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Abstract

We present TVA, a multi-party computation (MPC) system for secure analytics on secret-shared time series data.
TVA achieves strong security guarantees in the semi-honest and malicious settings, and high expressivity by enabling
complex analytics on inputs with unordered and irregular timestamps. TVA is the first system to support arbitrary
composition of oblivious window operators, keyed aggregations, and multiple filter predicates, while keeping all data
attributes private, including record timestamps and user-defined values in query predicates. At the core of the TVA
system lie novel protocols for secure window assignment: (i) a tumbling window protocol that groups records into
fixed-length time buckets and (ii) two session window protocols that identify periods of activity followed by periods
of inactivity. We also contribute a new protocol for secure division with a public divisor, which may be of independent
interest. We evaluate TVA on real LAN and WAN environments and show that it can efficiently compute complex
window-based analytics on inputs of 222 records with modest use of resources. When compared to the state-of-
the-art, TVA achieves up to 5.8× lower latency in queries with multiple filters and two orders of magnitude better
performance in window aggregation.
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1 Introduction
Time series analysis is used by organizations to understand the behavior of non-stationary data, monitor the evolution
of metrics over time, identify trends, and predict future outcomes [12, 59, 81]. Time series data are ubiquitous in
today’s connected world and crucial for applications in IoT, smart cities, mobile health, traffic monitoring, and stock
trading [72, 76, 97]. Applications leveraging multi-origin time series data are highly valuable to communities and
businesses alike. For example, a smart grid company can monitor energy consumption across clients to improve con-
servation and reduce peak demand. Medical investigators can assess a drug’s efficacy on patient cohorts by analyzing
physiological signals of many individuals over time. Similarly, a smart city infrastructure can leverage location time
series to optimize public transport scheduling. While highly valuable, such analyses raise privacy concerns for data
holders, who wish to protect their sensitive or proprietary information.

Cryptographically secure collaborative analytics have recently become more accessible and practical thanks to ad-
vances in secure multi-party computation (MPC) [71], fully homomorphic encryption [45], and Oblivious RAM [46,
47]. In this work, we focus on the decentralized trust setting where MPC has been successfully used for machine
learning [67,74,94,95], relational queries [69,79,89], graph analysis [7], aggregate statistics [3,15,56], and other op-
erations such as sorting and PSI [9,68]. Even though existing MPC-based solutions cover a wide range of collaborative
use cases, they are not suitable for analytics on time series data.

Time series computations are commonly expressed with advanced time-oriented operators, called windows [4, 59,
85]. Window operators group events into meaningful intervals of time and allow computing aggregation functions
on the contents of each group. For example, a tumbling window operator divides a time series into fixed-sized time
intervals and can be used to compute analytics such as the per-hour energy consumption of a smart grid. Window
intervals can also be defined by custom metrics and data-dependent values. A session window, for instance, identifies
periods of “activity” followed by periods of “inactivity” and can be used to compute analytics such as the average
glucose level in a patient cohort during their sleep or their exercise.

The challenge of providing efficient and expressive secure collaborative analytics on time series data has not been
successfully addressed yet. Existing approaches either sacrifice expressivity to achieve good performance with strong
security guarantees [30] or allow information leakage in return for additional functionality [17,18]. More importantly,
prior works do not support secure windowing and assume regular, ordered, and public timestamps [17, 18, 23, 30, 58,
84]. This assumption is problematic for two reasons. First, missing values and out-of-order records are common in
practice, as time series data are typically produced by distributed and unreliable sources (e.g., sensors). Second, time
series analytics are often performed offline for forecasting and pattern mining [81]. In such cases, timestamps must
be protected to prevent untrusted parties from inferring the event distribution and learn sensitive information, such as
rare incidents or activities of individuals.

In this paper we present TVA (Time-Varying Analytics), a secure and expressive time series analysis system that
leverages outsourced MPC. TVA protects data by distributing trust and generalizes the functionality of prior works
without compromising security or performance. To mitigate the tension between these two, TVA employs new pro-
tocols, cross-layer optimizations, and vectorized primitives that enable it to scale to large datasets with modest use of
resources.

1.1 Limitations of existing systems
TVA addresses the following limitations of prior work:

Lack of advanced window functionality. To extract value from time series data, analysts must be able to query
the evolution of metrics over time. Such temporal analysis is typically performed with window operators that group
events into consecutive time intervals of fixed (tumbling) or custom (session) length. Waldo [30] is optimized for
snapshot queries that operate on a single time interval and, as we show in §6.1, it cannot efficiently perform recurring
computations. TimeCrypt [17] and Zeph [18] provide limited support for tumbling windows but also leak information
to untrusted parties.

By contrast, TVA is the first system to efficiently support both snapshot and arbitrary recurring queries. It offers
generic window operators that can efficiently compute aggregates over fixed and custom time intervals, with strong
security guarantees through its black-box use of MPC primitives.
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No support for complex filters with keyed aggregations. Besides temporal operators, time series analysis typically
requires relational transformations, such as filters, sorting, grouping, and aggregations (keyed and global). These
operators must be customizable (to support arbitrary predicates) and composable (to express arbitrary analysis tasks).
For example, users should be able to define multiple filter conditions along with complex aggregations on time and
any other base or derived attributes. Keyed aggregations allow computing functions on logical partitions of the data,
e.g., the hourly energy consumption per postcode. Prior work either supports global aggregation only [30] (total
consumption for all postcodes) or allows limited additive keyed aggregation by requiring data holders to pre-encode
the attribute domain (all possible postcodes) and to periodically transmit values [18, 58].

In contrast, TVA’s aggregation operators can be composed with any operator and can be also chained. For instance,
TVA can compute the average energy consumption per postcode over 1-hour windows, which can then be used to
compute the maximum average consumption across all windows.

No support for unordered and irregular timestamps. Time series data are commonly produced by distributed
sources, such as sensors or wearable devices. As a result, events may be ingested out of order due to network delays and
clock skew. Furthermore, sources may transmit data at a fixed frequency (e.g., heart rate every minute) or only when
an event occurs (e.g., smoke is detected). State-of-the-art approaches assume in-order and regular timestamps [17, 18,
23, 30, 58, 84], that is, they expect data owners to provide data at fixed time intervals. As a result, data sources must
pad the time series with dummy records when events are missing and pre-aggregate events locally when the event
generation frequency is higher than the transmission rate. This approach simplifies the problem of providing privacy-
preserving time series analytics, since regular and ordered timestamps do not reveal any information (other than the
time domain) and can thus be kept public. However, it has two considerable drawbacks. First, when the time series
events are irregular, padding can lead to significant communication and computation costs. Second, pre-aggregation
comes at loss of data granularity and accuracy. Subsequent queries can only return exact results on time intervals that
are multiples of the pre-aggregation bucket size.

On the contrary, TVA does not require the input time series to be regular and ordered by time. Both window and
snapshot operators can correctly and efficiently operate on unordered and irregular timestamps, which are protected
like all other data attributes. Due to its ability to operate on private timestamps, TVA can serve queries on both recent
and historical data collected independently by different entities, without revealing the event distribution to computing
parties.

1.2 Summary of contributions

Protocols for secure window assignment (§4.1–§4.4). We present the first oblivious algorithms for (global and
keyed) tumbling and session window assignment on private time series data. We analyze the complexity of our
protocols and prove their correctness and security guarantees.

Our tumbling window protocol relies on a new MPC primitive for secure division with public constants. The
state-of-the-art protocols for fast division produce small errors that are acceptable in other use cases (e.g., machine
learning applications [74]) but cause incorrect aggregation results in our setting, as records end up in wrong windows
with high probability. To address this challenge, we propose error correction protocols for semi-honest and malicious-
secure division that can be used to compute tumbling windows with a number of communication rounds independent
of the time series size.

For session windows, the plaintext algorithms [4, 85] traverse the time series and update session boundaries while
keeping track of the last open session. Although simple, an oblivious implementation of this technique would incur
a prohibitive number of rounds that is linear to the dataset size. To address this challenge, we introduce a novel two-
phase sessionization protocol that enables us to identify variable-length session windows with a logarithmic number
of rounds. The first phase of the protocol marks the beginning of each session according to a windowing strategy and
the second phase leverages these markers to complete the sessionization by performing an oblivious grouping.

The core idea of the second phase is to formulate sessionization as an odd-even merge circuit [10]. This task is
not straightforward, as directly applying the standard oblivious grouping algorithm [61] in our setting turns out to
be both incorrect and inefficient. To tackle this problem, our protocol reverses access patterns to ensure correctness
and uses an iterative control flow with a butterfly-like structure [11, 48] to facilitate fast vectorized execution and
message batching. Our protocol is agnostic to the windowing strategy and can accommodate both timeout-based and
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Figure 1: TVA system overview for secure time series analytics

threshold-based windows. At the same time, it is amenable to efficient composition with window aggregation, as we
describe next.

Efficient operator composition for complex time series analytics (§4.5, §4.6). We develop a library of composable
operators that can be combined with window operators to construct arbitrarily complex analytics by leveraging mixed-
mode secret sharing and conversion protocols. Secure operator composition requires additional interaction among
computing parties and straight-forward approaches lead to substantial overheads. To achieve optimal performance, we
design efficient protocols that “fuse” expensive operators into a single oblivious control flow to avoid redundant com-
putation and communication. One representative example is the fusion of sessionization with oblivious aggregation
that reduces the overall computation and communication by 2×.

Semi-honest and malicious security (§3). TVA provides the security guarantees of MPC and can be configured
to offer semi-honest [6] or malicious security [28]. To achieve this, we design oblivious operators that rely solely
on the functionalities provided by the protocols (+,∗,⊕,∧) and immediately inherit their security guarantees. This
design choice provides a strong foundation to support more MPC protocols in the future by simply replacing the
underlying functionalities. TVA keeps all data attributes private, including record timestamps, and can also protect
user-defined values in the query itself (e.g., constants and queried time intervals) using secret sharing. This way, TVA
protects both the time domain of the queried dataset and the actual filtering conditions, which is sensitive informa-
tion in many use cases.

System design and implementation (§5, §6). We provide efficient implementations of oblivious operators and vec-
torized MPC primitives that amortize the communication costs of MPC. We also develop a declarative and protocol-
agnostic query API that hides the complexity of composition from end users. All experiments we present in this paper
use real LAN and WAN deployments. We have implemented the TVA software stack entirely from scratch, and the
software is available as open source [37].

2 TVA in a nutshell
Figure 1 provides an overview of TVA. Data owners are individuals or entities who have agreed to contribute their
private data towards a joint analysis (e.g., a medical study, a smart grid monitoring task, etc.), provided that the data
remain hidden from untrusted parties. Data analysts are individuals who perform the analysis using TVA. To do so,
they access a public catalog of time series metadata (cf. §3) and submit queries to the system. A computing party is a
logical entity that may consist of multiple compute nodes (TVA servers). Computing parties are deployed in different
trust domains (e.g., competing cloud providers) and can be configured to execute queries either with malicious (default)
or semi-honest security, depending on the use case.

TVA operates in the outsourced setting [25], that is, it does not require data owners or analysts to participate
in the computation (both can be offline during the analysis). Each data owner interacts with the computing parties
independently from others, and only to distribute secret shares of their data.

We emphasize that the security of TVA stems from its data-oblivious execution (so the parties learn nothing
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Figure 2: A visual representation of TVA’s window operations on health time series data. The tumbling window splits the heart
rate measurements into six fixed-length windows. The gap session window generates three activity sessions by grouping together
movement signals that occur within a specified interval. The threshold window identifies three eating sessions by detecting intervals
where glucose values continuously stay above a threshold.

beyond the result of the query) and access control (so even the result is only revealed to designated data analysts). In
particular, TVA does not protect against inference attacks on the input based on the query results. Combining TVA
with differentially private algorithms for time series data (e.g., [40,41,63,91]) remains an exciting possibility for future
work.

