
Breaking Free: Leakage Model-free Deep
Learning-based Side-channel Analysis

Lichao Wu1, Amir Ali-pour4, Azade Rezaeezade2, Guilherme Perin3 and
Stjepan Picek1

1 Radboud University, The Netherlands
2 Delft University of Technology, The Netherlands

3 Leiden University, The Netherlands
4 Independent Researcher

Abstract. Profiling side-channel analysis has gained widespread acceptance in both
academic and industrial realms due to its robust capacity to unveil protected secrets,
even in the presence of countermeasures. To harness this capability, an adversary must
access a clone of the target device to acquire profiling measurements, labeling them
with leakage models. The challenge of finding an effective leakage model, especially
for a protected dataset with a low signal-to-noise ratio or weak correlation between
actual leakages and labels, often necessitates an intuitive engineering approach, as
otherwise, the attack will not perform well.
In this paper, we introduce a deep learning approach that does not assume any
specific leakage model, referred to as the multibit model. Instead of trying to learn
a representation of the target intermediate data (label), we utilize the concept of
the stochastic model to decompose the label into bits. Then, the deep learning
model is used to classify each bit independently. This versatile multibit model can
align with existing leakage models like the Hamming weight and Most Significant
Bit leakage models while also possessing the flexibility to adapt to complex leakage
scenarios. To further improve the attack efficiency, we extend the multibit model to
simultaneously attack all 16 subkey bytes, which requires negligible computational
effort. Based on our preliminary analysis, two of the four considered datasets could
only be broken using a Hamming Weight leakage model. Using the same model, the
proposed methods can efficiently crack all key bytes across four considered datasets.
Our work, thus, signifies a significant step forward in deep learning-based side-channel
attacks, showcasing a high degree of flexibility and efficiency without any presumption
of the leakage model.
Keywords: Side-channel Analysis · Deep learning · Multibit model · Multi-task
learning.

1 Introduction
Side-channel analysis (SCA) is a powerful tool for analyzing unintended leakages during
secret processing. SCA in symmetric-key cryptography is commonly divided into non-
profiling and profiling attacks. Profiling attacks assume that the adversary has complete
control over a clone of the targeted device. With this clone, the adversary can profile
the side-channel behavior of the targeted device in advance and then use this knowledge
to extract secret information from the targeted device. Conversely, non-profiling attacks
assume that the adversary does not have access to a duplicate of the targeted device.
As a result, the adversary must consider all measurements containing secret information
processing from the targeted device and then use statistical analysis to make correct
guesses of secret data.

2 Leakage Model-free DLSCA

Research in recent years has led to a remarkable leap forward in the efficacy of profiling
attacks, largely attributed to the growing role of deep learning (commonly denoting the
deep learning-based SCA as DLSCA). For instance, a dataset like the one introduced
in [BPS+20] that required significant effort to break a few years ago can now be broken
with single trace attacks [PWP22]. The effectiveness of deep learning in SCA stems
from its flexibility in identifying and characterizing leakages in the side-channel traces
(originating from the switching activities of transistors within the integrated circuit)
and correlating these leakages with variations in the data being processed. To make
this happen, one needs to label the collected traces based on an assumption about the
underlying leakage. Therefore, a function denoted as the leakage model is used for labeling
the traces. The leakage model should be selected wisely to reflect the feature of actual
leakages, thus strengthening the links between the underlying leakage and the processed
data. A more common method is to adopt pre-defined leakage models for all bits (such as
Hamming weight or Identity) or specific bits (for instance, the most or least significant
bit) [WPP22, ZBHV19, Tim19, PWP22]. However, the existing leakage models may not
match the actual leakage considering the diversity of actual implementations, measurement
setups, and leakage pre-processing techniques. Besides, they impose a degree of pre-existing
conditions on bit significance, which may inadvertently reduce the flexibility of the learning
process.

Multiple methods have been proposed to address this issue, such as stochastic modeling
[SLP05, ZBC+23] or label distribution [WWK+23]. Recently, Zhang et al. introduced a
multi-label deep learning-based SCA that treats each bit in a byte as a separate label
[ZXF+20]. Despite its seemingly unimpressive attack performance, we regard this method
as a promising candidate for resolving the leakage model problem. Drawing inspiration from
this method, we propose a novel approach, referred to as multibit model, to address the
leakage model issue. Specifically, this strategy bypasses the limitation of pre-defined leakage
models, enhancing the profiling model’s ability to learn leakages. Furthermore, we extend
the multibit model to attack all subkeys simultaneously, leveraging multi-task learning.
Based on our knowledge, it is the first time one could attack all 16 bytes simultaneously.
Being unrestrained from pre-defined conditions or assumptions, the proposed method
emerges as a promising and robust solution in DLSCA.

Our main contributions are:

1. We analyze the limitations of the existing profiling attack methods and then propose
the multibit model with no assumption of leakage model.

2. We propose a new attack method, multibyte multibit DLSCA, that can simultaneously
attack all subkeys (in our case, 16 AES subkeys).

3. We perform case studies to showcase our analysis, which is further validated on
several publicly available datasets.

4. We provide an ablation study on several relevant factors for the proposed method:
data augmentation, batch size, and the number of training epochs. The results
confirm the robustness of our method to diverse settings, and data augmentation is
a crucial factor in mounting powerful multibit model-based attacks.

The remainder of this paper is structured as follows. We provide the necessary
background information in Section 2. Following that, Section 3 discusses related works. In
Section 4, we outline the limitations of the current methods and describe the proposed
method in detail. Sections 5 and 6 provide a case study of the proposed method and
present experimental results using publicly available datasets, respectively. Finally, we
summarize our findings and discuss potential avenues for future research in Section 7.

Lichao Wu, Amir Ali-pour, Azade Rezaeezade, Guilherme Perin and Stjepan Picek 3

2 Preliminaries
This section introduces the notation we use. Next, we delve into the domain of profiling
side-channel analysis, providing specifics on both the template attack and deep learning-
based SCAs. Finally, we discuss the techniques employed to evaluate the performance of
side-channel attacks.

2.1 Notation
We use calligraphic letters such as X to represent sets. The corresponding upper-case
letters denote random variables (X) and random vectors (X) over X . The realizations of
X and X are represented by lower-case letters (x, x), respectively.

We use T to represent a side-channel dataset, which is a collection of side-channel
measurements. Each measurement (side-channel trace) ti is associated with an input value
(either plaintext or ciphertext) denoted by di and a key represented as ki. A key candidate
is denoted by k, with its value drawn from the key space K. The correct key is denoted
by k∗. Every trace ti contains multiple features called samples or points of interest. The
dataset is partitioned into a training (or profiling) set of size O and an attack (or test)
set of size Q. In the context of deep learning techniques, we write θ to denote the vector
of parameters learned in a profiling model (for example, the weights and biases in neural
networks).

