PROTOGALAXY: Efficient PROTOSTAR-style folding of multiple instances

Liam Eagen1,2 and Ariel Gabizon1

1Zeta Function Technologies
2Blockstream Research

January 18, 2024

Abstract

We continue the recent line of work on folding schemes. Building on ideas from PROTOSTAR[BC23] we construct a folding scheme where the recursive verifier’s “marginal work”, beyond linearly combining witness commitments, consists only of a logarithmic number of field operations and a constant number of hashes. Moreover, our folding scheme performs well when folding multiple instances at one step, in which case the marginal number of verifier field operations per instance becomes constant, assuming constant degree gates.

1 Introduction

In the last two years, we have seen an explosion of interest in so-called folding1 schemes[BCMS20, BCL+21, KST21, Moh, KS22, KS23, BC23]. Roughly speaking, a folding scheme “folds” several instances of a relation into one instance in a way that the correctness of this one instance implies the correctness of all original instances.

The original motivation for folding schemes was improving the efficiency of incrementally verifiable computation[Val08] and proof carrying data[CT10].

A related motivation is improving SNARK prover time when proving correctness of multiple instances of a relation: Given instances ϕ_1, \ldots, ϕ_m, rather than computing a SNARK proof Π_i for each one, we fold2 them into a single instance ϕ^* for which produce a single SNARK proof Π. If the computation required per instance ϕ_i to show folding was done correctly is significantly smaller than that for producing the SNARK proof Π_i, the

1The term accumulation schemes[BCMS20, BCL+21] was introduced first for the same primitive. We alternate between the folding and accumulation terminologies.

2To apply folding correctly in this usecase requires some additional work to make sure we have indeed folded the instances we are interested in; for example, computing a running hash of the instances during folding, and comparing it to a running hash independently computed by the final verifier.

1
overall prover work will be smaller even after computing the proof for ϕ^*. Alternatively, in the IVC context it is often recommended to simply use the witness for ϕ^* as the final proof; then, at the expense of a longer proof, no SNARK is needed at all.

1.1 Single-instance vs Multi-instance folding

Protogalaxy focuses on k-folding - folding k instances in one folding operation; which was also addressed in [BCL+21, KS23]. The benefit of k-folding is giving a wider set of tradeoffs between folding and final decision costs, as well as reducing their combined cost.

Generally, the goal of folding schemes has been to simplify the verifier as much as possible and move as much computation as possible out of the verifier and prover and into the decider. This is a sensible assumption when a folding scheme is used to instantiate a long running IVC protocol, but limits applicability in other cases where the decider must be run frequently. For example, consider a decentralized computation where multiple parties perform computations in a directed graph, as in PCD. If the parties do not trust one another, each will need to run the decider on their input accumulators they receive before folding new instances. Since each party will run both the prover and the decider, moving computation from the prover to the decider does not reduce the overall complexity of the protocol. This situation may be of particular interest for decentralized cryptocurrencies, where a large group of mutually distrusting actors are simultaneously manipulating a shared state.

When folding multiple instances, we can take any combination of the following three approaches.

First, the prover can simply fold the function $F(X)$ and the folding verifier sequentially k times. This does not increase decider complexity, compared to folding once, but increases the prover complexity by k times the cost of proving the verifier, dominated by (in Protostar) $O(1)$ elliptic curve scalar multiplications and hash functions per verifier.

Second, the prover can fold the k composition of $F(X)$, $G(X) = F(F(\ldots F(X) \ldots))$ a single time. This keeps the recursion overhead small, but increases the decider complexity linearly in k times the complexity of $|F|$.

Finally, the prover can use a k-folding scheme like Protogalaxy. This allows keeping the decider complexity corresponding to a single application of F. Moreover, when a single party performs both the folding and deciding this can still result in smaller overall work. One reason for this is that when comparing to the second approach, k-folding requires an in circuit k-size MSM to combine instances, which due to Pippenger can be significantly faster than k separate scalar multiplications required in the second approach.

All three can be combined to find the optimal configuration for a particular F, i.e. a prover can fold a instances of the b fold composition of F sequentially c times where $k = abc$.
1.2 Previous work on folding schemes and our results

All known folding schemes rely on additively homomorphic vector commitments, and the following template: We assume the folding verifier is given homomorphic commitments to the witnesses. The verifier takes a random combination of the witness commitments. The prover computes the corresponding combination of the witnesses themselves. Since all folding schemes share this work, we can define the marginal work of the prover and verifier as the additional work beyond this linear combination of witnesses and their commitments.

It is hard pinning down precise prover marginal costs, especially for [BC23]. At a high level, assuming the verifier equation is computed by a constant size arithmetic circuit, all schemes require in total $O(n)$ field and group operations per folding operation for a size n witness. It is worth mentioning that this holds for HyperNova even when the verifier circuit contains at the base layer a super-constant linear component.

Focusing on the verifier marginal work, we can easily see the difference between the two latest folding schemes - HyperNova [KS23] and Protostar [BC23], and Protogalaxy.

The differences in verifier work are more crucial as they must be performed in-circuit.

- **HyperNova** performs a randomized sumcheck protocol to accumulate a new instance - except that the final (expensive) multilinear opening is delayed to the final decision. Thus, the verifier requires $d \log n$ field operations - to evaluate the intermediate univariates sent during sumcheck, and $\log n$ random-oracle like hashes - to obtain the challenges for the sumcheck.

- **Protostar**, rather than actually performing a sumcheck, simply reduces the instance to another that is a randomized sum of the instance, and then folds this claim about the randomized sum. Most of the folding work, in fact, is related to combining the random coefficients for the new instance’s sum with the current accumulator, and proving those coefficients are of an appropriate form - specifically, consecutive powers of a challenge β. This process requires committing to the vector of powers of β, which adds group operations to the folding verifier that needs to perform scalar multiplications on these commitments.

- **Protogalaxy** instead of combining randomized sums with different challenges, “converts” the accumulator to a claim using the new challenge. This avoids the need to commit to the power vector, and allows remaining with a succinct ($\log n$ length) representation of the sum’s coefficients. An interesting point is that although this results in a polynomial of degree $\log n$ expressed as a sum of length n, we are able to recursively compute its coefficients in $O(n)$ rather than $O(n \log n)$ operations (cf. Claim 1.4).

