
Practically-exploitable Vulnerabilities in the Jitsi Video
Conferencing System

Robertas Maleckas
ETH Zürich
Switzerland

robertas.maleckas@alumni.ethz.ch

Kenneth G. Paterson
ETH Zürich
Switzerland

kenny.paterson@inf.ethz.ch

Martin R. Albrecht
King’s College London

UK
martin.albrecht@kcl.ac.uk

ABSTRACT
Jitsi Meet is an open-source video conferencing system, and a pop-
ular alternative to proprietary services such as Zoom and Google
Meet. The Jitsi project makes strong privacy and security claims in
its advertising, but there is no published research into the merits
of these claims. Moreover, Jitsi announced end-to-end encryption
(E2EE) support in April 2020, and prominently features this in its
marketing.

We present an in-depth analysis of the design of Jitsi and its
use of cryptography. Based on our analysis, we demonstrate two
practical attacks that compromised server components can mount
against the E2EE layer: we show how the bridge can break integrity
by injecting inauthentic media into E2EE conferences, whilst the
signaling server can defeat the encryption entirely. On top of its
susceptibility to these attacks, the E2EE feature does not apply to
text-based communications. This is not made apparent to users and
would be a reasonable expectation given how Jitsi is marketed. Fur-
ther, we identify critical issues with Jitsi’s poll feature, which allow
any meeting participant to arbitrarily manipulate voting results.
Our findings are backed by proof-of-concept implementations and
were verified to be exploitable in practice.

We communicated our findings to Jitsi via a coordinated disclo-
sure process. Jitsi has addressed the vulnerabilities via a mix of
technical improvements and documentation changes.

1 INTRODUCTION
Jitsi Meet [6] is a free and open source video conferencing platform
marketed under strong privacy and security claims. Contrary to its
arguably more mainstream competitor offerings, Jitsi emphasises
privacy, openness, and flexibility over advanced features or partner
integrations. Meanwhile, the increasingly common reports [25] of
state-sponsored digital surveillance of high-profile public figures
in recent years have likely contributed to a growing demand for
better eavesdropping resistance and untraceability in communi-
cation software. By explicitly positioning itself as such, Jitsi has
gained the attention of various NGOs [16] and civil society groups
working to educate high-risk communities on tools and practices of
secure communication, particularly as an alternative to proprietary
software and telecommunication services which are often under
complete control of their respective operators [39]. Over time, it
has become a popular choice of video conferencing appliccation
among higher risk users such as political activists and whistleblow-
ers, and has been used by Edward Snowden [47], endorsed by the
Tor Project [42], Mozilla [15], and others.

As video conferencing software rose to unprecedented levels
of popularity throughout 2020 and into 2021, so did the public
scrutiny of its security. In the process, some organisations have

since banned such third-party software from internal use, citing
privacy and security concerns. Partially in response, several ma-
jor videoconferencing vendors adopted some form of end-to-end
encryption (E2EE) [18, 48], with Jitsi announcing [4] work on this
feature in April 2021.

Jitsi’s users can choose to host their meetings on public servers
(official and community run), or run their own private instances.
This makes adoption tricky to measure; however, Jitsi powers the
video calls in Element [30] (the Matrix flagship client – a commu-
nication platform with 60M+ users [11]), and according to Jitsi’s
website [6], is used internally by a number of sizeable organisations,
including governments [20]. Interestingly, despite its growing pop-
ularity and open nature, no publicly available independent security
audit of the platform is available beyond one mention on its com-
munity forum about one having been done internally [2]. Given
this state of affairs, we conducted our own analysis of Jitsi Meet,
with a focus on its cryptographic components.

1.1 Contributions
After some preliminaries in Section 2, in Section 3 we present an
analysis of Jitsi’s custom E2EE design. This includes discussions
on the threat model, key management procedures, implementation
details, wire format, and how the feature fits into the rest of the
system. We describe the cryptographic primitives used along with
their potential risks and choices of implementation.

Then, in Section 4 we present our findings including several
shortcomings of the E2EE implementation and overall system se-
curity. We demonstrate how a rogue service provider can mount
practical attacks against the E2EE layer, with varying impact de-
pendent on the threat model used. Furthermore, we discuss the
security claims made on Jitsi’s official website with regard to the
implementation, identifying discrepancies between perceived and
practical security guarantees. Lastly, we show how an insecure
protocol design can be exploited to manipulate votes and re-route
P2P client traffic over the service provider’s infrastructure.

1.2 Disclosure
We disclosed the vulnerabilities to Jitsi’s developers on 9th Au-
gust 2022. They acknowledged four of the six reported attacks
— Mallory-in-the-middle (4.1), compromised media integrity (4.2),
vote manipulation (4.4), and E2EE announcement forging (4.5) —
as-is, noting the voting protocol issue was a duplicate of another
independent report. They considered the remaining two — a mis-
match of marketing claims and guarantees of the E2EE feature (4.3)
and the risk of silent denial of service attacks on the P2P mode (4.6)
— as documentation rather than design or implementation issues.

, , Robertas Maleckas, Kenneth G. Paterson, and Martin R. Albrecht

The developers asked for an extension to the typical 90-day disclo-
sure deadline citing engineering capacity constraints and overhead
in the release process, and we agreed on a 120-day timeframe.

Jitsi began rolling out security patches to their public repositories
in mid-September, following up with security advisories after the
changes made it to the stable release.

The developers implemented and released mitigations to most
of the reported issues and issued security advisories within the
120-day disclosure deadline. They committed to improve their doc-
umentation to more accurately reflect the guarantees and pitfalls
of their E2EE implementation. To date, no fix for the lack of E2EE
in chats is available, but the documentation has been updated to
specifically note this.

We note all of our references to Jitsi’s website predate the changes
made in response to our work. Furthermore, we will use the present
tense throughout, despite the described vulnerabilities having been
fixed now.

1.3 Related Work
There has been surprisingly little technical security analysis of
video conferencing systems. This may be due to their generally
closed-source nature. Berson [14] gave an early analysis of Skype.
White et al. [46] showed how to reconstruct approximate transcripts
of encrypted VoIP conversations using traffic analysis. A recent
study [22] provides an analysis of Zoom’s E2EE feature, exposing
impersonation attacks against the system.1 Jitsi is declared in a
Mozilla blogpost [15] as providing “strong privacy protections”.
Our findings are not consistent with this view. Kagan et al. [26]
collected publicly available images of video conference meetings
and extracted personal information about the participants, violating
privacy expectations.

Hasan and Hasan [21] used STRIDE to develop a general threat
model for video conferencing systems. Reisinger et al. [35] survey
security and privacy in Unified Communication (UC), a catch-all
term for communications systems providing video conferencing,
messaging and other services as Jitsi does. Their analysis includes
an overview of Jitsi but not an in-depth security analysis. Cohney
et al. [17] also covered Jitsi as part of a broader study of the poten-
tial harms of virtual classrooms in U.S. universities. Again, their
study, being broader than ours, does not provide the same depth of
analysis.

2 PRELIMINARIES
2.1 Olm
Olm [29] is an open-source implementation of the Double Ratchet
Protocol [34] to exchange encrypted messages between two par-
ties sharing a secret key. It combines a symmetric Key Derivation
Function (KDF) and a Diffie-Hellman based asymmetric ratchet to
provide certain forward secrecy (FS) and post-compromise security
(PCS) protections. The symmetric ratchet ensures that past keys
cannot be derived from current key material (FS), while the DH
ratchet limits the ability of a single compromised key to decrypt
future sessions (PCS).

1See also https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-
at-the-confidentiality-of-zoom-meetings/ for a less formal study of Zoom.

Similar to Signal’s (Extended) Triple Diffie-Hellman (X3DH) [40],
Olm uses the Triple Diffie-Hellman (3DH) key agreement to boot-
strap the Double Ratchet Algorithm. In short, 3DH is an extension
of the “classic” Diffie-Hellman exchange which allows two parties
to establish a shared secret over a public channel in a way that’s
secure against passive eavesdroppers. Compared to a regular DH
exchange, 3DH additionally provides a cryptographic binding of the
shared secret to both parties’ respective long-term identity keys.

We use 𝐼𝐴 and 𝐸𝐵 for identity and ephemeral Diffie-Hellman keys
of Alice and Bob, respectively. The same symbol implicitly refers
to the private key when used by its owner, or the public key when
transmitted to or used by the other party. We use multiplicative
notation for group operations, e.g. 𝑔𝑥 . With 𝑅𝑖 ,𝐶𝑖, 𝑗 ,𝑇𝑖 , and𝑀𝑖, 𝑗 we
refer to root, chain, ratchet, and message DH keys as defined in
the Olm documentation [29], although here the roles 𝐴 and 𝐵 are
reversed. The KDF implementation specifics are omitted for brevity.

2.2 System architecture
At its core, Jitsi is based on a client-server architecture in a hub-
and-spoke configuration. The complexity involved in addressing
practical issues (e.g. availability and scale) is typically hidden from
the end user, who instead sees a single entry point URL.

Behind the facade of a single logical “server”, the system func-
tionality is in fact divided across multiple modular components. A
bare-minimum setup involves four distinct pieces of server software,
and a compatible client. In practice, more advanced deployments
may add further components and replicas thereof; however, the
rest of this section focuses on a minimal deployment.

2.3 Minimalist setup
The self-hosting guide [10] provides a minimal single-machine
setup suitable for personal use or a small group of users. The four
core server components include: (1) A standard web server (nginx
by default, others supported); (2) An XMPP2 server (Prosody, lim-
ited support for alternatives); (3) Jitsi Video Bridge (JVB); (4) Jitsi
Conference Focus (JICOFO).

Jitsi’s modular design allows administrators to customise and
even replace certain system components. However, in practice
the project is primarily developed using a “preferred” deployment
model, and significant changes to it may cause issues with compat-
ibility. We too therefore use the default choice of core components
— Prosody and nginx.

2.4 Methodology
Our analysis targets the stable release 2.0.6865-2 of Jitsi Meet [6],
released on Jan. 28th, 2022.

2.4.1 Static code analysis. Our analysis began with a review of
a technical whitepaper [18] and openly available source code [1]
published in Jitsi’s original blog post [4] demonstrating the E2EE
feature. While the core encryption primitives were mostly con-
tained within a single module, they referenced many external Jitsi
libraries whose security properties were not immediately obvious.
Similarly, the whitepaper omitted substantial background details

2https://xmpp.org/

https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://xmpp.org/

Practically-exploitable Vulnerabilities in the Jitsi Video Conferencing System , ,

on the message sequences and communication channels underly-
ing the proposed E2EE protocols. As a result, any comprehensive
attempt at assessing its security necessitated a further deep dive
into the broader surrounding system including Jitsi’s application
and library source code, installation scripts, configuration files, and
technical documentation.

