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Abstract. The stream cipher ChaCha is one of the most widely used
ciphers in the real world, such as in TLS, SSH and so on. In this paper,
we study the security of ChaCha via differential cryptanalysis based
on probabilistic neutrality bits (PNBs). We introduce the syncopation
technique for the PNB-based approximation in the backward direction,
which significantly amplifies its correlation by utilizing the property of
ARX structure. In virtue of this technique, we present a new and efficient
method for finding a good set of PNBs. A refined framework of key-
recovery attack is then formalized for round-reduced ChaCha. The new
techniques allow us to break 7.5 rounds of ChaCha without the last XOR
and rotation, as well as to bring faster attacks on 6 rounds and 7 rounds
of ChaCha.

Keywords: Stream Ciphers · ChaCha · Differential Cryptanalysis ·
PNB · Syncopation.

1 Introduction

Symmetric key cryptosystems play an indispensable role in cryptography. Ow-
ing to the significant performance advantage of symmetric cryptographic prim-
itives, there are massive deployment of symmetric primitives, including stream
ciphers, block ciphers, hash functions, and cryptographic permutations, in vir-
tually all real-world applications and scenarios related to cryptography. Among
them, ARX-based design is one important and attractive branch with simplic-
ity and efficiency in both software and hardware implementations, especially in
consideration of the persistent focus on lightweight cryptography. ARX is short
for modular Addition, Rotation and bit-wise XOR. ARX-based designs not only
have very high efficiency, but also provide good security properties. The algebraic
degree of ARX ciphers is usually high after a very few rounds since the func-
tion of carry bit within one modular addition already reaches almost maximal
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degree. With regard to differential [7] and linear [23] attacks, the probabilities
of differentials and absolute correlations of linear approximations decrease very
quickly when the numbers of rounds increase.

One of the most important set of ARX ciphers is the family consisting of
Salsa20, ChaCha and their variants. In 2005, Bernstein proposed the stream
cipher Salsa20 [5] as a candidate for the eSTREAM competition [17], and its 12-
round variant was accepted into the final software portfolio. Later, as a variant
of Salsa20, ChaCha [4] was proposed by Bernstein in 2008 to provide better
diffusion and cryptanalytic resistance without slowing down encryption. The
stream cipher ChaCha has a total of 20 rounds. In addition, the ChaCha family
also includes reduced-round ciphers—the 8-round version ChaCha8 and the 12-
round version ChaCha12. In the following, we mainly concentrate on the version
of ChaCha with a 256-bit key due to its wide deployment.

ChaCha, along with the message authentication code Poly1305 [3], is adopted
as one of the cipher suites of Transport Layer Security (TLS) [20], which has been
supported by Google on both Chrome and Android. Also, the RFC 7634 [25] pro-
poses the use of ChaCha along with Poly1305 for IKEv2 and IPsec. In addition,
it has been implemented in many other protocols such as SSH, Noise, QUIC,
WireGard, S/MIME 4.0 and so on. Apart from the usage of encryption, ChaCha
has also been used as a pseudo-random number generator in the operating sys-
tem with Linux kernel. Up to now, there are plenty of protocols and software
which have implemented the stream cipher ChaCha, and please refer to [18] for
details. In a nutshell, ChaCha is one of the most widely-used ciphers in practice.

Related works. Because of the wide range of usage and deployment of ChaCha,
it is crucial to systematically and deeply analyze its security. And indeed, crypt-
analysts have advanced lots of important and profound works on the security
evaluation of round reduced ChaCha.

At FSE 2008, Aumasson et al. [1] proposed a significant improvement on
the differential cryptanalysis of both Salsa20 and ChaCha with introducing a
new concept called probabilistic neutral bits (shortcut PNBs). In most cases, the
attacks are launched by a meet-in-the-middle approach, in which for forward
direction one applies some input difference to the initial state to observe the
output difference after certain rounds, and for backward direction once a set of
key bits with less influence on the output difference is identified using the PNB
method, attackers can obtain the output difference at the middle from the final
state. Since most of the attacks on Salsa and ChaCha to date have been carried
out under based on PNBs, this idea will be reviewed detailedly in Section 3.1.