2.2 Profiling Side-channel Analysis
Profiling SCA assumes an identical clone device (or at least similar) to the target device.
The clone device is under the full control of the attacker. The attacker employs O
measurements from the profiling device to construct a model and then uses Q measurements
from the target device to deduce the secret information. The type of profiling model
constructed varies depending on the profiling technique used. The two most prevalent
types are a Gaussian template for the template attack (TA) and machine learning (deep
neural network) models for deep learning-based SCA.

The TA employs Bayes’ theorem to make predictions, dealing with multivariate prob-
ability distributions, since the leakage over consecutive time samples is not indepen-
dent [CRR02a]. This attack operates under the assumption that the traces depend on the
F features given the target class. Thus, the posterior probability for each class value y
can be computed as follows:

p(Y = y|X = x) = p(Y = y)p(X = x|Y = y)
p(X = x) , (1)

where X denotes continuous measurements (i.e., ti) and Y denotes discrete class variables.
The discrete output’s number of classes c depends on the leakage model and the crypto-
graphic algorithm. As such, the discrete probability p(Y = y) equals its sample frequency,
whereas p(X = x|Y = y) reflects a density function. In practice, p(X = x|Y = y) is
generally assumed to follow a (multivariate) normal distribution and is parameterized by
the mean x̄y and covariance matrix Σy:

p(X = x|Y = y) = 1√
(2π)F |Σy|

e− 1
2 (x−x̄y)T Σ−1

y (x−x̄y). (2)

The stochastic attack utilizes linear regression instead of probability density estima-
tion [SLP05]. One critical aspect of the stochastic attack is the choice of regressors (i.e.,
base functions) [HKSS12]. A natural choice in the SCA context is the bitwise selection of
the intermediate variable.

4 Leakage Model-free DLSCA

For DLSCA, deep learning is used to model p(Y = y|X = x). Based on the data
and labeling, such algorithms train a model fθ to predict labels on previously unseen
data. Most of the supervised learning methods follow the Empirical Risk Minimization
(ERM) framework, where the model parameters θ are obtained by solving the optimization
problem:

arg min
θ

1
N

N∑
i

L(fθ(ti), yi), (3)

where L is the loss function. The trained model fθ is then used to predict classes y (more
precisely, the probabilities that a certain class would be predicted) based on the previously
unseen set of traces x of size Q. It is worth noting that while the template attack requires
the assumption of a particular distribution of the traces, DLSCA does not require such
assumptions, giving it more flexibility to handle complex leakages. However, DLSCA may
require more computational resources and more profiling traces, which might limit its
applicability in some scenarios (while, in practice, this could not be a problem due to GPU
support for deep learning algorithms).

2.3 Evaluating the Attack Performance
Upon completing a profiling attack, the result is presented as a two-dimensional matrix with
dimensions equivalent to Q× c. A common practice is to use the maximum log-likelihood
distinguisher to create a cumulative sum S(k) for each key candidate k:

S(k) =
Q∑

i=1
log(pi,y). (4)

Here, pi,y denotes the probability vector given a key k and input di, the resulting class is
y ∈ Y. The class y is derived from the key and input through a cryptographic function
and a leakage model (e.g., the Hamming weight of the Sbox output).

The output of an attack is a key guessing vector g = [g1, g2, . . . , g|K|], which is computed
for Q traces in the attack phase. This vector arranges the key candidates in descending
order of probability, with g1 being the most likely candidate and g|K| being the least likely.

Guessing entropy (GE), the average position of k∗ within the key guessing vector g, is
usually employed to estimate the effort required to uncover the secret key k∗ [SMY09]. In
this paper, if an attack method reaches the key rank of zero (meaning that the correct key
ranks first), we calculate the required number of attack traces for this key rank to provide
us a precise estimation of the attack performance, denoted as TGE0.

3 Related Works
The side-channel analysis domain has been immersed in the study of profiling attacks for
over two decades. The pioneering work in this area was conducted by Chari et al., who
introduced the concept of the template attack. The template attack is considered the most
powerful approach from an information-theoretic perspective [CRR02b]. Unfortunately,
this attack’s practical implementation is complicated due to several assumptions, includ-
ing unlimited profiling traces and Gaussian-distributed noise [LPB+15]. The stochastic
model [SLP05] is another profiling attack approach based on modeling the leakage func-
tions with pre-defined polynomials, but it is less considered in recent research due to its
limitation in handling non-linear features.

The landscape of profiling attacks has evolved significantly by incorporating machine
learning (ML) techniques. Initial ML methodologies incorporated techniques such as
random forest [LMBM13], support vector machines [HGM+11] and naive Bayes [PHG17].

Lichao Wu, Amir Ali-pour, Azade Rezaeezade, Guilherme Perin and Stjepan Picek 5

The performance of these techniques often outperformed (or at least matched) that of
the template attack and stochastic models, laying the groundwork for the advent of
more complex ML approaches. The focus of the SCA community began to pivot toward
deep learning in 2016, following the seminal work of Maghrebi et al. [MPP16]. Incorpo-
rating deep learning alleviated some challenges related to countermeasures and feature
engineering, yet it also introduced difficulties associated with tuning deep learning algo-
rithms. Despite this, early research by Cagli et al. [CDP17] and Kim et al. [KPH+19]
highlighted the potential of convolutional neural networks (CNNs) in breaking protected
targets. Techniques for improving attack performance using regularization were also
explored [KPH+19, RB22, HK18]. Subsequent work by Zaid et al. [ZBHV19] and Wouters
et al. [WAGP20] delved deeper into the design methodologies for CNNs, achieving unprece-
dented attack performance on datasets secured by masking and hiding countermeasures.
Additionally, Perin et al. demonstrated that neural network ensembles could enhance attack
performance significantly [PCP20]. They also reported that the random search of neural
network architectures yielded exceptional results, making the search for well-performing
neural networks potentially easier. Zhang et al. introduced a multilabel learning approach
based on bits [ZXF+20], decreasing the model size without adversely impacting the attack
performance. In recent studies, Lu et al. showed that using raw traces instead of feature
intervals can improve attack performance, albeit at the cost of dealing with 1) large-scale
measurements and 2) complex hyperparameter tuning process [LZC+21]. In their follow-
up work, Perin et al. used resampled raw traces and smaller neural networks to achieve
excellent attack performance [PWP22], even demonstrating scenarios where a single attack
trace sufficed to break the target.

The studies discussed thus far employ pre-defined leakage models to label leakage traces.
However, these may not necessarily align well with the target dataset. For example,
in [PWP22], Perin et al. used both the Identity and Hamming Weight leakage models
to attack the CHES_CTF dataset. However, they indicated that the hyperparameter
search could not find a CNN model that could recover the key with the Identity leakage
model. In [WPP20], Wu et al. pointed out that the different fixed keys in the training
and validation sets for the CHES_CTF dataset result in the inefficiency of the Identity
leakage model.

To address this issue, Wu et al. incorporated label distribution into the profiling
phase to address this limitation, significantly reducing the number of required training
traces [WWK+23]. Besides, the leakage modeling was explored with the stochastic
model [SLP05]. Stochastic models assume that the leakage function can be formed as the
sum of a deterministic component and a random one. During the profiling phase, these
two components of the leakage function are approximated independently. Building on this
pioneering work, Zaid et al. developed a conditional variational autoencoder methodology
for stochastic attacks [ZBC+23]. This approach mitigates the black-box aspect of deep
learning and facilitates a more straightforward process for architectural design.

