
that follows from Lemma 5 and Lemma 6 for secret x:

- If we are in cases 2 or 3, we do X ← {x} ∪X and stop.

- If we are in case 1, the sequence X remains unchanged and repeat the process with x← s′.

- If we are in cases 4.1 or 4.2 of Lemma 6, we do X ← {x} ∪X and repeat the process with x← sk.

- If we are in case 4.3, we do X ← {x} ∪X and stop.

Procedure always stops as argued in the paragraph above Corollary 7. The first five properties follow directly
from Lemma 5, Lemma 6 and the construction of the sequence X. Property (vi) is a consequence of (v) as
we show below.

By assumption, tc,u,t ≤ t∗ ≤ t, therefore tc,u,t = tc,u,t∗ The fact that u ∈ S(si,u, t
∗) implies that si,u ∈

Der(st
tc,u,t∗
u , (rt

′

u)tc,u,t∗+1≤t′≤t∗ , Mt∗). Since ci,u ∈ st
tc,u,t
u ∪ Mt∗ = st

tc,u,t∗
u ∪ Mt∗ we get that u ∈ S(si+1,u, t

∗).

In order to show property (vii) we observe that if si,u ∈ Der(rt
′

u), then either there exists s′i,u such that

s′i,u ∈ PRF−1(si,u) or si,u ∈ rt
′

u . In the first case si,u would not have been included in the sequence, so

it must be the case that si,u ∈ rt
′

u , which also implies that the recursive process stops, i.e., i = 1. It also

follows from the way the sequence is defined that si,u /∈ st
tc,u
u ∪

⋃
tc,u+1≤t′≤t r

t′

u . From the combination of

both properties it follows that si,u /∈ st
tc,u
u ∪

⋃
tc,u+1≤t′≤t Der(r

t′

u) for all si,u with i ≥ 2.

We obtain a corollary of property (vi) that is a consequence of applying it repeatedly.

Corollary 8. If s is useful at time t ≥ 0, u ∈ S(s, t) and there exists an index i ∈ {1, . . . , ℓu} such that
u ∈ S(si,u, t − 1), then either u ∈ S(sℓu,u, t − 1) ⊆ S(s, t − 1) or there is an index k < ℓu such that
u ∈ S(sk,u, t− 1) and ck,u ∈ Mt \ Mt−1.

Proof. We start by recalling the fact that s is useful at time t implies that for every u ∈ S(s, t) it must be
the case that tc,u < t.

If ℓu = i, then property (ii) of Corollary 7 guarantees that S(si,u, t− 1) ⊆ S(s, t− 1) and we would get
u ∈ S(s, t− 1) as desired. Otherwise, ℓu > i and we consider the following two cases:

- If ci,u ∈ Mt \ Mt−1, then it suffices to take k = i since u ∈ S(si,u, t− 1) by assumption.

- Else ci,u ∈ st
tc,u,t
u ∪Mt−1. We have tc,u,t ≤ t−1 ≤ t (where the first inequality follows from the previous

observation that tc,u,t < t) and by (vi) of Corollary 7 for t∗ = t−1, we obtain that u ∈ S(si+1,u, t−1).
We now repeat the same argument depending on whether ℓu = i + 1 or ℓu > i + 1 and if ℓu > i + 1,
we would consider whether ci+1,u ∈ Mt \ Mt−1 (and take k = i+ 1) or ci+1,u ∈ st

tc,u,t
u ∪ Mt−1.

By repeating this argument we either get that u ∈ S(sℓu,u, t−1) and from property (ii) of Corollary 7 deduce
that S(sℓu,u, t − 1) ⊆ S(s, t − 1) and u ∈ S(s, t − 1), or find an index k < ℓu such that u ∈ S(sk,u, t − 1)
with ck,u ∈ Mt \ Mt−1.

With these results we can prove the main result of this section, a theorem that connects the symbolic
model and the combinatorial model.

Theorem 9. Let CGKA be a perfectly correct continuous group-key agreement scheme that is OW-k-PCS¬RC-
secure and does not use nested encryption. Consider an adversary playing game OW-k-PCS¬RC of Figure 8
in the symbolic model.

(i) If KGt
is the group key in round t, then S(KGt

, t) = Gt. In particular, if oracle CHALL is queried in
round t∗ and the safety predicate is satisfied, then we have Gt∗ ∈ St∗ .

25

(ii) If user u was corrupted by the adversary in round t, then for every S ∈ St it holds that u /∈ S.

(iii) Let t ≥ 1. Recall, that Ut ⊆ [n] indicate the users that updated in round t and for user u the sets MUtu
correspond to the control messages generated by performing the corresponding update operation. Then
for every set S ∈ St there exist k ∈ N≥0 and sets {Si}ki=0 such that either

(a) S0 = {u} for some u ∈ Ut, or (b) S0 ∈ St−1

and, if k ≥ 1, Si ∈ St−1 for every i = 1, . . . , k. Furthermore, it holds that

S ∩ C≤t ⊆
k⋃

i=0

Si and
∑
u∈Ut

|MUtu| ≥ k .

where C≤t =
⋃

0≤t′≤t Ct′ are the users that have been corrupted at least once in round t or before. If
CGKA does not allow users to distribute work, then the last statement can be replaced by the following
stronger expression:

∃u ∈ S0 ∩ Ut such that |MUtu| ≥ k .

Before turning to the Theorem’s proof we observe the following.

Remark 2. Looking ahead, we observe the following. Consider an execution of game OW-k-PCS¬RC in the
symbolic model, where CGKA is a perfectly correct, OW-k-PCS¬RC-secure CGKA scheme which does not use
nested encryption and does not allow users to distribute work, and set Cost(u, t) = |MUtu| to be the number of
symbolic variables sent by u in round t. Then, by Theorem 9 the associated set system St (Definition 6) and
Cost satisfy all properties of the combinatorial model described in Section 3.1. As a consequence, to prove
lower bounds on the communication cost of CGKA, i.e., the number of ciphertexts sent during the execution
of the game, it is sufficient to lower bound the cost function for a scheme satisfying the combinatorial model.

Proof of Theorem 9. In Figure 8 we recall the security game for OW-k-PCS¬RC, where G = [n], with respect
to the symbolic model and such adversaries.

(i) By correctness (line 19 of the correctness game), every member u of G must be able to derive the current

group key, KG , from their state, sttu. Therefore KG ∈ Der(sttu) ⊆ Der(st
tc,u
u , (rt

′

u)tc,u+1≤t′≤t, Mt). By
definition, this implies that G ⊆ S(KG , t) and it always holds that S(KG , t) ⊆ G. The safety predicate
being satisfied implies that the group key at time t∗ must be useful, i.e., Gt∗ ∈ St∗ .

(ii) If u ∈ Ct, then tc,u = t and Der(st
tc,u
u , (rt

′

u)tc,u+1≤t′≤t, Mt) = Der(sttu, Mt) ⊆ Der({Mt, CORt}). Therefore
for any secret s that is useful at time t, u /∈ S(s, t).

(iii) We consider the sequences {s1,u, . . . , sℓu,u} that exist for each u ∈ S(s, t) by Corollary 7 and define the
set It :=

⋃
u∈S(s,t){(s′i,u, si+1,u) : i ∈ [ℓu − 1] and ci,u ∈ Mt \ Mt−1}. If (s′i,u, si+1,u) and (s′j,v, sj+1,v)

have the same associated ciphertexts, i.e., ci,u = cj,v, then si+1,u = sj+1,v and s′i,u = s′j,v. This shows
that |It| ≤ |Mt \ Mt−1|.