Several further enhancements have been proposed following this line of re-
search. In 2012, Shi et al. [26] achieved some incremental advancements for both
Salsa20 and ChaCha by introducing the concept of column chaining distinguisher
(CCD). Maitra [22] provided the idea of chosen IV cryptanalysis to obtain certain
improvements in the key-recovery attacks of both ciphers. In 2017, Choudhuri
and Maitra [8] improved the attacks with the idea of extending single-bit differen-
tials to multi-bit differentials using linear approximations derived theoretically,
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which is essentially a differential-linear cryptanalysis [19]. Dey and Sarkar [15]
improved the attacks by giving an algorithm for constructing a good PNB set,
and then in [16] they provided a theoretical justification of the distinguishers
of both ciphers. At CRYPTO 2020, Beierle, Leander and Todo [2] provided the
first 3.5-round single-bit distinguisher, and improved the attacks for ChaCha7
with time complexity of 2230.86. Later, Coutinho and Souza Neto [10] presented
a few more distinguishers for 3.5 rounds of ChaCha, and provided a further
improvement on the differential-linear attacks including the distinguishers and
key-recovery attacks for 7 rounds of ChaCha. However, in a recent work [12],
Dey et al. showed that the correlation of differential at 3.5-th round in [10] is
much smaller than their claim which results to inaccurate complexities of the
attacks. The authors of [10] immediately corrected this mistake and reevaluated
the complexities in [9]. In [12], Dey et al. also provided a theoretical explanation
of the issue that not all keys have available IV’s to satisfy the given differential,
called strong keys at [2], mainly for two special cases, and provided experimental
results for the other six cases without theoretical explanations. Subsequently, at
EUROCRYPT 2022, Dey et al. [14] further improved the attack on ChaCha7
with time complexity of 2221.95 by introducing a concept of exploitable keys and
constructing a list to store combinations of exploitable keys with a favorable IV
for each key. At ASIACRYPT 2022, Coutinho et al. [11] presented a differential-
linear distinguisher against 7 rounds of ChaCha by improving its linear part,
with both time and data complexities of 2214. Very recently, Dey et al. [13]
presented a full key recovery attack on ChaCha6 with a complexity of 299.48.

Since the first published analysis of ChaCha in 2008 by Aumasson et al. [1],
its valid attacks in the literatures have stayed within 7 rounds [26,8,15,2,14].
In [24], Miyashita et al. presented an attack on 7.25 rounds of ChaCha with
time complexity of 2255.62 and success probability of 0.5. However, as declared
in [24], this attack is less efficient than a brute force attack.

Contributions. So far, the best results of key-recovery attacks against ChaCha
are obtained by the PNB-based differential cryptanalysis, which is composed of
two parts: forward truncated differential and backward PNB-based approxima-
tion. For the two parts, we have proposed several new techniques and improve-
ments, which are summarized as follows.

Backward PNB-based approximation: In the PNB-based approximation,
the essential problem is how to find numerous PNBs with a large correlation
of backward approximation. Unfortunately, more PNBs and larger correla-
tion are usually contradictory. To simplify the problem, we first show that
the backward approximation ∆f = ∆g connected with the forward differ-
ential corresponding to two initializations can be seen as applying twice an
approximation f = g in a single initialization, and thus its correlation is the
square of the correlation of the latter (see also Proposition 1). This fact is
simple and was not illuminated in the previous analysis but it is surpris-
ing that it significantly simplifies calculations of the backward correlation.
By this observation, we can treat the PNB-based approximation similar to

3



the linear part in differential-linear cryptanalysis. However, the PNB-based
approximation is much more complicated. We then introduce the technique
called syncopation that takes advantage of ARX structures to analyze the
propagation characteristic of PNBs and amplify the approximation correla-
tion. To further simplify the analysis, the approximated part f is divided
into two parts f0 and f1, that is, f = f1 ◦ f0. The PNB-based approximat-
ing function g is a restriction of f with PNBs to be a fixed value, and this
relationship also applies to g0 and f0. The syncopation technique is used in
the g0 (to say f0) part for reducing its dependence on PNBs so that the
correlation between g0 and f0 is high. We analyze the properties of synco-
pation in the basic operations of ARX designs, especially including modular
subtraction and modular addition. We also present a tool for determining
syncopations, which leads to a new and efficient method for finding a good
set of PNBs with a large correlation by restrictions on non-PNBs. In virtue of
the new observations and techniques, a refined framework of the PNB-based
differential attack is formalized as described in Section 4.

Forward differential: By analysis of the equations that control differential
propagation, we achieve two main improvements in the differential part.
Firstly, we show several useful observations on these differential equations,
and propose a concise and effective way to satisfy the given differential. This
treatment leads to a save of time by 2−2 in the key recovery at the cost of
24 times of data, compared with the work of Beierle, Leander and Todo [2].
Compared with Dey et al.’s technique [14], it does not require restrictions on
exploitable keys (which shrink the space of all possible PNBs) and saves up
to 222 times of data. Secondly, a more comprehensive theoretical explanation
is presented for the proportion of strong keys (about 30%) reported in [2],
which covers all the remaining six (out of eight) cases lacked in the previous
theoretical analysis [12].The details are shown in Section 5.