So far, the predominant focus of the research has been treating the optimization of the
labeling function as a task distinct from training the profiling model. This leaves a research
gap as the unification of the profiling model and labeling function has not been properly
addressed. Moreover, the performance enhancements over methods based on pre-defined
leakage models are not as pronounced, particularly for complex datasets incorporating
countermeasures. For instance, for the CHES_CTF datasets (detailed in Section 6.1),
experience shows they are only breakable with the HW leakage model [WPP22, PWP22]
while the ID leakage model would always lead the mediocre performance. For details about
DLSCA and challenges to be addressed, we refer readers to [PPM+23].

6 Leakage Model-free DLSCA

4 Model-free DLSCA
This section introduces the motivation and advantages of learning leakages from the
bit level, then proposes multibit and multibyte multibit models without assumptions on
leakage models.

4.1 Moving from Byte to Bit
Let us consider a leaking device with a secret key k∗. The cryptographic operations involve
ki and (plain or cipher) text di, taken as an n-bit word (typically n = 8 in related works as
most of DLSCA considers AES, which is a byte-oriented cipher). In this case, the leakage
function ψ applies to intermediate data y = f(ki, di) and some additive noise Z, modeled
as a normal random variable Z ∼ N (0, σ2). Eq. (5) gives the resulting leakage X.

ti = ψ(f(y)) + Z. (5)

The goal of an attacker is to learn the function ψ, which maps the finite set Fn
2 = {0, 1}n

to the set of real numbers R. In DLSCA, the output variables are represented by sensitive
operations, such as Sbox input or output of the AES cipher. Then, we can rewrite Eq. (3)
as Eq. (6):

θ = arg min
θ

1
N

N∑
i

L(fθ(ti), ψ̂(f(ki, di)), (6)

where ψ̂ denotes the labeling function that returns the leakage value involving f(ki, di).
ψ̂ constructs the true label for a profiling model and is thus critical for the effectiveness
of an attack. From the SCA perspective, ψ̂ should represent the leakage characteristic
when processing different bytes. From the deep learning perspective, ψ̂ determines the
number of classes and directly influences the classification complexity. There are two ways
to construct such a leakage model, detailed in the following sections.

4.1.1 Approximation of the Leakage Model

The first approach closely adheres to the principles of stochastic attacks. Specifically,
stochastic attacks strive to find an approximate function, ψ̂, that is as close as possible
to the unknown true function, ψ. Considering ψ as a pseudo-boolean function, it can be
constructed as a linear combination of monomial basis vectors u ∈ Fn

2 . Consequently, a set
of real coefficients au exists such that for a given sensitive intermediate value Y ∈ Fn

2 , the
leakage model can be reformulated as:

ψ̂(y) =
∑

u∈F2n

au · gu(y), au ∈ R, (7)

where gu signifies the base function of the intermediate data, the prevalent assumption
here is that the leakage bytes rely on the 8 bits. Therefore, the base functions become [1,
y[1], y[2], · · · , y[8]], with y[j] representing the jth bit of y. Thus, ψ can be approximated
as a multivariate polynomial in the bit-coordinate y[j] with coefficients belonging to R.
The typical method for calculating the coefficient au involves employing the ordinary least
squares (OLS) method [CK15, SKS09].

However, Eq. (7) also unveils the core limitations of the stochastic attack. This model
approximates the linear portion of ψ using base functions but fails to encompass non-linear
parts. Furthermore, it neglects potential multivariate key-dependent noise terms [GLRP06].
These two constraints limit the discriminative power when identifying different leakages,
leading to mediocre performance when dealing with noisy or mask-protected datasets.

Lichao Wu, Amir Ali-pour, Azade Rezaeezade, Guilherme Perin and Stjepan Picek 7

4.1.2 Pre-defined Leakage Model

The second method, widely used in academia and industry, involves modeling leakages
based on certain assumptions of bit coefficients following Eq. (7). The following leakage
models are commonly used to construct ψ̂:

• Hamming distance (HD) and Hamming weight (HW) model posit that real
power consumption is proportional to the number of bit transitions or varies when
storing 1 and 0, assuming each bit equally contributes to the leakage variation.

• Identity (ID) model uses intermediate values as labels to differentiate power traces.
This model assumes different importance of bits.

• Most/Least Significant Bit model assumes the Most/Least Significant Bit
(MSB/LSB) is the only factor in leakage changes.

Depending on the leakage model being used, the architecture of deep learning differs,
especially the output layer. Figure 1 shows different characterizations of the output model,
where a representation of a sub byte (HW or ID) is attacked directly, and the bit model,
where a single bit is attacked. The state-of-the-art DLSCA relies on a good estimation of
leakage models, but the current forms of DLSCA do not attempt to characterize/assess
the leakage directly as they were constructed based on assumptions about the true leakage
model, such as the HW model or ID model. For instance, DLSCA cannot answer the
question: “Is bit 2 of target data leaking?”. With an imperfect leakage model as the
label of a deep learning model, one can hardly reach the optimal attack performance,
meaning that the estimated leakage model used for labeling and the true leakage model in
the targeted cryptographic operation match with high probability. A common practice
is brute-forcing possible leakage models and selecting the best ones to report. Such an
approach is problematic because of its time-consuming nature. Meanwhile, it relies on, for
instance, the knowledge of the secret key to assess each leakage model, potentially leading
to stronger attack assumptions. Although evaluation metrics, such as loss, accuracy, or
SCA metric [ZZN+20, WWK+23], could be an option to assess the black-box attack, the
result is not as indicative as, for instance, guessing entropy, which directly represents the
attack performance.

25
5

25
410

Byte model (ID)

… …

Byte model (HW)

H
W

 0

H
W

 1

H
W

 2

H
W

 3

H
W

 4

H
W

 5

H
W

 6

H
W

 7

H
W

 8

Bit model

B
it

X

Figure 1: Conventional DLSCA models.

4.1.3 An ’Ideal’ Solution

Acknowledging the constraints of the aforementioned methods, an ideal profiling model
would require two core capabilities: 1) learning both linear and non-linear aspects of
leakage features and 2) enhanced flexibility in learning leakages, avoiding rigid adherence
to a pre-defined leakage model. In light of these requirements, a more innate resolution
emerges, which involves harnessing the potential of deep learning models. These models,
noted for their adeptness in drawing out both linear and non-linear features, can be tailored
to ascertain the importance of each bit independently, thus adequately fulfilling both
requirements. Details of this solution are elaborated in the following sections.