2.4.2 Dynamic debugging. After the “offline” analysis, we followed
the official self-hosting guide [10] to set up a private Jitsi instance.
This was done on a virtual machine in the cloud, provisioned with
2 CPU cores and 4GiB of memory, running Debian 10 “Buster”.
We simulated common usage scenarios and configurations using
multiple Jitsi client application instances, and readily available
server configuration options. The system behavior was observed
on the server and client components via diagnostic logs and the
web browser’s built-in Javascript debugger, respectively.

2.4.3 Specification review. Many of Jitsi’s features lean heavily
on standard protocols and off-the-shelf software implementations
thereof. As such, we studied the relevant protocol specifications,
Internet standards, and software library documentation to verify
the security properties of the system as a whole.

2.4.4 Purpose-built exploits. Most of our findings were verified to
be exploitable in practice by developing proof-of-concept exploits
against the private Jitsi instance. Depending on the threat model
being considered, this involved malicious code or configuration
changes to both client- and server-side Jitsi components, as well
as building a custom WebRTC / Jitsi client application from the
ground up.

2.5 Software components
The following sections discuss each component’s role in the overall
system.

2.5.1 Client software. While Jitsi offers client software for multi-
ple platforms, we mainly focus on the JavaScript-based client as
the first one to support E2EE. Its core functionality is available in
lib-jitsi-meet [9] — a low-level library which handles server
connectivity, WebRTC sessions, and all relevant conference events.
The Jitsi Meet web client [6] serves as a “reference implementation”
providing a user interface and additional features based on the core
library.

2.5.2 Web server. The web server is the primary public-facing
component which acts as the entry point into Jitsi conferences. It
has two key responsibilities: answering regular HTTP requests, and
forwarding XMPP traffic to and from the XMPP server. The web
server hosts the Jitsi Meet web application files, allowing the user’s
browser to obtain and run it directly without prior setup. XMPP
messages are exchanged over HTTP or WebSockets, where the web
server functions as a reverse proxy in front of the XMPP server.
In both cases, all traffic between the client and the web server is
tunneled over TLS.

2.5.3 XMPP SIGNALING server. Jitsi uses the XMPP protocol and
various extensions thereof for virtually all non-media communi-
cations and signalling. The XMPP server is responsible for rout-
ing such traffic between clients, and hosting server-side business

logic underlying most conference features. The following sections
describe some of its primary functions beyond the core XMPP
primitives.

Multi User Chat (MUC). The MUC extension forms the core of
every Jitsi conference, with its concepts mapping to and used di-
rectly by the participants. At their most basic, MUC rooms provide
a convenient medium to manage user access, exchange text and
signalling messages, and share status updates. Jitsi uses ephemeral
MUC rooms, whose lifetime is managed by the conference focus,
described in Section 2.5.4.

Addressing scheme. Jitsi uses two logical “address spaces” in its
XMPP communications. Upon the first connection, such as open-
ing the landing page in a browser, the XMPP assigns a “tempo-
rary, unique bare JID [Jabber ID] <localpart@domain.tld> to the
client.” [38, §3] These JID fall under the domain of the Jitsi instance
such as meet.jit.si, and can be considered “global” (within a sin-
gle XMPP server). This address space is used in the initial messages
to the focus before an XMPP room is created.

Whilst joining a MUC room, participants obtain occupant JID
of the form <room@service/nick>, which identify them within
the context of the room [37, §4.1]. The “service” part typically
takes the value of a subdomain, such as conference.meet.jit.si.
The room-scoped address space is used for most of the conference
functionality including Jingle negotiation, text chat, polls, and more.

Presence updates. Participants use XMPP presence to commu-
nicate status updates to the MUC room of the conference. This
primitive is used in protocols such as joining a MUC room, and to
communicate user attributes such as their name and room role [37,
§5.1] to others. Jitsi further extends the presence updates for its
“raise hand” functionality, feature support flags (e.g. screen sharing
and E2EE), and various state synchronization such as the E2EE
toggle (Section 3.3).

Clients send the presence messages to the XMPP server, which
distributes them to the other conference participants. In the con-
text of MUC rooms, users typically address their presence to their
current (or desired) occupant JID. The server uses this value in
the from attribute of messages it propagates to others. As a result,
participants do not learn each others’ full JID [37, §4.1], and cannot
communicate directly outside of the MUC room.

2.5.4 JICOFO. The conference focus acts as theMUCRoomOwner [37,
§4.1], creating rooms upon user request, and destroying them after
all participants have left. Additionally, it manages client-server me-
dia sessions by participating in Jingle negotiations, and controlling
JVB instances.

Authentication. The conference focus is considered to have ad-
ministrative privileges over the media sessions, and therefore re-
quires authentication to log into the XMPP server. This is done
using the SCRAM-SHA1 protocol [32] based on a shared password
set in the server configuration. At a high level the authentication
process can be summarised as follows:

(1) The verifier (XMPP server) generates a challenge consisting
of a random salt 𝑠 and iteration count 𝑖 and sends it to the prover
(focus).

, , Robertas Maleckas, Kenneth G. Paterson, and Martin R. Albrecht

(2) The prover computes 𝑖 iterations of an HKDF using the SHA-1
hash function, challenge salt and stored password to compute a
proof, and sends it back to the verifier.
(3) The verifier mirrors the computation and compares the result
to the’ provers response.
The full protocol includes additional steps and details which are
omitted from the above summary for brevity.

Addressing. The focus owns special JID in both the “global” and
room-scoped address spaces, described in Section 2.5.3. The former
is used for room allocation requests, whereas the latter appears in
Jingle negotiations after participants have already joined. The differ-
ent addresses can be thought of as alternative interfaces, ultimately
serviced by the same component.

Media session management. As users join, the focus initiates Jin-
gle media session negotiations with each one. During this exchange,
it uses the Colibri (Conferences with Lightweight Bridging) proto-
col to allocate JVB channels, and incorporates their transport and
authentication details into its own Jingle messages. Since media
routing requires significantly more bandwidth, offloading it to the
JVB allows the Jicofo to scale to more conferences before exhausting
its computational and network capacity.

2.5.5 JVB. The JVB is Jitsi’s software implementation of a Selective
Forwarding Unit (SFU). Also known as a Selective Forwarding
Middlebox (SFM), an SFU is an infrastructure component which
dynamically multiplexes the participants’ media streams [45]. This
ensures the users only have to send their streams to the server
just once, therefore eliminating a scalability bottleneck. The JVB is
designed to be amodular,WebRTC-compatible SFU, and is therefore
not coupled tomany Jitsi-specific concepts. Instead, it provides basic
control interfaces, and operates under full control of the JVB.

Control interfaces. The primary functions of the bridge such as
conference creation and endpoint allocation are controlled through
Colibri protocol messages [23]. For interoperability with non-XMPP
systems, the JVB implements an HTTP REST control interface with
a message structure serialised to JSON.

Within Jitsi Meet, JVB instances are controlled via the “native”
XMPP-based Colibri interface. Upon startup, bridges connect to a
special preconfigured, authenticated MUC room. The focus uses
the room to track available bridges and load-balance conferences
across them. The Colibri protocol runs over MUC private messages
between the bridge and the JVB, similarly to the Jingle exchanges
used to negotiate media with conference participants.

2.6 Signaling protocol stack
Jitsi’s architecture uses two major protocol stacks: WebRTC for
media sessions, and XMPP for everything else. The XMPP traffic
includes text chat, E2EE Olm channels, media negotiations, and
various other features (polls, meeting lobbies, etc.)

3 JITI’S SECURITY ARCHITECTURE
We present an in-depth look at Jitsi’s custom E2EE. Contrary to
transport security measures such as TLS, E2EE aims to extend the
security guarantees to guard against malicious servers, the logical
adversary considered in such settings.

3.1 Threat model
In Jitsi’s E2EE threat model, potential actors behind a malicious
server are further subdivided into insiders and outsiders. This dis-
tinction is made based on the legitimacy of the parties’ access to the
server. Insiders are defined as “parties involved in the maintenance
[. . .]”, while outsiders are those “[. . .] who gained illegitimate access
to a component [. . .], for example a Jitsi Videobridge” [18, p. 3].

The authors assert that preventing insider attacks is an “ex-
tremely difficult aspiration” and that the feature focuses on de-
fending against outsider attacks. The difficulty is attributed to the
practical challenges associated with auditing frequently updated
cloud software. For instance, an inside attacker could distribute ma-
licious updates to obtain unauthorised access to meeting contents.

While this level of access may also be attainable by a sufficiently
powerful outside attacker, the threat model appears to primarily
focus on defending against a compromised JVB. Its access to the
audio and video content is cited as “one of the main reasons to
implement end-to-end encryption” [18, p. 5], stating that “outsiders
[. . .] could have compromised the media relay where all meeting
content is transiting.” [18, p. 8] The latter claim is not entirely
accurate, since textual contents such as chat messages, polls, and
other metadata are routed over the XMPP server rather than the
JVB.

Additionally, the Olm sessions are said to “provide an end-to-end
encryption communication channel between every two participants,
which cannot be eavesdropped by the signaling servers.” [18, p. 7]
Despite a lack of more explicit claims, this seems to signal intent for
the E2EE design to defend against compromised XMPP servers. In
small deployments such as the default self-hosted installation [10],
the XMPP server may even run on the same machine as the JVB.
It is therefore not inconceivable to consider it equally prone to
illegitimate outsider access.

The threat model also includes malicious participants, acknowl-
edging that unencrypted meeting content is available to all at-
tendees by design. In fact, user authorisation to join meetings is
explicitly listed as a non-goal of E2EE [18, p. 3].

Our analysis considers the effectiveness of Jitsi’s E2EE implemen-
tation in securing meetings against malicious server infrastructure.
More precisely, we consider the following major software com-
ponents as potential threat vectors: web server, XMPP Signaling
server, JICOFO and JVB.