Comparison of results. As applications of our techniques, we present several
attacks on the round-reduced versions of ChaCha with a 256-bit key. To be more
specific, for ChaCha6, we show a partial key-recovery attack with time complex-
ity of 275.7 and data complexity of 273.7, where nine more key bits (total 45 key
bits) can be recovered with less time complexity than the previous best known
partial key recovery [2]. With regard to ChaCha7, several attacks are obtained
with different complexities. Specifically, we can launch a key-recovery attack on
ChaCha7 with a time complexity of 2210.3 using a data complexity of 2103.3.
With a data complexity of 268.9, our attack on ChaCha7 takes a time complex-
ity of 2216.9. The data and time complexity of this attack are both less than the
previous best known attack with a time complexity of 2221.95 [14]. Towards a
closer analysis of ChaCha8, we present two attacks against ChaCha7.5⊕, which
is defined as a round-reduced version without the last bit-wise XOR and rota-
tion compared with ChaCha7.5. Our attack on ChaCha7.5⊕ is launched with
the time complexity of 2244.9 and data complexity of 2104.9. We also obtain an-
other attack on ChaCha7.5⊕, which requires time complexity of 2242.9 with an
increasing data complexity of 2125.8.
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As far as we know, these attacks are the best known (partial) key-recovery
attacks on ChaCha6, ChaCha7 and ChaCha7.5⊕. In particular, our attacks on
ChaCha7 and ChaCha7.5⊕ are both several thousands times faster than the
previous best known key-recovery attack or a brute force attack. Moreover, this is
the first time that a key recovery attack is achieved beyond 7 rounds of ChaCha.
As mentioned earlier, since the first 7-round attack was presented by Aumasson
et al. [1] in 2008, nearly fifteen years have passed while no public cryptanalytic
results superior to a brute force have been proposed more than 7 rounds of
ChaCha. In consequence, we take a small but difficult step towards the security
analysis of ChaCha.

Our key-recovery attacks on round-reduced ChaCha are summarized in Ta-
ble 1, with a comparison of the best known attacks that are better than a brute
force attack. Last but not least, it is important to emphasize that our attacks do
not pose any threat on ChaCha with full 20 rounds in the actual deployment.

Table 1. Key-recovery attacks on ChaCha

Round-reduced ChaCha Time Data Reference

ChaCha6

2139 230 [1]
2136 228 [26]
2127.5 237.5 [8]
299.48 - [13]
277.4† 258 [2]
275.7† 273.7 Sect. 6.3

ChaCha7

2248 227 [1]
2246.5 227 [26]
2237.7 296 [8]
2230.86 248.83 [2]
2221.95 290.20‡ [14]
2216.9 268.9 Sect. 6.1
2210.3 2103.3 Sect. 6.1

ChaCha7.5⊕ 2244.9 2104.9 Sect. 6.2
2242.9 2125.8 Sect. 6.2

† In the analysis of ChaCha6, the partial key-
recovery attacks are launched where 36 key bits
are restored in [2], and nine more bits (i.e. 45
bits) are recovered in our attack.

‡ By our evaluation, it can be cut down to 275.89.

The full version of this paper and all codes of verification experiments can be
found at https://github.com/desert-oasis/chacha_syncopation.git. To demon-
strate the proposed techniques and verify our attacks, we have implemented
experiments on practical key-recovery attacks against 5 rounds and 6 rounds of
ChaCha with 64-bit secret key. The details of these experiments can be found
in Supplementary Material C.4.
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Organization of the paper. In Sect. 2, we briefly recall the specification of
ChaCha, and list the notations used throughout this paper. In Sect. 3, we review
the framework of differential attacks based on PNB method, and recent advances
on cryptanalysis of ChaCha. Then in Sect. 4, we introduce the syncopation tech-
nique for the PNB-based approximation in the backward direction and refine
the PNB-based differential attack taking this technique into account. Next in
Sect. 5, the analysis of differential part in the forward direction is provided. In
Sect. 6, we present the attacks on ChaCha7, ChaCha7.5⊕ and ChaCha6 with
our proposed techniques. Finally, Sect. 7 concludes this paper.

2 Preliminaries

In this section, we first take a look at the stream cipher ChaCha, and then
summarize the notations used throughout this paper.

In 2008, the stream cipher ChaCha [4] was introduced by Bernstein, as a
variant of Salsa20 aiming at bringing better diffusion for similar performance.
To start with, we give a brief description of ChaCha. The cipher operates on
32-bit words, takes as input a 256-bit secret key k = (k0, k1, · · · , k7), a 96-bit
nonce v = (v0, v1, v2) and a 32-bit block counter t0, and produces a sequence of
512-bit keystream blocks. In the subsequent content, we will refer to the nonce
and block counter words together as IV words. The operations consist of bit-wise
XOR (⊕), left rotation (≪) and addition modulo 232 (⊞). The state of ChaCha
consists of sixteen 32-bit words, which can be represented as a 4× 4 matrix

X =


x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

 . (1)

As for the initial state, it is built by placing the four predefined constants
(c0, c1, c2, c3), secret key k = (k0, k1, · · · , k7), block counter t0 and nonce (v0, v1, v2)
as in the above matrix, where the four constants for the version with a 256-bit
key are c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574.

The round function Round consists of 4 parallel applications of the func-
tion quarterround. The function quarterround uses 4 modular additions and 4
XOR’s and 4 rotations to update four 32-bit state words. Specifically, the func-
tion quarterround transforms a 4-word vector (a, b, c, d) into (a′′, b′′, c′′, d′′) via
an intermediate vector (a′, b′, c′, d′):

a′ = a⊞ b; d′ = (d⊕ a′) ≪ 16;
c′ = c⊞ d′; b′ = (b⊕ c′) ≪ 12;
a′′ = a′ ⊞ b′; d′′ = (d′ ⊕ a′′) ≪ 8;
c′′ = c′ ⊞ d′′; b′′ = (b′ ⊕ c′′) ≪ 7.