8 Leakage Model-free DLSCA

4.2 Multibit Model
The multibit model disassembles a byte into separate bits, where each bit is learned
individually. Formally speaking, the learning objective is:

θ = arg min
θ

1
N

N∑
i

L(fθ(ti), b(ki, di)), (8)

where function b maps an intermediate data to a finite set Fn
2 = {0, 1}n. Therefore, Eq. (8)

can be rewritten as:

θ =


arg minθ

1
N

∑N
i L(fθ(ti), b(ki, di)[0]),

arg minθ
1
N

∑N
i L(fθ(ti), b(ki, di)[1]),

· · ·
arg minθ

1
N

∑N
i L(fθ(ti), b(ki, di)[n]).

(9)

Given a probability of each bit with a leakage trace ti, the probability of intermediate
data y can be represented by:

p(y|ti) =
n∏
j

p(b(ki, di)[j]|ti; θ). (10)

Eqs. (9) and Equation 10 are better illustrated in Figure 2. Indeed, the multibit model
can be considered a concatenation of bit models that cover all n bits from a side-channel
perspective (here, we assume n = 8, targeting a single byte). The proposed multibit model
embodies characteristics shared with both byte and bit models discussed in the previous
section. It bears similarities to byte models in that all bits within a byte are taken into
account, and akin to bit mode, the bits are treated individually. However, the distinguishing
features render the multibit model particularly advantageous for DLSCA. Unlike byte
models, the multibit model does not enforce any pre-conditions on bit importance. The
multibit model offers flexibility to DLSCA in learning and weighing each bit. It can easily
fit to any of the existing leakage models, such as the Hamming weight model, where the
probability of each bit should be above 50% with the same value, or the LSB leakage model,
where only p(b(ki, di)[0]|ti; θ) moving beyond 50% while the rest remains unchanged. A
case study is presented in Section 5 to validate this assumption.

B
it

0

B
it

1

B
it

2

B
it

3

B
it

4

B
it

5

B
it

6

B
it

7

Multibit model

B
it

0

B
it

1

Bit model

B
it

7

…

…

Figure 2: Multibit model.

4.3 Multibyte Multibit DLSCA
From a deep learning perspective, the multibit model compresses multiple bit models into
one model. This method aligns with multi-task learning (MTL), where multiple tasks
(bit classification) are learned simultaneously. MTL is a well-studied machine learning

Lichao Wu, Amir Ali-pour, Azade Rezaeezade, Guilherme Perin and Stjepan Picek 9

technique that trains several learning tasks in parallel [Car97, Rud17]. We note that the
multi-task paradigm is not new for SCA. Indeed, Maghrebi in [Mag20] and Masure and
Strullu in [MS21] used multi-task learning. Formally, given m learning tasks {Ti}m

i=1 where
all the tasks or a subset of them are related, multi-task learning aims to learn the m tasks
together to improve the learning of a model for each task Ti by leveraging information
that result from the training of related tasks [Car97, ZY21].

From an SCA perspective, the power/EM dissipation from a target device primarily
stems from the switching activities of transistors within the integrated circuit. Considering
that the modern CPU/crypto co-processor has at least 8-bit bus width, different bit
classification tasks share a common feature representation based on the original features
corresponding to byte processing. Multibit mode ensures a more powerful representation
learned for all the tasks. Meanwhile, the shared representation learned by the related tasks
during the training step spares the learning of redundant training parameters, improving
the model’s generalization performance.

Formally, Eq. (9) can be extend to Eq. (11) to attack n bytes.

θ =


arg minθ

1
N

∑N
i L(fθ(ti), b(k0, d0)),

arg minθ
1
N

∑N
i L(fθ(ti), b(k1, d1)),

· · ·
arg minθ

1
N

∑N
i L(fθ(ti), b(kn, dn)).

(11)

One can take two approaches in constructing a multibyte multibit model targeting n
bytes: 1) a single model with n ∗ 8 output nodes, and 2) a tree structure with a main
branch and n subbranches responsible for the classification of bits in each byte. Let us
recall that in a single n-bit multibit model, leakages for different bits may be found at
the same time, given that in the target operation, the n bits are processed simultaneously
(e.g., n = 8, considering a byte as the basic block). For a multibyte multibit model, we
can assume that the bits of each block are processed separately (fits the target soft AES
implementations used in this paper). In that case, the second approach fits better, wherein
a dedicated model (a subbranch) is assigned to each sub-byte to handle its bits separately.
We acknowledge that the shared representation of different bytes could still exist in this
case. Thus, the main branch is introduced to extract the general features useful for all
subbranches.

Subbranch

B
it

0

B
it

1

B
it

2

B
it

3

B
it

4

B
it

5

B
it

6

B
it

7

Subbranch

B
it

0

B
it

1

B
it

2

B
it

3

B
it

4

B
it

5

B
it

6

B
it

7

Main branch

… …

Byte 0 Byte 15… …
Figure 3: Multibyte multibit DLSCA.

The proposed architecture is shown in Figure 3. The main branch is responsible for
leakage processing and extraction of general features. After the main branch, several

10 Leakage Model-free DLSCA

multibit models construct the subbranch for each target byte. The multibyte multibit
DLSCA inherits the advantages of multibit DLSCA, namely, no assumptions on the leakage
model. In addition, it brings several benefits. First, learning different tasks ensures that the
main branch only learns useful features for all subbranches. Moreover, it is computationally
efficient since the entire model has only n ∗ 8 output nodes, while the model in [Mag20]
would require n ∗ 256 outputs when attacking all sub-bytes. Knowing that the dimension
of the output layer could influence the hyperparameter tuning of a model, our method
reduces the model size, thus increasing the learning efficiency.

The importance of several practical aspects should be emphasized when executing
real-world attacks. Like traditional DLSCA, pre-processing leakage measurements is an
indispensable step toward an effective attack. Beyond simply normalizing the data, we
have identified data augmentation (Section 6.3.1) as the crucial element that drives the
success of the proposed attack. Data augmentation, used as a regularization technique,
helps to deter the profiling model from focusing excessively on specific features, allowing
it to concentrate instead on global features [Mag20]. Since data leakages are confined
to a few features in the realm of SCA, such methodologies can prevent the model from
overfitting to non-pertinent features [PSK+18, WJB20]. We present an ablation study on
data augmentation in Section 6.3.1.

5 Experimental Results with a Simulated Dataset
To demonstrate the effectiveness of the proposed method, we present attack results with a
simulated dataset comprising different leakages following Equation 12.

leakage =


Case1 : y
Case2 : hw(y)
Case3 :

∑5
i=2 b(y)[i]

Case4 :
∏3

i=0 b(y)[i] +
∏7

i=4 b(y)[i]

+ Z, (12)

where y represents the target sensitive data Sbox(di ⊕ k∗), di ∈ D; di and k∗ denote
random plaintexts and a fixed key, respectively. Noise Z is added to all features with
Z ∼ N (0, σ2). To ensure the noise has the same effect on each test case, the leakage is
normalized between 0 and 1. A total of 10 000 traces were simulated for each test case.

Template attack is used for the benchmark due to its non-parametric nature. The
multibit model is constructed by building a Gaussian template on each bit separately;
the bit predictions form the probability of a byte following Eq. (10). For comparison, we
consider byte models for conventional template attacks and assume an attacker does not
know the construction of actual leakage. Both the Hamming weight (HW) and Identity
(ID) leakage models are considered in the benchmark.