We do not necessarily distinguish insider and outsider threats,
but instead focus on the attacks each compromised component
may enable on the E2EE security. Authenticity of client software
is assumed to stay more consistent with the outsider attack model
of illegitimate access to server components. As discussed in more
detail in Section 4.1.2, the attacker’s ability to compromise client
software is not always a given, and would invalidate the system’s
security as a whole.

3.2 E2EE key management
Jitsi’s E2EE implementation makes use of several cryptographic
keys, both explicitly and within third-party components. In the
following sections, we use the term media key to refer to the sym-
metric keys conference participants use to secure media traffic.

Practically-exploitable Vulnerabilities in the Jitsi Video Conferencing System , ,

Initial setup

Key ratchet (user
joins)

Key rotation (user
leaves)

𝐴

𝐵

𝐾𝐴

𝐾𝐵

𝐶

𝐾𝐴

𝐾𝐶

𝐾𝐵

𝐾𝐶

𝐾𝐴
$←− {0, 1}128

𝐾𝐵
$←− {0, 1}128 𝐾𝐶

$←− {0, 1}128

𝐴

𝐵

𝐷

𝐾 ′
𝐴

𝐾𝐷

𝐾 ′
𝐵

𝐾𝐷

𝐶

𝐾𝐷 𝐾 ′
𝐶

𝐾 ′
𝐴
← 𝐾𝐷𝐹 (𝐾𝐴)

𝐾 ′
𝐵
← 𝐾𝐷𝐹 (𝐾𝐵) 𝐾 ′

𝐶
← 𝐾𝐷𝐹 (𝐾𝐶)

𝐾𝐷
$←− {0, 1}128

𝐴

𝐵

𝐾 ′′
𝐴

𝐾 ′′
𝐵

𝐷

𝐶

𝐾 ′′
𝐴

𝐾 ′′
𝐶

𝐾 ′′
𝐵

𝐾 ′′
𝐶

𝐾 ′′
𝐴

$←− {0, 1}128

𝐾 ′′
𝐵

$←− {0, 1}128 𝐾 ′′
𝐶

$←− {0, 1}128

Figure 1: Distribution of media keys within a Jitsi conference.
Grey backgrounds depict the pairwise E2EE Olm channels
used to distribute media keys. 𝐾𝐴 denotes Alice’s media key.

3.2.1 Overview. Every E2EE conference participant has a symmet-
ric media key to encrypt their outgoing media streams. These keys
are randomly generated by the Jitsi client software and distributed
to all other participants over E2EE-secured Olm messaging chan-
nels. Each participant maintains a set of their peers’ media keys to
decrypt incoming media streams. The keys are ratcheted forward
when new participants join and re-generated when current partic-
ipants leave to provide a certain level of FS and PCS. As a result
of the re-keying procedures performed with every change to the
participant list, the keys are relatively short-lived in practice, and
even with a fixed set of participants are deleted once the conference
ends. Figure 1 shows the key distribution and updates.

The 3DH key agreement protocol used in the Olm library in-
volves long-term identity keys. In Jitsi, these are generated upon
joining a conference and scoped to its lifetime. We note that even
though the public parts of participants’ identity keys are published
to the MUC room through XMPP presence, this is not used in the
Olm session establishment protocol.

Meeting participants run a JSON-based protocol over private
MUC messages to establish pairwise Olm sessions and share media
keys among all supported clients. This is done upon any of the

following conference events: (1) E2EE is switched on; (2) A new
participant joins while E2EE is on; (3) A current participant leaves
while E2EE is on.

(1-2) trigger a full protocol run, establishing Olm sessions and
exchanging media keys. On the other hand, (3) only causes a rota-
tion of media keys between the remaining participants over already
existing Olm sessions. This provides PCS as previous participants
are unable to decrypt future traffic encrypted using fresh keys.

In all cases, participants decide their roles as the initiator and
responder by comparing their MUC occupant JID. Before running
the protocol, initiating participants check if the responder supports
E2EE based on a special flag published through XMPP presence.
Other clients are simply skipped.

3.2.2 Olm session establishment. The session establishment part
of the protocol consists of a simple request-response exchange,
illustrated in Fig. 4a. In a successful run, the initiator receives the
responder’s media key, and the parties agree on a shared secret to
exchange further messages encrypted using the Double Ratchet
protocol [34]. We note the inclusion of the responder’s E2EE key is
redundant, as it is shared again in the media key exchange part of
the protocol that always follows session establishment.

Protocol steps. As a prerequisite, both parties start out with long-
term identity keypairs 𝐼𝐴 and 𝐼𝐵 . The two parties then engage in
the following protocol:
(1) Alice generates a UUID and an ephemeral DH key pair 𝐸𝐴 .
(2) Alice sends her public identity and ephemeral keys together
with the UUID and a “session-init” tag to Bob.
(3) Upon receiving a “session-init” message, Bob generates an
ephemeral DH key pair 𝐸𝐵 . He then combines Alice’s public keys
𝐼𝐴 and 𝐸𝐴 with his private keys 𝐼𝐵 and 𝐸𝐵 in a 3DH key exchange
to derive a shared secret 𝑆𝐴𝐵 . Bob generates a ratchet key 𝑇0, uses
𝑆𝐴𝐵 to derive the initial root, chain, and message keys.
(4) Bob encrypts his media key using the message key 𝑀0,0, and
sends it to Alice in a “session-ack” message. It also includes Bob’s
public identity, ephemeral, and ratchet keys, as well as the UUID
and Alice’s public ephemeral key received in Item 2.
(5) Upon receiving a “session-ack” message, Alice verifies that the
UUID matches the value generated in step 1. Like Bob, she uses
3DH to derive the shared secret 𝑆𝐴𝐵 , and compute the message
key𝑀0,0. Alice then uses it to decrypt the ciphertext and get Bob’s
media key.

3.2.3 Media key exchange. Similar to the session establishment
protocol, the media keys are shared in a pair of request-response
messages. The keys are encrypted using a previously established
Olm channel. Figure 4b depicts the protocol run immediately fol-
lowing a session establishment; further reruns differ only in the
state of the underlying KDF chains, such as chain indices.

Here, the term key exchange refers to the back-and-forth sharing
of session keys which pre-exist outside of this protocol, rather than
the more traditional sense of establishing fresh keys during the run
of the protocol.

Protocol steps. As a prerequisite, Alice and Bob share a root key
𝑅0, Bob’s sending chain key 𝐶0,1, and a DH ratchet key 𝑇0 owned
by Bob, with its public part known to Alice.

, , Robertas Maleckas, Kenneth G. Paterson, and Martin R. Albrecht

(1) Alice generates a UUID and a new DH ratchet key pair 𝑇1. She
uses the previous root key 𝑅0 and a DH exchange between ratchet
keys 𝑇0 and 𝑇1 to derive new root and sending-chain keys 𝑅1 and
𝐶1,0. A message key𝑀1,0 is derived from 𝐶1,0.
(2) Alice encrypts her media key using the message key𝑀1,0 and
sends it to Bob along with the UUID, her public ratchet key 𝑇1, and
the tag “key-info”.
(3) Upon the receipt of a “key-info” message, Bob combines the
public ratchet key𝑇1 with his private ratchet key𝑇0 and the previous
root key𝑅0 to derive a new root key𝑅1 and receiving-chain key𝐶1,0.
He uses 𝐶1,0 to derive the message key 𝑀1,0 and decrypt Alice’s
media key. Bob then generates a fresh DH ratchet key 𝑇2, and
repeats the procedure using 𝑅1, 𝑇1 and 𝑇2 to derive a new root key
𝑅2 and sending-chain key 𝐶2,0. He then derives a message key𝑀2.
(4) Bob sends his media key encrypted under𝑀2 and his public DH
ratchet key 𝑇2 to Alice, together with the UUID received in step 2
and the tag “key-info-ack”.
(5) Having received the “key-info-ack” response, Alice checks the
UUID against the value generated earlier. She then repeats the
procedure to initialize a new receiving chain using her private
DH key 𝑇1, Bob’s public ratchet key 𝑇2, and the previous root key
𝑅1. Alice can then compute the message key𝑀2,0 and decrypt the
message to get Bob’s media key.

3.2.4 Group key distribution. The Olm session establishment and
the Media key exchange protocols form the basis for a two-party
media key exchange. In larger conferences, the protocols are run
between every pair of participants to distribute the media keys to
the entire group. This is done asynchronously and in parallel, based
on a simple algorithm outlined in Listing 1.

1 for each peer in conference do

2 if peer supports E2EE and has lexicographically greater

ID then

3 send Olm session initiation to peer

4 for each pending session do

5 wait for response or timeout

6
7 for each peer in conference do

8 if Olm session with peer exists then

9 send E2EE key to peer using Olm

10 for each pending key exchange do

11 wait for response or timeout

Listing 1: Media key exchange algorithm outline
(pseudocode).

Participant limit. In a group of 𝑁 participants, Jitsi’s media key
distribution approach involves 𝑁 · (𝑁−1)

2 pairwise Olm channels.
Consequently, the protocol overhead incurred on the XMPP server
grows quadratically with the number of participants. To avoid
saturating the signaling bandwidth, Jitsi imposes an artificial hard
limit of 20 participants in E2EE-enabled conferences. If the limit is
exceeded, the feature is automatically switched off and can not be
re-enabled, displaying a warning instead.

Error handling. We note that the protocol implementation in-
cludes fairly robust error handling to avoid exceptions. It, however,
does not contain retry mechanisms in case of failure. If this happens,
the conference will continue, although the affected parties will not

have access to each others’ media keys and therefore the E2EE-
secured media streams. For instance, this may happen when either
party uses an unsupported client, or the protocol messages are
dropped in-transit. If protocol messages are received unexpectedly,
such as a “key-info” without a preexisting session, an error is logged
to the browser console and the current protocol run is aborted. Olm
sessions are scoped to every pair of participants; failures do not
affect the parties’ protocol runs with others.

3.2.5 Key generation.

Olm identity and ephemeral keys. Identity and ephemeral keys
involved in the Olm session establishment andmedia key exchanges
are generated internally within the library. Under the hood, it uses
a pseudorandom number generator (CSPRNG) outputs of either the
browser API (Web Crypto [44]) or close equivalents within Node.js.

Media keys. Jitsi’s media frame encryption involves a master
secret initialised using a CSPRNG, and an hash-based KDF (HKDF)-
derived key used for encryption. Participants keep both the derived
key and the master secret. The key is used directly to encrypt
and decrypt media, while the secret is what gets ratcheted before
repeating step to obtain a new key (Section 3.2.6).