As depicted in Fig. 1, this transformation is invertible and updates each word
twice, so the round function of ChaCha is also invertible. Let X(r) denote the

6



a b c d

≪ 16

≪ 12

≪ 8

≪ 7

a′′ b′′ c′′ d′′

Fig. 1. The function quarterround of ChaCha.

state after r rounds, i.e. X(r) = Roundr(X(0)). The inverse of round func-
tion is denoted as Round−1, then X(0) = Round−r(X(r)). In the odd rounds,
called column rounds, the function quarterround is applied to the four columns
(x0, x4, x8, x12), (x1, x5, x9, x13), (x2, x6, x10, x14) and (x3, x7, x11, x15). In the
even rounds, called diagonal rounds, the quarterround function is applied to the
four diagonals (x0, x5, x10, x15), (x1, x6, x11, x12), (x2, x7, x8, x13) and (x3, x4, x9,
x14). The keystream block Z of ChaChaR is obtained as the word-wise mod-
ular addition of the initial state and the state after R rounds, which means
Z = X(0) ⊞X(R) and X(R) = RoundR(X(0)).

Next, we list the notations mainly used throughout this paper in Table 2.

Table 2. Notations.

Notation Description

x An n-bit word, i.e., an n-bit vector x = (x[n− 1], x[n− 2], · · · , x[0]) ∈ Fn
2 .

X(r) State matrix after applications of r round functions.
xi or X[i] The i-th word of state matrix X.
xi[j2 : j1] The consecutive (j2 − j1 + 1)-bit vector of the i-th word of state matrix X,

starting from xi[j1] ending to xi[j2], j2 ≥ j1.
x⊞ y Addition of x and y modulo 2n.
x⊟ y Subtraction of x and y modulo 2n.
x⊕ y Bit-wise XOR of x and y.
x ≪ l Rotation of x by l bits to the left.
∆x XOR difference of x and x′, i.e. ∆x = x⊕ x′.

3 Reviewing Differential Cryptanalysis of ChaCha

In this section, we first review the differential attack proposed by Aumasson et
al. [1], which is based on the technique called probabilistic neutral bits (shortcut
PNBs). Then, we summarize the recent advances on cryptanalysis of ChaCha.
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3.1 Differential Attack Based on PNB Method
In general, the differential attacks based on PNB method in [1] use a meet-in-the-
middle idea. Usually, one selects a truncated differential with some (single-bit)
input/output differences after certain rounds for forward direction. Then one
identifies the set of PNBs with less influence over the output difference from
backward direction. As for the significant key bits, we just guess and recover
them in the key recovery phase of the attacks. The framework of differential
attack based on PNB method is illustrated in Fig. 2, where we use the shortcuts
ID and OD for input and output difference.

X(0)

Roundr

X(r)

Round(R−r)

X(R)

⊞

X(0)

Z

X ′(0)

Roundr

X ′(r)

Round(R−r)

X ′(R)

⊞

X ′(0)

Z ′

ID

OD

: non-PNBs

: PNBs

∆f

Forward truncated differential with ϵd

Backward computation based on PNB
with ϵa, Pr[∆g = ∆f ] = 1

2 (1 + ϵa)

Fig. 2. Framework of PNB-based differential attack.

Assume that we use a truncated differential with a single-bit input differ-
ence at X(0)[i][j] of IV and a single-bit output difference at X(r)[p][q] of middle
state after r rounds, denoted by (∆X(r)[p][q],∆X(0)[i][j]), which is actually a
differential-linear (DL) approximation, and its correlation εd is defined by

Pr
v,t

{
∆X(r)[p][q] = 0 | ∆X(0) = eij

}
=

1

2
(1 + εd) , (2)

where eij is a state whose j-th bit of i-th word is one and other bits are zero.
Note that regarding key as a random variable, the median of correlation over all
keys is used in the following analysis.

The corresponding output Z is observed for a nonce v, counter t and the
given secret key k. Having k, v and t, one can invert the operations to access
internal state from backward direction. Given the above forward differential, let

∆f(k, v, t, Z, Z ′) ≜ (Round−(R−r)(Z ⊟X(0))⊕Round−(R−r)(Z ′ ⊟X ′(0)))[p][q],
(3)

then ∆X(r)[p][q] = ∆f(k, v, t, Z, Z ′). To obtain a more efficient attack than
exhaustive search over all possibilities of secret key, we need to find an approx-
imation ∆g of ∆f which effectively depends on m = 256 − n key bits. More
formally, let k1 correspond to the subkey of m bits of secret key k = (k1, k0) and
∆f be correlated to ∆g with correlation εa,

Pr
v,t

{
∆f (k, v, t, Z, Z ′) = ∆g

(
k1, v, t, Z, Z ′)} =

1

2
(1 + εa) (4)
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Denote the correlation of ∆g by ε, i.e. Prv,t
{
∆g(k1, v, t, Z, Z ′) = 0

}
= 1

2 (1+ ε).
Under a reasonable independence assumption, the equality ε = εd · εa holds.

