
SoK: Public Randomness

Alireza Kavousi1, Zhipeng Wang2, and Philipp Jovanovic1

1University College London
2Imperial College London

Abstract

Public randomness is a fundamental component in many cryptographic protocols and dis-
tributed systems and often plays a crucial role in ensuring their security, fairness, and trans-
parency properties. Driven by the surge of interest in blockchain and cryptocurrency platforms
and the usefulness of such component in those areas, designing secure protocols to generate pub-
lic randomness in a distributed manner has received considerable attention in recent years. This
paper presents a systematization of knowledge on the topic of public randomness with a focus
on cryptographic tools providing public verifiability and key themes underlying these systems.
We provide concrete insights on how state-of-the-art protocols achieve this task efficiently in an
adversarial setting and present various research gaps that may be suitable for future research.

1 Introduction

Public randomness is about generation and distribution of random values that are publicly verifiable
and accessible by anyone after a certain barrier point. This is in stark contrast to the notion of
private randomness, which has strict confidentiality requirements and is not supposed to be shared
widely, e.g., as used for cryptographic key generation. While some of the earliest known use cases
for public randomness date back to antiquity, the concept is also a critical building block for various
modern applications that have a vital need for transparency and fairness, like lotteries [95, 118],
online games [65], blockchain sharding [90,130,133], and more.

Public randomness can be obtained through various means with the most straightforward one
being to simply gather it from a centralized entity [87, 101]. This approach, however, has obvious
disadvantages that no one can check whether the provided values have actually been generated ran-
domly or the entity can simply withhold an output. In this paper we are concerned with randomness
generation in a publicly verifiable manner and without relying on trusted third parties. Despite the
apparent simplicity of the concept, it turns out producing high-quality random values that are un-
predictable and unbiased, and ensuring their verifiability, is a non-trivial challenge requiring deep
insights from distributed systems and cryptography.

As the need for trustworthy sources of public randomness continues to grow, a large volume of
works utilizing different methods has appeared in academia and industry over the last decade or so.
This paper contributes to the discussion by providing a comprehensive and systematic analysis of
the notions, challenges, solutions, and techniques of state-of-the-art schemes. We acknowledge that
there is concurrent work on the topic [48, 114] and argue that this work presents a complementary
perspective as follows.



• We base our categorization on primitives with public verifiability in a leaderless or leader-based
fashion, and further elaborate on key aspects including security, liveness, and scalability.

• We intentionally take an informal approach, giving us more room to cover various facets of the
public randomness generation in detail.

• We provide key insights from existing works and outline research gaps throughout the paper to
inspire future research.

Paper Organization. Section 2 introduces the required background, concepts, and primitives
from cryptography and distributed systems. Section 3 presents the notion of distributed randomness
beacon (DRB) and its relevant properties as a service for generating public randomness distributedly.
Section 4 presents our systematization methodology and an overview on the four main tools to
generate public randomness, which are publicly verifiable secret sharing (PVSS), verifiable random
function (VRF), verifiable delay function (VDF), and public blockchain. These are then investigated
in-depth in the subsequent sections. Finally, Section 9 concludes the paper with a discussion on
further related properties and considerations. Also, throughout the paper we include plenty of
insights and potential research gaps labeled by “Insight” and “Gap”, respectively.

2 Background

Here we give a brief overview of the relevant preliminaries and primitives used in this paper.

System Model. There are n parties to execute the protocol at most t of which are corrupted by
a computationally bounded adversary in security parameter λ. We may refer to f as the number
of parties adversary actually corrupts, where 0 ≤ f ≤ t. Corruption typically occurs in the form
Byzantine failure, where the corrupted parties are free to do any adversarial behavior of their choice.
By epoch, we mean a certain period of time divided discreetly. By multicast, we mean simply sending
a message by a party to others. We may use some terms interchangeably throughout the paper with
essentially the same meaning such as “faulty”, “malicious”, and “Byzantine”. The adversary may
be rushing, i.e., it may wait and observe honest parties’ messages before deciding on how to act
next.

Network Propagation. There are two well-known communication types for exchanging messages
between parties. First, point-to-point where each pair of parties is connected via a reliable authen-
ticated channel that guarantees the confidentiality and integrity of the content. In this setting,
parties have a priory knowledge about others involved in the protocol. Second, peer-to-peer, where
the message is delivered by a sender to a random subgroup of parties (i.e., its peers) in different
steps until all the parties receive the message. In this setting, the parties do not necessarily know
each other. Gossip-based protocols are notable examples where parties diffuse messages by passing
them on to their peers.

Network Assumption. Based on the effects of adversary on message delivery between (honest)
parties, three main assumptions are made regarding the underlying network. In the synchronous
model, there is a finite known time-bound ∆ for message delivery. The partial synchronous model
relaxes this assumption by making the time-bound unknown. The asynchronous model just makes
the minimal assumption of eventual delivery without specifying any time-bound. It is worth noting
that there is an equivalent treatment for partial synchrony, which divides the system into two periods:
an initial period of asynchrony followed by synchrony after some unknown point in time.

2



Consensus. The fundamental problem of consensus [92, 108] deals with enabling a group of n
parties, each with an initial input value vi to reach agreement on a common value v despite the
presence of adversarial behavior by a threshold t of them. A working consensus protocol must
satisfy the two main properties: safety/consistency, ensuring that all honest parties agree on the
same decision; and liveness, ensuring that the protocol eventually terminates with honest parties
reaching a valid decision. Different variants of consensus problems exist (refer to [68] for more
details). A well-studied one, relevant to the focus of this paper, is Byzantine fault-tolerant state
machine replication (BFT-SMR) [121], which aims to maintain consistency among a group of parties
while processing ever-growing inputs.

Publicly Verifiable Secret Sharing (PVSS). A (t, n) secret sharing scheme [123] allows a dealer
to distribute shares of a secret s among n parties, such that any gathering of size at most a threshold
t of shares reveals no information about the secret while it can be uniquely revealed by any larger
subset. To enable public verification, where anyone (even an external party) can verify the sharing
phase by the dealer and reconstruction phase by the parties, PVSS [41, 122] incorporates crypto-
graphic primitives including encryption, commitment, and non-interactive zero-knowledge proofs.

Distributed Key Generation (DKG). To carry out cryptographic evaluations (e.g., encryption,
signing) jointly, a DKG protocol shares a uniformly distributed random secret sk among n parties. It
provides each party with a partial secret key ski for performing partial evaluations, a corresponding
partial public key pki to verify the correctness of the partial evaluations, and a common public
key pk to verify the correctness of the final evaluation. DKG is executed in a single-shot manner,
meaning that it is only needed to run once to produce the required keys, which can then be used
polynomially many times thereafter.

Verifiable Random Function (VRF). A VRF [102] allows one to produce a pseudorandom
value along with a proof on an input using their own secret key sk such that anyone can verify its
correctness using the corresponding public key pk. It can be considered as an asymmetric counterpart
to a pseudorandom function (PRF) with an attached proof. With a DKG, it is possible to establish
a threshold VRF, wherein only a proper subset of parties (i.e., more than a threshold t) can jointly
evaluate the function using their keys.

Verifiable Delay Function (VDF). A VDF [27,112,131] is an inherently sequential function that
takes a predefined time T (i.e., steps) to compute, even with a polynomial number of processors
working in parallel. Given an input value x, it outputs a unique value y that can be verified efficiently
by anyone in poly(log T, λ) time. Two well-known VDFs of [112,131] are based on repeated squaring,

y = x2T , in a group of unknown order.

3 Distributed Randomness Beacon

3.1 Definition and Properties

The process of obtaining public randomness in a distributed manner is commonly captured in the
literature via distributed randomness beacon (DRB), a service that outputs a continuous series of
randomness with public verifiability. It is straightforward, however, to see a protocol producing
public randomness can essentially turn into a DRB by executing multiple times.

Although recent works such as [23, 53] have taken a formal approach to the DRB problem by
providing game-based security definitions, a significant portion of the existing literature has primar-
ily relied on an informal treatment [119, 120, 128]. These works explore individual properties and

3



make arguments about their fulfillment. Due to the purpose of this paper, we refrain from such
formulations and refer the reader to [48] for further details.1

Distributed Randomness Beacon (DRB). A DRB protocol enables a group of n distrustful
parties to jointly generate a series of random values with the following properties: (1) unpredictabil-
ity, meaning the adversary cannot predict the future beacon outputs given the knowledge of the
existing ones; (2) unbiasability, meaning the adversary cannot impact an output to its advantage;
(3) availability, meaning the protocol should continue making progress and produce valid outputs;
and (4) public-verifiability, meaning the correctness of the result should be verifiable even by an
external party.

Following the above well-established properties, we conceptualize the problem using three rather
orthogonal challenges a DRB deals with. That is, security, capturing the secrecy of the produced
values against adversarial behavior, liveness, capturing certain conditions that affect the progress
of the protocol, and scalability, capturing the overhead of the protocol and its deployment at scale.
We believe such distinction allows focusing on the core concerns accordingly. Needless to say, the
interconnected aspect of these challenges makes a perfect distinction difficult and some level of
intersection is inevitable.

Security. Unpredictability and unbiasability are two principal security properties of a DRB proto-
col. We elaborate on them as follows.

• Unpredictability. Arguably the most important property of a DRB is unpredictability, which
ensures the inability of the adversary to predicate future beacon outputs given the knowledge of the
already produced ones. Unpredictability can be satisfied in two flavors: absolute unpredictability
and probabilistic unpredictability. The former puts a hard bound d ≥ 1 on the number of epochs
when the outputs become fully unpredictable, whereas the latter only guarantees the likelihood
of obtaining the next outputs decreases exponentially with the number of epochs.

• Unbiasability. Ruling out the feasibility of any action by the adversary to influence the outputs to
its advantage is captured by the unbiasability property. The adversarial impact on DRB can occur
in different ways. One common type of such an impact is to withhold announcing contributions
by an adversary after getting aware of other parties’ contributions in the hope of rejecting an
undesirable output, known as last actor attack [81].

The baseline security for a randomness beacon is unpredictability, and not all the proposed
solutions can satisfy unbiasability [22,32,55]. The core definition of unbiasability essentially implies
the beacon output should be uniformly distributed across the set of possible outputs. Existing DRB
protocols achieve this quality at two major types: uniform randomness, ensuring the beacon output
is a truly random value, and pseudorandomness, ensuring the beacon output is computationally
indistinguishable from a truly random value. A long-lasting approach for generating randomness is
via the so-called commit-reveal method which each party commits to some local random value (i.e.,
private randomness) to later open it and compute the resulting outcome by running some operation,
e.g., adding all the proposals. While this approach provides unpredictability in its strongest type
when only one single honest contribution (i.e., true randomness) is involved, it fails to guarantee
unbiasability as the adversary may act as the last actor and decide on its action (i.e., to open or not)
based on the view of the protocol. Intuitively, secure constructions with a commit-reveal paradigm
output uniform randomness that is of importance for specific applications such as PRG seed.

DRB protocols often operate in epochs, where one of the parties may be selected as a leader to
coordinate and advance the protocol to the next epoch [53, 119, 120]. The leader election process

1However, not all the required properties have yet been defined formally, such as liveness/availability.

4



is either deterministic when the sequence of leaders is known in advance2, or is probabilistic when
the next leader is chosen randomly. Although most of the existing DRB protocols can produce
randomness with absolute unpredictability, the ones with probabilistic leader election yield the
weaker notion, as there is always a possibility that some corrupted party is elected as the leader
[24,119,120]. An immediate implication is the leader’s ability to learn the next epoch’s output prior
to others, leading to achieving only d-unpredictability, for d ≥ 2 epochs in the future. One way
to address this issue is to transform the role of the leader from a sole contributor (to the beacon
output) to only a coordinator [53].