3.2.6 Re-keying. As described in Section 3.2.1, a key rotation in-
volves multiple protocol runs over the network, and is therefore
not instantaneous. It may also routinely happen throughout the
duration of a conference as participants leave.

Jitsi maintains uninterrupted operation through the use of keyrings
to keep multiple, numbered keys for every participant. This allows
them to decrypt traffic under either the current or updated key
amidst a rotation or ratchet procedure.

Rotation. When a participant leaves a meeting, the XMPP server
broadcasts their presence update to all other conference partici-
pants. This event triggers every client to perform a key rotation,
generating fresh keys and running the “key-info” protocol described
in Section 3.2.3 to distribute them to others.

Ratcheting. Similar to participant departure, the entry of a new
user is communicated using the XMPP presence mechanism. This
causes the remaining participants to ratchet their media keys for-
ward. Unlike key rotation, ratcheting is performed locally without
any out-of-band (wrt. media streams) coordination. Instead, clients
simply begin using the ratcheted keys, which the decryption code
detects and self-adjusts to. This is discussed further in Section 3.7.1.

Similar to the media key derivation, the key ratcheting uses an
HKDF to first ratchet the master secret forward, and then derive a
new media key.

3.3 State management
The E2EE feature state is controlled on the client side, and synchro-
nised to conference participants through XMPP presence updates.
Clients use the same mechanism to advertise E2EE support and
public identity keys for Olm session establishment (although they
are sent again in protocol runs).

3.3.1 Controlling end-to-end encryption state. Conference partici-
pants can toggle the E2EE feature on and off using a switch in the

Practically-exploitable Vulnerabilities in the Jitsi Video Conferencing System , ,

security options menu. It is off by default, and only visible to partic-
ipants using supported clients. If any of the conference participants
do not support the feature, a small warning is shown, explaining
that some clients may not be able to see or hear the conference.

Despite the E2EE switch being hidden on unsupported clients,
they can still control the feature through an API accessible via
the browser console. In other words, the client checks its E2EE
compatibility while rendering the options menu, but not in the
underlying state handling.

3.3.2 Audiovisual cues. Upon joining an E2EE-enabled conference
or toggling the feature on, an automated voice message (“end to
end encryption is on”) is played on all clients. Toggling the feature
off triggers a similar announcement. Interestingly, the messages
are played even if E2EE is not supported by the client, such as
when joining an E2EE-enabled conference using Firefox. This likely
relates to insufficient safeguards around the state handling logic
discussed above.

In addition to the audible cues, the E2EE state is also displayed at
the top of the conference view in the form of a green padlock icon.
The icon is absent by default, or when some of the participants do
not support E2EE. We observed some inconsistent behaviour of the
visual indicator on unsupported clients, which would occasionally
be shown despite the unavailability of E2EE in said clients.

3.3.3 Conference events. Certain parts of Jitsi’s E2EE implementa-
tion like re-keying (Section 3.2.6) and state keeping (Section 3.3.1)
rely on standardised XMPP behaviours. Most notably, presence
broadcasts in the conference’s MUC room are used as triggers for
re-keying, and the E2EE feature itself. They are also used to track
the list of participants, and switch between P2P and JVB modes
accordingly.

3.4 Implementation
E2EE in Jitsi is applied to encoded media frames using the WebRTC
Encoded Transform [12] draft API, formerly known as WebRTC
Insertable Streams. We present a brief overview of the data flow
involved in sending E2EE-secured video below:
(1) A raw media frame (an audio sample or a video buffer) is first
encoded using a lossy codec such as Opus [43] or VP8 [13].
(2) The encoded media frames and source metadata are passed as
plaintext inputs to the E2EE function.
(3) A stateful E2EE function encrypts the frame under the currently
set media key.
(4) The encrypted outputs are split into RTP packets and sent over
the network to another user (P2P mode) or the JVB.

Step 3 is performed by Jitsi’s application code, while the other
steps are handled by the implementation of WebRTC — commonly,
the web browser. The decryption procedure is essentially an inverse
of the above sequence, performed by the receiver. Figure 2 depicts
the flow of a single media stream either sent directly (P2P in one-
on-one conferences) or over the bridge (in all other cases).

3.5 Encryption
Jitsi implements a variant of SFrame — an Internet Draft specifi-
cation which attempts to standardise media frame-level E2EE in
conferences [33]. The modified version, referred to as JFrame, is

DTLS tunnel

D
TLS

tunnel D
TL

S
tu
nn

el

Packetizer

Encryption

Encrypted
frame

Media encoder

Encoded frame

Media source

Raw frame
buffer

Depacketizer
RTP packets

Decryption

Reassembled ci-
phertext

Media decoder

Decryption
result

Media sink

Decoded frame
buffer

Sender JVB
endpoint

RTP
packets

Receiver JVB
endpointRTP packets

RT
P
pa
ck
et
s

JVB

Sender Receiver

Figure 2: Logical data flow of a single media stream within
Jitsi routed directly (P2P) or via the JVB. E2EE is implemented
as a pair of Encoded Transforms marked by a darker out-
line in the diagram. All other components shown within the
sender and receiver are not part of the application code.

based on the “00” draft, and primarily differs from it by placing
encryption metadata in the trailer rather than the header. The frame
format is described in Section 3.6.

The E2EE encryption layer uses AES-GCM with 128-bit media
keys [18, p. 5]. The code relies on the AES-GCM cryptographic
primitive defined in theWeb Crypto API specification [44], imple-
mented by the browser. The default authentication tag length of
128 bits is used.

Jitsi uses a 96-bit IV, stating that “AES-GCM needs a 96 bit ini-
tialization vector [. . .]” [18, p. 5]. We note the cipher supports IV
1 to 264 bits long [19, §5.2.1.1], and Jitsi possibly refers to the rec-
ommended length which allows for simpler initialisation of the
pre-counter block [19, §7.1].

The IVs are constructed by concatenating three fixed-length
values from the frame metadata and the encryption function state:
(1) The SSRC of the media stream (32 bits);
(2) The RTP timestamp at which the frame was sampled (32 bits);
(3) An SSRC-scoped counter of outgoing encrypted frames (32 bits).

This construction avoids IV collisions with very high probabil-
ity. If a collision were to occur, an eavesdropping attacker would

, , Robertas Maleckas, Kenneth G. Paterson, and Martin R. Albrecht

First 1/3/10
header bytes

Codec-specific
RTP payload header

Encoded
media frame

Authenticated


 Encrypted

96-bit (12-byte) IV Described in Section 3.5

1-byte IV length Always set to 12 bytes

1-byte key index Enables seamless rekeying

Figure 3: Jitsi E2EE media frame format (“JFrame”).

gain access to the XOR of the two plaintext frames. With some
knowledge of VP8 frame structure, an attacker might (partially)
recover the underlying plaintexts. An attacker could also recover
the authentication key and forge ciphertexts [24]. However, given
the relatively short-lived nature of video conferences the impact
can be considered minimal.

3.6 Frame format
An E2EE frame contains a variable-length header (additional au-
thenticated data), the ciphertext of the encoded frame (Section 3.5),
the IV (Section 3.5) with its length, and the key index (Section 3.2.6).
The frame layout is depicted in Fig. 3, and forms the RTP payload
before being passed on to the packetiser (Section 3.4).

3.6.1 Unencrypted header. The first several bytes (codec-dependent)
of the header are authenticated (but not encrypted) as associated
data under the AEAD scheme. The primary purpose of this appears
to be functional: allowing the video bridge to “[. . .] continue detect-
ing keyframes [. . .]”. However, this could be signaled in a single
bit, and the “[inclusion of additional bytes] is a bit for show [. . .]”
as “it generates funny garbage pictures instead of being unable to
decode”. In other words, the unencrypted header is sufficient to
trick the media decoder into accepting an encrypted frame as valid
and attempting to decode it. Section 3.7.2 discusses this behavior
in more detail.

The plaintext header length is determined independently for
each frame and depends on the codec as well as the frame type
(key frame or delta frame). Opus (audio) headers contain a single
table-of-contents (TOC) byte, while video (VP8) headers carry 3-
or 10-byte frame tags with metadata. The following paragraphs list
the unencrypted contents in each case.

3.6.2 Encrypted frame contents. With the first header bytes desig-
nated as additional authenticated data, the remainder of the frame
is encrypted using AES-GCM. The output of the Web Crypto API
is a concatenation of the ciphertext and the authentication tag [44,
§27.4] and is simply appended to the authenticated header.

3.6.3 IV length. Despite the fixed method of IV construction pre-
sented above, the IV length is encoded in the frames. Its purpose is
not quite clear, as both Jitsi’s encryption code and the SFrame draft
use fixed-length IVs. This may be a left-over from a prior iteration
of the design.

3.6.4 Key index. The index of the key used to encrypt the frame
is encoded as an 8-bit number in the frame trailer. It is analogous
to the key ID field used in SFrame, which serves the same purpose
and only differs in its encoding [33, §4.2].

3.7 Decryption
Upon receiving an encrypted media frame, the decryption function
uses the key index contained in the last byte of the frame trailer
to retrieve a decryption key from the keyring. In case of failure,
the encrypted frame is returned as output. Otherwise, the function
parses the supposedly variable-length IV, authenticated header and
ciphertext, and passes them along with the key to the Web Crypto
API for authenticated decryption [44, §27.4].

3.7.1 Self-ratcheting. If the frame parsing, authentication or de-
cryption fail for any reason, the code keeps ratcheting the key
forward and retrying for up to eight attempts. In case of a success-
ful decryption, the respective keyring entry is updated with the
ratcheted value. If failed attempts exceed the maximum allowed
ratcheting window, the original key is restored, and the encrypted
frame is returned as output.

A nearly identical self-ratcheting mechanism is present in the
SFrame draft, and is described as a more efficient alternative to
always re-generating keys [33, §4.3.5.1]. In contrast to performing a
multiparty key exchange over the network, the ratcheting is a local
operation. The JFrame implementation contains a subtle difference
to SFrame, ratcheting even in case of authentication or parsing fail-
ures. The documentation acknowledges this, albeit does not provide
a reason. It may simply help code reuse by sharing a common error
handling path; such a philosophy would be consistent with the
design reusing E2EE contexts for both encryption and decryption
logic in the code.

