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Abstract

Secure multiparty computation (MPC) enables privacy-preserving collaborative com-
putation over sensitive data held by multiple mutually distrusting parties. Unfortunately,
in the most natural setting where a majority of the parties are maliciously corrupt (also
called the dishonest majority setting), traditional MPC protocols incur high overheads
and offer weaker security guarantees than are desirable for practical applications. In
this paper, we explore the possibility of circumventing these drawbacks and achieving
practically efficient dishonest majority MPC protocols with strong security guarantees
by assuming an additional semi-honest, non-colluding helper party HP.1 We believe that
this is a more realistic alternative to assuming an honest majority, since many real-world
applications of MPC involving potentially large numbers of parties (such as dark pools)
are typically enabled by a central governing entity that can be modeled as the HP.

In the above model, we are the first to design, implement and benchmark a practically-
efficient and general multi-party framework, Asterisk. Our framework requires invoking
HP only a constant number of times, achieves the strong security guarantee of fairness
(either all parties learn the output or none do), scales to hundreds of parties, outperforms
all existing dishonest majority MPC protocols, and is, in fact, competitive with state-
of-the-art honest majority MPC protocols. Our experiments show that Asterisk achieves
228 − 288× speedup in preprocessing as compared to the best dishonest majority MPC
protocol. With respect to online time, Asterisk supports 100-party evaluation of a cir-
cuit with 106 multiplication gates in approximately 20 seconds. We also implement and
benchmark practically efficient and highly scalable dark pool instances using Asterisk.
The corresponding run times showcase the effectiveness of Asterisk in enabling efficient
realizations of real-world privacy-preserving applications with strong security guarantees.

∗Author emails: {banashrik,kotis,arpita,protikpaul}@iisc.ac.in
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1We refer to this entity as a friend in the title.
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1 Introduction

In today’s digital landscape, vast amounts of user data are being collected and analyzed. This
motivates the need for privacy-preserving computation that enable computing on sensitive
data without compromising data privacy. Secure multiparty computation (MPC) [53] is
one such technology that facilitates computation over sensitive data without disclosing any
underlying information. Informally, an MPC protocol allows a set of n distrusting parties
with private inputs to jointly evaluate a function on these inputs, while ensuring that a
(centralized) adversary corrupting at most t < n parties learns nothing beyond the function
output.

We motivate the practical applicability of MPC with the example use-case of privacy-
preserving dark pools. Dark pools are private exchanges that allow institutional investors
to trade large volumes of financial instruments (such as stocks, bonds, shares, etc.) away
from the prying eyes of the public. Unlike public exchanges, trade requests submitted to
a dark pool remain hidden until they are matched. At a high-level, dark pools operate as
follows. Investors submit trade requests to a central dark pool operator who is responsible for
matching buy orders to sell orders, and publishing the list of matched (or satisfied) orders.
Submitted requests that are unmatched remain hidden with the dark pool operator until they
get satisfied. This solution necessitates that the centralized dark pool operator (a) respects
the privacy of the client’s trade interests, and (b) executes the identification of matches among
the buy and sell orders honestly. MPC, on the other hand, obviates the need for such trust
assumptions. To guarantee privacy and ensure that the trade interest is not disclosed in the
clear to the dark pool operator, one can move to the distributed setting. Here, the clients
run an MPC protocol among themselves (with their trade requests as the private input)
to determine the matching orders.2 The protocol would identify the matching orders while
guaranteeing that no corrupt subset of t < n clients can reconstruct any of the honest client’s
inputs (and, in fact, does not learn anything beyond the matching orders).

Honest vs dishonest majority. While MPC appears to be an ideal solution, one needs to
consider more fine-grained aspects, namely the corruption threshold that the MPC protocol
can withstand, and the notion of security that the protocol achieves. In practical applications
such as privacy-preserving dark pools, one would expect a majority of the clients to be corrupt.
In the context of MPC, this translates to the adversary corrupting up to t = (n − 1) out of
n parties, and is termed as the dishonest majority setting. The counterpart to this setting is
the honest majority setting, where the adversary corrupts only a minority of the parties, i.e.,
t < n/2. Our focus in this paper is on MPC in the dishonest majority setting.

Traditional dishonest majority MPC. Unfortunately, traditional dishonest majority MPC
protocols necessarily rely on cryptographic hardness assumptions, which renders them practi-
cally inefficient in comparison to their honest majority counterparts, and potentially degrades
the performance of real-time, throughput-sensitive applications (e.g., dark pools, privacy-
preserving machine learning, etc.). Additionally, known impossibility results make it impos-
sible for traditional dishonest majority MPC protocols to provide stronger security notions

2Depending on the dark pool algorithm, an alternative approach is to employ an MPC protocol to enable
multiple parties to collectively effectuate the role of a dark pool operator [12, 39, 20].
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of fairness or full security/guaranteed output delivery (GOD) in the presence of a malicious
adversary [18].3 Fairness guarantees that corrupt parties do not gain any unfair advantage
in learning the output (i.e., either all parties learn the output of the computation or none
do), while GOD provides the stronger guarantee that, irrespective of the corrupt parties’
misbehaviour, all parties obtain the output. In the absence of fairness (or GOD), a dishonest
majority protocol empowers an adversary to abort the computation at will as well as learn
the output. This can be disastrous in applications such as dark pools since this allows the
adversary to repeatedly abort the computation if the outcome of matching is not favourable
to the adversary (unlike in a fair protocol where the adversary does not gain any unfair
advantage in learning the output). These drawbacks tend to render traditional dishonest
majority MPC protocols insufficient for many practical applications.

Honest majority MPC. MPC protocols in the honest majority setting [8, 9, 29, 41] avoid
the above drawbacks and yield practically efficient solutions with strong security guarantees.
However, the assumption of an honest majority is, in general, stronger than its counterpart
dishonest majority and may not hold in many application scenarios.

MPC with a friend. The above discussion motivates the need for alternative MPC models
that could bypass the inherent drawbacks of traditional dishonest majority protocols, while
also avoiding the strong corruption threshold assumptions that characterize honest-majority
solutions. In this paper, we consider such a model that (we believe) realistically captures
corruption behaviors in certain real-world applications. We dub this model as MPC with a
friend, where the parties are aided by the presence of an additional helper party HP (which
is not trusted but is semi-honest, i.e., does not deviate arbitrarily from the protocol). As
we discuss below, in certain scenarios, as compared to assuming an honest majority within
a (potentially large) set of parties, it seems more practical to identify a single (semi-honest)
party, while allowing a majority of the remaining parties to be (maliciously) corrupt. For
example, in the case of dark pools, the Securities and Exchange Commission (SEC) [12] is
a trusted entity that governs the integrity of the dark pool operations (including that the
right algorithm is used to perform matching of buy and sell orders). The SEC can instead
be modelled as semi-honest (thereby reducing the points of trust in the overall system) and
yet non-colluding with the clients. Thus, it can enact the role of HP, whereas the clients
can be maliciously corrupt under a dishonest majority assumption. Analogous to dark pools,
another motivating application is inventory matching [49], which is a standard mechanism for
trading financial stocks by which buyers and sellers can be paired so that the related stocks
can be traded without adversely impacting the market price for either client. In the financial
world, banks often undertake the task of finding such matches between their clients, thus a
bank can enact the role of the HP for its clients. In general, the trusted, central entity, that
is responsible for governing the execution of an application, can be modelled as the HP.

Related work. We note that several works have considered using a “trusted” HP to achieve
MPC protocols with stronger security guarantees [26, 27, 32]. However, these works typi-
cally assumed that the HP was a small and fully trusted entity (e.g., tamper-proof hardware
tokens [11, 34, 17, 21, 16, 15, 30, 6]), sometimes doing minimal work. On the other hand,

3A malicious adversary may deviate arbitrarily from protocol specification.
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modeling the HP as a semi-honest entity was introduced in a more recent work [33]. As shown
in [33], this model circumvents the impossibility of [18], even when the HP is semi-honest, as
long as it does not collude with the remaining parties (with a maliciously corrupt majority).
It is additionally shown in [33] that this non-collusion assumption is somewhat necessary for
strong security notions such as fairness/GOD that we want for practical applications (we ex-
pand more on this later). Finally, the authors of [33] propose certain concrete MPC protocols
in this setting that achieve GOD; however, these are primarily feasibility results based on
strong cryptographic machinery and are practically inefficient.

A related MPC model called Assisted MPC (based on a probabilistic semi-honest, non-
colluding helper party) was studied in [46]; however, this model differs from the HP-aided
MPC model of [33] in two ways: (a) the authors of [46] assume that the semi-honest behavior
of the helper party is probabilistic (i.e., it could also be malicious with some finite non-zero
probability), and (b) it is not studied in [46] if this model circumvents known impossibilities
and enables strong security guarantees such as fairness/GOD (the protocols in [46], while
practically efficient, still achieve the weaker notion of abort security – same as traditional
dishonest majority MPC protocols). This leads to the question: can we bridge this gap
between inefficient protocols with strong security guarantees and efficient protocols with
weak security guarantees using a non-colluding, semi-honest HP?
Relation to FaF security. We briefly comment on the non-colluding HP assumption above,
and its relation to another notion of security for MPC called friends-and-foes (FaF) secu-
rity [1], which requires security to hold not only against the adversarial parties (foes), but
also against quorums of honest parties (friends). [1] proposed modelling this using a de-
centralized adversary consisting of two different non-colluding adversaries—(i) a malicious
adversary that corrupts any subset of at most t out of n parties, and (ii) a semi-honest ad-
versary that corrupts any subset of at most h⋆ out of the remaining (n− t) parties. Further,
the FaF model requires security to hold even when the malicious adversary sends its view to
the semi-honest adversary.

A natural adaptation of this notion to the HP-aided setting would translate to the ma-
licious adversary corrupting up to (n− 1) parties and the semi-honest adversary corrupting
the HP (this is clearly weaker than traditional FaF security because the HP is a designated
semi-honest party, but stronger than the fully non-colluding HP assumption of [33], since the
HP can be given access to the views of the corrupt parties). The impossibility result of [33]
does not rule out the possibility of getting stronger security guarantees in this model (their
impossibility assumes that the same centralized adversary corrupts both the HP and a ma-
jority of the remaining parties). Unfortunately, we rule out the possibility of achieving fair
MPC protocols in this model (see Section 3), thus establishing that the non-colluding model
of HP-aided MPC from [33] is the best we can hope for if we wish to achieve fairness/GOD in
dishonest majority. In the rest of the paper, we refer to this setting as the dishonest majority
HP-aided setting. Concretely, we ask the following: Can we achieve highly efficient MPC
protocols with strong security in the dishonest majority HP-aided setting?

1.1 Our contributions

We answer the above question in the affirmative. Our contributions are as described below.
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Asterisk. We put forth Asterisk–a highly efficient MPC protocol in the preprocessing paradigm
that allows computing arithmetic as well as Boolean circuits over secret-shared inputs in the
dishonest majority HP-aided setting (i.e., in the presence of a semi-honest, non-colluding HP)
while achieving fairness. Unlike standard dishonest-majority MPC protocols [23, 36, 7] that
only achieve abort security due to known impossibilities for achieving fairness [18], Asterisk
achieves stronger security (fairness) by leveraging the HP to bypass this impossibility. In
particular, Asterisk uses the (semi-honest, non-colluding) HP in both the preprocessing and
online phases, and, unlike existing dishonest majority protocols, achieves an extremely fast
and lightweight (function-dependent) preprocessing phase, as well as a highly efficient online
phase, while maintaining privacy against the (semi-honest) HP. Asterisk makes overall only
four calls to the HP, which is reasonably small. We expand more on this below.

Efficient preprocessing. We note that traditional dishonest-majority MPC protocols [23, 36,
37, 7] crucially rely on cryptographic machinery (such as homomorphic encryption or oblivious
transfer) in the preprocessing phase, which leads to greater computational and communication
overheads as compared to honest-majority protocols. Asterisk, on the other hand, achieves
a highly efficient (function-dependent) pre-processing phase that uses no additional crypto-
graphic machinery, and only requires communicating 3 elements per multiplication gate (this
is a significant improvement over the O(n2) complexity of state-of-the-art dishonest majority
protocols, such as [36, 37, 7]).

In fact, Asterisk also outperforms Assisted MPC [46] in terms of preprocessing efficiency.
Recall that, like Asterisk, Assisted MPC also relies on an external non-colluding semi-honest
party (however, the helper party is only probabilistically semi-honest in the case of Assisted
MPC, and the resulting protocol is only abort secure). However, Assisted MPC incurs a
communication overhead of O(n) per multiplication gate in its preprocessing phase, which
is significantly higher than the requirement of communicating 3 elements per multiplication
gate in the preprocessing phase of Asterisk.

Technically, these efficiency gains stem from careful use of the HP in the preprocessing
phase of Asterisk, which constitutes a major technical novelty of our work. The (function-
dependent) preprocessing phase of Asterisk uses the HP to: (a) produce authenticated additive
shares of the masks for all wires in the circuit representation of the function to be computed,
and (b) generate shares of multiplication triples. In particular, the preprocessing phase
exclusively involves the HP generating and sending messages to the parties, while the parties
themselves only perform local computations without communicating with each other. This
minimizes the communication overhead, while also ensuring that the preprocessing phase is
inherently error-free (thereby avoiding any additional overheads for verification checks). See
Section 4 for details.

Efficient online phase. Asterisk achieves better online efficiency in the dishonest majority
(all but one) protocols [36, 37]. Also, it does not rely on additional primitives such as a
commitment scheme, which is required in the prior works. Furthermore, we utilize the HP
in the online phase to achieve a stronger security guarantee of fairness.

Table 1 provides a comparison of Asterisk dishonest majority protocols [36, 37, 46] as
well as state-of-the-art honest majority protocols [29, 41] in terms of efficiency and secu-
rity. Note that Asterisk uses function-dependent preprocessing. We leverage the fact that
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Protocol Model Security
Preprocessing Online

Comm. Rounds Comm.

Mascot [36]

DM

Abort O(n2) 2 4n

Overdrive ‡ [37] Abort O(n2) 2 4n

Assisted MPC † [46] Abort 2n 2 4n

ATLAS [29] ∗

HM
Abort NA 2 2n

MPClan [41] Fairness 1.5n 2 1.5n

Asterisk DM with HP Fairness 3 2 2n

‡ For preprocessing, [36] relies on OT and [37] relies on SHE.
† [46] uses an additional helper party in the preprocessing phase.
∗ The costs reported are for the computational variant. We assume parties have common PRF keys that
facilitate the non-interactive generation of common random values between them, similar to Asterisk.

Table 1: Comparison of Asterisk with the state-of-the-art dishonest majority (DM) and honest ma-
jority (HM) protocols.

in many practical applications (e.g., dark pools), the target function is known a priori, to
improve online efficiency of Asterisk significantly. We compare Asterisk with protocols using
function-independent preprocessing (e.g., [36, 37, 46]) to showcase these efficiency improve-
ments. It is easy to see that Asterisk achieves better efficiency (in both the preprocessing
and online phases) as well as stronger security guarantees (fairness as opposed to abort se-
curity) as compared to dishonest majority protocols [36, 37, 46]. In fact, Asterisk is actually
closer to the honest majority protocols [29, 41] in terms of efficiency and security guaran-
tees. Finally, Asterisk has fundamentally different design goals as compared to [33], which
focuses on using the HP minimally and relies on expensive cryptographic tools such MPC
with identifiable-abort (costly in practice) and succinct functional-encryption (with no prac-
tical implementations till date), resulting in protocols of primarily theoretical interest that
are not suitable for practical applications. Asterisk, on the other hand, relies on minimal cryp-
tographic assumptions and is designed specifically for practical efficiency, as demonstrated
by our experiments.

