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Abstract

As a multi-receiver variant of public key encryption with keyword search (PEKS), broadcast
encryption with keyword search (BEKS) has been proposed (Attrapadung et al. at ASIACRYPT
2006/Chatterjee-Mukherjee at INDOCRYPT 2018). Unlike broadcast encryption, no receiver
anonymity is considered because the test algorithm takes a set of receivers as input and thus a set
of receivers needs to be contained in a ciphertext. In this paper, we propose a generic construc-
tion of BEKS from anonymous and weakly robust 3-level hierarchical identity-based encryption
(HIBE). The proposed generic construction provides outsider anonymity, where an adversary is
allowed to obtain secret keys of outsiders who do not belong to the challenge sets, and provides
sublinear-size ciphertext in terms of the number of receivers. Moreover, the proposed construc-
tion considers security against chosen-ciphertext attack (CCA) where an adversary is allowed
to access a test oracle in the searchable encryption context. The proposed generic construction
can be seen as an extension to the Fazio-Perera generic construction of anonymous broadcast
encryption (PKC 2012) from anonymous and weakly robust identity-based encryption (IBE)
and the Boneh et al. generic construction of PEKS (EUROCRYPT 2004) from anonymous IBE.
We run the Fazio-Perera construction employs on the first-level identity and run the Boneh et
al. generic construction on the second-level identity, i.e., a keyword is regarded as a second-level
identity. The third-level identity is used for providing CCA security by employing one-time
signatures. We also introduce weak robustness in the HIBE setting, and demonstrate that the
Abdalla et al. generic transformation (TCC 2010/JoC 2018) for providing weak robustness to
IBE works for HIBE with an appropriate parameter setting. We also explicitly introduce at-
tractive concrete instantiations of the proposed generic construction from pairings and lattices,
respectively.

1 Introduction

Public key encryption with keyword search (PEKS) [16] is a searchable encryption in a public
key setting. Let assume that a content and related keywords are encrypted and the ciphertexts are
preserved on a cloud server. A receiver specifies a keyword kw to be searched, generates a trapdoor,

∗The main part of this study was done when the first author, Keita Emura, was with the National Institute of
Information and Communications Technology, Japan.
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and sends it to the cloud server. The cloud server runs the test algorithm and returns a ciphertext
of a content containing kw to the receiver. As a multi-receiver variant of PEKS, Attrapadung et
al. [10] introduced broadcast encryption with keyword search (BEKS) whose security is defined
as a selective manner. Chatterjee and Mukherjee [21] proposed a BEKS scheme which is secure
under the SXDH (Symmetric eXternal Diffie-Hellman) assumption and provides adaptive security.
They also mentioned that the generic construction of Ambrona et al. [8] on [22] or on [23] also
provide pairing-based BEKS constructions. Note that, in the BEKS syntax, the test algorithm
takes a set of receivers in addition to a ciphertext and a trapdoor. Thus, a set of receivers needs
to be contained in a ciphertext, and their BEKS constructions do not provide receiver anonymity,
i.e., information about receivers is leaked.1 Other multi-receiver variants of PEKS have also been
proposed [7, 29, 32, 33, 42, 53, 56] to reduce the communication cost compared to the case that a
PEKS scheme is separately run for each receiver. Though they considered keyword privacy where no
information about keyword is revealed from ciphertexts, they did not consider receiver anonymity.
Receiver anonymity is recognized as an important security requirement for preserving privacy in
the broadcast encryption context, and several attempts have been considered [11,28,34,35,38,39].

Liu et al. introduced broadcast authenticated encryption with keyword search (BAEKS) [40] as
a multi-receiver variant of public key authenticated encryption with keyword search (PAEKS) [24,
26, 30, 41, 47, 54]2 with receiver anonymity, and proposed a pairing-based BAEKS scheme (in the
random oracle model) with linear-size ciphertext in terms of the number of receivers. The anonymity
is defined as a restricted manner where the challenge sets S∗

0 and S∗
1 are fixed during the setup phase

and an adversary is not allowed to obtain the secret key of a receiver, i.e., no corruption is allowed.
Mukherjee [45] proposed a BAEKS scheme providing statistical consistency where the advantage
is negligible for all computationally unbounded adversaries. The security model for anonymity is
restricted as in the Liu et al. model where no corruption is allowed. Emura [27] proposed a generic
construction of BAEKS that provides linear-size ciphertext in terms of the number of receivers,
and provides full anonymity where an adversary is allowed to obtain the secret keys of the receivers
belonging to S∗

0∩S∗
1 . The building block is PAEKS providing ciphertext anonymity and consistency

in a multi-receiver setting. The generic construction extends the Libert et al. generic construction
of anonymous broadcast encryption [39]. The building block of the Libert et al. generic construction
is (key-private and weakly robust) public key encryption (PKE) that allows us to employ PAEKS
instead of the PKE. The linear-size ciphertext seems mandatory when full anonymity is required
due to the analyses by Kiayias-Samari [34] and Kobayashi-Watanabe-Minematsu-Shikata [35].3

The Fazio-Perera generic construction of anonymous broadcast encryption [28] provides outsider
anonymity, where no information about a receiver is leaked from ciphertexts against outsiders, i.e.,
an adversary is allowed to obtain secret keys of outsiders who belong to a set V where V ∩ (S∗

0 ∪
S∗
1) = ∅. At the expense of a weak anonymity level, the Fazio-Perera generic construction provides

sublinear-size ciphertext using the subset cover framework [46]. In this paper, we mainly focus

1Note that Chatterjee and Mukherjee [21] called a BEKS scheme anonymous, if the challenge ciphertext hides
associated challenge keyword.

2In PAEKS, the encryption algorithm takes a sender secret key (in addition to a receiver public key and a keyword)
as input, and the trapdoor generation algorithm takes a sender public key (in addition to a receiver secret key and a
keyword) as input. This setting allows us to prevent the keyword guessing attack. See [24,26,30,41,47,54] for details.

3As mentioned by Boneh et al. [16], PEKS implies a one-bit encryption scheme where for a plaintext m ∈ {0, 1},
a ciphertext of m is a PEKS ciphertext for the keyword m, and a decryption key is two trapdoors for the keywords
0 and 1, respectively. By using the transformation, a one-bit broadcast encryption scheme can be constructed from
BAEKS. However, it is not clear whether the lower bound of the ciphertext size can be adopted in BAEKS. Especially,
a secret key is required for encryption in BAEKS unlike to broadcast encryption. Thus, further analysis is required
whether the linear-size ciphertext is mandatory when full anonymity is required in BAEKS, and we leave it as a
future work of this paper.
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on the complete subtree (CS) method [46]. Fazio and Perera mentioned that outsider anonymity
seems a natural relaxation, since often the contents of the communication already reveal something
about the recipient set. Since a main usage of PEKS is that the cloud server returns a ciphertext
of a content containing a keyword to the receiver, outsider anonymous BAEKS with sublinear-size
ciphertext is effective to reduce the communication cost. However, employing the Fazio-Perera
generic construction to BAEKS is left as an open problem in [27] due to the following reason:
the building block of the Fazio-Perera generic construction is (anonymous and weakly robust)
identity-based encryption (IBE) that prevents to directly employ PAEKS because PAEKS is not
ID-based and does not provide a secret key derivation algorithm. Since BEKS [10, 21] or multi-
receiver variants of PEKS [7,29,32,33,42,53,56] did not consider receiver anonymity, proposing an
outsider anonymous BEKS (or multi-receiver variants of PEKS) with sublinear-size ciphertext is
an important and interesting topic.

1.1 Our Contribution

In this paper, we propose a generic construction of outsider anonymous BEKS from anonymous
and weakly robust 3-level hierarchical identity-based encryption (HIBE) and one-time signatures.
Informally, outsider anonymity in the BEKS context means that no information about receivers
is revealed from ciphertexts when an adversary is allowed to obtain secret keys of outsiders who
belong to a set V where V ∩ (S∗

0 ∪ S∗
1) = ∅, and is allowed to obtain trapdoors of all receivers

with the restriction that if the receivers belong to S∗
0 ∪ S∗

1 , then kw ̸∈ {kw∗
0, kw

∗
1} where kw∗

0 and
kw∗

1 are challenge keywords. Moreover, the proposed construction considers security against chosen-
ciphertext attack (CCA) where an adversary is allowed to access a test oracle. The proposed generic
construction provides sublinear-size ciphertext in terms of the number of receivers. Technically,
our generic construction can be seen as an extension to the Fazio-Perera generic construction of
anonymous broadcast encryption from anonymous and weakly robust IBE [28] and the Boneh
et al. generic construction of PEKS from anonymous IBE [16], where we run the Fazio-Perera
construction employs on the first-level identity and run the Boneh et al. generic construction on
the second-level identity, i.e., a keyword is regarded as a second-level identity. The third level is
used for the Canetti-Halevi-Katz (CHK) transformation [18] for providing CCA security. We also
introduce weak robustness in the HIBE setting, and demonstrate that the Abdalla et al. generic
transformation for providing weak robustness to IBE [2, 3] works for HIBE with an appropriate
parameter setting.