2.1 Supported workloads
TVA offers a rich set of temporal and time-agnostic operators that can be composed arbitrarily to define complex time
series analysis tasks.

Temporal operators. TVA’s temporal operators can be used to express (i) snapshot queries that compute an aggregate
over a specific time interval, and (ii) window queries that compute an aggregate over multiple time intervals defined
by a windowing strategy. Consider a time series dataset collected from a heart rate tracker, a movement sensor, and a
glucose monitor. Figure 2 illustrates TVA’s windowing strategies using a digital health use case as an example.

A tumbling window operator (top) divides the time domain into non-overlapping intervals of equal length λ so that
each input record belongs to exactly one window. For example, the tumbling window can be used to compute “the
maximum heart rate per minute across individuals in a cohort”.

A session window operator groups records into periods of activity (sessions) followed by periods of inactivity [4].
Session windows have variable and data-dependent length in time units. The gap window (middle) uses a timeout gap
τ as the session delimiter. All records whose time difference is within an interval up to the timeout τ are grouped
together into the same session. The end of a session is detected when the time difference between two consecutive
records is greater than τ . A gap-based window could be used to compute an aggregate over “time periods when an
individual is moving”.

The threshold window operator (bottom) interprets sessions using a threshold θ ∈ R and a function q ∶ S → R,
where S is collection of data records. All consecutive records whose value q(r), r ∈ S, is at least equal to the threshold
θ are grouped into the same session. The current session ends when a record with value below θ is detected. For
example, a threshold window can identify “eating periods when the glucose level exceeds a threshold”. As shown
in Figure 2, although every input record belongs to exactly one gap window, some records may not belong to any
threshold window.

Time-agnostic operators. TVA provides a set of time-agnostic operators that can be combined with temporal op-
erators. These include filtering, sorting, grouping, distinct (for duplicate elimination), and all common aggregations,
i.e., COUNT, SUM, MIN, MAX, TOP-K, AVG, STDEV, and PERCENTILE. Additionally, TVA supports arbitrary User-defined
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Functions (UDFs) constructed with its secure primitives. Those include logical and arithmetic operations provided by
the protocols (∧,∨,⊕,+,−,∗), boolean addition, comparison operators (≤,≥,=,≠), and division with public constant.

2.2 Putting it all together: the TVA API
TVA exposes a high-level declarative API that lets users combine temporal operators with arbitrary filters, aggrega-
tions, and other time-agnostic operators. The API specification is given in Appendix G. Listing 1 shows an example
query that computes a keyed tumbling window on the dataset of Figure 2. To maximize readability, TVA’s API lets
users refer to data attributes by name, as shown in the example code snippet. Once the data schema is defined, attribute
names can be used as operator arguments. The query first selects records corresponding to patients weighting between
190 and 250 pounds and applies the keyBy operator to partition these records by age group. It then computes the
maximum heart rates over 1-hour tumbling windows for each age group. The result is a new time series hr that can be
given as input to another query.

// Define the time series data schema
TS ts = get_shares ({"TIMESTAMP", "WEIGHT", "AGE_GROUP",

"HEART_RATE", "MOVEMENT", "GLUCOSE", "MAX_RATE"});

// Compute the max hourly heart rate per age group over
// all participants whose weight is within a given range
TS hr = ts.filter("WEIGHT" > 190 AND "WEIGHT" < 250)

.keyBy("AGE_GROUP")

.tumbling_window("TIMESTAMP", 3600)

.aggregate("HEART_RATE", "MAX_RATE", Agg::MAX);

Listing 1: An example tumbling window query using the TVA API

Analysts submit queries like the one above to TVA parties for execution and TVA compiles them into a secure
MPC program. The query structure is public but the filter predicates and the queried time intervals are secret-shared
by the TVA client application (run by the analysts).

3 Threat model and security guarantees
TVA protects all data, including timestamps, throughout the entire lifecycle of computations. Overall, TVA protects
data privacy using non-colluding computing parties, authenticated network links, and end-to-end oblivious computa-
tion. TVA does not reveal any private inputs or intermediate data during the computation and only opens the final
query result to the designated analysts. Some metadata about the time series is purposely made public and accessible
to the data analysts so they can create their queries; the public metadata include the data schema, the type and number
of columns, and the number of input records, as in prior works [17, 18, 30].

Setting. TVA assumes that data owners and analysts have previously agreed on a query to compute. The query
structure is known to the computing parties, but predicates are protected with secret sharing. In particular, parties
know the type of operators they compute (e.g., the window type or aggregation function) but TVA protects the actual
filter values and the session window predicates (gap and threshold). Protecting these parameters ensures that the
computing parties do not learn any specific time intervals that are being queried. When a tumbling window operator
is used, TVA treats the window length as public. We emphasize that knowledge of the length does not reveal anything
about specific time intervals, since the window operator is applied on the entire time series dataset. In the example of
Listing 1, TVA parties know that the query involves a filter of the form "WEIGHT" > X AND "WEIGHT" < Y followed
by keyed window aggregation (MAX) per hour, but they do not learn the filter values 190 and 250.

Protocols. TVA currently provides two replicated secret sharing protocols with N parties: (i) the semi-honest 3-party
protocol by Araki et al. [6] (N = 3) and the malicious-secure Fantastic Four protocol by Dalskov et al. [28] (N = 4).
We encode an `-bit string of secret data s by splitting it into N shares that individually have the uniform distribution
over all possible `-bit strings (for privacy) and collectively suffice to specify s (for correctness). Share generation is
cheap and is done locally by the data owners. Each party Pi receives N − 1 of the shares: hence, any two parties can
reconstruct the secret but any single party cannot. TVA supports both boolean secret sharing JxK` of length-` bitstrings
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Symbol Description

JsK` replicated boolean secret share of the length-` bitstring s
⟪u⟫` replicated arithmetic secret share of u in the ring mod 2`

⟨u⟩` non-replicated 2-of-2 arithmetic secret share of u in the ring mod 2`

` length of a share representation in bits
`x maximum length, in bits, for dividend x in the division protocols
`c bitlength of the public divisor c (in the division protocols) plus one

r
a data record of the form r = (t, a1, a2, . . . , ak), where r.t is
the record’s timestamp and r.ai,1 ≤ i ≤ k, is a data value

S a time series of size ∣S∣, i.e., a collection of ∣S∣ data records
W a window in a time series S, i.e., a collection of data recordsW ⊆ S
λ length of a tumbling window in time units
τ timeout interval that defines a gap session window
θ threshold value that defines a threshold session window
s↑k(S) sort operator on key k (ascending)
γGk (S) group-by operator on key k with aggregation functionG

Table 1: Notation used in the paper

and arithmetic secret sharing ⟪x⟫` in the ring mod 2`, as well as primitives to convert one format to the other. By
convention, we say that party i holds the shares xi and xi+1 for 3-party replicated sharing, or xi, xi+1, xi+2 for 4-party
replicated sharing.

Threat model. TVA supports either semi-honest or malicious security in the honest majority setting. When operating
with semi-honest security, TVA can withstand adversaries who have three types of capabilities: (i) complete control
over the network, (ii) the ability to compromise at most one computing party and passively eavesdrop on its internal
state (e.g., memory contents, access patterns, and data sent/received) without altering its execution, and (iii) the ability
to collude with one or more data owners to learn inputs into the query, or with the data analyst to learn the output of
the query. When operating in the malicious setting, the adversary can additionally force the compromised computing
party to actively deviate from the protocol arbitrarily. In this case, TVA provides security up to abort: the honest
computing parties will stop and report an error to the analyst.

Security guarantees. TVA offers two types of security guarantees: (i) privacy, meaning that computing parties do not
learn anything beyond the public metadata and the information held by any data owners or analysts they are colluding
with, and (ii) correctness, meaning that all participants are convinced that the computation output is accurate. TVA
inherits both guarantees from the underlying MPC protocols by always operating over secret-shared data using the
underlying MPC primitives in a black-box manner, ensuring an oblivious control flow for each operator individually
(§4.1-4.4) and jointly (§4.6), and never opening any intermediate results.

To show this claim formally, in this work we perform security analysis in the arithmetic black-box model, as
shown in Appendix A. This is a hybrid model in which we presume the existence of a functionality Fabb that provides
perfect correctness and privacy for the following operations: Fabb.input and Fabb.output to share and reconstruct
secrets in either arithmetic or boolean representations, Fabb.add and Fabb.mult to compute arithmetic (mod 2`) or
multi-bit boolean (mod 2) operations, and Fabb.A2B and Fabb.B2A to convert between the two representations. In
the malicious setting, we also consider a shared input functionality Fabb.INP in which two parties provide as input
a common secret that they both wish to be shared, and the functionality detects and aborts if there is a discrepancy
between the two. For readability, we sometimes use informal notation (e.g., JcK` = JaK` ∧ JbK`) rather than formal
notation (e.g., Fabb.mult(boolean, ida, idb, idc)) in this work.

4 Secure time series data analysis in TVA
In this section, we describe TVA’s oblivious operators for secure time series analysis. In §4.1, we describe our division
protocol that is the core building block of the tumbling window operator in §4.2. In §4.3 and §4.4, we present two
session window operators and, in §4.5, we discuss time-agnostic operators supported by TVA. Finally, in §4.6, we
describe TVA’s efficient composition techniques for creating complex time series analysis tasks. Table 1 summarizes
the notation.
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Protocol 1: DIVISION (semi-honest 3PC)
Input : Arithmetic sharing ⟪x⟫` of a secret x ∈ [0,2`x)

Public integer c ∈ [1,2`c−1)
Output : Quotient ⟪z⟫ computed as follows.

1 Construct a 2-of-2 sharing ⟨y⟩` of y ≈ z as follows:
1.1 Party 1 locally computes y1 = ⌊(x1 + x2)/c⌋

1.2 Parties 2, 3 locally compute y2 = 2` − ⌊(2` − x3)/c⌋

2 Construct 2-of-2 sharing ⟨s⟩`c of s computed as follows:
2.1 Party 1 locally computes s1 = (x1 + x2) mod c

2.2 Parties 2, 3 locally compute s2 = (2` − x3) mod c

3 Create replicated sharings ⟪y⟫`,⟪s⟫`c as follows:
3.1 Use Fabb.input to share y1 and y2 in the ring mod 2`

3.2 Use Fabb.input to share s1 and s2 in the ring mod 2`c

3.3 Locally compute ⟪y⟫` = ⟪y1⟫` + ⟪y2⟫` and ⟪s⟫`c = ⟪s1⟫`c − ⟪s2⟫`c using Fabb.add

4 Calculate replicated sharing ⟪b⟫` of the bit b = (s1
?
< s2):

4.1 Use Fabb.A2B to convert ⟪s⟫`c into boolean shares JsK`c
4.2 Set JbK1 equal to the most significant bit of JsK`c
4.3 Use 1-bit conversion Fabb.b2A on JbK1 to compute ⟪b⟫`

5 Locally compute ⟪z⟫` = ⟪y⟫` − ⟪b⟫` using Fabb.add

Protocol 2: DIVISION (malicious 4PC)
Input : Arithmetic sharing ⟪x⟫` of a secret x ∈ [0,2`x)

Public integer c ∈ [1,2`c−1)
Output : Quotient ⟪z⟫` computed as follows.

1 Construct a 2-of-2 sharing ⟨y⟩` of y ≈ z as follows:
1.1 Parties 1 and 4 compute y1 = ⌊(x1 + x2)/c⌋

1.2 Parties 2 and 3 compute y2 = 2` − ⌊(2` − x3 − x4)/c⌋

2 Construct 2-of-2 sharing ⟨s⟩`c of s computed as follows:
2.1 Parties 1 and 4 compute s1 = (x1 + x2) mod c

2.2 Parties 2 and 3 compute s2 = (2` − x3 − x4) mod c

3 Perform lines 3-5 of Protocol 1, replacing all instances of Fabb.input with the Shared Input functionality Fabb.INP

Let r = (t, a1, a2, . . . , ak) be a data record with timestamp t ≥ 0 (denoted with r.t) and attributes ai,1 ≤ i ≤ k
(denoted with r.ai). The value t corresponds to a real timestamp or a sequence number whereas the attributes can be
arbitrary data. We define a time series S as a collection of ∣S∣ records indexed in ascending order of their timestamps,
i.e., ∀ri, rj ∈ S, ri.t ≤ rj .t⇔ i < j < ∣S∣ ∈ N. We stress that record indices are only used to simplify the presentation
and TVA does not assume records to be physically ordered on their timestamps.