3It seems this feature can be incorporated into Protostar and Protogalaxy by “delaying” linchecks to decision time in a similar way to HyperNova.

4We are describing what is presented in Section 3.5 of [BC23]: “Compressing verification checks for high-degree verifiers”.
The second difference between Protostar and Protogalaxy, responsible for more efficient folding of multiple instances, is a transition from monomial to Lagrange base: Protostar’s folding creates a polynomial whose constant coefficient is the current accumulator’s sum, and the coefficient of X^d is the new instance’s sum - where d is the maximal degree of the verifier’s checks. Attempting to do this for k instances at once requires a degree growing exponentially in k to make sure coefficients relating to different instances don’t “mix”.

However, things are smoother in Lagrange base. We associate with each instance to be folded a different Lagrange coefficient. Essentially due to the property that a power of Lagrange polynomial $L_i(X)$ modulo the set’s vanishing polynomial is $L_i(X)$ itself, there is no need for exponentially growing degrees in the Lagrange approach. Another simplification due to the Lagrange base, is avoiding the need to homogenize the verifier’s constraint polynomials as done in Protostar. See Section 4 for the precise construction.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Marginal verifier work</th>
</tr>
</thead>
<tbody>
<tr>
<td>HyperNova</td>
<td>$O(d \log n) \mathbb{F}, d \log n$ CRH, $\log n$ RO</td>
</tr>
<tr>
<td>Protostar</td>
<td>$2\mathbb{G}, d + O(1) \mathbb{F}, d + O(1)$ CRH, $O(1)$ RO</td>
</tr>
<tr>
<td>Protogalaxy</td>
<td>$d + \log n \mathbb{F}, d + \log n$ CRH, $O(1)$ RO</td>
</tr>
<tr>
<td>Protogalaxy - k instances</td>
<td>$kd + \log n \mathbb{F}, kd + \log n$ CRH, $O(1)$ RO</td>
</tr>
<tr>
<td>Section 5 - k instances</td>
<td>$\log n + d \log k \mathbb{F}, kd + \log n$ CRH, $\log k$ RO</td>
</tr>
<tr>
<td>Section 5 - k accumulators</td>
<td>$\log k(\log n + d) \mathbb{F}, k(d + \log n)$ CRH, $\log k$ RO</td>
</tr>
</tbody>
</table>

2 Terminology and Conventions

We assume our field \mathbb{F} is of prime order. We assume all algorithms described receive as an implicit parameter the security parameter λ.

Whenever we use the term efficient, we mean an algorithm running in time $\text{poly}(\lambda)$. Furthermore, we assume an object generator \mathcal{O} that is run with input λ before all protocols, and returns all fields and groups used. Specifically, in our protocol $\mathcal{O}(\lambda) = (\mathbb{F}, \mathbb{G})$ where

- \mathbb{F} is a prime field of super-polynomial size $r = \lambda^{\omega(1)}$.
- \mathbb{G} is a group of size r.

We usually let the λ parameter be implicit, i.e. write \mathbb{F} instead of $\mathbb{F}(\lambda)$. We write \mathbb{G} additively.
We often denote by \([n]\) the integers \([1, \ldots, n]\). We use the acronym e.w.p for “except with probability”; i.e. e.w.p \(\gamma\) means with probability at least \(1 - \gamma\).

3 Definitions based on Protostar

We review and adapt definitions from [BC23]. We recommend reading the referenced sections for full understanding and context. All protocols described are between a prover \(P\) and verifier \(V\). We use the convention that “the protocol has input \((a; b)\)” means that both \(P\) and \(V\) get \(a\), but only \(P\) gets \(b\).

3.1 Special-sound protocols

Following [AFK22, BC23] we define special-sound protocols. We recall first the definition from Section 2.1 of [BC23], of an \(a^\mu\)-out-of-\(N\) special-sound interactive protocol: Roughly speaking, this means a public-coin protocol where verifier challenges are chosen from a domain of size \(N\), and a tree of accepting transcripts of arity \(a\) is sufficient for extracting a witness. Based on that definition, we say that a \((2\mu + 1)\)-move interactive protocol (meaning \(\mu + 1\) prover messages and \(\mu\) verifier messages) is special-sound, if it is \(a^\mu\)-out-of-\(N\) special-sound, for \(a = \text{poly}(\lambda)\) and \(N = \lambda^{\omega(1)}\). As explained in [BC23], the results of [AFK22] imply the non-interactive version of the protocol in the random oracle model is knowledge-sound with error \(\text{negl}(\lambda)\).

3.2 Defining accumulation/folding schemes

We define accumulation schemes in an equivalent way to [BC23] but using different terminology, more focused on relations. In the definition below we are “accumulating” instances of a relation \(R\) into an “accumulator” which is an instance of a relation \(R_{\text{acc}}\). The reason we need the additional relation \(R_{\text{acc}}\) - rather than folding directly into \(R\) - is that the accumulator requires more flexibility in its structure. For example, in Nova [KST21], \(R_{\text{acc}}\) corresponds to relaxed committed R1CS.

Definition 3.1. Fix relations \(R\) and \(R_{\text{acc}}\). An \((R \rightarrow R_{\text{acc}})\)-accumulation/folding scheme is a public-coin interactive protocol \(\mathcal{P}\) between a prover \(P\) and verifier \(V\) such that

1. The protocol input is \((\phi, \phi', \omega, \omega')\).
2. When the protocol ends \(V\) outputs \(\phi^*\), and \(P\) outputs \(\omega^*\).
3. Completeness: If \((\phi, \omega) \in R_{\text{acc}}, (\phi', \omega') \in R\), and \(P, V\) follow the protocol, we have with probability one that \((\phi^*, \omega^*) \in R_{\text{acc}}\).
4. Knowledge soundness:
 The following protocol \(\mathcal{P}^\ast\) between \(P^\ast\) and \(V^\ast\) is knowledge-sound with error \(\text{negl}(\lambda)\) for the relation \(R_{\text{acc}} \times R\):
(a) Given inputs \((\phi, \phi'; \omega, \omega')\), \(P^*\) and \(V^*\) run the protocol \(\mathcal{P}\) as \(P, V\) with the same inputs.