Instantiations. We can employ any anonymous HIBE schemes, e.g., HIBE from parings [12, 36,
37,48,49] or from lattices [4,5,17,19] with a suitable one-time signature scheme. We convert HIBEs
to provide weak robustness via the generic construction [2, 3] which is explained in Section 3. We
explicitly give attractive concrete instantiations of the proposed generic construction from pairings
and lattices, respectively, and give comparisons in Table 1.

• For pairing-based instantiations, we select the Ramanna-Sarkar (RS) HIBE scheme [49], the
Langrehr-Pan (LP) HIBE scheme [36], and the Blazy-Kiltz-Pan (BKP) HIBE scheme [12]
which are secure under the SXDH (Symmetric eXternal Diffie-Hellman) assumption.4

• For lattice-based instantiations, we select the Agrawal-Boneh-Boyen (ABB) HIBE scheme [4]
though it provides selective security. By using the transformation given by Boneh and Boyen
(BB) [14], it can be converted to provide adaptive security in the random oracle model (ROM)
(See Theorem 7.2 in the ePrint version [15]) by the process of hashing the identity ID with

4When the k-linear assumption is employed, we state it the SXDH assumption by setting k = 1 in Table 1.
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Table 1: Comparison among multi-receiver variants of PEKS. Auth. stands for Authenticity where a sender
secret key is required for encryption as in PAEKS. Let U be the set of all receivers and S ⊆ U be a set of
receivers specified in the encryption algorithm. We denote N = |U |, |S| = N ′ ≤ N , and R = |U | − |S|.
CT, ROM, and STD stand for ciphertext, random oracle model, and standard model, respectively. BDHSE,
DLIN, BDHE, DDHI, MSE-DDH, DBDH, BDH, CODH, SXDH, LWE, and NCRHF stand for Bilinear Diffie-
Hellman Summation Exponent, Decision LINear, Bilinear Diffie-Hellman Exponentiation, Decisional Diffie-
Hellman Inverse, Multi-Sequence of Exponents Diffie-Hellman, Decisional Bilinear Diffie-Hellman, Bilinear
Diffie-Hellman, Computational Oracle Diffie-Hellman, Symmetric eXternal Diffie-Hellman, Learning With
Errors, and Near-Collision Resistant Hash Functions, respectively. CCA stands for chosen-ciphertext attack
in the searchable encryption context where an adversary is allowed to access a test oracle. We omit complexity
assumptions for one-time signatures.

Scheme Anonymity Auth. CT Size Assumption ROM/STD CCA

Ali et al. [7] No No O(1) BDHSE ROM No
Kiayias et al. [33] No No O(1) DLIN&BDHE&DDHI STD No
Jiang et al. [32] No No O(1) MSE-DDH ROM No

Chatterjee and Mukherjee [21] No No O(1) SXDH STD No
Liu et al. [40] Restricted Yes O(N ′) DBDH ROM No
Mukherjee [45] Restricted Yes O(N ′) Bilateral Matrix DH STD No

Emura [27]+QCZZ [47] Full Yes O(N ′) BDH&CODH ROM No
Emura [27]+Mukherjee [45] Full Yes O(N ′) Bilateral Matrix DH STD No

Ours+RS [49] or JP [36] or BKP [12] Outsider No O(R log(N/R)) SXDH STD Yes
Ours+ABB [4]+BB [14] Outsider No O(R log(N/R)) LWE ROM Yes
Ours+Y [51]+AET [9] Outsider No O(R log(N/R)) LWE STD Yes

Ours+JKN [31]+AET [9] Outsider No O(R log(N/R)) LWE&NCRHF STD Yes

ROM before using ID. The BB transformation is briefly explained (in the case of IBE) as
follows. In the initial phase, the simulator B picks ID∗

sel as the challenge identity of the
underlying selective secure IBE scheme. For the challenge identity ID∗

ada, B programs ID∗
sel =

H(ID∗
ada) where H is modeled as a random oracle. B guesses ID∗

ada with the probability at least
1/qH where qH is the number of random oracle queries. Because there are schemes that are
secure in the ROM but insecure in the quantum random oracle model (QROM) [52], it would
be better to show that the BB transformation works in the QROM setting. Unfortunately, this
all-but-one programming does not work well in the QROM setting because a superposition
of all the identities can be sent by a single query, and B’s guessing fails with overwhelming
probability. Thus, though we do not deny the possibility to prove that the BB transformation
works in the QROM setting, we state the underlying HIBE scheme as ABB+BB and require
ROM in Table 1. We remark that Zhandry [55] proved that the ABB HIBE scheme is secure
in the QROM but still it is selectively secure. For giving lattice-based instantiations in the
standard model, we pay attention to the fact that the size of keyword space can be regarded
as a polynomial of a security parameter or keywords have low entropy,5 and selective security
is sufficient for employing the CHK transformation. Thus, we can employ a 3-level HIBE
scheme that satisfies adaptive security only for the first level and selective security for the
other levels. Asano-Emura-Takayasu (AET) [9] introduced such 3-level HIBE schemes where
the first level is either the Yamada IBE scheme [51] or the Jager-Kurek-Niehues (JKN) IBE
scheme [31] which is adaptively secure, and other levels are selectively secure by appending

5This is a reason why the keyword guessing attack has been widely researched: an adversary A, that has a
trapdoor, generates a PEKS ciphertext for a keyword kw chosen by A and runs the test algorithm with the trapdoor.
If the test algorithm outputs 1, then A can detect that kw is associated to the trapdoor. Otherwise, A selects other
keyword. If the size of keyword space is relatively small or keywords have low entropy, then this keyword guessing
attack is a real threat.
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a part of the selectively secure ABB IBE scheme. We can employ the Asano et al. HIBE
schemes.6 By employing state-of-the-art IBE schemes for the first level, we can construct
BEKS schemes whose master public keys consist of only poly-log matrices in terms of the
security parameter, as in [31, 51]. We state the underlying HIBE scheme as Y+AET or
JKN+AET in Table 1. Though Cash et al. [19] proposed a lattice-based adaptively secure
HIBE scheme in the standard model, the master public key size is proportional to the square of
the security parameter. Moreover, though Singh et al. [50] proposed a lattice-based adaptively
secure HIBE scheme in the standard model, the scheme achieves only bounded security in
the sense that the size of a modulus q depends on the number of adversary’s key extraction
queries. Thus, we do not employ the Cash et al. HIBE scheme and the Singh et al. HIBE
scheme as candidates of instantiations.

For comparison, we instantiated the generic construction of BAEKS [27] from the Qin-Cui-
Zheng-Zheng (QCZZ) PAEKS scheme [47] and the Mukherjee PAEKS scheme (i.e., the Mukherjee
BAEKS scheme [45] with the single receiver setting) as specified in [27], as pairing-based BAEKS
instantiations. We remark that no lattice-based instantiation was given because the Cheng-Meng
lattice-based PAEKS scheme [24] was not proven to provide ciphertext anonymity,7 and thus it
was not stated as the building block. Though Yao et al. [54] proposed a lattice-based PAEKS
scheme, they did not define consistency which is mandatory to instantiate the generic construction
of BAEKS. Thus, we do not consider the Yao et al. scheme as a building block.

CPA Security. Though we focus on CCA security in this paper, BEKS providing outsider CPA
anonymity, where no test oracle is defined, can be constructed generically from 2-level anonymous
and weakly robust HIBE. Then, we can still employ the Asano et al. HIBE schemes by eliminating
the third-level for lattice-based instantiations.

2 Preliminaries

2.1 One-Time Signatures

An one-time signature scheme OTS consists of (OTS.KeyGen,OTS.Sign,OTS.Verify). The key
generation algorithm OTS.KeyGen takes a security parameter λ as input, and outputs a verifi-
cation key and a signing key (vk, sigk). The signing algorithm OTS.Sign takes sigk and a mes-
sage M ∈ SigMspace as input, where SigMspace is a signed message space, and outputs a sig-
nature σ. The verification algorithm OTS.Verify takes vk, σ, and M as input, and outputs
0 or 1. We require the correctness holds where for any λ, (vk, sigk) ← OTS.KeyGen(1λ), and
M ∈ SigMspace, OTS.Verify(vk,OTS.Sign(sigk,M),M) = 1 holds. Moreover, we require the strong
existential unforgeability against adaptive chosen message attack (sEUF-CMA) holds: Let A be
probabilistic polynomial-time (PPT) adversaries. Here, (vk, sigk)← OTS.KeyGen(1λ), (σ∗,M∗)←
AOTS.Sign(·)(vk), and A is allowed to send a message M to the signing oracle OTS.Sign just once
that returns σ ← OTS.Sign(sigk,M). We say that OTS is sEUF-CMA secure if the advantage
AdvsEUF-CMA

OTS,A (λ) := Pr[OTS.Verify(vk, σ∗,M∗) = 1 ∧ (σ∗,M∗) ̸= (σ,M)] is negligible in the security
parameter.