TVA window operators are applied to time series and generate new time series. In practice, windowing is per-
formed by appending to each record a new attribute wid that contains a secret-shared window id computed under
MPC.

4.1 Integer division by public divisor
TVA assigns records to tumbling windows by discretizing timestamps based on the window length (in time units).
Several prior works provide efficient protocols for integer or fixed-point division, but they typically introduce a small
rounding error, truncate only by powers of two, or are slower because they provide features that we do not need in our
setting like perfect accuracy or private divisors (e.g., [21, 22, 27, 35, 35, 65, 74, 88]).

In this work, we contribute a new secure computation protocol for division-and-truncation, given mixed-mode
MPC with replicated secret sharing, that can perform division by any public divisor without a rounding error. For
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our application to tumbling windows, having some noticeable probability of error means that many data records are
being assigned to the wrong window, which could significantly distort the subsequent time series analysis. That said,
for improved efficiency we do allow for a negligible error with probability 2−σ , which is parameterized by a statistical
security parameter σ. We provide a detailed comparison between our division protocol and prior works in Appendix D.

For simplicity, we show the TVA division algorithms in Protocols 1 and 2 in the case that the secret dividend x
and public divisor c are unsigned (positive) integers. This suffices for our application, in which the dividends x are
timestamps and the window lengths c are a positive number of time units. It is straightforward to extend our protocols
to support signed fixed-point numbers, as long as the absolute value of the divisor is at least 1 (otherwise there is a risk
of overflow).

For semi-honest 3-party MPC, our starting point is the probabilistic truncation protocol of Mohassel and Rindal
[74], which can perform probabilistic truncation with only one round of communication. Their technique roughly
corresponds to step 1 of Protocol 1. Starting from a dividend that is at most `x bits long (x < 2`x ) and public divisor
c < 2`c−1, step 1 computes a non-replicated 2-of-2 arithmetic sharing ⟨y⟩`, which we later convert to a replicated
secret sharing in step 3. The value y is close to the correct quotient z = ⌊x

c
⌋, but y has two possible sources of error:

an off-by-one rounding error occurs with probability ∼1/2 (namely, when the fractional part of 2`−x3

c
is greater than

the fractional part of x1+x2

c
), and a large error occurs with negligible probability (when x3 < x).

In lines 2-5 of Protocol 1, we compute the rounding error within MPC itself so we can eliminate it. In step 2, we
calculate the fractional parts s1 and s2 that were the source of the potential off-by-one error. Then, we use mixed-
mode operations to calculate the error bit b based on whether s1 < s2. We calculate this inequality by computing
s = s1 − s2 mod 2`c where `c = ∣c∣ + 1, and converting to boolean shares in order to isolate the most significant bit of
JsK` and set it equal to JbK1.

Protocol 1 makes only black-box use of mixed-mode MPC operations. This leads to a simple extension of our
division algorithm to the malicious 4-party MPC setting, as shown in Protocol 2 where we achieve malicious security
through redundancy. Specifically, we ensure that two parties perform each calculation; then, using the Shared Input
(INP) protocol within Dalskov et al. [28], the honest parties can detect any discrepancy between them. Modularity
also simplifies both the security analysis and the resulting implementation within TVA. In Appendix C, we prove that
Protocols 1-2 are private and correct with probability 1 − 2−σ , where σ = ` − `x.

Protocols 1-2 require ⌈log(`c)⌉+3 communication rounds and 2`+2`c⌈log(`c)⌉+`c+1 total bits of communication
(plus some small additive overhead in the 4-party case to send the hashes in the protocol of Dalskov et al. [28]).
Concretely, line 3 requires one communication round to distribute shares, line 4 requires ⌈log(`c)⌉+1 rounds to perform
the arithmetic-to-boolean conversion using a Parallel Prefix Adder (PPA) [54] plus one round for the subsequent bit-
to-arithmetic conversion, and the remaining lines do not require any communication. See Appendix D for a longer
comparison of this division protocol with closely related works.

4.2 Tumbling window
We can now describe TVA’s tumbling window operator. Let S be a time series, λ ∈ N∗ a window length (in time
units), and G an aggregation function on data records.

Definition 1 (Tumbling Window Operator) Given a window length λ and an aggregation function G, TVA’s tum-
bling window operator T defines a new time series as follows:

TG(S,λ) = { (k, G(Wk)) ∣Wk = {ri}, ri ∈ S,

λ ⋅ k ≤ ri.t < λ ⋅ (k + 1), k ∈ N }

The new time series defined by the tumbling window operator contains records of the form r = (t, G(Wk)), where
t = k is the timestamp of the new record, Wk is the k-th tumbling window, i.e., the collection of records that fall into
the time interval λ ⋅ k ≤ ri.t < λ ⋅ (k + 1), and G(Wk) is the result of the aggregation function on Wk.

The secure tumbling window operator works as follows. First, parties iterate over the records’ shares in the time
series S and compute the discretized timestamps ⌊ t

λ
⌋ by executing the secure division protocol (Protocols 1 and 2). All

these divisions are independent of each other and are performed in bulk, i.e., they can all be completed in ⌈log(`c)⌉+3
total rounds. The output of each division amounts to the tumbling window id wid of the respective record and is
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Protocol 3: SESSIONIZATION
Input : A time series S = {r0, r1, . . . , r∣S∣−1}
Result : The updated time series with all sessions marked

1 SESSIONSTART(S); //First phase
2 Let d = 1; //Distance between records in S
3 while d < ∣S∣ do

//All ∣S∣ − d steps are independent
4 for i = 0; i < ∣S∣ − d; i++ do

5 Parties locally compute bit JbK1 for b = (ri+d.wid
?
< 0)

6 Parties locally compute mask JmK` = expand(JbK1, `)
7 Parties compute the window id of ri+d as follows: Jri+d.widK` = JmK` ∧ Jri.widK` ⊕ JmK` ∧ Jri+d.widK`
8 end
9 d← d ∗ 2;

10 end

Protocol 4: SESSIONSTART (GAP)
Input : A time series S = {r0, r1, . . . , r∣S∣−1}, a timeout τ
Param. : Function δ (Eq. 1), timestamp length ` (in bits)

1 s↑t(S); //Sort records by timestamp (ASC)
2 Let ε = −1 be an invalid timestamp; //Negative number
//All ∣S∣ steps are independent

3 for i = 0; i < ∣S∣; i++ do

4 Parties compute bit JbK1 = (Jδ(i)K`
?
> JτK`)

5 Parties locally compute mask JmK` = expand(JbK1, `)
6 Parties compute the window id of ri as follows: Jri.widK` = JmK` ∧ Jri.tK` ⊕ JmK` ∧ JεK`
7 end

appended to the record as a new attribute1. In the next step, parties apply the aggregation function G to the collection
of records in each window. To do so, they group records by their window ids using TVA’s group-by operator γ that is
based on the protocol by Jónsson et al. [61] (cf. §4.5-4.6). The output of the operator is a new time series S′ = γGwid(S)
with one record per window containing the result of the aggregation G.

4.3 Gap-based session window
Computing sessions under MPC is challenging, as windows can be of variable length that depends on the data. Let S
be a time series and τ ∈ N∗ a timeout (in time units). Let also δ ∶ N→ R+ ∪ {∞} be a function that computes the time
difference between consecutive records in S as shown below:

δ(i) = {
ri.t − ri−1.t, 1 ≤ i < ∣S∣
∞, otherwise

(1)

Definition 2 (Gap Window Operator) Given δ and an aggregation function G, TVA’s gap window operator Γ de-
fines a new time series as follows:

ΓG,δ(S, τ) = { (rs.t, G(Ws)) ∣Ws = {ri}, 0 ≤ s ≤ i ≤ e < ∣S∣,

δ(s) > τ, δ(e + 1) > τ,

∄rj ∈ S ∶ δ(j) > τ, s < j ≤ e }

1If the record timestamp is not needed in a subsequent step of the analysis, TVA can simply overwrite it with wid instead of appending a new
attribute.
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Records in the new time series have the form r = (t, G(Ws)), where Ws is a gap session window, t = rs.t is the
earliest timestamp inWs, andG(Ws) is the result of the aggregation functionG onWs. The most expensive condition
in the gap session window operator is the last one: ∄rj ∈ S ∶ δ(j) > τ, s < j ≤ e. This condition requires identifying
pairs of records rs and re with no in-between records (re included) that belong to a different session. Given a time
series S sorted by timestamp, the straight-forward approach to evaluate this condition is to scan S and keep track of
the current session by applying function δ to each pair of adjacent records. This approach, however, incurs prohibitive
communication overhead, as it requires communication rounds linear to the number of records in S. Instead, we
propose an efficient two-phase SESSIONIZATION protocol (Protocol 3) that can correctly identify all session windows
in S with a logarithmic number of rounds. We discuss the phases of the protocol next:

Phase 1: Mark the beginning of each session. In this phase, parties identify the beginning of each gap session
window as shown in Protocol 4. To do so, they first order records on their timestamp using TVA’s oblivious sort
operator (this step can be omitted if records arrive in order). Next, they compare adjacent records by applying function
δ (Eq. 1) using a PPA. Given a timeout τ , a new session is marked at ri iff δ(i) > τ ; the result of this inequality is
saved as a bit b. Next, we expand the single bit b into a mask m of length `, such that every bit of m is equal to b.
Parties set the window id of each record using an oblivious multiplexer of the formm∧x ⊕ m∧y, wherem is a mask,
and m is its boolean complement. Hence, if a record ri marks the start of a new window, parties set ri.wid = ri.t;
otherwise, they use an invalid timestamp ε (e.g., a negative constant like −1) to denote that this record is currently
unassigned. All steps of the for-loop in the first phase of the protocol do not depend on each other and incur a number
of rounds that is independent of the time series size. That is, executing steps 3-7 in SESSIONSTART (GAP) requires
2⌈log(` + 1)⌉ + 1 rounds in total, where ` is the length of the timestamp representation in bits (fixed).

Phase 2: Assign records to sessions. In the second phase of TVA’s SESSIONIZATION (steps 2-10 in Protocol 3),
parties assign the remaining records to their corresponding session in ⌈ log ∣S∣⌉ rounds. This is done by replacing
the negative wid of each unassigned record with the non-negative wid of the nearest preceding record. Records in S
are guaranteed to be in order after the first phase, therefore, the earliest record in each session always precedes the
remaining unassigned records. Our protocol leverages this ordering to reduce interaction during window assignment
as follows. In the first iteration, parties examine adjacent records at distance d = 1 starting from the first record in
S. If ri+d.wid < 0 (unassigned), it is overwritten by ri.wid, otherwise it is left as is. This is done using an oblivious
multiplexer and a mask m that is generated locally, as in the first phase. Step 5 is local because b corresponds to
the sign of ri+d.wid, i.e., its most significant bit. At the end of each iteration, parties double the distance d of the
previous step and repeat the same process. All for-loop iterations in the second phase of the protocol are independent
one another, i.e., executing steps 4-8 in SESSIONIZATION requires a single round (due to multiplexing), for any time
series S. The overall control flow has a butterfly-like structure that has been used for multi-set operations [11] (e.g.,
to compute cardinality) and element compaction [48]. In TVA, we leverage this technique to perform sessionization
and, as we show in §4.6, efficient composition with window aggregation for a wide range of functions. We prove the
correctness and privacy of our protocol in Appendix E.