Impossibility of fairness in FaF with HP. We justify our choice of assuming the dis-
honest majority HP-aided setting (with a semi-honest, fully non-colluding HP) for the design
of Asterisk by proving that this assumption is, in fact, necessary to achieve dishonest major-
ity MPC protocols satisfying fairness. Concretely, we prove that it is impossible to design
a fair protocol when considering the model of FaF security with HP. This result, coupled
with the impossibility of attaining fairness using a colluding HP [33], effectively rules out the
possibility of designing fair protocols unless the HP is fully non-colluding (which is precisely
the model we use for designing Asterisk). See Section 3 for more details.

Applications and building blocks. We build upon Asterisk to design secure and efficient
protocols in the HP-aided setting for privacy-preserving dark pools. Along the way, we design
sub-protocols for various granular functionalities, such as equality, comparison, dot product,
and shuffle (among others). These building blocks are of independent interest (with poten-
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Figure 1: Online and total run time over a LAN network of Asterisk for a circuit of size 106 and the
depth of the circuit is 10, for varying number of parties.

tially other applications such as privacy-preserving machine learning, anonymous broadcast,
etc.). In fact, the design framework of Asterisk is versatile enough to enable efficient, privacy-
preserving versions of a wide range of service-based application (e.g., PPML) involving a
central service-provider with no incentive to act maliciously. However, concretely realizing
additional applications would require designing application-specific sub-protocols (e.g., for
evaluating non-linear activation functions in PPML-based applications), which we leave as
future work.

Implementation and benchmarks. We implement and benchmark Asterisk to showcase
its efficiency as well as scalability. When evaluating a circuit comprising 106 multiplication
gates, Asterisk has a response time (online) of around 20 seconds for as many as 100 parties.
Fig. 1 summarizes Asterisk’s performance for varying number of parties. Fig. 2 presents a
comparison between Asterisk and Assisted MPC [46] (both of which use some kind of external
helper party). We highlight that Asterisk’s preprocessing phase has improvements of up to
4× and 134×, in terms of run time and communication overheads, respectively, as compared
to that of Assisted MPC. We present additional experimental results in Section 5 showcas-
ing that, compared to state-of-the-art dishonest majority MPC protocols [36, 37], Asterisk
achieves gains of up to 6× and 4× in total and online communication, respectively, as well
as gains of up to 288× in throughput of multiplicative triple-generation in the preprocessing
phase.

We also showcase the practicality of Asterisk by benchmarking the application of privacy-
preserving dark pools. We consider two dark pool algorithms—volume matching and contin-
uous double auctions (CDA). We observe that in the presence of up to 100 clients, volume
matching has a response time of 93 seconds. In the case of CDA, we observe that processing
a new buy (or sell) request takes around 13 seconds given a sell (buy) list of size 500.

Comparison with FaF-secure protocols. As noted earlier, the dishonest majority HP-
aided model bears some resemblance to the FaF-security model [1], with the difference that
in the former model, the HP is a designated semi-honest party (there is no such designated
party in FaF-security), and in FaF-security, the semi-honest adversary may be given access
to the view of the malicious adversary (this is not allowed in the dishonest majority HP-aided
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Figure 2: Preprocessing comparison between Assisted MPC [46] and Asterisk for a circuit of size 106

(the values are scaled in the logarithmic scale with base 10).

model). While [1] presented some feasibility results for FaF-secure MPC without honest ma-
jority, more recent works have proposed concretely efficient FaF-secure MPC protocols [31, 39]
that achieve stronger-than-abort security, albeit for specific numbers of parties (specifically,
4 parties in [31] and 5 parties in [39]) and specific corruption thresholds (at most one mali-
cious corruption). It is not immediately obvious how one might extend these schemes for any
general number of parties n while retaining comparable efficiency and security guarantees.
On the other hand, the efficiency and security guarantees of Asterisk hold for any general
number of parties (this is well suited for applications such as dark pools, where the number
of parties could be large in practice). We also note that [31] has a significantly more expensive
preprocessing phase as compared to Asterisk, and both [31, 39] cannot tolerate a dishonest
majority. Finally, we believe that for the application that we consider in this paper, the
dishonest majority HP-aided model more aptly captures the expected behavior of corrupt
parties, which do not seem to have any particular incentive to share their views with the
semi-honest HP.

Organization. Section 2 introduces notations and formally defines the dishonest majority
HP-aided model. Section 3 justifies this model by presenting our impossibility result for
fairness in the FaF model with a semi-honest HP. Section 4 describes our main contribution—
the Asterisk framework. Section 5 presents an outline of how Asterisk is used to realize
the target application (and the building blocks thereof), followed by implementation details
and benchmarking results. Finally, Section 6 concludes and discusses some open questions.
Certain missing details are deferred to the appendix.

2 Preliminaries

Threat model. We begin with a description of the dishonest majority HP-aided model of
MPC that we use throughout the paper. We consider n parties P = {P1, . . . , Pn}, where each
party Pi is initialized with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. These parties
interact in synchronous rounds. In every round parties can communicate either over a fully
connected point-to-point (P2P) network, where we additionally assume all communication
to be private and ideally authenticated. Further, we assume that there exists a special party
HP, outside P, called a “helper party” (abbreviated henceforth as HP) such that each party
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Pi can interact with HP via private and authenticated point-to-point channels. The HP does
not typically hold any inputs and also does not obtain any output at the end of the protocol.
Depending on whether we allow the HP to keep any state in between its invocations (where
an invocation corresponds to all parties interacting with the HP in a single round) or not, we
refer to the HP as being ‘stateful’ or ‘stateless’ respectively.

We consider a non-colluding adversary who either corrupts up to n−1 among the n parties
maliciously or the HP in a semi-honest manner. We prove the security of our protocols based
on the standard real world / ideal world paradigm [10]. Essentially, the security of a protocol
is analyzed by comparing what an adversary can do in the real execution of the protocol to
what it can do in an ideal execution, that is considered secure by definition (in the presence
of an incorruptible trusted party). For a detailed description of the security model of non-
colluding, colluding and a related notion of friends-and-foes (FaF), refer to Appendix A.

Notations. We also introduce some notations that we use throughout the paper.
• Data representation: We consider secure computation over finite fields F. F can be either
a binary field F2 or a prime field Fp where p is a k-bit prime. For computation, we consider
signed values, that is, where the boolean representation of a value x ∈ Fp is in the 2’s
complement form. A positive value x ∈ [0, p2 ] has the most significant bit (MSB) as 0 and a
negative value x ∈ [−p

2 , 0) has 1 in the MSB.

• [1, n] denotes the set {1, . . . , n}.
• (b)A is used to denote arithmetic equivalent of bit b.

• b = 1(x
?
= 0) denotes b = 1 if x = 0, otherwise b = 0.

• b = 1(x
?
≤ 0) denotes b = 1 if x ≤ 0, otherwise b = 0.

• FRand is a random coin-tossing functionality. It allows parties and HP to sample common
random values such that a corrupt party guesses this value with negligible probability.

3 Impossibility of fairness in FaF with HP

In this section, we show that it is impossible to achieve fairness with FaF security in our HP-
aided setting. The impossibility result, at a high level, follows similarly to the impossibility of
attaining fairness for n = 3, t = 1, h∗ = 1 with FaF security, as described in [1]. Note that in
the standard definition of (t, h⋆)-FaF security, any subset of h⋆ parties can be semi-honestly
corrupt. On the other hand, when considering FaF security with HP, it is only a designated
entity (namely the HP) which is semi-honest (see Appendix A.1 for the formal definition). In
this way, the standard notion of FaF security is stronger than FaF security with HP. Hence,
the impossibility of FaF security with HP does not follow directly from the impossibility of
[1]. We show how the proof of [1] can be modified to extend to the notion of FaF security
with HP.

The main difference in our proof and that of [1], is that in our case, the semi-honest party
(HP) does not have any input, while the semi-honest party in the case of [1] does. Further,
the proof of [1] relied on this input being unchanged while the simulator invokes the ideal
functionality. To make this proof work for our setting, we first modify the functionality to
account for the fact that HP does not have an input. Further, instead of relying on the input
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of the semi-honest party remaining unchanged, we rely on the fact that the honest party’s
input to the ideal functionality remains unchanged. We next provide a high-level overview
of the proof.

First, we work out the proof for two parties in which one will be maliciously corrupt and
in addition there is a semi-honestly corrupt HP. The argument for n parties and one HP
follows from player partitioning technique [44]. Consider 2 parties A and B, and a HP. We
show that there exists a function F (which takes input from A and B), that cannot have a
fair protocol in the considered model of FaF security with HP. To prove the above claim, we
proceed via contradiction. That is, we show that if there exists a fair protocol, then there
exists a polynomial time algorithm that can invert a one-way permutation. For this, we define
the function F to be Swapκ using a one-way permutation fκ (κ is the security parameter).
To be specific, we use the following functionality

Swapκ((a, yB), (b, yA)) =

(a, b) if fκ(a) = yA and fκ(b) = yB

0κ otherwise

Each party inputs a pair of values (a, yB), (b, yA), where a, b is in the domain of fκ, and
yA, yB is in the range of fκ. Swapκ then outputs (a, b) if fκ(b) = yA and fκ(a) = yB. Let there
exist a fair protocol to compute Swapκ that comprises r rounds, where r ≤ p(κ), for some
polynomial p(·). We show that there exists a round i ≤ r such that either (A,HP) gain an
advantage in learning the output than B or it is the case that (B,HP) gain an advantage in
learning the output than A. Without loss of generality, consider the case that A is malicious.
We then show that this advantage of the pair (A,HP) over (B,HP) cannot be simulated,
thereby breaking the fairness property. For this, we show that if this can be simulated, then
there exists a polynomial time algorithm which can break the one-wayness property of the
one-way permutation.

To showcase that the advantage of (A,HP) over (B,HP) cannot be simulated, consider the
strategy of a malicious A. A acts honestly (using the original input it held) until this round
i, after which it aborts. A then sends its entire view to HP. Because of the aforementioned
claim on the existence of round i, receiving A’s view allows the HP to recover the correct
output (corresponding to an all-honest execution) with a significantly higher probability than
B. If there exists a simulator for such an (A,HP) pair, then we can construct a polynomial
time algorithm M , which can be used to break the one-wayness of the underlying one-way
permutation. Elaborately, M is the same algorithm performed by HP to obtain the output
at the end of round i when A aborts. Observe that M takes as input the view of HP (which
includes the view of corrupt A as well as its input yB), and generates the output of Swapκ,
which comprises the inverse of a one-way permutation (b). Hence, using M , we can construct
a polynomial-time algorithm to invert a one-way permutation.

The formal theorem appears below and detailed proof in Appendix B.

Theorem 3.1. There exists an n-party functionality such that no protocol computes it with
fairness in the FaF security model with HP.
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4 Efficient n-PC with HP

Here, we describe the MPC protocol of Asterisk, which is designed in the preprocessing
paradigm. Computation begins by executing a one-time shared key setup phase, where com-
mon PRF keys are established between the parties to facilitate the non-interactive generation
of common random values among the parties during the protocol execution. Next, the pre-
processing phase kicks in, where the necessary preprocessing (input-independent) data is
generated. This is followed by the online phase once the input is available.

4.1 Shared key setup

Let F : {0, 1}κ × {0, 1}κ → F be a secure pseudo-random function (PRF). Parties rely on a
one-time setup [3, 2, 41, 42] to establish the following PRF keys among different subsets of
the parties (including the HP). Specifically, the set of keys established between the parties
and HP for our protocol is as follows:
• Every party Pi ∈ P holds a common key with HP, denoted by ki, i ∈ [1, n].

• P hold a common key kP , unknown to HP.

• P ∪ {HP} hold a common key kall.
The ideal functionality for the same appears in Fig. 3. Discussion on how to instantiate
FSetup is deferred to Appendix C.1.

FSetup picks random keys {{ki}i∈[1,n], kP , kall} for {{Pi,HP}i∈[1,n],P,P ∪ {HP}} respectively.
• Set yi = {ki, kP , kall}.
• Set yHP = {{ki}i∈[1,n], kall}.

Output: Send (Output,ys) to Ps ∈ P & (Output,yHP) to HP.

Functionality FSetup

Figure 3: Ideal functionality for shared-key setup

4.2 Sharing semantics

To achieve (malicious) security in the dishonest majority setting, Asterisk uses authenticated
additive secret-sharing of the inputs. Let v ∈ F be a secret. We say that v is additively
shared among parties in P if there exist vi ∈ F such that v =

∑n
i=1 vi and Pi ∈ P holds

vi. For authentication, we use an information-theoretic (IT) MAC (message authentication
code) under a global MAC key ∆ ∈ F. The authentication tag t for a value v is defined as
t = ∆ · v, where the MAC key ∆ and the tag t are additively shared among the parties in P.
The following are the various sharing semantics used by Asterisk.

1. [·]-sharing: A value v ∈ F is said to be [·]-shared (additively shared) among parties in P
if the ith party Pi holds [v]i ∈ F such that v =

∑n
i=1 [v]i.

2. ⟨·⟩-sharing: A value v ∈ F is said to be ⟨·⟩-shared among parties in P if, the ith party
Pi holds ⟨v⟩i = {[v]i , [tv]i}, where tv = ∆ · v is the tag of v, as discussed above. Along
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with the share of value v and the tag tv, parties also hold an additive sharing of the
MAC key ∆, i.e., Pi holds [∆]i.

3. J·K-sharing: A value v ∈ F is said to be J·K-shared if
• there exists a mask δv ∈ F that is ⟨·⟩-shared among the parties in P, and
• there exists a masked value mv = v + δv that is held by each Pi ∈ P.
We denote Pi’s J·K-share of v as JvKi = {mv, ⟨δv⟩i}.

Note that all these sharing schemes are linear, i.e., given shares of values a1, . . . , am and
public constants c1, . . . , cm, shares of

∑m
i=1 ciai can be computed non-interactively for an

integer m. Further, Boolean sharing of a secret bit is analogous to arithmetic sharing as
described above, with the difference that addition/subtraction operations are replaced by
XOR (⊕). We use the superscript B to denote Boolean sharing of a bit. The Boolean world
is analogous to the arithmetic world where addition/subtraction operations are replaced with
XORs, and multiplication is replaced with AND (∧).

4.3 Design of Asterisk

We elaborate on the preprocessing and online phase of Asterisk in the preprocessing model.

Preprocessing phase. In this phase, parties obtain ⟨·⟩-shares of the masks associated
with all the wires in the circuit representing the function to be computed, while HP gets
them all in clear. Specifically, the HP begins by sampling the MAC key ∆ and generates
its [·]-shares. For an input wire with value v where Pd is the input provider (dealer), parties
generate ⟨·⟩-shares of a random mask δv such that δv is known to Pd and HP. For wires that
are the output of an addition gate, HP and all parties locally add the ⟨·⟩-shares of masks of
the input wires of the addition gate to obtain the ⟨·⟩-shares of the mask for the output wire.
With respect to a multiplication gate, let x, y be the inputs to this gate and z be the output.
Parties generate ⟨·⟩-shares of a random mask δz such that it is known to the HP. Moreover,
HP computes δxy = δx · δy, where δx, δy are the masks corresponding to x and y, respectively.
Then it generates ⟨·⟩-share of δxy. Looking ahead, δxy will be used to generate the masked
value for the output of the multiplication gate. Finally, for an output gate where v is the
output, HP generates and stores the mask δv. During the online phase, it will send δv to all
the parties to facilitate output reconstruction. The preprocessing phase is described in Fig. 7
which uses several sub-protocols for generating the ⟨·⟩-shares of different values. We start
with the latter.