3.7.2 Decryption output. With the exception of ratcheting, decryp-
tion failures generally result in the encrypted frame being passed on
to the decoder as-is. As presented in Section 3.6.1, the unencrypted
header bytes are enough to pass the decoder’s validation. The code
comments acknowledge this behaviour: “this just passes through
to the decoder. Is that ok?” While it is mentioned “[the developers]
might want to reduce [the header length] to 1 unconditionally in the
final version”, the “feature” has remained as-is for over two years.
This follows a similar pattern to the encryption implementation,
opting to carry on instead of triggering errors when unexpected
scenarios occur.

4 VULNERABILITIES
Wehave identified several design, implementation, and presentation
issues which undermine the effective security of certain features.
Despite strong security claims made on their official website, we
have found Jitsi’s E2EE implementation to be greatly limited in
scope and only target an extremely narrow threat model. Even
against the explicitly stated adversary, the E2EE feature fails to
provide media integrity, while extending the attacker capabilities
to a more typical threat model renders it useless. Furthermore,
improper E2EE state handling may be abused to instill a false sense
of security in unsupported clients. Lastly, the poll design is fully

Practically-exploitable Vulnerabilities in the Jitsi Video Conferencing System , ,

exploitable by anyone in the conference. The following sections
present these findings in more detail.

4.1 Unauthenticated key exchange
We report a vulnerability in Jitsi’s media key management which
allows a malicious XMPP server to defeat E2EE without alerting
the conference participants. It stems from the fact the public Olm
identity keys are not authenticated neither before nor after the Olm
session establishment.

The X3DH specification states: “If authentication is not per-
formed, the parties receive no cryptographic guarantee as to who
they are communicating with.” [28, §4.1] The same applies to the
closely-related 3DH handshake used in Olm. As a result, the XMPP
server can perform a classic man-in-the-middle (MITM) attack on
the 3DH key exchange, and intercept the participants’ media keys.

4.1.1 Overview. The attack starts out with a regular run of the Olm
session establishment protocol as described in Section 3.2.2. The
messages between Alice and Bob are relayed by the XMPP server,
and thus are under the control of the adversary (Eve). Acting simi-
larly to an active network adversary, Eve intercepts Alice’s initial
message and responds with her own public identity and ephemeral
keys, posing as Bob. She modifies Alice’s message, replacing the
public keys with her own before forwarding it on to Bob, posing as
Alice. Eve completes the 3DH key exchanges with Alice and Bob,
establishing shared secrets 𝑆𝐴𝐸 and 𝑆𝐵𝐸 , respectively. This allows
her to derive the root, chain, and message keys used in the media
key exchange.

Without any authentication of the public keys, Alice and Bob are
unable to verify their true owner’s identity. As a result, they remain
convinced of having established a shared secret 𝑆𝐴𝐵 directly with
each other, and are entirely oblivious to the attack.

After the 3DH key exchanges are complete and Olm sessions
are established, Alice initiates the media key exchange. Eve hijacks
the message, decrypts Alice’s media key, re-encrypts it under the
session with Bob and relays it to him. Bob responds with his media
key, which Eve intercepts and relays to Alice in the same manner.
Eve repeats the steps for future runs of the protocol as needed to
obtain newly generated keys.

A successful attack allows Eve access to both current and future
E2EE used by Alice and Bob, which can be used to decrypt and
even forge E2EE traffic from either party.

4.1.2 Threat model. It could be argued that with control over the
server, distributing a modified client application is an easier at-
tack vector towards compromising conference confidentiality or
integrity. However, such an attack is, in principle, detectable. More-
over, client application distribution can be separated from the server,
i.e. this property is not inherent in Jitsi’s protocol design.

Indeed, Jitsi client functionality is available in multiple forms.
The web application is served to the user’s browser on-the-fly and
could indeed be modified by a compromised web server. On the
other hand, desktop and mobile versions3 as well as integrations
in third-party software generally use other distribution channels.
Thus, compromised server infrastructure does not necessarily imply

3We note, however that as of May 2022, E2EE for Android and iOS is still under
development [3].

a capability to alter the client software, while authentic clients are
still vulnerable to the MITM attack.

4.1.3 Practical impact. In practice, obtaining the media key at the
XMPP server is only one step towards breaking into E2EE-enabled
conferences. This is because the media traffic traverses over the
media bridge or directly between peers in the case of one-to-one
meetings. However, re-routing the media traffic to an attacker-
controlled endpoint is a straightforward extension of the attack, as
the XMPP server handles the negotiation of media channels.

4.1.4 Proof of concept. To verify this finding, we built a functional
proof-of-concept demonstrating this attack by injecting malicious
code into the XMPP server. This is accomplished by a small Lua
module which hooks into the server’s plugin system and listens
to certain events. The cryptographic operations underlying the
session establishment are delegated to the Olm library, which is
compiled alongside with and linked to the XMPP server executable.

The module intercepts messages which are part of the Olm ses-
sion establishment protocol, and modifies them to establish two
channels with either participant instead. The module then waits for
the media key exchange, and logs the captured keys before relaying
them to their intended recipients.

As described in Section 4.1.3, this forms just one part of a full
attack to gain access to the conference’s media contents. To com-
plete the demonstration, we have built a second module to hide
a malicious conference participant from the others. The module
drops XMPP messages announcing the malicious user’s presence
to everyone but the conference focus. As a result, the focus still
allocates JVB channels routing media to the hidden user, however
other clients never see their presence.

We note this is just one of many ways a malicious XMPP server
could gain access to the media traffic to make use of an intercepted
media key. Some such possibilities are further discussed in Sec-
tion 4.6.

4.1.5 Remediation. Key authentication is a fundamental consider-
ation in the design of public key cryptography based applications,
and typically requires making some trade-offs to improve usability.
One example of this is the TLS public key infrastructure used to au-
thenticate connecting parties on the Internet. This model, however,
does not trivially apply to the default, pseudonymous nature of
Jitsi. Instead, voice and video calling applications with E2EE often
display a Short Authentication String (SAS), which can be verbally
compared by the communicating parties to detect MITM attacks.
Following our disclosure of this vulnerability, Jitsi implemented a
SAS-based authentication option to their client.

4.2 E2EE conference integrity
As detailed in Section 3.7.2, decryption failures in an E2EE context
lead to the input being passed through to the media decoder as-
is. While uncommon, this could, for instance, be caused by a key
negotiation timeout in adverse network conditions. In this case, the
meeting would carry on with some participants being unable to
decrypt each others’ media streams due to the lack of appropriate
keys. Normally, attempting to decode an effectively pseudo-random
ciphertext as a video frame creates a colorful noise pattern. This can
make for an easy-to-understand demo of media E2EE, as seen in

, , Robertas Maleckas, Kenneth G. Paterson, and Martin R. Albrecht

Jitsi’s blog post announcing the feature [4]. However, we found this
seemingly harmless behavior is prone to abuse. More specifically, a
compromised video bridge — the primary adversary in Jitsi’s E2EE
threat model [18] — can mount an attack breaking the integrity of
E2EE conferences whose traffic traverses said bridge.

4.2.1 Overview. Consider the scenario in which the decryption
function receives a regular, unencrypted VP8 video frame wrt. the
steps described in Section 3.7. Attempting to decrypt this plaintext
would produce an output where its probability of matching the
expected frame trailer structure and authentication tag is negligible.
Regardless of the exact point of failure (key retrieval, frame parsing,
authentication, or decryption), the code treats it as an error and
passes the unmodified input to the decoder. Being a regular VP8
frame, the input is successfully decoded and displayed in the client’s
view of the associated video stream.

4.2.2 Practical implications. This vulnerability allows an attacker-
controlled video bridge to inject forged media into an E2EE-enabled
conference, effectively breaking its integrity. The bridge still cannot
decrypt other streams, hence their confidentiality is not impacted. In
practice, this can make attacks more difficult, as the bridge can only
“blindly” replace authentic media without knowing its contents. To
circumvent this, a malicious bridge operator may collude with a
conference participant to gain access to the meeting contents and
use them to guide their attack.

4.2.3 Matching frames to streams. Meeting participants maintain
exactly one media session with the video bridge regardless of the
conference size. The JVB avoids mixing media streams by design [8],
instead acting as a multiplexer. The client application distinguishes
between the separate streams using their SSRC identifiers. As a
result, a bridge can impersonate any conference participant as the
origin of forged frames by simply manipulating the SSRC field. In
other words, any conference participant’s webcam view or audible
speech can be replaced with attacker-chosen contents.

4.2.4 Proof of concept. Using an unsupported client makes it trivial
to verify that unencrypted video is displayed as-is to clients that
do support the feature. As described in Sections 3.2.4 and 3.3.1,
such clients can still join E2EE conferences and their presence does
not switch the feature off. They are unable to see or hear others’
encrypted media, however can be seen and heard by everyone
including E2EE-aware clients due to their disregard of decryption
errors.

4.2.5 Remediation. The attack could be prevented through more
careful error handling in the implementation to avoid proceeding
further upon encountering parsing, authentication, or decryption
errors. Additionally, the encrypted frame format could be updated
to be explicitly incompatible with regular frames, and thus get
rejected by the WebRTC stack, should the custom E2EE code let it
through.

Following the disclosure, Jitsi updated their implementation to
drop invalid frames instead of passing them to the decoder.

4.3 E2EE scope
Despite an “experimental” label still visible in the options menu,
E2EE in Jitsi is marketed as a general security feature with no

apparent caveats. As of June 2022, the official security page states:
“Does Jitsi support end-to-end encryption? The short answer is: Yes,
we do!” [7]

While not technically false, the broad claim can arguably be mis-
construed as a level of security comparable to Signal or WhatsApp.
This is demonstrably not the case, as none of the text-based com-
munication is ever end-to-end encrypted. All exchanges through
group chat, private messages, poll questions and votes, as well as
user display names and avatars are always accessible by the XMPP
server irrespective of the E2EE toggle. Various other exchanges
such as P2P Jingle negotiations (Section 4.6) are similarly outside
of the E2EE scope.

Whether a deliberate choice or an oversight, E2EE for media
streams but not text messages seems like a design oddity. Sim-
ple message exchanges are significantly less bandwidth-intensive
than video, and do not rely on cutting-edge draft API to integrate.
Moreover, there exist attempts to standardize E2EE in XMPP such
as OMEMO [41]. While the definitive reasons are unknown, the
following sections discuss several plausible scenarios.