When sessionization terminates, parties can use TVA’s group-by operator to apply the aggregation function G
to each window. As the number of records grows, TVA’s operator Γ takes O(log2 ∣S∣) rounds and O(∣S∣ log2 ∣S∣)
communication if records arrive out of order, since TVA relies on bitonic sort (§4.5). For ordered timestamps, the
asymptotic costs are O(log ∣S∣) and O(∣S∣ log ∣S∣) respectively. We provide concrete communication costs in Ap-
pendix F.

4.4 Threshold-based session window
TVA’s threshold window operator works similarly to gap session window. Let q ∶ S → R be a function on data records
in a time series S. In its simplest form, q is a function that returns a record’s attribute but, in general, it can be any
function constructed using TVA’s primitives. Let h ∶ N→ R ∪ {−∞} be the function:

h(i) = {
q(ri), 0 ≤ i < ∣S∣
−∞, otherwise

(2)
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Protocol 5: SESSIONSTART (THRESHOLD)
Input : A time series S = {r0, r1, . . . , r∣S∣−1}, a threshold θ
Param. : Function h (Eq. 2), timestamp length ` (in bits)

1 s↑t(S); //Sort records by timestamp (ASC)
2 Let ε = −1 be an invalid timestamp; //Negative number
//All ∣S∣ comparisons are independent

3 for i = 0; i < ∣S∣; i++ do
4 Parties append single-bit attribute ab to ri

5 Parties compute bit Jri.abK1 = (Jh(i)K`
?
> JθK`)

6 end
//All ∣S∣ − 1 steps are independent

7 for i = 1; i < ∣S∣; i++ do
8 Parties compute JbK1 = (Jri−1.abK1 ⊕ 1) ∧ (Jri.abK1 ⊕ 0)
9 Parties locally compute mask JmK` = expand(JbK1, `)

10 Parties compute the window id of ri as follows: Jri.widK` = JmK` ∧ Jri.tK` ⊕ JmK` ∧ JεK`
11 end

Definition 3 (Threshold Window Operator) Given h and an aggregation function G, TVA’s threshold window op-
erator Θ defines a new time series as follows:

ΘG,h(S, θ) = { (rs.t, G(Ws)) ∣Ws = {ri}, 0 ≤ s ≤ i ≤ e < ∣S∣,

h(s) ≥ θ, h(s − 1) < θ,

h(e) ≥ θ, h(e + 1) < θ,

∄rj ∈ S ∶ h(j) < θ, s < j < e }

The boundaries of a threshold window Ws are defined by a pair of records rs and re that satisfy all conditions
above. TVA identifies threshold windows using the same oblivious control flow from Protocol 3. The main difference
with respect to gap session windows lies in the first phase of sessionization that is described in Protocol 5. In this
case, parties identify the beginning of each threshold window by applying function h (Eq. 2) to each record in S. A
session starts at ri iff h(i) ≥ θ and h(i − 1) < θ. To keep track of records that do not belong to any threshold window,
parties store the result of the comparison h(i) ≥ θ in a new single-bit attribute ab that is appended to record ri. This
bit is used in an oblivious multiplexer to mark the beginning of each session and is reused in the second phase of the
protocol, as we describe later. Executing steps 3-11 in SESSIONSTART (THRESHOLD) requires Rq + ⌈log(` + 1)⌉ + 2,
where Rq is the number of rounds required to apply q to a single record (independent of ∣S∣). In the common case
where q(r) = r.ai,1 ≤ i ≤ k, we have Rq = 0.

During the second phase, parties execute steps 2-10 in Protocol 3 with a minor change in step 5 that is now

replaced by the operation JbK1 = JJri+d.widK`
?
< 0K1 ∧ Jri+d.abK1. For threshold windows, b is a composite bit that

denotes whether record ri+d belongs to a threshold window (ri+d.ab = 1) and is currently unassigned (ri+d.wid < 0).
Computing b requires a single round between parties since both ri+d.ab and ri+d.wid have been computed in the
previous phase. As a result, steps 4-8 in SESSIONIZATION require two rounds in total for threshold windows (one more
compared to gap session windows). The final aggregation step and the overall asymptotic costs in terms of rounds and
bandwidth for threshold windows are the same with gap windows, as given in §4.3. We prove the correctness and
privacy of our protocol in Appendix E.

4.5 Other TVA operators
In addition to windows, TVA provides a rich set of oblivious operators for secure time series analysis, namely, snap-
shot, filter, sorting, grouping, and distinct (for duplicate elimination). TVA’s snapshot operator H has the same
semantics as in prior work, that is, it applies an aggregation function G to a collection of records S whose timestamps
fall into a user-defined time interval I. More formally:

13



HG(S, I) = G(W ) ∣W = {ri}, ri ∈ S, ri.t ∈ I (3)

Filters are logical predicates constructed with TVA’s secure primitives (+,−,×,⊕,∧,∨,¬,≤,≥,=,≠) and may also
include arithmetic operations, e.g., Watt∗Unit Price ≥ $30. TVA’s equality, inequality, and parallel prefix adder [54]
require O(log `) rounds and O(` log `) communication, where ` is the length of the secret-shared operands in bits.

TVA’s sort operator s↑k(S) is based on a sorting network that requires O(log2 ∣S∣) rounds and O(∣S∣ log2 ∣S∣)
communication w.r.t the number of records. We choose a sorting network because it is easily parallelizable and
works well with duplicate values, however, there exist oblivious sorting algorithms with lower asymptotic costs (e.g.,
[8, 9, 24, 53]). Combining these techniques with TVA’s protocols is an intriguing opportunity for future work.

The group-by operator γGk (S) uses the protocol by Jónsson et al. [61] and consists of two phases: a sorting
phase where the input records are sorted on the grouping key(s), and an odd-even aggregation phase that applies the
aggregation function G to each group with O(log ∣S∣) rounds and O(∣S∣ log ∣S∣) communication in total. Distinct is a
special case of grouping.

4.6 Operator composition
In this section, we describe all non-trivial cases of operator composition in TVA. We stress that the details of the
composition process are completely hidden from TVA users by the high-level query API.

Composing filter and snapshot predicates. TVA does not pose any restriction to the number of filter predicates a user
can specify. Predicates can be combined via logical AND and OR operators; for example, Weight < 140 lb OR (Weight >
150 lb AND Height ≤ 6 ft) is a valid composite filter. Each individual filter predicate φ appends a (secret-shared)
single-bit attribute aφ to each record it is applied to. Predicate composition requires ANDing or ORing (under MPC)
these attributes according to the abstract syntax tree (AST) of the composite filter. To reduce interaction between
parties, TVA composes independent predicates in a binary tree of operations. This way, composing a series of m
result bits of the form aφ1 ∧ aφ2 ∧ ⋅ ⋅ ⋅ ∧ aφm can be done with logm rounds in total. In the end, each record has only
one attribute aφ = aφ1 ∧ aφ2 ∧ ⋅ ⋅ ⋅ ∧ aφm that denotes whether the record “passes” the composite filter or not.

In case a filter is followed by a snapshot operator, the condition ri.t ∈ I from Eq. 3 is treated as one more filter on
timestamps (with its own aφ attribute) and is composed with the rest of the filter predicates as described above.

Composing session window with aggregation. The strawman approach to compute the final aggregation on session
windows is to first execute the SESSIONIZATION protocol (Protocol 3) and then use TVA’s group-by operator γGwid to
apply the aggregation function G to each window. Although correct, this two-step approach requires 2× more opera-
tions and communication rounds compared to sessionization alone. In TVA we employ a more efficient composition
technique that eliminates this overhead.

Recall that TVA’s group-by operator is based on the oblivious control flow by Jónsson et al. [61, Algorithm 6].
This algorithm compares records at distance d = ∣S∣ / 2 and, at each step of the iteration, reduces the distance to
half of that in the previous step. Sessionization, however, only works if we access the time series S in the opposite
way, i.e., when we start comparing adjacent records (at distance d = 1) and double the distance at each iteration.
Interestingly, the oblivious aggregation by Jónsson et al. can be modified to work similarly, enabling us to perform the
sessionization and group-by protocols within a single oblivious control flow. This approach saves O(log ∣S∣) rounds
and O(∣S∣ log ∣S∣) communication in total and requires minor protocol modifications. Specifically, we only need to
add the following operation at the end of each for-loop in Protocol 3 (right after line 7):

⟪ri.ag⟫1 = ⟪b⟫1 ⋅G(⟪ri.ag⟫1,⟪ri+d.ag⟫1) +

+ (1 − ⟪b⟫1) ⋅ ⟪ri.ag⟫1

(4)

Eq. 4 updates (in place) the value of the aggregated attribute ag of the i-th record. To do so, parties apply the
aggregation function G to the pair of records (ri, ri+d) and use arithmetic shares of the bit b (already computed in
Protocol 3) to perform the oblivious multiplexing of the form b ⋅ x + (1 − b) ⋅ y. Arithmetic shares of b are constructed
on the fly using the single-bit conversion protocol from Mohassel and Rindal [74] (semi-honest security) or Dalskov
et al. [28] (malicious security). This conversion requires one round between parties.
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The composition technique we described works with any function G that is commutative and associative. This
holds for all common aggregations, including SUM, COUNT, MIN, MAX2, AVG, and STDEV (for the last two we must
maintain the nominators and denominators separately).

Composing keyBy with session window. When a keyBy operator precedes a session window, the key k used in keyBy
must be taken into account in the first phase of SESSIONIZATION. In this case, records are ordered on the pair (k, t),
instead of their timestamp t only, and the start of each session is marked when the default condition holds or the i-th
record in the time series S has a different key value from the previous one, i.e., ri.k ≠ ri−1.k,0 ≤ i < ∣S∣ (true for
i = 0). This requires evaluating an extra equality predicate in step 4 of Protocol 4 and step 8 of Protocol 5.

Composing multiple operators with aggregation. The final aggregation is always computed with TVA’s group-by
operator but the actual grouping keys depend on the operators in the query. Recall that all operators besides keyBy
append a secret-shared attribute to the records they are applied to: filter and snapshot append an attribute aφ
whereas window operators append an attribute wid. Whenever such an attribute exists in the input of the aggregation,
TVA uses it along with the key k of the keyBy operator (if any) to construct a composite key for grouping. The more
complex case is when the query contains a filter, a keyBy, and a window operator followed by an aggregation G. In
this case, TVA applies the operator γGaφ,k,wid(S) that returns one aggregated value for each group of records with the
same composite key (aφ, k,wid).

5 Implementation
We have developed TVA from scratch in C++. We use MPI [2] for inter-party communication and libsodium [1] for
random number generation. TVA supports shares of size 2`, where ` can be configured by the users. The default
length for attributes is ` = 32 and for timestamps is ` = 64.

TVA’s architecture consists of three layers: (i) a runtime that is responsible for resource management and commu-
nication, (ii) a protocol layer that contains vectorized implementations of semi-honest and malicious-secure primitives
(+,∗,−,⊕,∧,¬, /), and (iii) a library of oblivious temporal and time-agnostic operators. The TVA runtime is care-
fully implemented to load balance computation in the asymmetric malicious protocol and to trade off computation for
communication depending on the available resources. For example, the INP protocol (cf. §4.1) requires a party to send
a vector of shares, another party to send the vector’s hash, and a third party to verify the hash. Hashing is used to
reduce bandwidth consumption at the cost of increasing local computation. In low-latency environments, however, it
is sometimes better if both parties send shares instead of hashing.

Computing parties can be deployed on premises or across multiple clouds. Analysts submit queries through a client
application that exposes TVA’s high-level API and runs a lightweight module for generating and shipping shares.

6 Evaluation
Our experimental evaluation is structured into three parts:

Comparison with state-of-the-art. In §6.1, we present a performance comparison with Waldo [30], the only publicly
available time series database with strong security guarantees. For multi-predicate queries, TVA provides up to 5.8×
lower latency compared to Waldo in the malicious setting and 2× lower latency in the semi-honest setting. For window
queries, TVA is up to two orders of magnitude faster than Waldo, which becomes competitive only when the ratio of
the window length over the whole time domain is relatively small.