The preprocessing phase involves generation of ⟨·⟩-sharing of the following kind of secrets–
(i) a random mask that is known by a designated party and the HP, (ii) a random mask that
is known only to the HP, (iii) a secret value (not necessarily uniformly random) known to
the HP. Note that to generate ⟨·⟩-shares of a value v, the HP can sample n− 1 shares [v]i for
i ∈ {1, . . . , n− 1}, followed by computing [v]n = v−

∑n−1
i=1 [v]i. Similarly, it can compute the

tag tv, then sample n−1 shares for tv followed by computing the last share for tv. The HP can
the send the ith share of v and tv to Pi. This would require 2n elements of communication.
We improve this cost by using the common keys established during the setup phase.

Π⟨·⟩-Sh(Pd,Rand) (Fig. 4) indicates generating a ⟨·⟩-sharing of a random value v such that
the dealer, Pd, and HP know the value in clear. This requires communication of 2 elements.
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Input: ∀i ∈ [1, n], Pi’s input ki, and HP’s input {{ki}i∈[1,n],∆}.
Output: Pd’s output v and ⟨v⟩d and Pi(i ̸= d) gets ⟨v⟩i.

Protocol:
• HP and Pd sample a random value v using the kd.

• For all i ∈ {1, . . . , n− 1}, HP and Pi sample a random share [v]i and a random share of the tag
[tv]i using the ki.

• HP computes [v]n = v −
∑

i∈[n−1] [v]i and [tv]n = (∆ · v)−
∑

i∈[n−1] [tv]i.

• HP sends ([v]n , [tv]n) to Pn.

Protocol Π⟨·⟩-Sh(Pd,Rand)

Figure 4: Generating ⟨·⟩ of a random value known to Pd

Π⟨·⟩-Sh(HP,Rand) (Fig. 5) indicates generating a ⟨·⟩-sharing of a random value v sampled
by HP. This requires communication of 1 element.

Input: ∀i ∈ [1, n], Pi’s input ki, and HP’s input {{ki}i∈[1,n],∆}.

Output: Pi gets ⟨v⟩i for all i ∈ [1, n].

Protocol:
• For all i ∈ {1, . . . , n− 1}, HP and Pi sample a random share [v]i and a random share of the tag
[tv]i using ki.

• HP and Pn sample a random value [v]n using kn.

• HP computes v =
∑n

i=1 [v]i and [tv]n = (∆ · v)−
∑

i∈[n−1] [tv]i.

• HP sends [tv]n to Pn.

Protocol Π⟨·⟩-Sh(HP,Rand)

Figure 5: Generating ⟨·⟩ of a random value known only to HP

Π⟨·⟩-Sh(HP, v) (Fig. 6) indicates generating a ⟨·⟩-sharing of v held by HP. This requires
communication of 2 elements.

Input: ∀i ∈ [1, n], Pi’s input ki, and HP’s input {{ki}i∈[1,n],∆, v}.

Output: Pi gets ⟨v⟩i for all i ∈ [1, n].

Protocol:
• For all i ∈ {1, . . . , n− 1}, HP and Pi sample a random share [v]i and a random share of the tag
[tv]i using ki.

• HP computes [v]n = v −
∑

i∈[n−1] [v]i and [tv]n = (∆ · v)−
∑

i∈[n−1] [tv]i.

• HP sends ([v]n , [tv]n) to Pn.

Protocol Π⟨·⟩-Sh(HP, v)

Figure 6: Generating ⟨·⟩ of a value v known to HP

We emphasize that the complete preprocessing for a circuit C can be performed at once.
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Only one round of communication is required from HP to Pn such that all the parties obtain
the preprocessing data for the circuit C. For the ith party, let preproci be the preprocessing
data. preproci consists of ⟨·⟩-sharing of all wires of C, additionally, for multiplication gates,
it contains ⟨·⟩-sharing of the product of the masks of the input wires for the corresponding
gate. HP’s preprocHP only contains the mask of the output wires, which is used for the output
reconstruction. We describe the preprocessing phase of our protocol in Fig. 7.

Input: For all i ∈ [1, n], Pi has input the PRF key ki and the circuit C. HP has {ki}i∈[1,n] and C
as input.

Output: Pi’s output preproci and HP’s output preprocHP.

Protocol:
• KeyGen: For all i ∈ {1, . . . , n}, Pi and HP sample [∆]i using their common key ki. HP computes
∆ =

∑n
i=1 [∆]i.

• Input gates: For a gate with input v and input provider Pd, all parties and HP execute
Π⟨·⟩-Sh(Pd,Rand) to enable generation of mask δv for v in clear among HP and Pd, and gener-
ation of its ⟨·⟩-shares among the parties in P.
• Addition gates: For a gate with inputs x and y, HP and Pi locally compute ⟨δx+y⟩i = ⟨δx⟩i+⟨δy⟩i,
where ⟨δx⟩i + ⟨δy⟩i = ([δx]i + [δy]i , [tx]i + [ty]i).

• Multiplication gates: For a gate with inputs x and y, all parties and HP execute Π⟨·⟩-Sh(HP,Rand)
to generate ⟨·⟩-shares of the mask δz for the output wire z = x · y, where δz is known in clear to
HP. HP computes δxy = δx · δy. All parties and HP execute Π⟨·⟩-Sh(HP, δxy) to generate ⟨δxy⟩.

Protocol ΠPrep

Figure 7: Preprocessing phase of Asterisk for a circuit C

Note that the preprocessing phase exclusively involves the (semi-honest) HP generating
and sending certain values to the parties. All other parties’ tasks are limited to local com-
putation, and they are not involved in the communication. Hence, the preprocessing phase is
inherently error-free, and we do not need any additional verification checks.

Online phase. Given {{preproci}i∈[1,n]} and preprocHP (generated in the preprocessing
phase), once the input is available, the online phase involves generating the masked values
for all the wires in the circuit, as per the J·K-sharing semantics. Recall that the masked value
mv for a J·K-shared value v is defined asmv = v+δv where ⟨δv⟩ is generated in the preprocessing
phase. At a high level, to generate the masked value mv, each party is required to perform
local computations to generate its [·]-share of mv. The parties are then expected to send
their [·]-share of mv consistently to every other party. Each party uses the received [·]-shares
of mv to reconstruct it. Note that a malicious party may send inconsistent [·]-shares to the
other parties. To ensure consistency of the communicated messages, we resort to performing
MAC verification before the output reconstruction. To reconstruct the masked value, mv, we
use PKing based approach [24], where parties in P send their [·]-shares of a value to the PKing

(which is a designated party among {P1, . . . , Pn}), followed by PKing sending messages to all
the parties. In practice, one would balance the workload by choosing the players as PKing

suitably. While the formal details of the online phase for evaluating the circuit representing
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the function to be computed appear in Fig. 11, we next give an overview of the same.

Input gates. For an input gate gin, let Pd be the designated party, referred to as the dealer,
providing the input v. Observe that, from the preprocessing phase, Pd holds a random value
δv as a mask for v, while the i-th party Pi holds ⟨δv⟩i. All parties, excluding the HP, sample
a common random value r using their common PRF key kP . Pd computes qv = v + δv + r
and sends qv to HP. HP sends qv to all the parties. Each party locally computes mv = qv− r,
thereby generating its J·K-share of v as JvKi = {mv, ⟨δv⟩i}. The formal details are provided in
Fig. 8.

Input:
• Every input provider/dealer Pd, has input v and mask δv.

• For all i ∈ [1, n], Pi has the input gate gin, ⟨δv⟩i generated in Fig. 7 for gin and common key kP
generated in the setup phase.

Output: For all i ∈ [1, n], Pi’s output JvKi = (mv, ⟨δv⟩i) where mv = v + δv.

Protocol:
• All parties, excluding the HP, sample a random value r using their common key kP .

• Pd computes mv = v + δv + r and sends it to the HP.

• The HP sends qv to all the parties.

• For all i ∈ [1, n], Pi gets mv = qv − r and outputs JvKi = {mv, ⟨δv⟩i}.

Protocol ΠJ·K-Sh

Figure 8: Online phase of input sharing of Asterisk

Addition gates. For an addition gate gadd, the parties locally add the J·K-shares of the input
wires to obtain the J·K-sharing for the output wire. Parties complete this step by locally
adding the masked values of the input wires of gadd and the addition of the masks is already
done in preprocessing.

Multiplication gates. For a multiplication gate gmul, let x and y be the inputs, and let z be
the output. To generate J·K-shares of z, parties need to generate mz, and ⟨·⟩-shares of the
mask δz. Recall that ⟨·⟩-shares of δz are generated in the preprocessing phase. With respect
to mz, it can be computed as follows.

mz = z+ δz = xy + δz = (mx − δx)(my − δy) + δz

= mxmy −mxδy −myδx + δxy + δz

Given the ⟨·⟩-shares of δx, δy, δz and δxy, which are generated in the preprocessing, and relying
on the linearity of ⟨·⟩-sharing, parties can locally generate ⟨·⟩-shares of mz using the above
equation. Elaborately, since ⟨·⟩-share of mz comprises of [·]-shares of mz and its tag tmz ,
parties compute [mz] = mxmy −mx [δy]−my [δx] + [δxy] + [δz] , and [tmz ]i = [∆]imx ·my −mx ·
[ty]i − my · [tx]i + [txy]i + [tz]i . To reconstruct mz, all parties to send their share of mz to
the PKing. It reconstructs and sends mz to all the parties in P. Thus all parties obtain JzK.
Note that, a corrupt party may send incorrect shares to PKing and a corrupt PKing may send
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inconsistent values to the parties. However, such malicious behavior will get detected in the
MAC verification step. The formal details appear in Fig. 9.

Input:
• For all i ∈ [1, n], Pi has the multiplication gate gmul. It has the ⟨·⟩ of the following values
generated in Fig. 7 for gmul δx, δy, δxy, δz.

Output: For all i ∈ [1, n], Pi’s output mz = z+ δz, where z = x · y.

Protocol:
• For all i ∈ [1, n], Pi holds JxKi, JyKi and ⟨δxy⟩i, ⟨δz⟩i.
• Each party Pi computes [tmz ]i = −mx · [ty]i −my · [tx]i + [txy]i + [tz]i + [∆]i · (mx ·my).

• P1 computes [mz]1 = mx ·my −mx · [δy]1 −my · [δx]1 + [δxy]1 + [δz]1 and sends it to PKing.

• For all i ∈ [1, n] \ {1}, Pi computes [mz]i = −mx · [δy]i −my · [δx]i + [δxy]i + [δz]i and sends it to
PKing.

• PKing reconstructs mz and sends it to all parties (excluding the HP).

• For all i ∈ [1, n], Pi outputs JzK = (mz, ⟨δz⟩i).

Protocol Πmult

Figure 9: Online phase of multiplication of Asterisk

Verification. To verify the correctness of the computedmz, it suffices to check if [tmz ]−mz·[∆]
is a sharing of 0. To attain an efficient realization of this check, we combine the verification
with respect to multiple multiplication gates into a single check, and this check is performed
at the end of the computation, before output reconstruction. This allows us to amortize the
cost due to this verification check across many multiplication gates. To combine the checks
corresponding to m multiplication gates into one check, parties proceed as follows.
• All parties (including the HP) sample a random vector ρ = (ρ0, ρ1, . . . , ρm)← Fm+1 using
the common coin functionality FRand. Recall that the FRand functionality allows parties
and HP to sample common random values such that a corrupt party can guess the sampled
value with negligible probability. To realize FRand, HP samples a key kver and sends it to all
the parties in P. Parties can evaluate a PRF with key kver on a common input ctr. Note
that, we can not use kall for FRand since an adversarial party knows the key beforehand and
can compute ρ. Thus the soundness of the verification check does not hold. Since the key
kver is not known to any party, a malicious party can guess ρ with negligible probability.
Therefore, it can cheat and pass the verification with negligible probability.

• All parties (excluding the HP) sample a random sharing of 0, i.e., Pi gets αi such that∑n
i=1 αi = 0, using their common key kP .
Let {mz1 , . . . ,mzm} be the reconstructed values sent by HP to all the parties, and let

{
[
tmz1

]
i
, . . . ,

[
tmzm

]
i
} be the shares of the tags held by party Pi. For j ∈ {1, . . . ,m}, Pi

computes
[
ωzj

]
i
=

[
tmzj

]
i
− mzj · [∆]i , and sends the following to the HP: [ωz]i = ρ0 · αi +∑

j∈[m] ρj ·
[
ωzj

]
i
. Finally, the HP checks if

∑n
i=1 [ωz]i = 0, and sends the outcome to all the

parties. The details of the batched MAC verification are given in Fig. 10.
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Input:
• For every i ∈ [1, n], Pi has the reconstructed values {mz1 ,mz2 , . . . ,mzm}.

• For every i ∈ [1, n], Pi has
[
tmzj

]
i
as the MAC share of mzj and [∆]i as the MAC key share for

the ith party.
Output: All parties and HP output 1 if the verification passes, else 0.

Protocol:
• HP samples a new key kver and send it to all the parties in P.

• For all i ∈ [1, n], Pi computes
[
ωzj

]
i
=

[
tmzj

]
i
−mzj · [∆]i.

• For all i ∈ [1, n], Pi samples ρ = (ρ0, ρ1, . . . , ρm)← Fm+1 using the key kver.

• All parties (excluding the HP) sample a random sharing of 0, i.e., Pi gets αi such that
∑n

i=1 αi =
0, using the common key kP .

• For all i ∈ [1, n], Pi computes [ωz]i = ρ0 · αi +
∑m

j=1 ρj ·
[
ωzj

]
i
and sends to HP.

• The HP checks if
∑n

i=1 [ωz]i = 0. If the check fails, the HP sends 0 to all, else it sends 1.

Protocol Πverify

Figure 10: Amortized MAC-Verification of Asterisk

Output reconstruction. If the parties pass the above verification, then HP sends the masks
for the output wires. Let v be an output, and δv be the mask generated in the preprocessing
phase. HP sends δv to all the parties. Each party, holding mv computes v = mv− δv and gets
the output.

Remark. Note that throughout our protocol, the HP is invoked a total of 4 times (once
in the offline phase and thrice in the online phase). Note that by a “single” invocation of
the HP, we refer to a single instance of the HP receiving messages from all the parties,
performing some local computations based on these inputs, and sending messages to the
parties. In the online phase, the HP receives messages from the input providers and sends
the respective values to all the parties. For verification, HP generates kver, performs the
verification, and sends either the output masks or “abort” to all the parties. We note that
a small (constant) number of invocations reduces the overall reliance of our protocol on the
HP. This is particularly helpful in practical scenarios where the HP could be a busy resource
that is engaged across multiple protocol executions simultaneously.