Liveness. Ensuring the continual operation of the protocol under certain conditions is a decisive
aspect of a DRB. The liveness of a distributed protocol is typically evaluated based on two key
parameters: network assumption, defining limits to what extent the adversary is able to cause delay
in message delivery, and fault tolerance, indicating the maximum number of corrupted (Byzantine)
parties tolerated for successful protocol execution. The bulk of existing works on DRB focuses on
the synchronous model. This, however, cannot faithfully cover real-world scenarios as the protocol
might face severe outages like denial of service (DoS) attacks. As a result, the study of DRB
protocols in non-synchronous models, such as partial synchronous and asynchronous models, has
gained attention [35, 53]. The partially synchronous model aims to strike a balance by offering the
advantages of the others. It introduces a notion of time for convenient analysis while providing a
robust network definition to handle occasional outages. Significant progress has been made in the
distributed system literature regarding fault tolerance under various network assumptions [59, 62].
In particular, the optimal fault tolerance for a BFT-SMR protocol is t < n/2 under the synchrony
and is t < n/3 under the partial synchrony (and asynchrony). A DRB protocol with a set of parties
on ever-growing inputs working towards establishing a totally ordered log of outputs resembles the
consensus problem, particularly state machine replication (SMR) [121] with two ingredient properties
of consistency and liveness.

Apart from the two principle aspects of network assumption and fault tolerance, there are two
additional features relevant to liveness that are useful to consider in the context of DRB protocols.
Namely, guaranteed output delivery (GOD), ensuring that all the honest parties obtain the beacon
output at each epoch irrespective of the adversary’s actions, and responsiveness, allowing the protocol
to make progress at the actual network’s speed rather than under a conservative delay ∆. Although
GOD is deemed to be pivotal for the proper functionality of a DRB that may need to consistently
feed the end users even in the face of non-Byzantine failures (e.g., temporary disconnection), not
all the existing secure proposals can achieve it [53]. Due to the lack of (known) time-bound in their
formulations, non-synchronous network models inherently come with responsiveness that matters for
getting higher throughput (i.e., number of produced outputs per time unit). However, it has been
shown that the synchronous model can only offer optimal responsiveness under certain conditions,
including the presence of an honest leader and f < n/4 [107].

Scalability. The level of reliability achieved in a distributed computing system consequently impacts
the scalability. In the context of DRBs, it amounts to providing randomness at a reasonable cost
depending on the number of participating parties. Asymptotically, this is typically measured using
the following terms: (1) communication complexity, which quantifies the total number of messages
exchanged among parties during protocol execution; (2) computation complexity, which measures
the amount of local work performed by each party per output; and (3) verification complexity, which
evaluates the work required by an external party to verify the output. Moreover, accommodating
dynamic participation of parties also matters for a scalable system. The presence of an expensive
setup phase as part of the protocol poses a serious challenge to achieving this goal.

2For instance, in a Round-Robin election the leader of epoch r is party i = r mod n.

5



3.2 Applications

Having access to a trustworthy source of randomness is an essential part of many real-world systems.
We now explore several application areas raised more attention in recent years.

Lotteries and Streaming Games. The need for a reliable source of randomness is paramount in
lotteries and streaming games. Lotteries, whether traditional [61] or blockchain-based [65, 95, 118],
rely on randomness to determine the winning numbers or participants. Using proper randomness is
crucial to prevent any manipulation or bias that could compromise the integrity of the process. In
the context of streaming games [67,79], randomness plays a vital role in maintaining excitement and
engagement by enabling randomly generated events, such as item drops, enemy spawns, or in-game
challenges.

Blockchain Sharding. Sharding [90,130,133] is a promising solution for overcoming the scalability
problems in blockchain. A sharding protocol aims to divide a large population into smaller groups
of parties known as committees. By splitting the workload, committees can operate in parallel,
enhancing performance and increasing throughput. In sharding protocols, a critical issue is how
the participants are assigned to committees in a fair and unpredictable way [11]. By leveraging
public randomness, participants can be randomly allocated to committees. This way of assignment
serves as a defense against adversarial concentration by preventing malicious actors from predicting
beforehand the valid set of identities supposed to carry out their tasks.

Single Secret Leader Election (SSLE). In proof-of-stake (PoS) blockchains with longest-chain
consensus, leader election plays a critical role in maintaining the security and liveness of the system.
It turns out deploying a single secret leader election (SSLE) mechanism, where the unique elected
leader gets to know about their leadership prior to others and can claim it in a publicly verifiable
manner, is crucial [12, 28]. First, it protects the leaders from various attacks, in particular DoS.
Second, it obviates the need for a tie-breaking process to choose among possible set of leaders for a
given time slot. The majority of the existing solutions for SSLE rely on public randomness to ensure
security [84] or uniqueness [28].

Timelock Encryption. A critical characteristic for a proper randomness beacon is to satisfy
a regular timing for the release of its outputs [87]. Drand [3], employing League of Entropy [1],
precisely meets such requirement by currently producing a beacon output every 30 seconds. The
recent work of [64] showed how to take advantage of such a feature to allow “encrypting to future” by
constructing a timelock encryption [117] that has no sequential computation involved. In more detail,
they observed that by viewing a beacon output – which is a threshold VRF on an epoch number –
as a secret key in an identity-based encryption scheme [29], it is possible to encrypt a message to
the future, with the public key (i.e., identity) being the epoch number and corresponding secret key
being the beacon output.

4 Systematization Methodology

Upon reviewing the existing literature, we realize that a representative method to categorize ex-
isting works is based on their underlying tools. Public verifiability, as a default property, imposes
constraints on the cryptographic tools employed in these constructions. This, in turn, enables us to
pinpoint four of these including PVSS, VRF, VDF, and public blockchain. The protocols deploying
these tools can be further classified into leaderless and leader-based according to their communica-
tion patterns. The former requires all-to-all communication, whereas the latter designates a leader
to communicate with others in a one-to-all (possibly together with an all-to-one) manner. For each

6



category, we then evaluate different protocol designs with regard to security, liveness, and scalability.
This categorization enables us to classify most of the literature coherently.3 While we put our focus
on illustrative peer-reviewed papers, where appropriate, we point to some compelling ideas presented
in other works. We also present a comparison between different DRBs in Table 1. In the following,
we provide an overview of each category before doing an in-depth analysis later.

Protocols Using PVSS. The majority of research around generating public randomness is focused
on using PVSS schemes that yield the strongest quality (i.e., uniform randomness). The idea of using
PVSS is built upon the well-known commit-reveal paradigm [26], making it robust against adversarial
attacks due to its inherent threshold security, and publicly verifiable due to the use of non-interactive
zero-knowledge proof (NIZK). A major limitation of this approach is its intense communication cost
due to exchanging large-sized messages (i.e., PVSS transcripts) in an all-to-all manner. To address
this, various techniques have been proposed, including the appointment of a leader for coordination
and transcript aggregation.

Protocols Using VRF. VRFs have gained popularity as a viable option for designing DRBs due
to their simplicity and practicality. They are usually derived from signatures with uniqueness, a
property ensuring that for each massage and public key, there exists only one valid signature. The
security properties of the DRB can be linked to those of the underlying VRF, as the unpredictability
and unbiasability of the DRB are implied by the unforgeability and uniqueness of the VRF, respec-
tively. However, similar to the traditional commit-reveal mechanism, a VRF-based construction
may be susceptible to bias if a party with prior knowledge of the beacon output chooses to abort
the protocol. The common approach to deal with this issue is to make the construction thresholdize
via deploying a distributed key generation (DKG) [109] in the setup phase. While this mitigates the
bias concern, it introduces communication overhead and hampers efficient dynamic participation.

Protocols Using VDF. A promising way to produce public randomness is deploying time-based
cryptography and in particular verifiable delay functions that have efficient public verification. VDF
has found itself useful in various blockchain-related applications since its introduction by Boneh et
al. [27]. In this context, it has been proposed mainly as a method to protect against last actor attack
in a commit-reveal configuration by injecting a computationally guaranteed delay before releasing
the output. Such a delay prevents the adversary from learning the output prior to the reveal
phase. Interestingly, VDFs can also be used solely to generate public randomness, e.g., through its
continuous variant [60] or the version with trapdoor [119]. The security properties of the resulting
DRB protocol stem from its inherently sequential characteristic and uniqueness.

Protocols Using Public Blockchain. A straightforward approach to obtaining public randomness
is by extracting it from the available entropy in publicly available resources. One notable example
of such resources is proof-of-work (PoW) blockchains where parties can access high entropy values
using the intrinsic randomness lied in the mining process. Despite its simplicity, this approach has
been shown to be vulnerable to different attacks that compromise the desired security properties [34].

5 Protocols Using PVSS

5.1 Security

The protocols in this category follow the commit-reveal paradigm used by the prominent work
of [26], allowing two parties to jointly flip a coin and generate a uniformly random string. Due

3We highlight that our focus is merely on cryptographic solutions as the most prevalent ones.

7



to the inherent weakness of this basic approach for guaranteeing unbiased randomness, numerous
works [23,41,42,53,89,120,128] have employed PVSS to enable the recovery of any committed secret,
relying on an honest majority assumption. In fact, it requires a quorum of parties (involving at least
one honest party, i.e., f+1) to execute the protocol by sharing some secret with uniform distribution.
Since more than a threshold t of parties are involved in the process of randomness generation, the
existence of at least one honest contribution guarantees a uniform source of randomness for this
type of DRB.4 Moreover, anyone can use the information posted on a public bulletin board, which
is typically assumed to exist, to verify the correctness of the protocol.

Syta et al. [128] present a series of randomness beacon protocols in an incremental way such
that each one complements the previous in some respect. The first one, RandShare [128], runs
in a single-shot manner and outputs a shared randomness to each party via collecting a proper
agreed set of local randomness through VSS. The second one, RandHound [128], builds upon
RandShare and introduces scalability improvements by randomly sharding parties into sub-groups.
Within each sub-group, PVSS is executed to generate local contributions, which are then combined
to produce a single beacon output. The third one, RandHerd [128] further enhances RandHound
by augmenting it with collective signing [129] and threshold (Schnorr) signatures [127] to provide a
continual sequence of beacon outputs.

SCRAPE randomness beacon [41] follows the idea originally proposed in Ouroboros [89] and
works by having each party run a PVSS for a randomly distributed secret and reconstruct an
aggregated randomness from more than a threshold of contributions. Note that the public verification
property of PVSS obviates the need for running a consensus among parties to determine the set of
parties with correct sharing. In SCRAPE PVSS, parties use Lagrange interpolation in the exponent
to reconstruct a group element of the form S = hs, where s ∈ Zq and h ∈ G. ALBATROSS [42]
takes the idea behind SCRAPE a step further to construct a protocol generating a batch of beacon
outputs at each epoch. They do so by deploying packed Shamir secret sharing [25] in SCRAPE
PVSS. Packed Shamir secret sharing allows a dealer to share a vector of secrets of size l using one
single polynomial of degree t+ l−1 as in the standard scheme. The parties share a tuple of l random
secrets in the commit phase and compute a set of l2 beacon outputs by locally applying a randomness
extractor [49] on the correctly revealed secrets. If some parties refuse to open their secret tuples,
others jointly do so. Moreover, the security properties of the randomness extractors imply that as
long as having a proper set of uniform input values of size n−t, no information will be inferred about
the output by the adversary choosing t input coordinates. This is in line with the honest majority
assumption of the underlying PVSS scheme. One can observe that in such protocols each epoch’s
beacon output is determined once the set of parties with valid sharing is known. Afterward, even if
some parties in the set decide not to open their commitments in the hope of adversarially impacting
the output of the protocol (i.e., violating unbiasability), other parties can jointly reconstruct the
secrets.