(b) Let \(p^* = (\phi^*, \omega^*)\) be the final output of \(P, V\) in \(\mathcal{P}\). \(V^*\) outputs accept if and only if \(p^* \in \mathcal{R}_{\text{acc}}\).

In words, knowledge soundness means that if the accumulation protocol was followed correctly, and either the current accumulator \(\phi\), or the current instance \(\phi'\) is invalid, then the new accumulator \(\phi^*\) will also be invalid, and thus will fail a final decision stage - in which a prover would need to show \((\phi^*, \omega^*) \in \mathcal{R}_{\text{acc}}\) for some \(\omega^*\).

3.3 Relations based on interactive protocols

To define and motivate the relations we use in our accumulation scheme, we continue to review interactive protocol conventions from [BC23].

Interactive protocols from [BC23]: Given a relation \(\mathcal{R}_0\), we look at interactive protocols for \(\mathcal{R}_0\) of the form described in Section 3.1 of [BC23]:

- The protocol is parameterized by positive integers \(k, d, n\) ([BC23] uses \(\ell\) rather than \(n\)).
- The protocol input is \((\phi_0; \omega_0)\) such that \((\phi_0, \omega_0) \in \mathcal{R}_0\).
- We have \(k\) rounds where at round \(i\) \(P\) sends a vector \(m_i\) over \(\mathbb{F}\), and, if \(i < k\), \(V\) responds with random challenge \(r_i \in \mathbb{F}\).
- Denote by \(\omega\) the transcript of the protocol - namely the concatenation of \(\phi_0\), the vectors \(m_i\), and elements \(r_i\). Suppose \(\omega\) is of length \(M\). The protocol’s definition includes a degree \(d\) mapping \(f : \mathbb{F}^M \rightarrow \mathbb{F}^n\). At the end \(V\) accepts if and only if \(f(\omega) = 0^n\).

“Committed” protocols Let \(cm\) be an additively homomorphic commitment function, mapping vectors over \(\mathbb{F}\) of length at most \(M\), into \(G\). Given \(cm\) and an interactive protocol like the one described above, [BC23] looks at a “committed” version of the protocol, where

- \(P\)’s messages \(m_i\) are replaced by the commitments \(C_i = cm(m_i)\).
- At the end of the protocol \(P\) sends the vectors \(m_i\).
- Define \(\omega\) again as the concatenation of \(\phi_0\), the vectors \(m_i\), and elements \(r_i\). \(V\) accepts if and only if \(f(\omega) = 0^n\) and for each \(i \in [k]\), \(cm(m_i) = C_i\).
Non-interactive proofs via Fiat-Shamir: \cite{BC23} now transforms such a committed protocol into a non-interactive proof in the random oracle model. Specifically, assume access to a random oracle \mathcal{R} mapping arbitrary strings into uniform elements of \mathbb{F}. We transform the above protocol to a non-interactive proof by having

- P set $r_0 = \mathcal{R}(\phi_0)$ and for each $i \in [k - 1]$, $r_i = \mathcal{R}(r_{i-1}, C_i)$.
- Having the verifier check the r_i are correct by querying \mathcal{R} independently.

Let \mathcal{H} be a hash function mapping arbitrary strings into \mathbb{F}. We can replace \mathcal{R} with \mathcal{H} above to get a non-interactive proof in the standard model, with a heuristic knowledge soundness guarantee via Fiat-Shamir. We'll assume access to \mathcal{H} of this form as an implicit parameter from now on.

Committed relations: Given a vector ω representing a transcript of the original non-committed protocol, we abuse notation and denote by $\phi = \text{cm}(\omega)$ a “committed” version of the transcript, where every vector m_i is replaced by $\text{cm}(m_i)$, but ϕ_0 and the $\{r_i\}$ are left as is. That is, if $\omega = (\phi_0, m_1, \ldots, m_k, r_1, \ldots, r_{k-1})$

$$\phi = \text{cm}(\omega) = (\phi_0, \text{cm}(m_1), \ldots, \text{cm}(m_k), r_1, \ldots, r_{k-1}).$$

In particular, ϕ is a mixture of field and group elements. Given ϕ of this form, we say it is \mathcal{H}-consistent if the random challenges are computed as defined above. Namely, $r_i = \mathcal{H}(r_{i-1}, C_i)$ for each $i \in [k - 1]$ where we define $r_0 = \mathcal{H}(\phi_0)$.

Given this notation, we define the relation $\mathcal{R}_{f,\text{cm}}$ “induced” by the committed protocol for \mathcal{R}_0 when “Fiat-Shamired” with \mathcal{H}. $\mathcal{R}_{f,\text{cm}}$ is defined as pairs of a committed transcript and the corresponding plain transcript. Formally, as all the pairs (ϕ, ω) such that

1. ϕ is \mathcal{H}-consistent.
2. $\phi = \text{cm}(\omega)$.
3. $f(\omega) = 0^n$.

Knowledge soundness for committed relations

We now deal with a technicality that comes up in both Protostar and Protogalaxy’s knowledge soundness proof. The definition of a special-sound protocol requires that we are always able to extract a witness given a large enough tree of accepting transcripts. However, we’ll only be able to either extract a witness or produce of collision of cm. We show this suffices.

Lemma 3.2. Suppose $\text{cm} : \mathbb{F}^M \mapsto \mathbb{G}$ is a binding commitment. Given a relation \mathcal{R}, define the relation $\mathcal{R}' = \mathcal{R} \cup \{\phi, (w, w')|\text{cm}(w) = \text{cm}(w'), |\omega| \geq \lambda\}$; in words, a collision of cm of appropriate length is a satisfying witness for any instance.

If \mathcal{P} is special-sound for \mathcal{R}' then it is knowledge-sound with error $\text{negl}(\lambda)$ for \mathcal{R}. 7
Proof. We can use the result of [AFK22] to conclude \mathcal{P} is knowledge-sound for \mathcal{R}' with error $\text{negl}(\lambda)$. This means there is an extractor E, that when A convinces the verifier of the validity of instance ϕ, produces a witness ω such that $(\phi, \omega) \in \mathcal{R}'$ e.w.p $\text{negl}(\lambda)$. We define extractor E_1 for \mathcal{R}: E_1 runs E, aborts if E’s output ω is a collision of cm; and otherwise outputs ω. By the binding property of cm, the failure probability of E_1 is larger by at most $\text{negl}(\lambda)$ than that of E; and when it succeeds $(\phi, \omega) \in \mathcal{R}$. Thus, \mathcal{P} is knowledge-sound with error $\text{negl}(\lambda)$ for \mathcal{R}.