6Though Asano et al. did not formally mention that 3-level HIBE schemes are anonymous, they showed that an
HIBE ciphertext is indistinguishable from random in their security proof.

7In the security proof, they showed that almost all elements of ciphertext are indistinguishable from random which
is sufficient to prove that no information of keyword is revealed from ciphertexts. However, an element is selected
from receiver’s public key related distribution. Thus, it is not clear whether the Cheng-Meng PAEKS scheme provides
anonymity. We emphasize that Cheng and Meng did not claim that their scheme provides anonymity.
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2.2 Anonymous 3-level Hierarchical Identity-based Encryption

Definition 1. [Syntax of 3-level HIBE] An HIBE scheme HIBE consists of the following five
algorithms (HIBE.Setup,HIBE.KeyGen,HIBE.KeyDer,HIBE.Enc,HIBE.Dec) defined as follows. Here,
Mspace is a message space and IDspace is an identity space. A hierarchical identity is denoted as
(ID, ID′, ID′′) ∈ IDspace× IDspace× IDspace, and we consider the three-dimension identity only. In
our purpose, it is sufficient that the HIBE.KeyGen algorithm generates a secret key for a first-level
identity ID and the IBE.Enc algorithm takes a hierarchical identity (ID, ID′, ID′′) as input.

HIBE.Setup: The setup algorithm takes a security parameter λ as input, and outputs a master public
key MPK and a master secret key MSK.

HIBE.KeyGen: The key generation algorithm takes MPK, MSK, and ID ∈ IDspace as input, and
outputs a secret key skID.

HIBE.KeyDer: For the second level key derivation, the key derivation algorithm takes MPK, skID,
and ID′ ∈ IDspace as input, and outputs a secret key skID,ID′. For the third level key derivation,
the key derivation algorithm takes MPK, skID,ID′, and ID′′ ∈ IDspace as input, and outputs a
secret key skID,ID′,ID′′ .

HIBE.Enc: The encryption algorithm takes MPK, (ID, ID′, ID′′) ∈ IDspace× IDspace× IDspace, and
a plaintext M ∈ Mspace as input, and outputs a ciphertext ctHIBE.

HIBE.Dec: The decryption algorithm takes MPK, ctHIBE, and skID,ID′,ID′′ as input, and outputs M
or ⊥.

Correctness. For any security parameter λ, (MPK,MSK) ← HIBE.Setup(1λ), ID, ID′, ID′′ ∈
IDspace, and M ∈ Mspace, HIBE.Dec(MPK, ctHIBE, skID,ID′,ID′′) = M holds where ctHIBE ← HIBE.Enc
(MPK, (ID, ID′, ID′′),M), skID ← HIBE.KeyGen(MPK,MSK, ID), skID,ID′ ← HIBE.KeyDer(MPK,MSK,
skID, ID

′), and skID,ID′,ID′′ ← HIBE.KeyDer(MPK,MSK, skID,ID′ , ID′′).

Anonymity. Briefly, anonymity means that no information about (ID, ID′, ID′′) is revealed from
a ciphertext ctHIBE ← HIBE.Enc(MPK, (ID, ID′, ID′′),M). The formal definition is as follows. We
employ a CPA notion here.

Definition 2 (Anonymity). We define the following experiment.

ExpAnon-CPA-bHIBE,A (λ) :

(MPK,MSK)← HIBE.Setup(1λ)

V1 := ∅; V2 := ∅; V3 := ∅
((ID0, ID

′
0, ID

′′
0), (ID1, ID

′
1, ID

′′
1),M

∗
0 ,M

∗
1 , state)

← AHIBE.KeyGen(MPK,MSK,·)(MPK)

s.t. ID0, ID1 ̸∈ V1 ∧ (ID0, ID
′
0), (ID1, ID

′
1) ̸∈ V2

∧ (ID0, ID
′
0, ID

′′
0), (ID1, ID

′
1, ID

′′
1) ̸∈ V3

∧M∗
0 ,M

∗
1 ∈ Mspace ∧ |M∗

0 | = |M∗
1 |

ct∗HIBE ← HIBE.Enc(MPK, (IDb, ID
′
b, ID

′′
b ),M

∗
b )

b′ ← AHIBE.KeyGen(MPK,MSK,·)(ct∗HIBE, state)

If b = b′, then output 1, and 0 otherwise.
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The key extraction oracle HIBE.KeyGen for the first-level identity takes ID ∈ IDspace as input,
returns skID ← HIBE.KeyGen(MSK, ID), and updates V1 ← V1 ∪ {ID}. The key extraction ora-
cle HIBE.KeyGen for the two-dimensional hierarchical identities takes (ID, ID′) ∈ IDspace× IDspace
as input, computes skID ← HIBE.KeyGen(MSK, ID), returns skID,ID′ ← HIBE.KeyDer(MSK, skID, ID

′),
and updates V2 ← V2∪{(ID, ID′)}. The key extraction oracle HIBE.KeyGen for the three-dimensional
hierarchical identities takes (ID, ID′, ID′′) ∈ IDspace× IDspace× IDspace as input, computes skID ←
HIBE.KeyGen(MSK, ID), skID,ID′ ← HIBE.KeyDer(MSK, skID, ID

′), returns skID,ID′,ID′′ ← HIBE.KeyDer
(MSK, skID,ID′ , ID′′), and updates V3 ← V3 ∪ {(ID, ID′, ID′′)}. In the post-challenge phase, the or-
acle returns ⊥ if any prefix of (ID0, ID

′
0, ID

′′
0) or (ID1, ID

′
1, ID

′′
1) is queried. We say that a HIBE

scheme HIBE is Anon-CPA secure if the advantage AdvAnon-CPAHIBE,A (λ) := |Pr[ExpAnon-CPA-0HIBE,A (λ) =

1] − Pr[ExpAnon-CPA-1HIBE,A (λ) = 1]| is negligible for all PPT adversaries A in the security parameter
λ.

2.3 Complete Subtree Method

We introduce the complete subtree (CS) method [46]. Let BT be a binary tree with N leaves. For a
leaf node i, let Path(i) be the set of nodes from the leaf to the root. Let RSet be the set of revoked
leaves and R = |RSet|. For non leaf node x, let xleft be the left child of x and xright be the right
child of x.

1. Initialize X, cover← ∅.

2. For all i ∈ RSet, add Path(i) to X.

3. For all x ∈ X, if xleft ̸∈ X then add xleft to cover. If xright ̸∈ X then add xright to cover.

4. If |Rset| = 0 then add the root node root to cover.

5. Output cover.

We denote cover← CompSubTree(BT,RSet). |cover| is estimated as O(R log(N/R)).8

2.4 Previous Generic Constructions

We briefly revisit previous generic constructions as follows.

The Abdalla et al. Generic Construction [1]. Abdalla et al. demonstrated that anonymous
IBE implies PEKS. Briefly, a receiver setups (MPK,MSK) ← IBE.Setup(1λ) and sets MPK as a
public key and MSK as a secret key. To encrypt a keyword kw, a random plaintext R is encrypted
using a keyword kw as the identity such that ctIBE ← IBE.Enc(MPK, kw,R) and (ctIBE, R) is a
PEKS ciphertext. A trapdoor is a secret key tdkw ← IBE.KeyGen(MSK, kw). The test algorithm,
that takes (ctIBE, R) and tdkw as input, outputs 1 if R = IBE.Dec(MPK, ctIBE, tdkw) and 0 otherwise.
No information about kw is revealed from (ctIBE, R) if the underlying IBE scheme is anonymous.
Moreover, if there exists kw′ where kw ̸= kw′ and the test algorithm outputs 1 for tdkw′ ←
IBE.KeyGen(MSK, kw′) and (ctIBE, R) where ctIBE ← IBE.Enc(MPK, kw,R) (i.e., no consistency
holds), then an algorithm can be constructed that breaks the IND-CPA security of the underlying
IBE scheme. That is, the generic construction provides computational consistency.

