
Verifiable Timed Proxy Signatures and
Multi-signatures
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Abstract. Verifiable timed commitments serve as cryptographic tools
that enable the binding of information to specific time intervals. By inte-
grating these commitments into signature schemes, secure and tamper-
evident digital signatures can be generated, ensuring the integrity of
time-sensitive mechanisms. This article delves into the concept of ver-
ifiable timed commitments and explores their efficient applications in
digital signature constructions. Specifically, it focuses on two important
signature schemes: proxy signatures and multi-signatures. The idea of the
timed proxy signature is to enable the delegation of signing rights for a
specified period, allowing designated entities to sign messages on behalf
of the original signer. On the other hand, multi-signatures allow multi-
ple parties to collectively generate a single signature, ensuring enhanced
security and accountability. The article presents an in-depth analysis of
the underlying mechanisms, discussing their properties, strengths, and
computational complexity. Through this exploration, the article aims to
shed light on the potential of verifiable timed commitments and inspire
further research in this evolving field of cryptography.

Keywords: Timed commitment · timed signature · multi-signature ·
proxy signature

1 Introduction

Cryptography plays a pivotal role in ensuring the security and integrity of digital
communications and transactions. Over the years, researchers and practitioners
have developed numerous cryptographic techniques to tackle various challenges
and address evolving security requirements. One such area of exploration within
cryptography is the concept of verifiable timed commitments. Verifiable timed
commitments encompass a range of cryptographic constructs that enable time-
bound signing and authentication capabilities, offering enhanced flexibility and
accountability. This article delves into two important novel constructs in this
domain: timed proxy signatures and multi-signatures.

Proxy signatures allow the delegation of signing rights, enabling designated
entities to sign messages on behalf of the original signer. The creation of timed
proxy signatures finds utility in scenarios where time-limited authorization is
required, such as in cases where individuals or entities need to grant temporary



signing privileges or when time-sensitive decisions need to be made within a
cryptographic framework.

Multi-signatures, on the other hand, provide a means for multiple parties to
collectively generate a single signature. This construction enhances security by
requiring the consent and participation of multiple signers, ensuring a higher
degree of accountability and resistance against forgery or tampering. Multi-
signatures have gained prominence in various domains, including blockchain
technologies, where distributed consensus and verification are essential for main-
taining the integrity of the system. Similar to timed proxy signatures, multi-
signatures can be made as time-bounded to ensure the validity of the signed
data is temporary.

Efficient construction of verifiable timed commitments within BLS [1], Schnorr
[2] and ECDSA [3] signature algorithms is provided by Thyagarajan et al.
[4]. Considering what other timed signature schemes might be useful in real-
world applications, we chose proxy signatures and multi-signatures because of
their widespread use. The concept of proxy signatures was initially proposed by
Mambo et al. [5], which focuses on enabling the delegation of signing privileges
while ensuring the security and integrity of the original signer’s key. Since then,
considerable research efforts have been dedicated to enhancing the efficiency,
security, and functionality of proxy signature schemes. Notably, threshold proxy
signature schemes [6] has emerged as a significant improvement. These schemes
introduce a threshold mechanism that mandates the involvement of multiple
proxies to generate a valid proxy signature, thereby bolstering security and miti-
gating the risk of single-point failure. Over time, various types of proxy signatures
have been introduced, including accountable proxy signatures [7], identity-based
proxy (multi-)signatures [8, 9], anonymous proxy signatures [10]), certificate-
based proxy signatures [11, 12], and homomorphic proxy signatures [13]. In the
context of proxy signatures, we believe that the use of verifiable timed signatures
is a novel approach and enables the delegation of signing authority to a proxy
signer within a predefined time frame. By incorporating timed commitments, it
becomes possible to enforce accountability and ensure that the proxy signer’s ac-
tions are constrained within the specified period. This feature adds an additional
layer of security and trust to proxy signatures, as the timing of the delegated
signatures can be verified, mitigating the risk of unauthorized or malicious use
of the delegated authority. On the other hand, multi-signature protocols and
specifically accountable subgroup multi-signature (ASM) schemes offer a dis-
tinct form of multi-signature scheme. ASM is an important one where a specific
subgroup within a larger group can collectively sign a document, ensuring ac-
countability while promoting efficiency. ASM schemes are particularly valuable
in scenarios involving multiparty computation, where the need for accountabil-
ity and efficiency is paramount. While the ASM is constructed in [14], a recent
and highly efficient ASM scheme introduced by Boneh et al. [15] made a great
impact, especially on the applications of blockchain. Notably, this scheme allows
users to generate their individual signatures first and subsequently select the
subgroup for signing, facilitating flexibility and practical implementation. Sim-
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ilar to proxy signature schemes, in the accountable subgroup multi-signatures,
the inclusion of verifiable timed commitments allows for the creation of multi-
signatures that require the participation of specific subgroup members within a
designated time window. This feature ensures the accountability and verifiability
of subgroup members’ contributions, making the resulting multi-signature more
robust and tamper-resistant. In the end, considering all these situations and
considering the suitability for the design of proxy multi-signatures, we propose a
compact structure where we use ASM within the proxy multi-signature concept
and make it timed. Overall, the integration of verifiable timed commitments in
proxy signatures and accountable subgroup multi-signatures demonstrates their
potential to enhance security, accountability, and verifiability in these important
cryptographic protocols.

1.1 Our Motivation and Contribution

The primary objective of this study is to explore and assess the potential of
verifiable timed commitments in the context of novel verifiable timed signature
schemes. Specifically, our motivation is to:

1. Investigate the technical foundations and properties of verifiable timed com-
mitments, emphasizing their relevance in addressing time-dependent cryp-
tographic challenges.

2. Examine the integration of timed commitments into signature schemes, ana-
lyzing their impact on ensuring secure and tamper-evident digital signatures.

3. Provide insights into their potential applications and benefits, ultimately
driving the adoption and further development of these techniques.

To the best of our knowledge, this study is the first proposal that constructs a
verifiable timed version of proxy signatures and multi-signatures. The timed ver-
sions of MSP and ASM schemes are proposed by the authors [16]. In this paper,
we extend it by including timed proxy signatures and proxy multi-signatures.
In addition, this paper delves into the underlying mechanisms, analyzing their
properties, strengths, and computational complexity, thus offering a holistic un-
derstanding of these constructs. In particular, we believe that creating a timed
version of a proxy multi-signature structure by combining the accountable sub-
group multi-signature concept can be a new approach in this field.

1.2 Organization

This study is structured into four sections. Section 1 provides an introduction
to the topic, including the background, problem statement, objectives, and an
overview of the article’s structure. Section 2 presents the underlying crypto-
graphic mechanisms and algorithms used in this work. Section 3 focuses on the
integration of verifiable timed commitments into signature schemes, discussing
their implications for generating secure and verifiable digital signatures. Finally,
Section 4 concludes the article by summarizing the key findings, and outlining
potential avenues for future research.
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2 Preliminaries

This section serves as a comprehensive introduction to the fundamental concepts
and background information necessary for understanding verifiable timed com-
mitments and their usage in the signature schemes. By explaining the algorithms
and security requirements used during the research, it is aimed to deal with the
proposed systems from different perspectives.

2.1 RSA Encryption Scheme

Key Generation: Let p, q be distinct prime numbers. Calculate N = p · q
and ϕ(N) = (p − 1) · (q − 1). Select an integer e, where gcd(ϕ(N), e) = 1 and
1 < e < ϕ(N). Find d such that e ·d (mod ϕ(N)) = 1. Parse public key as (e,N)
and private key as (d, p, q).
Encryption: Let M < N be a message to be encrypted. The encryption algo-
rithm is E(M) = Me = c (mod N), where c is the ciphertext.

Decryption: Let c be a ciphertext to be decrypted. The decryption algo-
rithm is D(c) = cd = M (mod N) where M is the plaintext.

2.2 RSA Signature Scheme

Key Generation: Let p, q be distinct prime numbers. Calculate N,ϕ, e, d,M
as described in the RSA encryption.

RSA signature generation: Let h = Hash(M). Compute the signature:
s = hd mod N .

RSA signature verification: Calculate the hash of the message M as
h
′
= Hash(M). Check if h

′
= h. If it is equal, check if h = se mod N . If it

holds, the signature is verified.

2.3 Bilinear Pairing

A bilinear pairing is a function e : G1 × G2 → GT on groups G1,G2,GT that
satisfies bilinearity and non-degeneracy:

Bilinearity: For all integers b and d, for all elements a in G1 and c in G2,
e(ab, cd) = e(a, c)bd.

Non-degeneracy: The pairing e(g1, g2) is not equal to 1 for all generators
g1 and g2 of G1 and G2, respectively.

Bilinear groups are fundamental to various cryptographic schemes, such as
identity-based encryption, attribute-based encryption, and certain types of dig-
ital signatures. The properties of bilinear groups enable the construction of effi-
cient and secure cryptographic protocols based on mathematical operations and
pairings between different groups.
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2.4 BLS Signature

Given groups (G1,G2,GT ) and generators (g1, g2) of the group pair (G1,G2),
consider an efficient, non-degenerate bilinear map e : G1×G2 → GT . A function
H : {0, 1}∗ → G1 is defined to map any arbitrary binary string onto the group
G1. Let H0, H2 : {0, 1}∗ → G1 and H1 : {0, 1}∗ → Zq be the hash functions
which are collision resistant.

BLS signature [1] has three phases: Key Generation (KeyGen), Signature
Generation (SigGen), and Verification.

1. Key Generation (KeyGen): Randomly select a secret key sk from the
set of integers modulo q, and use it to compute the corresponding public key
pk = gsk2 .

2. Signature Generation (SigGen): To generate a signature for a given
message m, compute σ = H(m)sk, where sk is the secret key.

3. Verification: Check if the following equation is satisfied:

e(H(m), pk) = e(σ, g2) (1)

2.5 Multi-signature Protocol (MSP)

Boneh et al. introduced the multi-signature protocol (MSP) in their work [15].
It is an efficient multi-signature scheme that builds on top of BLS and involves
the steps given below:

Assume that the hash functions, groups, generators of the groups, and bilin-
ear map are the same with BLS.

1. Key Generation: To generate a key pair in this scheme, a secret key ski
is selected at random from Zq, and the corresponding public key pki is obtained

by computing gski
2 for a user i.

2. Key Aggregation: Aggregated public key

apk =

n∏
i=1

pkai
i ,

where
ai = H1(pki, {pk1, . . . , pkn}).

3. Signature Generation: Calculate the multi-signature

σi = H0(m)aiski (2)

where m is the message to be signed.
4. Signature Aggregation: Multi-signature is

σ =

n∏
j=1

σi.