We first test the flexibility of the multibit model in generalizing to leakage that only
leaks HW and ID (cases 1 and 2 in Eq. (12)). σ is set to 0.1 for the low noise setting. The
accuracy of each bit is shown in Table 1. Aligned with the discussion in Section 4.2, the
multibit model perfectly covers each leakage type. HW leakages lead to similar accuracy
of each bit, indicating the equal contribution to the actual leakage; bit7 of the ID leakage
model has the highest accuracy; the rest follows descending order. These observations
confirm the ability of the multibit model to adjust to different leakage models. Moreover,
this result again confirms our claim that the commonly used leakage models, including
HW and ID, have assumptions on the leakages of each bit.

Then, we consider a more realistic scenario for cases 3 and 4, where leakage comes
from only specific bits or a combination of bits. Additionally, σ is increased to 0.4 to
simulate the realistic noise effect, increasing the attack difficulties. The attack result is
shown in Figure 4. Multibit model outperforms the HW and ID leakage models, with the

Lichao Wu, Amir Ali-pour, Azade Rezaeezade, Guilherme Perin and Stjepan Picek 11

Table 1: The accuracy of each bit when side-channel traces only have HW (case 1) or ID
(case 2) leakages.

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

HW 0.61 0.60 0.60 0.60 0.60 0.60 0.60 0.61

ID 0.93 0.60 0.55 0.51 0.50 0.51 0.50 0.50

leakage models becoming complicated (close to realistic) in case 3 and case 4 according
to Eq. (12). The results thus clearly show the advantage of using a multibit model in
adjusting and extracting complex features.

(a) Case 3. (b) Case 4.

Figure 4: Guessing entropy for case 3 and case 4.

6 Attacks on Publicly Available Datasets
This section focuses on investigating the attack performance using various leakage models.
In line with Section 4.1, we consider HW, ID, LSB, and MSB. For the proposed methods,
we include both multibit model and multibyte multibit model in the benchmark. To
facilitate a fair comparison and offer a comprehensive overview of the general attack
performance, all 16 subkeys are attacked.

We use DLSCA to highlight the attack capacity of the multibit model. It is important
to note that the deep learning model and hyperparameters remain constant across all
attack methods. We acknowledge that tailoring deep learning models (or hyperparameter
tuning) for each dataset and method could enhance attack performance. However, this
approach also introduces more variables like model complexity and training effort, which
could complicate our benchmarking process significantly. According to the No Free Lunch
theorem [HP02], the only way to know which model is best is to evaluate them all, which
is impossible. As a result, when trying to see the influence of factors other than the model
selection and hyperparameters, the effect of selecting optimal solutions can be neglected
by picking a model that works acceptable.

Therefore, given its excellent performance in various attack environments, we utilize a
convolution neural network (CNN) based on [PWP22].1 The network structure includes
two convolution blocks, each with a convolution layer (kernel numbers: 4, 32; size: 40, 8;

1The deep learning models were implemented using Python 3.6, with the TensorFlow library version
2.6.0. Training algorithms were executed on an Nvidia GTX 1080TI GPU, managed by Slurm workload
manager version 19.05.4.

12 Leakage Model-free DLSCA

stride: 20, 4, for each convolution layer, respectively), an average pooling layer (size: 2;
stride: 2), and a batch normalization layer. This is followed by two dense layers with 32
neurons and an output layer with eight neurons. We use Selu for the layer activation,
except for the final layer, which uses Softmax. The batch size is set at 512. When the
multibyte multibit model is applied, the main branch includes convolution blocks, while
each subbranch contains the remaining dense layers and output layers.

Regarding the training epochs, the DL model is trained for 200 epochs for each key
guess across all test cases. An evaluation of the number of training epochs can be found in
Section 6.3.2. To ensure a fair comparison, we apply data augmentation to all DL-based
attack methods, achieved by adding a custom layer after the input layer that randomly
shifts the leakage measurement within a pre-defined augmentation level of 5. We provide
a detailed analysis of data augmentation in Section 6.3.1.

As outlined in Section 2.3, we use guessing entropy to evaluate the attack performance
for each method. If an attack fails to break the target with the given number of attack
traces, its performance is denoted with an ’x’. Otherwise, we calculate the required
number of attack traces to achieve a key rank of zero. Each attack scenario is tested ten
times independently to minimize the influence of random elements (e.g., random weight
initialization) on the attack performance. The results are averaged to represent the general
performance of an attack method.

6.1 Datasets
Our experiments consider four datasets, consisting of measurements that are software
targets protected with a Boolean masking countermeasure.

ASCAD_F. This dataset contains the measurements from an 8-bit AVR microcontroller
running a masked AES-128 implementation [BPS+20].

ASCAD_R. This dataset uses the same measurement setup as ASCAD_F [BPS+20]. The
difference is that ASCAD_R also provides traces with random keys (for the profiling
phase), and it provides more sample points per trace. There are also more profiling
and attack traces in ASCAD_R compared to ASCAD_F. However, as shown in
Table 2, we conduct training and attack with the same number of profiling and
attack traces for ASCAD_F and ASCAD_R.

CHES_CTF This dataset refers to the CHES Capture-the-flag (CTF) AES-128 measure-
ments released in 2018 for the Conference on Cryptographic Hardware and Embedded
Systems (CHES). The traces consist of AES-128 encryption running on a 32-bit STM
microcontroller.2

eShard. This dataset contains EM leakages of a software implementation of AES-128
encryption. The targeted chip is an STM32F446 32-bit microcontroller based on
Cortex-M4, running at a clock speed of 30 MHz. A near-field EM acquisition was
made using a Langer probe RF-B 0.3-3 through the epoxy package [VTM23].

The raw side-channel measurements from ASCAD_F, ASCAD_R, and CHES CTF
comprise traces with 100,000, 250,000, and 650,000 sample points per trace, respectively.
Handling such long intervals can be time-consuming (and requiring excessively large deep
neural network architectures). Thus, we use the resampling technique with a resampling
window of 80 [PWP22].

For the eShard dataset, since it has already been trimmed, we forgo any additional
pre-processing steps. The specific attack settings for these datasets are detailed in Table 2.

2https://chesctf.riscure.com/2018/news

https://chesctf.riscure.com/2018/news

Lichao Wu, Amir Ali-pour, Azade Rezaeezade, Guilherme Perin and Stjepan Picek 13

Table 2: Summary of the tested datasets.

ASCAD_F ASCAD_R CHES_CTF eShard

Protection Boolean masking

Profiling traces 50 000 50 000 80 000 30 000

Attack traces 5 000

6.2 Performance Evaluation
This section comprehensively examines the attack performance on the datasets under
consideration. The guessing entropy (GE) using the multibyte-multibit model is depicted
in Figure 5. To better illustrate the convergence of GE, different x-axis scales are employed.
The results indicate that the multibyte-multibit model can successfully retrieve all key
bytes with limited attack traces. According to our preliminary analysis, only the HW
leakage model can break the CHES_CTF and eShard datasets. However, in our case, with
a fixed deep learning architecture, the multibyte-multibit model efficiently breaks these
datasets.