Performance in real-world applications. In §6.2, we use three real use cases to evaluate TVA’s performance in
LAN and WAN with varying input sizes. We use queries that combine tumbling and session windows with filters and
keyed aggregations. Our results demonstrate that TVA offers excellent performance for both continuous and historical
analysis: it can successfully compute online queries with rigid time constraints and evaluate complex analytics on
millions of input rows with modest use of resources.

2 For MIN and MAX, parties execute the oblivious aggregation in Eq. 4 on boolean shares, since TVA comparison primitives operate on boolean
shares.
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Query latency (s)
Equality Range

Malicious Semi-honest Malicious Semi-honest
Waldo 11.94 1.7 11.82 1.65

TVA 2.056 0.876 3.833 1.583

Table 2: Performance evaluation of WaldoTable and TVA queries with 8 predicates on a time series dataset with 220 records.

Microbenchmarks and cloud costs. In Appendix F, we dive deeper into TVA’s performance and evaluate the scala-
bility of window assignment protocols, the overhead of malicious security, the benefits of parallelization, and its cost.
We show that TVA’s primitives scale effectively as the input size grows and that primitives under the malicious pro-
tocol are only 2× slower compared to the semi-honest. At the same time, increasing the number of compute threads
reduces latency by up to 7×. Finally, our results verify TVA’s ability to amortize I/O with message batching. Compar-
ing the performance achieved in LAN with that of a WAN deployment with 200 − 250× higher RTT, latency is only
4.6× higher on a time series with 222 records.

6.1 Comparison with Waldo
6.1.1 Differences between Waldo and TVA

We highlight a few important differences between the two systems that need to be considered when evaluating the
performance results. First, WaldoTable requires data owners to pre-encode attributes into a N × 2` table of one-hot
vectors, where N is the number of input records. In TVA, data owners only perform secret sharing (arithmetic or
boolean, depending on the target query). Second, WaldoTree queries operate on public timestamps and return partial
aggregates to the client, who is responsible for computing the global aggregation in the clear. On the other hand,
TVA’s parties compute on private timestamps and return the final aggregation result to the client. Neither the pre-
processing (index creation) nor the post-processing time of Waldo are included in the results of §6.1.2. Finally, both
systems operate in the honest-majority setting: for semi-honest security, they rely on the same protocol [6] but, for
malicious security, TVA uses a more efficient 4-party protocol [28] that requires three honest parties as opposed to
Waldo’s 3-party protocol that requires two honest parties.

6.1.2 Performance results

TVA can comfortably operate on machines with modest resources and supports large feature sizes (as we show later),
however, for the sake of the comparison in this section we use the experimental setting of the Waldo paper [30, §VII].
In particular, we deploy parties on r5n.16xlarge instances (64 vCPUs and 512GB RAM), we use 8-bit attributes for
both systems, and we set the network RTT to 20ms. We note that we were unable to reproduce some of the published
Waldo performance results. In our comparison below, we use the result reported in the Waldo paper when it is better
than the one we measured in our own experiments.

Since Waldo is primarily optimized for snapshot queries, we devise the following two experimental scenarios
to perform a meaningful comparison. First, we execute a Waldo-style multi-predicate snapshot query in TVA and
compare its performance with the respective WaldoTable query. Second, we express a TVA-style tumbling window
query in Waldo by executing multiple concurrent snapshot queries on consecutive time intervals on WaldoTree. All
experiments of this section use sorted time series, as Waldo does not support out-of-order records.

Comparison with WaldoTable. For this experiment we set the number of input records to 220 and run composite
filters with equality and range predicates. Each filter contains 8 predicates of the same type and has the form p1 ∧ p2 ∧
⋅ ⋅ ⋅ ∧ p8. Table 2 shows the results. We see that TVA’s performance exceeds that of the specialized WaldoTable data
structure. This is not surprising, as WaldoTable’s computation and communication costs are linear in the input size and
the round trips are linear in the number of predicates [30] (§VII-C). TVA can perform equality (resp. inequality) with
three (resp. four) rounds and requires another three for the composition of the final result. Further performance benefits
come from TVA’s ability to effectively parallelize the computation and amortize network I/O with its vectorized
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Figure 3: Speedup of TVA’s tumbling window aggregation over WaldoTree on a time series dataset with 220 records. The bottom
x-axis shows the number of windows in the time series, which is equal to the number of searches Waldo performs for the respective
query. Waldo achieves low latency for coarse-grained windows but its performance degrades significantly for fine-grained windows.

primitives. In the semi-honest case, TVA provides 1.94× and 1.04× lower latency than Waldo, for equality and range
queries respectively. When operating with malicious security, the performance difference is more significant. TVA
computes the equality query 5.8× and the range query 3.08× faster than Waldo.

Comparison with WaldoTree. In time series analytics, the window length can vary significantly depending on the
use case. For example, monitoring applications compute fine-grained windows in the order of seconds, forecasting
applications operate on intervals of minutes or hours, while anomaly detection involves comparing results over win-
dows of different lengths [44]. To cover these diverse requirements, in this experiment, we use a time series with 220

measurements recorded every second (∼12 days of data in total). TVA needs 20 bits to encode the whole time domain,
that is, the security parameter is σ = 44. We run tumbling window queries that compute a global aggregate per window
and measure latency for both systems.

Figure 3 shows TVA’s speedup over Waldo for window lengths ranging from 5s to 24h (top x-axis). The bottom
axis shows the number of searches that Waldo needs to perform on the aggregation tree to compute the corresponding
window. TVA’s query latency is 6.8s (semi-honest) and 12.5s (malicious) irrespective of the window length. Re-
call that TVA’s tumbling window cost does not depend on the window length λ (§4.2) but Waldo needs to perform
⌈Tmax−Tmin

λ
⌉ searches, where Tmin and Tmax are the minimum and maximum record timestamps in the dataset. We

see that TVA is orders of magnitude faster than Waldo for small windows, as Waldo’s performance depends on the
number of searches it performs in the underlying aggregation tree. When the ratio of the window length over the time
domain becomes small, Waldo achieves better latency, as it performs fewer searches and the benefit of pre-aggregation
pays off. Finally, we emphasize that the TVA’s speedup over Waldo is significantly higher if we include initialization
time. While TVA’s parties simply receive secret shares, Waldo servers need to construct the tree index. In our exper-
iments, this initialization step took over 1000s. If this overhead is considered, Waldo’s latency cannot match that of
TVA, even for coarse windows.

6.2 Performance on real-world applications

Evaluation setup. In the remainder of the experimental evaluation we use two cloud deployments with smaller
machines than before: (i) LAN uses one EC2 r5.8xlarge instance per party in the us-east-2 region of AWS, and (ii)
WAN distributes parties across different geographical regions. For the semi-honest protocol, parties run in us-east-2
(Ohio), us-east-1 (Virginia), and us-west-1 (California). For the malicious protocol, we use the same three regions
plus us-west-2 for the fourth party (Oregon). All VMs have 16 physical cores, 256GB RAM, and run Ubuntu
20.04.4, C++14, g++ 9.4.0, and MPICH 3.3.2. The RTT between west and east regions is 40-50ms and the bandwidth
is limited at 5 Gbps. In all experiments we use the default configuration with 32-bit attributes and 64-bit timestamps.
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Number of data sources (WAN)
Energy mHealth Scheduling

Semi-honest 17400 174700 52400
Malicious 8700 87300 26210

Table 3: Performance evaluation of TVA in the online setting. The table shows the number of data owners TVA can sustain without
violating the corresponding application’s time constraints.

Reported measurements are averaged over at least three runs and plotted in log-scale, unless otherwise specified. In all
experiments of this section, timestamps require up to 22 bits (which are sufficient to encode 10s measurements over
the course of one year). That is, TVA’s security parameter is σ = 42 or greater.

6.2.1 Application scenarios

In this set of experiments, we use three complex window queries that process time series from different application
domains. We provide the queries written in TVA’s API in Appendix H. We use these real-world applications to
evaluate TVA’s ability to support efficient time series queries in both online and historical analysis scenarios. In the
first case, we demonstrate that TVA can comfortably compute query results under rigid time constraints. In the second
scenario, we show that TVA can also support large-scale offline analytics on millions of input records.

Monitoring energy consumption. Privacy-preserving time series analysis can enable various smart grid applications,
such as monitoring grid conditions to improve energy conservation and reduce peak demand [58, 86]. For this use
case, we use a time series dataset that consists of energy consumption measurements across clients connected in a
smart grid. The query computes the total energy consumption of the grid over tumbling windows.

Mobile health analytics. We developed the second use-case together with collaborators from our institution’s medical
school. The input time series corresponds to measurements collected by wearable devices in a cohort of patients with
diabetes. The measurements include glucose values and insulin dose events, among other attributes, and are used by
the investigators to assess the effects of insulin doses across patients in the cohort. The analysis requires counting the
number of insulin doses during each patient’s eating period, which is identified by a threshold in the glucose value.
We express this query using a threshold session window operator.

Job scheduling optimization. The third application considers a cloud provider who wishes to optimize resource
provisioning without compromising their clients’ privacy. To this end, the provider needs to process telemetry time
series data from multiple clients without gaining access to raw execution logs that may contain proprietary information.
We use a time series that follows the schema of real-world monitoring traces collected from Google clusters [87]. The
provider is interested in analyzing the length of job phases (sessions) assigned to the various machine types and use this
information to decide when to transfer long-running client workloads to larger machines or co-locate client workloads
with short job sessions. We implement this application by first applying a filter to retain schedule events and then
using a keyed gap session window to identify job sessions per machine type. The respective query performs a final
aggregation to compute the session length and returns the maximum session per machine type.

6.2.2 Online analysis scenario with time constraints

For a system to guarantee online operation, it needs to produce query results at a rate higher than that of data ingestion.
For the energy use case, we consider sensors that generate measurements every 10s and a monitoring dashboard that
needs to be refreshed every 5min. These settings are more challenging than what typical smart grid applications
require [58]. For the mobile health use case, we set the glucose measurement interval to 5min according to a recent
medical study [43] and require computing the eating period in under one hour. Finally, for the scheduling application,
we assume a Google cluster workload with an arrival rate of 10,000 tasks per minute, [87] and set the time constraint
to 10min, which is lower than the lifetime of 99% of Microsoft Azure’s VMs [26].

Table 3 shows the number of data sources that TVA can sustain without violating its online processing guarantees
in the WAN setting. In all cases, the results demonstrate that TVA exceeds the requirements of real-world applications.
With malicious security, TVA can update the energy grid dashboard in real time for over 8K sensors, it can support a
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(a) Semi-honest (LAN) (b) Malicious (LAN)

(c) Semi-honest (WAN) (d) Malicious (WAN)

Figure 4: TVA query latency in real-world applications with out-of-order events, as the time series size increases from 210 to 222.

cohort of over 87K patients for glucose monitoring, and it can keep up with 2.6× higher task arrival rate than that of
a production cluster.

6.2.3 Historical analysis scenario

For the historical analytics scenario, we measure query latency as the time series size increases. Figure 4 shows the
results. We emphasize that, both in this and the previous experiment, timestamps are not considered to be ordered
and the reported times include sorting under MPC. TVA comfortably scales to millions of records and computes
all queries within a few minutes. For 220 records, the Energy query takes 1min in LAN and 9min in WAN, while
the mHealth and Scheduling queries have similar performance and take ∼ 2.4min in LAN and 20min in WAN. The
mHealth and Scheduling queries are both based on sessionization but the latter is more complex, including filter
and keyBy operators. The overhead of these additional operators is negligible thanks to TVA’s efficient composition
protocols. The cost of using a malicious protocol is small, resulting in a 2× slowdown.