8More precisely, as mentioned in [6, 13], |cover| is estimated as O(R log(N/R)) if R ≤ N/2 and is estimated as
O(N − R) if N/2 < R ≤ N . We assume that R is relatively smaller than N and then our construction provides
sublinear-size ciphertext.
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The Boneh et al. Generic Construction [16]. The Boneh et al. generic construction is almost
the same as the Abdalla et al. generic construction, except that R is fixed as 0λ where λ ∈ N is a
security parameter. ctIBE can be directly regarded as a PEKS ciphertext that reduces the ciphertext
size compared to that of the Abdalla et al. generic construction. Abdalla et al. [1] showed that
there is an IBE scheme that is anonymous and provides IND-CPA security, but the PEKS scheme
obtained via the Boneh et al. generic construction does not provide consistency. Abdalla et al. also
demonstrated that the Boneh et al. generic construction provides consistency if the underlying
anonymous IBE is weakly robust [2, 3]. Briefly, robustness means that the decryption algorithm
outputs ⊥ if the corresponding decryption key is not used (See Section 3 for details). Abdalla et
al. also mentioned that if the underlying IBE scheme is CCA secure in addition to provide weak
robustness, then the PEKS scheme converted via the Boneh et al. generic construction is also CCA
secure where an adversary is allowed to issue a test query.

The Fazio-Perera Generic Construction [28]. Fazio and Perera proposed a generic construc-
tion of anonymous broadcast encryption from anonymous IBE. Because the decryption algorithm
does not take the set of receivers S as input, the underlying anonymous IBE scheme is required
to be weakly robust. Let U be the set of all receivers and S ⊆ U be a set of receivers specified
in the encryption algorithm. We denote N = |U |, R = |U | − |S|, and L = ⌊R log(N/R)⌋. More-
over, let ℓ = |cover| where cover = {x1, . . . , xℓ} is the set of nodes determined by the CS method.
A ciphertext is a set of IBE ciphertexts: ctIBE,j ← IBE.Enc(MPK, xj ,M) for j = 1, 2, . . . , ℓ, and

ctIBE,j ← IBE.Enc(MPK, dummy, M̃) for j = ℓ + 1, . . . , L where M̃
$←− {0, 1}|M | and dummy is a

dummy identity. The order of ciphertexts is randomized via a random permutation. A receiver
decrypts the ciphertext to find an IBE ciphertext whose decryption result is non-⊥. Due to the ro-
bustness of the underlying IBE scheme, a receiver can find such a ciphertext if the receiver belongs
to the set S specified in the encryption algorithm. Due to the anonymity of the underlying IBE
scheme, no information about identity is revealed from ciphertext in the sense of outsider anonymity.
For providing CCA security, CCA secure anonymous IBE and one-time signatures are employed.
A verification key vk is contained such that ctIBE,j ← IBE.Enc(MPK, xj ,M ||vk) for j = 1, 2, . . . , ℓ,

and ctIBE,j ← IBE.Enc(MPK, dummy, M̃) for j = ℓ+1, . . . , L where M̃
$←− {0, 1}|M |+|vk|. A signature

σ is generated on vk||{ctIBE,j}j∈[1,L] and (σ, vk, {ctIBE,j}j∈[1,L]) is a ciphertext.

3 On Weak Robustness in the HIBE Setting

Briefly, robustness (in the HIBE setting) means that the HIBE.Dec algorithm that takes ctHIBE

and skID1,ID
′
1,ID

′′
1
outputs an error symbol ⊥ where ctHIBE ← HIBE.Enc(MPK, (ID0, ID

′
0, ID

′′
0),M),

skID1 ← HIBE.KeyGen(MPK,MSK, ID1), skID1,ID
′
1
← HIBE.KeyDer(MPK, skID1 , ID

′
1), skID1,ID

′
1,ID

′′
1
←

HIBE.KeyDer(MPK, skID1,ID
′
1
, ID′′

1), and (ID0, ID
′
0, ID

′′
0) ̸= (ID1, ID

′
1, ID

′′
1). Weak robustness here means

that the robustness holds for honestly generated ciphertexts. The formal definition is as follows.
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Definition 3 (Weak Robustness). We define the following experiment.

ExpwrobHIBE,A(λ) :

(MPK,MSK)← HIBE.Setup(1λ)

V := ∅
((ID0, ID

′
0, ID

′′
0), (ID1, ID

′
1, ID

′′
1),M

∗)

← AHIBE.KeyGen(MPK,MSK,·)(MPK)

s.t. ID0, ID1 ̸∈ V ∧ (ID0, ID
′
0, ID

′′
0) ̸= (ID1, ID

′
1, ID

′′
1)

∧M∗ ∈ Mspace ∧M∗ ̸= ⊥
ctHIBE ← HIBE.Enc(MPK, (ID0, ID

′
0, ID

′′
0),M

∗)

skID1 ← HIBE.KeyGen(MPK,MSK, ID1)

skID1,ID
′
1
← HIBE.KeyGen(MPK, skID1 , ID

′
1)

skID1,ID
′
1,ID

′′
1
← HIBE.KeyGen(MPK, skID1,ID

′
1
, ID′′

1)

If HIBE.Dec(MPK, ctHIBE, skID1,ID
′
1,ID

′′
1
) ̸= ⊥,

then output 1, and 0 otherwise.

The key extraction oracle HIBE.KeyGen takes ID ∈ IDspace as input, returns skID ← HIBE.KeyGen
(MPK,MSK, ID), and updates V ← V ∪{ID}. We say that a HIBE scheme HIBE is weakly robust if
the advantage AdvwrobHIBE,A(λ) := Pr[ExpwrobHIBE,A(λ) = 1] is negligible for all PPT adversaries A in the
security parameter λ.

The above definition follows that of Abdalla et al. that contains the key extraction oracle. We
mention that the security of our generic construction holds even if the underlying HIBE scheme is
weakly robust without the key extraction oracle.

Next, we demonstrate that the Abdalla et al. transformation [2,3] works even for 3-level HIBE.
Let IDspace = {0, 1}λ (basically, we assume that λ = 128 to provide 128-bit security level). For
IBE,9 weak robustness can be easily obtained such that a random value K ∈ {0, 1}6λ is chosen
and is contained in MPK. For encryption of a plaintext M , M ||K is encrypted. The decryption
algorithm outputs ⊥ ifK is not recovered, andM otherwise. Abdalla et al. required that K needs to
be sufficiently larger than the identities because AdvwrobIBE,A(λ) ≤ AdvAnon-CPAIBE,B (λ) + 22|ID|+⌈log2(t)⌉−|K|

holds (Theorem 4.1 in [3]), where B is an adversary for Anon-CPA security and t is the running time
of an adversary of weak robustness A. Abdalla et al. demonstrated a concrete example: assume
|ID| = 256 and t ≤ 2128, then |K| = 768 provides 22|ID|+⌈log2(t)⌉−|K| = 2−128. Thus, we set |K| = 6λ
here.

We revisited the reason behind that K needs to be sufficiently larger than the identities. The
reason is that an adversary (of weak robustness of IBE) can encode the key K into the identities
ID0 and ID1. Then, there is an counterexample that the transformation fails to provide weak
robustness. In the 3-level HIBE setting, an adversary can encode the key K into the hierarchical
identities (ID0, ID

′
0, ID

′′
0) and (ID1, ID

′
1, ID

′′
1). Thus, the transformation still works when we set

|K| = 13λ. The parameter selection is relatively conservative in the searchable encryption context.
For example, if we assume that the size of keyword space is relatively small, then the identity-space
of the second-level identities could be small, e.g., if we set |KWspace| = 218 and λ = 128, then,
|KWspace| ≈ λ/7 and |K| could be estimated as (4+2/7+4+1+1)λ ≈ 10.3λ.10 We note that |K|

9Precisely, Abdalla et al. gave the transformation for general encryption that implies IBE and PKE.
10Oxford English Dictionary (the second edition of the 20-volume) contains 171,476 words. 218 = 262, 144 can

cover the number of words. See https://wordcounter.io/blog/how-many-words-are-in-the-english-language.
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could be estimated as 6.3λ in the 2-level HIBE setting which is sufficient to construct BEKS with
outsider CPA anonymity where no test oracle is defined.

4 Definition of BEKS

In this section, we introduce the definition of BEKS. We modify the definition of BAEKS [27]. Let
N be the maximum number of receivers and U = {i}i∈[1,N ] be the set of all receivers’ indexes.

Definition 4 (Syntax of BEKS). A BEKS scheme BEKS consists of the following four algo-
rithms (BEKS.Setup,BEKS.Enc,BEKS.Trapdoor,BEKS.Test) defined as follows. Here, KWspace is
a keyword space.