Probabilistic neutral bits. Generally speaking, PNBs are these non-significant
key bits with less influence (of size n), and on the opposite side non-PNBs are
these significant key bits with great influence (of size m). To identify the set of
PNBs (or non-PNBs), Aumasson et al. [1] gave a formal definition of a suitable
measure for the amount of influence which every key bit has on output of ∆f .

Definition 1 (Neutrality measure [1]). The neutrality measure of k[i] with
respect to the function ∆f(k,W ) is defined as γi, where W = (v, t, Z, Z ′) and
Pr {∆f(k,W ) = ∆f(k ⊕ ei,W )} = 1

2 (1+γi), i.e. the probability (over all k and
W ) that complementing the key bit k[i] does not change the output of ∆f(k,W ),
where ei is the unit vector of which i-th bit is one and other bits are all zero.

In practice, a threshold γ is set, and PNB = {i | |γi| > γ} and Non-PNB = {i |
|γi| ≤ γ}. Assuming that k1 denotes the significant key bits, i.e. non-PNBs, we
simply define ∆g(k1,W ) as ∆f(k,W ) with setting all PNBs into a fixed value
(e.g. all zeros). Then the correlation ϵa is measured experimentally by using
enough random IVs under many randomly chosen keys.

The Neyman-Pearson decision theory gives the results for estimating the
number of samples N required to get the bounds on probabilities of false alarm

pfa and non-detection pnd. It can be shown that N ≈
(√

α log 4+3
√

1−(εaεd)
2

εaεd

)2

samples suffices to achieve that pnd = 1.3×10−3 and pfa = 2−α. With using the
median correlation ε∗ in the above equation, we have a success probability of at
least 1

2 (1− pnd) ≈ 1
2 for the attack.

Subsequently, a two-step key-recovery procedure can be launched, where the
non-PNBs are first recovered according to the given single-bit differential and
then PNBs are found by exhaustive search. The time complexity of this key-
recovery attack is calculated as T = 2mN + (2mpfa + (1 − pnd))2

n ≈ 2mN +
2256−α + 2n, where m + n = 256. For details about this procedure, please refer
to [1]. As applications of the PNB-based differential cryptanalysis, Aumasson et
al. [1] presented the analysis of Salsa, ChaCha and Rumba, especially including
the first attacks on 6 and 7 rounds of ChaCha.

3.2 Recent Advances in Cryptanalysis of ChaCha

In the following, we recall recent advances in cryptanalysis of ChaCha in [2,14].
At CRYPTO 2020, Beierle et al. [2] presented the first 3.5-round differential-

linear (DL) approximation for ChaCha, leading to further improvements on
attacks on ChaCha6 and ChaCha7. More precisely, the DL distinguisher is
divided into two parts, the differential characteristic in E1 and the middle
DL approximation in Em. For the new distinguisher of ChaCha in [2], the
first part E1 consists of one round and the second part Em covers 2.5 rounds.
The four quarterround functions are independent in the first round and we
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pay our attention on only one of them in the following analysis. The differ-
ential characteristics of E1 can be presented over one quarterround function
as ∆in = ([], [], [], [6])→ ∆m = ([2], [5, 9, 17, 29], [10, 22, 30], [10, 30]), where ∆m

has the minimal Hamming weight of 10. Then with ∆m as input difference of
middle part Em, they found the following DL approximation with probability
Pr[(∆X

(1)
j ,∆X

(1)
j+4,∆X

(1)
j+8,∆X

(1)
j+12) = ∆m → ∆X

(3.5)
(j+1) mod 4[0]] =

1
2 (1+εd), for

j ∈ {0, 1, 2, 3}, where the correlation is evaluated experimentally as εd = 2−8.3.
The experimental distinguisher of Em is combined with the differential charac-
teristic of E1, and the resulting distinguisher covers 3.5 rounds with single-bit
input difference and output linear mask, which is summarized in Table 3 for the
case j = 1. To find a right pair in the first round, one can repeatedly choose
random IVs with some fixed iterations. As evaluated in [2], the probability that
pairs with the input difference ∆in satisfy the given differential in the first round
is p = 2−5 on average for about 70% of the keys. Therefore, on average we need
repeat the procedure of attacks for p−1 = 25 times with varying IVs in the input
difference column (ID column) on which the input difference is imposed.

To avoid the cost of iterations for getting a right pair, Dey et al. [14] proposed
another alternative way to find the right pairs with the help of a pre-computed
list. Actually, one should pre-compute all the needed right pairs offline and keep
them in a list. To achieve this goal, they introduced the concept of exploitable
key, which was restated as the following in the case of ChaCha.

Definition 2 (Exploitable key [14]). Let kID ∈ F64
2 and a subspace SKnmem

=
{(a63, a62, · · · , a0) | ai = 0 for i /∈ Knmem} ⊆ F64

2 , if there exists at least one IV
v ∈ F32

2 such that for any key k′ID ∈ kID ⊕ SKnmem , ((k′ID, v), (k′ID, v′)) forms
a right pair, kID is an exploitable key with respect to the subspace SKnmem , and
the corresponding v is a favorable IV for kID.