However, in some applications such as lottery obtaining all the random values in one go is not
desirable as fresh randomness may be required. To address this issue, GULL [43] is introduced,
which is a randomness beacon using PVSS that allows progressive release of sub-batch of beacon
outputs at different steps depending on the need of the protocol. They do so by modifying the
ALBATROSS in a way that instead of having parties reveal all their secrets in the reconstruction
phase, they use threshold cryptography to encrypt parts of their secrets and open them gradually at
further stages if needed. Thus, whenever some fresh uniformly random value is required, a new sub-
batch will be revealed, which is significantly more efficient than re-executing the full ALBATROSS
protocol.

4Note that the resulting beacon output has uniform distribution with computational security, due to the properties
of PVSS.

8



Insight 1 Unpredictability is the base level of security while pseudorandomness is strictly stronger
and can imply it. However, we may have pseudorandom values that are not unpredictable, if a batch
of them is generated as in ALBATROSS [42].

Gap 1 Producing a batch of uniform beacon outputs while maintaining their unpredictability as in
GULL [43] is a subtle task. One alternative method to do so is by designing packed PVSS with
gradual release of secrets, e.g., using techniques from [4].

The authors in [120] propose Hydrand, a leader-based DRB where rather than having all parties
perform PVSS per epoch, one single party (i.e., leader) is designated to do so. In fact, either the
leader opens their previously committed secret, or a threshold t+1 of the parties jointly reconstruct
the secret using the corresponding shares. Adopting a leader-based style comes at the cost of
weakening the unpredictability with two consequences. First, the leader gets to know in advance the
output of the epoch in which they are selected as the leader. Second, if the adversary happens to
control t consecutive leaders, it can pre-compute the next t random values ahead of all the honest
parties. Therefore, Hydrand only achieves absolute unpredictability of the next t + 1 epochs. To
ensure an honest leader is indeed selected after t+1 successive epochs, Hydrand uses a leader election
mechanism with the possibility of exempting the current leader to be selected in the next t epochs.
GRandPiper roughly follows the same design model of Hydrand by having a leader derive the
protocol and buffered PVSS shares to enable recovery in the presence of a Byzantine leader. The
key idea behind BrandPiper [119] to improve upon GRandPiper in terms of achieving absolute
unpredictability of the next epoch is to consume inputs from more than t parties for computing each
beacon output. This ensures the presence of at least one honest contribution and takes away the
opportunity of being the sole contributor from the leader.

The two recent works of SPURT [53] and OptRand [23] take advantage of the aggregation
property of the PVSS transcript (for commitments and encrypted shares) to design a leader-based
DRB, with the leader acting as an orchestrator instead of a sole contributor. This design rationale
is promising as it offers absolute unpredictability of the next epoch due to the involvement of t + 1
contributions in the beacon output. Moreover, even if a leader decides to abort, it will not affect the
unbiasability property as this is a blind action without knowing the beacon output. Notice that a
consensus protocol (i.e., SMR) is required to get everyone to agree on a threshold set of contributions
picked up by the leader.

Insight 2 Corrupting leader violates unbiasability if either the leader is the sole contributor with no
recovery mechanism, or they can abort after observing the output prior to others. Also, corrupting
the next t leaders violates unpredictability if the leader is the only contributor.

5.2 Liveness

The majority of works using PVSS are constructed over synchronous network [23,24,41,89,120,128].
This is to ensure that sharing of parties’ secrets arrives at the recipient within a certain time-bound
to guarantee the completion of each epoch. Since randomness beacon is a continually-running
service, [41] argues about the necessity of having the additional property of guaranteed output
delivery (GOD) [113] as a strong notion of liveness. This property guarantees that (honest) parties
always complete each epoch with a beacon output no matter what the adversary does. In [41,42,89],
GOD is achieved via the use of a public bulletin board to post PVSS sharing by each party that
essentially has the same effect as using broadcast channel that is a essentially a variant of consensus
protocol [41]. These protocols can accomplish the fault tolerance of t < n/2 which is optimal in the
synchronous setting.

9



In a leader-based construction where a single party advances the protocol at each epoch, achieving
GOD becomes rather complicated as a (faulty) leader can withhold the beacon output or even abort
the protocol. To address this challenge, [23, 24, 120] utilize the idea of buffering of secrets. The
intuition behind buffering is that each party commits to a randomly chosen secret using PVSS
in advance (i.e., more than t epochs before) and updates their commitment with a fresh random
value when they are selected as the leader again. The purpose of such buffering is twofold. First,
it ensures GOD as no matter what the Byzantine leader decides to do, the honest parties in the
protocol can jointly reconstruct the already committed secret and may also remove that leader
from the protocol. Second, it ensures all the honest parties open the same committed value as the
underlying consensus may require t + 1 epochs to ensure consistency.5 While [23, 24] are optimally
resilient randomness beacons in synchrony, [120] can only satisfy fault tolerance of t < n/3 under
the same network assumption. This limitation arises from their need for a quorum intersection as
part of their consensus protocol to avoid equivocation by the leader.6

An immediate consequence of ensuring GOD is the deployment of broadcast channels [76, 113]
that are only achievable in the synchronous network. Recently, SPURT [53] proposed to relax the
strong notion of GOD to just ensure that the adversary cannot abort the protocol after learning the
beacon output at each epoch. This relaxation allows for a reduction in the reliance on broadcast
channels and the possibility of replacing them with variants of SMR protocols [6, 132]. Roughly
speaking, the leader of an epoch employs the SMR protocol to get parties to agree on a constant-
sized message with the remaining heavy parts of the aggregated data being sent through private
channels to each party individually to enable verification. Note that no buffering is used in SPURT
as the protocol does not aim at achieving GOD.

Insight 3 The notion of fairness in secure multiparty computation [52] is weaker than GOD. It
states that if the adversary learns the output, it will not be able to prevent others from doing so as
well, similar to SPURT [53].

Adopting SMR has the benefit of implementing under a partial synchronous network [44, 132].
This, in turn, opens the door for responsiveness, a property allowing the randomness beacon protocol
to proceed at the actual network speed and produce outputs faster than sticking to the conservative
synchrony condition. This is important for achieving higher throughput and enhancing resilience
against DoS attacks. As responsiveness is a potential property of systems without strict time depen-
dencies, the recent work of [23] aims at achieving optimal fault tolerance of t < n/2 in a synchronous
setting while enjoying the feature of optimistic responsiveness [107, 126], obtaining responsiveness
only in certain occasions when the leader is honest and f < n/4. This approach is realized through
designing a BFT-SMR that supports responsive leader change by eliminating the timeout of Ω(∆)
in BFT-SMR of [24] to detect equivocation before parties make a commit.

Insight 4 The (partial) responsiveness in synchrony requires a reduction in the number of faults
from n/2 to n/4, while (complete) responsiveness in partial synchrony can always tolerate n/3 faults.

RandShare [129] is presented as an asynchronous protocol, aiming to achieve termination as a
liveness property without making timing assumptions. However, as discussed in [120], RandShare
implicitly relies on a notion of time such that the protocol cannot guarantee liveness under asyn-
chrony. The RandHound [129] protocol is driven by a single client which may abort a protocol run
and enforce a restart.

5BFT-SMR is weaker than Byzantine broadcast in the sense that it does not require committing an honest leader’s
proposal at each view [7].

6Given a set of n elements, two sub-sets of size n − t must intersect at n − 2t elements. So, n > 3t is needed to
derive a contradiction.

10



5.3 Scalability

Despite offering uniform randomness and useful properties such as transcript aggregation, protocols
using PVSS face a significant challenge in terms of the overhead imposed on participating parties.
At a high level, every single party is supposed to commit to a secret value and broadcast the
result to others. However, this broadcasting process entails sending a message of size O(n), with
a communication complexity of O(n3) based on the lower bound of Ω(n2) [57]. As a result, the
overall complexity becomes O(n4). Additionally, each PVSS sharing requires a computation and
verification overhead of O(n). A linear public verification cost is inevitable due to the need for
verifying the transcript of protocol execution [53].

From a practical point of view, communication complexity is the main concern over the appli-
cability of this line of randomness beacons, as they are inherently communication intense. The
interesting work of SCRAPE [41] used the observation by [98] regarding the equivalence of (t, n)
Shamir secret sharing and the Reed-Solomon Code [115] to introduce a PVSS scheme with linear
computational complexity. However, their randomness beacon requires all parties to perform PVSS,
resulting in an overall communication complexity of O(n4). RandHound [128] makes use of sam-
pling techniques to shard a system of n parties to the subgroups of size c. Running a randomness
beacon protocol within each subgroup and combining the results into the final outcome reduces the
communication complexity from the total of O(n4) to O(c2n). RandHerd [128] takes the previous
approach a step further by taking advantage of collective signing [129] to generate a sequence of ran-
dom values, reducing communication (and computation) complexity to O(c2logn) and verification
complexity to O(1). Although sharding is a pivotal technique to reduce the overhead, it will cause
overall fault tolerance reduction to ensure an honest majority for each shard [53]. Using packed
secret sharing enables ALBATROSS [42] to produce a batch of O(n2) random values instead of one
at each epoch, reducing the amortized communication and computation complexity to O(n2) and
O(n), respectively. Notice that, the resulting asymptotic boost in complexity comes with decreasing
the fault tolerance as a natural trade-off, i.e., t ≤ (n− l)/2.

Recent works take advantage of their leader-based design to lower the overheads, particularly
communication complexity [23, 24, 53, 120]. This is an effective approach to dramatically mitigate
the use of broadcast channels by replacing all-to-all with an all-to-one/one-to-all communication
pattern. In SPURT [53], the leader only broadcasts a constant-sized message (i.e., cryptographic
digest) and sends the bigger part of the data (e.g., aggregated transcripts) over private channels,
leading to a quadratic communication complexity.

GRandPiper, RandPiper, and OptRand [23, 24] deploy a BFT-SMR protocol without any use
of threshold signature to commit transcript of size O(n), which could potentially lead to cubic
communication complexity. To maintain the quadratic cost, they use error-correcting code [115]
to encode the leader’s proposal, and accumulators [104] to enable efficient equivocation checking.
Making use of a type of SMR that does not use threshold signature (and therefore DKG) is necessary
to allow the system (efficiently) to support dynamic change in the set of parties. They also present
a concrete reconfiguration mechanism for their systems to maintain the resilience of the protocol
after eliminating some Byzantine party.

Insight 5 Supporting dynamic participation for underlying consensus enables the leader-based DRB
protocols with PVSS to deal with the reconfiguration procedure smoothly.

11



6 Protocols using VRF

6.1 Security

Verifiable random function (VRF) [102], can be considered as an asymmetric variant of a pseudo-
random function (PRF) [75], with public verifiability of the output. Intuitively, its security properties
state that given a sequence of VRF values, r0, r1, . . . , rn−1, for any n ≥ 1, it should not be compu-
tationally possible to distinguish rn from the output of a random function. Such properties make
VRF a promising fit for generating public randomness. Although the original work of [102] proposed
a rather complex design, it was later shown a straightforward approach to build VRF is through
applying a hash function modelled as random oracle to a unique signature scheme [73, 81]. The
uniqueness of the signature matters to guarantee the security properties of VRF. Two of the most
well-known unique signatures in the literature are RSA [125] and BLS [30].

Insight 6 Applying a hash function to a signature results in a PRF in the random oracle model.
When the signature is unique, it actually is a VRF with proof being the signature.