Remark. Note that HP sends the masks of the output wires to all the parties only if the
verification is passed. Therefore if a malicious party deviates from the protocol, resulting
in abort, the malicious party fails to learn the output of the protocol. Hence, our protocol
achieves the fairness security guarantee. Since HP stores the masks of the output wires, this
requires the HP to be a stateful machine that stores data in memory. However, we can also
adapt our protocol to use a stateless HP instead using known techniques from [28], which we
elaborate in the full version.
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Input:
• For every input provider/dealer Pd, it has input v.

• For all i ∈ [1, n], Pi has the circuit C, the preprocessing data preproci generated in Fig. 7 and
common keys {ki, kP , kall} generated in the setup phase.

• HP’s input preprocHP.

Output: For all i ∈ [1, n], Pi’s output C(x1, x2, . . . , xn).

Protocol:
• Input gates: Parties execute ΠJ·K-Sh (Fig. 8) for every input gate of C.

• Addition gates: Let gadd be an addition gate, where x and y are the inputs.

• For all i ∈ [1, n], Pi holds JxKi, JyKi.

• For all i ∈ [1, n], Pi locally computes Jx+yKi = JxKi+JyKi, where JxKi+JyKi = ((mx+my), (⟨δx⟩i+
⟨δy⟩i)).
• Multiplication gates: Parties execute Πmult (Fig. 9) for every multiplication gates of C.

• Amortized verification: At the end of all the multiplication gates, all parties and HP execute
Πverify(Fig. 10). If parties output 1, then continue, else output ⊥.
• Output reconstruction: Let g be an output wire and v be an output. HP holds the mask δv of v.
HP sends δv to all the parties. Parties get the output v = mv − δv.

Protocol ΠOnline

Figure 11: Online phase of Asterisk for circuit C

4.4 Proof of security

• Initialize: On input (Init,F) from parties and HP, store F.
• Input: On input (Input, Pi, id, x) from Pi and (Input, Pi, id) from all other parties, with a fresh
identifier id and x ∈ F, store (id, x).

• Add: On command (Add, id1, id2, id3) from all parties (where id1, id2 are present in memory),
retrieve (id1, x), (id2, y) and store (id3, x+ y).

• Multiply: On command (Mult, id1, id2, id3) from all parties (where id1, id2 are present in
memory), retrieve (id1, x), (id2, y) and store (id3, x · y).
• Output: On input (Output, id) from all the parties (where id is present in the memory), output
id to the adversary. Wait for an input from the adversary; if this is deliver then retrieves (id, y)
and sends it to all the parties, otherwise if the adversary sends abort then it outputs ⊥ to all the
parties including the adversary.

Functionality FMPC

Figure 12: Ideal functionality for evaluating f with fairness

Lemma 4.1. Assuming the existence of a PRF, protocol Asterisk (Fig. 7, Fig. 11) designed in
the preprocessing-online paradigm realizes FMPC (Fig. 12) with computational non-colluding
security in the presence of a semi-honest HP.
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Protocol Input Output Preprocessing Online Comm Online Round

Πmult JaK, JbK JxK: x = a · b 3 2n 2

Πmult3 JaK, JbK, JcK JyK : y = a · b · c 9 2n 2

Πmult4 JaK, JbK, JcK, JdK JzK : z = a · b · c · d 23 2n 2

ΠPrefixAND Jx1KB, . . . , JxkKB Jy1KB, . . . , JykKB : yi = ∧ij=1xj
35
4 log4 k

3
2n log4 k 2 log4 k

Πk-mult Jx1KB, . . . , JxkKB JbKB : b = ∧ki=1xi 8 2n
3 2 log4 k

ΠEQZ JxK JbKB : b = 1(x
?
= 0) 12 2n

3 2 log4 k

ΠBitA JbKB JbK 3 2n 2

ΠLTZ JxK JbK : b = 1(x
?
≤ 0) 5 + 3

k + 35
2 log4 k 2n+ 2n

k + 3n log4 k 2 log4 k + 4

ΠDotP {JxsK, JysK}s∈[N] J
∑

s∈[N] xs · ysK 3 2n 2

Πshuffle Jx1K, . . . , JxNK Jxπ(1)K, . . . , Jxπ(N)K 2N2 + 3N 2nN 2

Πsel JbKB, Jx0K, Jx1K Jx1−bK 6 4n 4

Note: k is the number of bits to represent an element of F; N is the vector-length in ΠDotP and Πshuffle.

Table 2: Summary of the various building blocks that we design for our applications

Below we briefly discuss the proof of Lemma 4.1 and the formal proof is given in Ap-
pendix C.2.

Case I: Consider a malicious adversary corrupting all but one party from P. In the pre-
processing, the adversary performs only local computation thus the preprocessing is error-free.
The online phase is similar to the online phase of [7]. Before the output reconstruction, the
verification check ensures that the adversary cannot cheat (except with negligible probability)
by sending incorrect values during the reconstruction phase. Finally, to obtain the output,
HP sends the masks of the output wires only if the verification check is passed. Thus, either
all parties get the output or none which ensures fairness.

Case II: Consider the HP to be semi-honest. In the preprocessing phase, it generates the
preprocessing data to evaluate the circuit C. In the online phase, all the values sent to HP
are padded with a randomly sampled value. Therefore, to a semi-honest HP, the messages it
received in the online phase are indistinguishable from randomly sampled messages. Hence,
our protocol is secure against the semi-honest HP.

5 Applications and benchmarks

In this section, we discuss the building blocks required to realize practically efficient privacy-
preserving dark pools via Asterisk. We then describe a prototype implementation of Asterisk
and compare its performance with other MPC protocols [46, 36, 37]. Finally, we implement
and benchmark the aforementioned application on top of Asterisk. Our source code is publicly
available here.

5.1 Building blocks

We realize several building blocks, which are essentially adaptations of Asterisk for certain
specific (sub-)functionalities such as equality, comparison, dot product, and shuffle (among

19

https://anonymous.4open.science/r/AsteriskAnonymous/codebase.zip


others). These sub-protocols are then used for the desired application. While these building
blocks have been studied in the traditional MPC settings [13, 19, 39, 48], we adapt these
building blocks in the HP-aided setting to attain efficient realizations.

Table 2 summarizes the various sub-protocols that we use as building blocks for our
applications, as well as the corresponding overheads. Due to the lack of space in the body of
the paper, we defer the full details of these building blocks to the full version of the paper.
Conceptually, our realizations of these sub-protocols follow the same design paradigm as our
multiplication protocol described in Section 4.3, where all of the communication happens
via a designated PKing, and the correctness of the computation is verified before output
reconstruction via a verification phase.

5.2 Prototype implementation

We now describe a prototype implementation of Asterisk, which we use for benchmarking and
comparison.

Environment. Benchmarks are performed over LAN and WAN using n1-highmem-64
instance of Google Cloud. The machine is equipped with a 2.3GHz n1-highmem-64, 64 core,
Intel® Xeon® E5-2696V3 processor, with 416GB RAM memory. Each party is run as a
process on a single machine, and we use interprocess communication for emulating the actual
communication. To simulate the distributed environments, we use the Linux tc command
from the network emulation package netem to modify the bandwidth and latency. To simulate
the LAN, we consider a bandwidth of 1 Gbps and 0.5 ms of latency, and for the WAN, we
consider a bandwidth of 100 Mbps and 50 ms of latency. We demonstrate the performance
of Asterisk over both LAN and WAN, and we provide a comparison with other works as well
as the performance for privacy-preserving dark pools over WAN as the applications are more
suitable over WAN.

Implementation of Asterisk. We implement Asterisk in C++17 using the codebase of
QuadSquad [31] and the EMP toolkit [52]. We use computational security parameter κ = 128
and statistical security of at least 2−40. We use AES-NI in the CTR mode to realize the PRFs,
and use the NTL library [51] for all Zp operations (p being a 64-bit prime).4

Implementation of other protocols. For comparison with [36] and [37], we rely on publicly
available implementations from the widely used MP-SPDZ [35] framework. We use our own
implementation for [46], since it does not have a publicly available implementation.

5.3 Performance benchmarks for Asterisk

We evaluate Asterisk on synthetic circuits with a total 1M multiplication gates. We consider
circuits of depth d = 10, and 100 (with 100000 and 10000 multiplication gates at each level,
resp.), as well as varying number of parties n ranging from n = 5 to n = 100, in both LAN
and WAN network settings. The corresponding run times and communication overheads are
reported in Table 3.

4Our implementation is publicly available at: https://github.com/cris-coders-iisc/Asterisk. Our
code is developed for benchmarking and is not optimized for industry-grade use. We believe that incorporating
state-of-the-art code optimizations like GPU-assisted computing can further enhance the efficiency of our
protocols.
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Depth n Total comm.
LAN time (sec) WAN time (sec)

(MB) Preproc. Online Preproc. Online

10

5 89.60 16.20 4.34 18.65 12.20

10 169.60 27.68 4.57 30.10 18.41

25 409.60 60.31 6.39 62.89 32.11

50 809.60 115.25 12.08 115.78 63.11

100 1609.60 226.41 20.60 230.27 127.75

100

5 89.60 15.57 4.54 18.25 54.30

10 169.60 26.50 5.12 29.03 104.71

25 409.60 58.02 7.19 60.60 255.94

50 809.60 111.67 13.57 112.23 508.40

100 1609.60 218.69 24.45 218.94 1013.40

Table 3: Asterisk’s total communication cost and run time over LAN and WAN networks for circuits
with 106 multiplication gates, for varying depth (d ∈ {10, 100}) and varying numbers of parties
(n ∈ {5, 10, 25, 50, 100}).

Observe that the overheads for the preprocessing phase are independent of d and n. This
is precisely as expected (recall that the preprocessing phase of Asterisk is a one-shot message of
size 24MB from the HP to Pn) and validates the high practical efficiency of the preprocessing
phase. For the online phase, the time taken and communication overheads increase with d
and n resp., which is again as expected (since the number of communication rounds increases
with d). The overall communication, however, only scales with n and the total number of
gates (and hence, is independent of d).

Comparison with preprocessing phase of [46]. We compare the preprocessing phase of
Assisted MPC [46] with that of Asterisk in Table 4 (Fig. 2) over a WAN network for varying
number of parties n and for the same synthetic circuit with 106 multiplication gates (the
online phase of [46] is identical to that of [37], and the corresponding comparison with Asterisk
is presented subsequently in Table 6).5 Unlike Asterisk, Assisted MPC requires the HP to
communicate with all the parties in the preprocessing phase. Hence, the communication
cost of Assisted MPC increases linearly with the n, whereas it remains constant for Asterisk.
This allows Asterisk to save up to 134× and 4× in communication and run time overheads,
respectively.

Comparison with preprocessing phase of [36, 37]. In Table 5, we compare the pre-
processing phases of Asterisk with that of [36, 37] (we also include a data-point for Assisted

5For a fair comparison, we let the helper in [46] be honest because [46] achieves its best efficiency in the
presence of an honest helper.
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# of parties
Assisted MPC[46] Asterisk

Comm. (MB) Time (sec) Comm. (MB) Time (sec)

5 161 48.77 24 18.25

10 322 90.67 24 29.03

25 804 219.09 24 60.60

50 1608 432.33 24 112.23

100 3216 866.99 24 218.94

Table 4: Offline phase: Asterisk vs Assisted MPC[46].

Protocol Communication (KB) Throughput (/sec ×103)

Mascot 8.45 0.19

Overdrive 7.35 0.24

Assisted MPC 0.161 20.50

Asterisk 0.024 54.79

Table 5: Offline phase overheads (per multiplication triple generation for 5 parties): Mascot [36] vs
Overdrive [37] vs Assisted MPC [46] vs Asterisk.

MPC [46] for completeness) in terms of the cost of generating a single multiplication triple
coupled with the throughput (number of multiplication triples that can be generated per
second). We opt for such a comparison since [36, 37] use function-independent preprocess-
ing phases which generate batches of multiplication triples. As expected, Asterisk provides
a much better throughput, where the gain is up to 288×, 228× and 2.7×, respectively, in
comparison to [36], [37], and [46], respectively.

Comparison with online phase of [36, 37, 46]. In Table 6, we compare the online
phase of Asterisk with the other dishonest majority protocols [36, 37, 46] (since all of these
have identical online phases, we only report the results for [36]) over a WAN for a circuit
with 106 multiplication gates with depth 100, and for varying numbers of parties n. Asterisk
achieves communication savings upto 4×. The relatively poor running time does not follow
the asymptotic analysis (see Table 1, where Asterisk is clearly better than [36, 37, 46]), and is
a consequence of the vast gap in terms of optimizations between our implementation (which is
purely for benchmarking and additional overhead of NTL library [51]) and that of [36] in the
MP-SPDZ library (which is highly optimized but does not support running Asterisk for a fair
comparison due to the inherently function-dependent of its preprocessing framework). For a
fair comparison of the running time, one should use a similarly optimized implementation of
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# of parties
Dishonest Majority Atlas Asterisk

Comm. (MB) Time (sec) Comm. (MB) Time (sec) Comm. (MB) Time (sec)

5 256 29.2 128 31.2 80 54.30

10 576 54.0 320 42.8 160 104.71

25 1536 142.0 768 109.4 400 255.94

50 3137 291.9 1600 441.5 800 508.40

100 6338 982.4 – – 1600 1013.40

Table 6: Online phase: Asterisk vs [46, 36, 37] and [29].

N = M n = M +N
Preproc. Online

Throughput
Comm. (KB) Time (sec) Comm. (KB) Time (sec) (/min)

5 10 10.28 2.77 20.29 9.51 63.09

10 20 19.97 5.33 83.03 18.60 64.52

25 50 49.03 13.85 532.83 46.22 64.91

50 100 97.47 27.84 2151.27 92.30 65.01

Table 7: Communication, run time, and throughput (per minute) for dark pool VM algorithm for
varying buy list size (N), and sell list size (M) and number of parties (n = M +N).

Asterisk, which we leave as an interesting future work.

Comparison with online phase of [29]. Additionally, we also compare against the state-
of-the-art honest majority protocol Atlas [29] implemented in [35]. We note that the imple-
mentation allows running only the online phase of [29], which is reported in Table 6. We
observe that our protocol has up to 2× improvement in online communication and a com-
parable run time in comparison to [29], despite the fact that the implementation of [29] is
highly optimized.

5.4 Benchmarks for Dark Pool

We now benchmark the secure dark pool protocol described in [39], which is adapted to build
upon Asterisk. Following prior works [39, 12], our benchmarking results focus purely on the
secure matching functionality. While we expect Asterisk to be general enough to also support
secure auditing, we leave it as an interesting open question to design and implement the
corresponding sub-protocols using Asterisk. Here, we do not present a comparison with other
MPC protocols, since we expect precisely the same performance savings as in Section 5.3.
We consider two popular algorithms—volume matching (VM) and continuous double auctions
(CDA)—that are used for matching buy requests with appropriate sell requests in dark pools.

Volume matching: Consider a list B of N buy orders and a list S of M sell orders that are
present in the system at a given point in time, where each order is also associated with a
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(distinct) client’s name and the number of units to be bought or sold, respectively. A buy
order is said to match a sell order (and vice-versa) if the units in the buy order are greater
than or equal to the units of a sell order (known as the volume criteria). To completely
satisfy a buy order, it is matched with every order in S until this volume criteria fails. Thus,
the buy order may have more than one matching sell order. In this way, in volume matching,
matching is performed based on the above volume criteria, and either all of the buy orders
or all of the sell orders are guaranteed to be satisfied.