They constructed a subset Knmem with dimension 18, and evaluated that
there are approximately 62% exploitable keys among all the keys. Then one
should construct a pre-computed list to store about 0.62 × 264−18 = 245.31

possible exploitable keys along with their favorable IVs. They used the same
forward differential of [2] for the attack on ChaCha7. With their systematic
three-step strategy, they found a set of 79 PNBs with the backward correlation
εa = 0.00057. When α = 38.8, this gives N = 244.89, and the time complexity is
2221.95. Since there are 245.31 exploitable keys in the ID column, they estimated
the overall data complexity as 245.31 ×N = 290.2.3

4 The PNB-based Attack with Syncopation

In this paper, we describe a refined framework of differential attack based on
the PNB method for ARX ciphers. In this section, we focus on the PNB-based
3 Noting that there are at most 232 IVs in the ID column, the number NID of different

IV pairs stored in the pre-computed list is less than 231, and therefore the overall
data complexity can be cut down to 231 ×N = 275.89.
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Table 3. The 3.5-round DL approximation in [2].

ID OD |εd|

∆X
(0)
13 [6] satisfying ∆in → ∆m ∆X

(3.5)
2 [0] 2−8.3

approximation in the backward direction. The analysis of differential part in the
forward direction will be discussed in the next section.

In the following, we will discuss the calculation of approximation correlation
and searching for PNBs using properties of the ARX structure in the PNB-based
approximation, along with the attack framework.

First, we show a simple but useful observation about the correlation of back-
ward approximation, which significantly cuts down the workload of estimation
of backward correlation. More precisely, we observe that the backward approx-
imation of the differential described in (4) is actually the sum of the same ap-
proximation with two different inputs in initialization, and thus its correlation
is the square of the correlation of the latter, which is shown in Proposition 1.
This fact is simple and was not illuminated in the previous analysis, but it is
surprising that it is powerful in the calculation of backward correlation.

After that, a technique called syncopation is introduced for the PNB-based
approximation of ARX ciphers, to amplify the correlation of the approximation.
For simplifying the analysis, the approximated part of an ARX cipher, denoted
by f , is divided into two parts f0 and f1, that is, f = f1 ◦ f0. The PNB-
based approximating function g is a function of f with assigning PNBs to be a
fixed value, and the same relationship holds between g0 and f0. The syncopation
technique is applied to the part g0 (to say f0) for reducing its dependence on
PNBs so that the correlation between g0 and f0 is high. The syncopations split
the input of f0 into different segments such that each segment of output of
f0 only depends on the same segment of the input under some restrictions. A
syncopation consists of a few non-PNBs following by PNBs, and a split segment
consists of several non-PNBs. In the other words, the output of f0 excluding
the syncopations does not depend on PNBs, and therefore the approximation
correlation between g0 and f0 is high. In this section, we analyze the properties
of syncopation in modular subtraction and modular addition, and present a tool
for determining syncopations, which leads to a new and efficient method for
finding a good set of PNBs with a large correlation.

The attack framework is depicted as in Fig. 3.
In the backward computations with PNBs, we observe that computing the

backward correlation of output difference at middle states can be simplified into
the computation of the correlation of the middle state in one initialization. This
treatment is always used in the linear part when one constructs a differential-
linear approximation. More precisely, let

f(k, v, t, Z) ≜ Round−(R−r)(Z ⊟X(0))[p][q], (5)
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X(0)

Roundr

X(r)

· · ·

· · ·

X(R)

⊞
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Z
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Roundr
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· · ·

· · ·

X ′(R)

⊞

X ′(0)

Z ′

ID

OD

f f

f1

f0

Forward truncated differential with εd

Backward computation based on PNB
with ε′2a , Pr[g = f | C] = 1

2 (1 + ε′a)

: syncopated segments (non-PNBs)
: restricted segments (non-PNBs)
: PNBs

Fig. 3. Refined framework of PNB-based differential attack.

and then by (3) we have ∆f(k, v, t, Z, Z ′) = f(k, v, t, Z) ⊕ f(k, v′, t′, Z ′). Let g
an approximation of f which effectively depends on m = 256− n key bits, more
formally, let k1 correspond to the m-bit subkey of secret key k = (k1, k0), in
general, g is constructed by assigning a fixed value k̂0 to k0, i.e.,

g(k1, v, t, Z) ≜ f(k, v, t, Z) |k0=k̂0 . (6)

Then we can use g to construct an approximation for the function ∆f , i.e.
g(k1, v, t, Z) ⊕ g(k1, v′, t′, Z ′), which is always the same to the one constructed
directly by ∆g. Under the assumption of independence, the square relationship
is established between the correlation of this treatment and the traditional one,
which is summarized in the following.
Proposition 1. Let f and g be the functions as defined in (5) and (6), where
Round is the round function, X(0) the state as defined in (1) and k1 corresponds
to the m-bit subkey of secret key k. Let ϵa be the correlation of f and g,

Pr
v,t
{f(k, v, t, Z) = g(k1, v, t, Z)} = 1

2
(1 + ϵa), (7)

and εa the correlation of backward approximation in the differential using g,

Pr
v,t
{f(k, v, t, Z)⊕ f(k, v′, t′, Z ′) = g(k1, v, t, Z)⊕ g(k1, v′, t′, Z ′)} = 1

2
(1 + εa).