BEKS.Setup: The setup algorithm takes a security parameter λ and the maximum number of re-
ceivers N as input, and outputs a master public key MPK and secret keys {skR[i]}i∈[1,N ]. Here,
R stands for receiver and skR[i] is a secret key of the i-th receiver (we denote skR when the
receiver index is not specified).

BEKS.Enc: The keyword encryption algorithm takes MPK, a set of receivers S ⊆ U where |S| =
N ′ ≤ N , and a keyword kw ∈ KWspace as input, and outputs a ciphertext ctBEKS.

BEKS.Trapdoor: The trapdoor algorithm takes MPK, skR, and a keyword kw′ ∈ KWspace as input,
and outputs a trapdoor tdR,kw′.

BEKS.Test: The test algorithm takes MPK, ctBEKS and tdR,kw′ as input, and outputs 1 or 0.

Correctness. For any security parameter λ and (MPK, {skR[i]}i∈[1,N ]) ← BEKS.Setup(1λ, N),
BEKS.Test(MPK, ctBEKS, tdR,kw) = 1 holds where ctBEKS ← BEKS.Enc(MPK, S, kw), tdR,kw ←
BEKS.Trapdoor(MPK, skR[i], kw), kw ∈ KWspace, and i ∈ S ⊆ U .

Consistency. We define consistency that basically requires that for any security parameter λ
and (MPK, {skR[i]}i∈[1,N ])← BEKS.Setup(1λ, N), BEKS.Test(MPK, ctBEKS, tdR,kw′) = 0 holds where
ctBEKS ← BEKS.Enc(MPK, S, kw), tdR,kw′ ← BEKS.Trapdoor(MPK, skR[i], kw

′), and either kw ̸= kw′

or i ̸∈ S. We introduce computational consistency because the transformation for providing weak
robustness [2, 3] assumes that the underlying IBE scheme is anonymous and IND-CPA secure.

Definition 5 (Computational Consistency). We define the following experiment.

ExpconsistBEKS,A(λ,N) :

(MPK, {skR[i]}i∈[1,N ])← BEKS.Setup(1λ, N)

(kw, kw′, S∗, i∗)← A(MPK)

s.t. S∗ ⊆ U ∧ i∗ ∈ [1, N ] ∧ kw, kw′ ∈ KWspace

∧ (kw ̸= kw′ ∨ i∗ ̸∈ S∗)

ctBEKS ← BEKS.Enc(MPK, S∗, kw)

tdR,kw′ ← BEKS.Trapdoor(MPK, skR[i∗], kw
′)

If BEKS.Test(MPK, ctBEKS, tdR,kw′) = 1,

then output 1, and 0 otherwise.

We say that a BEKS scheme BEKS is computationally consistent if the advantage AdvconsistBEKS,A(λ,N)

:= Pr[ExpconsistBEKS,A(λ,N) = 1] is negligible for all PPT adversaries A in the security parameter λ.
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Next, we introduce outsider anonymity, where an adversary A is allowed to obtain secret keys
of outsiders who belong to neither S∗

0 nor S∗
1 via the corruption oracle, and is allowed to obtain

trapdoors of all receivers via the trapdoor oracle with the restriction that if the receivers belong
to S∗

0 ∪ S∗
1 , then kw ̸∈ {kw∗

0, kw
∗
1} where kw∗

0 and kw∗
1 are challenge keywords. We consider

CCA security here where A is allowed to issue test queries (i, kw, ctBEKS). If i ∈ S∗
0 ∪ S∗

1 and
ctBEKS = ct∗BEKS, then kw ̸∈ {kw∗

0, kw
∗
1} is required. If S∗

0 = S∗
1 , then the definition is the same as

that of IND-CCA security. Thus, outsider CCA anonymity implies IND-CCA security.

Definition 6 (Outsider Anonymity). We define the following experiment.

Expoutsider-anon-bBEKS,A (λ,N) :

(MPK, {skR[i]}i∈[1,N ])← BEKS.Setup(1λ, N)

V := ∅; V ′ := ∅
(kw∗

0, kw
∗
1, S

∗
0 , S

∗
1 , state)

← ABEKS.Trapdoor(·,·),Corrupt(·),BEKS.Test(·,·,·)(MPK)

s.t. S∗
0 , S

∗
1 ⊆ U ∧ |S∗

0 | = |S∗
1 | ∧ V ∩ (S∗

0 ∪ S∗
1) = ∅

∧ kw∗
0, kw

∗
1 ∈ KWspace

∧ ∀(i, kw) ∈ V ′,

(i ̸∈ S∗
0 ∪ S∗

1 ∧ kw ∈ KWspace)

∨ (i ∈ S∗
0 ∪ S∗

1 ∧ kw ∈ KWspace \ {kw∗
0, kw

∗
1})

ct∗BEKS ← BEKS.Enc(MPK, S∗
b , kw

∗
b )

b′ ← ABEKS.Trapdoor(·,·),Corrupt(·),BEKS.Test(·,·,·)(ct∗BEKS, state)

If b = b′, then output 1, and 0 otherwise.

Here, the trapdoor oracle BEKS.Trapdoor takes i ∈ [1, N ] and kw ∈ KWspace, returns the trapdoor
generated as tdR,kw ← BEKS.Trapdoor(MPK, skR[i], kw), and updates V ′ := V ′ ∪ {(i, kw)}. In the
post-challenge phase, the oracle returns ⊥ if i ∈ S∗

0 ∪ S∗
1 and kw ∈ {kw∗

0, kw
∗
1}. The corruption

oracle Corrupt takes i ∈ [1, N ] as input, returns skR[i], and updates V ← V ∪ {i}. In the post-
challenge phase, the oracle returns ⊥ if i ∈ S∗

0 ∪S∗
1 . The test oracle BEKS.Test takes (i, kw, ctBEKS)

as input where i ∈ [1, N ] and kw ∈ KWspace, computes tdR,kw ← BEKS.Trapdoor(MPK, skR[i], kw),
and returns the result of BEKS.Test(MPK, ctBEKS, tdR,kw). The oracle returns ⊥ if i ∈ S∗

0∪S∗
1 , kw ∈

{kw∗
0, kw

∗
1}, and ctBEKS = ct∗BEKS. We say that a BEKS scheme BEKS is outsider anonymous if the

advantage Advoutsider-anonBEKS,A (λ,N) := |Pr[Expoutsider-anon-0BEKS,A (λ,N) = 1]− Pr[Expoutsider-anon-1BEKS,A (λ,N) = 1]|
is negligible for all PPT adversaries A in the security parameter λ.

5 Proposed Generic Construction

In this section, we give the proposed generic construction of BEKS from 3-level anonymous and
weakly robust HIBE. Let U be the set of all receivers and S ⊆ U be a set of receivers specified in
the encryption algorithm. We denote N = |U |, R = |U | − |S|, and L = ⌊R log(N/R)⌋. Moreover,
let ℓ = |cover| where cover = {x1, . . . , xℓ} is the set of nodes determined by the CS method, and
BT be a binary tree with N leaves (i.e., assume that N is represented as 2n for some n ∈ N). Let
dummy and dummy′ be dummy identities.

If we directly employ the Abdalla et al. generic construction [1], then a random plaintext R is
contained in a BEKS ciphertext and it increases the ciphertext size. Here, we pay attention to the
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fact that the Fazio-Perera generic construction of anonymous broadcast encryption [28] requires
that the underlying IBE scheme is weakly robust. Thus, we employ the Boneh et al. generic
construction of PEKS [16] here that reduces the ciphertext size.

5.1 A Trivial Construction from IBE and Its Limitation

Before giving the proposed construction, we consider to directly employ the Boneh et al. generic
construction of PEKS and discuss its limitation. For the sake of simplicity, we consider CPA security
here where no test oracle is defined. Let IBE = (IBE.Setup, IBE.KeyGen, IBE.Enc, IBE.Dec) be an IBE
scheme. In the Boneh et al. construction, a receiver runs (MPK,MSK)← IBE.Setup(1λ) and MSK is
used for generating a trapdoor by spesifying a keyword as the identity. Thus, a direct construction
is described as follows. The BEKS.Setup algorithm runs (MPKj ,MSKj) ← IBE.Setup(1λ) for j =
1, . . . , N , and outputsMPK = {MPKj}j∈[1,N ] and {skR[j] = MSKj}j∈[1,N ]. The BEKS.Enc algorithm,
that takes S ⊆ U where |S| = N ′, specifies RSet := U \S and runs cover← CompSubTree(BT,RSet)
where cover = {x1, . . . , xℓ}. Then, the algorithm runs ctIBE,j ← IBE.Enc(MPKj , xj ||kw, 0λ) for

j = 1, 2, . . . , ℓ, runs ctIBE,j ← IBE.Enc(MPKj , dummy, M̃) for j = ℓ + 1, . . . , L where M̃
$←− {0, 1}λ,

and outputs ctBEKS = {ctIBE,π(j)}j∈[1,L] where π : {1, . . . , L} → {1, . . . , L} is a random permutation.
The BEKS.Trapdoor algorithm runs skk ← IBE.KeyGen(MSKi, x

′
k||kw′) for k = 1, . . . , h where the

receiver i is assigned to the leaf node i and Path(i) = {x′1, . . . , x′h}. Output tdR,kw′ = (i, {skk}k∈[1,h]).
Then, the BEKS.Test algorithm, that takes MPK = {MPKj}j∈[1,N ], ctBEKS = {ctIBE,j}j∈[1,L], and
tdR,kw′ = (i, {skk}k∈[1,h]), runs:

• For k = 1 to h

– For j = 1 to L

∗ Run M ← IBE.Dec(MPKi, ctIBE,j , skk).