5. Verification: Check if

e(H0(m), apk) = e(σ, g2). (3)
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2.6 Accountable Subgroup Multi-signatures (ASM)

An accountable subgroup multi-signature (ASM) scheme is a type of multi-
signature in which a message m can be signed by any subgroup S of a group G,
and the signatories from the subgroup S are responsible for the signature. ASM
was defined first time in 2001 [14]. After the term construction with a generic
protocol definition, one of the most important improvements in ASM schemes is
the ASM scheme constructed by Boneh et al. [15]. The objective of developing
this “short” ASM scheme was to reduce the size of the Bitcoin blockchain. In this
algorithm, “short” means the signature size is O(λ)-bits, where λ is the security
constant. This ASM scheme showed that it is very practical and applicable to
blockchain cryptosystems.

2.6.1 ASM by Boneh et al. Boneh et al.’s ASM scheme [15] consists of
5 tuples: KeyGen, Group Setup, SignatureGen, Signature Aggregation (Signa-
ture Aggr), and Verification. These steps are explained below. PK is defined as
the collection of public keys belonging to the members of group G, denoted by
pk1, . . . , pkn.

– KeyGen: Every user i ∈ G gets a random secret key ski ← Zq and calculates

public key pki ← gski
2 where g2 is the generator of the group G2

– Group Setup: Every user performs group setup using one round interactive
protocol.

• The user is responsible for computing the group’s aggregated public key
apk as: apk =

∏n
i=1 pk

ai
i where ai = H1(pki, PK).

• The user sends

µji := H2(apk, j)
aiski (4)

to the j-th member for j = 1, 2, . . . , n and j ̸= i.

• After receiving µij , the user calculates µii = H2(apk, i)
aiski .

• For a user i, the membership key is mki =
∏n

j=1 µij .

– SignatureGen: A signer calculates his/her individual signature as

si = H0(apk,m)ski ·mki

and delivers si to the combiner.

– Signature Aggr: The combiner first forms the set of signers S ⊆ G and
computes the aggregated subgroup multi-signature σ = (s, pk) where s =∏

i∈S si and pk =
∏

i∈S pki.

– Verification: The signature σ = (s, pk) can be verified by anyone in pos-
session of par, apk, S,m, σ by checking if:

e(s, g2) = e(H0(apk,m), pk).e(
∏
j∈S

H2(apk, j), apk)

6



2.7 Proxy Signatures

A proxy signature is a type of digital signature that allows one entity, known
as the original signer/delegator, to delegate their signing authority to another
entity, known as the proxy signer. The proxy signer can then generate signatures
on behalf of the delegator. Proxy signatures are commonly used in scenarios
where the delegator wants to delegate signing capabilities temporarily or to
perform signatures without direct involvement. In general, the steps of a proxy
signature scheme are as follows:

2.7.1 Key Generation: The original signer and the proxy signer generate
their key pair consisting of a private key and a corresponding public key.

2.7.2 Setup: The original signer and the proxy signer establish a trusted
relationship, typically through a secure communication channel or a trusted
intermediary. Then, the original signer authorizes the proxy signer to act on
their behalf.

2.7.3 Delegation: In the delegation step, the original signer creates a warrant
w that contains relevant information about the delegation and signing process.
This information generally contains the identity of the signers, the delegation
period, and the details of the message.

2.7.4 Proxy Signature Generation: The proxy signer first checks if the
delegation information is correct or not. Then, if it is correct, the proxy signer
generates the proxy signature.

2.7.5 Proxy Signature Verification: A verifier receives the message, the
proxy signature, and the public keys of the original and proxy signer and checks
if the signature is valid or not.

2.8 Zero Knowledge Proof and Non-interactive Zero Knowledge
Proof

The zero-knowledge proof (ZKP) cryptographic method enables the demonstra-
tion of a statement’s truthfulness without revealing any additional informa-
tion other than the statement’s validity. Non-interactive zero-knowledge proof
(NIZK) [17] is a type of it that allows proof of the statement by the prover
without any interaction with the verifier. NIZK [17] contains 3-tuples: ZKSetup,
ZKProve and ZKVerify:

– ZKSetup phase(1λ): Note that 1λ is a security constant .
-The output will be the “common reference string” (crs).
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– ZKProve phase(crs, x, w): The presence of a “witness” (w) is crucial in
proving the truthfulness of a statement (x).
-The statement’s validity with the witness outputs the proof π.

– ZKVerify phase(crs, x, π): The verification will show if the statement and
the corresponding proof are true.
-The output will be “yes/verified” or “no’/not verified”, depending on whether
the requirements for the verification of the protocol are met.

2.9 Timed Cryptography

Timed-release cryptography aims to achieve the idea that the message can be
sent to the future and opened only after some predefined time T . As the first
construction of timed cryptography, the concept of “timed commitments” was
introduced for the first time in 2000 [18]. A timed commitment scheme for a
message or any value provides the sender to commit the value. After some time
T , the sender can prove this commitment or if the sender refuses this statement,
the receiver can retrieve the committed message within time T by forcing it
open. Therefore, a time commitment contains 3 phases:

– Commitment generation: To commit on a message.
– Open: Sender can open the commitment to show the message.
– Forced Open: If the sender chooses not to disclose the commitment, the

receiver can use this algorithm to prove the commitment and unveil the
committed message within a duration of T .

Timed cryptography contains several types of applications such as time-lock
puzzle generation, timed release of signatures as well as timed commitments.

2.9.1 Timed Signatures Timed signatures are a type of time commitment
in which the sender can commit to a signature of a message/document. More
formally, a timed signature contains five tuples:

1. Setup phase: Any message signer generates a key pair (publickey, privatekey)
using a KeyGen algorithm.

2. A signature generation algorithm: A valid signature contains 3 tuples,
namely S,C, and Sig where C is a timed commitment when committing to a
string S and Sig can be verified using publickey as a valid signature on a message
M .

3. Commit phase: The signer of a message chooses a random private string
S and creates a timed commitment on S named C.

4. Open phase: The sender (signer) opens the committed string S. The re-
ceiver (verifier) gets a valid signature tuple namely {S,C, Sig}.

5. Forced Open phase: Use forced open protocol to retrieve the committed
value S by the related timed commitment phase.

One crucial requirement for timed signatures is verifiability, which is proof
that the receiver gets the correct message with a valid signature. An efficient
version of the term “Verifiable Timed Signature” was defined recently in an
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article [4] by Thyagarajan et al. as a practical application of timed signature
schemes.

2.9.2 Time Lock Puzzles (TLP) and Advantages of Homomorphism:
Time lock puzzles [19] let a person encrypt a message to the future. According to
the verifiable timed signature (VTS) and verifiable timed commitment (VTC)
proposed by [4], usage of TLP provides efficiency to the current applications,
and the linearly homomorphic time lock puzzle (LHTLP) version makes them
even more efficient where ForceOpen algorithm needs to solve only one packed
puzzle instead of many. We use the same notation of LHTLP given in [4] while
constructing timed lock puzzles.

LHTLP [20] over the ring (ZN ,+) contains 4-tuples: PuzzleSetup, Puzzle-
Generation, PuzzleSolve, and PuzzleEval and defined as follows:

– PuzzleSetup phase(1λ, T ): Note that 1λ is a security constant and T is
the agreed time.
-With prime numbers p′ and q′, sample p = 2p′ + 1 and q = 2q′ + 1 and set
N := pq.

-Sample a uniform g̃
$← Z∗

N and set g := −g̃2 mod N .

-Calculate and set h := g2
T

that can be optimized by reducing 2T mod ϕ(N)/2.
-In the end, the output will be public parameters pp := (T,N, g, h).

– PuzzleGeneration phase(pp, s): Note that s is the solution from the so-
lution set S
-Set pp := (T,N, g, h).

-Sample an r
$← {1, . . . , N2}.

-Calculate u := gr mod N and v := hr.N .(1 +N)s mod N2.
-In the end, the output will be the puzzle Z := (u, v).

– PuzzleSolve phase(pp, Z):
-Set pp := (T,N, g, h).
-Set the puzzle Z := (u, v).

-Calculate w := u2T mod N by Repeated Squaring Method.

-In the end, the output will be the solution s := v/(w)N (modN2)−1
N .

– PuzzleEval phase(⊕, pp, Z1, . . . , ZN): Note that ⊕ := C ∈ Cλ is a circuit
-Set pp := (T,N, g, h).
-Set every Zi := (ui, vi) ∈ JN × Z∗

N2 .
-Calculate ũ :=

∏n
i=1 ui mod N and ṽ :=

∏n
i=1 vi mod N2.

-In the end, the output will be the puzzle Z ′ = (ũ, ṽ).
Note that, PuzzleSetup, PuzzleGeneration, and PuzzleEval phases are the
probabilistic algorithms whereas the PuzzleSolve phase is a deterministic
algorithm.

Here, it is important to explain NIZK for LHTLP [4]:

1. ZKSetup phase: Let N be an RSA modulus, pp are defined in LHTLP, in-
tervals for the statements are L and B with B < L and let k is the statistical
security constant. Let the input here is the time lock puzzles Z1, . . . , Zl.
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2. ZKProve phase: Let wit := ((x1, r1), . . . , (xl, rl)) denote the witness, where
xi ∈ [−B,B] for all i. If Zi ← HTLP.PuzzleGeneration(pp, xi; ri) for any
i, then the ZKProve phase performs the following steps:

(a) Let y1, . . . , yk ← [−L/4, L/4] and r
′

1, . . . , r
′

k be the values from the cor-
responding ring.

(b) For i = 1, . . . , k compute Di ← HTLP.PGen(pp, yi; r
′

i).

(c) Calculate (t1, . . . , tk)← H(Z1, . . . , Zl, D1, . . . , Dk), ∀ti ∈ {0, 1}l.
(d) For i = 1, . . . , k, calculate vi ← yi +

∑l
j=1 ti,j .xj and wi ← r

′

i +∑l
j=1 ti,j .rj .

(e) Set π ← (Di, vi, wi)i∈[k] and output π.

3. ZKVerify phase:

(a) Calculate (t1, . . . , tk)← H(Z1, . . . , Zl, D1, . . . , Dk).

(b) For i = 1, . . . , k calculate if vi ∈ [−L/2, L/2], then calculate Fi ←
Di.

∏l
j=1 Z

ti,j
j and calculate if Fi = HTLP.PuzzleGeneration(pp, vi;wi).

(c) If all the conditions are satisfied, output 1, else output 0.

2.10 Verifiable Timed Signatures (VTS)

Thyagarajan et al. recently proposed [4] efficient versions of VTS for BLS [1],
Schnorr [2] and ECDSA [3]. VTS versions of these algorithms do not require
any modification of signature algorithms, instead, they are chosen as committed
signatures in a commitment scheme.