4.3.1 Practical attack surface. Sizable Jitsi deployments are likely
to run multiple bridges per XMPP server, simply due to the dispro-
portionate bandwidth cost of video routing. For practical reasons
such as geographical placement and significant fluctuations in de-
mand, they are also more likely to run on third-party infrastructure.
It could therefore be argued the attack surface across many JVB in-
stances in the cloud is greater than that of one or several self-hosted
signaling servers.

4.3.2 Product features. At its core, Jitsi is a video conferencing
application primarily used for its media streaming capabilities. Jitsi
first announced E2EE at a similar time as some of its competitors.
If time-to-market were a concern, prioritizing its implementation
for video and audio streams may have been a conscious product
development decision. Being the first to use the new WebRTC
Encoded Transform API for E2EE could also be seen as a marketable
feature.

4.3.3 Official communications. Interestingly, the fact that E2EE
does not apply to text messages is never explicitly pointed out in
the feature announcement, security page, E2EE whitepaper, or in
the application itself. Official communications either describe the
feature in broad terms, or focus on its implementation details with
references to WebRTC. Upon a closer look at the architecture and
explanations of the feature it may already be possible to deduce (or
question) its scope. Unfortunately, this nuance is not captured in the
simplistic statements about E2EE support and is easy to overlook.

4.3.4 Proof of concept. This flaw can be verified in practice in a
number of ways. First, the Chromium developer tools allow par-
ticipants of a Jitsi conference to observe the “raw” XMPP traffic,
secured only via TLS. Sending and receiving text messages and in-
teracting with polls can be observed as plaintext stanzas traversing
the XMPP channel. As expected, enabling E2EE has no effect on
this traffic.

Server-side module. In addition to the client-side observations,
we have developed a malicious server module similar to the one
described in Section 4.1.4 to corroborate the finding. The module

Practically-exploitable Vulnerabilities in the Jitsi Video Conferencing System , ,

listens to MUC events, and saves all group and private messages
to the server’s diagnostic logs. Again, the contents remain visible
even after E2EE is enabled.

In-room demonstration. For showcasing purposes, the module
waits for a pre-determined trigger message from a conspiring user
in the conference room. Once this happens, the module will begin
forwarding others’ private message exchanges to the attacking user
in the conference

Remediation. A number of XMPP extensions provide options for
message encryption, and could be used to protect the chat mes-
sages or other XMPP-based features from the influence a malicious
signaling server. However, Jitsi opted to not extend E2EE to its text
based communications, instead simply updating their documenta-
tion following disclosure.

4.3.5 Conclusion. Having conducted an in-depth analysis of the
code and the practical demonstration described above, we have
proven Jitsi’s E2EE does not apply to any text-based communication.
While said traffic takes a different route (XMPP instead of the JVB),
this is a detail largely irrelevant to the average user, whomay expect
the claims about E2EE support to cover both media and text.

4.4 Vote manipulation
Among its out-of-the-box features, Jitsi allows conference partici-
pants to create polls and vote on multiple-choice questions. This
is provided by an XMPP server module, and a custom messaging
protocol over MUC stanzas. We have identified several critical flaws
in the feature’s design, allowing any conference participant to ma-
nipulate others’ responses and forge votes arbitrarily.

4.4.1 Overview. Fundamentally, the poll feature design places too
much trust in the clients’ inputs, neglecting the potential for mal-
ice. The protocol messages needlessly include participant JID and
names which could be derived from the XMPP sessions instead.
The fields are not authenticated in any way, and can be trivially
manipulated by any participant to impersonate others. What is
more, the utter lack of validation or cross-checking allows forging
a virtually unlimited number of votes under arbitrary voter names
beyond the participant list.

4.4.2 Proof of concept. The potential attacks can be trivially demon-
strated using the browser’s developer console, which exposes con-
venient JavaScript functions to send XMPP messages to the server.
By crafting modified poll creation and voting payloads, we could
create polls under others authors’ names, and forge votes as de-
scribed above. The attack can be carried out by a malicious client in
the meeting, with no modifications to or involvement of any server
components. Of course, since the underlying protocol is not secured
by E2EE (Section 4.3), the votes can be observed and manipulated
by the XMPP server as well.

4.4.3 Conclusion. The poll feature was originally developed at a
week-long hackathon open to the public, which could explain its
unpolished security posture. Even though “[it had been] requested
many times over”, “[prior attempts] never achieved the required
amount of completeness [. . .]”, but “[the hackathon entry] ticked all

the boxes [. . .]” and was awarded the 1st place prize, later getting
officially adopted by Jitsi Meet.

Regardless of its humble origins, the feature has received some
interest from the public for use in “legally binding votings like
in an association general meeting” [5]. Unfortunately, it is clearly
unfit for such purposes, and could lead to adverse consequences if
exploited “in the wild”.

4.4.4 Remediation. Client-side voter impersonation can be ad-
dressed with a straightforward switch from the identities contained
within protocol messages to those associated with the messaging
channels instead. Jitsi implemented such updates after the vulnera-
bility disclosure. We note that this remains vulnerable to server-side
attacks, as it is based on the non-E2EE text signaling channels.

4.5 Faux E2EE in unsupported clients
Jitsi’s E2EE implementation relies on the WebRTC Encoded Trans-
form API described in Section 3.4. The draft spec is implemented in
Chromium versions 83 and above, and is thus available in several
mainstream browsers including Edge, Chrome, Brave, andOpera [7].
Notably, it is unsupported in Firefox as of June, 2022 [31]. End-to-
end encryption is also unavailable in Jitsi’s mobile applications
using native WebRTC protocol implementations.

4.5.1 Overview. As described in Section 3.3.1, unsupported clients
hide the E2EE toggle, but not other audio & visual status indicators.
These can still be triggered by “enabling” the feature using the
console or via XMPP presence updates. Moreover, the ciphertext
pass-through vulnerability presented in Section 4.2 means the video
sent by unsupported clients is seen by everyone, including those
with E2EE support. Under certain circumstances, this behavior can
be exploited to trick participants into a false sense of security.

4.5.2 No supported clients. If none of the conference participants
support E2EE, enabling it as described above has no effect on theme-
dia streams being exchanged. Yet, it triggers an audible announce-
ment stating that “end-to-end encryption is on”, and displays a
green padlock icon to the participants. A conference participant, as
well as the XMPP server can therefore falsely convince a group of
unsupported clients their meeting is secured using E2EE.

4.5.3 Mixed client support. Enabling E2EE when only a strict sub-
set of the participants support it causes their video and audio to
appear as illegible noise to those that do not. The audio streams in
particular tend to generate rather loud, unpleasant sound patterns.
Thus, users are unlikely to carry on in this configuration for any
significant amount of time.

In a “mixed” scenario of supported and unsupported clients, a
compromised XMPP server can still carry out a weaker variant
of the attack described in Section 4.5.2. Since the feature state is
synchronized via XMPP presence, the server can selectively modify
messages sent to clients based on whether they support E2EE. More
specifically, the server can signal the feature is off to clients who
support it, and signal it is on to those that do not. This way, the E2EE-
ready clients keep the feature off, continuing to be seen and heard
by everyone and therefore not revealing the attack. Those who do
not support the feature receive a trigger to enable it, sounding the
false announcement without any actual encryption being added.

, , Robertas Maleckas, Kenneth G. Paterson, and Martin R. Albrecht

4.5.4 Proof of concept. As mentioned in Section 3.3.1, unsupported
clients can still access the E2EE switch through the browser devel-
oper console. The attack can thus be easily demonstrated by setting
up a conference with several instances of Firefox, and toggling said
switch. As expected, the participants can see and hear the false
status indicators without actually encrypting their media or any
indication of the attack.

4.5.5 Remediation. The issue has been addressed by Jitsi through
some changes in the state-handling within the client application
following vulnerability disclosure.

4.6 P2P mode
In one-on-one conferences, Jitsi attempts to use a direct P2P con-
nection instead of routing through the JVB. This serves a practical
purpose to reduce unnecessary load on the bridge, and can effec-
tively leverage the DTLS-SRTP tunnel as E2EE without the need
for an additional encryption layer. Yet, both the P2P mode itself
and the design of P2P-JVB switching allows a compromised XMPP
server to intercept P2P media traffic without detection.

4.6.1 Security claims. Jitsi’s official security page claims “very
strong protection even if you don’t explicitly turn on e2ee”, ex-
plaining that “in [P2P mode], audio and video are encrypted using
DTLS-SRTP all the way from the sender to the receiver [. . .]” [7].
The statement is technically true w.r.t. the WebRTC specification
[36, §6.5], but fails to capture the fact Jitsi’s design provides no
mechanisms to independently verify either party’s identity. As an
aside, nothing is said about text-based communication still travers-
ing the server (Section 4.3).

Later in the same section, the security page states: “Since Jitsi
is built on top of WebRTC, a deeper look into its security archi-
tecture is very important when evaluating Jitsi’s security aspects.”
[7]. The referenced document in fact explicitly addresses the above
issue: “[. . .] the signaling server can potentially mount a man-in-
the-middle attack unless implementations have some mechanism
for independently verifying keys.” [36, §9.1] Jitsi has no such mech-
anism, and its P2P mode is therefore susceptible to trivial MITM
attacks by a compromised XMPP server.

MITM attack details. The WebRTC negotiations include meta-
data such as network information and self-signed TLS certificate
fingerprints. To mount the above attack, the XMPP server can
trivially modify the signaling messages, tricking both parties into
connecting to an attacker-controlled endpoint. This can be used in
conjunction with the MITM attack on Olm sessions (Section 4.1),
which allows a compromised XMPP server to intercept both the
media traffic, and E2EE keys, if used. Notably, the P2P mode does
nothing to prevent this attack due to the trust model of WebRTC
and a lack of additional measures on Jitsi’s part.

4.6.2 Transparent fallback to the JVB. The mode of operation (JVB
or P2P) is “[. . .] transparent to the user.” [7] It could be argued this is
an implementation detail which should not concern users. However,
considering Jitsi’s claims on the security of P2P connections (Section
4.6.1), knowing the current mode gains some relevance. After all,
encryption “[. . .] from the sender to the receiver [. . .]” [7] could
make the E2EE switch seem redundant in one-on-one meetings.

Independently of the MITM attacks discussed in Sections 4.1
and 4.6.1, a compromised XMPP server can abuse the P2P feature
design to reliably disable it, routing traffic over a bridge instead. It
can then gain access to the media streams using the XMPP control
interface of the JVB.