For any element (s1, s2) ∈ It, we introduce the associated set S(s1,s2) = S(s1, t− 1). It holds that
S(s1,s2) ∈ St−1 since s1 is useful at time t.

We define the set S0 as follows:

S0 =

{
{u}, if s ∈ Der(rtu)

S(s, t− 1), otherwise,

which is well-defined, i.e., there is at most one user u such that s ∈ Der(rtu), because randomness
is generated independently. If S0 = S(s, t − 1), it holds that S0 ∈ St−1 since s is useful at time t.
If s ∈ Der(rtu) for some user u, then either tc,u = t (i.e., u ∈ Ct) and u /∈ S(s, t) or tc,u < t and
u ∈ S(s, t).

Let u ∈ S(s, t) and assume that tc,u ≥ 0. By assumption, s is useful at time t, so tc,u,t < t. From

tc,u ≥ 0, it follows that s1,u ∈ rt
′

u for some tc,u + 1 ≤ t′ ≤ t by property (iii) of Corollary 7. Our goal
is to prove that u ∈ S0 ∪

⋃
(s1,s2)∈It

S(s1,s2) We consider two cases depending on whether t′ = t or not:

26

Game OW-k-PCSCGKA¬RC (n, u0, C0, (Ut, Ct)
tmax
t=1 , t∗)

00 INIT(n, u0)
01 for u ∈ C0: call CORR(u)
02 for t = 1, . . . , tmax:
03 ROUND(Ut)
04 CORt ← CORt−1

05 for u ∈ Ct: call CORR(u)
06 if t = t∗: call CHALL
07 return [K∗ ∈ Der(CORtmax

, M) ∧ safek-PCS]

Oracle INIT(n, u0) \\one call; called first

08 t← 0
09 M← ∅, COR0 ← ∅
10 Cor[u]← ∅, Upd[u]← ∅ for all u ∈ [n]
11 Coins[u, t]← ∅ for all u ∈ [n], ∀t
12 rsetup ←$ Rnd
13 (pub, (stu)u∈[n])← Setup(n; rsetup)
14 r←$ Rnd ; Coins[u0, t]←∪ {r}
15 (stu0

, MI0u0
)← Init(stu0

, pub, n; r)
16 for u ∈ [n]:
17 stu ← Process(stu, pub, MI

0
u0
)

18 KG ← GetKey(stu)
19 M←∪ {pub, MI0u0

}

Oracle CHALL \\one call

20 K∗ ← KG

Oracle ROUND(Ut)
21 MU← ∅
22 for u ∈ Ut:
23 Upd[u]←∪ {t}
24 r←$ Rnd ; Coins[u, t]←∪ {r}
25 (stu, MU

t
u)← Update(stu, pub; r)

26 MU←∪ {MUtu}
27 for u ∈ [n]:
28 stu ← Process(stu, pub, MU)
29 KG ← GetKey(stu)
30 M←∪ MU

Predicate safek-PCS

31 for u ∈ [n]:
32 if Cor[u] ̸= ∅
33 if ∃t ∈ Cor[u] : t ≥ t∗: \\corruption after challenge

34 return 0
35 tcu ← max{t ∈ Cor[u]}
36 if |{t ∈ Upd[u] : tcu < t ≤ t∗}| < k: \\too few updates

37 return 0
38 return 1

Oracle CORR(u)
39 Cor[u]←∪ {t}
40 CORt ←∪ {stu}

Figure 8: Security game OW-k-PCS¬RC in the symbolic model with respect to adversary A that is completely
characterized by its sequence (n, u0, C0, (Ut, Ct)

tmax
t=1 , t∗) of inputs to the oracles.

- if t′ < t, then u ∈ S(s1,u, t − 1) (since s1,u ∈ rt
′

u). By Corollary 8 for i = 1 we either get that
u ∈ S(s, t− 1) = S0 or find an index k < ℓu such that u ∈ S(s′k,u,sk+1,u) with (s′k,u, sk+1,u) ∈ It.

- if t′ = t, we distinguish between the case when ℓu = 1 and ℓu > 1. If ℓu = 1, then u ∈ S0

(since s1,u ∈ rtu). If ℓu > 1 we claim that the ciphertext c1,u must belong to Mt \ Mt−1. By (v) of

Corollary 7, c1,u ∈ st
tc,u,t
u ∪ Mt for some s′1,u such that s1,u ∈ PRF−1(s′1,u) and pk′1,u = Gen(s′1,u),

but s1,u ∈ rtu (this follows from t′ = t) and this implies that the public key pk′1,u is only available

after round t. Therefore c1,u /∈ st
tc,u,t
u (where we use tc,u,t < t) and c1,u /∈ Mt−1, which implies

c1,u ∈ Mt \ Mt−1. Moreover, the fact that u is the only user that knows pk′1,u at the time of

generating the messages in round t, implies c1,u = Enc(pk′1,u, s2,u) ∈ MUtu ⊆ Der(stt−1
u , pub, rtu).

We claim that u ∈ S(s2,u, t − 1). Since c1,u ∈ MUtu ⊆ Der(stt−1
u , pub, rtu), we have either

pk′1,u, s2,u ∈ Der(stt−1
u , pub, rtu) or c1,u ∈ stt−1

u ∪ pub ∪ rtu (we do not consider the possibility

that there is an encryption of c1,u in stt−1
u ∪ pub ∪ rtu since we assume that nested encryption

is not used). The latter case is actually impossible since c1,u /∈ rtu because of the type and
it cannot be that c1,u ∈ stt−1

u ∪ pub because pk′1,u is not available in any round before round

t. In the first case we know that there is no element in Der(stt−1
u , pub, rtu) ∩ PRF−1(s2,u) by

construction of the sequence, so it must be that s2,u ∈ stt−1
u ∪pub∪rtu or there exists a ciphertext

c = Enc(pk, s2,u) ∈ stt−1
u ∪ pub ∪ rtu such that sk ∈ Der(stt−1

u , pub, rtu). We analyze these two
sub-cases:

– if s2,u ∈ stt−1
u ∪ pub∪ rtu, it must be s2,u ∈ stt−1

u ⊆ Der(st
tc,u,t−1
u , (rt̃u)tc,u,t−1+1≤t̃≤t−1, Mt−1)

because of properties (i) and (vii). Therefore u ∈ S(s2,u, t− 1).

– If there exists c = Enc(pk, s2,u) ∈ stt−1
u ∪ pub ∪ rtu such that sk ∈ Der(stt−1

u , pub, rtu),
then c = Enc(pk, s2,u) ∈ stt−1

u ∪ pub because c is not of type randomness. The fact that
c ∈ stt−1

u ∪pub implies that sk ∈ Der(stt−1
u , pub) not just sk ∈ Der(stt−1

u , pub, rtu). Therefore
u ∈ S(s2,u, t− 1).

27

This proves the claim that u ∈ S(s2,u, t− 1).
By Corollary 8 for i = 2 we either get that u ∈ S(s, t− 1) = S0 or find an index k < ℓu such

that u ∈ S(s′k,u,sk+1,u) with (s′k,u, sk+1,u) ∈ It.

This proves that S(s, t) ∩ C≤t ⊆ S0 ∪
⋃

(s1,s2)∈It
S(s1,s2), i.e, S(s, t) ∩ C≤t can be covered with sets in

the family F = {S0} ∪ {S(s1,s2) : (s1, s2) ∈ It}. We use the inequality |It| ≤ |Mt \ Mt−1| to obtain that∑
u∈Ut

|MUtu| = |Mt \ Mt−1| ≥ |It| ≥ |F| − 1 .