VTS has 4 phases, namely Commit, Vrfy, Open, and ForceOp:

– Commit : (C,π) ← Commit(σ,T)

– Vrfy : 0 /1 ← Vrfy(pk, m, C, σ)

– Open : (σ, r) ← Open(C)

– ForceOp : σ ← ForceOp(C)

We will include the VTS for the BLS (VT-BLS) because it is the only one
that is pairing-based, and the pairing-based ones will be the focus of this study.

2.10.1 Verifiable Timed BLS Signature (VT-BLS): To show how VTS
phases are used for BLS, the following VT-BLS [4] algorithm steps are explained.
Note that, n will be used as a security parameter, threshold t := n/2 + 1 and
|σ| = λ will be the (maximum) number of bits of the signature σ, H ′ : {0, 1}∗ →
I ⊂ [n] with |I| = t− 1 is a random oracle.

– Setup phase: Run ZKSetup(1λ) to generate crsrange. Generate public pa-
rameters

pp← LHTLP.PuzzleSetup(1λ, T )

and output crs := (crsrange, pp).
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– Commit and prove phase: For input (crs, wit), follow the steps.
-wit := σ, crs := (crsrange, pp), pk is the public key generated in the BLS,
m is the message.
-For all i ∈ [t− 1] , sample αi ← Zq and fix σi = H(m)αi and hi := gαi

2 .
-For all i ∈ {t, . . . , n} compute:

σi =

 σ∏
j∈[t−1] σ

lj(0)
j

li(0)
−1

(5)

and

hi =

 pk∏
j∈[t−1] h

lj(0)
j

li(0)
−1

(6)

where li is the i-th Lagrange Polynomial basis.
-For i ∈ [n], generate puzzles and proofs:

ri ← {0, 1}λ, Zi ← LHTLP.PuzzleGeneration(pp, σi; ri)

and

πrange,i ← ZKProve(crsrange, (Zi, 0, 2
λ, T ), (σi, ri))

-Compute

I ← H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

-Output the commitment C := (Z1, . . . , Zn, T ) and corresponding range
proof which is

π := (hi, πrange,ii∈[n], I, {σi, ri}i∈I).

– Verification phase: (crs, pk,m,C, π) is the input values and the Vrfy al-
gorithm works as follows:
-Parse C := (Z1, . . . , Zn, T ), π := (hi, πrange,ii∈[n], I, {σi, ri}i∈I) and crs :=

(crsrange, pp).
-If any of the below conditions are correct, the Vrfy algorithm outputs 0:
1. There is j /∈ I satisfying ∏

i∈I

h
li(0)
i .h

lj(0)
j ̸= pk.

2. There is i ∈ [n] satisfying

ZKVerify(crsrange, (Zi, 0, 2
λ, T ), πrange,i) ̸= 1.

3. There is i ∈ I satisfying

Zi ̸= LHTLP.PuzzleGeneration(pp, σi; ri)

or
e(g2, σi) ̸= e(hi, H(m)).
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4. I ̸= H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).
– Open phase: The result of the open phase is opening the commitment

and receiving (σ, {ri}i∈[n]). The committer is expected to open at least the
puzzles for the challenge set I chosen by the verifier.

– Force Open phase: This phase takes input C := (Z1, . . . , Zn, T ) and works
as follows:
-Performs σi ← LHTLP.PuzzleSolve(pp, Zi) for i ∈ [n] and receives all the
signature shares. It should be observed that, given the committer has re-
vealed t−1 puzzles, the Force Open step will only involve solving (n− t+1)
puzzles.
-Output σ :=

∏
j∈[t](σj)

lj(0) by considering the first t signatures shares are
valid.

2.11 Verifiable Timed Commitments (VTC)

Verifiable timed commitment (VTC) or verifiable timed dlog (VTD) [21] is used
to generate a timed commitment for a secret value x ∈ Z∗

q satisfying h = gx

where h is a publicly known value and g is a generator of G, which is a group of
order q. This structure of VTC is similar to VTS in terms of steps followed and
algorithms used.

– Setup phase: Run ZKSetup(1λ) to generate crsrange, generate public pa-
rameters

pp← LHTLP.PuzzleSetup(1λ, T )

and output
crs := (crsrange, pp)

– Commit and prove phase: For a given (crs, wit), follow the steps:
-wit := x, crs := (crsrange, pp), h := gx.
-∀i ∈ [t− 1] , sample xi ← Zq and fix hi = gxi .
-For all i ∈ t, . . . , n compute

xi =

x−
∑
j∈[t]

xj .lj0

 .li(0)
−1 (7)

and

hi =

 h∏
j∈[t] h

lj(0)
j

li(0)
−1

(8)

where li is the i-th Lagrange polynomial basis.
-For i ∈ [n], generate puzzles of signature shares and related proofs as

ri ← {0, 1}λ, Zi ← LHTLPuzzleGeneration(pp, xi; ri)

and
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πrange,i ← ZKProve(crsrange, (Zi, a, b, T ), (xi, ri)).

-Compute

I ← H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

-Output the commitment C := (Z1, . . . , Zn, T ) and corresponding range
proof

π := ({hi, πrange,i}i∈[n], I, {xi, ri}i∈I).

-Final output is (h,C, π).
– Verification phase:Given (crs, h, C, π), the Vrfy algorithm works as follows.

-Let C := (Z1, . . . , Zn, T ) , crs := (crsrange, pp) and

π := ({hi, πrange,i}i∈[n], I, {xi, ri}i∈I).

-If any of the below conditions are correct, the Vrfy algorithm outputs 0.
Therefore, it is expected that these conditions are wrong.
1. There is j /∈ I satisfying ∏

i∈I

h
li(0)
i .h

lj(0)
j ̸= h.

2. There is i ∈ [n] satisfying

ZKVerify(crsrange, (Zi, a, b, T ), πrange,i) ̸= 1.

3. There is i ∈ I satisfying Zi ̸= LHTLP.PuzzleGeneration(pp, xi; ri) or
hi = gxi .

4. I ̸= H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n))
– Open phase: The result of the open phase is opening the commitment

and receiving (x, {ri}i∈[n]). The committer is expected to open at least the
puzzles for the challenge set I chosen by the verifier.

– Force Open phase: This phase takes C := (Z1, . . . , Zn, T ) and:
-Calculates xi ← LHTLP.PuzzleSolve(pp, Zi) for i ∈ [n] to retrieve all key
shares. It should be observed that, given the committer has revealed t − 1
puzzles, the Force Open step will only involve solving (n− t+ 1) puzzles.
-Output x :=

∑
j∈[t](xj).lj(0) by considering the first t signatures shares are

valid.

2.12 Security Requirements

There are two main security requirements for VTS-VTC schemes: soundness and
privacy. Soundness promises to the user that the ForceOpen algorithm will reveal
the committed value after T time, under the given commitment C. All Parallel
Random Access Machine (PRAM) algorithms [4] with run-time less than T can
reveal the committed value using commitment and proof with only a negligible
probability. The formal definitions for VTS are as follows. The formal definitions
for VTC can be given similarly.
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2.12.1 Security Requirements for VTS and VTC

Definition 1 (Soundness/Simulation-soundness). A VTS scheme is sound
if ∀A which are the probabilistic polynomial time adversaries and ∀λ ∈ N, there
is a negligible function negl(λ) that satisfies the following statement:

Pr

[
b1 = 1 ∧ b2 = 0 :

(pk,m,C, π, T ) ← A(1λ)
(σ, r) ← ForceOp(C)

b1 := V erification − forV TS(pk,m,C, π)
b2 := V erification − forSignature(pk,m, σ)

]
≤ negl(λ).

The concept of simulation-soundness indicates that a prover cannot easily
convince a verifier of an untrue statement, even if the prover can generate many
simulated proofs for statements they desire.

Definition 2 (Privacy). A VTS scheme can be considered as private if there
exists a Probabilistic Polynomial Time(PPT) simulator S, negl as defined in
Definition 1, and a polynomial T̃ satisfying ∀ polynomials T > T̃ , the PRAM
algorithms A whose running time is at most t which is smaller than T , all mes-
sages m ∈ {0, 1}∗ and ∀λ ∈ N, the following statement is satisfied:∣∣∣∣∣∣∣∣

Pr

[
A(pk,m,C, π) = 1 :

(pk, sk)← KeyGeneration(1λ)
σ ← SignatureGeneration(sk,m)

(C, π)← Commit(σ, T )

]
-Pr

[
A(pk,m,C, π) = 1 : (pk, sk) ← KeyGeneration(1λ)

(C, π,m) ← S(pk, T )

]
∣∣∣∣∣∣∣∣

≤ negl(λ).

2.12.2 Security Requirements for Proxy Signatures In the proxy sig-
natures with the delegation by the warrant, several security requirements play
a crucial role [22]. Verifiability ensures that the validity of a proxy signature
can be confirmed by any party, including the warrantor or a third party. Strong
unforgeability guarantees that generating a valid proxy signature without the
proxy signer’s private key is computationally infeasible, preventing unauthorized
parties from creating fraudulent signatures. Strong undeniability establishes ev-
idence or proof to prevent the proxy signer from denying their actions. Strong
identifiability enables the unique identification of the proxy signer. Finally, the
prevention of misuse ensures that the delegated authority is used only within the
defined limits and restrictions specified by the warrant, preventing any unautho-
rized or improper use of the signing rights.

2.12.3 Security Requirements for Multi-signatures As an expected se-
curity property, the unforgeability of multi-signatures is important because it
enhances security by preventing unauthorized parties from creating valid sig-
natures. It ensures that transactions require the consensus and cooperation of
multiple parties, reducing the risk of fraud, enabling distributed trust, and pro-
viding accountability in digital transactions.
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Definition 3 (Unforgeability). We define an opponent A as a (τ, qS , qH , ϵ)-
forger for a multi-signature if it can complete the following game within time τ .
They can make qS-many signing queries, qH-many random oracle queries, and
they win with a probability of ϵ as a bare minimum. We say that a multi-signature
is (τ, qS , qH , ϵ)-unforgeable if there is no such individual capable of forging.

3 Verifiable Timed Commitments within Signature
Schemes

Considering the usage and the efficiency of VT-BLS, VT-ECDSA, and VT-
Schnorr structures defined for VTS, which other signing algorithms can be used
with them is discussed in this study. Adding accountability to the chosen VTS
has been one of our main motivations. In this context, we chose accountable
subgroup multi-signatures due to their default accountability feature and ac-
countable proxy signatures that have many applications today. In this section,
we explained our proposals for those signature schemes blended with the VTC
concept. While creating these designs, we slightly modified the existing algo-
rithm structures at some points and made them suitable for the timed signa-
ture/commitment structures.