Blocking negotiation. A P2P connection is established using a
Jingle protocol run. In case of failure, the client silently falls back
to JVB mode without any apparent indication. The current mode
can only be found in connection diagnostic menus, and is not dis-
played by default. The XMPP server can therefore effectively disable
the P2P entirely by simply blocking Jingle negotiation messages
between two clients (excluding the bridge).

Proof of concept. To test the reliability of this attack in practice,
we built an XMPP server module similar to those described in
Sections 4.1.4 and 4.3.4. It intercepts Jingle’s session-initiate
messages [27, §7.2.10] and only keeps those originating from or
addressed to the JVB. This effectively prevents the P2P mode from
functioning, while keeping JVB traffic unaffected.

Remediation. The potential impact of this issue has been reduced
by patching the E2EE integrity-breaking vulnerability, and the
introduction of SAS. Jitsi has additionally updated the relevant
documentation following our disclosure.

5 CONCLUSIONS
In general, our results demonstrate the importance of a compre-
hensive approach to security engineering, particularly in complex,
multi-component systems. Jitsi’s E2EE design appears to be fixated
on the narrow goal of ensuring that WebRTC streams cannot be
eavesdropped on by a rogue JVB. As a result, the design overlooks
critical issues such as E2EE of chat messages, and flawed key man-
agement which allows the signaling server to defeat the E2EE layer
entirely. Curiously, an effort is made to share media keys using Olm,
which is unnecessary if we assume the signaling server is honest,
and ineffective without proper authentication otherwise.

In addition to the fundamental E2EE design issues, Jitsi’s code
exhibits a general lack of secure coding practices, leading to more
weaknesses within the system. Our analysis shows how a fail-open
decryption implementation, likely left over from a demo, leads to
a compromise of E2EE conference integrity in Jitsi’s own explicit
threat model. Furthermore, the poll feature, initially developed in a
hackathon, was merged into the mainline project despite its broken
trust model. Lastly, insufficient state consistency checks in the client
allow for some more subtle social engineering attacks.

To end on a positive note, after a hesitant start. Jitsi engaged
positively with us during disclosure. They made a significant en-
gineering investment to improve the E2EE design, adding an au-
thentication mechanism based on short authentication strings and
fixing the majority of the vulnerabilities we identified. However,
we regret that Jitsi addressed some of the security issues through
changes to documentation rather than technical improvements.
This likely puts too much burden on the average user of a mass-
market product.

REFERENCES
[1] 8x8, Inc. [n. d.]. Jitsi GitHub page. Retrieved 2022-04-09 from https://github.

https://github.com/jitsi
https://github.com/jitsi

Practically-exploitable Vulnerabilities in the Jitsi Video Conferencing System , ,

com/jitsi
[2] 8x8, Inc. 2020. Security audit? Jitsi community forum. Post #2. Retrieved

2022-12-03 from https://community.jitsi.org/t/security-audit/25401/2
[3] 8x8, Inc. 2020. Support E2EE for Android and iOS. Jitsi Meet GitHub repository.

Issue 8148. Retrieved 2022-05-24 from https://github.com/jitsi/jitsi-meet/issues/
8148

[4] 8x8, Inc. 2020. This is what end-to-end encryption should look like! Retrieved
2022-06-22 from https://jitsi.org/blog/e2ee/

[5] 8x8, Inc. 2021. Ability to create polls inside Jitsi. Jitsi Meet GitHub repository.
Pull Request 9166. Retrieved 2022-06-25 from https://github.com/jitsi/jitsi-
meet/pull/9166

[6] 8x8, Inc. 2022. Jitsi Meet. https://meet.jit.si
[7] 8x8, Inc. 2022. Jitsi Meet Security & Privacy. Retrieved 2022-06-19 from

https://jitsi.org/security/
[8] 8x8, Inc. 2022. Jitsi Videobridge / Open Source Video Conferencing for Developers.

Retrieved 2022-06-17 from https://jitsi.org/jitsi-videobridge/
[9] 8x8, Inc. 2022. lib-jitsi-meet GitHub repository. https://github.com/jitsi/lib-jitsi-

meet/tree/4baeb98964c6
[10] 8x8, Inc. 2022. Self-Hosting Guide - Debian/Ubuntu server. 8x8, Inc. Retrieved 2022-

04-07 from https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-
quickstart/

[11] Martin R. Albrecht, Sofía Celi, Benjamin Dowling, and Daniel Jones. 2022.
Practically-exploitable Cryptographic Vulnerabilities in Matrix. To appear at
IEEE S&P’23, https://nebuchadnezzar-megolm.github.io/.

[12] Harald Alvestrand, Guido Urdaneta, and Youenn Fablet. 2022. WebRTC Encoded
Transform. W3C Working Draft. W3C. https://www.w3.org/TR/2022/WD-
webrtc-encoded-transform-20220519/

[13] J. Bankoski, J. Koleszar, L. Quillio, J. Salonen, P. Wilkins, and Y. Xu. 2012. VP8
Data Format and Decoding Guide. RFC 6386. RFC Editor. https://www.rfc-
editor.org/rfc/rfc6386.txt

[14] Tom Berson. 2005. SKYPE SECURITY EVALUATION. https://download.skype.
com/share/security/2005-031%20security%20evaluation.pdf

[15] Ashley Boyd. 2020. Which Video Call Apps Can You Trust? https://blog.mozilla.
org/en/privacy-security/which-video-call-apps-can-you-trust/

[16] Chiara Castro. 2022. Meet the people helping activists to fight against digital
surveillance. https://www.techradar.com/features/meet-the-people-helping-
activists-to-fight-against-digital-surveillance

[17] Shaanan Cohney, Ross Teixeira, Anne Kohlbrenner, Arvind Narayanan, Mihir
Kshirsagar, Yan Shvartzshnaider, and Madelyn Sanfilippo. 2021. Virtual Class-
rooms and Real Harms: Remote Learning at U.S. Universities. In Seventeenth
Symposium on Usable Privacy and Security, SOUPS 2021, August 8-10, 2021, So-
nia Chiasson (Ed.). USENIX Association, 653–674. https://www.usenix.org/
conference/soups2021/presentation/cohney

[18] Saúl Ibarra Corretgé and Emil Ivov. 2021. End-to-End Encryption in Jitsi Meet. Re-
trieved 2022-04-21 from https://jitsi.org/wp-content/uploads/2021/08/jitsi-e2ee-
1.0.pdf

[19] Morris Dworkin. 2007. Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D. National
Institute of Standards & Technology. https://doi.org/10.6028/NIST.SP.800-38D

[20] Ghita Ennadif. 2020. Spanish and French governments turn to open source video-
conferencing platform. https://joinup.ec.europa.eu/collection/open-source-
observatory-osor/news/open-source-videoconferences

[21] Raiful Hasan and Ragib Hasan. 2021. Towards a Threat Model and Security
Analysis of Video Conferencing Systems. In 18th IEEE Annual Consumer Com-
munications & Networking Conference, CCNC 2021, Las Vegas, NV, USA, January
9-12, 2021. IEEE, 1–4. https://doi.org/10.1109/CCNC49032.2021.9369505

[22] Takanori Isobe and Ryoma Ito. 2021. Security Analysis of End-to-End Encryption
for Zoom Meetings. IEEE Access 9 (2021), 90677–90689. https://doi.org/10.1109/
ACCESS.2021.3091722

[23] Emil Ivov, Lyubomir Marinov, and Philipp Hancke. 2013. COnferences with
LIghtweight BRIdging (COLIBRI). https://xmpp.org/extensions/xep-0340.html

[24] Antoine Joux. 2006. Authentication failures in NIST version of GCM. NIST
Comment (2006), 3.

[25] Balakumar K. 2021. Pegasus Spyware: Is your mobile ever really safe from being
hacked? https://www.techradar.com/news/pegasus-spyware-is-your-mobile-
ever-really-safe-from-being-hacked

[26] Dima Kagan, Galit Fuhrmann Alpert, and Michael Fire. 2020. Zooming Into
Video Conferencing Privacy and Security Threats. CoRR abs/2007.01059 (2020).
arXiv:2007.01059 https://arxiv.org/abs/2007.01059

[27] Scott Ludwig, Joe Beda, Peter Saint-Andre, Robert McQueen, Sean Egan, and Joe
Hildebrand. 2005. Jingle. https://xmpp.org/extensions/xep-0166.html

[28] Moxie Marlinspike and Trevor Perrin. 2016. The X3DH Key Agreement Protocol.
Retrieved 2022-04-15 from https://signal.org/docs/specifications/x3dh/x3dh.pdf

[29] matrix.org. [n. d.]. olm / An implementation of the Double Ratchet cryptographic
ratchet in C++. Retrieved 2022-04-15 from https://matrix.org/docs/projects/
other/olm

[30] matrix.org. 2022. Jitsi in Element. Developer documentation. Re-
trieved 2022-12-03 from https://github.com/vector-im/element-web/blob/

7defcf3957d8e2674d83944b46cd1fe583834f4d/docs/jitsi.md
[31] Mozilla Foundation. [n. d.]. Support RTCRtpScriptTransform (formerly webrtc

insertable streams). Retrieved 2022-06-25 from https://bugzilla.mozilla.org/
show_bug.cgi?id=1631263

[32] C. Newman, A. Menon-Sen, A. Melnikov, and N. Williams. 2010. Salted Challenge
Response Authentication Mechanism (SCRAM) SASL and GSS-API Mechanisms.
RFC 5802. RFC Editor. https://www.rfc-editor.org/rfc/rfc5802.txt

[33] E. Omara, J. Uberti, A. Gouaillard, and S. Murillo. 2020. Secure Frame (SFrame).
Internet-Draft. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
html/draft-omara-sframe-00 Work in Progress.