The relation $\mathcal{R}^{\text{rand}}$. Let $t := \log n$. For $i \in [n]$, let $S \subset \{0, \ldots, t-1\}$ be the set such that $i - 1 = \sum_{j \in S} 2^j$. We define the t-variate polynomial pow_i as

$$\text{pow}_i(X_1, \ldots, X_t) = \prod_{\ell \in S} X_\ell$$

Note that if $\beta = (\beta, \beta^2, \beta^4, \ldots, \beta^{2t-1})$, $\text{pow}_i(\beta) = \beta^{i-1}$. For brevity, let $\mathcal{R} = \mathcal{R}_{f, \text{cm}}$. We define the “randomized relaxed” version of \mathcal{R}, $\mathcal{R}^{\text{rand}}$, as follows.

$\mathcal{R}^{\text{rand}}$ consists of the pairs $((\phi, \beta, e), \omega)$ such that

1. $\phi = \text{cm}(\omega)$.
2. $\beta \in \mathbb{F}^t$, $e \in \mathbb{F}$ and we have
 $$\sum_{i \in [n]} \text{pow}_i(\beta) f_i(\omega) = e.$$

(Here, f_i denotes the i’th output coordinate of f.)

4 Main Protocol

We are ready to present our main scheme. Fix positive integers $d, k < n$ such that $k+1$ is a power of two. Denote $t := \log n$. Assume \mathbb{F} contains a multiplicative subgroup \mathbb{H} of order $k+1$ and $L_0(X), L_1(X), \ldots, L_k(X)$ is its Lagrange base. Let $Z(X) := \prod_{a \in \mathbb{H}} (X - a)$ be \mathbb{H}’s vanishing polynomial.

ProtoGalaxy $(\Phi = (\phi, \beta, e), (\phi_1, \ldots, \phi_k); \omega, (\omega_1, \ldots, \omega_k))$:

1. V checks for each $i \in [k]$ that ϕ_i is \mathcal{H}-consistent, and outputs rej otherwise.
2. V sends a challenge $\delta \in \mathbb{F}$.
3. P and V compute $\delta \in \mathbb{F}$, where $\delta := (\delta, \delta^2, \ldots, \delta^{2t-1})$.
4. P computes the polynomial
 $$F(X) := \sum_{i \in [n]} \text{pow}_i(\beta + X\delta) f_i(\omega).$$
 (Note that $F(0) = \sum_{i \in [n]} \text{pow}_i(\beta) f_i(\omega) = e$.)
5. P sends the non-constant coefficients \(F_1, \ldots, F_t \) of \(F(X) \) to \(V \).

6. V sends a random challenge \(\alpha \in \mathbb{F} \).

7. P and V compute \(F(\alpha) = e + \sum_{i \in [t]} F_i \alpha^i \).

8. P and V compute \(\beta^* \in \mathbb{F} \) where \(\beta^*_i := \beta_i + \alpha \cdot \delta_i \).

9. P computes the polynomial

\[
G(X) := \sum_{i \in [n]} \text{pow}_i(\beta^*) f_i(L_0(X)) \omega + \sum_{j \in [k]} L_j(X) \omega_j.
\]

10. P computes polynomial \(K(X) \) such that

\[
G(X) = F(\alpha)L_0(X) + Z(X)K(X).
\]

11. P sends the coefficients of \(K(X) \).

12. V sends a random challenge \(\gamma \in \mathbb{F} \).

13. P and V compute

\[
e^* := F(\alpha)L_0(\gamma) + Z(\gamma)K(\gamma).
\]

At the end of the protocol

- V outputs the instance \(\Phi^* = (\phi^*, \beta^*, e^*) \), where

\[
\phi^* := L_0(\gamma)\phi + \sum_{i \in [k]} L_i(\gamma)\phi_i.
\]

- P outputs the witness \(\omega^* := L_0(\gamma)\omega + \sum_{i \in [k]} L_i(\gamma)\omega_i \).

Remark 4.1. Since \(\sum_{i=0}^{k} L_i(X) = 1 \), V can compute \(\phi^* \) with \(k \) rather than \(k + 1 \) scalar multiplications as

\[
\phi^* = \phi + \sum_{i \in [k]} L_i(\gamma)(\phi_i - \phi).
\]

We make crucial use of the following easily checkable lemma. Loosely speaking, it says any polynomial \(f(X) \) “commutes modulo \(Z(X) \),” with multiplication by Lagrange polynomials.

Lemma 4.2. Fix any polynomial \(f(X) \in \mathbb{F}[X] \) and \(a_0, \ldots, a_k \in \mathbb{F} \). There exists \(Q(X) \in \mathbb{F}[X] \) such that

\[
f \left(\sum_{i=0}^{k} a_i L_i(X) \right) = \sum_{i=0}^{k} f(a_i)L_i(X) + Z(X)Q(X).
\]
Theorem 4.3. Let \(\text{cm} : \mathbb{F}^M \rightarrow \mathbb{G} \) be an additively homomorphic binding commitment scheme. Let \(\mathcal{R} = \mathcal{R}_{f, \text{cm}} \). Assume \(d \in \mathbb{N} \), and \(|\mathcal{F}| = \lambda \omega(1) \). Then PROTOGALAXY is an \((\mathcal{R}^k \mapsto \mathcal{R}^{\text{rand}})\)-accumulation/folding scheme.

Proof. We prove completeness and soundness, and discuss efficiency in Claims 4.4 and 4.5.