∗ If M = 0λ, then return 1. Otherwise, if j = L, break the loop. Otherwise, j ← j+1.

– If k = h, return 0. Otherwise, k ← k + 1.

If i ∈ S, then cover ∩ Path(i) ̸= ∅ due to the CS method. Let xj ∈ cover ∩ Path(i). If kw =
kw′, then for ctBEKS ∋ ctIBE ← IBE.Enc(MPKi, xj ||kw, 0λ) and tdR,kw′ ∋ {skk}k∈[1,h] ∋ sk ←
IBE.KeyGen(skR[i], xj ||kw′), 0λ ← IBE.Dec(MPKi, ctIBE, sk) holds. Thus, correctness directly holds
due to the correctness of the underlying IBE scheme. Since the construction is almost the same as
the Fazio-Perera construction, except that a keyword is appended to each node, the construction
provides outsider anonymity. Moreover, due to the anonymity of the underlying IBE scheme,
no information about keyword is revealed. However, to provide consistency, this construction
requires the following robustness: for ctIBE ← IBE.Enc(MPKi, ID,M) and skID′ ← IBE.KeyGen
(MPKj ,MSKj , ID

′), IBE.Dec(MPKj , ctIBE, skID′) = ⊥ holds if not only the case ID ̸= ID′ but also
the case MPKi ̸= MPKj . This robustness across the different master public keys is not directly
provided even if the underlying IBE scheme is robust.

5.2 Our Construction

Next, we give the proposed generic construction. To employ a single master public key, we employ
HIBE in the proposed construction where a keyword is regarded as a second-level identity and a
trapdoor is generated by using the key derivation algorithm of the underlying HIBE scheme.

For Providing CCA Security. As mentioned in Section 2.4, the Fazio-Perera generic construc-
tion provides CCA security (in the broadcast encryption context) if the underlying IBE scheme is
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CCA secure. Note that they employ a one-time signature scheme in addition to employ IBE because
a set of IBE ciphertexts {ctIBE,j}j∈[1,L] is malleable (e.g., by a simple permutation) even if an IBE ci-
phertext ctIBE,j is non-malleable due to the CCA security. That is, a verification key vk is contained
as ctIBE,j ← IBE.Enc(MPK, xj ,M ||vk) for j = 1, 2, . . . , ℓ, and ctIBE,j ← IBE.Enc(MPK, dummy, M̃)

for j = ℓ+1, . . . , L where M̃
$←− {0, 1}|M |+|vk|. A signature σ is generated on vk||{ctIBE,j}j∈[1,L] and

(σ, vk, {ctIBE,j}j∈[1,L]) is a ciphertext.
By using the Fazio-Perera methodology, one direct BEKS construction is: (1) construct a

CCA secure 2-level HIBE from 3-level HIBE and one-time signatures via the CHK transformation,
(2) convert the 2-level HIBE to be weakly robust, and (3) construct a CCA secure BEKS from
the 2-level HIBE and one-time signatures via the Fazio-Perera methodology. However, one-time
signatures are employed twice for providing CCA security for HIBE and for BEKS, respectively. For
providing more efficient construction, we employ 3-level CPA secure HIBE and one-time signatures
and directly construct BEKS that employs one-time signatures once.

The Proposed Generic Construction

BEKS.Setup(1λ, N): Run (MPK′,MSK) ← HIBE.Setup(1λ). For j = 1, . . . , N , let Path(j) =

{x′1, . . . , x′h} where h is the depth of BT and x′1 = root. For k = 1, . . . , h, run sk
(j)
k ←

HIBE.KeyGen(MSK, x′k). OutputMPK = (MPK′, N) and {skR[j]}j∈[1,N ] where skR[j] = {sk
(j)
k }k∈[1,h].

Here, KWspace = IDspace.11

BEKS.Enc(MPK, S, kw): Parse MPK = (MPK′, N). Run (vk, sigk) ← OTS.KeyGen(1λ). Spec-
ify RSet := U \ S and run cover ← CompSubTree(BT,RSet) where cover = {x1, . . . , xℓ}.
For j = 1, . . . , ℓ, run ctHIBE,j ← HIBE.Enc(MPK′, (xj , kw, vk), 0

λ). For j = ℓ + 1, . . . , L,

run ctHIBE,j ← HIBE.Enc(MPK′, (dummy, dummy′, vk), M̃) where M̃
$←− {0, 1}λ. Run σ ←

OTS.Sign(sigk, {ctHIBE,π(j)}j∈[1,L]) where π : {1, . . . , L} → {1, . . . , L} is a random permuta-
tion. Output ctBEKS = (vk, σ, {ctHIBE,π(j)}j∈[1,L]).

BEKS.Trapdoor(MPK, skR, kw
′): Parse MPK = (MPK′, N). Assume that the receiver is assigned

to the leaf node i and skR = skR[i]. Parse skR[i] = {sk(i)k }k∈[1,h]. For k = 1, . . . , h, run

sk
(i)
k,kw′ ← HIBE.KeyDer(MPK′, sk

(i)
k , kw′). Output tdR,kw′ = {sk(i)k,kw′}k∈[1,h].

BEKS.Test(MPK, ctBEKS, tdR,kw′): Parse MPK = (MPK′, N), ctBEKS = (vk, σ, {ctHIBE,π(j)}j∈[1,L])
and tdR,kw′ = {skk,kw′}k∈[1,h]. Output 0 if OTS.Verify(vk, σ, {ctHIBE,π(j)}j∈[1,L]) = 0. Other-
wise, for k = 1 to h, run skk,kw′,vk ← HIBE.KeyDer(MPK′, skk,kw′ , vk).

• For k = 1 to h

– For j = 1 to L

∗ Run M ← HIBE.Dec(MPK′, ctHIBE,j , skk,kw′,vk).

∗ If M = 0λ, then return 1. Otherwise, if j = L, break the loop. Otherwise,
j ← j + 1.

– If k = h, return 0. Otherwise, k ← k + 1.

11In Definition 1, a hierarchical identity is represented as a tuple of three elements in the same space IDspace. This
does not prevent the correctness of the proposed construction since (H)IBE allows us to employ any string as a public
key. More precisely, if the size of keyword space KWspace is relatively small (e.g., |KWspace| = 218 as mentioned in
Section 3), then we regard KWspace ⊂ IDspace.
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If i ∈ S, then cover∩Path(i) ̸= ∅ due to the CS method. Let xj ∈ cover∩Path(i). If kw = kw′, then
for ctHIBE ← HIBE.Enc(MPK′, (xj , kw, vk), 0

λ) contained in ctBEKS and sk ← HIBE.KeyGen(MPK′,
MSK, xj), tdR,kw ∋ skkw ← HIBE.KeyDer(MPK′, sk, kw), and skkw,vk ← HIBE.KeyDer(MPK′, skkw, vk),
0λ ← HIBE.Dec(MPK′, ctHIBE, skkw,vk) holds. Thus, correctness directly holds due to the correctness
of the underlying IBE scheme and one-time signature scheme. We remark that one may require
that there exists only one ctHIBE,j such that 0λ ← HIBE.Dec(MPK′, ctHIBE,j , skk,kw′,vk) holds for some
k ∈ [1, h]. For example, let a content be also encrypted and the ciphertext be preserved together
with ctHIBE,j . The cloud server returns the j-th content ciphertext if the test algorithm finds j
where 0λ ← HIBE.Dec(MPK′, ctHIBE,j , skk,kw′,vk) holds. If a different content is chosen according
to the receiver, then finding the unique j is mandatory, and then the BEKS.Trapdoor algorithm
outputs 0 if there exist two or more ciphertexts that the decryption results are 0λ. Actually, the
proposed construction provides the correctness in this stronger notion when the underlying HIBE
scheme is weakly robust. Note that we need to introduce computational correctness in this case.