3.1 Verifiable Accountable Timed Proxy Signatures (VAT-PS)

In this section, we introduce the “Verifiable Accountable Timed Proxy Signatures
(VAT-PS)” which presents three practical construction scenarios for pairing-
based proxy signature schemes. Our scheme focuses on incorporating verifiability,
accountability, and timed cryptography to define a proxy signature providing all
of these properties in a single scheme. Unlike the traditional proxy signatures,
our design brings a novel approach by using timed commitments during the
delegation process or signing process which allows a design of a proxy signature
to involve only the original signer and the proxy signer. That means, there is
no need to have a trusted or semi-trusted third party in such a proxy scheme.
Its consideration of verifiability and accountability makes our proposal a desired
digital signature design because it provides better transparency and traceability.
Our proposed scenarios use the delegation by warrant type of proxy design. The
warrant, generated by the original signer, plays a crucial role in establishing the
accountability and trustworthiness of the delegation process in our scheme. In
our schemes, the warrant consists of the membership keys of the users and the
information about the message to be signed. Moreover, we consider our VAT-
PS as a two-person multi-signature scheme consisting of the original signer and
the proxy signer. In such schemes, both the membership key and the individual
signature calculation part of the ASM structure proposed by Boneh et al. [15]
are quite suitable. However, instead of using the individual signature generation
of the ASM scheme directly, we slightly modify it to be compatible with the
timed commitments proposed in [4]. The proposed schemes are given under the
following three scenarios.
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3.1.1 Scenario 1-VAT-PS by timed delegation In the first scenario, we
aim to allow the original signer to delegate their signing rights to a proxy sig-
nature with a specific condition. The delegation is timed, meaning that after a
specific time T , the proxy signature gains the authority to sign on behalf of the
original signer. This scenario is a pretty suitable use case to apply timed signa-
tures. To achieve this, it is intended that the original signer signs the warrant
with the timed signature and sends it to the proxy signer. In this way, the au-
thority can only be used in the future. Figure 1 shows the high-level construction
of the timed delegation of the signature and the steps are explained below.

1. Key Generation: The original signer and the proxy signer generate their
key pair, (ski, pki) as the same generation procedure as the BLS scheme. For
simplicity, we call the original signer user 1 and the proxy signer as user 2.
Therefore, their key pairs are (sk1, pk1) and (sk2, pk2), respectively.

2. Setup: The setup process uses the ASM group setup parameters and func-
tions (H0, H1 and H2 are defined such that H0 and H2 map binary strings
to G1 and H1 maps binary strings to Zq.) with an additional hash function
defined as H3 : G1 → Zq. Therefore, considering one original signer and one
proxy signer in the process, the group setup algorithm works as follows. Both
users compute the aggregated public key

apk ←
2∏

i=1

pk
H1(pki,{pk1,pk2})
i .

Let H1(pki, {pk1, pk2}) be parsed as ai. Calculating the membership keys is
similar to the ASM, both the original signer and the proxy signer have

mki ←
2∏

j=1

µij .

3. (Timed) Delegation: As a part of the delegation process, the original
signer first produces a warrant value of w. Then, the original signer computes
signO ← H0(apk,w)

sk1·H3(mk1). Let k be the value of sk1 ·H3(mk1) in Zq.
Then, k can be considered as the new secret key of the original signer. In this
case, gk2 = pk′ is the new public key of the original signer. Since the signO is
a BLS signature of apk,w with the new modified keys of the original signer,
it is compatible with the VT-BLS structure.

(a) Setup phase: Run ZKSetup(1λ) to generate crsrange. Generate public
parameters

pp← LHTLP.PuzzleSetup(1λ, T )

and output crs := (crsrange, pp).
(b) Commit and prove phase: For input (crs, wit), follow the steps.

-wit := signO, crs := (crsrange, pp), pk
′ is the public key generated as in

the BLS scheme, m is apk,w which is used as a message.
-For all i ∈ [t− 1], sample αi ← Zq and fix σi = H(m)αi and hi := gαi

2 .
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-For all i ∈ {t, . . . , n} compute:

σi =

 σ∏
j∈[t−1] σ

lj(0)
j

li(0)
−1

(9)

and

hi =

 pk′∏
j∈[t−1] h

lj(0)
j

li(0)
−1

, (10)

where li is the i-th Lagrange Polynomial basis.
-For i ∈ [n], generate puzzles and proofs

ri ← {0, 1}λ, Zi ← LHTLP.PuzzleGeneration(pp, σi; ri)

and

πrange,i ← ZKProve(crsrange, (Zi, 0, 2
λ, T ), (σi, ri)),

respectively.
-Compute

I ← H ′(pk
′
, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

-Output the commitment C := (Z1, . . . , Zn, T ) and corresponding range
proof which is

π := (hi, πrange,ii∈[n], I, {σi, ri}i∈I).

Therefore, the original signer can compute the VT-BLS of signO to send the
signature to the proxy signer as a verifiable timed signature on the warrant.
In the end, we can consider w as a valid warrant value whose signature can
only be opened after some pre-defined time T and can be verified.

4. Proxy Signature Generation:
Note that, since the warrant is sent in a verifiable manner, the signature of
the warrant and the committed shares of its signature can be verified during
the verification phase before opening the commitments.
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(a) Verification phase: (crs, pk
′
,m,C, π) is the input values and the Vrfy

algorithm works as follows:
-Parse C := (Z1, . . . , Zn, T ), π := (hi, πrange,ii∈[n], I, {σi, ri}i∈I) and crs :=

(crsrange, pp).
-If any of the below conditions are correct, the Vrfy algorithm outputs
0:
i. There is j /∈ I satisfying∏

i∈I

h
li(0)
i .h

lj(0)
j ̸= pk

′
.

ii. There is i ∈ [n] satisfying

ZKVerify(crsrange, (Zi, 0, 2
λ, T ), πrange,i) ̸= 1.

iii. There is i ∈ I satisfying

Zi ̸= LHTLP.PuzzleGeneration(pp, σi; ri)

or
e(g2, σi) ̸= e(hi, H(m)).

iv. I ̸= H ′(pk
′
, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

After time T passed, the proxy signer can force open the VTS and the
proxy key (signO, w) can be obtained. There is also another option that
the original signer chooses to provide a mechanism that opens all the
committed values (Open phase) after time T automatically. This is com-
pletely optional and depends on the original signer’s choice.
i. Open phase: The result of the open phase is opening the commit-

ment and receiving (signO, {ri}i∈[n]). In this case, the committer is
expected to open at least the puzzles for the challenge set I chosen
by the verifier.

ii. Force Open phase: This phase takes input C := (Z1, . . . , Zn, T )
and works as follows:
-Performs σi ← LHTLP.PuzzleSolve(pp, Zi) for i ∈ [n] and receives
all the signature shares. It should be observed that, given the com-
mitter has revealed t − 1 puzzles, the Force Open step will only
involve solving (n − t + 1) puzzles. In [4], the possibility of solving
one puzzle instead of n− t+1 puzzles is explained in detail with the
help of LHTLP.
-Output signO :=

∏
j∈[t](σj)

lj(0) by considering the first t signatures
shares are valid.

After all the verification of the timed signature is completed, the proxy
signer is ready to sign the messages.
Let m be a message to be signed by the proxy signature on behalf of the

original signer. The proxy signer first calculates g
sk2·H3(mk2)
2 , names it

as p and makes it public. Then, the proxy signer signs m by computing
signP ← H0(apk,w,m)sk2·H3(mk2).
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(b) Proxy Signature Verification:
Given the values (signP , apk, w,m, p), the verifier accepts the proxy sig-
nature signP if the equation e(signP , g2) = e(H0(apk,w,m), p) holds.

3.1.2 Scenario 2-VAT-PS by time-bounded delegation In the second
scenario, we aim to allow the original signer to delegate their signing rights to
a proxy signature for a strictly limited duration in a verifiable and accountable
way. Upon expiration of the temporary authorization, the warrant is added to a
public revocation list and should no longer be used. This method can be thought
of as similar to the concept of certificate transparency in digital certificates. Since
the temporary authorization will be public when it is added to the revocation
list, it is assumed that the information it contains is not confidential. In addition,
since the warrant does not have to contain the duration period for the signing
rights, we prevent fraudulent activities over the warrant or the need for a trusted
third party to check if the warrant contains the intended time limit. The steps
are explained as follows:

1. Key Generation: Same as scenario 1.
2. Setup: Same as scenario 1.
3. (Time-bounded) Delegation: As a part of the time-bounded delegation

process, the original signer first produces a warrant value of w. Then, the
original signer calculates gw2 to make it compatible with the VTC. In the
delegation process, the original signer computes the V TC of the w and pub-
lishes it publicly, and sends the original w to the proxy signer, which is similar
to scenario 1 but using VTC protocol instead of VTS. After the committed
time T passed, the warrant value is written in a public revocation list. In
this way, the proxy signer will only be eligible to sign messages on behalf of
the original signer before the revocation.

4. Proxy Signature Generation:
Note that, since the warrant is published in a verifiable way, the proxy signer
can easily verify the committed value with the verification step of V TC.
Let m be the message to be signed by the proxy signature on behalf of

the original signer. The proxy signer first calculates p := g
sk2·H3(mk2)
2 , and

makes it public. Then, the proxy signer signs m by computing signP ←
H0(apk,w,m)sk2·H3(mk2).

5. Proxy Signature Verification:
Given the values (signP , apk, w,m, p), the verifier accepts the proxy signa-
ture signP if w is not in the revocation list and the equation e(signP , g2) =
e(H0(apk,w,m), p) holds.

Figure 2 shows the high-level construction of the time-bounded (i.e. tempo-
ral) delegation of the signature.

3.1.3 Scenario 3-VAT-PS as a timed signature In the third scenario, we
aim to allow the proxy signer to sign documents on behalf of the original signer
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Fig. 2: VAT-PS by Time-bounded Delegation

but also endow them with the ability to apply timed signatures. As a delegation
rule, the original signer authorizes the proxy signer, but preconditions that the
signature of the message can only be opened after time T . This expectation can
be found in the warrant. The steps are explained as follows:

1. Key Generation: Same as scenario 1.
2. Setup: Same as scenario 1.
3. Delegation: As a part of the delegation process, the original signer first

produces a warrant value of w. Then, the original signer computes signO ←
H0(apk,w)

sk1·H3(mk1). Let k := sk1 ·H3(mk1) mod q. Then, k can be con-
sidered as the new secret key of the original signer. In this case, r = gk2 is
the new public key of the original signer. The proxy keys to be used during
the proxy signing process are the signature of the warrant and the warrant
itself.

4. (Timed) Proxy Signature Generation:
Let m be the message to be signed by the proxy signature on behalf of the
original signer. The proxy signer needs to first verify that e(signO, g2) =

e(H0(apk,w), r) holds. The proxy signer then calculates p := g
sk2·H3(mk2)
2 ,

and makes it public. Then, the proxy signer signs m by computing signP ←
H0(apk,w,m)sk2·H3(mk2). By using VT-BLS structure for the signP under
the new secret key sk2 ·H3(mk2) and the new public key p, the proxy signer
calculates the timed version of its signature by using the VT-BLS process
and calls it VAT-PS and sends it to the receiver.