(a) ASCAD_F. (b) ASCAD_R.

(c) CHES_CTF. (d) eShard.

Figure 5: Guessing entropy for each dataset with multibyte multibit DLSCA.

Next, we benchmark the proposed methods with different pre-defined leakage mod-
els. The multibit model and multibyte multibit model are denoted by MMB and MB,
respectively. Note that the MMB model attacks 16 sub-bytes simultaneously, while the
rest targets each sub-byte in sequence. The attack performance is represented by TGE0,
the number of required attack traces to each guessing entropy of zero.

The performance of the proposed attack scenarios on ASCAD_F and ASCAD_R

14 Leakage Model-free DLSCA

datasets indicates an effective approach to handling various leakage models. The perfor-
mance across all attack scenarios is similar when attacking the first two key bytes. This is
attributed to the lack of masking countermeasures on the first two bytes, allowing MMB,
MB, and pre-defined leakage models to extract relevant features and break the target.

MMB and MB models significantly outperform other leakage models when dealing with
Boolean masking, displaying superior efficiency in breaking all key bytes. For instance,
none of the pre-defined leakage models could recover the k12 of ASCAD_F, but MMB and
MB demonstrated remarkable capabilities by recovering it with just 218 and 58 traces,
respectively. This trend is also apparent for the ASCAD_R dataset, where only MMB and
MB could break the target on the same key byte (k12). Only 176 and 174 attack traces
are required to reach a guessing entropy of zero. These observations confirm our earlier
assertion in Section 5 that the proposed can effectively handle complex leakage models
and masked intermediate data.

However, it should be noted that retrieving these key bytes might be accomplished
through refined deep learning architectures or increased training effort [PWP22]. While
hyperparameter tuning might yield improved results, it is time-consuming and often
necessitates knowledge of the target key to assess the attack performance, making it
more suitable for white-box evaluation [RWPP21, WPP22]. When considering real-world
scenarios where a fixed model is used to attack different datasets (a common practice in
the industry), MMB and MB prove to be superior choices due to their adaptability to
different leakages.

When comparing MMB and MB, their performance is comparable when attacking these
two datasets. One may worry that such a simple main branch would limit the model’s
capability to learn so many tasks, but the results show that the features provided by the
main branch of the network are sufficient for all 16 tasks. This observation suggests two
conclusions. First, each sub-key shares common features and thus can be handled by MMB
at once. Second, the used network still has room to be simplified when solely focusing on
a single sub-byte.

Table 3: TGE0 of each subkey for the ASCAD_F dataset.

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

MMB 0 3 6 19 8 3 21 9 134 14 75 17 218 122 8 68

MB 0 3 4 18 8 6 22 16 184 5 36 34 58 66 8 50

HW 3 3 493 281 418 371 534 589 x 627 1 401 791 x x 201 x

ID 1 1 x 289 65 73 2 414 110 x 125 1 271 x x x 22 x

LSB 16 16 1 551 42 62 80 207 56 2 682 48 137 x x 1 083 43 60

MSB 26 32 x 1 350 1 078 982 983 865 x 622 x 516 x x 3 543 x

Table 4: TGE0 of each subkey for the ASCAD_R dataset.

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

MMB 2 4 22 75 27 8 14 34 93 13 73 14 176 109 12 47

MB 1 4 22 88 22 9 16 41 79 26 70 15 144 64 14 25

HW 4 5 1 522 1 087 356 438 1 383 1 159 3 481 807 1 080 823 x x 414 x

ID 2 1 x x 308 58 x x x x x x x x 66 x

LSB 15 10 287 117 42 54 191 97 519 38 88 115 x 390 23 53

MSB 38 59 x x 4 127 x 1 103 x x 1 697 x 295 x x 1 022 x

Lichao Wu, Amir Ali-pour, Azade Rezaeezade, Guilherme Perin and Stjepan Picek 15

Table 5 and Table 6 show the attack results on the CHES_CTF and eShard datasets.
Aligned with the previous two datasets, MMB and MB maintain outstanding performance
on these two datasets. It is worth noting that MB cannot retrieve all subkeys while MMB
can and performs better in attacking all keys. For instance, only MMB can recover k4,
k8, and k12 of the eShard dataset, while all other methods fail. Since MMB and MB
share identical main branches and subbranches (the only difference is that MMB has more
subbranches for each sub byte), we conclude that multi-task learning helps generalize each
task, leading to robust attack performance.

Table 5: TGE0 of each subkey for the CHES_CTF dataset.

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

MMB 88 95 57 99 226 75 47 42 113 54 49 45 3 210 49 58 34

MB 71 56 42 52 77 50 54 55 52 72 39 53 581 39 52 25

HW 2057 x 803 1 156 x 1 368 1 714 1 120 x 3 012 1 329 4 557 x x 1 534 1 472

ID x x x x x x x x x x x x x x x x

LSB 508 811 139 394 386 500 575 227 265 481 438 266 x 532 580 370

MSB 606 485 1 359 x 2 039 3 163 757 x x 812 2 256 326 x x 498 x

Table 6: TGE0 of each subkey for the eShard dataset.

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

MMB 118 503 857 247 1102 690 487 948 2161 339 105 952 1502 540 416 469

MB 1 172 941 907 298 x 1 705 1 893 1 084 x 875 2 419 1 458 x 1 268 1 879 1 303

HW 1 689 2 625 1 278 921 x 975 972 782 x 1 741 1 369 1 050 x 1 207 1 556 1 175

ID x x x x x x x x x x x x x x x x

LSB x x 4 591 2 320 x x x 4 639 x x x x x x x x

MSB x x x x x x x x x x x x x x x x

Besides the key recovery, the proposed method provides insight into leakage assessment.
Previous results [WPP22, PWP22] show that the CHES_CTF dataset is only breakable
via the HW leakage model, which our results confirm. None of the key bytes can be
retrieved via the ID leakage model. Interestingly, the MSB leakage model also leads to
mediocre performances. Recall in Section 5, when the simulated data has only ID leakage,
MSB is the most significant contributor to actual leakages (see Table 1). Based on the
attack results, MSB seems to contain limited leakage information for these two datasets,
potentially leading to the failure of the ID leakage model.

To provide a more comprehensive view of the learning process, we illustrate the
validation accuracy for each bit (256 in total) of the multibyte multibit model in Figure 6.
The mean and standard deviation are represented by the blue line and shaded blue areas,
respectively.

Initially, for ASCAD_F and ASCAD_R, there is a sharp rise in the standard deviation,
indicating a broader distribution of bit validation accuracy. The top five bits yielding the
highest accuracy are either b7 (MSB) or b6 of a byte. This observation aligns with the
results displayed in Tables 3 and 4, indicating that the ID leakage model functions well for
some bytes. On the other hand, when examining CHES_CTF and eShard, the accuracy
of each bit increases relatively uniformly, as evidenced by their small standard deviation.
This supports the observation of the HW accuracy made in Section 5 and also corroborates
the earlier discussion about the mediocre performance of the ID model.