DRBs using VRF follow a range of blueprint designs. Algorand [73] and Ouroboros Praos [55]
deploy an integrated DRB protocol as part of their systems with a focus on achieving efficiency for
large-scale usage rather than getting high-quality randomness. They do so by letting each party set
up their own VRF key-pairs. Algorand has the taste of a leader-based protocol where the output of
VRF evaluation by the leader at each epoch determines the epoch’s beacon value and the next leader.
Ouroboros Praos takes a slightly different approach by having the XOR of all submitted VRFs by
parties to be the epoch’s beacon output. Due to its randomized leader-based design, Algorand has
probabilistic unpredictability. As observed by [66], in the constructions where parties individually
generate VRF key-pairs, the security of the beacon output relies on an honest generation of keys.
In fact, the adversary may generate a malicious key that affects the security of the output (i.e.,
unbiasability). To address this issue, the authors in [43] design a VRF construction by adopting
that of [55], guaranteeing the security of the VRF output under malicious key generation.

Gap 2 In a non-threshold setting, the security of the output relies on a key-pair that has been
generated honestly. Designing a secure DRB using VRF while tolerating maliciously generated key-
pairs is a research gap.

Unfortunately, these protocols do not satisfy unbiasability property as they are subject to the last
actor attack. To resolve this issue, there are two typical options. First, introducing a computational
delay prior to the release of the beacon output as used in the design of Harmony [2]. Second,
deploying VRF in a distributed setting with threshold security. When it comes to setting up a
threshold cryptosystem, a distributed key generation (DKG) [109] is the first step that allows parties
to obtain a common pubic key, an individual public key and its corresponding secret key. Motivated
by the work of Cachin et al. [35], a number of protocols such as Drand [3], DFINITY [36, 81],
and Glow [66] construct a DRB with continuously signing a common value (e.g., epoch’s number) in
a threshold manner to create a series of randomness. To create a chain of randomness, the common
value is typically considered to be the epoch number concatenated with the last epoch’s output
so that each beacon value uniquely determines the chain of randomness all the way to the earliest
one. In a threshold setting, the uniqueness property for an underlying signature scheme additionally
requires any set of partial signatures of size above threshold results in the same signature. This
consequently leads to the consistency of the produced randomness, removing the need to run some
form of consensus among participating parties on the beacon output.

12



Insight 7 The uniqueness of the threshold signature scheme is a crucial property with two main
implications. First, it circumvents running a consensus. Second, it allows parties to multicast their
signature shares instead of broadcasting which is a stronger requirement.

Insight 8 The chained and unchained DRB of [3] are different in terms of what they sign, one
the epoch number and the other its concatenation with the last beacon output. However, due to the
underlying threshold security both achieve the same security properties.

The underlying threshold security guarantees no adversary controlling at most t parties neither
can predict the future beacon outputs nor bias them. To instantiate a threshold VRF and so ensure
pseudorandomness, the beacon output is computed by applying a cryptographic hash function on
the signature in the random oracle model [66, 81]. The basic security definition of a VRF can
straightforwardly be extended to the threshold setting [66]. Due to the similarities in the concept
of VRF and PRF, [66] adapts and revisits the definition of standard and strong pseudorandomness
presented in [133] with respect to a threshold VRF. They provide a framework to build a DRB
protocol from any threshold VRF instances in a secure way. At a high level, compared to the
standard definition, the strong pseudorandomness preserves the security against an adversary with
the additional power of getting partial evaluations on its challenges, selecting the corrupted parties’
local secret keys, and influencing the public parameters computation. As observed by [66], all the
constructions in [2, 55, 73] fail to satisfy the two types of pseudorandomness due to their avoidance
of a threshold procedure.

Gap 3 One caveat with using threshold VRF is that the initial seed cannot be used to generate
unbiased randomness forever as the entropy is limited. It is worth exploring the process of quality
degeneration of randomness over time and the way to handle it efficiently.

Mt. Random [43] presents a DRB with three layers each one providing a different type of
randomness in exchange for different security/performance trade-offs. More accurately, the first
layer generates uniform randomness; the second layer generates pseudorandomness, and the last
layer generates (bounded) biased randomness. They design such a construction by nicely combining
different primitives including PVSS, threshold VRF, and VRF in each layer respectively. Moreover,
each lower layer feeds the higher one with seeds to provide a consistent level of bias across the
structures. Beaver et al. [17] proposed a DRB protocol called STROBE where the beacon output
at each epoch xr is computed by repeated RSA decryption of the previous epoch’s output xr−1

in a distributed way. In fact, after running a setup phase assuming a dealer who generates the
RSA modulus N and Shamir decryption key shares ski, each party disseminates their contribution
xski and the epoch’s output is computed by aggregating a threshold number of valid contributions
through performing a Lagrange interpolation in the exponent. This construction is an extension to
the work of [18] which was the first distributed randomness beacon producing values by repeated
squaring of a random seed. Distributed generation of RSA modulus [45] is an old but still active
line of research that can be used to get rid of the trusted dealer in this protocol.

Gap 4 The main reason to use threshold VRF for DRB is to prevent biasing. Adopting a leader-
based design with VRF while handling the bias with other routes helps to avoid a DKG. One possible
approach would be deploying a digital signature with key extraction [9].

Gap 5 Inspired by the construction in [43] that outputs different types of randomness, it would be
interesting to build a construction that generates beacon outputs under various thresholds, where a
higher threshold could imply better randomness quality. Adopting the “Multiverse” DKG proposed
in [15] to generate a unique signature could essentially lead to such DRB.

13



6.2 Liveness

The DRB protocols in [55, 73] are built on top of their underlying distributed ledger, with the
former using a BFT-type consensus in partial-synchrony with t < n/3 and the latter having parties
communicate in a synchronous peer-to-peer fashion with t < n/2.7 In a stand-alone DRB protocol
like [88], the fact that parties evaluate their VFRs individually necessities deploying broadcast
channels and consequently synchronous network settings.

Protocols deploying threshold VRF, however, do not need to use broadcast channels for producing
their beacon outputs. This implicitly results in constructions that can be implemented in a non-
synchronous setting while supporting the corresponding fault tolerance (i.e., t < 1/3). Therefore,
DFINITY [36, 81] is presented in partial-synchrony and Drand [3] in synchrony, despite having
the same protocol flow. However, several existing DRB protocols using threshold VRF, such as
[17, 43, 66], make synchronous assumptions due to the use of DKG in their setup phase [69]. The
context of asynchronous DKG [5,54] has recently started receiving more attention which has a direct
effect on constructing asynchronous DRB protocol. The protocol proposed by Cachin et al. [35] works
independently of network delay and therefore is suitable for an asynchronous setting.

Insight 9 Designing a DRB protocol in an asynchronous setting is tricky due to the fact that ran-
domness itself is needed to get around FLP impossibility result [62]. With an asynchronous DKG,
however, it is possible to generate public randomness via computing a threshold VRF in a single-shot
manner and then repeat the process multiple times.

One important consideration in protocols with a chain of randomness is that producing beacon
output at each epoch is necessary for initiating the next one. This means if the protocol fails to
output at any epoch (for any reason), the next epochs will also be influenced. Thus, satisfying GOD
property is necessary for the correct operation of such protocols. Protocols like Algorand [73] and
Ouroboros Praos [55] where parties individually evaluate their VRFs, cannot feature GOD due to
the possibility of abortion.

6.3 Scalability

DRBs with individually set VRFs such as [73,88,89] are quite efficient in terms of computation and
verification cost with a constant overhead of O(1). However, they still need a quadratic communi-
cation complexity for broadcasting or deploying a public bulletin board.8

Running a DKG is the most expensive part of protocols using threshold VRF that dominates the
communication and computation complexity. There are various DKG constructions in the literature
among which [70, 77, 85, 91] are widely used. DFINITY uses the non-interactive distributed key
generation of [77] with O(n3) communication complexity, while Drand employs [70] that incurs at
least O(n3 log n) overhead. As another example, to generate key materials for threshold BLS it
still takes elaborate protocols with O(n4) communication complexity [85,91]. Running such a setup
phase is for once and when done, the parties can perform the rest of the process at a much lower
cost. If needed, one can also use a publicly verifiable DKG [78] in the setup phase. Aggregation
properties enable this DKG to offer lower communication and computation costs and can be used
to instantiate verifiable unpredictable function (VUF), which essentially works as a randomness

7In the original work of [55] the network was assumed to be “semi-synchronous”. Later it was shown that a
longest-chain consensus requires synchronous assumption to work safely [116].

8Algorand [73] uses random committees of size c. This makes the communication complexity reduced to O(cn),
however, asymptotically remains quadratic if c depends on n.

14



beacon.9 Excluding the DKG setup, the DRB protocols using threshold VRF are way more efficient
compared to the ones using PVSS. However, all the protocols of [17, 35, 81] still have a quadratic
communication complexity of O(n2) due to multicasting a partial signature by each party to others
at each epoch. Each party then needs to verify the received set of messages, leading to a linear cost.
An external verifier just needs to verify the final beacon output against the common public key,
providing optimum public verifiability of O(1). One major limitation of having DKG as the setup
phase is an inability to support dynamic participation, due to the need for re-running the DKG
whenever a new party joins or leaves.

7 Protocols Using VDF

7.1 Security

Although time-based primitives have been around for decades [117], the evolution of VDF in recent
years [27,60,131] as an interesting variant has opened new doors to take advantage of their promising
features to produce public randomness [27, 60, 80, 119]. The most common VDF constructions are
those based on repeated squaring in groups of unknown order, like an RSA group, to enforce a guar-
anteed computational delay [112, 131]. The properties of VDF including uniqueness, sequentially,
and public verifiability make it a solid option to construct a randomness beacon by simply using its
output iteratively evaluated on an initial seed at regular points in time. It is worth mentioning that
the sequentially of VDF implies unpredictability and its uniqueness together with timed-dependent
evaluation implies unbiasability. However, a VDF provides efficient verification for a complete invo-
cation, and not for every iteration. That is the main motivation behind the design of the Continuous
VDF (cVDF) [60] that addresses this issue by introducing a primitive that enables efficient verifica-
tion of a VDF at each iteration, which is independent of the time parameter. Thus, starting with
an unpredictable seed, cVDF is iteratively applied to produce the epoch’s output which is also used
as the seed for the next epoch. As with VRF, one needs to apply a cryptographic hash function on
the resulting VDF output to turn beacon outputs pseudorandom [60].

Gap 6 The construction using cVDF in [60] is a centralized randomness beacon. It would be inter-
esting to explore how to use such a primitive with iterative public verification to build a DRB. Using
the notion of collaborative VDF [100] may be a direction to look into this further.

The first concrete attempt towards constructing a DRB using VDF was due to the researchers at
Ethereum Foundation [58]. Their proposal is based on applying a VDF on the aggregated local ran-
domness from a set of parties through the commit-reveal process. The necessity of computing VDF
prevents the adversary from learning the beacon output before revealing its input. HeadStart [93]
is a recent randomness beacon protocol that follows a commit-reveal approach where a centralized
organizer computes the VDF. To protect against a colluding organizer, it needs to compute the
Merkle root of all the contributions and publishes the respective membership proofs prior to the
release of the beacon output.

RandRunner [119] constructs a DRB protocol by cleverly making use of trapdoor VDF, enabling
fast computation of VDF with some additional knowledge. The core idea behind the construction
is to have each party designated as the epoch’s leader efficiently compute VDF on the last beacon
output using their trapdoor and broadcast the result to others. The crucial part is to ensure that
the knowledge of the trapdoor does not give the leader an opportunity to threaten the uniqueness

9The DKG of [78] outputs group elements as secret keys and is not suitable for BLS signature that requires a field
element.