5. Proxy Signature Verification:
After time T of the VAT-PS passed, the signature can be obtained by the
force open. Then, given the values (signP , apk, w,m, p), the verifier accepts
the proxy signature signP if the equation e(signP , g2) = e(H0(apk,w,m), p)
holds. Also, since the commitments are designed as verifiable, the whole
signature scheme and its committed shares are verifiable.

Figure 3 shows the high-level construction of the timed proxy signature con-
struction.
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3.1.4 Security Analysis of VAT-PS Schemes In this section, we discuss
the security requirements for the proposed constructions in terms of several
considerations used for proxy signature schemes and verifiable timed commit-
ments/signatures.

3.1.4.1 VTS/VTC Security: The security analysis of VTS/VTC is explained
here:
Scenario 1:

– Theorem 1 (Soundness). It can be inferred that if LHTLP is a time-lock
puzzle with perfect correctness, then scenario 1 outlined in Figure 1 meets
the soundness requirements outlined in Definition 1, assuming the random
oracle model.

– Theorem 2 (Privacy). It is asserted that if LHTLP is a secure time-lock
puzzle, then scenario 1 outlined in Figure 1 meets the privacy requirements
outlined in Definition 2 within the random oracle model.

The proofs can be found in Appendix A and B, respectively.

Scenario 2:

– Theorem 3 (Soundness). It can be inferred that if LHTLP is a time-lock
puzzle with perfect correctness, then scenario 2 outlined in Figure 2 meets
the soundness requirements outlined in Definition 1, assuming the random
oracle model.

– Theorem 4 (Privacy). It is asserted that if LHTLP is a secure time-lock
puzzle, then scenario 2 outlined in Figure 2 meets the privacy requirements
outlined in Definition 2 within the random oracle model.

The proofs can be found in Appendix C and D, respectively.

Scenario 3:

– Theorem 5 (Soundness). It can be inferred that if LHTLP is a time-lock
puzzle with perfect correctness, then scenario 3 outlined in Figure 3 meets
the soundness requirements outlined in Definition 1, assuming the random
oracle model.
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– Theorem 6 (Privacy). It is asserted that if LHTLP is a secure time-lock
puzzle, then scenario 3 outlined in Figure 3 meets the privacy requirements
outlined in Definition 2 within the random oracle model.

The proofs are very similar to ones given in Appendix A and B, respectively.

The theorems play a crucial role in verifying the security of the timed com-
mitments that form the foundation of the proposed schemes. Alternatively, when
assessing the proposed schemes based on broader considerations, we can make
the following considerations:

3.1.4.2 Verifiability: Verifiability is one of the most important requirements
while designing digital signature schemes. Observe that, since we use verifiable
timed commitments in each proposal, the committed values are already verifiable
by default verifiability property of the VTS/VTC. We prove the verifiability of
the proxy signature itself as follows:

Scenario 1: Given (signP , apk, w,m, p), signP should hold the equation
e(signP , g2) = e(H0(apk,w,m), p).

We can show its correctness as follows:

e(H0(apk,w,m), p) = e(H0(apk,w,m), g
sk2·H3(mk2)
2 )

= e(H0(apk,w,m)sk2·H3(mk2), g2)

= (signP , g2).

Note that, since scenarios 2 and 3 use a similar signing algorithm, their
verification can be shown similarly.

3.1.4.3 Strong Unforgeability: In all of the proposed scenarios, we use a group
setup process that is used to create membership keys for the original signer and
proxy signer. Since the secret key of the original signer is used when generating
the proxy signer’s membership key, and the private key of the proxy signer is
used in the signing process, no one other than the proxy signer can generate
this signature. Even the original signer cannot create the proxy signature since
it requires the private key of the proxy signer.

3.1.4.4 Strong Undeniability: In all of the proposed scenarios, the warrant w
contains the membership keys and determines the involvement of the original
and proxy signers. Also, since the aggregated public key apk, which is produced
by the public keys of both users, is used to verify the signature, our schemes
provide the undeniability property.

3.1.4.5 Strong Identifiability: All verification processes need apk and the war-
rant values. Also, the warrant contains the membership key of the proxy signer
which provides identifiability.
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3.1.4.6 Prevention of Misuse: Since the warrant contains the information about
the message to be signed and the responsibility of the proxy signer, the misuse
of the proxy signer is prevented in our schemes. The warrant is used in the
verification process, therefore anyone can check if the information is valid or
not.

3.1.5 Computational Complexity of VAT-PS Schemes In this section,
we calculate the computational complexity of the proposed VAT-PS algorithms
and two recently proposed pairing-based proxy signature schemes [12, 13]. Con-
sidering that there exists no proxy signature scheme constructed using verifiable
timed commitments with the time lock puzzles, the complexity of the commit-
ment creation process counts as an extra cost. The comparison of those algo-
rithms shows that our proposed schemes bring more complexity in terms of com-
putation because of the timed commitment calculation complexity. However, our
schemes provide additional transparency and traceability which make them more
suitable for some use cases in decentralized infrastructures such as blockchain.
In addition, VT-BLS [4] offers the advantages of homomorphism while creating
time lock puzzles. This opportunity lets the receiver of the puzzles solve one
single puzzle instead of more during the force open phase. Therefore, we be-
lieve that our proposal is quite suitable for specific environments. The following
notations are used in Table 1:

– We calculate the computational complexity of the delegation, delegation ver-
ification, proxy signature generation, and proxy signature verification steps
to compare our results with [12,13]. Note that, we decide to separate the del-
egation verification step since it brings additional cost when the delegation
values themselves need to be checked.

– We also mention the revocation mechanism used in the proposed schemes
and the articles to highlight where the delegation and signing period is given.

– TH is the number of hash queries for H0, H1, H2, H3.
– TSM is the time complexity for scalar multiplication.
– TMM is the time complexity for modular multiplication.
– Tpair is the time complexity for pairing operation for e.
– TExp is the time complexity for modular exponentiation.
– TI is the time complexity for the modular inverse.
– TV TSC

is the time complexity for the VT-BLS commit and prove phase.
– TV TSV

is the time complexity for the VT-BLS verification phase.
– TV TCC

is the time complexity for the VTC commit and prove phase.
– TV TCV

is the time complexity for the VTC verification phase.

3.2 Verifiable Timed Multi-signatures

In this section, we aim to design and analyze verifiable timed multi-signatures
and compare them with different types of multi-signature in a bilinear pair-
ing setup. In particular, we give an extended version of verifiable timed proxy
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Table 1: Computational complexity of the proposed VAT-PS schemes and recent
proposals for pairing-based proxy signature schemes

Proxy
Signature
Schemes

[13] [12] Our Scenario
1

Our Scenario
2

Our Scenario
3

Delegation 1TH 1TSM + 1TH 1TSM +2TH+
1TV TSC

1TExp +
1TV TCC

1TSM +
2TH + 1TExp

Delegation
Verification

1TH 2TExp + 1TH 1TV TSV 1TV TCV 2TExp + 1TH

Proxy
Signature
Generation

3TExp +
1TMM +

1TH +N.TSM

1TSM + 1TI 1TSM +
2TH + 1TExp

1TSM +
2TH + 1TExp

2TSM +
2TExp+3TH+

1TV TSC

Proxy
Signature
Verification

5TExp +
2TH +N.TSM

2TExp +
1TSM + 1TH

2TExp + 1TH 2TExp + 1TH 2TExp +
TV TSV

Revocation By the
warrant

By the
warrant

By the V TS By the V TC By the V TS

signatures, namely verifiable timed proxy multi-signatures. Then, we compute
their computational complexity and compare them with the other signature al-
gorithms. To achieve this, we propose timed versions of multi-signature schemes
within alternative scenarios. MSP is selected as the initial foundation for de-
veloping a time-based variation of a multi-signature. Nonetheless, the primary
emphasis of this research lies in timed adaptations of ASM schemes. Initially,
we introduce a modified form of MSP that necessitates users to generate VTS
for their signatures. Subsequently, we proceed to construct a revised version of
the ASM scheme, referred to as mASM, by making slight adjustments to Boneh
et al.’s original ASM scheme. After that, we use mASM in the construction of
timed versions of ASM and proxy multi-signatures.

3.2.1 Verifiable Timed Multi-signature Protocol (VT-MSP-v1) The
concept revolves around creating a multi-signature on a message m by using
VTS. To construct such a scheme, users create their signatures by MSP, see (2)
and put them in a VTS protocol to make sure that the combiner can only receive
the valid signatures after some predefined time T . Note that, since the signature
generation for individual users is similar to BLS, VT-MSP-v1 is very similar to
VT-BLS except that the initial [t− 1] signature parts are assigned as follows:

-∀i ∈ [t − 1], αi
$← Zq and fix σi = H(m)ai·αi and hi := gαi

2 where ai =
H1(pki, {pk1, . . . , pkn}). This selection does not change the calculation of the
rest of the shares, therefore the rest of the shares are defined as (12) and (13).

Each user except one can define his/her own time t ≤ T to lock the signatures.
However, if the requirement is to produce a multi-signature after some predefined
time T , at least one user should lock his/her signature with time T . Once the
time T has passed, the combiner can obtain all the individual signatures and
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calculates the multi-signature. In other words, the combiner calculates

σ =

n∏
j=1

σi.

If anyone wants to verify the created multi-signature, they can use the below
verification:

e(H0(m), apk) = e(σ, g2).

In addition, the individual signatures generated can be checked by the VTS
verification phase. Thus, it is possible to verify both the individual signatures
and the multi-signature created by the combiner using the same public keys.
Figure 4 shows the high-level construction of VT-MSP-v1.

3.2.1.1 Security of VT-MSP-v1: The security of VT-MSP-v1 depends on the
LHTLP and the unforgeability of the multi-signature as given in the theorems
below.

– Theorem 7 (Soundness). It can be inferred that if LHTLP is a time-
lock puzzle that guarantees perfect correctness, then VT-MSP-v1 outlined
in Figure 4 meets the soundness requirements outlined in Definition 1.

– Theorem 8 (Privacy). It is asserted that if LHTLP is a secure time-lock
puzzle, then VT-MSP-v1 outlined in Figure 4 meets the privacy requirements
outlined in Definition 2.
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– Theorem 9 (Unforgeability). In the random-oracle model, the VT-MSP-
v1 scheme generates an unforgeable multi-signature scheme based on the
computational co-Diffie-Hellman problem.

The proofs of Theorem 7 and 8 are similar to the ones in Appendix A, B,
and the proof of Theorem 9 can be found in Appendix E, respectively.