[34] Trevor Perrin and Moxie Marlinspike. 2016. The Double Ratchet Algorithm.
Retrieved 2022-04-07 from https://signal.org/docs/specifications/doubleratchet/
doubleratchet.pdf

[35] Thomas Reisinger, Isabel Wagner, and Eerke A. Boiten. 2023. Security and
Privacy in Unified Communication. ACM Comput. Surv. 55, 3 (2023), 55:1–55:36.
https://doi.org/10.1145/3498335

[36] E. Rescorla. 2021. WebRTC Security Architecture. RFC 8827. RFC Editor. https:
//www.rfc-editor.org/rfc/rfc8827.txt

[37] Peter Saint-Andre. 2002. Multi-User Chat. XEP 0045. XMPP Standards Foundation.
https://xmpp.org/extensions/xep-0045.html

[38] Peter Saint-Andre. 2006. Best Practices for Use of SASL ANONYMOUS. XEP 0175.
XMPP Standards Foundation. https://xmpp.org/extensions/xep-0175.html

[39] Martin Shelton. 2016. Research Methods With Media Activists Under Surveil-
lance. https://mshelton.medium.com/research-methods-with-media-activists-
under-surveillance-979cef44fa55

[40] Signal Messenger LLC. [n. d.]. Signal Messenger. https://signal.org
[41] Andreas Straub, Daniel Gultsch, Tim Henkes, Klaus Herberth, Paul Schaub, and

Marvin Wißfeld. 2015. OMEMO Encryption. https://xmpp.org/extensions/xep-
0384.html

[42] The Tor Project. 2020. If you want an alternative to Zoom: try Jitsi Meet. It’s en-
crypted, open source, and you don’t need an account. https://meet.jit.si. Retrieved
2022-12-03 from https://twitter.com/torproject/status/1244986986278072322

[43] JM. Valin, K. Vos, and T. Terriberry. 2012. Definition of the Opus Audio Codec.
RFC 6716. RFC Editor. https://www.rfc-editor.org/rfc/rfc6716.txt

[44] Mark Watson. 2017. Web Cryptography API. W3C Recommendation. W3C.
https://www.w3.org/TR/2022/WD-webrtc-encoded-transform-20220519/

[45] M. Westerlund and S. Wenger. 2015. RTP Topologies. RFC 7667. RFC Editor.
https://www.rfc-editor.org/rfc/rfc7667.txt

[46] AndrewM.White, Austin R. Matthews, Kevin Z. Snow, and Fabian Monrose. 2011.
Phonotactic Reconstruction of Encrypted VoIP Conversations: Hookt on Fon-
iks. In 32nd IEEE Symposium on Security and Privacy, S&P 2011. IEEE Computer
Society, 3–18. https://doi.org/10.1109/SP.2011.34

[47] Anna Wiener. 2020. Taking Back Our Privacy. https://www.newyorker.com/
magazine/2020/10/26/taking-back-our-privacy

[48] Zoom Video Communications, Inc. 2021. E2E Encryption for Zoom Meetings.
Retrieved 2022-07-02 from https://github.com/zoom/zoom-e2e-whitepaper/blob/
master/archive/zoom_e2e_v3_2.pdf

A ADDITIONAL FIGURES

https://github.com/jitsi
https://community.jitsi.org/t/security-audit/25401/2
https://github.com/jitsi/jitsi-meet/issues/8148
https://github.com/jitsi/jitsi-meet/issues/8148
https://jitsi.org/blog/e2ee/
https://github.com/jitsi/jitsi-meet/pull/9166
https://github.com/jitsi/jitsi-meet/pull/9166
https://meet.jit.si
https://jitsi.org/security/
https://jitsi.org/jitsi-videobridge/
https://github.com/jitsi/lib-jitsi-meet/tree/4baeb98964c6
https://github.com/jitsi/lib-jitsi-meet/tree/4baeb98964c6
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-quickstart/
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-quickstart/
https://nebuchadnezzar-megolm.github.io/
https://www.w3.org/TR/2022/WD-webrtc-encoded-transform-20220519/
https://www.w3.org/TR/2022/WD-webrtc-encoded-transform-20220519/
https://www.rfc-editor.org/rfc/rfc6386.txt
https://www.rfc-editor.org/rfc/rfc6386.txt
https://download.skype.com/share/security/2005-031%20security%20evaluation.pdf
https://download.skype.com/share/security/2005-031%20security%20evaluation.pdf
https://blog.mozilla.org/en/privacy-security/which-video-call-apps-can-you-trust/
https://blog.mozilla.org/en/privacy-security/which-video-call-apps-can-you-trust/
https://www.techradar.com/features/meet-the-people-helping-activists-to-fight-against-digital-surveillance
https://www.techradar.com/features/meet-the-people-helping-activists-to-fight-against-digital-surveillance
https://www.usenix.org/conference/soups2021/presentation/cohney
https://www.usenix.org/conference/soups2021/presentation/cohney
https://jitsi.org/wp-content/uploads/2021/08/jitsi-e2ee-1.0.pdf
https://jitsi.org/wp-content/uploads/2021/08/jitsi-e2ee-1.0.pdf
https://doi.org/10.6028/NIST.SP.800-38D
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/open-source-videoconferences
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/open-source-videoconferences
https://doi.org/10.1109/CCNC49032.2021.9369505
https://doi.org/10.1109/ACCESS.2021.3091722
https://doi.org/10.1109/ACCESS.2021.3091722
https://xmpp.org/extensions/xep-0340.html
https://www.techradar.com/news/pegasus-spyware-is-your-mobile-ever-really-safe-from-being-hacked
https://www.techradar.com/news/pegasus-spyware-is-your-mobile-ever-really-safe-from-being-hacked
https://arxiv.org/abs/2007.01059
https://arxiv.org/abs/2007.01059
https://xmpp.org/extensions/xep-0166.html
https://signal.org/docs/specifications/x3dh/x3dh.pdf
https://matrix.org/docs/projects/other/olm
https://matrix.org/docs/projects/other/olm
https://github.com/vector-im/element-web/blob/7defcf3957d8e2674d83944b46cd1fe583834f4d/docs/jitsi.md
https://github.com/vector-im/element-web/blob/7defcf3957d8e2674d83944b46cd1fe583834f4d/docs/jitsi.md
https://bugzilla.mozilla.org/show_bug.cgi?id=1631263
https://bugzilla.mozilla.org/show_bug.cgi?id=1631263
https://www.rfc-editor.org/rfc/rfc5802.txt
https://datatracker.ietf.org/doc/html/draft-omara-sframe-00
https://datatracker.ietf.org/doc/html/draft-omara-sframe-00
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://doi.org/10.1145/3498335
https://www.rfc-editor.org/rfc/rfc8827.txt
https://www.rfc-editor.org/rfc/rfc8827.txt
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0175.html
https://mshelton.medium.com/research-methods-with-media-activists-under-surveillance-979cef44fa55
https://mshelton.medium.com/research-methods-with-media-activists-under-surveillance-979cef44fa55
https://signal.org
https://xmpp.org/extensions/xep-0384.html
https://xmpp.org/extensions/xep-0384.html
https://twitter.com/torproject/status/1244986986278072322
https://www.rfc-editor.org/rfc/rfc6716.txt
https://www.w3.org/TR/2022/WD-webrtc-encoded-transform-20220519/
https://www.rfc-editor.org/rfc/rfc7667.txt
https://doi.org/10.1109/SP.2011.34
https://www.newyorker.com/magazine/2020/10/26/taking-back-our-privacy
https://www.newyorker.com/magazine/2020/10/26/taking-back-our-privacy
https://github.com/zoom/zoom-e2e-whitepaper/blob/master/archive/zoom_e2e_v3_2.pdf
https://github.com/zoom/zoom-e2e-whitepaper/blob/master/archive/zoom_e2e_v3_2.pdf

, , Robertas Maleckas, Kenneth G. Paterson, and Martin R. Albrecht

Alice (𝐴) Bob (𝐵)

uuid = uuidv4()
𝐸𝐴 = generate_dh()

“session-init”,
𝐼𝐴 , 𝐸𝐴 , uuid

𝐸𝐵 = generate_dh()

𝑆𝐴𝐵 = 𝐼𝐸𝐵
𝐴
| |𝐸𝐼𝐵

𝐴
| |𝐸𝐸𝐵

𝐴

𝑅0 | |𝐶0,0 = kdf_init(𝑆𝐴𝐵)
𝑇0 = generate_dh()
𝑀0,0 = kdf_msg(𝐶0,0)

“session-ack”,
𝐼𝐵 , 𝐸𝐵 , 𝐸𝐴 , 𝑇0, {𝐾𝐵}𝑀0,0 , uuid

check_eq(uuid)

𝑆𝐴𝐵 = 𝐸𝐼𝐴
𝐵
| |𝐼𝐸𝐴

𝐵
| |𝐸𝐸𝐴

𝐵

𝑅0 | |𝐶0,0 = kdf_init(𝑆𝐴𝐵)
𝑀0,0 = kdf_msg(𝐶0,0)
update_key(𝐵, 𝐾𝐵)

Olm session establishment

(a) Olm session establishment protocol flow.

Alice (𝐴) Bob (𝐵)

uuid = uuidv4()
𝑇1 = generate_dh()

𝑅1 | |𝐶1,0 = kdf_root(𝑅0,𝑇𝑇10)
𝑀1,0 = kdf_msg(𝐶1,0)

“key-info”, uuid,
{𝐾𝐴}𝑀1,0 , 𝑇1

𝑅1 | |𝐶1,0 = kdf_root(𝑅0,𝑇𝑇01)
𝑀1,0 = kdf_msg(𝐶1,0)
update_key(𝐴,𝐾𝐴)
𝑇2 = generate_dh()

𝑅2 | |𝐶2,0 = kdf_root(𝑅1,𝑇𝑇21)
𝑀2,0 = kdf_msg(𝐶2,0)

“key-info-ack”, uuid,
{𝐾𝐵}𝑀2,0 , 𝑇2

check_eq(uuid)

𝑅2 | |𝐶2,0 = kdf_root(𝑅1,𝑇𝑇12)
𝑀2,0 = kdf_msg(𝐶2,0)
update_key(𝐵, 𝐾𝐵)

Media key exchange

(b) Media key exhange protocol flow.

Figure 4: Protocol flows

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Disclosure
	1.3 Related Work

	2 Preliminaries
	2.1 Olm
	2.2 System architecture
	2.3 Minimalist setup
	2.4 Methodology
	2.5 Software components
	2.6 Signaling protocol stack

	3 Jiti's Security Architecture
	3.1 Threat model
	3.2 E2EE key management
	3.3 State management
	3.4 Implementation
	3.5 Encryption
	3.6 Frame format
	3.7 Decryption

	4 Vulnerabilities
	4.1 Unauthenticated key exchange
	4.2 E2EE conference integrity
	4.3 E2EE scope
	4.4 Vote manipulation
	4.5 Faux E2EE in unsupported clients
	4.6 P2P mode

	5 Conclusions
	References
	A Additional Figures