7 Related work

Privacy-preserving time series analysis. Although there is a large amount of work in privacy-preserving time series
analysis, none of the existing approaches supports secure windowing. Despite their particular differences with respect
to threat models and security guarantees, the vast majority of efforts focus on global aggregations or snapshot queries
with (optional) filters and aggregation [23, 29, 30, 52, 55, 58, 60, 80, 82–84, 92]. TimeCrypt [17] and Zeph [18] have
built-in support for tumbling windows, but they reveal information to the untrusted server and can only operate on
public timestamps. Zeph also supports limited (additive) per-group aggregation within time windows but requires data
holders to pre-encode the grouping key domain (e.g., all possible zipcodes).

TVA extends the functionality of prior works without compromising security or performance. TVA introduces ex-
pressive recurring window operators (§4.2–4.4) and allows for efficient composition of window and snapshot operators
with custom grouping, filters, and aggregation (§4.6). In addition, TVA hides queried time intervals, as in state-of-
the-art approaches, but also supports irregular timestamps and out-of-order records. This is in contrast to many prior
techniques that either assume ordered timestamps (e.g., [30]) or operate in the “synchronous” setting where the aggre-
gator receives data every k time units (e.g., [23, 80, 84]). Recently, Zheng et al. [96] proposed a technique to compute
similarity queries on time series snapshots. We leave such operations as future work.
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FSS-based approaches. Function secret sharing [13, 14] is a cryptographic technique that allows creating shares of a
function as opposed to creating shares of a value in MPC. Approaches using FSS, including distributed point functions,
incur lower communication compared to MPC-based techniques. Waldo [30], DuraSift [38], and Vizard [19] use
FSS to securely evaluate range and equality predicates by splitting shares of the predicate to untrusted non-colluding
parties. Splinter [90] uses FSS to evaluate private SQL queries on public data, whereas Dittmer et al. [31] employ FSS
for efficient streaming PSI. Expressing TVA’s complex window operations using FSS is still an open problem and an
interesting direction for future work.

ORAM-based approaches. Oblivious RAM [46, 47] allows for hiding access patterns in arbitrary programs but its
generality comes at a high cost. Distributed ORAM constructions by Bunn et al. [16] and Doerner et al. [32] achieve
better performance by leveraging FSS. TVA hides access patterns via oblivious operators that we specifically design
for time series analytics.

Relational MPC frameworks. Systems like Conclave [89], Senate [79], and Secrecy [69] support a broad class of
relational operators, including joins, filters, and group-by with aggregation. These systems can be used to evaluate
snapshot operators but they do not support recurring windows. One workaround, and only for tumbling windows, is to
use multiple snapshot queries; however, this requires knowledge of the time domain and has substantial performance
overheads, even for FSS-based approaches.

Encrypted DBs. Encrypted databases based on structural encryption [20,42,57,62,77,78,93] avoid the non-collusion
assumption of MPC, but they reveal access and search pattern information to the database server that can be used
in reconstruction attacks [50, 51, 64, 73, 75]. In addition, none of these systems supports window-based time series
analytics.

Privacy-preserving aggregate statistics. Works in this class focus on common aggregations [33], custom analyt-
ics [15, 56], or general-purpose statistics [3, 25]. None of these works study recurring window aggregation on time
series data.

8 Conclusion
We presented TVA, a multi-party computation system for efficient and expressive time series analytics with strong se-
curity guarantees. TVA employs new MPC protocols for secure window assignment and a modular design that enables
arbitrary composition of temporal and time-agnostic operators. TVA’s protocols are generic and operate correctly and
efficiently on time series with unordered and irregular timestamps. Our evaluation on real-world applications demon-
strates that TVA is suitable for both online and historical analysis.
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Functionality Fabb

input: Invoked upon receiving (input, Pi, type, id, `x, x) from party Pi and (input, Pi, type, id, `x) from all
other parties. Verifies that id is a fresh identifier and type ∈ {arithmetic,boolean}. Stores (type, id, `x, x)
into memory.

shared input: This is an optional method. It is invoked upon receiving (INP, Pi, Pj , type, id, `x, x) from party
Pi, (INP, Pi, Pj , type, id, `x, x

′
) from party Pj , and (input, Pi, Pj , type, id, `x) from all other parties.

Verifies that x = x′, id is a fresh identifier, and type ∈ {arithmetic,boolean}. Stores (type, id, `x, x) into
memory.

add: Invoked upon receiving (add, type, id1, id2, idnew) from all parties. Retrieves from memory the values
x1, x2 corresponding to identifiers id1, id2. Verifies that both of them are of the stated type and have the
same length `x, and that idnew is a fresh identifier. If type = arithmetic, then set x = x1 + x2 mod 2`x . If
type = boolean, then set x = x1 ⊕ x2. Stores (type, idnew, `x, x) into memory.

mult: Invoked upon receiving (mult, type, id1, id2, idnew) from all parties. Retrieves from memory the values
x1, x2 corresponding to identifiers id1, id2. Verifies that both of them are of the stated type and have the
same length `x, and that idnew is a fresh identifier. If type = arithmetic, then set x = x1 ⋅ x2 mod 2`x . If
type = boolean, then set x = x1 ∧ x2. Stores (type, idnew, `x, x) into memory.

A2B: Invoked upon receiving (A2B, id, idnew) from all parties. Retrieves from memory the tuple (type, id, `x, x)
with identifier id. Verifies that type = arithmetic and idnew is a fresh identifier. Stores
(boolean, idnew, `x, x) into memory.

B2A: Invoked upon receiving (B2A, id, idnew) from all parties. Retrieves from memory the tuple (type, id, `x, x)
corresponding to identifier id. Verifies that type = boolean and idnew is a fresh identifier. Stores
(arithmetic, idnew, `x, x) into memory.

b2A: Invoked upon receiving (B2A, id, idnew, ˜̀x) from all parties. Retrieves from memory the tuple
(type, id, `x, x) corresponding to identifier id. Verifies that type = boolean, idnew is a fresh identifier,
and `x = 1. Stores (arithmetic, idnew, ˜̀x, x) into memory.

output: Invoked upon receiving (output, Pi, type, id) from all parties. Retrieves from memory the value x
corresponding to identifier id, and sends it to party Pi.

Figure 5: Arithmetic black-box functionality Fabb that supports mixed-mode operations and conversions. Based upon Escudero et
al. [35, Figure 1], with a few modifications described in Appendix A.

A Arithmetic black-box model
In this section and in Figure 5, we provide a rigorous specification of the arithmetic black-box (ABB) functionality used
in this work. The works of Araki et al. [6], Dalskov et al. [28], and Mohassel and Rindal [74] provide instantiations
for all of these functionalities, and prove simulation-based security.

The goal of the ABB model is to consider a reactive (i.e., stateful) functionality that corresponds to an ideal
specification of the MPC operations that we require. This specification provides two benefits. First, we can abstract
away the underlying implementations of these MPC operations when specifying TVA’s protocols (as shown formally
in Protocols 1 and 2, and implicitly in all other protocols). Second, we can write generic proofs (in Appendices C
and E) that all of the protocols within TVA are secure when provided with any instantiation of the ABB functionality.
Several prior works use the ABB model to prove the security of higher-level protocols that make black-box use of
MPC primitive operations (e.g., [34, 35, 39, 49, 66, 88]).

In this work, we require a functionality that supports mixed-mode operations: both arithmetic and boolean compu-
tation as well as conversions between them. For this reason, our starting point is the functionality provided by Escudero
et al. [35, Figure 1]. Our functionality Fabb in Figure 5 is similar to Escudero et al. [35, Figure 1]. In particular, we
emphasize that the “add” and “mult” functionalities in Figure 5 support both arithmetic and boolean operations—that
is, they also support the operations of boolean XOR and boolean AND. Additionally, we follow the convention that
the method name itself is also the first input to the functionality; as a consequence, we use the notations Fabb.input(−)
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and Fabb(input,−) interchangeably.
We do make a few modifications to our functionality Fabb as compared to the ABB model of Escudero et al. First,

our functionality considers a single addition operation at a time rather than providing support for more complicated
linear combinations directly; this is purely a modeling decision and has no impact on the capabilities of the function-
ality. Second, we support addition and multiplication over arithmetic rings of different sizes; support for multiple
moduli provides a small efficiency benefit in Protocols 1-2 but is not required and may be omitted. Third, we add
support for the shared input (INP) and bit-to-arithmetic (b2A) functionalities. Fourth, we allow for the output to be
revealed only to a single entity (e.g., the data analyst), rather than all protocol participants. Fifth, we add an arithmetic
to (multi-bit) boolean operation A2B, which is instantiated in the 3-party variant of TVA using a parallel prefix adder
as described in Mohassel and Rindal [74, §5.3], and we extend their technique to the 4-party setting in Appendix B.

It is straightforward to see that the works of Araki et al. [6] and Dalskov et al. [28] provide most of the protocols
that collectively instantiate our Fabb. Concretely, they provide specific ideal functionalities for each method within
Figure 5 (e.g., multiplication is described in [6, Functionality 3.3] and [28, Protocol 4]), and then provide simulation-
secure instantiations of each method. Furthermore, revealing the output to one party does not reveal any information
about other secrets, due to the use of fresh randomness to re-randomize shares after every interactive operation. There
are two caveats, however. First, only Dalskov et al. [28] provides an instantiation of the shared input method INP. As
a result, we only use INP within the 4-party variant of TVA (e.g., we use it in Protocol 2 but not Protocol 1). Second,
we adopt the arithmetic-to-boolean conversion protocols from Mohassel and Rindal [74, §5.3] (in the 3-party setting)
and Appendix B (in the 4-party setting).

B 4-party arithmetic to boolean conversion
In Protocol 6, we provide a new mixed-mode protocol for arithmetic to boolean conversion. Its main advantage is
to reduce the number of communication rounds required: our protocol uses 1 boolean adder rather than 3 of them.
Additionally, our protocol is amenable to use within our 4-party secure division protocol, in which case the “shares
merging” step below can be removed since the INP sharing is already performed within Protocol 2.

Protocol 6: A2B CONVERSION (Malicious 4PC)
Input : An arithmetic secret-shared integer ⟪x⟫`
Output: A boolean secret-shared integer JxK`
//Shares Merging

1 Parties 1, 4 locally compute x′0 = x1 + x2
2 Party 2, 3 locally compute x′1 = x3 + x4
//Shares redistribution

3 Let JaK` = INPB(x′0,1,4)
4 Let JbK` = INPB(x′1,2,3)
5 Output JxK` = JaK` + JbK`

C Security analysis of TVA division protocols
In this section, we provide a security analysis of Protocols 1 and 2 in order to prove the following theorem.

Theorem 1 Let x ∈ [0,2`x) and c ∈ [1,2`c−1) with `c ≤ `x < `. Then, Protocols 1 and 2 securely compute a sharing
of the exact integer division z = ⌊x/c⌋ with probability 1 − 1

2σ
, where σ = ` − `x. Protocol 1 achieves semi-honest

security, and Protocol 2 achieves malicious security up to abort.

For ease of presentation, we split the proof of this theorem into three lemmas. We begin with a lemma showing
that line 1 of Protocols 1 and 2 constructs a value y that is close to the correct quotient, up to a rounding error of either
0 or 1. Line 1 is a slight modification to the division-and-truncation protocol of Mohassel and Rindal [74], and our
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proof is similar to Mohassel and Rindal [74, Thm. 1]. We provide a full proof below to show how their technique
adapts to our setting, in which we use a non-replicated 2-of-2 sharing ⟨y⟩`.

Lemma 1 Let c ≥ 1 and 0 ≤ x < 2`x , and let z = ⌊x
c
⌋ be the exact integer division of x by c with truncation. Then, line

1 of Protocols 1 and 2 computes ⟨y⟩` such that y = z or y = z + 1 with probability 1 − 2`x−`.