If Z and Z ′ are statistically independent, then it holds that εa = ϵ2a.
Proof. If Z and Z ′ are statistically independent, then Z⊟X(0) and Z ′⊟X ′(0) are
statistically independent. Therefore, by the definitions of f and g, f(k, v, t, Z)⊕
g(k1, v, t, Z) and f(k, v′, t′, Z ′) ⊕ g(k1, v′, t′, Z ′) are statistically independent,
and both equal to zero with probability of 1

2 (1 + ϵa). By Piling-up Lemma,
f(k, v, t, Z) ⊕ g(k1, v, t, Z)) ⊕ (f(k, v′, t′, Z ′) ⊕ g(k1, v′, t′, Z ′) = 0 holds with
probability of 1

2 (1 + ϵ2a). Thus, we have εa = ϵ2a. ut
By Proposition 1, we can detect the correlation ϵa instead of εa in practice. It
takes about the square root of the amount of computations to detect the corre-
lation ϵa in experiments compared with detecting εa by using the conventional
method. In the following, we usually refer to ϵa as the correlation of backward
single approximation f = g in one initialization, and correspondingly, to εa as
the correlation of backward double approximation ∆f = ∆g in the differential.
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4.1 Syncopation Technique

In the PNB-based approximation, the essential problem is how to find numerous
PNBs with a large correlation. Unfortunately, more PNBs and larger correlation
are contradictory in most cases. In the literatures, as far as we know, the meth-
ods for handling this problem are limited to the naive threshold rule [1] and
greedy-like method recently shown in [15,14], though the seminal attack was
proposed fifteen years ago. Both methods treat the cipher as a black box, and
yet the ARX structure of the cipher has been unexploited. In the existing similar
work, this structure has been utilized by the partitioning technique [6,21,2] in
linear cryptanalysis and differential-linear cryptanalysis. The idea of partition-
ing technique is to divide the input or output space into different subsets each
of which corresponds to a good differential or linear characteristic. The PNB-
based approximation is much more complicated than the cases of differential
and linear characteristic, and the technique is not applicable to the PNB-based
attack. Even in linear and differential-linear cryptanalysis, some ARX designs
might be too complicated to use the partitioning technique, as stated by Beierle
et al. in [2], “unfortunately, 7-round ChaCha is too complicated to apply our
(partitioning) technique for the linear part”. However, we find that some similar
properties of the ARX structure utilized by the partitioning technique can be
used in the PNB-based approximation though with a different way.

Inspired by the partitioning technique, we introduce the syncopation tech-
nique for the PNB-based attack, which exploits the properties of ARX structure.
As mentioned above, in linear or differential-linear attacks, to increase the corre-
lation of linear approximation, one can use the partitioning technique to choose
corresponding linear masks for different subsets of ciphertexts. In the PNB-based
attack, a much more complicated function is used to approximate the targeted
function. For simplifying the analysis, we divide the approximating function g
into two parts g0 and g1, that is, g = g1◦g0. The syncopation technique is applied
to the first part g0 for reducing its dependence on PNBs so that the correlation
of the approximation g0 is high with the corresponding part f0.

First the notations and definitions are provided for description of syncopation
technique. Let Y = H(X) be an ARX function. For X = (Xo, X#) and Y =
(Y o, Y #), if Y o only depends on Xo under the condition that a system QR(Xo)
of equations on Xo is satisfied, then X# and Y # are called the syncopation bits,
Xo and Y o the syncopated bits, and the bits of Xo appearing in QR the restricted
bits, denoted by XR. The consecutive bits in each word operated by the ARX
function is called a segment. For a state S, each segment of its syncopation
bits S# that are consecutive in the state S is called a syncopation, and each
segment of its syncopated bits So that are consecutive in the state S is called
a syncopated segment. The pattern of syncopations and syncopated segments is
called the syncopation property. A simple example for syncopation property is
given in Fig. 4, and the terms and notations are illustrated in Fig. 4b.

Let the secret key k consist of two parts, the PNBs k0 and non-PNBs k1, as
defined previously. For the initial state, we set the PNBs to syncopation bits and
the other bits to syncopated bits. Let u be a positive integer. We denote by kR
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the set of the least u significant bits of a non-PNB segment that are adjacent to
PNBs in a word. We restrict conditions on non-PNBs kR so that the syncopated
segment of the output of a PNB-based approximating function does not depend
on PNBs, and therefore the approximation correlation will be amplified.

To analyze the propagation of syncopation property for ARX ciphers, like
differential and linear characteristic, we provide the basic properties of modular
addition and subtraction which are the nonlinear operations in ARX designs.