15



of the VDF, and is merely used to accelerate the process of computation. To this end, given the
security properties of [112] as the underlying VDF construction, a setup phase is required where
each party must generate a NIZK [37] to show the correctness of the RSA modulus.10 Observe that
this procedure allows getting around an interactive setup phase for RSA modulus generation as each
party just needs to individually set up their own VDF. An important consideration is the necessity
of ensuring strong uniqueness for trapdoor VDF in case public parameters are adversarial generated,
similar to the setting where parties set up their VRFs individually [66]. With a deterministic leader
election, the protocol provides absolute unpredictability only after d = α · t epochs which α denotes
the adversary’s computational advantage in evaluating VDFs compared to that of honest parties.

Gap 7 As the only leader-based protocol using VDF, RandRunner [119] ensures absolute unpre-
dictability of the next t + 1 epochs. More research needs to be conducted on how to reduce this
preferably to one epoch.

The latest attempt to design a DRB according to the folklore paradigm of commit-reveal is
Bicorn [47], featuring an interesting approach to address the last actor attack efficiently. The
subtle novelty of the approach is to enable the recovery of missed contributions just by doing one
sequential computation, no matter how many parties abort. This is achieved by having each party
commit to their contribution αi as ci = gαi with the resulting beacon output being

∏n
i=1 h

αi , where

h = g2
T

is a VDF evaluation with parameter T . In the event of abortion, this design allows anybody

to compute the beacon output via
∏n

i=1(ci)
2T , resembling a VDF computation on the product of

commitment
∏n

i=1(ci). Bicorn [47] has a similar flow as leaderless protocols using PVSS in the sense
that they both follow a “commit-reveal-recover” paradigm [47], but the former handles the recovery
with a slow computation and the latter does that with reconstruction due to its threshold security.

Insight 10 Bicorn [47] shows the importance of the way beacon output is determined in a commit-
reveal manner. Using an exponentiation operation results in an (optimistically) efficient protocol
with optimal timed recovery, i.e., one slow computation for many aborts.

7.2 Liveness

Time-based cryptography enables circumventing the result of [51], showing the impossibility of doing
a secure coin flipping without an honest majority. That is, dishonest majority can be tolerated due
to the possibility of timed recovery and security can be preserved due to the sequential nature of
such time-dependent computation, even against parallel processors.

Although time-based cryptography can potentially relax the underlying network assumption and
enable achieving the highest fault tolerance of n − 1 [48, 99], there exists some hurdle in realizing
these exciting properties. Working in a synchronous setting seems to be critical for the current DRB
protocols using VDF [47, 58, 93, 119] for two reasons. First, the reliance on time/timeout may be
needed to indicate different stages of the protocol [47, 58, 93]. Second, the use of a public bulletin
board or broadcast channel is assumed in [47,119] to ensure consistency or security. More precisely,
in Bicorn [47] parties should have access to a public bulletin board to consistently post their com-
mitment in the commit phase, which as already mentioned has the same effect of implementing
a Byzantine broadcast. In RandRunner [119], the corrupted leader may try to violate the unpre-
dictability of the protocol by selectively disseminating the beacon output to a portion of parties,
forcing others to go through slow computation to catch up. Deploying broadcast channels in the
system is a countermeasure that consequently implies a fault tolerance of t < n/2. Due to the

10It should be the product of two safe primes of form 2p+ 1.

16



strong uniqueness of the used VDF that ensures the equality of the VDF evaluation normally and
with a trapdoor, the only aspect of the protocol suffered from periods of asynchrony (i.e., network
partitions) is the unpredictability as anybody can compute the missed beacon output by a slow VDF
computation, offering unbiasability and GOD.

7.3 Scalability

The major issue with this type of DRB is the need for performing sequential computation which
is a highly energy-consuming task, introducing latency and dampening throughput. The idea of
trapdoor VDF in [119] allows a fast beacon computation for the leader and efficient verification of
O(1) for verifiers. The same is the case in [47], except in leaderless fashion with O(n) verification
cost. The necessity of deploying (reliable) broadcast or public bulletin board in the system leads
to a cubic communication complexity for [47] and quadratic communication complexity for [119]
due to its leader-based style. Gossiping is an alternative approach that has lower complexity of
O(n log n) but increases the latency. While the set of parties is known and fixed in [119], the two
works of [47, 93] support public participation, allowing parties to efficiently come and go without
knowing the set of parties in advance.

8 Protocols Using Public Blockchain

8.1 Security

Some of the earlier works for building randomness beacons were based on using a source of infor-
mation as high entropy data that is publicly available [22, 32, 50, 94, 111]. High-quality randomness
is typically extracted by applying a randomness extraction function to parts of the corresponding
data. Among the existing public data structures, proof-of-work (PoW) blockchain is considered the
most suitable one as it is always available (unlike financial markets in [50]) and inherently comes
with additional security properties like the underlying Nakamoto consensus [103]. The randomness
used in the process of mining a block (e.g., PoW puzzle) can be utilized to extract a large number
of unpredictable random bits. However, as mentioned in [34], two types of manipulation attacks can
be launched: (1) a miner could withhold proposing a valid block just because it does not lead to the
desired randomness 11; (2) due to the network latency it is possible that forks occur. One might also
consider an attack scenario to affect the beacon output just by manipulating the network to prevent
or delay the propagation of a particular block producing an undesirable output. Although imposing
financial penalties or slashing is a well-known way to restrict miners from such manipulation at-
tacks [10,13],12 the possible gain from attacks may be unbounded while any penalty is bounded. A
detailed security analysis on the ability of malicious miners is carried out in [22], showing the impos-
sibility of deriving even one single truly random bit when the attacker has a considerable fraction of
the total computing power. On the other hand, when the attacker has a limited computing power
that is not enough for block production, generating truly random bits is feasible. The work of [105]
presents a model for uniform randomness extraction over a public blockchain that has each party
outputs a public value together with secret values to the other parties in a multi-round fashion.

As common in the DRB literature, incorporating a delay function is a working method to protect
against a malicious miner via imposing a delay period only after which the output is achievable.
[34, 94] proposed two protocols for augmenting such delay functions based on computing modular

11It is costly as they require to spend considerable time and computational efforts on this action.
12We note that slashing is an established method for a proof-of-stake (PoS) setting where the actors have some

stake already deposited in the system.

17



square root and iterating a pseudorandom permutation (e.g., block cipher) or hash function as
compositionally-sequential functions. Notice that despite having a (randomized) leader-based style
with the miner being the epoch’s leader, these protocols can provide absolute unpredictability, even
for the current epoch’s beacon output, thanks to intrinsic randomness lied in the system (plus
the use of delay). Randchain [80] combines security properties of Nakamoto consensus and delay
functions to address two main issues in a PoW blockchain-based system including biasability, and
unfairness, i.e., parties with high computational power dominating the randomness generation. It
introduces a primitive called SeqPoW which is a puzzle that, unlike the typical PoW puzzle, cannot
be solved faster using multiple parallel processors. To put it another way, SeqPoW is a cryptographic
puzzle that takes a random and unpredictable number of sequential steps to solve. Similar to VDFs,
sequentiality in SeqPoW also implies unpredictability.

Insight 11 Proof-of-work mechanism in Nakamoto consensus prevents equivocation by the leader
(e.g., miner) via making it costly, somewhat resembling the use of (threshold) signature in BFT-type
consensus.

8.2 Liveness

As Nakamoto consensus works safely only in synchrony [116], the randomness beacon protocol built
on top of it inherent the same network assumption [32, 34, 80]. More precisely, a non-synchronous
network condition (partial-synchronous or asynchronous) leads to arbitrarily long network partitions,
violating the consistency of the system. Moreover, these protocols can tolerate a (computationally)
honest majority of t < n/2.

8.3 Scalability

The properties of DRBs using public blockchain rely on their underlying distributed ledger and
cannot be treated in a stand-alone regime. In [32, 34, 80] the party who first finds the solution to
a puzzle, publishes the result globally to the peer-to-peer network. In such a network, the message
is delivered by a sender to a random subgroup of parties (i.e., its peers) in different steps until all
the parties receive the message. Thus, the parties do not necessarily know each other in contrast to
the network with point-to-point channels. Although the availability of a (public) distributed ledger
facilitates the process, one may argue that posting to a blockchain could be more costly compared to
implementing broadcast channels. That is, the former usually contains a large population of parties
that are not necessarily involved in the randomness generation, but the latter is only concerned with
a limited set of participating parties. Verification should be done efficiently just by checking the
correctness of the solution, resulting in O(1) cost. In these protocols, the participating parties may
dynamically change over time, featuring public participation.

9 Discussion

We now look at some aspects of DRB protocols that are worthy enough to be highlighted indepen-
dently from the systematization already provided.

Adaptive Security. There are two widely known strategies that an adversary can adopt to corrupt
parties: static corruption, where the set of corrupted parties is fixed and known to the adversary
before the protocol begins; and adaptive corruption, where the adversary can corrupt any party it
wishes based on its view of the protocol. The adversary’s capability is still limited to corrupt only
a certain number of parties and they remain corrupted until the end of protocol [40, 96]. In [106],

18



Table 1: Comparison of distributed randomness beacons (DRBs).

Category Protocol
Security Liveness Scalability

Se
tu
p

Dyn
am

ic

Ada
p.

GOD
Res

p.

Unpre. Unbias. Net. Faults Comm. Comp. Veri.

PVSS

RandShare∗ [128] ✓ ✓ async. n/3 O(c2n) O(c2n) O(c2n) CRS ✓ ✓ ✓ ✓

RandHound [128] ✓ ✓ sync. n/3 O(c2n) O(c2n) O(c2n) CRS ✓ ✗ ✓ ✗

RandHerd [128] ✓ ✓ sync. n/3 O(c2 logn) O(c2 logn) O(1) DKG ✗ ✗ ✗ ✗

Ouroboros [89] ✓ ✓ sync. n/2 O(n4) O(n3) O(n3) CRS ✓ ✗ ✗ ✗

SCRAPE [41] ✓ ✓ syn. n/2 O(n4) O(n2) O(n2) CRS ✓ ✗ ✗ ✗

Hydrand [120] t+ 1 ✓ sync. n/3 O(n2) O(n) O(n) CRS ✓ ✗ ✗ ✗

ALBATROSS [42] ✓ ✓ sync. n/2 O(n2) O(n) O(1) CRS ✓ ✗ ✗ ✗

GULL [43] ✓ ✓ sync. n/2 O(n4) O(n2) O(n2) DKG ✗ ✗ ✗ ✗

GRandPiper [24] t+ 1 ✓ sync. n/2 O(n2) O(n2) O(n) CRS†† ✓ ✗ ✓ ✓

BRandPiper∗ [24] ✓ ✓ sync. n/2 O(n3) O(n2) O(n2) CRS†† ✓ ✓ ✓ ✓

SPURT [53] ✓ ✓ p.sync. n/3 O(n2) O(n) O(n) CRS ✓ ✗ ✗ ✓

OptRand [23] ✓ ✓ sync. n/2 O(n2) O(n) O(n) CRS†† ✓ ✗ ✓ ✓

VRF

Cachin et al. [35] ✓ ✓ async. n/3 O(n2) O(n) O(1) DKG ✗ ✗ ✓ ✓

DFINITY [81] ✓ ✓ p.sync. n/3 O(n2) O(n) O(1) DKG ✗ ✓ ✓ ✓

Drand [3] ✓ ✓ sync. n/2 O(n2) O(n) O(1) DKG ✗ ✓ ✓ ✗

Algorand [73] Ω(t) ✗ p.sync. n/3 O(cn) O(1) O(1) CRS ✗ ✓ ✗ ✓

Ouroboros Praos [55] Ω(t) ✗ sync. n/2 O(n2)† O(n) O(n) CRS ✓ ✓ ✗ ✗

Harmony [2] Ω(t) ✓ p.sync. n/3 O(n2) VDF O(n) CRS ✓ ✗ ✗ ✗

Glow [66] ✓ ✓ sync. n/2 O(n2) O(n) O(1) DKG ✓ ✗ ✓ ✗

STROB [17] ✓ ✓ sync. n/2 O(n3) O(n) O(1) DKG ✗ ✗ ✓ ✗

Kiayias et al. [88] ✓ ✓ sync. n/2 O(n3) O(n) O(1) CRS ✓ ✓ ✗ ✗

VDF
RandRunner [119] t+ 1 ✓ sync. n/2 O(n2) VDF O(1) CRS ✓ ✗ ✓ ✓

HeadStart [47] ✓ ✓ sync. n O(n)† O(n) O(1) - ✓ ✗ ✗ ✗

Bicorn [93] ✓ ✓ sync. n O(n3) O(n) O(n) - ✓ ✓ ✓ ✗

Blockchain
Bitcoin [32] ✓ ✗ sync. n/2 O(1)† PoW O(1) CRS ✓ ✓ ✗ ✗

Proof-of-Delay [34] ✓ ✓ sync. n/2 O(1)† VDF O(log λ) CRS ✓ ✓ ✗ ✗

RandChain [80] ✓ ✓ sync. n/2 O(1)† PoW O(1) CRS ✓ ✓ ✗ ✗

∗ =: VSS is used; † =: Public bulletin board is assumed; †† =: Private setup is assumed.