Proof We begin by defining a non-replicated 2-of-2 sharing of x denoted by x′1 and x′2. First set x′1 = x1+x2 mod 2`.
Then, for the analysis of Protocol 1 we set x′2 = x3, and in the analysis of Protocol 2 we set x′2 = x3 +x4 mod 2`. (The
analyses of the two protocols are identical from here onward.)

In other words, x = x′1 + x′2 mod 2`, where the original secret sharing guarantees that each of x′1 and x′2 are
distributed uniformly at random within [0,2`) subject to the fact that they sum to x mod 2`. Since x itself is less than
2`x , with overwhelming probability (at least 1 − 2`x−`) it is the case that x′1 > x and x′2 > x; in fact, each inequality
implies the other.

As a result, we can write an integer equation (without modular arithmetic) that x = x′1 + x′2 − 2`. We can rewrite
this equation as x = x′1 − x′′2 , where we set x′′2 = 2` − x′2 and observe that it is also in the range [0,2`). Hence,

z = ⌊x/c⌋ = ⌊(x′1 − x′′2)/c⌋ ≈ ⌊x′1/c⌋ − ⌊x′′2/c⌋. (5)

We set y equal to the right hand side of Eq. (5), and observe that it is close to z. We claim that the approximation in
the final step comes from the fact that splitting the truncation into the difference of two individually-truncated values
can introduce an off-by-one error, namely in the case that the fractional part of x′′2/c is greater than the fractional part
of x′1/c. This claim is easiest to see with an example: given the lengths `x = `c = 4 and ` = `x + σ, consider what
happens when x = 2 and c = 5, with x′1 = 6 and x′′2 = 4. In this case, we find that z = ⌊(x′1 − x′′2)/c⌋ = ⌊ 6

5
− 4

5
⌋ = 0 as

expected, but y = ⌊x′1/c⌋ − ⌊x′′2/c⌋ = ⌊ 6
5
⌋ − ⌊ 4

5
⌋ = 1 − 0 = 1. The issue here is that the fractional part of 4

5
is greater

than the fractional part of 6
5

, and therefore is large enough to subtract one from the integer part of the result when it
is applied before the floor operation is performed. This idea generalizes to any possible sharing: by computing the
integer quotient and remainder, we can write the shares as x′1 = q1c + r1 and x′′2 = q2c + r2 for integers q1, q2, r1, r2
with r1, r2 ∈ [0, c). The right-hand side of Eq. (5) is q1 + q2, but the left-hand side equals q1 + q2 + ⌊ r1−r2

c
⌋, where

r1 − r2 ∈ (−c, c). So their difference (and the cause of the approximation error) is the floor function that equals either
0 or −1 since c is positive.

We also rely upon the fact that c ≥ 1 for Eq. 5 to hold over a modular arithmetic space. Dividing by less than 1
could result in an overflow error, but as long as ∣c∣ ≥ 1 then we know that x′1/c requires at most ` bits to represent
because the same is true of x′1. Also, dividing by a negative number would flip the sign of all equations, including the
direction of the off-by-one error.

Finally, observe that
y1 = ⌊x′1/c⌋ and y2 = −⌊x′′2/c⌋ mod 2` = 2` − ⌊x′′2/c⌋

in order to produce a secret sharing y = y1 + y2 mod 2` such that y2 is in the usual range [0,2`). Hence, we achieve
the desired result as long as x′1 and x′2 are both greater than x, which occurs with probability at least 1 − 2`x−`.

With this lemma, we are now prepared to prove Theorem 1. The rounding error identified in Lemma 1 can be
corrected within a secure computation. The main idea is to determine which of the fractions x′1/c or x′′2/c is larger,
which is exactly what the remaining lines of Protocols 1 and 2 do. To show formally that these are secure computation
protocols, we must show that each protocol satisfies correctness and privacy as described in Section 3. Therefore,
Theorem 1 follows immediately from the following two lemmas.

Lemma 2 (Correctness) The output of Protocols 1 and 2 is equal to z = ⌊x/c⌋ with probability at least 1 − 2`x−`.

Lemma 3 (Privacy) Protocols 1 and 2 achieve privacy against a semi-honest and malicious adversary, respectively.

We provide proofs below for these two lemmas, which collectively suffice to prove Theorem 1 as well.
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Proof (Lemma 2) To show correctness, recall from Lemma 1 that y is nearly equal to z, up to a possible off-by-one
error. More precisely, recall that Eq. (5) is not exact in the case that x′′2/c has a larger fractional part than x′1/c. The
remaining lines of Protocols 1 and 2 compute this off-by-one error and add it to y in order to recover z exactly. That
said: if x′1 < x or x′2 < x, then we still run into a catastrophic accuracy error, for the same reason as in Lemma 1.

In more detail, line 2 computes s1 and s2 as the fractional parts of x′1/c and x′′2/c, respectively. Then line 4
determines whether s1 < s2 as follows: the difference s = s1 − s2 is negative if and only if s1 < s2, and through
mixed-mode conversions the protocol isolates this most significant bit of s and sets it equal to b. One can think of b
akin to a ‘sign’ bit, since it is equal to 1 only if s2 > s1, which induces a wrap-around mod 2`c . Observe also that in
line 3, the shares s1 and s2 are placed in the ring mod 2`c , where `c is specifically chosen so that s1 and s2 contain
one more bit than c itself. This provides the extra space to hold the ‘sign’ bit.

Proof (Lemma 3) At a high level, in Protocols 1 and 2, privacy is obtained through the black-box use of the under-
lying building blocks of the mixed-mode MPC protocol in the arithmetic black-box model Fabb. Lines 1-2 are local
computations, line 3 uses Fabb.input to distribute new secret shares and inherits privacy from the underlying secret-
sharing protocol, lines 3 and 5 inherit security from the underlying addition protocol Fabb.add, and line 4 inherits
security from the underlying conversion protocols Fabb.A2B and Fabb.b2A. Moreover, the protocol never opens any
secret, and the control flow is data-independent.

As a result, the privacy of Protocol 1 follows directly from the privacy of the underlying MPC protocol of Araki et
al. [6]. To show this claim formally, we must design a simulator S that produces a transcript of the protocol execution
that is indistinguishable from the flow of Protocol 1, given only the inputs and outputs of the protocol participants that
the adversary has (statically) corrupted. If the corrupted parties know all of the shares of either the input x and/or
the output z (say, if the adversary corrupts the data owners and/or the data analyst), then simulation is trivial since
division by a public divisor c is an invertible function. Otherwise, the simulator S can execute Protocol 1 on a random
input x, and the the distinguisher won’t be able to tell the difference due to the perfect privacy of all primitives in
Fabb; in this case even the distinguisher’s knowledge of the true output does not help, since the view of Protocol 1 is
independent of it.

The proof of security in the 4-party case is similar, with the additional property that Protocol 2 achieves malicious
security through redundancy: two parties perform each local computation in lines 1-2, and in line 3 we use the Shared
Input protocol Fabb.INP of Dalskov et al. [28] so that the honest parties can detect any malicious party’s attempt
to share an incorrect value. Finally, in lines 3-5 we rely on the malicious-secure instantiations of the functionalities
Fabb.add, Fabb.A2B, and Fabb.b2A instantiated by Dalskov et al. [28]. Hence, a malicious party is detected if it
deviates from the protocol in any of the lines of the protocol. Therefore, Protocol 2 provides malicious security up
to abort, where the corresponding simulator S can use the shared input functionality Fabb.INP to extract the inputs
provided by any adversarial data owners and then operates similarly as in the semi-honest setting.

In Appendix D, we compare this division protocol with prior work. Also to improve efficiency, in Appendix B we
contribute a simple arithmetic-to-boolean sharing protocol in the 4-party setting that is compatible with our division
operator; it only requires a single boolean adder rather than 3 of them.

D Comparison with other division protocols
In this section, we compare our Protocols 1-2 for division-and-truncation with some of the most related prior works.
Secure division protocols have been a topic of study within MPC for more than a decade, and this section prioritizes
comparison with recent, related protocols over a comprehensive review of all prior works. We distinguish between
comparisons to protocols with and without rounding error.

First, there are several prior works that provide efficient protocols for integer or fixed-point division with prob-
abilistic truncation, meaning that they perform randomized rounding of the result with a possible error of ±δ where
δ ranges from 1 to 3 depending on the protocol (and in some cases, with this error being biased toward the “right”
answer). Catrina and Saxena [22] and Catrina and de Hoogh [21] introduced this technique for computation in a field
modulo a prime, then Mohassel and Rindal [74] and Dalskov et al. [27] extend the technique to support rings modulo
2` (where multiplication by the inverse is not always possible), and Escudero et al. [35] provide a method that uses
mixed-mode MPC to perform efficient division by powers of two.
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TVA operates in the ring modulo 2` (with a small efficiency improvement if arithmetic in the smaller ring mod
2`c+1 is also supported) and uses mixed-mode operations. In comparison to the protocols above, TVA makes a small
improvement by using non-replicated 2-of-2 secret sharing within line 1 of Protocols 1-2 to ensure that the error
is at most one bit (i.e., 0 or 1), before switching back to replicated secret sharing with 1 round of communication.
Additionally, the remaining lines of our protocols use even more communication and computation in order to adjust
the rounding error. We also remark that we have only presented Protocols 1-2 in the scenario where the dividend x is
an integer because it suffices for our application, but extending it to work with fixed-point arithmetic is straightforward
using the same ideas as in prior work.

Second, there exist protocols that support division-and-truncation without rounding error. The most directly related
work to ours is the recent paper of Veugen and Abspoel [88]. Their full construction supports secure integer divisions
with a private divisor c, which TVA does not support. When comparing their protocol to ours in the setting of a
public divisor, our protocol has improved storage and computation efficiency: for a given statistical security parameter
σ our construction requires a field of size ` = `x + σ whereas their construction requires ` = `x + 2(σ + `c), and
their functionality requires more correlated randomness in preprocessing in order to perform O(`) multiplications per
online division operation. Additionally, there are a few works [35, 65] that perform exact division in the restricted
setting where the public divisor c is a power of two, in which case they can use right-shifting of individual shares to
speed up the computation. Our computational cost is similar to these works, with the added benefit that TVA supports
public division by any divisor c.

E Security analysis of TVA gap- and threshold-based sessionization proto-
cols

In this section, we show that our oblivious sessionization protocol in Protocol 3 is a secure computation of gap- or
threshold-based session windows. Specifically, we prove the following theorem.

Theorem 2 Protocol 3 securely identifies all session windows in a time series S according to Definition 2 (for gap-
based session windows) and Definition 3 (for threshold-based session windows), when initiated with the appropriate
SESSIONSTART.

For ease of presentation, we split this security proof into four claims that collectively suffice to prove Theorem 2:
termination, completeness, correctness, and privacy.

Lemma 4 (Termination) Protocol 3 will terminate.

Proof This is straightforward to see by inspection of Protocol 3 and its subroutines in Protocols 4-5 that initialize the
gap- and threshold-based session window schemes. The outer while loop in Protocol 3 starts at d = 1 and doubles
after every iteration, meaning that it will reach the stopping criterion of d > ∣S∣/2 in log(∣S∣) steps. Additionally, the
inner for loop in Protocol 3 and the for loops within each SESSIONSTART protocol both take a fixed number of steps
∣S∣, all of which can be run in parallel. Ergo, the algorithm clearly terminates.

Lemma 5 (Completeness) After Protocol 3 is executed, every record will be assigned a window. That is, every record
that is initially assigned an invalid window id ε = −1 will eventually be modified to be a valid window id.

Proof We prove this claim by induction on the number of iterations of the outer while loop. Specifically, we claim
that for any choice of the outer-loop variable d, it is always the case that the first d elements have correct window ids
before the loop begins and the first 2d elements have the correct window ids after this iteration of the loop ends.