Completeness: Assume \(((\phi_1, \ldots, \phi_k), (\omega_1, \ldots, \omega_k)) \in \mathcal{R}^k \) and \(((\phi, \beta, e), \omega) \in \mathcal{R}^{\text{rand}} \). We need to show that if the protocol is followed correctly, \((\Phi^{*}, \omega^{*}) \in \mathcal{R}^{\text{rand}} \) with probability one. It is immediate from construction that \(\text{cm}(\phi^{*}) = \omega^{*} \). So, to obtain \((\Phi^{*}, \omega^{*}) \in \mathcal{R}^{\text{rand}} \) it is left to check that

\[
\sum_{i \in [n]} \text{pow}_i(\beta^{*})f_i(\omega^{*}) = e^{*}.
\]

Note first that when \(((\phi, \beta, e), \omega) \in \mathcal{R}^{\text{rand}} \)

\[
F(0) = \sum_{i \in [n]} \text{pow}_i(\beta)f_i(\omega) = e.
\]

So in Step 7 V is computing \(F(\alpha) \) correctly.

Therefore, using Lemma 4.2

\[
G(X) \mod Z(X) = \sum_{i \in [n]} \text{pow}_i(\beta^{*})f_i \left(L_0(X)\omega + \sum_{j \in [k]} L_j(X)\omega_j \right) \mod Z(X)
\]

\[
= \sum_{i \in [n]} \text{pow}_i(\beta^{*}) \left(L_0(X)f_i(\omega) + \sum_{j \in [k]} L_j(X)f_i(\omega_j) \right)
\]

\[
= \sum_{i \in [n]} \text{pow}_i(\beta^{*})L_0(X)f_i(\omega) = F(\alpha)L_0(X).
\]

The second last equality uses \(f_i(\omega_j) = 0 \), for all \(j \in [k], i \in [n] \).

Therefore, in step 11 P is indeed able to send \(K(X) \) such that

\[
G(X) = F(\alpha)L_0(X) + Z(X)K(X).
\]

And so, in step 13 we have \(e^{*} = G(\gamma) \). Thus, using the definitions of \(G \) and \(\omega^{*} \):

\[
e^{*} = G(\gamma) = \sum_{i \in [n]} \text{pow}_i(\beta^{*})f_i(L_0(\gamma)\omega + \sum_{j \in [k]} L_j(\gamma)\omega_j) = \sum_{i \in [n]} \text{pow}_i(\beta^{*})f_i(\omega^{*}),
\]

as required.

Knowledge soundness: Suppose we have a tree of arity \(N = \max \{n, dk\} \) of accepting transcripts in the sense that \((\Phi^{*}, \omega^{*}) \in \mathcal{R}^{\text{rand}} \); where the verifier input is \((\phi, (\phi_1, \ldots, \phi_k)) \). We show that we can either produce a collision of \(\text{cm} \) or a witness \((\omega, (\omega_1, \ldots, \omega_k)) \) such
that \(((\phi_1, \ldots, \phi_n), (\omega, (\omega_1, \ldots, \omega_k))) \in \mathcal{R}^n \times \mathcal{R}^k\). According to Lemma 3.2 this suffices.

We denote for \(1 \leq a, b, c \leq N\) by \(\delta, \alpha_{a,b}, \gamma_{a,b,c}\) the values for the challenges \(\alpha, \beta, \gamma\) used in the corresponding path in the transcript tree; and by \((\Phi_{a,b,c}^{*}, \omega_{a,b,c}^{*})\) the final output in that path. For convenience, let us denote \(\phi_0 := \phi, \omega_0 := \omega\). In our first step described next we will either find a collision of \(\text{cm}\) or find \(\omega, \omega_1, \ldots, \omega_k\) such that

- For \(i = 0, \ldots, k\), \(\phi_i = \text{cm}(\omega_i)\).
- For all \(1 \leq a, b, c \leq N\),

\[
\omega_{a,b,c}^{*} = \sum_{i=0}^{k} L_i(\gamma_{a,b,c})\omega_i.
\]

For this purpose, choose any \(k + 1\) accepting transcripts using distinct values \(\gamma_0, \ldots, \gamma_k\) for the challenge \(\gamma\) and let \((\Phi_{0}^{*}, \omega_{0}^{*}), \ldots, (\Phi_{k}^{*}, \omega_{k}^{*})\) be the outputs in those transcripts. We have for each \(j = 0, \ldots, k\)

\[
\Phi_{j}^{*} = \sum_{i=0}^{k} L_i(\gamma_j)\phi_i.
\]

Since the \((k + 1) \times (k + 1)\) matrix with \(L_i(\gamma_j)\) in index \((i, j)\) is invertible, it means there exists for each \(j = 0, \ldots, k\) coefficients \(\{c_{j,\ell}\}\) such that \(\phi_j = \sum_{\ell=0}^{k} c_{j,\ell} \Phi_{\ell}^{*}\). We define for \(j = 0, \ldots, k\),

\[
\omega_j := \sum_{\ell=0}^{k} c_{j,\ell} \omega_{\ell}^{*}.
\]

From linearity of \(\text{cm}\) and \(\text{cm}(\omega_{j}^{*}) = \Phi_{j}^{*}\), we have that \(\phi_j = \text{cm}(\omega_j)\) for each \(j = 0, \ldots, k\). We apply this process more times such that each accepting transcript has been used at least once. If at any point, for some \(j\) we obtain a different vector \(\omega_j' \neq \omega_j\) such that \(\text{cm}(\omega_j') = \phi_j\) we output \((\omega_j, \omega_j')\) as a collision.

To proceed, we first define several polynomials. For \(i \in [n]\) define the polynomial

\[
P_{i}(Y_1, Y_2) := \text{pow}_i(\beta + Y_1 \cdot (Y_2, Y_2^2, \ldots, Y_2^{2^{i-1}})).
\]

Note that \(\{P_{i}(Y_1, Y_2)\}_{i \in [n]}\) are linearly independent polynomials - since the degree of \(Y_2\) in \(P_{i}\) is precisely \(i\). For \(j \in [k]\), define the polynomial \(Q_{j}(Y_1, Y_2) := \sum_{i \in [n]} P_{i}(Y_1, Y_2) \cdot f_i(\omega_j)\). We will show \(Q_{j}\) is the zero polynomial for each \(j = 1, \ldots, k\). As the \(P_{i}\) are linearly independent this implies \(f_i(\omega_j) = 0\) for all \(i \in [n], j \in [k]\); which in turn implies \(((\phi_1, \ldots, \phi_k), (\omega_1, \ldots, \omega_k)) \in \mathcal{R}^k\).