This concludes the proof of the first part of property (iii).
For the last part we assume that there is no distributed work, that is, there exists a user u′

such that for every u ∈ S(s, t) \ (S(s, t − 1) ∪ {u′}) it holds that s ∈ Der(stt−1
u , Mt−1, MU

t
u′) and

s ∈ Der(stt−1
u′ , rtu′ , Mt−1). With this additional property we can choose the ciphertexts ci,u in a way

such that every ci,u ∈ Mt \ Mt−1 is actually in MUtu′ . Therefore |It| ≤ |MUtu′ |.
Moreover, if s ∈ Der(rtu) it must be u = u′ and then S0 = {u′}. If s /∈ Der(rtu), the fact that

s ∈ Der(stt−1
u′ , rtu′ , Mt−1) implies that s ∈ Der(stt−1

u′ , Mt−1) and this shows that u′ ∈ S(s, t − 1) = S0.
Thus in both cases u′ ∈ S0 which completes the proof.

Remark 3. Theorem 9 requires that CGKA not use nested encryption, i.e., not generate encryptions of
ciphertexts. On a technical level, this restriction guarantees that for every pair (s1, s2) ∈ It constructed in
the lemma’s proof we have that knowledge of secret s1 implies knowledge of s2. On a more intuitive level,
allowing ciphertexts of the form c = Enc(pk2,Enc(pk1, m)) would enable users to send ciphertext c in one
round but release message m in a later round by at this point in time sending sk2 in the plain, at cost of
no additional ciphertexts. While this does not seem to help with the total communication cost, it could in
principle enable users to distribute their workload over several rounds. An analogous statement holds, if one
allows the use of dual PRFs (as considered in the symbolic model of [BDR20]).

4.2 Lower Bounds on the Update Cost in the Symbolic Model

We now show that the worst-case lower bound on the communication cost of CGKA schemes in the com-
binatorial model (Theorem 3) carries over to the symbolic model for OW-k-PCS¬RC-secure schemes. By
worst-case we mean that we rely on an adversarially chosen sequences of updates. Concretely, the adver-
sary will exploit the fact that users in the set Ut of concurrently updating users are not aware of the other
members of Ut and choose it in a way that essentially forces many users to produce large update messages.

The proof follows the idea already outlined in Remark 2. As a consequence of Theorem 9, if we impose
certain restrictions on the kind of CGKA schemes we consider, we can reduce the problem of showing lower
bounds on the communication cost in the symbolic model to the problem of giving lower bounds in the
combinatorial model for the cost function Cost(u, t) = |MUtu| that counts the number of symbolic variables
sent by u in round t.

Our bound requires CGKA to not use nested encryption and assumes CGKA does not allow users to
distribute work. The former is needed in order to be able to use Theorem 9, whereas the latter guarantees
that in property (iii) of Theorem 9 we obtain the same expression as in Equation 4 of the combinatorial
model. Additionally, if CGKA has publicly-computable update cost, the sequence of adversarially chosen
updates can be computed as the security game is played and if CGKA has offline publicly-computable update
cost, the sequence of updates can be computed after the initialization phase.

The result without any of these additional properties, that is, when CGKA does not have publicly-
computable update cost, guarantees that for any choice of non-symbolic randomness there exists a sequence
of updates for which the total communication cost is at least roughly n1+1/k · k/ log(k). However, it may
not be possible to determine such a sequence using only public information which is the reason why we
introduce the notion of publicly-computable update cost. If CGKA has this property, then it is possible to
find it online, while if CGKA has offline publicly-computable update cost, it can be pre-computed.

28

Corollary 10. Let k, n, tc ∈ N and let CGKA be a correct and OW-k-PCS¬RC-secure CGKA scheme that
does not use nested encryption, and does not allow users to distribute work. Let 0 < ε < 2/5 be a constant

such that tmax = tc + (1 + ε)k ∈ N and set αε =
ε−5ε2/2+ε3

8(1+ε) > 0.

If 3 ≤ k ≤ ln(αεn), then for an arbitrary setup phase of the group G0 = Gt = [n] and an arbitrary
phase of tc rounds of updates (Ut)

tc
t=1 and any choice of non-symbolic randomness in the security game

OW-k-PCS¬RC, there exist a sequence of sets Utc+t of updating users for (1+ ε)k rounds such that the total
communication cost satisfies

(1+ε)k∑
t=1

Cost(Utc+t) ≥
(k − 1)

4
·
⌊

2εn

5(1 + ε) ⌈log(k)⌉

⌋(
(αεn)

1
(1+ε)k−1 − 1

)
.

If CGKA has publicly-computable update cost (Definition 3), the sequence of sets (Utc+t)
(1+ε)k
t=1 can be

computed online, i.e., Utc+t can be computed using public information from the previous rounds. Furthermore,

if CGKA has offline publicly-computable update cost, the sequence of updates (Utc+t)
(1+ε)k
t=1 can be computed

after round tc and is independent of the non-symbolic randomness.

Proof. Let r⃗ = (rtn,u)t∈[(1+ε)k],u∈[n] denote the non-symbolic randomness used in rounds t = tc+1, . . . , tmax,
namely, rtn,u denotes the non-symbolic randomness used by algorithm Update in round t if run by user u,
i.e., u ∈ Ut.

Consider for a fixed r⃗, the function Cost(u, t) = |MUtu| counting the number of symbolic variables sent by u
in round t and the set system Sec(St) (Definition 6). Then, as observed in Remark 2, Cost(u, t) and Sec(St)
satisfy all the properties of the combinatorial model described in Section 3.1. It follows from Theorem 3
that there exist a set C ⊆ [n] of size ⌈αεn⌉ and a sequence (Ut)

tmax
t=tc+1 such that the instantiation of the

combinatorial model with respect to (n, k, tmax, ∅) and (Ut, Ct)
tmax
t=1 , where Ctc = C and Ct = ∅ if t ̸= tc,

satisfies
(1+ε)k∑
t=1

Cost(Utc+t) ≥
(k − 1)

4
·
⌊

2εn

5(1 + ε) ⌈log(k)⌉

⌋(
(αεn)

1
(1+ε)k−1 − 1

)
as desired.

By definition of symbolic security (Definition 4), security must hold for any sequence of corrupted parties
and therefore the bound holds for the aforementioned sequence of updates independently of the choice of
corrupted parties.

If CGKA has publicly-computable update cost, Cost(u, t) can be computed from public information at the
end of round t− 1. By construction of the sets (Ut)

tmax
t=1 in the proof of Theorem 3, they are determined by

the function Cost(u, t). This implies that for every t the set Ut can be computed from public information at
the end of round t− 1 and therefore the sequence (Ut)

tmax
t=1 can be computed online. We observe that by the

argument in the previous paragraph it is not necessary to be able to compute the sequence of corrupted users

online. And if CGKA has offline publicly-computable update cost, the sequence of updates (Utc+t)
(1+ε)k
t=1 can

be computed after round tc by definition.

Analogously to the combinatorial setting it is also possible to give a statement with multiple rounds
of corruptions instead of just considering the communication cost of recovering from a single round of
corruptions. The proof follows the same arguments to the one above and is a consequence of Corollary 4.

Corollary 11. Let k, n, tc, ε, and αε be as in Corollary 10 and let CGKA be a correct and OW-k-PCS¬RC-
secure CGKA scheme that does not use nested encryption, and does not allow users to distribute work. Let
zmax ∈ N and for every integer 0 ≤ z < zmax set tc,z = tc+ z · (tc+(1+ ε)k) and tmax = zmax · (tc+(1+ ε)k).