3.2.2 Verifiable Timed Multi-signature Protocol - VT-MSP-v2 Ver-
sion 2 of VT-MSP is similar to version 1. However, in this version, we would like
to use 1 VTS instead of n by making the combiner responsible for the timed
signature. Let us consider a payment signed by a company’s board of directors
that is requested to reach the recipient after time T passes. In such cases, sending
the produced multi-signature with the help of timed commitments is beneficial
in terms of both verifiability and efficiency.

In this scheme, first, users create their individual signatures using the MSP
signature generation scheme. After that, the combiner creates multi-signature
by calculating

σ =

n∏
j=1

σi =

n∏
j=1

H0(m)ajskj = H0(m)a1sk1+...+anskn . (11)

Since σ needs to be created as a timed signature, the combiner takes

a1sk1 + . . .+ anskn

and calls it sec. After that, the combiner creates VTS of the multi-signature as
follows:

– Setup phase: Run ZKSetup(1λ) to generate crsrange. Generate public pa-
rameters

pp← LHTLP.PuzzleSetup(1λ, T )

and output crs := (crsrange, pp).
– Commit: For input (crs, wit), follow the steps.

-wit := σ, crs := (crsrange, pp), pk is the public key value gsec2 created and
published by the combiner, m is the message.

-∀i ∈ [t− 1] , seci
$← Zq and fix σi = H(m)seci and hi := gseci2 .

-∀i ∈ {t, . . . , n} compute:

σi =

 σ∏
j∈[t−1] σ

lj(0)
j

li(0)
−1

(12)

and

hi =

 pk∏
j∈[t−1] h

lj(0)
j

li(0)
−1

(13)
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-∀i ∈ [n], calculate puzzles and corresponding proofs:

ri ← {0, 1}λ, Zi ← LHTLP.PuzzleGeneration(pp, σi; ri)

and

πrange,i ← ZKProve(crsrange, (Zi, 0, 2
λ, T ), (σi, ri))

-Calculate

I ← H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

-Publish the commitment and corresponding range proof which is

π := (hi, πrange,ii∈[n], I, {σi, ri}i∈I).

– Vrfy: (crs, pk,m,C, π) is the input values and the Vrfy algorithm works as
follows:
-Assign C := (Z1, . . . , Zn, T ), π := (hi, πrange,ii∈[n], I, {σi, ri}i∈I) and crs :=

(crsrange, pp).
-If any of the below conditions are correct, the Vrfy algorithm outputs 0:
1. There is j /∈ I satisfying ∏

i∈I

h
li(0)
i .h

lj(0)
j ̸= pk.

2. There is i ∈ [n] satisfying

ZKVerify(crsrange, (Zi, 0, 2
λ, T ), πrange,i) ̸= 1.

3. There exists i ∈ I satisfying

Zi ̸= LHTLP.PuzzleGeneration(pp, σi; ri)

or
e(g2, σi) ̸= e(hi, H(m)).

4. I ̸= H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).
– Open: The combiner is expected to open at least the puzzles for the chal-

lenge set I chosen by the verifier. Otherwise, the commitments can be opened
within the force open phase similar to VT-BLS.

As it is seen, the combiner can create a timed multi-signature when it is
authorized both to create a multi-signature and to time this signature. What
should be noted here is that it can be easily verified that the integrity of the
whole process is preserved and that the signature has not been changed, even
though it seems that the combiner has been given too much authority. Figure 5
shows our high-level construction of MSP with VTS as a version 2.
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Fig. 5: VT-MSP-v2

3.2.2.1 Security of VT-MSP-v2: The security of VT-MSP-v2 depends on the
LHTLP and the unforgeability of the multi-signature as given in the theorems
below.

– Theorem 10 (Soundness). Assuming the random oracle model, if LHTLP
is a time-lock puzzle with perfect correctness, then the VT-MSP-v2 scheme
depicted in Figure 5 satisfies the soundness criteria outlined in Definition 1.

– Theorem 11 (Privacy). If LHTLP is a secure time-lock puzzle, then VT-
MSP-v2 outlined in Figure 5 meets the privacy requirements outlined in
Definition 2.

– Theorem 12 (Unforgeability). In the random-oracle model, the VT-
MSP-v2 scheme creates an unforgeable multi-signature scheme based on the
computational co-Diffie-Hellman problem.

The proofs of theorem 10, 11, and 12 are similar to A, B, and E respectively.

3.2.3 Verifiable Timed Accountable Subgroup Multi-signatures

3.2.3.1 Modified Accountable Subgroup Multi-signatures: Boneh et al. showed
that their ASM construction is efficient and applicable in blockchain cryptosys-
tems. In this section, two modified versions of ASM are introduced. The modified
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versions of the ASM scheme, namely mASM-v1 and mASM-v2, are similar to
the ASM scheme until individual signature generation.

mASM-v1:
Individual signatures in the mASM-v1 scheme are calculated as follows:

– SignatureGen: Let H3 be defined as an additional hash function that maps
elements from G1 to Zq. A signer i calculates his signature as:

si = H0(apk,m)ski·H3(mki) (14)

and delivers si to the combiner. Note that, the aim of this modification is
creating a similar structure with VT-BLS to make it easily adaptable to the
timed version.

– Signature Aggregation: The individual signatures let the combiner construct
the set of signers S ⊆ G. After that, the combiner calculates the ASM
σ = (s, pk) where s =

∏
i∈S si and pk =

∏
i∈S pki.

– Verification: With having (par, apk, S,m, σ), anyone can check if:

e(H0(apk,m), pk) = e(s, g2)

mASM-v2:
Another modified version of ASM is introduced with authentication of the

subgroup. In this case, we want the subgroup to be known from the beginning
by creating subgroup-specific membership keys instead of membership keys. To
make the scheme simpler, individual signatures can be calculated as follows:

– SignatureGen: i ∈ S calculates his own signature as:

si = H0(apk,m)ski·H3(smki) (15)

where smki is defined as the subgroup-specific membership key and equal to∏
j∈S µij , where µij is defined in (4). Also, H3 is a hash function as defined

in mASM-v1. Then, the user sends si to the combiner.
– Signature Aggregation: By utilizing the individual signatures, the combiner

can compute the subgroup multi-signature σ = (s, pk), where s =
∏

i∈S si
and spk =

∏
i∈S pki.

– Verification: With having par, apk, spk, S,m, σ, anyone can check if

e(H0(apk,m), spk) = e(s, g2).

3.2.3.2 VTC with mASM-v1 (VT-mASM-v1): Although both mASM modifi-
cations proposed are suitable to be timed, we explained the timed mASM-v1
here as an idea, due to the similarities of the schemes. VTC usage in mASM-v1
allows a user to send their membership key to the combiner so that the combiner
can only receive individual membership keys after some predefined time T . In
this way, membership keys will not be public at the beginning of the protocol
but a combiner will be able to use them to construct a multi-signature on be-
half of a group of n people. The following steps show how a user sends their
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mk with VTC. For simplicity, assume that a user has membership key mk and
membership key shares are defined as mki.

– Setup phase: Same as VTC Setup phase.
– Commit: For input (crs, wit):

-Parse wit := sk ·H3(mk), crs := (crsrange, pp), h := gsk·H3(mk).

-∀i ∈ [t− 1], sk′i
$← Zq of the form sk ·H3(mk) and set h′

i = gsk
′
i .

-∀i ∈ t, . . . , n, compute

sk′i =

sk ·H3(mk)−
∑
j∈[t]

sk′j .lj0

 .li(0)
−1

and

h′
i =

 h∏
j∈[t] h

′lj(0)
j

li(0)
−1

where li is the i-th Lagrange polynomial basis.
-For i ∈ [n], calculate puzzles and corresponding range proofs:

ri ← {0, 1}λ, Zi ← LHTLP.PuzzleGeneration(pp, sk′i; ri)

and

πrange,i ← ZKProve(crsrange, (Zi, a, b, T ), (sk
′
i, ri)).

- Set
I ← H ′(pk, (h′

1, Z1, πrange,1), . . . , (h
′
n, Zn, πrange,n)).

-Output the commitment C := (Z1, . . . , Zn, T ) and corresponding range
proof which is

π := ({h′
i, πrange,i}i∈[n], I, {sk′i, ri}i∈I).

-Final output is (h,C, π).
– Vrfy: By using (crs, h, C, π), the Vrfy algorithm works as follows:

-Let C := (Z1, . . . , Zn, T ),
crs := (crsrange, pp) and π := ({h′

i, πrange,i}i∈[n], I, {sk′i, ri}i∈I).
-If any of the below conditions are correct, the Vrfy algorithm outputs 0.
Therefore, the expectation is that these conditions are wrong.
1. There is j /∈ I satisfying ∏

i∈I

h
′li(0)
i .h

′lj(0)
j ̸= h.

2. There is i ∈ [n] satisfying

ZKVerify(crsrange, (Zi, a, b, T ), πrange,i) ̸= 1.

3. There is i ∈ I satisfying Zi ̸= LHTLP.PuzzleGeneration(pp, sk′i; ri) or

hi = gsk
′
i .

4. I ̸= H ′(pk, (h′
1, Z1, πrange,1), . . . , (h

′
n, Zn, πrange,n)).
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– Open: The result of the open phase is opening the commitment and receiv-
ing (sk ·H3(mk), {ri}i∈[n])). The combiner is expected to open at least the
puzzles for the challenge set I chosen by the verifier.

– ForceOp: This phase takes C := (Z1, . . . , Zn, T ) and then performs the
following steps.
-Calculates sk′i ← LHTLP.PuzzleSolve(pp, Zi) for i ∈ [n] to retrieve all mem-
bership key shares. It should be observed that, given the committer has re-
vealed t−1 puzzles, the Force Open step will only involve solving (n− t+1)
puzzles.
-Publish sk ·H3(mk) :=

∑
j∈[t](sk

′
j).lj(0) by considering the initial t shares

are correct.

In this scenario, a combiner cannot change the membership keys as they are
received within a verifiable commitment and are related to the user’s secret keys.
Also, a combiner cannot create an invalid multi-signature on behalf of a group of
n people, as verification of the multi-signature requires aggregated public keys of
users which can be verified by any person. Note that, since the combiner needs to
choose subgroup S to create mASM, they do not have to calculate all individual
signatures of users. In that case, the combiner can only calculate the signatures
of a subgroup which decreases computational load. Also, since multi-signature is
defined as the multiplication of individual signatures in the subgroup, the com-
biner can first calculate the sum of membership keys of the chosen subgroup and
uses it to calculate multi-signature. This method can be considered a delegated
multi-signature scheme. VT-mASM-v1 can also be reconstructed if the subgroup
is known from the beginning of the protocol. Figure 6 shows the high-level con-
struction of VT-mASM-v1.

3.2.3.3 Security of VT-mASM-v1:

– Theorem 13 (Soundness). If LHTLP is a time-lock puzzle with perfect
correctness, then VT-mASM-v1 illustrated in Figure 6 meets the soundness
requirements outlined in Definition 1, assuming the random oracle model.