16 Leakage Model-free DLSCA

(a) ASCAD_F. (b) ASCAD_R.

(c) CHES_CTF. (d) eShard.

Figure 6: Validation bit accuracy for each dataset.

It is clear that the ASCAD_R and CHES_CTF datasets are prone to overfitting,
a phenomenon we explore in detail in Section 6.3.2. Additionally, for the CHES_CTF
dataset, one might observe that some bits emerge as ’outliers’ during the early stages
of training. All these outlier bits are associated with sub-byte 12, suggesting that they
exhibit distinct leakage features compared to the other sub-bytes. Still, one can observe a
steady increase in the validation bit accuracy of the corresponding bits, indicating that
our multibyte multibit model is generalized to features that all tasks can share.

6.3 Ablation Studies
In this section, we explore the influence of various hyperparameters on the multibit model
performance. Instead of focusing on one sub-byte, the multibyte multibit model is used
for benchmarking, and all sub-bytes are considered. For a fair comparison, the attack
performance on 16 sub-bytes is averaged to understand the influence of hyperparameter
changes better.

6.3.1 Data Augmentation

As discussed in Section 4.3, the role of data augmentation is crucial for the multibit model.
Consequently, we conduct an ablation study specifically focusing on data augmentation,
aiming to assess the impact of the augmentation level on the attack performance. The
findings from this study are comprehensively presented in Table Table 7.

When the level of data augmentation is set to zero, the multibit model fails to break
the eShard dataset. However, a significant performance improvement is noted with the

Lichao Wu, Amir Ali-pour, Azade Rezaeezade, Guilherme Perin and Stjepan Picek 17

Table 7: Ablation study on data augmentation (DA).

DA-0 DA-5 DA-10 DA-20

ASCAD_F 50 45 242 1 653

ASCAD_R 136 45 87 937

CHES_CTF 273 269 427 327

eShard x 715 394 449

introduction of random shifts in the datasets. Optimal results are consistently observed
within the data augmentation range of DA-5 across all test scenarios. As the level of
data augmentation reaches 20, there is a notable decline in attack performance in various
configurations.

From these observations, we can ascertain the critical role of data augmentation in
enhancing the effectiveness of the multibit model. However, employing an excessively
high level of data augmentation can have adverse effects, reducing the model’s attack
performance. This high augmentation level can increase the complexity of fitting the model
to the leakage (as the time location of the leakages becomes more random), requiring
either longer training periods or larger models, thus increasing the computation effort.

6.3.2 Training Epoch

Increasing the number of training epochs does not necessarily enhance the mapping
capability of a deep learning model from input to output. On the contrary, it could
diminish the model’s ability to generalize on unseen datasets, a phenomenon known as
’overfitting’. Figure 6 clearly shows that ASCAD_R and CHES_CTF suffer from overfitting
when training with 200 epochs. Table 8 further illustrates the performance fluctuations
of the proposed method when trained with varying numbers of epochs. Indeed, training
with just 50 epochs proves to be sufficient for most configurations, while an additional 150
epochs (totaling 200) yield stable attack results except the CHES_CTF, as the attack
performance deteriorates with increased epoch training. As for the eShard dataset, there
is a consistent decrease in key rank value, in line with the observation in Figure 6d.

Table 8: Study on the influence of the training epoch.

EP-50 EP-100 EP-200 EP-300

ASCAD_F 136 43 45 49

ASCAD_R 46 39 44 45

CHES_CTF 118 136 269 285

eShard 3 888 1 080 714 760

Several strategies can be employed to mitigate overfitting. Data augmentation, as
discussed in Section 6.3.1, is one effective solution. Additionally, one could apply an early
stopping technique that halts model training if a monitored metric fails to increase over
a certain number of epochs. Some studies [KPH+19, WPP22] suggest that validation
accuracy may be unreliable when working with pre-defined leakage models. However, our
results demonstrate that it is a robust metric for assessing a model’s performance for the
multibit model.

Regarding computational efficiency, the mean training time per dataset is approximately
30 minutes. Given that both sets of 16 bytes are attacked simultaneously, the efficiency of
each byte’s attack (less than two minutes) is comparable with the state-of-the-art method,

18 Leakage Model-free DLSCA

even with careful hyperparameter tuning [ZBHV19, RWPP21].
Our analysis highlights that hyperparameter tuning, specifically adjusting the data

augmentation level, impacts the attack performance. Nonetheless, the model demonstrates
resilience to hyperparameter variations, with only one hyperparameter setting (zeroing
the data augmentation level) leading to a failed attack. It is important to note that
we employ a single model to attack all four datasets, achieving consistent performance.
This underscores the simplicity of our model’s hyperparameter tuning. Furthermore, it
emphasizes the robustness of the proposed multibyte multibit approach, making it a reliable
profiling solution across varying attack scenarios.

7 Conclusions and Future Work
This paper introduces a novel multibit model that learns each bit separately. Unlike
conventional profiling attacks, our method does not assume any specific leakage model,
which offers increased flexibility in fitting the actual leakages. Simultaneously, we employ
multi-task learning to attack multiple sub-bytes concurrently, leading to efficient key
recovery without the need to attack each byte separately. By applying our framework to four
publicly available masked AES datasets, we obtain profiling attack results that significantly
surpass models using pre-defined leakage models for leakage labeling. Importantly, no
effort is expended in hyperparameter tuning, demonstrating its generality across different
attack scenarios.

There are several potential avenues of investigation to build on this work. First, the
deep learning network could be enhanced, e.g., through residual networks, to strengthen
the connection between the input and each task. Specifically, the shortcut could directly
connect with the model’s subbranch, potentially reducing the reliance on the main branch
and its feature extraction capability. Second, while the current method treats each bit
independently, exploring methods to reinforce inter-bit connections would be worthwhile.
For instance, building an interconnection between each sub-branch could be interesting to
explore. Lastly, the mainstream microcontroller adopts a 32-bit or even wider bus width.
Since the proposed method could prevent a byte from learning each bit, examining the
effectiveness of this method in 32-bit implementations is of interest, i.e., learning 32-bit
simultaneously with a multibit model.

References
[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile

Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. J. Cryptographic Engineering, 10(2):163–188, 2020.

[Car97] Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures. In
Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware
and Embedded Systems – CHES 2017, pages 45–68, Cham, 2017. Springer
International Publishing.

[CK15] Marios O Choudary and Markus G Kuhn. Efficient stochastic methods:
Profiled attacks beyond 8 bits. In Smart Card Research and Advanced Ap-
plications: 13th International Conference, CARDIS 2014, Paris, France,
November 5-7, 2014. Revised Selected Papers 13, pages 85–103. Springer,
2015.

Lichao Wu, Amir Ali-pour, Azade Rezaeezade, Guilherme Perin and Stjepan Picek 19

[CRR02a] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In
CHES, volume 2523 of LNCS, pages 13–28. Springer, August 2002. San
Francisco Bay (Redwood City), USA.