If 3 ≤ k ≤ ln(αεn), then for an arbitrary setup phase of the group G0 = Gt = [n] and zmax arbitrary

phases of tc rounds of updates (Ut)
tc,z
t=tc,z−tc+1 with 0 ≤ z < zmax and any choice of non-symbolic randomness

in the security game OW-k-PCS¬RC, there exist sequences of updates (Ut)
tc,z+(1+ε)k
t=tc,z+1 and sets of corrupted

29

users Cz ⊆ [n] each of cardinality ⌈αεn⌉ such that the total communication cost satisfies

tc,z+(1+ε)k∑
t=tc,z+1

Cost(Utc,z+t) ≥
(k − 1)

4
·
⌊

2εn

5(1 + ε) ⌈log(k)⌉

⌋(
(αεn)

1
(1+ε)k−1 − 1

)
for every 0 ≤ z < zmax.

If CGKA has publicly-computable update cost (Definition 3), the sequences of sets (Ut)
tc,z+(1+ε)k
t=tc,z+1 can be

computed online, i.e., Utc,z+t can be computed using public information from the previous rounds. Further-

more, if CGKA has offline publicly-computable update cost, the sequence of updates (Ut)
tc,z+(1+ε)k
t=tc,z+1 can be

computed after round tc,z and is independent of the non-symbolic randomness.

5 Upper Bound on the Update Cost

In this section we describe a simple CGKA protocol, inspired by CoCoA [AAN+22a], but both more general
and, for certain values of k, with a lower total upload communication cost. Accordingly, we termed it
CoCoALight. In particular, it can recover from an arbitrary number of corruptions in k rounds and with
a total communication cost in the order of nk k/2

√
n ciphertexts, without any user coordination. While

CoCoA’s communication complexity is lower for low values of k, CoCoALight’s improves for values of k
closer to log(n). This improvement comes at the drawback of non-immediate forward secrecy, which requires
at least k/2 updates from each user prior to their corruption. Likewise, we not prove it secure against
any type of active adversary and, indeed, only describe a simple protocol satisfying IND-k-PCSRC security.
Nevertheless, it shows that the lower bound on PCS from the previous section is only log(k)/ k/2

√
n from

being tight, for k ∈ [4, 2⌈log(n)⌉+1]. Concretely, for the case k = log(n), the gap is of order just log(log(n)).
We will start the section by recalling the general ideas behind the CoCoA protocol in Section 5.1,

to then describe a simple generalization of it in Section 5.2. This generalization allows for PCS in any
k ∈ [2, ⌈log(n)⌉+ 1] rounds, as opposed to the original protocol, which only allowed k = ⌈log(n)⌉+ 1. This
protocol will, in fact, exactly match CoCoA when k = ⌈log(n)⌉ + 1. Accordingly, its communication cost
is proportional to that of CoCoA; in particular, in the order of nk2 k

√
n. We will only provide an informal

definition and security intuition of it, as we will just use this protocol as a stepping stone to better understand
the more efficient CoCoALight, which is formally described in Section 5.3. Section 5.4 contains the security
proof for CoCoALight, and Section 5.5 discusses its efficiency, as well as its disadvantages in terms of forward
secrecy.

5.1 Preliminaries and CoCoA

Ratchet trees. All protocols discussed in this section (as well as the original protocol they all trace back
to, TreeKEM [BBR18, BBR+23], and variations of it [ACDT20, Mat19, AAN+22a, AAN+22b]) are defined
with the help of a data structure called a ratchet tree. The ratchet tree of in-degree ℓ of a group of users G
is a left-balanced ℓ-ary tree where each leaf node is associated to a user u ∈ G . Further, each node in the
tree has an associated PKE key-pair. The general principle, often called the tree invariant is that users will
know the public values associated to all nodes in the tree, but the secret values only of the nodes on their
path to the root. This allows for an efficient rotation of the secret key material in a user’s state: they sample
new keys for nodes on their path, and encrypt the new secrets to the nodes on the co-path. In particular,
this allows for key updates to have cost that is linear in both the in-degree and depth of the tree (i.e., in
ℓ · logℓ n), instead of linear in the number n of users in the group. In order to reflect this hierarchical relation
of node secrets, we consider the edges in the ratchet tree as pointing from the leaves to the root, so that
knowledge of a node’s secret implies knowledge of the secret associated to its child.

Concurrent healing in TreeKEM and CoCoA. Initial versions of TreeKEM required the mentioned
key updates to be performed sequentially by users, each of them having processed all previously sent ones

30

before sending their own. In particular, healing required an amount of communication rounds linear in
the number of updating users. Recent versions of TreeKEM switched to the Propose-and-Commit (P&C)
framework, which separated proposals (updates, adds, removes) from commits, which could execute several
proposals at once. The upside of this approach is that PCS can be achieved in just two communication rounds,
the second one “committing” all update proposals of the first one. The downside is that applying those
concurrent proposals involves blanking, i.e. deleting the key-pair associated to, the nodes on the updating-
user’s path. This implies that both this “commit”, as well as future group operations, will be more expensive
(linear cost in the worst case), as the graph devolves away from its optimal binary-tree structure.

The main observation behind CoCoA is that the updates from the original TreeKEM versions can be
performed concurrently by users, in a way that does not increase the cost of subsequent operations but
accelerates PCS. This is achieved by means of an agreed-upon ordering of the users which establishes which
updates take precedence in the case that two or more concurrent updates attempt to refresh the key ma-
terial of the same node. In such a case, processing such a set of updates will result in that node having
the key-pair set by the update that corresponds to the minimal user, with respect to the aforementioned
ordering. The protocol makes use of a central server, which collects updates and forwards the relevant parts
of them (the ones corresponding to the winning update for each node) at the end of each round. This rather
simple modification to the original TreeKEM protocol has the striking effect that the number of rounds
of communication rounds needed to heal a corruption is no longer linear (in the number of corrupted par-
ties), but logarithmic. While this is longer than the 2 rounds in which P&C TreeKEM can heal, the total
communication is lower, thus circumventing the lower bound by [BDR20]. We note that CoCoA diverges
substantially from other existing CGKAs by having users only store a partial view of the ratchet tree, thus
allowing them to substantially reduce their download cost. We ignore this here for simplicity, as this does
not affect the overall sender communication, nor the healing time.

5.2 Generalized CoCoA healing in k rounds

As mentioned above, CoCoA allows group members to concurrently achieve PCS with less rounds of com-
munication than if updates were done one after the other. This is achieved by progressively healing up the
tree upwards, a healing that is effectively captured in [AAN+22a] in the proof of Lemma 2. With regards
to PCS, this lemma roughly states that after each party has performed ⌈log(n)⌉ + 1 updates since their
last corruption, no key in the resulting ratchet tree can have leaked to the adversary through a corruption.
This is analogous to Lemma 2 in [KPPW+21] (which, in turn, requires each user to have performed a non-
concurrent update since the last corruption), and thus allows for the argument of the latter to carry over.
Its main argument, in a rough simplification, proceeds as follows:

Intuition behind CoCoA’s security proof. The security proof in [AAN+22a] uses previous results
from that of [KPPW+21], which reduces the security of the Tainted TreeKEM protocol to that of a pebbling
game on graphs. In particular, it consider the so-called challenge graph associated to a given epoch, made
up of all nodes whose keys allow the recovery of the challenge key. Then, a reduction is given from the
the CGKA security of the protocol to that of the fairly well-understood Generalized Selective Decryption
(GSD) [JKK+17] game, played on this graph.4

The argument is as follows: consider some key-pair (skv, pkv) associated to node v in the challenge graph
and generated at time t. Consider now the key-pairs associated to (p1, p2) (in the challenge graph), the
parents of v and which allow recovery of skv, i.e., those such that either skv was encrypted under its public
key, or was derived from the same seed by hash evaluations. Then (assuming certain consistency guarantees
between users’ views), for each pi, its key-pair must be the current one or, if not, must have been overwritten
at time t by another key-pair. Either way, for each pi, at time t they are either the most recent key-pair
anyone sampled for that node, or the ones inmediately before that. Through a similar argument, one can
argue that the similarly defined keys associated to the parents of each pi must be either the most recent ones

4This is the case for their proof in the standard model. The proof in the Random Oracle Model proceeds directly without
any reduction to GSD, but uses similar ideas.