– Theorem 14 (Privacy). If LHTLP is a secure time-lock puzzle, then VT-
mASM-v1 outlined in Figure 6 meets the privacy requirements outlined in
Definition 2.

– Theorem 15 (Unforgeability). In the random-oracle model, the VT-
mASM-v1 scheme generates an unforgeable accountable subgroup multi-
signature scheme based on the computational co-Diffie-Hellman problem.

The proofs of theorem 13, 14, and 15 are similar to C, D, and E respectively.

3.2.4 Verifiable Accountable Timed Proxy Multi-signatures (VAT-
PMS): Proxy multi-signature is a cryptographic mechanism that allows a proxy
signer to sign messages or transactions on behalf of multiple original signers.
Instead of each original signer individually signing a message, the proxy entity
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Fig. 6: VT-mASM-v1

holds the necessary private keys and generates a collective signature. In other
words, it is similar to proxy signatures, but instead of one original signer, we
have more than one original signer. It is particularly useful in scenarios where
multiple signers need to delegate their signing power to a trusted intermediary.

In this section, we explain our proposal as a timed version of a proxy multi-
signature scheme. While constructing this design, we use our mASM-v1 scheme
suggested above as a multi-signature. In addition, we use scenario 3, which we
suggest in the proxy signature design above, during the timed signature con-
struction phase of the proxy multi-signature. In this way, we create a unified
proxy multi-signature using the combination of the designs we suggested.

3.2.4.1 VAT-PMS as a timed signature: In this scheme, we aim to allow the
proxy signer to sign documents on behalf of a group of original signers but also
endow them with the ability to apply timed signatures. Before the delegation,
a warrant is assumed to be created and it needs to be signed by a group of
original signers. In this one-time multi-signature creation of the warrant, we
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choose mASM-v1. While creating mASM over the warrant, wlog, we assume
that original signer 1 is the combiner of the mASM who interacts with the proxy
signer. As a delegation rule, the original signers authorize the proxy signer, but
preconditions that the signature of the message can only be opened after time
T . This expectation can be found in the warrant. The steps are explained as
follows:

1. Key Generation: Let o1, . . . , on be the list of n-original signers, and let
P be the n + 1-th signer, who is a proxy signer. The original signers gen-
erate their key pair (ski, pki) and the proxy signer generates his key pair
skn+1, pkn+1 as the same key generation procedure as the BLS scheme. For
simplicity, we delegate ”the combiner rights” to o1. Therefore, the key pairs
of o1 and P are (sk1, pk1) and (skn+1, pkn+1), respectively.

2. Setup: The setup process uses the ASM group setup parameters and func-
tions (H0, H1 and H2 are defined such that H0 and H2 map binary strings
to G1 and H1 maps binary strings to Zq.) with an additional hash function
defined as H3 : G1 → Zq. Therefore, considering n original signers and one
proxy signer in the process, the group setup algorithm works as follows. All
users compute the aggregated public key

apk ←
n+1∏
i=1

pk
H1(pki,{pk1,...,pkn+1})
i .

Let H1(pki, {pk1, . . . , pkn+1}) be parsed as ai. Calculating the membership
keys is similar to the ASM, both the original signers and the proxy signer
have

mki ←
n+1∏
j=1

µij .

3. Delegation: As a part of the delegation process, the original signers first
produce and agree on a common warrant value of w. After that, n original
signers create their own signature σi = H0(apk,w)

ski·H3(mki) and sends them
to the combiner, which is o1 in our case. o1 first forms the set of signers S ⊆
G. Then, the combiner computes the aggregated subgroup multi-signature
σ = (mASMO, pk) where mASMO =

∏
i∈S σi and pk =

∏
i∈S pki. Here,

mASMO is the signature of the warrant and it is sent by the o1 to the proxy
signer.

4. (Verifiable Accountable Timed) Proxy Multi-Signature Genera-
tion:
Let m be the message to be signed by the proxy signature on behalf of the
group of original signers. The proxy signer needs to first verify that the war-
rant and its signature are indeed valid, i.e. e(mASMO, g2) = e(H0(apk,w), pk)

holds. The proxy signer then calculates p := g
skn+1·H3(mkn+1)
2 , and makes it

public. Then, the proxy signer signs m by computing

signP ← H0(apk,w,m)skn+1·H3(mkn+1)
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By using VT-BLS structure for the signP under the new secret key skn+1 ·
H3(mkn+1) and the new public key(p) as g

skn+1·H3(mkn+1)
2 , the proxy signer

calculates the timed version of its signature by using VT-BLS process and
calls it VAT-PMS and sends it to the receiver. It can be noticed here that the
signing process is accountable, delegated to the proxy signer by the original
signers, and the proxy multi-signature is created.

5. (Verifiable Accountable Timed) Proxy Multi-Signature Verifica-
tion:
After time T of the VAT-PMS passed, the signature can be obtained by
the open or force open. Then, given the values (signP , apk, w,m, p), the
verifier accepts the proxy signature signP if the equation e(signP , g2) =
e(H0(apk,w,m), p) holds. Also, since the commitments are designed as ver-
ifiable, the whole signature scheme and its committed shares are verifiable.

Figure 7 shows the high-level construction of the timed proxy signature con-
struction.

Proxy Signer

Original Signers

Combiner Keys: Keys:

Signing a message: 

Receiver

ForceOpen
After time

Combiner(Original signer 1) creates
 mASM-v1 of the warrant:

Fig. 7: VAT-PMS

As seen in VAT-PMS, the mASM creation process is delegated to one of the
original signers. Here, it is aimed to make a more efficient design, and the struc-
ture in scenario 3 is tried to be preserved by determining the person in charge
to hand the delegation process to the proxy signer. It is possible to construct
different schemes where mASM is created by a different combiner(someone not
from the original signer group) or other multi-signature protocols can be used
except mASM.

3.2.4.2 Security of VAT-PMS:

– Theorem 16 (Soundness). If LHTLP is a time-lock puzzle with perfect
correctness, then VT-mASM-v1 illustrated in Figure 7 meets the soundness
requirements outlined in Definition 1, assuming the random oracle model.

– Theorem 17 (Privacy). If LHTLP is a secure time-lock puzzle, then VT-
mASM-v1 outlined in Figure 7 meets the privacy requirements outlined in
Definition 2.

– Theorem 18 (Unforgeability). In the random-oracle model, the VT-
mASM-v1 scheme generates an unforgeable accountable subgroup multi-
signature scheme based on the computational co-Diffie-Hellman problem.

The proofs of theorem 16, 17, and 18 are similar to A, B, and E respectively.
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3.2.5 Performance Evaluation of the Proposed Multi-signatures: In
this section, we calculate the time complexity of the VT-BLS algorithm [4] and
our proposed VT-based multi-signature schemes. The complexity of VT-BLS
was calculated with our notation to understand how much more calculation
would be needed to create a verifiable timed multi-signature using the method
in a pairing-based verifiable timed signature algorithm. This comparison makes
sense since all of our proposed VT-based schemes are also pairing-based and
considering pairing is an expensive operation compared to other digital signature
schemes (Schnorr, ECDSA, etc.) decreasing the pairing amount is an important
improvement. Some operations are assumed to have relatively low computational
complexity and are therefore ignored.

Table 2: Computational complexity of VT-BLS and proposed VT-based multi-
signature schemes

VT-BLS [4] TH .TExp1 + Tpair + TV TSC + TV TSV

VT-MSP-v1 TH .TExp1 + TS .(TMExp2 + TExp1) + TMExp2 + Tpair + n.(TV TSC +
TV TSV )

VT-MSP-v2 TH .TExp1 + TS .(TMExp2 + TExp1) + TMExp2 + Tpair + (TV TSC +
TV TSV )

VT-mASM-v1 TH .max(TMExp2 + 2TExp1) + TG.(n− 1)TExp1 + TS .(TMExp2 +
TExp1) + Tpair + 3TMExp1 + n.(TV TCC + TV TCV )

VAT-PMS TH .max(TMExp2 + 3TExp1) + TG.(n− 1)TExp1 + TS .(TMExp2 +
TExp1) + Tpair + 3TMExp1 + (TV TSC + TV TSV )

Note that, n is the number of users to join multi-signature and s is the
subgroup size for ASM. TH is the total hash queries for H0, H1, H2, H3. TG

is the time complexity for group set-up queries. TS is the time complexity for
signing queries. Tpair is the time complexity for pairing operation for e. TExp1 is
the time complexity for exponentiation in G1. TExp2 is the time complexity for
exponentiation in G2. TMExp1

is the time complexity for multi-exponentiation
in G1. TMExp2

is the time complexity for multi-exponentiation in G2. TV TSC

is the time complexity for VTS Commit and Prove phase. TV TSV
is the time

complexity for the VTS Verification phase. TV TCC
is the time complexity for

VTC Commit and Prove phase. TV TCV
is the time complexity for the VTC

Verification phase.
Table 2 illustrates the extent to which our constructions introduce additional

costs to covert VT-based signatures into a VT-based multi-signature. Consid-
ering the amount of puzzle generation, the computationally feasible proposed
multi-signature scheme is VT-MSP-v2 since it only uses 1 VTS. VT-MSP-v2
only brings TS .(TMExp2 + TExp1) + TMExp2 + Tpair as an additional cost to
convert VT-signature(VT-BLS) into VT-multi-signature. VT-MSP-v1 and VT-
mASM algorithms are computationally expensive, but they would also be useful
in such scenarios where each user wants their signature to be opened after some
time t.
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4 Conclusion and Future Work

This study explores the potential and significance of integrating verifiable timed
commitments into signature schemes. The utilization of verifiable timed commit-
ments enables the generation of secure and tamper-evident digital signatures,
bolstering the integrity of time-sensitive mechanisms. Thus, these structures can
be used effectively in applications that require signing where time dependency
can be used as an advantage. In that sense, we think it would be appropriate to
timed proxy signatures and designs that require multiple signatures, which are
found in many current applications. The timed signing designs we recommend
address these mechanisms in terms of both security and complexity. As future
work, further research is needed to enhance the efficiency and scalability of the
proposed timed signature schemes. Optimizing the computational costs and com-
munication overheads associated with these protocols can significantly improve
their practical feasibility. Additionally, exploring the applicability of verifiable
timed commitments in other time-sensitive scenarios beyond signature schemes
could expand their utility and impact. For instance, investigating their potential
in areas such as secure time-stamping, contract enforcement, or decentralized
finance can provide valuable insights.
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A Proof of Theorem 1

Proof. In this context, we are focusing on the interactive version of our proto-
col, and it is worth noting that the soundness of the non-interactive protocol can
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be inferred from [23] in the case of constant-round protocols. Let A be an ad-
versary who breaks the sound by producing the commitment C = (Z1, . . . , Zn)
such that ∀Zi /∈ I, satisfies LHTLP.PuzzleSolve(pp, Zi) = σ̃i where e(g2, σ̃i) ̸=
e(hi, H(m)).