Table 7 discusses the performance of Asterisk for VM, where the buyers in B and sellers
in S enact the role of parties in MPC and run the privacy-preserving protocol for VM [39]
among themselves. Since the performance of VM varies with the number of buyers (N) and
sellers (M), we vary N,M to analyze its performance. Observe that even when N,M is as
large as 50, Asterisk executes within a few seconds (up to 93 seconds). The total amount of
communication is less than 2 MB. We also report the throughput, which captures the number
of incoming orders that can be processed in a minute, and is computed as [12] throughput
(/min) = (M +N) ∗ 60/online run time.

Continuous double auction: Unlike volume matching, where orders are matched in one shot,
in CDA, orders are processed in a continuous manner with B and S constantly being updated
to keep track of partially satisfied orders. Moreover, each order additionally comprises a
price, indicating the price at which the buyer (seller) is willing to buy (sell) the stated units.
Hence, for a buy order to match a sell order (and vice-versa), it is required that not only
the aforementioned volume criteria should be satisfied, but the price criteria should also be
met, i.e., the buying price of the buy order should be greater than or equal to the selling
price of the sell order. The algorithm maintains the invariant that orders in the buy list are
sorted in descending order as per the buying price, while orders in the sell list are sorted
in ascending order as per the selling price. When a new buy order arrives, the algorithm
identifies all possible matching sell orders based on whether the price criteria and volume
criteria are satisfied. When either one of the matching criteria fails, the buy order may either
be fully satisfied, i.e., all of its units are exhausted by getting matched to sell orders or,
it may be partially satisfied, i.e., some of its units are still unmatched. If the buy order
is partially satisfied, then it is inserted in the right position as per its buying price in the
sorted B. Thus, the CDA algorithm comprises a matching phase followed by an insertion
phase (see [39] for details). Observe that due to the constantly changing B and S with
state information being reused across the changes, we execute this algorithm in the secure
outsourced computation setting. Here, a small set (n = 5) of powerful external servers are
hired to carry out the MPC computation. The incoming buy or sell request is secret shared
among the set of servers, which then execute the protocol on the secret-shared B,S and the
incoming request, to obtain the result in a secret-shared manner.

Table 8 demonstrates the performance of Asterisk for CDA. Since the performance of CDA
varies with N,M , we vary these while analyzing the performance. For processing an incoming
trade request, Asterisk executes within a few seconds (up to 13 seconds), even when the buy
list size (N) and sell list size (M) is as large as 500. The total amount of communication is
approximately 2 MB. We also report the throughput, which is computed [12] as throughput
(/min) = 60/online run time.
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N = M
Preproc. Online

Throughput
Comm. (KB) Time (sec) Comm. (KB) Time (sec) (/min)

50 84.24 0.34 92.20 8.49 7.07

100 167.70 0.69 183.52 8.53 7.03

250 418.07 1.87 457.60 9.78 6.13

500 835.35 4.40 914.32 12.05 4.98

Table 8: Communication, run time, and throughput (per minute) for dark pool CDA algorithm for
n = 5 and varying buy list size (N), and sell list size (M).

6 Conclusion and open questions

This work studies a new model, HP-aided MPC, which considers an additional semi-honest
party. The presence of this semi-honest party helps to attain a security guarantee (fairness)
which is known to be impossible, in general, for a standard dishonest majority setting. In
this model, we build a framework, Asterisk, that achieves the following: (a) fairness security
guarantee, (b) much better efficiency in comparison to dishonest majority protocols, (c)
comparable efficiency with honest majority protocols, (d) scalability for a large number of
parties. Moreover, the existence of the HP is natural in various applications, such as the
Securities and Exchange Commission in the dark pool, which makes the model practically
relevant.

Our work gives rise to many interesting open questions. It is worthwhile to check if one
can extend the security of Asterisk from fairness to GOD while preserving privacy against the
semi-honest HP. Such an extension is immediate if the HP learns the output: if the protocol
aborts (implying at least one malicious corruption in P), the HP must be honest (follows
from our model), and can be used by the parties as a trusted third party (TTP) to compute
the output. It is also interesting to explore alternative practically motivated models that
would allow for circumventing and improving the de facto security and efficiency bottleneck
of dishonest majority MPC. Finally, one could explore using Asterisk for additional privacy-
preserving applications (e.g., federated cloud computing, PPML, and secure auditing for dark
pools, where the assumption of a semi-honest HP is naturally justified).
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A Security model

The real world An n-party protocol Π with n parties P = {P1, . . . , Pn} is an n-tuple of
probabilistic polynomial-time (PPT) interactive Turing machines (ITMs),

We let A denote a special PPT ITM that represents the adversary and that is initialized
with input that contains the identities of the corrupt parties, their respective private inputs,
and an auxiliary input. During the execution of the protocol, the maliciously corrupt parties
(sometimes referred to as ‘active’) receive arbitrary instructions from the adversary A, while
the honest parties and the semi-honestly corrupt (sometimes referred to as ‘passive’) parties
faithfully follow the instructions of the protocol. We consider the adversary A to be rushing,
i.e., during every round the adversary can see the messages the honest parties sent before
producing messages from actively corrupt parties.

At the end of the protocol execution, the honest parties produce output, the corrupt
parties produce no output, and the adversary outputs an arbitrary function of its view. The
view of a party during the execution consists of its input, random coins and the messages it
sees during the execution.

Definition A.1 (Real-world execution). Let Π be an n-party protocol amongst {P1, . . . , Pn}
computing an n-party function f : ({0, 1}∗)n → ({0, 1}∗)n and let C ⊂ [1, n] ∪ {HP} denote
the set of indices of the corrupted parties. The execution of Π under (A, C) in the real world,
on input vector x⃗ = (x1, . . . , xn), auxiliary input aux and security parameter κ, denoted
realΠ,C,A(aux)(x⃗, κ), is defined as the output vector of P1, . . . , Pn and A(aux) resulting from the
protocol interaction.

The ideal world We describe ideal world execution with the fairness security guarantee.

Definition A.2 (Ideal Computation). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function
and let C ⊂ [1, n]∪{HP} denotes the set of all corrupt parties. Then, the joint ideal execution
of f under (S, C) on input vector x⃗ = (x1, . . . , xn), auxiliary input aux to S and security
parameter κ, denoted idealf,C,S,(aux)(x⃗, κ), is defined as the output vector of P1, . . . , Pn and S
resulting from the following ideal process.
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1. Parties send inputs to trusted party: An honest party Pi sends its input xi to the
trusted party. The simulator S may send to the trusted party arbitrary inputs for the
actively corrupt parties. Let x′i be the value actually sent as the input of party Pi.

2. Trusted party speaks to simulator: The trusted party computes (y1, . . . , yn) = f(x′1, . . . , x
′
n).

The trusted party sends ready to S.
3. Simulator S responds to trusted party: The simulator can send abort to the trusted

party.
4. Trusted party answers parties:

(a) If the trusted party got abort from the simulator S, it sets the abort message
abortmsg = ⊥.

(b) Otherwise, it sends yj to every Pj, j ∈ [1, n].

5. Outputs: Honest parties always output the message received from the trusted party,
while corrupt parties output nothing. The simulator S outputs an arbitrary function of
the initial inputs {xi}i∈C, the messages received by the corrupt parties from the trusted
party and its auxiliary input.

In this work, we primarily consider the non-colluding security notion of [33], which is
described below.

Non-colluding security Informally, protocols with this notion of security are secure
against a non-colluding adversary that corrupts either any subset of the n parties {P1, . . . , Pn}
maliciously or the HP passively (i.e. in a semi-honest manner). The formal definition appears
below.

Definition A.3 (Non-colluding security). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party
function. A protocol Π securely computes the function f in the non-colluding model with
fairness security if for any adversary A, there exists a simulator S such that for every C
where either (a) C ⊂ [1, n] malicious corruptions or (b) C = HP semi-honest corruption, we
have{
realΠ,C,A(aux)(x⃗, κ)

}
x⃗∈({0,1}∗)n,κ∈N≡

{
idealf,C,S(aux)(x⃗, κ)

}
x⃗∈({0,1}∗)n,κ∈N .

Note that the corruption is non-simultaneous. Therefore we need the above indistinguisha-
bility to hold in both the corruption cases.

A protocol achieves computational security, if the above distributions are computationally
close in the presence of the parties, A, S that are PPT. A protocol achieves statistical (resp.
perfect) security if the distributions are statistically close (resp. identical).

A.1 Alternative corruption models

As mentioned above, we consider a non-colluding adversary who either corrupts up to n− 1
among the n parties maliciously or the HP in a semi-honest manner. One might also consider
the following alternative corruption models.

A.1.1 Collluding security

Informally, in this corruption model, the adversary can simultaneously corrupt the majority of
the parties maliciously as well as the HP in a semi-honest manner. More formally, security is
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defined similar to non-colluding security (defined above), except that the indistinguishability
must hold for every C ⊂ [1, n] ∪ {HP}, where the corruptions in [1, n] are malicious and
corruption of HP is semi-honest.

A.1.2 Friends and foes (FaF) security with HP

When proving security in the FaF model (as discussed in Section 1), there is the additional
requirement of simulating the view of any subset of uncorrupted (or semi-honest) parties,
in addition to simulating the view of the maliciously corrupt parties. This necessitates the
use of two simulators in the ideal world– one for the malicious adversary and one for the
semi-honest adversary. Further, the malicious adversary is allowed to send its entire view
to the semi-honest adversary in the ideal world to capture the behaviour where the mali-
cious adversary may send non-protocol messages to uncorrupted parties in the real world.
Elaborately, let A denote the probabilistic polynomial time (PPT) malicious adversary in
the real-world corrupting t parties in I ⊂ P, and SA denote the corresponding ideal-world
simulator. Similarly, let AH denote the (PPT) semi-honest adversary corrupting h⋆ parties
in H ⊂ P \ I in the real-world, and SAH , be the ideal-world simulator. Note that in the
classical definition of ideal-world, H = ϕ and FaF-security with HP definition, H = {HP}
and t = n− 1.

Unlike the FaF-security model, where security is required not only against t maliciously
corrupt parties, but also against any subset of h⋆ semi-honest parties, FaF-security with
HP is a special case. Here, we require semi-honest security to be provided only against
the single party designated as the HP. Let A be an adversary corrupting at most n − 1
parties maliciously, and let AHP be a semi-honest adversary that corrupts the HP. We
say a protocol, Π, is FaF-secure with HP if Let F be the ideal-world functionality. Let
VIEWREAL

A,Π (1λ, zA) be the malicious adversary’s (A) view and OUTREAL
A,Π (1λ, zA) denote the

output of the uncorrupted parties (in P \ I) during a random execution of Π, where zA
is the auxiliary input of A. Similarly, let VIEWREAL

A,AHP,Π
(1λ, zA, zAHP

) be the semi-honest
AHP’s view during an execution of Π running alongside A, where zAHP

is the auxiliary
input of AHP. Note that VIEWREAL

A,AHP,Π
(1λ, zA, zAHP

) consists of the non-prescribed messages

sent by the malicious adversary to AHP. Correspondingly, let VIEWIDEAL
SA,F (1λ, zA) be the

malicious adversary’s simulated view with SA corrupting parties in I and OUTIDEAL
SA,F (1λ, zA)

denote the output of the uncorrupted parties (in P \ I) during a random execution of ideal-
world functionality F . Similarly, let VIEWIDEAL

SA,SAHP
,F (1

λ, zA, zAHP
) be the semi-honest AHP’s

simulated view with SAHP
corrupting AHP during an execution of F running alongside A. A

protocol Π is said to compute F with computational FaF-security with HP if

(
VIEWIDEAL

SA,F (1λ, zA),OUT
IDEAL
SA,F (1λ, zA)

)
≡

(
VIEWREAL

A,Π (1λ, zA),OUT
REAL
A,Π (1λ, zA)

)
,(

VIEWIDEAL
SA,SAHP

,F (1
λ, zA, zAHP

),OUTIDEAL
SA,F (1λ, zA)

)
≡

(
VIEWREAL

A,AHP,Π
(1λ, zA, zAHP

),OUTREAL
A,Π (1λ, zA)

)
.

where, VIEWIDEAL
A,AHP,F (1

λ, zA, zAHP
) is AHP’s simulated view during an execution of F along-

side A, and VIEWREAL
A,AHP,Π

(1λ, zA, zAHP
) consists of the set of non-prescribed messages sent by

A to AHP.
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B Proof of Theorem 3.1

We present the proof for a two-party functionality. The argument can be extended for any
number of parties using the player-partitioning argument. We refer to the two parties as
A,B.

Lemma B.1. Assume that one-way permutation exists. Then there exists a 2-party func-
tionality that no protocol computes with fairness in the FaF security model with HP (refer to
precise the definition given in Section A.1.2).

Proof of Lemma B.1 Let f = {fκ : {0, 1}κ → {0, 1}κ}κ∈N be a one-way permutation. De-
fine the symmetric 2-party functionality Swap = {Swapκ : {0, 1}2κ × {0, 1}2κ → {0, 1}2κ}κ∈N
as follows. Parties A and B each hold string (a, yB) and (b, yA) respectively. The output is
then defined to be

Swapκ((a, yB), (b, yA)) =

(a, b) if fκ(a) = yA and fκ(b) = yB

0κ otherwise

For the sake of contradiction, suppose a protocol Π securely computes the Swap func-
tionality with fairness FaF security with HP model. We fix a security parameter κ and let
r denote the number of rounds in Π. Consider an evaluation of Swap with the output being
(a, b). Formally, we consider the following distribution over the inputs.

• a, b are each selected from {0, 1}κ uniformly at random and independently.

• yA = fκ(a) and yB = fκ(b).

For i ∈ {0, . . . , r} let ai be the final output of A assuming that B aborted after sending ith
round messages. Similarly, for i ∈ {0, . . . , r} we define bi to be the final output of B assuming
that A aborted after sending ith round messages. Observe that ar (br) is the output of A (B)
when B (A) sends messages in all the rounds. We first claim that there exists a round where
either A and HP jointly or B and HP jointly, gain an advantage in computing the correct
output.

Claim B.2. Either there exists i ∈ [0, r] such that

Pr[ai = (a, b)]− Pr[bi = (a, b)] ≥ 1− neg(κ)

2r + 1
,

or there exists i ∈ [1, r] such that

Pr[bi = (a, b)]− Pr[ai−1 = (a, b)] ≥ 1− neg(κ)

2r + 1
.

The probabilities above are taken over the choice of inputs and of random coins for the parties.
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Proof. The proof follows by the following averaging argument. By correctness and the fact
that fκ is one-way, it follows that

1− neg(κ) ≤Pr[ar = (a, b)]− Pr[b0 = (a, b)]

=
r∑

i=0

(
Pr[ai = (a, b)]− Pr[bi = (a, b)]

)
+

r∑
i=1

(
Pr[bi = (a, b)]− Pr[ai−1 = (a, b)]

)
Since there are 2r+1 summands, there must exist an i for which one of the differences is at
least 1−neg(κ)

2r+1 .

Assume without loss of generality that there exists an i ∈ [1, r] such that the former
equality in Claim B.2 holds (the other case is done analogously). Define a malicious adversary
A as follows. For the security parameter κ, it receives the round i as auxiliary input. Now, A
corrupts A and makes it act honestly (using the party’s original input a) up to and including
round i. After receiving the i-th message, the adversary instructs A to abort. Finally, the
adversary sends its entire view to HP. Note that this is allowed as per the FaF security
notion as nothing stops a malicious adversary from sending its view to the semi-honest HP
in the real-world.