6 Security Analysis

Theorem 1. The proposed construction is computationally consistent if HIBE is weakly robust.

Proof. Let A be an adversary of computational consistency of the proposed construction and
C be the challenger of weak robustness of HIBE. We construct an algorithm B that breaks
weak robustness as follows. C runs (MPK′,MSK) ← HIBE.Setup(1λ) and sends MPK′ to B. B
sends MPK = (MPK′, N) to A. A declares (kw, kw′, S∗, i∗) where either kw ̸= kw′ or i∗ ̸∈
S∗. B runs (vk, sigk) ← OTS.KeyGen(1λ), specifies RSet := {i | i ∈ U ∧ i ̸∈ S∗} and runs
cover ← CompSubTree(BT,RSet) where cover = {x1, . . . , xℓ}. Moreover, let Path(i∗) = {x′1, . . . ,
x′h}. B randomly chooses x

$←− cover and x′
$←− Path(i∗), and sets (ID0, ID

′
0, ID

′′
0) = (x, kw, vk) and

(ID1, ID
′
1, ID

′′
1) = (x′, kw′, vk). B sends (ID0, ID

′
0, ID

′′
0) = (x, kw, vk), (ID1, ID

′
1, ID

′′
1) = (x′, kw′, vk),

and M∗ = 0λ to C.
We estimate the success probability of B as follows. Now, suppose that BEKS.Test(MPK′,

ctBEKS, tdR,kw′) = 1 holds for ctBEKS ← BEKS.Enc(MPK′, S∗, kw) and tdR,kw′ ← BEKS.Trapdoor(MPK′,

skR[i∗], kw
′). That is, there exist at least one ctHIBE,j and sk

(i∗)
k,kw′,vk such that 0λ ← HIBE.Dec

(MPK′, ctHIBE,j , skk,kw′,vk) holds. This implies that, with the probability at least 1/|cover||Path(i∗)| =
1/ℓh > 1/Lh, HIBE.Dec(MPK′, ctHIBE,j , skk,kw′,vk) = 0λ holds where ctHIBE,j is a ciphertext of
0λ under the identities (x, kw, vk), skk,kw′,vk is a secret key for the identities (x′, kw′, vk), and
(x, kw, vk) ̸= (x′, kw′, vk). Note that if i∗ ̸∈ S∗, then cover ∩ Path(i∗) = ∅. Thus, either kw ̸= kw′

or i∗ ̸∈ S∗ implies (x, kw) ̸= (x′, kw′). B breaks weak robustness with the probability at least
(1/Lh)AdvconsistBEKS,A(λ,N).

Theorem 2. The proposed construction is outsider anonymous if HIBE is Anon-CPA secure and
OTS is sEUF-CMA secure.

Proof. Let (kw∗
0, kw

∗
1, S

∗
0 , S

∗
1) be the output by the adversary A in the experiment. Let R∗ be the

number of revoked users in the challenge ciphertext, i.e., R∗ = N − |S∗
b | for b = 0, 1, and L∗ be

⌊R∗ log(N/R∗)⌋. For b = 0, 1, let coverb = {x
(b)
1 , . . . , x

(b)
ℓb
} be determined by RSetb := {i | i ∈ U ∧i ̸∈

S∗
b } and coverb ← CompSubTree(BT,RSetb).
We define a sequence of games Game00,Game01, . . . ,Game0ℓ0 = Game1ℓ1 , . . . ,Game11,Game10. In

Game00, the challenge ciphertext is generated by S∗
0 for kw∗

0 and in Game10, the challenge ciphertext
is generated by S∗

1 for kw∗
1. Before giving the game descriptions, first, we construct an algorithm

B1 that breaks sEUF-CMA security when A (in Game00) sends a test query (i, kw, ctBEKS) where
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ctBEKS = (vk∗, σ, {ctHIBE,π(j)}j∈[1,L]), vk∗ is the verification key used for generating the challenge
ciphertext, and OTS.Verify(vk∗, σ, {ctHIBE,π(j)}j∈[1,L]) = 1. The challenger of sEUF-CMA runs

(vk∗, sigk∗) ← OTS.KeyGen(1λ) and sends vk∗ to B1. B1 setups other parameters and thus B1 can
respond any query issued by A. In the challenge phase, the challenge ciphertext ct∗BEKS is generated

as follows. Set M̃
$←− {0, 1}λ.

• For j = 1, . . . , ℓ0: Run ctHIBE,j ← HIBE.Enc(MPK′, (x
(0)
j , kw∗

0, vk
∗), 0λ).

• For j = ℓ0 + 1, . . . , L∗: Run ctHIBE,j ← HIBE.Enc(MPK′, (dummy, dummy′, vk∗), M̃).

B1 sends {ctHIBE,π(j)}j∈[1,L∗] to the challenger, obtains σ∗ ← OTS.Sign(sigk∗, {ctHIBE,π(j)}j∈[1,L∗]),
and sets ct∗BEKS = (vk∗, σ∗, {ctHIBE,π(j)}j∈[1,L∗]). Assume that A sends a test query (i, kw, ctBEKS)
such that ctBEKS = (vk∗, σ′, {ct′HIBE,π(j)}j∈[1,L]) and OTS.Verify(vk∗, σ′, {ct′HIBE,π(j)}j∈[1,L]) = 1. Let

ctBEKS = ct∗BEKS. Then, either i ̸∈ S∗
0 ∪ S∗

1 or kw ̸∈ {kw∗
0, kw

∗
1}. Thus, B1 returns 0. Let

ctBEKS ̸= ct∗BEKS and vk′ = vk∗ that implies (σ∗, {ctHIBE,π(j)}j∈[1,L∗]) ̸= (σ′, {ct′HIBE,π(j)}j∈[1,L]).
Because OTS.Verify(vk∗, σ′, {ct′HIBE,π(j)}j∈[1,L]) = 1, B1 outputs (σ′, {ct′HIBE,π(j)}j∈[1,L]) and breaks

sEUF-CMA security. We remark that B1 fails to make a reduction for an (artificial) adversary
where it works when b = 1 and does not work when b = 0. However, in this case, we can define a
sequence of games in the reverse order, i.e., the challenge ciphertext is generated by S∗

1 for kw∗
1 in

the first game, and is generated by S∗
0 for kw∗

0 in the last game. Thus, without loss of generality,
we start Game00 in our security proof.

Next, we give game descriptions of Game00,Game01, . . . ,Game0ℓ0 = Game1ℓ1 , . . . ,Game11,Game10 as
follows. In all games, we exclude the case that A issues a test query containing vk∗ and contained
signature σ is valid under vk∗ (since we can construct an adversary B1 against the sEUF-CMA
security by using such A in Gamebi for any b and i).

Game0t (t = 0, 1, . . . , ℓ0): The challenge ciphertext ct∗BEKS is generated as follows. Set M̃
$←− {0, 1}λ.

Run (vk∗, sigk∗)← OTS.KeyGen(1λ).

• For j = 1, . . . , ℓ0 − t: Run ctHIBE,j ← HIBE.Enc(MPK′, (x
(0)
j , kw∗

0, vk
∗), 0λ).

• For j = ℓ0 − t+ 1, . . . , L∗: Run ctHIBE,j ← HIBE.Enc(MPK′, (dummy, dummy′, vk∗), M̃).

Run σ∗ ← OTS.Sign(sigk∗, {ctHIBE,π(j)}j∈[1,L∗]) and set ct∗BEKS = (vk∗, σ∗, {ctHIBE,π(j)}j∈[1,L∗]).

Game1ℓ1: This is the same as Game0ℓ0 . In this game, all HIBE ciphertexts are ctHIBE,j ← HIBE.Enc

(MPK′, (dummy, dummy′, vk∗), M̃) for all j = 1, 2, . . . , L∗.

Game1t′ (t
′ = ℓ1 − 1, . . . , 1, 0): The challenge ciphertext ct∗BEKS is generated as follows. Set M̃

$←−
{0, 1}λ. Run (vk∗, sigk∗)← OTS.KeyGen(1λ).

• For j = 1, . . . , ℓ1 − t′: Run ctHIBE,j ← HIBE.Enc(MPK′, (x
(1)
j , kw∗

1, vk
∗), 0λ).

• For j = ℓ1 + t′ + 1, . . . , L∗: Run ctHIBE,j ← HIBE.Enc(MPK′, (dummy, dummy′, vk∗), M̃).

Run σ∗ ← OTS.Sign(sigk∗, {ctHIBE,π(j)}j∈[1,L∗]) and set ct∗BEKS = (vk∗, σ∗, {ctHIBE,π(j)}j∈[1,L∗]).