For given \(1 \leq a, b, c \leq N\) we know for \(1 \leq c \leq N\) that

\[
\sum_{i \in [n]} \text{pow}_i(\beta + \alpha_{a,b}\delta_a) f_i(\omega_{a,b,c}^{*}) = F_{a,b} L_0(\gamma_c) + Z_{a,b}(\gamma) K(\gamma)
\]

Recall that \(\omega_{a,b,c}^{*} = \sum_{j=0}^{k} L_j(\gamma_c)\omega_j\). We thus have as polynomials that

\[
\sum_{i \in [n]} \text{pow}_i(\beta + \alpha_{a,b}\delta_a) f_i(\sum_{j=0}^{k} L_j(X)\omega_j) = F_{a,b} L_0(X) + Z(X) K(X)
\]
On the other hand, similarly to the completeness case, we have that
\[
X_i \in \left[n \right]^{\text{pow}_i(\beta + \alpha \delta_a)} f_i(\omega) \mod Z(X) \equiv \sum_{j=0}^{k} L_j(X) \sum_{i \in [n]} \text{pow}_i(\beta + \alpha \delta_a) f_i(\omega_j)
\]
And so, comparing coefficients, we have that \(\sum_{i \in [n]} \text{pow}_i(\beta + \alpha \delta_a) f_i(\omega) = F_{a,b}(\alpha) \),
and for \(j \in [k] \) that
\[
\sum_{i \in [n]} \text{pow}_i(\beta + \alpha \delta_a) f_i(\omega_j) = 0
\]
Now, for \(j \in [k] \) note that \(Q_j(\alpha, \delta_a) = \sum_{i \in [n]} \text{pow}_i(\beta + \alpha \delta_a) f_i(\omega_j) = 0 \)
Since this holds for all \(1 \leq a, b \leq N \) we have that \(Q_j(Y_1, Y_2) \) is identically zero as we intended to show.

To show we have a valid witness for \(R_{\text{rand}} \times R_k \) it is left to show that \(\sum_{i \in [n]} \text{pow}_i(\beta) f_i(\omega_0) = e \).
Fix some value \(1 \leq a \leq N \), and the challenge \(\delta = \delta_a \) sent in the transcripts in the \(a \)'th branch of the tree. Denote by \(F \) the polynomial \(F(X) = e + \sum_{i \in [t]} F_i X^i \), when we let \(\{F_i\} \) be the values sent in step [5] in those transcripts. We know for \(N \) different values \(\alpha_{a,b} \) that
\[
\sum_{i \in [n]} \text{pow}_i(\beta + \alpha_{a,b}) f_i(\omega_0) = F(\alpha_{a,b})
\]
So we have a polynomial identity
\[
H(X) := \sum_{i \in [n]} \text{pow}_i(\beta + X \delta_a) f_i(\omega_0) = F(X),
\]
which means the constant coefficient of \(H(X) \) is \(e \) on one hand, but on the other hand \(\sum_{i \in [n]} \text{pow}_i(\beta) f_i(\omega_0) \). In other words,
\[
e = \sum_{i \in [n]} \text{pow}_i(\beta) f_i(\omega_0),
\]
as required. \(\square \)

Claim 4.4. Given \(\omega, \beta, \delta \), the polynomial \(F(X) \) in step [4] can be computed \(O(n) \) \(\mathbb{F} \)-operations

Proof. We can expand \(F(X) \) as a sum over \(n \) terms of degree \(t \). These terms are all products of \(t + 1 \) linear factors, and computing each individually would take \(O(nt) = O(n \log n) \) time in general. However, we can exploit the structure of \(\text{pow}_i(\beta + X \delta) \) to compute the sum in \(O(n) \) time.

Consider the full binary tree of \(n \) leaves, with each leaf \(i \) from left to right labelled by \(f_i(\omega) \). Define the level of a node to be its distance from the leaves. At each internal,
non-leaf node of the tree at level $\ell > 0$, label the left edge from the node with 1 and the right edge with $\beta_\ell + X \delta_{\ell}$. Given the path from the root to leaf i, if we multiply the labels of each edge along the path and the label at the leaf, we have exactly the i’th term from $F(X)$, $\text{pow}_i(\beta + X \delta)f_i(\omega)$. Now, we can recursively construct the labels of each internal node. For each internal node at level k, let n_l and n_r be the labels of the left and right children and let e_l and e_r be the labels of the edges connecting the left and right children. Define the label of each internal node to be $n := n_l e_l + n_r e_r$. Since $\deg(e_l) = 0$ and $\deg(e_r) = 1$, it must be the case that $\deg(n) = \max(\deg(n_l), 1 + \deg(n_r)) \leq k$. This yields $F(X)$ as the label for the root node.

We want to show that we can compute all the labels in $O(n)$ time. Note that computing each n at level ℓ takes $O(\ell)$ field operations, since multiplying by e_r takes $O(\ell)$ operations. There are $2^{\ell-\ell}$ nodes at level ℓ, so the total number of field operations at level ℓ is $\ell 2^{\ell-\ell}$. Summing over ℓ from 1 to t, we find the total number of field operations is $2n - t - 1 = O(n)$

$$
\sum_{i=1}^{t} i 2^{i-1} = 2^{i-1} \sum_{i=0}^{t-1} (i+1) 2^{-i} = 2^{t-1} \frac{d x^{t+1} - 1}{d x} \bigg|_{x=1/2} = 2n - t - 2 = O(n).
$$

Since we can compute all the labels in $O(n)$ time, we can compute the root label in $O(n)$ time. Note that this technique can be generalized to trees of arbitrary arity. \qed

In the following claim we denote by C the maximum over $i \in [n]$ of the number of multiplications needed to compute $f_i(\omega)$ for a given input $\omega \in \mathbb{F}^M$.

Claim 4.5. Given the values $\{\text{pow}_i(\beta^*)\}_{i \in [n]}$, the polynomial $G(X)$ in step 3 can be computed in at most

$$
dk \log(dk)(M + 1) + (d-1)kn(C + 1) = O(dk \log(dk)M + dknC)
$$

\mathbb{F}-multiplications.