31

at those nodes, or among the last two before those. And so on. In particular, if we consider the key-pair
(sk , pk) at the root node at time t, we can deduce that the key-pairs associated to leaf nodes that can recover
sk must be within the last κ = ⌈log(n)⌉+ 1 key-pairs sampled for each of those leaves (at time t), since the
depth of the tree (it is not too hard to see the depth of the challenge graph – a tree, in fact – is bounded by
the maximum depth of the ratchet tree throughout the execution) is ⌈log(n)⌉+1. Thus, if each user updated
κ times since their last corruption, we have the guarantee that any key from which sk is recoverable was
sampled in one of those κ updates and is therefore safe (and one can actually show that exactly κ updates
from each party are actually needed to ensure this).

Generalization to healing in k rounds. The conclusion from the arguments above is that the number
of rounds required for healing is exactly determined by the depth of the tree, i.e. by the length of the longest
path, plus 1. Thus, the generalization to a protocol healing in k rounds for any arbitrary k ∈ [2, ⌈log(n)⌉+1]
can be obtained by considering the use of ℓk-ary ratchet trees of depth k − 1, ℓk = ⌈ k−1

√
n ⌉. Note that the

extreme cases for k = 2 and k = ⌈log(n)⌉+1 correspond exactly to the flat tree where every leaf is a parent
of the root, and to CoCoA, respectively.

The algorithms for this more general protocol would just work as in CoCoA, now resolving conflicts of
concurrent updates by picking a winner between a set of potentially more than 2 users. The only difference
would be that seeds for any newly sampled node in an update would need to be encrypted to a higher number
of nodes, to ℓk−1 in particular, making the overall cost of n users updating k times each to nk(k−1) (ℓk − 1).
Last, the security of the protocol could be argued exactly as above.

5.3 CoCoALight

In this section we will describe a modification of the protocol above with a reduced overall communication
complexity. The protocol uses trees of higher arity ⌈ k/2−1

√
n⌉, as we will require that the length of a user’s

path is ≤ k/2. As in CoCoA, we assume users communicate in rounds, at the end of which the server collects
the sent messages and delivers them to the users.

The version described here is a simplification of a fully-fledged CGKA protocol, as we mainly aim to
illustrate an upper bound in a simple way. In particular:

- We assume implicit authentication, and thus ignore the use of any signatures.

- We consider only static groups, where the set of group members stays unchanged throughout the
execution.5

- We disallow any active attacks, and assume the delivery server behaves honestly, not ever sending in-
consistent messages to different users. This allows us to not introduce checks for redundant, malformed,
or otherwise invalid messages.

As a result of the last point, we can assume total consistency between users views of the group (list of
processed operations, ratchet tree, etc.). In particular, we assume the following robustness guarantees:

Any user u ∈ G , at time t, will only (accept and) process messages that have been issued by
some user v ∈ G at time t′, such that u at t and v at t′ had the same view of the group.6

We stress that our protocol could be enhanced to achieve this guarantees under stronger adversaries,
with control of the delivery server and allowed to send arbitrary packets, using standard techniques, such as
signatures, a key schedule, transcript and parent hashes, etc.[AAN+22a, BBR18, AJM22].

Apart from this, there are mainly two differences to (generalized) CoCoA sketched above. On the one
hand, and in line with the effort to streamline and simplify the protocol to the minimum, we do not consider
partial states here, as mentioned above. On the other hand, and the key feature of the protocol, users

5In practice, dynamic operations could be implemented similar to as in CoCoA, with the slight modification that the user
performing it needs to sample a new seed for vroot (without affecting that user’s st .counter), as an update in CoCoALight is
not guaranteed to generate a new key for the root.

6Actually, our security model gives us the stronger guarantee t = t′.

32

stu.user Returns the leaf associated to user u
stu.T Ratchet tree in the state of user u
stu.ctr Returns the counter in the state of user u
stu.pend Returns either ⊥ or seed from last non-processed update
v.pk Returns the public key in the state of node v
v.sk Returns the secret key in the state of node v
v.blank Returns 1 is v is blank, 0 else.

Table 2: Notation for state and node attributes.

will not rotate the keys for all nodes in their path in each update, but instead just rotate the key of a
single node. Users keep track, by means of a counter, of which node they last refreshed, and will, in the
following update, sample a new key for its child, increasing the counter by 1. In the case that two users send
ciphertexts corresponding to the same node in the same round the server will decide a winner, as in CoCoA,
and thus whose key will be the next one associated to said node, according to any agreed-upon (potentially
deterministic) rule. In the case of such a collision, the user losing will still “make progress” and increase
their counter, and so, in the following update will attempt to rotate the key at the next node in their path.

A consequence of rotating a single key per update is that knowledge of parts of the old state might allow
the recovery of this new key. In particular, the knowledge of the secret key of the parent key of v, when
v’s key is being refreshed, allows the recovery of the latter (as its seed will be encrypted under the former).
Thus, informally, what ensures healing is the progressive rotation of all the path’s keys after corruption, and
starting from the leaf. Note that we have no guarantee as to the state of the user’s counter at the moment
of corruption: in the worst case the user could have been corrupted right after updating their leaf key.
The leakage of this through the corruption would allow the adversary to recover the key of all subsequent
updates, up until the point the user updates their leaf again. Thus, in order to guarantee healing in k
rounds, CoCoALight uses trees of depth ≈ k/2, to ensure a rotation of all keys in the path starting at the
leaf happens within that period.

The protocol is described in detail in Figure 9. Each user in the group has an internal state of the form
st = (u, T , i, γ). Here, u is the identifier of the user, which is in the range [n]. T is a ratchet tree, capturing
the user’s view of the group; if the user has not yet joined a group, it will simply have the setup PKE
key-pair from that user (one can see T in this case as just being the ratchet tree consisting of a single leaf,
that of u). The counter i is an integer in the range (0, d), where d is the length of path(T , u), and keeps
track of the user’s progress along their path. Finally, λ is the seed sampled in the last not-yet-processed
update, which is equal to ⊥ if no such update exists. Even though we do not consider dynamic operations,
nodes in the tree can be blank, meaning they have no associated keys (this occurs in many protocols as
an effect of a removal). This will be the case during the setup of the group, which will start with a tree
whose nodes are all blank, except for the root and the leaves (this is common to most ratchet-tree-based
CGKAs). Blank nodes stop being so once a key is assigned to them by an updating user. The drawback of a
node being blank, is that no secret can be encrypted to it - instead one needs to encrypt to its two parents.
The resolution resol(v) of a node v is the set of nodes under whose keys one has to encrypt to, in order to
communicate a secret to all users whose leaves are ancestors of v. That is, if v is not blank, resol(v) = {v}.
Else, resol(v) = ∪p∈parents(v)resol(p), where parents simply returns the two parent nodes of v in the ratchet
tree.