Let Adv0,tBEKS,A(λ,N) and Adv1,t
′

BEKS,A(λ,N) be A’s advantage of winning in Game0t and Game1t′ ,

respectively. By definition, Advoutsider-anonBEKS,A (λ,N) = |Adv0,0BEKS,A(λ,N)−Adv1,0BEKS,A(λ,N)|. We show

that there exists a series of algorithms B′t and B′t′ where |Adv
0,0
BEKS,A(λ,N) − Adv1,0BEKS,A(λ,N)| ≤∑L∗

t=1 Adv
Anon-CPA
HIBE,B′

t
(λ) +

∑L∗

t′=1 Adv
Anon-CPA
HIBE,B′

t′
(λ) as follows.
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Lemma 1. For t = 1, . . . , ℓ0, there exists an algorithm B′t where |Adv0,t−1
BEKS,A(λ,N) − Adv0,tBEKS,A

(λ,N)| ≤ AdvAnon-CPAHIBE,B′
t

(λ) holds.

Proof. We construct an algorithm B′t that breaks Anon-CPA security as follows. Let C be the
challenger of Anon-CPA. C runs (MPK′,MSK)← HIBE.Setup(1λ) and sends MPK′ to B′t. B′t sends
MPK = (MPK′, N) to A. B′t runs (vk∗, sigk∗)← OTS.KeyGen(1λ).

• When A issues a trapdoor query (i, kw), B′t sets Path(i) = {x′1, . . . , x′h}. For j = 1, . . . , h,
B′t sends (x′j , kw) to C as a key extraction query. C runs skj ← HIBE.KeyGen(MSK, x′j)

and sk
(i)
j,kw ← HIBE.KeyDer(MPK′, skj , kw), and sends sk

(i)
j,kw to B′t. B′t returns tdR,kw =

{sk(i)j,kw}j∈[1,h] to A.

• When A issues a corruption query i, B′t sets Path(i) = {x′1, . . . , x′h}. For j = 1, . . . , h, B′t
sends x′j to C as a key extraction query. C runs skj ← HIBE.KeyGen(MSK, x′j) and sends skj

to B′t. B returns skR[j] = {sk
(j)
k }k∈[1,h] to A.

• When A issues a test query (i, kw, ctBEKS) such that ctBEKS = (vk, σ, {ctHIBE,π(j)}j∈[1,L])
and vk ̸= vk∗, B′t returns 0 if OTS.Verify(vk, σ, {ctHIBE,π(j)}j∈[1,L]) = 0. Otherwise, B′t sets
Path(i) = {x′1, . . . , x′h}, and for k = 1, . . . , h, B′t sends (x′k, kw, vk) to C as a key extraction

query. C runs skk ← HIBE.KeyGen(MSK, x′k), sk
(i)
k,kw ← HIBE.KeyDer(MPK′, skk, kw), and

sk
(i)
k,kw,vk ← HIBE.KeyDer(MPK′, skk,kw, vk), and sends sk

(i)
k,kw,vk to B′t. B′t responds the test

query as follows.

– For k = 1 to h

∗ For j = 1 to L

· Run M ← HIBE.Dec(MPK′, ctHIBE,j , skk,kw,vk).

· If M = 0λ, then return 1. Otherwise, if j = L, break the loop. Otherwise,
j ← j + 1.

∗ If k = h, return 0. Otherwise, k ← k + 1.

In the challenge phase, A declares (kw∗
0, kw

∗
1, S

∗
0 , S

∗
1). B specifies RSet0 := {i | i ∈ U ∧ i ̸∈ S∗

0}
and cover0 ← CompSubTree(BT,RSet0). Let cover0 = {x(0)1 , . . . , x

(0)
ℓ0
}. Here, B′t did not send a key

extraction query for all x ∈ cover0 directly because V ∩ (S∗
0 ∪S∗

1) = ∅. More precisely, if B′t issued a
key extraction query for x ∈ cover0, then B′t sends either (1) (x, kw) where kw ̸∈ {kw∗

0, kw
∗
1} or (2)

(x, kw, vk) where vk ̸= vk∗. Thus, we can set (ID0, ID
′
0, ID

′′
0) = (x

(0)
j , kw∗

0, vk
∗) below. B′t generates

the challenge ciphertext ct∗BEKS as follows. Set M̃
$←− {0, 1}λ.

• For j = 1, . . . , ℓ0 − t: Run ctHIBE,j ← HIBE.Enc(MPK′, (x
(0)
j , kw∗

0, vk
∗), 0λ).

• For j = ℓ0− t+1, B′t sets (ID0, ID
′
0, ID

′′
0) = (x

(0)
j , kw∗

0, vk
∗), (ID1, ID

′
1, ID

′′
1) = (dummy, dummy′,

vk∗), M∗
0 = 0λ, and M∗

1 = M̃ , and sends ((ID0, ID
′
0, ID

′′
0), (ID1, ID

′
1, ID

′′
1),M

∗
0 ,M

∗
1 ) to C as the

challenge query. C generates ct∗HIBE ← HIBE.Enc(MPK′, (IDb, ID
′
b, vk

∗),M∗
b ) and sends ct∗HIBE

to B′t. B′t sets ctHIBE,j = ct∗HIBE.

• For j = ℓ0 − t+ 2, . . . , L∗: Run ctHIBE,j ← HIBE.Enc(MPK′, (dummy, dummy′, vk∗), M̃).
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B′t runs σ∗ ← OTS.Sign(sigk∗, {ctHIBE,π(j)}j∈[1,L∗]) and sets ct∗BEKS = (vk∗, σ∗, {ctHIBE,π(j)}j∈[1,L∗]).
B′t sends ct∗BEKS = (vk∗, σ∗, {ctHIBE,π(j)}j∈[1,L∗]) to A.

• When A issues a trapdoor query (i, kw), B′t returns ⊥ if i ∈ S∗
0 ∪ S∗

1 and kw ∈ {kw∗
0, kw

∗
1}.

Otherwise, B′t proceeds as in the pre-challenge phase.

• When A issues a corruption query i, B′t returns ⊥ if i ∈ S∗
0 ∪S∗

1 . Otherwise, B proceeds as in
the pre-challenge phase.

• When A issues a test query (i, kw, ctBEKS) such that ctBEKS = (vk, σ, {ct′HIBE,π(j)}j∈[1,L]), B
′
t

returns ⊥ if i ∈ S∗
0 ∪ S∗

1 and ctBEKS = ct∗BEKS. Otherwise, B proceeds as in the pre-challenge
phase.

Finally, A outputs b′. B′t outputs b′. If b = 0, then B′t simulates Game0t−1 and if b = 1, then B′t
simulates Game0t . Thus, the claim holds.

The proof of Lemma 2 is almost the same as that of Lemma 1, except that B′t′ specifies RSet1 :=
{i | i ∈ U ∧ i ̸∈ S∗

1} and cover1 ← CompSubTree(BT,RSet1) in the challenge phase. Thus, we omit
the proof.

Lemma 2. For t′ = ℓ1−1, . . . , 0, there exists an algorithm B′t′ where |Adv
1,t′+1
BEKS,A(λ,N)−Adv1,t

′

BEKS,A
(λ,N)| ≤ AdvAnon-CPAHIBE,B′

t′
(λ) holds.

By Lemma 1 and Lemma 2, we conclude the proof of Theorem 2.

7 Conclusion

In this paper, from 3-level anonymous and weakly robust HIBE we proposed a generic construction
of outsider anonymous BEKS with sublinear size ciphertexts. Our result could be regarded as a
stepping stone to propose an outsider anonymous BAEKS scheme with sublinear-size ciphertexts.
Since we employed the CS method, the subset difference (SD) method could be employed by adding
more hierarchy level, due to the SD method in the public key setting from HIBE [25]. We leave
them as open problems. Also, it would be interesting to investigate whether other efficient outsider
anonymous schemes, e.g. [43, 44], can be employed in the BEKS/BAEKS context or not.

The proposed construction requires approximately L/2-times HIBE decryption procedures where
L = ⌊R log(N/R)⌋. To reduce the number of decryption attempts in the generic construction of
anonymous broadcast encryption, Libert et al. [39] proposed an anonymous hint system that pro-
vides O(1) decryption cost in terms of the number of cryptographic operations. Moreover, Fazio and
Perera [28] also considered to reduce the number of decryption procedure by employing trapdoor
test of twin Diffie-Hellman problem [20]. In both attempts, additional secret values are introduced
in addition to the decryption key. That is, as mentioned in [27], if these systems are employed in
BEKS, then the cloud server, that runs the BEKS.Test algorithm, obtains information about the
receivers before running the test algorithm. Consequently, we did not employ these systems in this
paper. We leave this task as an interesting future work.
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