Next, we show that no pair of simulators SA and SA,HP can produce views for A and HP
so that the ideal view and the real view are indistinguishable. For that, we assume towards
contradiction that such simulators do exist. Let (a∗, y∗B) ∈ {0, 1}2κ be the input that SA sent
to the ideal functionality. Additionally, denote q = Pr[bi = (a, b)].

Now depending upon Pr[(a∗, y∗B) = (a, yB)], two scenarios are possible. We will analyze
them case by case.

Case I: Pr[(a∗, y∗B) = (a, yB)] ≥ q + 1
p(κ) for some polynomial p(·) for infinitely many κ’s.

Let OUTIDEAL
B be B’s output in the ideal world. Since fκ is a permutation, we have that

Pr[OUTIDEAL
B = (a, b)] = Pr[(a∗, y∗B) = (a, yB)] ≥ q + 1

p(κ) . Thus, by comparing the output of

B to (a, b) it is possible to distinguish the real from the ideal with advantage at least 1/p(κ).

Case II: Pr[(a∗, y∗B) = (a, yB)] ≤ q + neg(κ). Here we show how to distinguish between
the view of HP in the real world from its ideal world counterpart. Recall that in the real
world A sent its view to HP. Let M be the algorithm specified by the protocol, that A and
HP use to compute their output assuming B has aborted. Namely, M outputs ai in the real
world. By Claim B.2 it holds that Pr[ai = (a, b)] ≥ q + 1−neg(κ)

2r+1 . We next consider the ideal
world. Let V be the view generated by SA,HP. We claim that Pr[M(V ) = (a, b) ∧ (a∗, y∗B) ̸=
(a, yB)] ≤ neg(κ).

Note that Pr[M(V ) = (a, b) ∧ a∗ ̸= a] ≤ neg(κ). Since fκ is a permutation and B does
not change the input it sends to the ideal functionality, (i.e. B sends its input (b, yA)) the
output computed by the ideal functionality will be 0κ. Moreover, as fκ is one-way, it follows
that if M(V ) did output (a, b), then it can be used to break the security of fκ. At a high
level, this is because M has computed f−1

κ (yB). Elaborately, this can be done by sampling
a ← {0, 1}κ, computing fκ(a), and finally, computing a view V using the simulators and
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applying M to it (if a∗ computed by SA equals to a then abort). On the other hand,
Pr[M(V ) = (a, b) ∧ y∗B ̸= yB] ≤ neg(κ). Since B does not change its input b to the ideal
functionality, thus fκ(b) = yB ̸= y∗B, due to the well-definedness of the function fκ. Therefore,
the output computed by the ideal functionality will be 0κ. Hence,

Pr[M(V ) = (a, b) ∧ (a∗, y∗B) ̸= (a, yB)]

≤Pr[M(V ) = (a, b) ∧ a∗ ̸= a] + Pr[M(V ) = (a, b) ∧ y∗B ̸= yB].

Thus, Pr[M(V ) = (a, b) ∧ (a∗, y∗B) ̸= (a, yB)] ≤ neg(κ) Hence, we conclude that

Pr[M(V ) = (a, b)]

=Pr[M(V ) = (a, b) ∧ (a∗, y∗B) = (a, yB)] + Pr[M(V ) = (a, b) ∧ (a∗, y∗B) ̸= (a, yB)]

≤Pr[(a∗, y∗B) = (a, yB)] + neg(κ) ≤ q + neg(κ).

Therefore, by applying M to the view it is possible to distinguish with advantage at least
1−neg(κ)

2r+1 − neg(κ).

C Asterisk: Additional details and proofs

C.1 Shared key setup

Here we provide details about how to instantiate FSetup (Fig. 3). Note that {ki}i∈[1,n] and
kall can be sampled by HP and sent to the corresponding parties. However, generating kP
is challenging since this should be generated while ensuring that all parties agree on the key
despite misbehaviour of corrupt parties. We rely on the following abort secure protocol for
generating this key. Each party sends a randomly sampled value to all other parties. Upon
receiving values from all parties, each party takes the sum of the received value and sets
that as the common key (kP). To verify that all parties have agreed upon a common key,
they rely on HP as follows. All parties evaluate the PRF on a common counter (ctr) value
using the common key and send the output to HP. If all the received values at HP match,
then HP sends continue to all the parties; else, it sends abort. If parties receive abort, they
terminate the protocol. Otherwise, the protocol continues with kP as the common key among
the parties. Note that, though the above-mentioned procedure provides only abort security,
while running it inside Asterisk it does not impact the fairness guarantee of Asterisk. This is
because aborting during key setup which is an input independent phase does not allow the
adversary to learn any information about the output.

C.2 Security proof

The formal security proof of Asterisk is provided here.

Malicious Let A be a malicious adversary corrupting up to n − 1 parties among the computing

parties P = {P1, . . . , Pn}. Therefore there is at least one honest party, say Ph. In this case, recall
that HP is also honest. Let SA denote the simulator for this case.
• Preprocessing: SA simulates the preprocessing phase of the protocol by acting on behalf of
HP as per the protocol specifications.

Simulator SA
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• Input: Let Pd be the input provider.

• Case I: d ̸= h. In the online phase, SA receives qv from Pd (since Pd ̸= Ph, thus corrupted by
A) and sends qv to all the parties. SA extracts Pd’s input v = qv − r − δv. Note that r is the
common random pad known to Ph and δv is known to HP from the preprocessing phase.

• Case II: d = h. In the online phase, SA samples a random value qv and sends it to all the parties
on behalf of HP.

• Multiplication:

• Case I: Let PKing be corrupt. In the online phase, SA computes [mz]h according to the protocol.
Since SA has [δx]h , [δy]h , [δxy]h , [δz]h from the preprocessing step and mx,my is available to all the
parties (excluding HP), therefore it can compute [mz]h correctly. SA sends it to PKing on behalf
of Ph. Then it receives mz from PKing.

– If SA receives multiple mz from PKing, then SA sets adversary’s message to FMPC as abort. SA
continues the steps of the protocol on behalf of the honest parties with the received values.a

– If mz ̸= mxmy −mxδy −myδx + δxy + δz, then SA sets adversary’s message to FMPC as abort. SA
continues the steps of the protocol on behalf of the honest parties with the received values.

– If mz = mxmy −mxδy −myδx + δxy + δz then SA, then SA continues the steps of the protocol on
behalf of the honest parties with the received values.

• Case II: Let PKing be honest. In the online phase, SA receives shares of [mz]i from the corrupt
Pi. If [mz]i ̸= mxmy − mx [δy]i − my [δx]i + [δxy]i + [δz]i then it sets FMPC message as abort. SA
sends mz to all the parties on behalf of PKing by following the protocol steps honestly.

• Verification: SA simulates FRand and obtains ρ. Further, it obtains a sharing of zero, i.e., it
obtains {α1, α2, . . . , αn} such that

∑n
i=1 αi = 0. For all parties Pi corrupted by A, SA receives

[ωz]i. SA checks if [ωz]i = ρ0 ·αi+
∑

j∈[m] ρj · (
[
tmzj

]
i
−m∗

zj · [∆]i), where m
∗
zj be the unique opened

value. Note that
[
tmzj

]
i
= −mxj ·

[
tyj

]
i
−myj ·

[
txj

]
i
+

[
txjyj

]
i
+

[
tzj

]
i
+ [∆]i · (mxj ·myj ), where

mxj ,myj for all j ∈ [1,m] are held by the honest party Ph and
[
txj

]
,
[
tyj

]
,
[
txjyj

]
,
[
tzj

]
are held by

HP.

• Output: If the above verification fails, SA sets the adversary’s message to FMPC as abort. SA
invokes FMPC with the adversary’s input (⊥ or v) Recall that SA had extracted corrupt Pi’s input
during the input stage. If the adversary’s input is not abort, then FMPC gives y as the output, then
it computes δy = my − y and sends on behalf of HP.

athis corresponds to the case when there is more than one honest party (on behalf of whom the simulator
is acting) and PKing sends inconsistent information to them.

Figure 13: Simulator S for Πmpc for a malicious adversary corrupting up to n − 1 parties
among n parties

Indistinguishability. Fig. 13 describes the simulation steps when a malicious adversary
corrupts up to n − 1 parties among n parties. In this scenario HP and party Ph is honest.
Consider A be a malicious adversary corrupting up to n− 1 parties (i.e. all parties excluding
Ph) among the party set P . For input gates, if Pd is corrupt, then SA does not send any
messages. Thus, the view is indistinguishable trivially. If Pd is honest then SA sends a
random value q̃v to A. In the real protocol, Pd sends qv to HP, which is forwarded to all the
parties. Here qv = mv + r, where mv = v + δv. Since δv is sampled uniformly, therefore qv is
distributed uniformly. Hence the distribution of qv and q̃v are identical. For a multiplication
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gate, if PKing is corrupt, then in the protocol, A receives [mz]h from Ph and let SA sends the
same on behalf of Ph. Thus, the simulated view and the real view are identically distributed.

Let PKing sends mz to SA. In the first two cases, SA sets the message to the functionality as
abort. Let’s consider PKing has introduced an error ϵi towards an honest Pi’s mz. Then during
the verification step, Pi computes [ωz]i = [tmz ]i− (mz+ ϵi) · [∆]i. Then

∑
i∈[1,n] [ωz]i ̸= 0 with

a very high probability, since [tmz ]i , [∆]i is unknown to PKing. Thus, a random linear combi-
nation of ωz will remain non-zero. Therefore, the real protocol aborts with high probability,
and in the simulated protocol, SA sets the adversary’s message to FMPC as abort.

If the mz sent by PKing is correct, that is, the third case, then SA receives the correct value,
and it follows the protocol steps correctly, therefore the generated view is indistinguishable.

If PKing is honest, then SA receives shares of mz from all the corrupt parties. If it receives
an incorrect share, then SA sets the FMPC message as abort, and in the real protocol, the
verification fails with a very high probability. SA sends mz to all the parties by honestly
following the protocol steps.

Next, we analyze the difference between the verification check carried out by the simulator
SA and the verification check in the real-world protocol. In the verification step, A can
introduce an error in mzj . However, it can obtain a sharing of the corresponding tag with

negligible probability
(

1
|F|

)
.

Thus, consider a j ∈ [1,m] such that
[
tmzj

]
i
−m∗

zj · [∆]i ̸= 0, however such that

n∑
i=1

ρ0 · αi +
∑
j∈[m]

ρj · (
[
tmzj

]
i
−m∗

zj · [∆]i)

 = 0.

This is possible for some choice of ρ. To elaborate, consider ξ0 =
∑n

i=1 αi and ξj =∑n
i=1(

[
tmzj

]
i
−m∗

zj · [∆]i) for all j ∈ [1,m], set ξ = (ξ0, ξ1, . . . , ξm). Then Tξ(ρ) =
∑m

j=0 ξj ·ρj .
Tξ is a non-zero linear map, then dim(ker(Tξ)) ≤ m. Therefore, the probability that a ran-

domly sampled ρ belongs to ker(Tξ) ≤ |F|m
|F|m+1 = 1

|F| .

SA gets [ωz]i from all parties Pi corrupted by A. In the real protocol, [ωz]i ̸= ρ0 · αi +∑
j∈[m] ρj · (

[
tmzj

]
i
− m∗

zj · [∆]i). A can introduce an error ϵ in the [ωz]i term such that∑n
i=1 [ωz]i + ϵ = 0. In that case, in the real protocol, A cheats successfully. In the simulated

world, the simulator aborts. However, A can find such an ϵ with probability 1
|F| . Therefore,

A can successfully cheat with probability at most 3
|F| which is negligible. Thus the real world

view is indistinguishable from the simulated view.

Semi-Honest Let HP be semi-honest. Thus all the computational parties are honest. Let SHP be

the simulator. Since HP does not have any input, SHP works as follows on input y where y is the
output of the functionality.
• Preprocessing: SHP acts on behalf of the parties in P and receives the values from HP.

• Input: SHP samples a random value q̃v for an input wire on behalf of an input provider. Then
it receives the same q̃v from HP.

• Addition and Multiplication: For addition and multiplication gates, HP does not receive

Simulator SHP
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any messages, thus nothing to simulate.

• Verification: SHP samples a random sharing of zero, [ω̃]i and sends it to HP.

Figure 14: Simulator SHP for Πmpc for a semi-honest HP

Fig. 14 describes the simulation steps when the HP is semi-honest. In this case, all parties
in P are honest. Since HP does not have any input to the protocol, the simulated view of
the preprocessing step of the protocol is identical to the real view of the preprocessing phase.
For an input gate, SHP samples and sends a randomly sampled q̃v. In the real protocol, HP
receives qv = mv+r, where r is uniformly sampled. Therefore, qv is also uniformly distributed.
Thus, the distribution of qv and q̃v are identical. Since HP does not receive any messages for
addition and multiplication gates, nothing to simulate. In the verification step, SHP samples
a random sharing of zero [ω̃]i. In the real protocol, Pi sends [ω]i such that

∑n
i=1 [ω]i = 0,

since all the parties follow the protocol. Also, [ω]i = ρ0 ·αi+
∑m

j=1 ρj
[
ωzj

]
i
, where {αi}i∈[1,n]

is a random sharing of zero. Therefore [ωi] is uniformly distributed such that
∑n

i=1 [ω]i = 0.
Therefore, [ω]i and [ω̃]i are identically distributed.

D Achieving fairness with stateless HP

In this section, we elaborate upon how our protocol could be modified to rely on a stateless
HP. Recall that the only information we required the HP to store was the mask for output
wire, say δv. Suppose we tweak our protocol to not use this mask and essentially assume δv = 0
for output wire by default. Then, it may so happen that the adversary obtains the output
(as mv = v) but makes the honest parties abort by misbehaving during the verification check.
This would result in a protocol achieving security with abort (notion where the adversary
learns the output and subsequently gets to choose whether to deliver the output to honest
parties or not), which is a weaker notion than fairness.

The above shows that our efficient protocol can be tweaked to obtain achieving security
with abort and relying on a stateless HP (instead of stateful). We can now upgrade this
to fairness by using another call to stateless HP using the technique of [28] (which we refer
to for details). At a high-level, first, an instance of the MPC protocol with abort is used
to compute additive shares of the output, rather than the output directly and these shares
are authenticated (using a digital signature scheme). The output of this MPC instance to a
party comprises of its additive share of output, along with a signature on the additive share
and a verification key. The next step involves parties reporting this output (if obtained) via a
call to the HP. The HP reconstructs the output using the additive shares only if it obtained
the same verification key from all parties and if all the obtained shares are valid (i.e. the
signatures verify).