For simplicity, we assume the (leaf) public keys of each user are known to everyone else; we formalize them
by including them in the public parameters pub. Additionally, we assume for simplicity that the messages
included in the vector M , input to Process, are ordered “bottom-up”, and only a single message per node
is relayed by the server in case of concurrent updates (that of the winner). That is, those corresponding to
nodes lower in the tree appear first. This allows users to process them in order without the off-chance that
they overwrite keys they might later, while still processing M , need. Further, we use the notation in Table 2
to interact with particular keys or elements of users’ states.

33

parents(v) Returns the pair of parents of node v
child(v) Returns the child of node v
path(v) Returns the set of nodes in the path of v to vroot
resol(v) Returns the resolution of node v
leaf(u) Returns the leaf node associated to user u

Table 3: Helper functions for ratchet trees, given implicit tree T .

When referring to nodes we assume an implicit ratchet tree they belong to, since the topology of the
ratchet tree stays unchanged throughout the execution (as our protocol is static). We use the helper functions
from Table 3.

The protocol makes use of the following functions:

- GenTreek(pub, (pk , sk), r) – Takes as input the public parameters pub, which includes the public keys
of n users, a key-pair corresponding to one of those users, and a secret r. Outputs an all blank ratchet
tree of depth ⌊k/2⌋ with n leaves, except for the root node, that has the seed r associated to its
root; and the leaves, which have the n public keys associated to them (also the secret key sk for the
corresponding leaf).

- PathNode(u, i) – Takes as input a user u (implicitly part of a group with associated ratchet tree T)
and and integer i. Outputs the ith node in path(u), with the 0th node being leaf(u).

5.4 Post Compromise Security proof

In this section we show that the protocol described above achieves PCS after k rounds of communication for
any k ∈ [4, 2(⌊log(n)⌋+ 1)].7 This is formalized through the security game in Figure 4.

To prove security of CoCoALight, we follow the approach of [KPPW+21] and consider the graph structure
that is generated throughout the security experiment. A node v in the so-called CGKA graph is associated
with seed r, and a key-pair (v.pk , v.sk) = PKE.Gen(r). The edges of the graph, on the other hand, are
induced by dependencies via (public-key) encryptions. To be more precise, an edge (v, w) corresponds to a
ciphertext of the form PKE.Encv.pk (rw). The structure of the CGKA graph depends on the sequence of calls
to oracles INIT and ROUND made by the adversary. To argue security of a group key K , we consider the
subgraph of the CGKA graph that consists of all ancestors of the node associated to said group key – the
so-called recovery graph of K . We will be particularly interested in the the recovery graph of the challenge
group key, which we will refer to as the challenge graph, following terminology from previous works. By
correctness, the challenge group key can be derived from any secret key/seed associated to a node in the
challenge graph. To argue security, none of the secret keys in the challenge graph must be leaked to the
adversary via a corruption. Rather strikingly, since k updates for each user means each user rotates every
key in their path to the root only twice, we show that this is indeed the case for CoCoALight.

Theorem 12. Let K be the challenge group key in the IND-k-PCSRC game and assume safek-PCS returns
1. Then none of the seeds and secret keys in K ’s challenge graph are leaked via corruption.

Proof. First, observe that from any execution of the game we can extract a unique sequence of group keys
(and their corresponding recovery graphs), given by the initial call to INIT, and all subsequent calls to
ROUND. We will refer to this sequence as (Ki)i∈[tmax], and the corresponding recovery graphs as (Ci)i∈[tmax].
Additionally, each epoch has an associated ratchet tree Ti. In the case we are considering of static groups, all
the Ti are the same when seen as graphs, though will obviously differ in the key material associated to them.
Further, some of the Ti will have blank nodes, as will be the case with the ratchet tree after initialization.
However, when seen as graphs they will all be isomorphic, and we will simply refer to them by T . Note that,

7We can assume k is even, since for k odd, the scheme outlined above will actually heal in k − 1 rounds.

34

Algorithm Setup(n)
00 s̄t , pub ← ∅
01 for u ∈ [n]:
02 r ←$ Rnd
03 (pk , sk)← PKE.Gen(r)
04 stu ← (u, (pk , sk), 0,⊥)
05 s̄t ← s̄t ∪ st i
06 pub ← pub ∪ (u, pk)
07 return s̄t , pub

Algorithm Process(st , pub,M)
08 (u, T , i, γ)← st
09 if M [0] = “init”:
10 (pk , sk)← T
11 c← M [u]
12 r ← Decsk (c)
13 T ← GenTreek(pub, (pk , sk), r)
14 st ← (u, T, 0,⊥)
15 else:
16 for (v, pk , c) ∈ M :
17 v.pk ← pk
18 if v = PathNode(u, i) and γ ̸= ⊥:
19 (v, r)← γ
20 (v.pk , v.sk)← PKE.Gen(r)
21 st .pend← ⊥
22 if i = |path(u)|:
23 st .counter← 0
24 else st .counter← i+ 1
25 elseif v ∈ path(u) and c ̸= ⊥:
26 w = resol(v) ∩ path(u)
27 r ← Decskw

(c)
28 (pk , sk)← PKE.Gen(r)
29 v.sk ← sk
30 return (st , vroot.sk)

Algorithm Init(st , pub, n)
31 (u, (pk , sk), i, γ)← st
32 (j, pk j)j∈[n] ← pub
33 assert u ∈ [n]
34 MI ← (“init”)
35 r ←$

36 for w ∈ [n]:
37 cw ←$ PKE.Encpkw

(r)
38 MI ← MI ∪ cw
39 return (st ,MI)

Algorithm Update(st)
40 (u, T , i, γ)← st
41 v ← PathNode(u, i)
42 r ←$ Rnd
43 st .pend← (v, r)
44 (v.pk , v.sk)← PKE.Gen(r)
45 if i = 0:
46 MU ← MU ∪ (v, v.pk ,⊥)
47 else:
48 for p ∈ resol(v):
49 cp ←$ PKE.Encp.pk (r)
50 MU ← MU ∪ (v, v.pk , cp)
51 return (st ,MU)

Figure 9: Description of protocol CoCoALightk, healing in k rounds.

due to the blanks, the Ci will not all be isomorphic to each other as graphs. Nevertheless, there is a clear
injection from the node set of Ci to T , as each Ci is a minor of T , i.e. a graph resulting from applying a
series of edge contractions to T (in particular, the contractions of exactly those edges that share a common
blank node).

Throughout this proof, we will treat the Ci as maps from the set of nodes to the set of public keys, such
that Ci(v) is the public key associated to node v in Ci. For v /∈ Ci (i.e. because v is blank at time i), we say
Ci(v) = ⊥. Let K ∗ = Kt∗ be the challenge group key in the experiment, with C∗ and T ∗ being the challenge
graph and its associated ratchet tree, respectively. Then, for all nodes v ∈ T , we will denote by v.pk j the
j+1th last public key associated to v, with respect to the time K ∗ was generated; e.g., v.pk0 corresponds to
the key associated to v in C∗, v.pk1 corresponds to the one that v.pk0 overwrote, and so on. Note that there
exists some j′, namely the number of keys every associated to v, such that for j ≥ j′, v.pk j = ⊥. For the
last bit of notation, we will write Ci ◁ Cj if i < j, i.e., if Ci is the challenge graph of a key which preceded
that of Cj . In a slight abuse of notation, for a node v ∈ T , we will also write, v.pk j ◁ v.pk i, whenever i < j;
i.e., whenever v.pk j precedes v.pk i. Note that, while we index the graphs in order increasing with time, the
ordering for the keys associated to a node is opposite, since for these we count from the time of the challenge,
backwards. In both cases, if a ◁ b, then the intuition is the same, in that a came in time before b.