The base case of this induction is easy to verify. At the start of the protocol (and before the first iteration of the
loop), d is set to 1 and the SESSIONSTART protocol is executed. It is easy to verify by inspection that for both gap- and
threshold-based SESSIONSTART protocols (shown in Protocols 4-5), the first record of the dataset is initially assigned
using the δ (Eq. 1) or h function (Eq. 2) to the correct window id and that the subsequent loop within Protocol 3 does
not alter the window id of the first record.

For the induction step, we consider the inner for loop of Protocol 3 for an arbitrary choice of the variable d. By
induction, we presume that the first d records already have valid window ids. We then make two observations about
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steps 5-7 of Protocol 3. First, this iteration of the loop makes no changes to the first d window ids, so they continue
to remain valid. Second, the protocol then checks the timestamps of records d + 1 to 2d and, if they are set to ε,
replaces them with the timestamp from d records earlier. As a result, at the end of the iteration the first 2d records are
guaranteed to have valid window ids.

For the final iteration of the loop, d ≥ ∣S∣/2. So by the end of the loop, all ∣S∣ records have valid window ids,
thereby completing the proof.

Lemma 6 (Correctness) After Protocol 3 is executed with semi-honest adversaries, the window rj .wid that is as-
signed to each record rj will be correct.

Proof We have already shown in Lemma 5 that every record is eventually assigned to a window. Furthermore, we also
showed that this assignment procedure is monotonic: any record that is initially assigned to a window id of ε = −1
during SESSIONSTART may have its window id changed later in the procedure, but as soon as a record id rj .wid is
changed to become a valid window id (i.e., not ε), then it will never change again in subsequent iterations of the outer
while loop.

Therefore it suffices to show the following claim: for every record rj whose window id rj .wid is set to ε during
SESSIONSTART, its window id is subsequently set to that of the “closest” record before this one that has a valid
window id. In other words, Protocol 3 eventually sets rj .wid ← ri.wid, where i is the record with the property that:
i < j, ri had a valid window id after SESSIONSTART, and every record i∗ ∈ (i, j) had an invalid window id ε after
SESSIONSTART.

In fact, we will prove a stronger statement by induction on the distance between i and j. Specifically, we claim
that after the outer while loop completes the iteration with loop parameter d, the first 2d− 1 entries to the right of any
valid timestamp ri.wid that were initially ε will now be set to ri.wid.

In the base case where d = 1, let j = i + 1 and consider the case that ri.wid is set to a valid, non-negative number
but rj .wid = ε. Now, we examine the execution flow of Protocol 3 during the first iteration of the outer while loop and
the ith iteration of the inner for loop:

• In step 5, the value b will be set to true, because rj .wid is less than 0 at the moment.

• The oblivious multiplexer within step 7 will change the window id for record j to rj .wid ← ri.wid.

For the induction step, suppose 2k ≤ j − i < 2k+1. That is:

• At the start of the protocol there were at least 2k − 1 records in between i and j that are set by SESSIONSTART
to the timestamp ε, and

• By induction, at the end of iteration d = 2k−1 of the outer while loop, it must be the case that the 2k − 1 records
to the right of i have now had their window ids set to ri.wid.

Then, during the d = 2k iteration of the outer while loop, record rj .wid will be overwritten with the value of
r(j−2k).wid, which is guaranteed to be equal to ri.wid by induction. This completes the proof.

Lemma 7 (Privacy) Protocol 3, when instantiated with either the gap or threshold SESSIONSTART protocol, satisfies
privacy against one semi-honest computing party, potentially in collusion with one or more data owners or the data
analyst. Moreover, for the 4-party instantiation of Protocol 3, oblivious sessionization also maintains correctness
against one malicious computing party that is potentially in collusion with one or more data owners or the data
analyst.

At a high level, our sessionization protocol is oblivious (i.e., hides all data and has a data-independent control flow)
for three reasons:

1. Protocol 3 uses the operations of the underlying mixed-mode MPC protocol in a black-box manner using Fabb.

2. The control flow of Protocols 3, 4, and 5 is data-independent.

3. These operations retain security under composition.
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(a) Tumbling window assignment (b) Sessionization with gap

Figure 6: Scalability of the secure window assignment primitives, as the time series size increases from 210 to 222 (LAN).

(a) Tumbling window assignment (b) Sessionization with gap

Figure 7: Benefits of parallelism for the windowing primitives on a time series with 220 records (LAN).

We make these points more formal in the proof that follows.

Proof The privacy of Protocols 3-5 follows from their black-box use of operations in Fabb that securely compute over
boolean secret shares and the fact that they never run Fabb.output to open any secrets. Concretely, the arithmetic
black-box model supports secure computation of the boolean XOR and AND operations directly, and it is well known
how to use them to build the equality, greater-than, and bit expansion operations. Moreover, simulation-based security
requires that any instantiation of the arithmetic black-box model provides security both for each individual operator
and their sequential composition [70]. Finally, the control flow of Protocols 3, 4, and 5 is data-independent: the for
and while loops run for a fixed, public number of iterations and each individual step (e.g., boolean logic, sorting,
greater-than comparison, etc) has a data-independent instantiation within TVA. Hence, all operations in Protocols
3-5 exclusively perform computations through Fabb.

As a consequence, it is straightforward to design a simulator S that emulates the execution of Protocol 3 given
only the inputs and outputs of the protocol participants that the adversary has statically corrupted. If the adversary
corrupted a data analyst who knows the result of sessionization, then the simulator S can: use the input Fabb.input
or shared input Fabb.INP protocols to extract the input of any corrupted data owners, calculate inputs for the honest
data owners that will lead to the required output, and execute Protocol 3 honestly on that choice of inputs. Otherwise,
if the output is unknown, then the simulator S can execute an instance of Protocol 3 on randomly-chosen inputs; even
a distinguisher who knows the true output cannot distinguish this view from a real execution in the Fabb-hybrid model.

F TVA microbenchmarks

Scalability of window assignment. We perform an experiment to evaluate the performance of the window assignment
protocols as the input size grows. We set the number of compute threads to 8 and vary the input records from 210 to
222. Figure 6 shows the results. The tumbling window assignment relies on the division protocol and only takes 6.1s
for 222 records in the semi-honest setting. Sessionization is also efficient and can identify sessions within 1min for the
same semi-honest setting and input. Latency in the malicious setting is only ∼ 2× higher for both primitives. We do
not present the latency of threshold-based sessionization as it is almost identical to that of the gap protocol.
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(a) Semi-honest (b) Malicious

Figure 8: Latency of the threshold sessionization primitive in LAN and WAN deployments.

Tumbling Window Session Window
in-order records out-of-order records in-order records out-of-order records

Bandwidth (GB) Cost ($) Bandwidth (GB) Cost ($) Bandwidth (GB) Cost ($) Bandwidth (GB) Cost ($)
Semi-honest 0.21 0.035 5.94 0.51 1.52 0.22 7.25 0.69

Malicious 0.50 0.071 17.68 1.74 4.53 0.68 21.71 2.35

Table 4: Bandwidth and cloud costs of tumbling and session window operators on ordered and unordered time series with 220

records

Benefits of parallelism. We now evaluate TVA’s ability to leverage parallelism. We set the input size to 220 records
and measure the latency of window assignment for tumbling and session windows. Figure 7 shows the results as we
increase the number of threads per computing party from 1 to 16. We see that TVA can effectively utilize the available
cores and share work among multiple threads. With 16 threads per party, TVA computes sessions in 18s, which is
6.7× faster compared to the single-threaded execution.

Amortizing I/O. We now investigate TVA’s ability to amortize I/O in a high-latency network. Figure 8 shows the
latency of the threshold sessionization primitive in LAN and WAN for both MPC protocols. As the input size increases,
the performance gap narrows significantly: at 222 records, TVA identifies sessions with only 4.6× higher latency
in WAN compared to LAN, despite the former’s 40-50ms RTT. This result demonstrates that TVA’s batching and
vectorization are effective in amortizing the communication costs of MPC.

Cloud costs. We now calculate cloud costs for TVA’s window and multi-predicate queries in our WAN setting on
AWS. The r5.8xlarge instances we use for the TVA servers cost $2.016/h, while cross-region bandwidth costs
$0.02/GB [5]. Table 4 shows the transmitted data per party and the total monetary costs (including compute instance
charges) for TVA’s window operators using a time series with 220 records and 32-bit share representation. When
records are out of order, bandwidth and costs are higher due to sorting. We only show results for gap-based session
windows, as threshold windows have similar costs. The overall cost of the equality and range queries we used in
Section 6.1 is much lower: $0.009 and $0.028 in the semi-honest and malicious setting, respectively.

G The TVA API
Listing 2 shows the overall structure of TVA queries:

ts_data // handle to secret -shared data
[. filter (...)] // optional: apply conditions
[.keyBy (...)] // optional: partition by key
.window (...) | .snapshot (...) // required: temporal op
.aggregate (...) // required: aggregation

Listing 2: TVA query structure

Each query includes exactly one temporal operator (window or snapshot) followed by an aggregation. Operators
are applied on a secret-shared time series TS and output a new secret-shared time series. The only exception is
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the aggregate operator that outputs one or more aggregated values, as we explain below. TVA’s API exposes the
following methods:

• get shares(schema) → TS retrieves the secret-shared records from data sources and defines the time series
schema, i.e., attribute names. Each attribute has a share type (boolean or arithmetic) and a predefined represen-
tation of length `.

• filter(predicate)→ TS is used to select a subset of records that satisfy some conditions. The conditions are
expressed as logical predicates on data attributes and are combined with AND and OR operators.

• keyBy(keys)→ TS groups records on one or more data attributes (keys) and is used to define per-group opera-
tions: when a keyBy exists in a query, the time series is logically divided into disjoint parts and the subsequent
operators are applied to each part independently.

• snapshot(interval) → TSs selects a subset of records that correspond to the given time interval. The
method returns a new time series TSs on which a subsequent aggregation can be applied.

• window(strategy) → TSw assigns each record in the input time series to windows according to the given
strategy. The method returns a new time series TSw on which a window aggregation can be applied. The
formal semantics of the new time series depend on the window and are given in §4. Our API also provides three
shortcut methods for each of the supported strategies, namely tumbling window(), threshold window(), and
gap window().

• aggregate(IN, OUT, agg fun) → List[V] applies the aggregation function agg fun on the attribute IN and
writes the result in the attribute OUT. This function needs to be applied as a separate (required) step following a
snapshot or window operator. In the case of a snapshot query, the aggregation is applied to one or more groups
of records and returns a single aggregated value (global aggregation) or a collection of aggregated values (one
per group), if combined with keyBy. In the case of a window query, the aggregation is applied to each identified
window and returns a collection of aggregate values (one per window).

H Queries for real world applications

// Data schema
TS ts = get_shares ({"TIMESTAMP", "ENERGY_CONSUMPTION",

"TOTAL_CONSUMPTION"});

// Window aggregation
TS res = ts.tumbling_window("TIMESTAMP", 3600)

.aggregate("ENERGY_CONSUMPTION",
"TOTAL_CONSUMPTION", Agg::SUM);

Listing 3: The energy monitoring query in the TVA API

// Data schema
TS ts = get_shares ({"TIMESTAMP", "PATIENT_ID", "GLUCOSE",

"INSULIN", "TOTAL_INSULIN_EVENTS"});

// Window aggregation
TS res = ts.keyBy("PATIENT_ID")

.threshold_window("TIMESTAMP", "GLUCOSE", 5)

.aggregate("INSULIN", "TOTAL_INSULIN_EVENTS",
Agg:: COUNT);

Listing 4: The mobile health query in the TVA API

// Data schema
TS ts = get_shares ({"TIMESTAMP", "MACHINE_TYPE",

"EVENT_TYPE", "TOTAL_TASKS_PER_SESSION"});

// Window aggregation
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TS res = ts.filter("EVENT_TYPE" == 0)
.keyBy("MACHINE_TYPE")
.gap_window("TIMESTAMP", 10)
.aggregate("*", "TOTAL_TASKS_PER_SESSION",
Agg:: COUNT);

Listing 5: The job scheduling query in the TVA API
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