two levels of adaptiveness are considered for an adversary, namely fully and mildly. The former
refers to a strong adversary that may corrupt the victims instantly while it takes some time for the
latter to corrupt a new party. Most of the public randomness protocols in the literature consider the
static adversary. However, providing proven security against an adversary enjoying adaptiveness is
rather delicate and requires more work. RandRunner [119] offers absolute unpredictability of the
next t + 1 epochs for both static (worst-case) and adaptive adversary while it offers probabilistic
unpredictability against a mild adaptive adversary since the protocol can make progress before the
adversary gets a chance to corrupt new leaders.

Insight 12 In a leader-based protocol with the leader solely contributing to the beacon output, an
adaptive adversary can corrupt up to t consecutive leaders and violate the unpredictability. So, the
adaptive adversary essentially acts as a static adversary in a worst-case scenario.

As mentioned in [88], the single or multi-round design of the protocol plays a critical role in
providing adaptive security. A single-round protocol where each party only speaks once during each
epoch can provide adaptive security as the best the adversary can do is to try and randomly corrupt
parties before they contribute; otherwise, any corruption would be useless. This model is known
and formalized under the notion of YOSO, you only speak once [21, 71]. Therefore, the important
observation in designing an adaptively secure leader-based protocol is that the adversary should not
be able to detect the next leader ahead of broadcasting the result. With this in mind, Algorand [73]
provides probabilistic unpredictability in the presence of an adaptive adversary. The work of Kiayias
et al. [88] can be thought of as a parallelization of Algorand where instead of having a leader at
each epoch, all parties individually compute the VRF on a common seed and broadcast it to others.
Eventually, the hash of the least k submissions (i.e., VRFs with smallest values) determines the
round’s beacon output. This approach rules out the possibility of an adversary controlling the
whole set of contributors to breach the security as it is shown the probability of occurring such
an event – the k-th smallest adversarial contribution being less than the honest one – is bounded

19



with the appropriate choice of parameters, ensuring at least one honest contribution is included to
make the beacon output secure. As a result, the protocol is secure against an adaptive adversary
corrupting up to t < n/2 parties.

Gap 8 It is interesting to explore how to construct an adaptively secure DRB protocol with absolute
unpredictability, where the leader solely contributes to the beacon output at each round. Such protocol
should likely resemble the Nakamoto-style structure, where by the time the adversary decides to
corrupt a party, they have already revealed the contribution.

Since we are not yet aware of the suitable proof techniques showing the adaptive security of
the existing PVSS schemes, it is rather challenging to argue about the adaptiveness of protocols
using PVSS despite not knowing concrete attack against them [53]. It is clear, however, to argue
that in such multi-round protocols, parties go through at least two logical steps of commit, and
reveal. So, to provide security against an adaptive adversary using more than t contributions from
distinct parties is inevitable. This is the way BrandPiper [24] achieves adaptive security, employing
the communication-wise efficient VSS scheme of [86] with more than t contributions involved in
producing the beacon output at each epoch.

Gap 9 Investigating the adaptive security of PVSS is a vital research question. This, in turn, leads
to analyzing the adaptiveness of resulting DRB protocols.

Leaderless protocols using VRF, in particular those based on threshold signature, can be viewe as
a single-round protocol excluding the one-time DKG phase. So, adaptiveness should be investigated
in the combination of the two sub-protocols. As realized in [40], one major problem with adaptive
security for threshold scheme is constructing a simulator to simulate the adversary’s view in the real
execution of the protocol as it is hard to predict which subset of parties is corrupted.13 The authors
in [8, 40] use some techniques such as erasing the secrets, rewinding, and zero-knowledge proof to
achieve an adaptively secure threshold RSA signature on top of a static-secure one. A requirement
of such transformation is the refreshment of partial secret keys after each signature generation
that additionally leads to proactive security [83, 97], a level of security required when parties are
under threat of losing/leaking their secret keys. Very recently, Bacho and Loss [14] introduced an
adaptive security proof in algebraic group model (AGM) [63] for threshold BLS signature which
could essentially bring the respective randomness beacon protocols the joy of adaptiveness.

Simulation-based Security. It is not difficult to see that a DRB protocol is actually a secure multi-
party computation (MPC) [74, 96]. Treating protocols based on some specific properties, like the
majority of existing works, poses the threat of not covering all the required ones. This consequently
demands paying more attention to the grounded paradigm of real/ideal simulation which is a well-
known security formulation in the context of secure computation. By defining an ideal functionality
that acts as a trusted entity faithfully carrying out the computations, a secure system is defined
by comparing the real-world execution of the protocol and the execution within the presence of
the ideal functionality. This approach apart from having the advantage of capturing the security
concerns, allows moving towards composable security [38, 39] which is an important but overlooked
necessity for protocols producing public randomness. Such protocols, even when designed in a
stand-alone manner, often are deployed within a larger system and may have interactions with other
sub-protocols to provide required fresh randomness. To the best of our knowledge, only recently a
few rare attempts has been made in this direction [16,42].

13Unless we assume that the simulator knows all the private shares of parties which do not make sense.

20



Insight 13 Looking at DRB as a type of secure multiparty computation together with its resemblance
to SMR, allows arguing about its properties formally by adopting a security definition from the former
and a liveness definition from the latter.

History Generation. STROBE [17] put forth an interesting property for a DRB regarding efficient
(re)generation of the beacon history, given the current epoch’s output. This novel feature is of
importance in applications that require a high-throughput stream of randomness and are likely to
suffer from occasional disconnections, e.g., online gaming. So, at epoch r, it is possible to generate
all the previous beacon outputs {x1, . . . , xr−1} using xr and public key. This also implies self-
verification, enabling verification of each output only against the previous ones with no need for any
NIZK proof. This property is the direct result of using a (threshold) RSA signature where the secret
key is the multiplicative inverse of the public key, allowing to trace the chain of randomness back by
iterative encryptions. Despite the possibility of generating the history, it gets more computationally
expensive (i.e., grows exponentially) as the number of epochs to (re)generate increases.14 With
threshold BLS, it is possible to create a unique chain of randomness, and with threshold RSA, it is
possible to have continual back and forth on such a chain.

Insight 14 In a (plain) secret sharing, the shares do not carry any self-verifying information. But,
in STROBE [17] this is the case thanks to the underlying chain of RSA decryption.

Insight 15 As a trade-off, the history generation property diminishes randomness quality from being
truly random or pseudorandom to just being unpredictable as it is not possible to get the full history
from a fresh (truly/pseudo)random value.

Setup Assumption. DRB protocols typically need to use some form of setup assumption for
initializing the process. This can be either for efficiency purposes (e.g., bootstrapping) or to enable
the implementation of elaborate operations. One well-known example of such a setup is PKI which
is a functionality F whose responsibility is to relay parties’ public keys to others. Depending on
whether such functionality F outputs public or private values to parties, we can refer to it as a
public or private setup. In settings with a public setup, all parties receive the same value from the
functionality. This can be some group specification (e.g., group generator) or an initial seed, known
as a common reference string (CRS). DRB protocols using PVSS and VDF can be implemented with
such a public setup. We remark that deploying VDF also needs a setup phase for its underlying group
of unknown order. However, a sidestep would be either using class groups of imaginary quadratic
fields [33] or trapdoor VDF augmented with a NIZK [119]. On the other hand, protocols with a
private setup need to either rely on a trusted party or run an MPC protocol (e.g., DKG) to generate
secret values that must be kept hidden during the protocol execution. This process is an efficiency
bottleneck and makes the re-configuration problematic [24], i.e., parties cannot be replaced easily
once the setup gets executed.

Cryptographic Assumption. Underlying cryptographic assumptions play an important role in
analyzing the security of the resulting DRB protocol. One well-known assumption used in a range
of randomness beacon protocols is random oracle [19]. Particularly, the beacons with pseudorandom
outputs [3, 43, 55, 66, 81, 119] make use of such assumption to turn the unpredictable beacon values
to the pseudorandom ones that are indistinguishable from a uniform distribution. This assumption
is also used in the PVSS scheme of [41,122], allowing more efficient constructions. Another popular
assumption in the context of randomness beacons is decisional Diffie-Hellman (DDH) [31] commonly

14It is possible to deploy some techniques to decrease the proof size and the running time. For more details see [17].

21



served as the standard assumption for underlying PVSS and DKG schemes [41–43,46]. Some proto-
cols also may rely on stronger assumptions that are less standard and their security properties are
not studied substantially. For instance, SCRAPE in the plain model uses pairings, relying on the
hardness assumption of decisional bilinear squaring (DBS) [82].15 SPURT [53] makes modifications
to the pairing-based PVSS of SCRAPE to turn its security assumption to the more standard deci-
sional bilinear Diffie-Hellman (DBDH) assumption [31]. Also, repeated squaring (RSW) [117] is the
common hardness assumption for DRB protocols using VDF.

Gap 10 Although the leaderless DRB of [41] works with a version of PVSS in the random oracle
model, all the existing leader-based protocols need to use pairings. Designing a leader-based protocol
without pairings considerably boosts performance.

Post-quantum Security. Looking over DRB literature lets us know that the emergence of quan-
tum computers could be a real threat to the existing protocols due to their cryptographic hardness
assumptions. In particular, bilinear-map-based PVSS is susceptible to quantum attacks [124], mak-
ing the corresponding DRB protocols insecure. Gentry, Halevi, and Lyubashevsky [72] recently
proposed a proactive and non-interactive PVSS scheme in which the underlying encryption scheme
is based on the learning with errors (LWE) problem [110]. Although the adoption of LWE encryp-
tion in their lattice-based scheme is primarily motivated by scaling PVSS in large-scale systems
(e.g., where committees may scale to hundreds or thousands of parties), the secrecy of their PVSS
is preserved even against quantum attackers. HERB [46] builds a randomness beacon protocol with
additive homomorphic threshold encryption where a group of parties encrypt their local randomness
and any threshold of participant can retrieve the aggregated beacon value. A potential advantage of
this construction is its ability to resist quantum attacks by replacing fully homomorphic lattice-based
schemes, supporting distributed key generation and threshold decryption [20].