Intuitively, this approach maintains fairness because (a) if the adversary aborts the MPC
instance in the first step, then it learns at most n − 1 additive shares of the output, which
reveals no information about the function output y = f(x1, . . . , xn). (b) If the adversary
misbehaves during the second step of invoking the stateless HP (by either not sending its
share or sending an incorrect share / verification key), no one gets the output; maintaining
fairness.
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E Building blocks

We design various building blocks required for the considered applications. While these build-
ing blocks have been studied in the literature [13, 19, 39, 48], the novelty lies in adapting
these to the HP-aided setting considered in this work while keeping the efficiency of the con-
structions at the centre stage. Secure realization of protocols for various primitives such as
comparison, equality check, and boolean to arithmetic conversion requires a heavy prepro-
cessing, specifically for a large number of parties. We provide efficient construction with a
very lightweight preprocessing by utilizing the presence of HP. Note that all our construc-
tions follow along the lines of the multiplication protocol described in Sec: 4.3, where all
communication happens via the HP, and the correctness of the computation is verified before
output reconstruction via a verification phase. The building blocks considered are as follows.
For the application of secure auctions, where the goal is to identify the maximum value in
a set of N secret-shared values, we design secure protocols for comparison and oblivious se-
lection between two secret-shared values. The comparison protocol further relies on other
primitives such as prefixOR and multi-input multiplication, for which we provide efficient re-
alizations in our considered setting. For the next application of dark pools, we design secure
solutions for two most popular algorithms that are used in dark pools—continuous double
auction (CDA) and volume matching (VM). In addition to comparison and oblivious select,
dark pool algorithms require other building blocks such as equality and bit to arithmetic
conversion, which are also designed in our work. The equality check protocol further relies
on (i) k-mult—a primitive that enables the multiplication of k-inputs, and (ii) multi-input
multiplication—a primitive that enables multiplying 3 and 4 inputs in a single shot at the
same online cost as that of 2-input multiplication. We also design protocols for (i) and (ii).
Finally, we also design secure protocols for dot product and shuffle, where the former finds
widespread use in privacy-preserving machine learning, while the latter is used in various
graph-based algorithms, anonymous communication, secure sorting, to name a few.

E.1 Multi-input multiplication

Several primitives such as prefixOR, and equality, to name a few, require multiplication of
several inputs. The standard method to multiply, say k inputs, is to follow the tree-based
approach. Here, in each of the log2(k) rounds, every consecutive pair of inputs is multiplied
using the multiplication protocol, which takes 2 inputs. The online complexity of this ap-
proach can be improved if one has access to multiplication protocols which allows multiplying
more than 2 inputs in a single shot, also referred to as multi-input multiplication [48]. Specif-
ically, we design 3-input and 4-input multiplication protocols that allow multiplying 3 and 4
inputs, respectively, while having the same online complexity as that of 2-input multiplica-
tion. The use of multi-input multiplication allows attaining an improvement of at least 2×
in the online complexity. Let mult3 be a multiplication gate that takes 3 values say a, b, c
as inputs and outputs y = a · b · c. Similarly, mult4 takes a, b, c, d as inputs and outputs
y = a · b · c · d. The protocols to evaluate mult3 and mult4 are discussed next.

Πmult3: The protocol takes as input J·K-shares of a, b, c. To generate JyK, where y = a · b · c,
in the preprocessing phase, HP generates ⟨·⟩-shares of a random mask δy for the output wire.
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In the online phase, parties need to compute my, which can be written as

my =y + δy = abc+ δy

=(ma − δa)(mb − δb)(mc − δc) + δy

=mambmc −mambδc −mbmcδa −mcmaδb +maδbδc +mbδcδa +mcδaδb − δaδbδc + δy

=mambmc −mambδc −mbmcδa −mcmaδb +maδbc +mbδca +mcδab − δabc + δy

As done in the multiplication protocol Sec: 4, to generate my, the approach is for parties to
generate ⟨·⟩-shares of my, followed by reconstructing it via the HP. To enable this, in the pre-
processing phase, HP generates ⟨·⟩-shares of of δab = δaδb, δbc = δbδc, δca = δcδa, δabc = δaδbδc.
In the online phase, parties generate ⟨·⟩-shares of my using the ⟨·⟩-shares of δab, δbc, δca, δabc.
To reconstruct my, parties send their shares to HP. However, to provide privacy against HP,
as done in the case of 2-input multiplication, parties generate shares of qy which is my masked
with a random pad where the pad is known to all the parties except HP. Parties reconstruct
qy via the HP, from which each party obtains my by locally subtracting the pad.

Note that naively multiplying 3 inputs using the 2-input multiplication would require
communicating 6 elements in the preprocessing phase, and 4n elements in the online phase
with 4 rounds of interaction. On the other hand, relying on Πmult3 for the same requires
communication of 9 elements in the preprocessing and 2n elements in the online phase with
2 rounds of interaction. In this way, Πmult3 allows attaining an improvement of 2× in the
online complexity.

Preprocessing:

• HP locally computes δab = δa · δb, δbc = δb · δc, δca = δa · δc, δabc = δa · δb · δc and σab = ∆ · δab,
σbc = ∆ · δbc, σca = ∆ · δca, σabc = ∆ · δabc
• Parties and HP invoke Π⟨·⟩-Sh(HP, v) for v ∈ {δab, δbc, δca, δabc}.
• Parties and HP invoke Π⟨·⟩-Sh(HP,Rand) to generate ⟨·⟩-shares of a random δy.

Online:

• All parties excluding HP sample a random vector r of length n using their common key kP .

• P1 computes ⟨qy⟩1 = mambmc+r1−mamb⟨δc⟩1−mbmc⟨δa⟩1−mcma⟨δb⟩1+ma⟨δbc⟩1+mb⟨δca⟩1+
mc⟨δab⟩1 − ⟨δabc⟩1 + ⟨δy⟩1.
• For all i ̸= 1, Pi computes ⟨qy⟩i = ri−mamb⟨δc⟩i−mbmc⟨δa⟩i−mcma⟨δb⟩i+ma⟨δbc⟩i+mb⟨δca⟩i+
mc⟨δab⟩i − ⟨δabc⟩i + ⟨δy⟩i.
• For each i ∈ [1, n], Pi sends [qy]i to HP.

• HP reconstructs and send qy =
∑n

i=1 [qy]i to all parties.

• Each Pi locally computes my = qy −
∑n

i=1 ri.

• For each i ∈ [1, n], Pi outputs JyKi = (my, ⟨δy⟩i).

Protocol Πmult3

Figure 15: Secure evaluation of fan-in 3 multiplication gate

Πmult4: Similar to Πmult3, we consider multiplication gates with 4 inputs. In this case too, my

can be expressed as a combination of the masked values and masks. Here, the preprocessing
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phase involves the HP generating ⟨·⟩-shares of {δab, δbc, δca, δad, δbd, δcd, δabc, δacd, δabd,
δbcd, δabcd}. In the online phase, parties generate my similarly as described for Πmult3. This
protocol requires communicating 23 elements in the preprocessing phase, and 2n elements of
communication in the online phase with 2 rounds of interaction.

E.2 PrefixOR and PrefixAND

Given an array of k bits {a1, a2, . . . , ak}, where each bit is secret-shared, prefixOR outputs
a sharing of an array of k bits {b1, b2, . . . , bk} such that bi = ∨ij=1aj . Observe that, bi =

1⊕∧ij=1(1⊕ai). Hence, to realize prefixOR it suffices to design a protocol for PrefixAND, that

takes k bits {c1, c2, . . . , ck} as inputs and outputs k bits {d1, d2, . . . , dk} such that di = ∧ij=1ci.
A naive way of computing prefixAND via 2-input multiplication requires 2k − 2 rounds
of communication in the online phase. An optimized solution is presented in [38], which
relies on multi-input multiplication. We rely on the protocol described in [38] to design a
protocol for prefixAND which allows us to attain a round complexity to 2 log4 k. The resulting
protocol requires communicating 3

2nk log4 k bits in the online phase and 35
4 k log4 k bits in the

preprocessing phase. At a high-level, given just 4 bits of input, their prefixAND can be
obtained in two rounds by computing the 2-input, 3-input and 4-input multiplication. The
prefixAND of more than four bits can be computed via a tree-based approach by computing
the 2,3,4-input multiplication with respect to every consecutive group of four bits in each
level of the tree, and repeating this process at every level to obtain the final result. In this
way, prefixAND of up to 16 bits can be computed in 4 rounds and up to 64 bits in 6 rounds.
The protocol steps appear in Fig. 16 and an illustration for k = 16 bits appears in Fig. 17.

• For j = 1 to k set a
(1)
j = aj

• For l = 1 to log4 k

◦ For j = 1 to k/4l

• Set p = 4l ∗ (j − 1),

q = 4l ∗ (j − 1) + 4l−1,

r = 4l ∗ (j − 1) + 2 ∗ 4l−1,

s = 4l ∗ (j − 1) + 3 ∗ 4l−1

• for i = 1 to 4l−1

• Ja(l+1)
p+i KB = Ja(l)p+iK

B

• Ja(l+1)
q+i KB = Πmult(Ja

(l)
q KB, Ja(l)q+iK

B)

• Ja(l+1)
r+i KB = Πmult3(Ja

(l)
q KB, Ja(l)r KB, Ja(l)r+iK

B)

• Ja(l+1)
s+i KB = Πmult4(Ja

(l)
q KB, Ja(l)r KB, Ja(l)s KB, Ja(l)s+iK

B)

Output: (Ja(m)
1 KB, . . . , Ja(m)

k KB) where m = log4 k.

Protocol ΠPrefixAND(a1, . . . , ak)

Figure 16: Computing PrefixAND of k boolean bits
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

a1,1 a1,2 a1,3 a1,4 a5,5 a5,6 a5,7 a5,8 a9,9 a9,10 a9,11 a9,12 a13,13 a13,14 a13,15 a13,16

a1,4 a1,5 a1,6 a1,7 a1,8 a1,9 a1,10 a1,11 a1,12 a1,13 a1,14 a1,15 a1,16

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16

Fan-in 2 Mult Gate Fan-in 3 Mult Gate Fan-in 4 Mult Gate

Figure 17: PrefixAND

E.3 k-mult

Let x = {x1, . . . , xk} be an array of k values. The k-mult primitive takes J·K-shares of x as
input and outputs J·K-shares of y =

∏k
i=1 xi, which is the multiplication of the k elements

in x. Naively realizing this via the multiplication protocol requires 2 log2 k rounds. We
design a protocol Πk-mult for k-mult using Πmult4 such that the round complexity reduces to
2log4k. For ease of presentation, we consider k to be a power of 4. The protocol proceeds
in iterations where in each iteration, we invoke Πmult4 on every consecutive set of 4 inputs
to this iteration. The outputs generated by Πmult4 in this iteration constitute the input to
the next iteration. In this way, in each iteration, the number of elements to be multiplied
reduces by a factor of 4. Thus, at the end of log4 k iterations, the desired output is generated.
Note that invoking Πk-mult requires communication of 23

3 (k−1) elements in the preprocessing
phase. The communication cost in the online phase is 2

3n(k − 1) elements, and it requires a
total 2 log4 k rounds of interaction. the formal protocol steps appear in Fig. 18.

• Set x
(1)
j = xj for all j ∈ [1, k].

• For l = 1 to log4 k

• For j = 1 to k/4l

Protocol Πk-mult(Jx1K, . . . , JxkK
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• Jx(l+1)
j K = Πmult4(Jx

(l)
4j−3K, Jx

(l)
4j−2K, Jx

(l)
4j−1K, Jx

(l)
4j K).

Output: Pi outputs Jx(log4 k)
1 Ki.

Figure 18: Computing k-mult of k secret shared values

E.4 Equality check

The equality check protocol takes two secret shared values x and y as inputs and outputs 1 if
x = y, else 0. Note that, checking x = y reduces to checking z = 0 where z = x− y. Therefore
ΠEQ(JxK, JyK) = ΠEQZ(Jx − yK). Thus we design a protocol ΠEQZ that takes a secret shared
value JxK and outputs a boolean shared bit JbKB such that b = 1 if x = 0 and b = 0 if x ̸= 0.

At a high level, the protocol proceeds as follows. To check if x = 0 where x is J·K-shared,
the idea is to reconstruct d = x + r where r is a random value not known to all parties,
excluding HP. Observe that if x = 0, then d = r. Hence, to check if x = 0, parties compute
ej = dj ⊕ rj , for all j ∈ [0, k − 1], where dj and rj are the jth bits of d and r respectively
and boolean representation of d and r require k-bit to represent. If x = 0, then ej = 0 and
1⊕ ej = 1 for all j ∈ [0, k − 1]. Thus, EQZ(x) = ∧k−1

j=0(1⊕ ej), which can be computed using
k-mult on {(1⊕e0), . . . , (1⊕ek−1)} to get the desired output. Note that performing the above
computation requires shares of r as well as its bits, which can be generated by the HP. In [13],
parties generate a sharing of r and bits of r, then parties open d = x + r to all the parties.
However, we optimize it by allowing parties to sample a random value c using kall. Then
HP generates sharing of r = c + δx as well as bits of r. In the online phase, parties obtain
d = x+ r = c+mx without any interaction. This approach avoids performing reconstruction
of x+r and saves communication of n elements. The formal protocol steps appear in Fig. 19.
One instance of ΠEQZ requires communication of 12 elements in the preprocessing phase and
2n
3 elements in the online phase. It requires 2 log4 k rounds of interaction in the online phase.

Preprocessing:

• HP and all parties sample a random value c using the common key kall.

• Execute Π⟨·⟩-Sh(HP, r) where r = c+ δx.

• HP sets (rk−1, . . . , r0) = BitDecompose(r).

• Execute Π⟨·⟩B(HP, rj), for all j ∈ [0, k − 1].

• Execute preprocessing phase of Πk-mult (Fig. 18) using (⟨r0⟩B, . . . , ⟨rk−1⟩B).

Online:

• Parties set d = c+mx.

• Parties locally set (dk−1, . . . , d0) = BitDecompose(d).

• Parties set JejKB = (1⊕ dj , ⟨rj⟩B) that is, mej = 1⊕ dj and δej = rj , for j ∈ {0, . . . , k − 1}.
• Parties and HP execute the online phase of Πk-mult(Je0KB, . . . , Jek−1KB) and get output JbKB.

Protocol ΠEQZ(JxK)

Figure 19: Equality Test
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E.5 Bit to arithmetic

Given a boolean shares (J·KB-shares) of a bit b, this protocol generates its arithmetic shares.
For this, observe that JbKB = (mb, ⟨δb⟩B) where b = mb⊕δb. If we let (mb)

A, (δb)
A denote the

arithmetic equivalent of the bits mb and δb, then the arithmetic equivalent of b is given as
(b)A = (mb)

A+(δb)
A−2(mb)

A(δb)
A. Thus we generate arithmetic shares of (b)A by generating

arithmetic shares of (mb)
A and (δb)

A. Since (mb)
A is available to all the parties (excluding

HP), its J·K-shares can be generated as J(mb)
AK = ((mb)

A, ⟨0⟩) where each component of
⟨0⟩ is 0. However, δb is shared among the parties. Thus generating J(δb)AK cannot be
done non-interactively. In the standard (non-HP) setting, generating ⟨·⟩-shares of (δb)

A

from its ⟨·⟩B-shares is expensive. On the other hand, in our setting, HP holds the δb in
clear, and therefore, it can generate ⟨(δb)A⟩ in the preprocessing phase. Parties can then
set J(δb)AK = (0,−⟨(δb)A⟩). Note that the computation of (b)A also has a term (mb)

A(δb)
A.

This requires performing multiplication, for which we rely on Πmult. The formal protocol
steps appear in Fig. 20. The communication cost of ΠBitA protocol is 2n elements, and it
requires 2 rounds of interaction in the online phase. Preprocessing phase requires 1 instance
of Π⟨·⟩-Sh(HP, δb) and Π⟨·⟩-Sh(HP,Rand). In total, this requires communication of 3 elements
in the preprocessing phase.