We start by defining a crossing between two challenge graphs Ci and Cj . We say that there is a crossing
between such a pair of challenge graphs if Ci ◁ Cj , but there exist node v such that Ci(v) ▷ Cj(v) (and
Cj(v) ̸= ⊥). The proof can now be seen as the combination of proofs for the following statements, from
which the theorem follows inmediately:

35

1. Assume for contradiction that a key in C∗ leaked through a corruption during the game execution,
then there exists a crossing between two challenge graphs.

2. No crossing between any two challenge graphs exists.

Proof of Statement 1. Since, by assumption, the predicate safek-PCS evaluates to 1, we know each user u
has performed at least k updates since the last query q of the form CORR(u) was invoked. In, particular,
this means that each node in path(u) has been updated twice since this time, as T has depth ⌊k/2⌋. Thus,
if the seed or keys associated to some node v have leaked, it must be that C∗(v) = v.pk i for some i ≥ 2.
Otherwise, this key would not have existed at the time of corruption.

Assume that it is the seed or secret key at v that leaks. From the observation in the paragraph above, it
follows that there must have been rounds t1 and t2, t1 < t2, ocurring after q and before the challenge query,
where u updated (or tried to, concurrently to someone else) node vroot and v, respectively. Let Ĉ be the

challenge graph associated with round t1. We have that Ĉ ◁ C∗. Now, let p̂k be the key associated to v at
time t2. Since we know v got updated by some user at time t2, after C∗(v) was already sampled, we have

C∗(v) ◁ p̂k . Thus, it remains to show that p̂k ◁ Ĉ(v), which would imply C∗(v) ◁ Ĉ(v). This, in turn, implies
there is a crossing between C∗ and Ĉ.

To show this last statement, note that it is a special case of the following: let C be a challenge graph
such that C(vroot) was sampled by user û. Then, for any vertex w and any j such that w.pk j was sampled
by û before they sampled C(vroot), it holds that w.pk

j ◁C(w). This follows straight away from the fact that
updates are processed by all users in the same round they are issued, and cannot be processed twice.

Proof of Statement 2. Assume for contradiction there is a crossing between Ci and Cj , Ci ◁ Cj , and let v
be the highest node (closest one to vroot), such that Ci(v) ▷ Cj(v). Let w = child(v). Note that it is not
possible that Ci(w) = Cj(w), since this would imply (except with negligible probability corresponding to two
updates sampling the same seed) that the user who sampled this key encrypted it to two different public keys
associated to the same node, v. Thus, by assumption, Ci(w) ◁ Cj(w). Now, observe Cj(v) preceded Ci(v),
by assumption, and that the latter, in turn, was generated strictly before Ci(w), since both keys belong to
the same challenge graph. Thus, when Cj(w) was generated, in round j, Cj(v) was no longer part of Tj ,
which is a contradiction.

This concludes the proof.

The security of the protocol now follows directly through standard arguments [KPPW+21]. In our case,
the reduction from the security of the employed PKE scheme would just employ an adversary A against the
IND-k-PCSRC security game by simulating the game for A, and embedding the challenge ciphertext from
the PKE game in the one containing K∗ in round t∗. Against adaptive adversaries, the reduction would
need to guess the key on which it will get challenged, which could be done using the piecewise guessing
framework [JKK+17], as in [KPPW+21].8

5.5 Efficiency and tradeoffs

In this section we briefly discuss the efficiency of CoCoALight and compare it to that of CoCoA, as well as
to the lowerbound shown in this paper.

The communication cost of the respective protocols and lowerbounds (recall our lowerbound depends on
variable ϵ ∈ (0, 2/5)) is shown in Figure 10. Notice that, whereas CoCoALight is more efficient for higher
values of k, CoCoA is still better for lower values. Indeed, the figure shows that both protocols present
quite different communication efficiency profiles, both concrete and asymptotic. In order to smooth out this

8For technical reasons, one would need to either have the group key be a value from which no public key can be derived
(and queried to an encryption oracle). This can be achieved by, e.g., adding a key schedule through the use of a PRF, as
in [AAN+22a], or by determining that the root node has no associated public key, as in [KPPW+21]. We omit this, for
simplicity.

36

k

log(cost)

0 2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25
upper bounds

CoCoA
CoCoALight

CoCoALight+; d = 2
CoCoALight+; d = 3

lower bounds
ε = 10/25
ε = 6/25
ε = 4/25
ε = 2/25

Figure 10: Shown are the communication costs for for different values of k, for (the generalization from
Section 5.2 of) CoCoA [AAN+22a] and CoCoALight (Figure 9), as well as the lower-bound shown in The-
orem 3, for different values of ϵ. Further, a generalization of CoCoALight, termed CoCoALight+ is shown
for different values of d ∈ {2, 3}. The size of the group is n = 4096.

difference, one could consider more a more general protocol, of which the former are special cases of, and
that we briefly sketch further ahead in this section. Essentially, one can have updates rotate a number d of
nodes in the user’s path, instead of just 1 (as in CoCoALight) or the whole path (as in CoCoA). The cost of
this generalized protocol for a couple of different values of d is also displayed in Figure 10 under the name
CoCoALight+.

Recall that the generalized CoCoA protocol from Section 5.2 requires a total number of ciphertexts
equal to nk2 k

√
n. In order to see the cost of CoCoALight note that each update entails crafting (at most)

a number of ciphertexts equal to the in-degree of the ratchet tree, which is ⌈ k/2−1
√
n⌉. Thus, if each user

performs k updates, the total number of ciphertexts is in the order of nk k/2−1
√
n. The slight caveat is that

k ∈ [4, 2(⌈log(n)⌉+ 1)], as opposed to k ∈ [2, ⌈log(n)⌉+ 1] for the latter. For values of k supported by both
protocols, the difference is approximately a factor of k/ k/2

√
n, meaning the two curves meet at the value of

k for which kk = n2.
While the lower bound shown in this paper matches the asymptotic behaviour of CoCoALight, the

concrete difference is still considerable. Thus, it remains an open problem to improve the constants of either
our lower bound or existing constructions that allow for concurrent healing, the latter perhaps through the
use of ideas like those of [HKP+21] and [AHKM22].

37

Bridging the upper bounds gap. As mentioned above, one can define a more general protocol encom-
passing both previously discussed ones. Indeed, instead of having an update rotate the keys on a whole
path (as in CoCoA) or on a single node (as in CoCoALight), an arbitrary number d of keys evenly spaced
out over the user’s path could be rotated. Since the number of rotated keys affects the speed with which
PCS is achieved, the depth of the ratchet tree will depend on both k and d. More in detail, this algorithm
would work very much like the one from Figure 9, with the difference that whenever a user u with counter i
updates, they would rotate the keys of nodes i+ j · |path(u)|/d mod |path(u)| for all j ∈ {0, . . . , d− 1} and
increase the counter by 1. In order to determine the needed tree depth, recall that healing actually happens
when all keys on the user’s path are replaced one after another starting from the leaf. In CoCoALight this
translates to all keys being replaced after the user’s counter i is equal to 0. In turn, in this general protocol,
if δ is the tree depth, healing would happen δ updates after either the counter i of the user updating satisfies
i+ j · δ/d mod δ = 0 for any j. That is, after ⌈δ · (1 + 1/d)⌉ updates.

Thus, for the protocol to heal in k rounds, we need a tree of depth δ ≈ k(1 + 1/d)−1, i.e., of in-degree
≈ δ−1

√
n. In particular, the cost of an update is ≈ δ(δ−1

√
n − 1). Since we have n parties, each updating

δ · (1 + 1/d) times, this translates fo a total cost of order

nδ2(1 +
1

d
) δ−1
√
n =

nk2 δ−1
√
n

1 + 1
d

.