Gap 11 To the best of our knowledge, there exists no concrete effort in the literature to design a
post-quantum secure DRB protocol. Deploying lattice-based PVSS [72] or isogeny-based VDF [56]
are two possible tools to do so.

Acknowledgments. The authors would like to thank Ewa Syta and Renas Bacho for helpful
discussions.

References

[1] League of entropy. https://en.wikipedia.org/wiki/League_of_Entropy.

[2] Team harmony, technical whitepaper - version 2.0. https://harmony.one/whitepaper.pdf.

[3] Team drand, drand project website. https://drand.love, 2020.

[4] I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, and G. Stern. Bingo: Adaptively secure
packed asynchronous verifiable secret sharing and asynchronous distributed key generation.
Cryptology ePrint Archive, 2022.

[5] I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and A. Tomescu. Reaching
consensus for asynchronous distributed key generation. In Proceedings of the 2021 ACM Sym-
posium on Principles of Distributed Computing, pages 363–373, 2021.

15SCRAPE PVSS scheme is proposed in two versions, one in the random oracle model under DDH assumption and
one in the plain model under DBS assumption.

22

https://en.wikipedia.org/wiki/League_of_Entropy
https://harmony.one/whitepaper.pdf
https://drand.love


[6] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin. Sync hotstuff: Simple and practical
synchronous state machine replication. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 106–118. IEEE, 2020.

[7] I. Abraham, K. Nayak, L. Ren, and Z. Xiang. Good-case latency of byzantine broadcast:
A complete categorization. In Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, pages 331–341, 2021.

[8] J. F. Almansa, I. Damg̊ard, and J. B. Nielsen. Simplified threshold rsa with adaptive and
proactive security. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 593–611. Springer, 2006.

[9] O. Alpos, Z. Wang, A. Kavousi, S. Y. Chau, D. Le, and C. Cachin. Dske: Digital signature
with key extraction. Cryptology ePrint Archive, 2022.

[10] M. Andrychowicz and S. Dziembowski. Distributed cryptography based on the proofs of work.
Cryptology ePrint Archive, 2014.

[11] Z. Avarikioti, A. Desjardins, L. Kokoris-Kogias, and R. Wattenhofer. Divide & scale: For-
malization and roadmap to robust sharding. In Structural Information and Communication
Complexity: 30th International Colloquium, SIROCCO 2023, Alcalá de Henares, Spain, June
6–9, 2023, Proceedings, pages 199–245. Springer, 2023.

[12] S. Azouvi and D. Cappelletti. Private attacks in longest chain proof-of-stake protocols with
single secret leader elections. In Proceedings of the 3rd ACM Conference on Advances in
Financial Technologies, pages 170–182, 2021.

[13] S. Azouvi, P. McCorry, and S. Meiklejohn. Winning the caucus race: Continuous leader
election via public randomness. arXiv preprint arXiv:1801.07965, 2018.

[14] R. Bacho and J. Loss. On the adaptive security of the threshold bls signature scheme. Cryp-
tology ePrint Archive, 2022.

[15] L. Baird, S. Garg, A. Jain, P. Mukherjee, R. Sinha, M. Wang, and Y. Zhang. Threshold
signatures in the multiverse. In 2023 IEEE Symposium on Security and Privacy (SP), pages
2057–2073. IEEE Computer Society, 2022.

[16] C. Baum, B. David, R. Dowsley, R. Kishore, J. B. Nielsen, and S. Oechsner. Craft: C
omposable r andomness beacons and output-independent a bort mpc f rom t ime. In Public-
Key Cryptography–PKC 2023: 26th IACR International Conference on Practice and Theory
of Public-Key Cryptography, Atlanta, GA, USA, May 7–10, 2023, Proceedings, Part I, pages
439–470. Springer, 2023.

[17] D. Beaver, K. Chalkias, M. Kelkar, L. K. Kogias, K. Lewi, L. de Naurois, V. Nicolaenko,
A. Roy, and A. Sonnino. Strobe: Stake-based threshold random beacons. Cryptology ePrint
Archive, 2021.

[18] D. Beaver and N. So. Global, unpredictable bit generation without broadcast. In Workshop
on the Theory and Application of of Cryptographic Techniques, pages 424–434. Springer, 1993.

[19] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

23



[20] R. Bendlin and I. Damg̊ard. Threshold decryption and zero-knowledge proofs for lattice-based
cryptosystems. In Theory of Cryptography: 7th Theory of Cryptography Conference, TCC
2010, Zurich, Switzerland, February 9-11, 2010. Proceedings 7, pages 201–218. Springer, 2010.

[21] F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk, C. Lin, T. Rabin, and
L. Reyzin. Can a public blockchain keep a secret? In Theory of Cryptography: 18th Interna-
tional Conference, TCC 2020, Durham, NC, USA, November 16–19, 2020, Proceedings, Part
I 18, pages 260–290. Springer, 2020.

[22] I. Bentov, A. Gabizon, and D. Zuckerman. Bitcoin beacon. arXiv preprint arXiv:1605.04559,
2016.

[23] A. Bhat, A. Kate, K. Nayak, and N. Shrestha. Optrand: Optimistically responsive distributed
random beacons. Cryptology ePrint Archive, 2022.

[24] A. Bhat, N. Shrestha, Z. Luo, A. Kate, and K. Nayak. Randpiper–reconfiguration-friendly
random beacons with quadratic communication. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 3502–3524, 2021.

[25] G. R. Blakley and C. Meadows. Security of ramp schemes. In Workshop on the Theory and
Application of Cryptographic Techniques, pages 242–268. Springer, 1984.

[26] M. Blum. Coin flipping by telephone a protocol for solving impossible problems. ACM SIGACT
News, 15(1):23–27, 1983.

[27] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In Annual interna-
tional cryptology conference, pages 757–788. Springer, 2018.

[28] D. Boneh, S. Eskandarian, L. Hanzlik, and N. Greco. Single secret leader election. In Pro-
ceedings of the 2nd ACM Conference on Advances in Financial Technologies, pages 12–24,
2020.

[29] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In Advances in
Cryptology—CRYPTO 2001: 21st Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 19–23, 2001 Proceedings, pages 213–229. Springer, 2001.

[30] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted sig-
natures from bilinear maps. In Advances in Cryptology—EUROCRYPT 2003: International
Conference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland,
May 4–8, 2003 Proceedings 22, pages 416–432. Springer, 2003.

[31] D. Boneh and V. Shoup. A graduate course in applied cryptography. Recuperado de
https://crypto. stanford. edu/˜ dabo/cryptobook/BonehShoup 0 4. pdf, 2017.

[32] J. Bonneau, J. Clark, and S. Goldfeder. On bitcoin as a public randomness source. Cryptology
ePrint Archive, 2015.

[33] J. Buchmann and H. C. Williams. A key-exchange system based on imaginary quadratic fields.
Journal of Cryptology, 1(2):107–118, 1988.

[34] B. Bünz, S. Goldfeder, and J. Bonneau. Proofs-of-delay and randomness beacons in ethereum.
IEEE Security and Privacy on the blockchain (IEEE S&B), 2017.

24



[35] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantinople: Practical asyn-
chronous byzantine agreement using cryptography. Journal of Cryptology, 18(3):219–246, 2005.

[36] J. Camenisch, M. Drijvers, T. Hanke, Y.-A. Pignolet, V. Shoup, and D. Williams. Internet
computer consensus. Cryptology ePrint Archive, 2021.

[37] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the product of
two safe primes. In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 107–122. Springer, 1999.

[38] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of CRYP-
TOLOGY, 13(1):143–202, 2000.

[39] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145.
IEEE, 2001.

[40] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security for threshold
cryptosystems. In Annual International Cryptology Conference, pages 98–116. Springer, 1999.

[41] I. Cascudo and B. David. Scrape: Scalable randomness attested by public entities. In Inter-
national Conference on Applied Cryptography and Network Security, pages 537–556. Springer,
2017.

[42] I. Cascudo and B. David. Albatross: publicly attestable batched randomness based on se-
cret sharing. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 311–341. Springer, 2020.

[43] I. Cascudo, B. David, O. Shlomovits, and D. Varlakov. Mt. random: Multi-tiered randomness
beacons. In Applied Cryptography and Network Security: 21st International Conference, ACNS
2023, Kyoto, Japan, June 19–22, 2023, Proceedings, Part II, pages 645–674. Springer, 2023.

[44] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OsDI, volume 99, pages
173–186, 1999.

[45] M. Chen, C. Hazay, Y. Ishai, Y. Kashnikov, D. Micciancio, T. Riviere, A. Shelat, M. Venki-
tasubramaniam, and R. Wang. Diogenes: lightweight scalable rsa modulus generation with a
dishonest majority. In 2021 IEEE Symposium on Security and Privacy (SP), pages 590–607.
IEEE, 2021.

[46] A. Cherniaeva, I. Shirobokov, and O. Shlomovits. Homomorphic encryption random beacon.
Cryptology ePrint Archive, 2019.

[47] K. Choi, A. Arun, N. Tyagi, and J. Bonneau. Bicorn: An optimistically efficient distributed
randomness beacon. Cryptology ePrint Archive, 2023.

[48] K. Choi, A. Manoj, and J. Bonneau. Sok: Distributed randomness beacons. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 75–92. IEEE Computer Society, 2023.

[49] B. Chor, O. Goldreich, J. Hasted, J. Freidmann, S. Rudich, and R. Smolensky. The bit
extraction problem or t-resilient functions. In 26th Annual Symposium on Foundations of
Computer Science (sfcs 1985), pages 396–407. IEEE, 1985.

25



[50] J. Clark and U. Hengartner. On the use of financial data as a random beacon. In 2010
Electronic Voting Technology Workshop/Workshop on Trustworthy Elections (EVT/WOTE
10), 2010.

[51] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In Proceedings
of the eighteenth annual ACM symposium on Theory of computing, pages 364–369, 1986.

[52] R. Cohen and Y. Lindell. Fairness versus guaranteed output delivery in secure multiparty
computation. Journal of Cryptology, 30(4):1157–1186, 2017.

[53] S. Das, V. Krishnan, I. M. Isaac, and L. Ren. Spurt: Scalable distributed randomness beacon
with transparent setup. In 2022 IEEE Symposium on Security and Privacy (SP), pages 2502–
2517. IEEE, 2022.

[54] S. Das, T. Yurek, Z. Xiang, A. Miller, L. Kokoris-Kogias, and L. Ren. Practical asynchronous
distributed key generation. Cryptology ePrint Archive, 2021.

[55] B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-secure, semi-
synchronous proof-of-stake blockchain. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 66–98. Springer, 2018.

[56] L. De Feo, S. Masson, C. Petit, and A. Sanso. Verifiable delay functions from supersingular
isogenies and pairings. In Advances in Cryptology–ASIACRYPT 2019: 25th International
Conference on the Theory and Application of Cryptology and Information Security, Kobe,
Japan, December 8–12, 2019, Proceedings, Part I 25, pages 248–277. Springer, 2019.

[57] D. Dolev and R. Reischuk. Bounds on information exchange for byzantine agreement. Journal
of the ACM (JACM), 32(1):191–204, 1985.

[58] J. Drake. Minimal VDF randomness beacon - Sharding, 2018. https://ethresear.ch/t/

minimal-vdf-randomness-beacon/3566.

[59] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM (JACM), 35(2):288–323, 1988.

[60] N. Ephraim, C. Freitag, I. Komargodski, and R. Pass. Continuous verifiable delay functions. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 125–154. Springer, 2020.