Proof. The degree of $G(X)$ is dk, so given $dk + 1$ evaluations of G we can compute its coefficients via IFFT with at most $dk \log(dk)$ multiplications. The honest prover already knows k evaluations of G - as it vanishes on k points of \mathbb{H}. So we only need $(d-1)k + 1$ additional evaluations.

Note that we can write $G(X) = \sum_{i \in [n]} \text{pow}_i(\beta^*) \cdot P_i(X)$ where we define for $i \in [n]$,

$$
P_i(X) := f_i \left(L_0(X)(\omega) + \sum_{j \in [k]} L_j(X)(\omega_j) \right).
$$

Let D be the smallest power of two that is at least $(d-1)k + 1$, thus $D \leq 2(d-1)k$. Let \mathcal{S}_D be a subgroup of order D. It suffices to evaluate each P_i at all $a \in \mathcal{S}_D$, and then

5We count only the multiplications as these typically dominate the costs of the additions/subtractions. For an f containing much more additions than multiplications one should count the total number of operations instead.
perform \(n((d - 1)k + 1) \) multiplications with the values \(\{ \text{pow}_i(\beta^*) \}_{i \in [n]} \) to obtain the evaluations of \(G \).

Recall that the \(\{ \omega_j \} \) are vectors of length \(M \). For each \(\ell \in [M] \), we first evaluate the following polynomial \(S_\ell \) on \(\delta \):

\[
S_\ell(X) := L_0(X)\omega_\ell + \sum_{j \in [k]} L_j(X)\omega_j \ell.
\]

Using FFT, this requires at most \((d - 1)k \log((d - 1)k)M \) multiplications. Given these evaluations, we can evaluate each \(P_i \) on \(a \in \delta \) via an evaluation of \(f_i \). These evaluations of \(\{ f_i \} \) will take in total \((d - 1)knC \) multiplications. Summing the different terms that came up gives the result in the claim. \(\square \)

Remark 4.6. The \(nC \) factor in Claim 4.5 can be replaced by a factor \(N \) equal to the number of operations required to compute \(f \) on input \(\omega \in \mathbb{F}^M \). \(N \) can be significantly smaller than \(nC \) in cases where the \(\{ f_i \} \) vary significantly in their complexity.

5 Alternative construction for large \(k \)

In this section we assume familiarity with the sumcheck protocol; for an introduction, see Section 4.1 of Thaler [Tha]. In the protocol of the previous section the folding prover’s costs scale quasilinearly with the number of instances \(k - O(k \log k) \); and the verifier’s cost scales linearly with \(k \). Here, we improve those dependencies to linear and logarithmic respectively, at the cost of a more complex protocol with potentially worse constants. Roughly, we replace the vanishing check mod \(Z(X) \) with a sumcheck over a domain of size \(k \). For simplicity, we assume this sumcheck works over the boolean hypercube, but it naturally generalizes to larger bases. Given a collection of \(k = 2^s - 1 \) instances, folding begins in the same way as before by refreshing the randomness \(\beta \) with \(\delta \). More precisely, \(P \) and \(V \) will run the protocol of the previous section up to step 8. Now, using the notation there, denote \(\delta^n := (\delta^n, \delta^n-2, \ldots, \delta^n-2^{s-1}) \in \mathbb{F}^s \), and \(\omega_0 := \omega \); and \(e_0 := F(\alpha) \) as computed by \(V \) in step 7. Note that when \(P \) is honest, we have

\[
\sum_{i \in [n]} \text{pow}_i(\beta^*)f_i(\omega_0) = e_0.
\]

Below we denote by \(\text{eq} \) the \(2s \)-variate multilinear polynomial with \(\text{eq}(a, b) = 1 \) for \(a = b \in \{0, 1\}^s \) and \(\text{eq}(a, b) = 0 \) for \(a \neq b \in \{0, 1\}^s \); and overload notation and denote by \(j \in \{0, \ldots, k\} \) the \(s \)-length binary decomposition of \(j \). \(P \) will show the following expression holds:

\[
\sum_{j=0}^{k} \text{eq}(j, \delta^n) \sum_{i \in [n]} \text{pow}_i(\beta^*)f_i \left(\sum_{\ell=0}^{k} \text{eq}(j, \ell)\omega_\ell \right) = \text{eq}(0, \delta^n) \cdot e_0.
\]
First, for each \(j \in \{0, \ldots, k\} \):

\[
G(\delta) := \text{eq}(\delta, \delta^n) \sum_{i \in [n]} \text{pow}_i(\beta^s) f_i \left(\sum_{\ell = 0}^k \text{eq}(\delta, \ell) \omega_{\ell} \right).
\]

We now run a sumcheck protocol for \(G \) over \(\{0,1\}^s \sim \{0, \ldots, k\} \) to check it sums to \(\text{eq}(0, \delta^n) \cdot e_0 \). For \(a \in [s] \), in the \(a \)’th round \(P \) sends a univariate polynomial \(P_a \) of degree \(d \), and replaces the \(a \)’th variable with a verifier challenge \(\gamma_a \). Following these rounds, the correctness of the sumcheck is reduced to checking \(G(\gamma) = P_a(\gamma_a) \); which is in turn equivalent to showing \(~\text{eq}(\gamma, \beta^s, e^s, \omega^s) \in R_{\text{rand}} \) with

- \(\phi^s := \sum_{\ell = 0}^k \text{eq}(\gamma, \ell) \phi_{\ell} \), where \(\forall \ell \in \{0, \ldots, k\} \), \(\phi_{\ell} := \text{cm}(\omega_{\ell}) \)
- \(\omega^s := \sum_{\ell = 0}^k \text{eq}(\gamma, \ell) \omega_{\ell} \)
- \(e^s := P_s(\gamma_a)/\text{eq}(\gamma, \delta^n) \).

And so in this variant of the ProtoGalaxy, \(V \) outputs \((\phi^s, \beta^s, e^s) \) and \(P \) outputs \(\omega^s \). In total \(V \) needs to evaluate \(s = \lceil \log k \rceil \) hashes and perform \(O(\log n + d \log k) \) field operations - the \(\log n \) operations coming from running the original protocol up to step 8. The prover only sends \(ds \) scalars to communicate the \(P_a(X) \) polynomials as compared to \(dk \) for the univariate ProtoGalaxy protocol. In total the prover requires only \(O(kdM + nkdc) \) field operations. The main thing to show is that the univariates sent during sumcheck can be computed efficiently.