Let us suppose the opposite is true. In that case, it would be possible to
recover a legitimate signature on the message m by interpolating σ̃i with σii∈I ,
which meets the aforementioned inequality condition. Also, let Zis be well-
formed. In this case, with given Zi values, through the process of solving the
puzzles and confirming which signature shares meet the inequality relation, we
can obtain a polynomial-time solution for the set I

′
. When I

′
= I, the veri-

fier can accept the statement provided by the prover, indicating that the prover
accurately guessed a randomly chosen n-bit string with n/2-many 0’s. This sit-

uation could happen with a probability ((n/2)!)2

n! . In the non-interactive variant
of our protocol, the above statement remains true in the face of any number of
simulated proofs, so long as the NIZK has the property of simulation-soundness.
Therefore, starting with a simulation-sound NIZK makes our scheme simulation-
sound as well.

B Proof of Theorem 2

Proof. Considering all VTS operations are identical for any time value t, it is
enough to prove only one of them. Assume that A is an adversary of depth
bounded by T ϵ, where 0 ≤ ϵ < 1 and T is the predefined time for the puzzles.
We construct a series of hybrids to be used in S which is similar to VT-BLS
privacy proof [4].

– Hybrid H0 : Original execution.
– Hybrid H1 : In this case, the random oracle is created using lazy sampling,

which distinguishes it from H0 [24]. Moreover, the set I∗, comprising t − 1
elements, is selected beforehand and can be used in the cut-and-choose step.

– HybridH2 : Sample a simulated crsrange. As it is used in the Zero-Knowledge
setup, changing crsrange is indistinguishable.

– Hybrid H3 . . .H3+n : ∀i ∈ [n], the NIZK proof πrange,i is calculated by the
simulator in the hybrid H3+i. As it is used in the Zero-Knowledge setup, the
distance between all the hybrids is negligibly small.

– Hybrid H3+n . . .H3+2n−t+1 : ∀i ∈ [n − (t − 1)], the puzzle of the i-th value
of the complement of the set I∗ is calculated by

LHTLP.PuzzleGeneration(pp, 0λ; ri).

The A is depth-bounded and therefore indistinguishability is based on the
security of the puzzle.

– Hybrid H3+2n−t+2 : The prover computes cut-and-choose protocol and cor-
responding puzzles as in the VT-MSP-v1 by choosing the first t − 1 share
i ∈ I∗.

Here, S is the same as the last hybrid. There is no information processed
about the witness. Therefore, the algorithm is private against the adversary A.
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C Proof of Theorem 3

Proof. In this context, we are focusing on the interactive version of our protocol,
and it is worth noting that the soundness of the non-interactive protocol can be
inferred from [23] in the case of constant-round protocols. Let A be an adversary
who breaks the sound by producing the commitment C = (Z1, . . . , Zn) such that

∀Zi /∈ I, satisfies LHTLP.PuzzleSolve(pp, Zi) = m̃ki where hi ̸= gm̃ki .
Let us suppose the opposite is true. In that case, it would be possible to re-

cover a legitimate membership key of a user by interpolating m̃ki with {mki}i∈I ,
which meets the aforementioned inequality condition. Also, let Zis be well-
formed. In this case, with given Zi values, through the process of solving the
puzzles and confirming which signature shares meet the inequality relation, we
can obtain a polynomial-time solution for the set I

′
. When I

′
= I, the veri-

fier can accept the statement provided by the prover, indicating that the prover
accurately guessed a randomly chosen n-bit string with n/2-many 0’s. This sit-

uation could happen with a probability ((n/2)!)2

n! . In the non-interactive variant
of our protocol, the above statement remains true in the face of any number of
simulated proofs, so long as the NIZK has the property of simulation-soundness.
Therefore, starting with a simulation-sound NIZK makes our scheme simulation-
sound as well, similar to Theorem 1.

D Proof of Theorem 4

Proof. Considering all VTC operations are identical for any time value t, it is
enough to prove only one of them. Assume that A is an adversary of depth
bounded by T ϵ, where 0 ≤ ϵ < 1 and T is the predefined time for the puzzles.
We construct a series of hybrids to be used in S which is similar to VT-BLS
privacy proof [4].

– Hybrid H0 : Original execution.
– Hybrid H1 : In this case, the random oracle is created using lazy sampling,

which distinguishes it from H0. [24]. Moreover, the set I∗, comprising t− 1
elements, is selected beforehand and can be used in the cut-and-choose step.

– HybridH2 : Sample a simulated crsrange. As it is used in the Zero-Knowledge
setup, changing crsrange is indistinguishable.

– Hybrid H3 . . .H3+n : ∀i ∈ [n], the NIZK proof πrange,i is calculated by the
simulator in the hybrid H3+i. As it is used in the Zero-Knowledge setup, the
distance between all the hybrids is negligibly small.

– Hybrid H3+n . . .H3+2n−t+1 : ∀i ∈ [n − (t − 1)], the puzzle of the i-th value
of the complement of the set I∗ is calculated by the

LHTLP.PuzzleGeneration(pp, 0λ; ri)

. The A is depth-bounded and therefore indistinguishability is based on the
security of the puzzle.

39



– Hybrid H3+2n−t+2 : The prover computes cut-and-choose protocol and cor-
responding puzzles as in the VT-mASM-v1 by choosing the first t− 1 share
i ∈ I∗.

Here, S is the same as the last hybrid. There is no information processed
about the witness. Therefore, the algorithm is private against the adversary A.

E Proof of Theorem 9

Proof. Following the proof of [15] for MSP protocol where the message to be
signed is m, we can put anything on a message set. The reason is that the sign-
ing algorithm uses H0 which takes binary strings as an input. This means any
message that is defined as a binary string can be used in a multi-signature cre-
ation. Therefore, the proof is given as follows:

Assume that we have a (τ, qS , qH , ϵ)-forger Adv where the multi-signature
scheme runs in time τ , creates qS signing and qH random oracle queries and Adv
can forge with probability at least ϵ. Let IG be an input generator which creates

(a, b1, b2) = (gα1 , g
β
1 , g

β
2 ) for (α, β)

$← Zq. Assume that there is an algorithm Alg
on the input (a, b1, b2) and a randomness function f = (ρ, h1, . . . , hqS ).

First, Alg randomly selects an index k from the set 1, ..., qH and executes
the Adv using input pk∗ from B2 and a random tape ρ. When replying i-th H0

query of the Adv, it chooses ri randomly from Zq and returns gri1 if i is not equal
to k. The k − th H0 query is answered by returning Alg. Here, consider that
Adv does not make any repeated H0 queries. Alg handles Adv’s H1 queries in
the following manner. We categorize the H1 queries into three types:

1. A query on the (pk, PK) where PK is the list of public keys of the multi-
signature creators. Here, we assume that pk, pk∗ ∈ PK and it is the first
such query.

2. A query on the (pk, PK) with pk, pk∗ ∈ PK. Here, we assume that a prior
query has been created.

3. Any other queries.

The algorithm Alg works the i-th type 1 query by choosing any random
value for H1(pki, PK) for every pki ̸= pk∗ ∈ PK. In this case, hi is fixed to
H1(pk

∗, PK) and it gives H1(pk, PK). Then, Alg works the type by giving the
values chosen when type 1 of PK was created. The algorithm also works a type
3 by giving any random value in Zq.

When forger Adv sends a signing query for a message m, using signers PK,
algorithm Alg calculates apk by applying a key aggregation step and retrieves
H0(m). If the retrieved value is equal to a, algorithm Alg terminates. Otherwise,
it assumes the value is in the form gr1, allowing algorithm Alg to simulate an
honest signer by computing σi as b

r
1. If forger Adv fails to produce a successful
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forgery, Alg terminates. If forger Adv successfully generates a forgery for a mes-
sage m where H0(m) is not equal to a, algorithm A also terminates. However, if
forger Adv outputs a forgery σ, PK,m satisfying the condition

e(σ, g2) = e(a, apk)

.
Let jf be an index of H1(pk

∗, PK) = hjf and let aj be H1(pkj , PK). Then,
the algorithm Alg produces (J = jf , (σ, PK, apk, a1, . . . , an)).

The run-time of algorithm Alg consists of the computation time of forger
Adv and the additional computations performed by Alg. The total number of
hash queries made by Adv denoted as qH , includes both H0 and H1 queries. A
requires one exponentiation in G1 to respond to H0 queries, resulting in a time
complexity of at most qH · τexp1

for answering the hash queries.
For signing queries with a public key (PK) of size l, Alg performs one multi-

exponentiation that takes τexp1
2
time, along with one exponentiation inG1 costing

τexp1
. This contributes to a total time complexity of qS · (τexp1

2
+ τexp1

).
Additionally, Alg computes the output values, incurring an additional τexp1

2

time to calculate apk. Therefore, Alg’s run-time can be expressed as τ+qHτexp1
+

qS(τexp1
2
+τexp1)+τexp1

2
. The probability of success for Alg is determined by both

the probability of Adv succeeding and the probability of Alg correctly guessing
the hash index of Adv’s forgery. The latter happens with a probability of at least
1/qH , making Alg’s overall success probability equal ϵAlg = ϵ

qH
.

To prove the theorem, assume that Alg′ is an algorithm that can solve the
computational co-Diffie-Hellman problem in (G⊮,G⊭). Let GFAlg be the gen-

eralized forking lemma as defined in [15]. If GFAlg terminates, Alg
′
also termi-

nates. If GFAlg outputs (jf , out, out
′
), then the algorithm Alg

′
works as follows:

Alg
′
puts out as (σ, PK, apk, a1, . . . , an) and out

′
as (σ

′
, PK

′
, apk

′
, a
′

1, . . . , a
′

n).
These executions are identical until the jf -th H1 query of type 1 by follow-

ing the GFAlg. This basically means that PK = PK
′
and n = n

′
. We al-

ready know that apk =
∏n

j=1 pk
aj

j and apk
′
=

∏n
j=1 pk

a
′
j

j . Since Alg uses

H1(pkj , PK) as aj∀j ̸= i before the forking point, then aj = a
′

j for j ̸= i

and apk

apk′
= pk∗ai−a

′
i . Knowing the fact that those values of Alg satisfy the bi-

linear mapping used in the verification, this shows that ( σ
σ′
)

1

(ai−a
′
i
) is a solution

for computational co-Diffie Hellman. By considering GFAlg, Alg
′
’s run-time is

at most (τ + qHτexp1
+ qS(τexp1

2
+ τexp1

) + τexp1
2
) · 8q2H/ϵ · ln(8qH/ϵ) and this is

successful with the probability ϵ
′ ≥ ϵ/(8qH).
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