[CRR02b] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Bur-
ton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

[GLRP06] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs.
stochastic methods. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 15–29. Springer, 2006.

[HGM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first study.
J. Cryptogr. Eng., 1(4):293–302, 2011.

[HK18] Alex Hernández-García and Peter König. Data augmentation instead of
explicit regularization. CoRR, abs/1806.03852, 2018.

[HKSS12] Annelie Heuser, Michael Kasper, Werner Schindler, and Marc Stöttinger. A
new difference method for side-channel analysis with high-dimensional leakage
models. In Lecture Notes in Computer Science, pages 365–382. Springer Berlin
Heidelberg, 2012.

[HP02] Yu-Chi Ho and David L Pepyne. Simple explanation of the no-free-lunch
theorem and its implications. Journal of optimization theory and applications,
115:549–570, 2002.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Han-
jalic. Make some noise. unleashing the power of convolutional neural networks
for profiled side-channel analysis. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 148–179, 2019.

[LMBM13] Liran Lerman, Stephane Fernandes Medeiros, Gianluca Bontempi, and Olivier
Markowitch. A Machine Learning Approach Against a Masked AES. In
CARDIS, Lecture Notes in Computer Science. Springer, November 2013.
Berlin, Germany.

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch, and
François-Xavier Standaert. Template attacks vs. machine learning revisited
(and the curse of dimensionality in side-channel analysis). In International
Workshop on Constructive Side-Channel Analysis and Secure Design, pages
20–33. Springer, 2015.

[LZC+21] Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention
to raw traces: A deep learning architecture for end-to-end profiling attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
235–274, 2021.

[Mag20] Houssem Maghrebi. Deep learning based side-channel attack: a new profiling
methodology based on multi-label classification. Cryptology ePrint Archive,
2020.

20 Leakage Model-free DLSCA

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Interna-
tional Conference on Security, Privacy, and Applied Cryptography Engineering,
pages 3–26. Springer, 2016.

[MS21] Loïc Masure and Rémi Strullu. Side channel analysis against the anssi’s
protected aes implementation on arm. Cryptology ePrint Archive, 2021.

[PCP20] Guilherme Perin, Lukasz Chmielewski, and Stjepan Picek. Strength in num-
bers: Improving generalization with ensembles in machine learning-based
profiled side-channel analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2020(4):337–364, Aug. 2020.

[PHG17] Stjepan Picek, Annelie Heuser, and Sylvain Guilley. Template attack ver-
sus bayes classifier. Journal of Cryptographic Engineering, 7(4):343–351,
September 2017.

[PPM+23] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina.
Sok: Deep learning-based physical side-channel analysis. ACM Comput. Surv.,
55(11), feb 2023.

[PSK+18] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie Heuser, Shivam
Bhasin, and Axel Legay. On the performance of convolutional neural networks
for side-channel analysis. In International Conference on Security, Privacy,
and Applied Cryptography Engineering, pages 157–176. Springer, 2018.

[PWP22] Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection
scenarios for deep learning-based side-channel analysis. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 828–861, 2022.

[RB22] Azade Rezaeezade and Lejla Batina. Regularizers to the rescue: Fighting
overfitting in deep learning-based side-channel analysis. IACR Cryptol. ePrint
Arch., page 1737, 2022.

[Rud17] Sebastian Ruder. An overview of multi-task learning in deep neural networks.
arXiv preprint arXiv:1706.05098, 2017.

[RWPP21] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Reinforcement
learning for hyperparameter tuning in deep learning-based side-channel anal-
ysis. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(3):677–707, Jul. 2021.

[SKS09] François-Xavier Standaert, François Koeune, and Werner Schindler. How to
compare profiled side-channel attacks? In Applied Cryptography and Network
Security: 7th International Conference, ACNS 2009, Paris-Rocquencourt,
France, June 2-5, 2009. Proceedings 7, pages 485–498. Springer, 2009.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for
differential side channel cryptanalysis. In Josyula R. Rao and Berk Sunar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2005, pages
30–46, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified frame-
work for the analysis of side-channel key recovery attacks. In Antoine Joux,
editor, Advances in Cryptology - EUROCRYPT 2009, pages 443–461, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

Lichao Wu, Amir Ali-pour, Azade Rezaeezade, Guilherme Perin and Stjepan Picek 21

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 107–131, 2019.

[VTM23] Aurélien Vasselle, Hugues Thiebeauld, and Philippe Maurine. Spatial depen-
dency analysis to extract information from side-channel mixtures: extended
version. Journal of Cryptographic Engineering, pages 1–17, 2023.

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revis-
iting a methodology for efficient cnn architectures in profiling attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(3):147–
168, Jun. 2020.

[WJB20] Yoo-Seung Won, Dirmanto Jap, and Shivam Bhasin. Push for more: On
comparison of data augmentation and smote with optimised deep learning
architecture for side-channel. In Information Security Applications: 21st
International Conference, WISA 2020, Jeju Island, South Korea, August
26–28, 2020, Revised Selected Papers 21, pages 227–241. Springer, 2020.

[WPP20] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Automated
hyperparameter tuning for deep learning-based side-channel analysis. Cryp-
tology ePrint Archive, Report 2020/1293, 2020. https://eprint.iacr.org/
2020/1293.

[WPP22] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Automated
hyperparameter tuning for deep learning-based side-channel analysis. IEEE
Transactions on Emerging Topics in Computing, 2022.

[WWK+23] Lichao Wu, Léo Weissbart, Marina Krček, Huimin Li, Guilherme Perin, Lejla
Batina, and Stjepan Picek. Label correlation in deep learning-based side-
channel analysis. IEEE Transactions on Information Forensics and Security,
2023.

[ZBC+23] Gabriel Zaid, Lilian Bossuet, Mathieu Carbone, Amaury Habrard, and Alexan-
dre Venelli. Conditional variational autoencoder based on stochastic attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
310–357, 2023.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient cnn architectures in profiling attacks. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2020(1):1–36, Nov.
2019.

[ZXF+20] Libang Zhang, Xinpeng Xing, Junfeng Fan, Zongyue Wang, and Suying Wang.
Multilabel deep learning-based side-channel attack. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 40(6):1207–1216,
2020.

[ZY21] Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transac-
tions on Knowledge and Data Engineering, 34(12):5586–5609, 2021.

[ZZN+20] Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Nenghai Yu. A
novel evaluation metric for deep learning-based side channel analysis and its ex-
tended application to imbalanced data. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 73–96, 2020.

https://eprint.iacr.org/2020/1293
https://eprint.iacr.org/2020/1293

	Introduction
	Preliminaries
	Notation
	Profiling Side-channel Analysis
	Evaluating the Attack Performance

	Related Works
	Model-free DLSCA
	Moving from Byte to Bit
	Multibit Model
	Multibyte Multibit DLSCA

	Experimental Results with a Simulated Dataset
	Attacks on Publicly Available Datasets
	Datasets
	Performance Evaluation
	Ablation Studies

	Conclusions and Future Work