Claim 5.1. The polynomials \(P_a(X) \) can all be computed in a total of \(O(kdM + nkdc) \) field operations.

Proof. We show for \(i \in [s] \), that computing \(P_a(X) \) takes \(O(2^{-a}(kdM + nkdc)) \) field operations. If this is the case, then it follows that the total computation is \(O(kdM + nkdc) \).

We illustrate the claim on \(P_1 \). Below we denote by \(\delta^m \) the last \(s - 1 \) coordinates of \(\delta^n \). We have

\[
P_1(X) = (1 + \delta^m X) \sum_{j \in [k/2]} \text{eq}(j, \delta^m) \sum_{i \in [n]} \text{pow}_i(\beta^s) f_i \left(\sum_{\ell \in [k/2]} \text{eq}(j, \ell)(X \cdot \omega_{2\ell} + (1 - X)\omega_{2\ell+1}) \right)
\]

First, for each \(j \in [k/2] \), we precompute for the length \(M \) vector of polynomials \(v_i(X) := X \cdot \omega_{2i} + (1 - X)\omega_{2i+1} \), \(d \) evaluations for each \(v_{i,\ell}(X) \). This takes \(O(kdM) \) field operations.

A formal knowledge soundness proof for this protocol would proceed similarly to that of Theorem 4.3 extracting the \(\{\omega_{\ell}\} \) from the \(\{\phi_{\ell}\} \) and address the case of finding a collision of \(\text{cm} \). Since the details are almost identical, we omit them.
To compute $P_1(X)$, we must compute it at d values. For each evaluation, we need to evaluate the outer sum at $k/2$ values $j \in [k/2]$. For each such evaluation, we need to evaluate a sum of length n whose i'th term is
\[
pow_i(\beta^*)f_i(v_i(X)).
\]
As we have already computed $d + 1$ values of v_i’s argument, we can evaluate $f_i(v_i(X))$ at d inputs in $O(dC)$ operations. So in total we get $O(nkdC)$. Since the other P_a’s have the same form as P_1 on domains of size going down by two, the claim follows.

Folding Many Accumulators

This technique transposes into accumulator folding as well. Denote now $k = 2^s$, and let $K := \{0, \ldots, k - 1\}$. We fold k accumulators by replacing β with a linear combination of the β_j values from each instance. Assume we have k instances $(\phi_j, \beta_j, e_j)_{j \in K}$ with corresponding witnesses $\{\omega_j\}_{j \in K}$. V chooses a random $\delta \in \mathbb{F}$, and we set $\delta := (\delta, \delta^2, \ldots, \delta^{2^{s-1}}) \in \mathbb{F}^s$. We look at the polynomial
\[
G(\tilde{j}) := \text{eq}(\tilde{j}, \delta) \sum_{i \in [n]} \text{pow}_i \left(\sum_{\ell \in K} \text{eq}(\tilde{j}, \ell) \beta_\ell \right) f_i \left(\sum_{\ell \in K} \text{eq}(\tilde{j}, \ell) \omega_\ell \right).
\]
When P is honest, we have
\[
\sum_{j \in K} G(j) = \sum_{j \in K} \text{eq}(j, \delta) \sum_{i \in [n]} \text{pow}_i \left(\sum_{\ell \in K} \text{eq}(j, \ell) \beta_\ell \right) f_i \left(\sum_{\ell \in K} \text{eq}(j, \ell) \omega_\ell \right) = \sum_{j \in K} \text{eq}(j, \delta) \beta_j f_i(\omega_j) = \sum_{j \in K} \text{eq}(j, \delta) e_j.
\]
We again run a sumcheck protocol for G over $j \in [k]$, up to and not including the final step of evaluating $G(\gamma)$. Denote again by $P_a(X)$, for $a \in [s]$, the univariate polynomials sent in the rounds of the sumcheck. Note that now each P_a has degree at most $d + t$. Following s rounds, the sumcheck verifier needs to check
\[
G(\gamma) = \text{eq}(\gamma, \delta) \sum_{i \in [n]} \text{pow}_i \left(\sum_{\ell \in K} \text{eq}(\gamma, \ell) \beta_\ell \right) f_i \left(\sum_{\ell \in K} \text{eq}(\gamma, \ell) \omega_\ell \right).
\]
This corresponds to showing \(((\phi^*, \beta^*, e^*, \omega^*)) \in \mathcal{R}^{\text{rand}}\) where

\[
\phi^* := \sum_{\ell \in K} \text{eq}(\gamma, \ell) \phi_\ell,
\beta^* = \sum_{\ell \in K} \text{eq}(\gamma, \ell) \beta_\ell,
\]
\[
e^* = \text{eq}(\gamma, \delta)^{-1} \cdot P_s(\gamma_s),
\]
\[
\omega^* = \sum_{\ell \in K} \text{eq}(\gamma, \ell) \omega_\ell.
\]

Thus, we have reduced the \(k\) instances of \(\mathcal{R}^{\text{rand}}\) to the instance \(\Phi^* = (\phi^*, \beta^*, e^*, \omega^*)\), where \(\phi^* := \text{cm}(\omega^*)\). The folding verifier can compute \(\phi^* = \sum_{\ell \in K} \text{eq}(\gamma, \ell) \phi_\ell\) using \(k\) scalar multiplications; as well as \(\beta^*\) and \(e^*\) using \(O((k + d)t)\) field operations.

The main thing to address is the efficiency of computing \(\{P_a(X)\}_{a \in [s]}\). Using a combination of the techniques used in Claims 4.4 and 5.1, one can show

Claim 5.2. The polynomials \(P_a(X)\) can all be computed in a total of \(O(kdM + nkdc)\) field operations.

It follows from Claim 5.2 that \(P\) requires in total \(O(kdM + nkdc)\) \(\mathbb{F}\)-operations.

Acknowledgements

We thank Benedikt Bünz and Binyi Chen for discussions on Protostar. We thank the Ethereum Foundation and 0xPARC for supporting this work. We thank Cody Gunton, Sergei Iakovenko, Thor Kampefner, Ivan Mikushin, Pratyush Mishra, Srinath Setty, Zac Williamson and David Wong for corrections and comments.

References