Note, however, the interdependence between d and δ. On the one hand, δ is a function of d, and must
also belong to the interval [2, ⌈log(n)⌉ + 1]. On the other, d must belong to the interval [1, d]. Figure 10
shows the efficiency profile of this protocol for d = 2, 3, starting at values k = 3 and k = 4 respectively (note
that the setting d = k is exactly CoCoA). Further, note that while the functions are discrete, as k can only
take integer values, we plot them as continuous in order to better appreciate the interpolation-like effect that
CoCoALight+ has bridging the gap between the other two protocols.

Forward Secrecy. In this paper we focus on the communication cost of PCS, and consider forward secrecy
outside of its scope. This is, however, as aspect in which this protocol is worse that existing ones. Indeed,
while for other protocols a user replaces all their secret key material when effecting an update, this does not
need to be the case for CoCoALight. In the worst case, a user might need to perform k/2 updates before all
secret keys in their path have been rotated. We leave a formal analysis of FS guarantees for future work.

38

References

[AAB+21] Joël Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval, Karen Klein, Guillermo
Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. Grafting key trees: Efficient key man-
agement for overlapping groups. In Kobbi Nissim and Brent Waters, editors, TCC 2021,
Part III, volume 13044 of LNCS, pages 222–253. Springer, Heidelberg, November 2021.

[AAN+22a] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-Perez,
Krzysztof Pietrzak, and Michael Walter. CoCoA: Concurrent continuous group key agreement.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume
13276 of LNCS, pages 815–844. Springer, Heidelberg, May / June 2022.

[AAN+22b] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-Perez,
and Krzysztof Pietrzak. Decaf: Decentralizable continuous group key agreement with fast
healing. Cryptology ePrint Archive, Paper 2022/559, 2022. https://eprint.iacr.org/2022/
559.

[ACDT20] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security analysis and
improvements for the IETF MLS standard for group messaging. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 248–277.
Springer, Heidelberg, August 2020.

[ACJM20] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous group key agree-
ment with active security. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II,
volume 12551 of LNCS, pages 261–290. Springer, Heidelberg, November 2020.

[AHKM22] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk. Server-aided continuous
group key agreement. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors,
ACM CCS 2022, pages 69–82. ACM Press, November 2022.

[AJM22] Joël Alwen, Daniel Jost, and Marta Mularczyk. On the insider security of MLS. In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages
34–68. Springer, Heidelberg, August 2022.

[BBR18] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM: Asynchronous De-
centralized Key Management for Large Dynamic Groups. https://mailarchive.ietf.org/

arch/attach/mls/pdf1XUH6o.pdf, May 2018.

[BBR+23] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad Omara, and
Katriel Cohn-Gordon. The Messaging Layer Security (MLS) Protocol. RFC 9420, July 2023.

[BCK21] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Cryptographic security of the MLS
RFC, draft 11. Cryptology ePrint Archive, Report 2021/137, 2021. https://eprint.iacr.

org/2021/137.

[BDG+22] Alexander Bienstock, Yevgeniy Dodis, Sanjam Garg, Garrison Grogan, Mohammad Hajiabadi,
and Paul Rösler. On the worst-case inefficiency of CGKA. In Eike Kiltz and Vinod Vaikun-
tanathan, editors, TCC 2022, Part II, volume 13748 of LNCS, pages 213–243. Springer, Hei-
delberg, November 2022.

[BDR20] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On the price of concurrency in group
ratcheting protocols. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume
12551 of LNCS, pages 198–228. Springer, Heidelberg, November 2020.

39

https://eprint.iacr.org/2022/559
https://eprint.iacr.org/2022/559
https://mailarchive.ietf.org/arch/attach/mls/pdf1XUH6o.pdf
https://mailarchive.ietf.org/arch/attach/mls/pdf1XUH6o.pdf
https://eprint.iacr.org/2021/137
https://eprint.iacr.org/2021/137

[CCG+18] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner. On ends-
to-ends encryption: Asynchronous group messaging with strong security guarantees. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018,
pages 1802–1819. ACM Press, October 2018.

[CGI+99] Ran Canetti, Juan A. Garay, Gene Itkis, Daniele Micciancio, Moni Naor, and Benny Pinkas.
Multicast security: A taxonomy and some efficient constructions. In IEEE INFOCOM’99,
pages 708–716, New York, NY, USA, March 21–25, 1999.

[CHK21] Cas Cremers, Britta Hale, and Konrad Kohbrok. The complexities of healing in secure group
messaging: Why cross-group effects matter. In Michael Bailey and Rachel Greenstadt, editors,
USENIX Security 2021, pages 1847–1864. USENIX Association, August 2021.

[DDF21] Julien Devigne, Céline Duguey, and Pierre-Alain Fouque. MLS group messaging: How zero-
knowledge can secure updates. In Elisa Bertino, Haya Shulman, and Michael Waidner, editors,
ESORICS 2021, Part II, volume 12973 of LNCS, pages 587–607. Springer, Heidelberg, October
2021.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Infor-
mation Theory, 29(2):198–208, 1983.

[HKP+21] Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest, and Bas West-
erbaan. A concrete treatment of efficient continuous group key agreement via multi-recipient
PKEs. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1441–1462. ACM
Press, November 2021.

[HKP22] Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest. How to hide MetaData in MLS-
like secure group messaging: Simple, modular, and post-quantum. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 1399–1412. ACM Press,
November 2022.

[JKK+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof Pietrzak, and
Daniel Wichs. Be adaptive, avoid overcommitting. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 133–163. Springer, Heidelberg,
August 2017.

[JMM19] Daniel Jost, Ueli Maurer, and Marta Mularczyk. A unified and composable take on ratcheting.
In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages
180–210. Springer, Heidelberg, December 2019.

[KPPW+21] Karen Klein, Guillermo Pascual-Perez, Michael Walter, Chethan Kamath, Margarita Capretto,
Miguel Cueto, Ilia Markov, Michelle Yeo, Joël Alwen, and Krzysztof Pietrzak. Keep the dirt:
Tainted TreeKEM, adaptively and actively secure continuous group key agreement. In 2021
IEEE Symposium on Security and Privacy, pages 268–284. IEEE Computer Society Press, May
2021.

[Mat19] Matthew A. Weidner. Group Messaging for Secure Asynchronous Collaboration. Master’s
thesis, University of Cambridge, June 2019.

[MP04] Daniele Micciancio and Saurabh Panjwani. Optimal communication complexity of generic mul-
ticast key distribution. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 153–170. Springer, Heidelberg, May 2004.

[WHA99] D. Wallner, E. Harder, and R. Agee. Key management for multicast: Issues and architectures.
Request for Comments: 2627, Internet Engineering Task Force, 1999.

40

[WKHB21] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R. Beresford. Key
agreement for decentralized secure group messaging with strong security guarantees. In Gio-
vanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2024–2045. ACM Press, November
2021.

41

	Introduction
	Our Bounds.
	Our Proofs
	Overcoming Lower Bounds.
	Related work

	Preliminaries
	Definitions and Results from Combinatorics
	Continuous Group-Key Agreement

	Lower Bounds in the Combinatorial Model
	The Combinatorial Model
	Lower Bound in the Combinatorial Model

	Lower Bounds in the Symbolic Model
	The Symbolic Model
	Lower Bounds on the Update Cost in the Symbolic Model

	Upper Bound on the Update Cost
	Preliminaries and CoCoA
	Generalized CoCoA healing in k rounds
	CoCoALight
	Post Compromise Security proof
	Efficiency and tradeoffs