Preprocessing:

• Execute Π⟨·⟩-Sh(HP, (δb)
A).

• Execute Π⟨·⟩-Sh(HP,Rand) for a randomly sampled value δw.

Online:

• Each party Pi sets J(mb)
AKi = ((mb)

A, ⟨0⟩i) where ⟨0⟩i = (0, 0) and J(δb)AKi = (0,−⟨(δb)A⟩i).
• Parties excluding HP sample a random vector r.

• For all i ∈ [1, n], Pi sets ⟨qw⟩i = (mb)
A · ⟨(δb)A⟩i + ⟨δw⟩i + ri.

• For all i ∈ [1, n], Pi sends ⟨qw⟩i to HP.

• HP sends qw to all the parties.

• Each party Pi locally obtain mw = qw −
∑

i∈[n] ri.

• Pi outputs J(b)AKi = (m(b)A , ⟨δ(b)A⟩i) wherem(b)A = (mb)
A−2mw and ⟨δ(b)A⟩i = −⟨(δb)A⟩i−2⟨δw⟩i.

Protocol ΠBitA(JbKB)

Figure 20: Bit to Arithmetic conversion

E.6 Comparison

The comparison protocol takes two secret shared values x and y as inputs and outputs 1 if
x < y, 0 otherwise. This can be reduced to checking if z < 0 where z = x− y. Thus we design
a protocol ΠLTZ that takes one secret shared value JxK as input and outputs J1K if x < 0 and
J0K otherwise.

In [13], the authors have proposed a comparison protocol, where the Trunc is used as a sub-
protocol for truncating lower m bits of an input x. Inside this Trunc protocol, (2−m mod p)
is computed and later multiplied with a secret shared value a , to get another secret shared
value a′, where a′ = ⌊ a

2m ⌋. But this approach might not give desired output as the inverse of
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2m in field is not equivalent to 2−m in decimal. Hence, to design the comparison protocol,
we adapt the approach of [45] to work with our setting. Informally, the protocol proceeds as
follows. To check if x < 0, it is sufficient to check if ⌊p/2⌋ ≤ x, where p is the order of the
underlying field. This is because, the negative numbers always lie in upper half of the field.
The problem now boils down to determining whether R ≤ x or not, where R = ⌊p/2⌋ is a
publicly known constant.

Here the approach is to reconstruct a = x+ r and b = a+M, where M = p−R, towards
all parties where r is a random value not known to any party. From [45], we know that
LTC(R, x) = LT(a, r) ⊕ LT(b, r) ⊕ LT(b,M), where LTC(R, x) = 1 if and only if R ≤ x and
LT(a, r) = 1 if and only if a < r. To compute LT(a, r), parties proceed as follows. Observe
that if s ∈ [0, k − 1] denotes the highest bit position where the bits of a and r differ, then
LT(a, r) can be written as LT(a, r) = rs. In [45], the authors have used their LTBits(a, r)
protocol in place of LT(a, r), which actually outputs whether a ≤ r or not by returning as.
But we observed that, replacing LT(a, r) by LTBits(a, r) may sometimes lead to incorrect
result for LTC(R, x), e.g., when x = 0 and R > 0, LTC(R, x) outputs 1 instead of 0. To rectify
the above issue, we return rs as the output of LT(a, r). To compute rs, the approach is to
compute the XOR of the corresponding bits in a and r, followed by computing a prefixOR of
the output of the XOR. This results in a vector of bits which comprises of 0s for all j > s and
1s for all j ≤ s. Elaborately, let yj = aj ⊕ rj for j ∈ [0, k − 1], where aj , rj represent the jth

bit of a, r respectively. Parties execute prefixOR on (yk−1, . . . , y0) to generate (y′k−1, . . . , y
′
0)

such that y′j = 0 for j > s and y′j = 1 for j ≤ s. To identify the position s where a and r
first differ, parties generate vj = y′j ⊕ y′j+1 for j ∈ [0, k − 2] and set vk−1 = y′k−1. Observe
that performing this XOR of the consecutive bits in (y′k−1, . . . , y

′
0) ensures that only vs = 1

while vj = 0 for all j ̸= s. Thus, taking a dot product of (vk−1, . . . , v0) with the bits in r,
i.e., (rk−1, . . . , r0), allows to obtain rs. Following the similar approaches, parties can obtain
LT(b, r) also. Note that, two dot product operations required for computing LT(a, r) and
LT(b, r) can be combined to save communication cost. Parties can locally compute the value
of LT(b,M) as M is publicly known constant. Note that except for a, b, R and M, all the
other values described above are shared, and hence, the computation proceeds on these shared
values. The formal protocol steps appear in Fig. 21.

Preprocessing:

• HP and all parties sample a random value c using their common key.

• HP sets r = c+ δx and computes (rk−1, . . . , r0) = BitDecompose(r).

• Execute Π⟨·⟩B(HP, rj) for all j ∈ [0, k − 1].

• Parties and HP set ⟨δyj ⟩B = ⟨δzj ⟩B = ⟨rj⟩B for j ∈ [0, k − 1].

• Execute preprocessing of PrefixOR on inputs (⟨δyk−1
⟩B, . . . , ⟨δy0⟩B), (⟨δzk−1

⟩B, . . . , ⟨δz0⟩B) and
obtain
(⟨δy′k−1

⟩B, . . . , ⟨δy′0⟩
B), (⟨δz′k−1

⟩B, . . . , ⟨δz′0⟩B) respectively.
• Set ⟨δvj ⟩B = ⟨δy′j ⟩

B ⊕ ⟨δy′j+1
⟩B and ⟨δwj

⟩B = ⟨δz′j ⟩B ⊕ ⟨δz′j+1
⟩B for all j ∈ [0, k − 1] where

⟨δy′k⟩
B = ⟨δz′k⟩B = 0.

Protocol ΠLTZ(JxK)
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• Perform preprocessing of ΠDotP on inputs

((⟨δvk−1
⟩B, . . . , ⟨δv0⟩B, ⟨δwk−1

⟩B, . . . , ⟨δw0
⟩B), (⟨rk−1⟩B, . . . , ⟨r0⟩B, ⟨rk−1⟩B, . . . , ⟨r0⟩B))

and obtain ⟨δu⟩B respectively.

• Perform preprocessing of ΠBitA for the input mask ⟨δu⟩B.

Online:

• Parties locally set a = (mx + c) and b = (a+M), where M = p− ⌊p2⌋ = ⌈
p
2⌉.

• Parties set (ak−1, . . . , a0) = BitDecompose(a) and (bk−1, . . . , b0) = BitDecompose(b).

• Parties set myj = aj and mzj = bj for all j ∈ [0, k − 1].

• (Jy′k−1K
B, . . . , Jy′0KB) = ΠPrefixOR(Jyk−1KB, . . . , Jy0KB).

• (Jz′k−1K
B, . . . , Jz′0KB) = ΠPrefixOR(Jzk−1KB, . . . , Jz0KB).

• Parties set mvj = my′j
⊕my′j+1

and mwj
= mz′j

⊕mz′j+1
for all j ∈ [0, k− 1] where my′k

= mz′k
= 0.

• JuKB = ΠDotP((Jvk−1KB, . . . , Jv0KB, Jwk−1KB, . . . , Jw0KB),
(Jrk−1KB, . . . , Jr0KB, Jrk−1KB, . . . , Jr0KB)).
• Parties locally compute q, where q = 1 if and only if b < M.

• Parties and HP perform the online phase of BitA on input (mu ⊕ q, ⟨δu⟩B) and output JdK.

Figure 21: Less Than Zero Test

The communication cost of ΠLTZ is 5+ 3
k +

35
2 log4 k elements in the preprocessing phase and

2n+ 2n
k + 3n log4 k elements in the online phase. In the online phase, 2 log4 k + 4 rounds of

interaction are required.

E.7 Oblivious selection

The oblivious selection protocol, Πsel takes the J·K-shares of the values x0 and x1 along with
J·KB-shares of a bit b. It gives as output J·K-shares of x1−i if b = i. A naive way of executing
oblivious selection can be done by securely computing b · x0 + (1 − b) · x1. However, this
requires performing 2 secure multiplications in parallel. This can be optimized by computing
b · (x0−x1)+x1. This requires performing a single multiplication. Note that since the bit b is
Boolean shared, the parties first perform ΠBitA to generate JbK followed by the multiplication.

Below we additionally discuss how the primitive operations of dot product and shuffle
can be realized securely. While dot product forms a crucial primitive in applications such as
privacy-preserving machine learning [42, 40, 31, 22], shuffle is also extensively used in various
applications such as anonymous broadcast [25, 50], oblivious RAM [14, 5], the graphSC
paradigm [4, 47], to name a few.

E.8 Dot product

Let a and b are two vectors of length N, and let c be the output. Corresponding to every
component of a and b, a party Pi holds the authenticated sharing of the masks, and HP holds
the complete masks in the preprocessing phase. HP computes the dot product of the masks
of a and masks of b. Let δab be the dot product of the masks of a and the masks of b. HP
generates an authenticated additive sharing of δab. Finally, HP generates an authenticated
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additive sharing of a random value δc. In the online phase, all parties excluding HP, sample a
random vector r. P1 computes ⟨qc⟩1 = r1+

∑N
j=1(majmbj −maj ⟨δbj ⟩1−mbj ⟨δaj ⟩1)+⟨δab⟩1+

⟨δc⟩1 and for all i ̸= 1, Pi computes ⟨qc⟩i = ri+
∑N

j=1(−maj ⟨δbj ⟩i−mbj ⟨δaj ⟩i)+⟨δab⟩i+⟨δc⟩i.
Each Pi sends ⟨qc⟩i to HP. HP reconstructs and sends qc to all. Finally, all parties locally
obtain mc = qc −

∑n
i=1 ri.

Preprocessing:

• HP generates ⟨·⟩ of δab where δab =
∑

j∈[N] δaj
· δbj

.

• HP samples δc and generates ⟨·⟩ of δc.

Online:

• All parties excluding HP sample a random vector r using their common key.

• Party P1 computes ⟨qc⟩1 = r1 +
∑N

j=1(majmbj −maj ⟨δbj ⟩1 −mbj ⟨δaj ⟩1) + ⟨δab⟩1 + ⟨δc⟩1.

• For all i ̸= 1, Pi computes ⟨qc⟩i = ri +
∑N

j=1(−maj ⟨δbj ⟩i −mbj ⟨δaj ⟩i + ⟨δab⟩i + ⟨δc⟩i.
• For all i ∈ [1, n], Pi sends ⟨qc⟩i to HP.

• HP reconstructs qc and sends it to all.

• Each party locally obtains mc = qc −
∑

i∈[n] ri.

Protocol ΠDotP(JaK, JbK)

Figure 22: Dot Product

We emphasize that the communication cost for the dot product is independent of the size of
the vectors both in the preprocessing and online phases. A dot product requires communi-
cation of 3 elements in the preprocessing phase and 2n elements in the online phase. The
round complexity is 2.

E.9 Shuffle

Let x be a vector of length N. The shuffle functionality generates a vector y such that
yi = xπ(i) for a random permutation π : ZN → ZN. In the secure shuffle protocol, parties
start with a secret shared vector x, and at the end of the protocol, parties obtain secret
sharing of the vector y. Note that the permutation π remains hidden from all the parties.

Preprocessing:

• HP sample a random permutation π : ZN → ZN, and generates Mπ.

• Execute Π⟨·⟩-Sh(HP,Mπ(i, j)) for i, j ∈ [1,N].

• for i ∈ [1,N],

◦ perform preprocessing of ΠDotP where the inputs are
(⟨Mπ(i, 1)⟩, . . . , ⟨Mπ(i,N)⟩) and (⟨δx1⟩, . . . , ⟨δxN⟩).

Online:

• For i ∈ [1,N],

Protocol Πshuffle(Jx1K, . . . , JxNK
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◦ Set mMπ(i,j) = 0, for all i, j ∈ [1,N].

◦ Perform online phase of ΠDotP on inputs
(JMπ(i, 1)K, . . . , JMπ(i,N)K) and (Jx1K, . . . , JxNK). Let the output be JziK

Output: (Jz1K, . . . , JzNK).

Figure 23: Secure shuffle for a length N vector

A permutation π on N length vector can be represented as a matrix Mπ of size N× N. Mπ

is a binary matrix where each row and each column of Mπ contains exactly one 1, and the
rest are 0. Further note that, y = π(x) = Mπx. HP will sample a random permutation π
and it will generate authenticated sharing of Mπ. HP performs Π⟨·⟩-Sh(HP,Mπ(i, j)). where
Mπ(i, j) is the jth element in the ith row of the matrix Mπ(i, j). This step is performed in the
preprocessing phase, and it requires total 2×N2 elements to be communicated. Thus a secure
shuffle protocol can be executed by performing securely multiplying a matrix multiplication
with a vector if the matrix and the vector are shared. Multiplication of a matrix and vector
can be done by performing dot products between the rows of the matrix with the vector.
The protocol for dot product E.8 is described above in Fig: 22. Therefore the total cost of
the shuffle protocol is 2N2+3N elements in the preprocessing phase and 2nN elements in the
online. The online round complexity is 2.

Our construction is similar to a construction presented in [43]. However, the generation
of the permutation matrix in [43] is substantially expensive than our construction due the
presence of HP.

E.10 Complexity analysis

Multiplication with 3 and 4 inputs. The protocol Πmult3 (Fig. 15) has preprocessing cost
9 elements, it requires 4 instances of Π⟨·⟩-Sh(HP, v) and 1 instance of Π⟨·⟩-Sh(HP,Rand). The
online communication is 2n elements and 2 rounds. The protocol Πmult4 has preprocessing cost
23 elements this is due to 11 instances of Π⟨·⟩-Sh(HP, v) and 1 instance of Π⟨·⟩-Sh(HP,Rand).
The online communication is 2n elements and 2 rounds.

PrefixOR and PrefixAND. The protocol ΠPrefixAND (Fig. 16) requires to evaluate a
boolean circuit which is of depth log4 k, which has k/4 mult, k/4 mult3 and k/4 mult4 in
every level. In total, it has preprocessing cost 35

4 log4 k elements and online communication
3n
2 log4 k elements and 2 log4 k rounds.

Multiplication of k bits. The protocol Πk-mult (Fig. 18) requires to evaluate a circuit
which has 4level mult4 gates in every level where level varies from 1 to log4 k. Therefore, it has
preprocessing cost 23

3 elements and online communication 2n
3 elements and 2 log4 k rounds.

Equality check. The protocol ΠEQZ (Fig. 19) has preprocessing cost 12 elements and online
communication 2n

3 elements and 2 log4 k rounds. This follows directly from the multiplication
of k bits.

Bit to arithmetic conversion. The protocol ΠBitA (Fig. 20) has preprocessing cost 3
elements and online communication 2n elements and 2 rounds.
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Comparison. The protocol ΠLTZ (Fig. 21) has preprocessing cost 5+ 3
k +

35
2 log4 k elements

and online communication 2n+ 2n
k +3n log4 k elements and 2 log4 k+4 rounds. This follows

directly from the prefixOR.

Oblivious selection. The Oblivious selection protocol has preprocessing cost 6 elements
and online communication 4n elements and 4 rounds.
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