[61] T. Fagerström. Lotteries in communities of sessile organisms. Trends in Ecology & Evolution,
3(11):303–306, 1988.

[62] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[63] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications. In
Advances in Cryptology–CRYPTO 2018: 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part II 38, pages 33–62. Springer,
2018.

[64] N. Gailly, K. Melissaris, and Y. Romailler. tlock: practical timelock encryption from threshold
bls. Cryptology ePrint Archive, 2023.

26

https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566


[65] S. M. Gainsbury and A. Blaszczynski. How blockchain and cryptocurrency technology could
revolutionize online gambling. Gaming Law Review, 21(7):482–492, 2017.

[66] D. Galindo, J. Liu, M. Ordean, and J.-M. Wong. Fully distributed verifiable random functions
and their application to decentralised random beacons. In 2021 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 88–102. IEEE, 2021.

[67] P. Ga lka and A. Strzelecki. How randomness affects player ability to predict the chance to win
at playerunknown’s battlegrounds (pubg). The Computer Games Journal, 10:1–18, 2021.

[68] J. Garay and A. Kiayias. Sok: A consensus taxonomy in the blockchain era. In Cryptographers’
track at the RSA conference, pages 284–318. Springer, 2020.

[69] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation for
discrete-log based cryptosystems. In Advances in Cryptology—EUROCRYPT’99: Interna-
tional Conference on the Theory and Application of Cryptographic Techniques Prague, Czech
Republic, May 2–6, 1999 Proceedings 18, pages 295–310. Springer, 1999.

[70] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation for
discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83, 2007.

[71] C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin, and S. Yakoubov. Yoso:
You only speak once: Secure mpc with stateless ephemeral roles. In Advances in Cryptology–
CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16–20, 2021, Proceedings, Part II, pages 64–93. Springer, 2021.

[72] C. Gentry, S. Halevi, and V. Lyubashevsky. Practical non-interactive publicly verifiable secret
sharing with thousands of parties. In Advances in Cryptology–EUROCRYPT 2022: 41st An-
nual International Conference on the Theory and Applications of Cryptographic Techniques,
Trondheim, Norway, May 30–June 3, 2022, Proceedings, Part I, pages 458–487. Springer,
2022.

[73] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling byzantine
agreements for cryptocurrencies. In Proceedings of the 26th symposium on operating systems
principles, pages 51–68, 2017.

[74] O. Goldreich. Foundations of Cryptography, Volume 2. Cambridge university press Cambridge,
2004.

[75] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of
the ACM (JACM), 33(4):792–807, 1986.

[76] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or a completeness
theorem for protocols with honest majority. In Providing Sound Foundations for Cryptography:
On the Work of Shafi Goldwasser and Silvio Micali, pages 307–328. 2019.

[77] J. Groth. Non-interactive distributed key generation and key resharing. Cryptology ePrint
Archive, 2021.

[78] K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and A. Tomescu. Aggregatable
distributed key generation. In Advances in Cryptology–EUROCRYPT 2021: 40th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17–21, 2021, Proceedings, Part I, pages 147–176. Springer, 2021.

27



[79] R. Halprin and M. Naor. Games for extracting randomness. In Proceedings of the 5th Sympo-
sium on Usable Privacy and Security, pages 1–12, 2009.

[80] R. Han, J. Yu, and H. Lin. Randchain: Decentralised randomness beacon from sequential
proof-of-work. IACR Cryptol. ePrint Arch., 2020:1033, 2020.

[81] T. Hanke, M. Movahedi, and D. Williams. Dfinity technology overview series, consensus
system. arXiv preprint arXiv:1805.04548, 2018.

[82] S. Heidarvand and J. L. Villar. Public verifiability from pairings in secret sharing schemes. In
International Workshop on Selected Areas in Cryptography, pages 294–308. Springer, 2008.

[83] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive public key and
signature systems. In Proceedings of the 4th ACM Conference on Computer and Communica-
tions Security, pages 100–110, 1997.

[84] G. Kadianakis. Whisk: A practical shuffle-based ssle protocol for ethereum. Ethereum Re-
search.(Jan. 13, 2022). Retrieved Sept, 5:2022, 2022.

[85] A. Kate and I. Goldberg. Distributed key generation for the internet. In 2009 29th IEEE
International Conference on Distributed Computing Systems, pages 119–128. IEEE, 2009.

[86] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and
their applications. In International conference on the theory and application of cryptology and
information security, pages 177–194. Springer, 2010.

[87] J. Kelsey, L. T. Brandão, R. Peralta, and H. Booth. A reference for randomness beacons: For-
mat and protocol version 2. Technical report, National Institute of Standards and Technology,
2019.

[88] A. Kiayias, C. Moore, S. Quader, and A. Russell. Efficient random beacons with adaptive
security for ungrindable blockchains. Cryptology ePrint Archive, 2021.

[89] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-
of-stake blockchain protocol. In Annual international cryptology conference, pages 357–388.
Springer, 2017.

[90] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford. Omniledger: A
secure, scale-out, decentralized ledger via sharding. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 583–598. IEEE, 2018.

[91] E. Kokoris Kogias, D. Malkhi, and A. Spiegelman. Asynchronous distributed key generation
for computationally-secure randomness, consensus, and threshold signatures. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages
1751–1767, 2020.

[92] L. LAMPORT, R. SHOSTAK, and M. PEASE. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[93] H. Lee, Y. Hsu, J.-J. Wang, H. C. Yang, Y.-H. Chen, Y.-C. Hu, and H.-C. Hsiao. Headstart:
Efficiently verifiable and low-latency participatory randomness generation at scale. In Network
and Distributed System Security (NDSS) Symposium, volume 2022, 2022.

28



[94] A. K. Lenstra and B. Wesolowski. Trustworthy public randomness with sloth, unicorn, and
trx. International Journal of Applied Cryptography, 3(4):330–343, 2017.

[95] D.-Y. Liao and X. Wang. Design of a blockchain-based lottery system for smart cities applica-
tions. In 2017 IEEE 3rd International Conference on Collaboration and Internet Computing
(CIC), pages 275–282. IEEE, 2017.

[96] Y. Lindell. Secure multiparty computation (mpc). Cryptology ePrint Archive, 2020.

[97] S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and D. Song. Churp:
dynamic-committee proactive secret sharing. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 2369–2386, 2019.

[98] R. J. McEliece and D. V. Sarwate. On sharing secrets and reed-solomon codes. Communica-
tions of the ACM, 24(9):583–584, 1981.

[99] L. Medley, A. F. Loe, and E. A. Quaglia. Sok: Delay-based cryptography. Cryptology ePrint
Archive, 2023.

[100] L. Medley and E. A. Quaglia. Collaborative verifiable delay functions. In Information Security
and Cryptology: 17th International Conference, Inscrypt 2021, Virtual Event, August 12–14,
2021, Revised Selected Papers 17, pages 507–530. Springer, 2021.

[101] M.Haahr. Random.org: True random number service, 2010.

[102] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In 40th annual symposium
on foundations of computer science (cat. No. 99CB37039), pages 120–130. IEEE, 1999.

[103] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review,
page 21260, 2008.

[104] L. Nguyen. Accumulators from bilinear pairings and applications. In Cryptographers’ track at
the RSA conference, pages 275–292. Springer, 2005.

[105] J. B. Nielsen, J. Ribeiro, and M. Obremski. Public randomness extraction with ephemeral roles
and worst-case corruptions. In Annual International Cryptology Conference, pages 127–147.
Springer, 2022.

[106] R. Pass and E. Shi. Hybrid consensus: Efficient consensus in the permissionless model. Cryp-
tology ePrint Archive, 2016.

[107] R. Pass and E. Shi. Thunderella: Blockchains with optimistic instant confirmation. In Advances
in Cryptology–EUROCRYPT 2018: 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29-May 3, 2018 Proceedings,
Part II 37, pages 3–33. Springer, 2018.

[108] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the ACM (JACM), 27(2):228–234, 1980.

[109] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
Advances in Cryptology—CRYPTO’91: Proceedings, pages 129–140. Springer, 2001.

29



[110] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable
oblivious transfer. In Advances in Cryptology–CRYPTO 2008: 28th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings 28, pages
554–571. Springer, 2008.

[111] C. Pierrot and B. Wesolowski. Malleability of the blockchain’s entropy. Cryptography and
Communications, 10(1):211–233, 2018.

[112] K. Pietrzak. Simple verifiable delay functions. In 10th innovations in theoretical computer
science conference (itcs 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[113] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 73–85, 1989.

[114] M. Raikwar and D. Gligoroski. Sok: Decentralized randomness beacon protocols. In Informa-
tion Security and Privacy: 27th Australasian Conference, ACISP 2022, Wollongong, NSW,
Australia, November 28–30, 2022, Proceedings, pages 420–446. Springer, 2022.

[115] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the society
for industrial and applied mathematics, 8(2):300–304, 1960.

[116] L. Ren. Analysis of nakamoto consensus. Cryptology ePrint Archive, 2019.

[117] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto. 1996.

[118] K. Sahitya and B. Borisaniya. D-lotto: the lottery dapp with verifiable randomness. In Data
Science and Intelligent Applications: Proceedings of ICDSIA 2020, pages 33–41. Springer,
2021.

[119] P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and E. Weippl. Randrunner: Distributed
randomness from trapdoor vdfs with strong uniqueness. 2021.

[120] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl. Hydrand: Practical continuous dis-
tributed randomness. In Proceedings of the 2020 IEEE Symposium on Security and Privacy,
2020.

[121] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[122] B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its application to
electronic voting. In Annual International Cryptology Conference, pages 148–164. Springer,
1999.

[123] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[124] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM review, 41(2):303–332, 1999.

[125] V. Shoup. Practical threshold signatures. In Advances in Cryptology—EUROCRYPT 2000:
International Conference on the Theory and Application of Cryptographic Techniques Bruges,
Belgium, May 14–18, 2000 Proceedings 19, pages 207–220. Springer, 2000.

30



[126] N. Shrestha, I. Abraham, L. Ren, and K. Nayak. On the optimality of optimistic responsive-
ness. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 839–857, 2020.

[127] D. R. Stinson and R. Strobl. Provably secure distributed schnorr signatures and a (t, n)
threshold scheme for implicit certificates. In Australasian Conference on Information Security
and Privacy, pages 417–434. Springer, 2001.

[128] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J. Fischer, and
B. Ford. Scalable bias-resistant distributed randomness. In 38th IEEE Symposium on Security
and Privacy, May 2017.

[129] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly, I. Khoffi, and
B. Ford. Keeping authorities” honest or bust” with decentralized witness cosigning. In 2016
IEEE Symposium on Security and Privacy (SP), pages 526–545. Ieee, 2016.

[130] G. Wang, Z. J. Shi, M. Nixon, and S. Han. Sok: Sharding on blockchain. In Proceedings of
the 1st ACM Conference on Advances in Financial Technologies, pages 41–61, 2019.

[131] B. Wesolowski. Efficient verifiable delay functions. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 379–407. Springer, 2019.

[132] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. Hotstuff: Bft consensus with
linearity and responsiveness. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, pages 347–356, 2019.

[133] M. Zamani, M. Movahedi, and M. Raykova. Rapidchain: Scaling blockchain via full sharding.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 931–948, 2018.

31


	Introduction
	Background
	Distributed Randomness Beacon
	Definition and Properties
	Applications

	Systematization Methodology
	Protocols Using PVSS
	Security
	Liveness
	Scalability

	Protocols using VRF
	Security
	Liveness
	Scalability

	Protocols Using VDF
	Security
	Liveness
	Scalability

	Protocols Using Public Blockchain
	Security
	Liveness
	Scalability

	Discussion