Property of Modular Addition. Let us consider the operation of modular
addition x = s ⊞ k where k is a word of the secret key and s is a public word,
as depicted in Fig. 4. Assuming that k[t+ w − 1 : t] is a non-PNB segment and
known in backward computation, we wonder under what conditions x[t+w−1 : t]
is independent of the PNBs and can be determinedly computed from s and non-
PNBs of k. To this end, Lemma 1 is derived.

Lemma 1. Let x = s⊞ k and x, k, s ∈ Fn
2 . If k[t− 1 : t−u]⊕ s[t− 1 : t−u] 6= 1⃗

for 1 ≤ u ≤ t , then we have

x[t+w− 1 : t] = s[t+w− 1 : t] + k[t+w− 1 : t] +Carry[t]−Carry[t+w] · 2w,

Carry[t+ w] =

{
0 if s[t+ w − 1 : t] + k[t+ w − 1 : t] + Carry[t] < 2w,
1 if s[t+ w − 1 : t] + k[t+ w − 1 : t] + Carry[t] ≥ 2w,

Carry[t] = s[t−ι] if k[t−1 : t−ι+1]⊕s[t−1 : t−ι+1] = 1⃗ and k[t−ι]⊕s[t−ι] = 0

where the width of segment w ≥ 0, 1 ≤ ι ≤ u and Carry[i] denotes the i-th bit
of carry vector, i.e. s⊞ k = s⊕ k ⊕ Carry.

For completeness, the proof of Lemma 1 is provided in Supplementary Mate-
rial A.1. Note that the parameter u in Lemma 1 is the number of bits of restricted
segments, and ι is an auxiliary parameter to identify the minimum of index such
that the premise of lemma holds. For w = 0, only Carry[t] is computed in the
above lemma. Actually, Lemma 1 generalizes the property of modular addition
utilized by the partitioning technique in [21] which can be seen as a special case
of Lemma 1 when w = 1 and u = 2, see also Supplementary Material A.1. In
Fig. 4a, according to Lemma 1, the syncopated segment x[26 : 16] is indepen-
dent of the syncopation bits, specially including k[14 : 6], under the condition
k[15] = s[15], where t = 16, w = 11 and u = 1.

Property of Modular Subtraction. Let us consider the operation Fk : Fn
2 →

Fn
2 , x 7→ s = x⊞k where k is a word of the secret key and s is a public word. For

instance, Fk serves as the last operation of branches b and c of ChaCha. Assuming
that k[t+ w − 1 : t] is a non-PNB segment and known, we are interested in the
case that x[t + w − 1 : t] can be determinedly computed from s and non-PNBs
of k. Similarly, the property of modular subtraction is derived as Lemma 2.
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k

(a) Propagation for modular addition
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(b) xo: syncpated bits ob-
tained by removing x# from x

Fig. 4. An example for syncopation property, where the blue lines represent for syn-
copated bits, red lines for restricted bits and gray lines for syncopation bits.

Lemma 2. Let s = x⊞ k and x, k, s ∈ Fn
2 . If k[t− 1 : t−u]⊕ s[t− 1 : t−u] 6= 0⃗

for 1 ≤ u ≤ t, then we have

x[t+w− 1 : t] = Carry[t+w] · 2w + s[t+w− 1 : t]− k[t+w− 1 : t]−Carry[t],

Carry[t+ w] =

0 if s[t+ w − 1 : t] > k[t+ w − 1 : t],
Carry[t] if s[t+ w − 1 : t] = k[t+ w − 1 : t],
1 if s[t+ w − 1 : t] < k[t+ w − 1 : t],

Carry[t] = s[t−ι]⊕1 if k[t−1 : t−ι+1]⊕s[t−1 : t−ι+1] = 0⃗ and k[t−ι]⊕s[t−ι] = 1

where the width of segment w ≥ 0, 1 ≤ ι ≤ u, and Carry[i] denotes the i-th bit
of carry vector, i.e. x⊞ k = x⊕ k ⊕ Carry.

The proof of Lemma 2 is provided in Supplementary Material A.2 for com-
pleteness. Lemma 2 generalizes the property of modular subtraction utilized by
the partitioning technique in linear or differential-linear attacks. More exactly,
Lemma 2 in [2] falls into the case of Lemma 2 when w = 1 and u = 2, and please
refer to Supplementary Material A.2 for details.

According to Lemma 1 and 2, given the segments k[t + w − 1 : t − u] and
s[t+w−1 : t−u], the segment x[t+w−1 : t] is known under the condition that
the equation QR(k[t− 1 : t− u], s[t− 1 : t− u]) is satisfied, where QR(k[t− 1 :
t − u], s[t − 1 : t − u]) denotes k[t − 1 : t − u] ⊕ s[t − 1 : t − u] 6= 1⃗ and
k[t − 1 : t − u] ⊕ s[t − 1 : t − u] 6= 0⃗ for modular addition and subtraction
respectively. Based on the properties of modular addition and subtraction, we
summarize the propagation of syncopation property for modular addition and
subtraction in the following.

Propagation for Modular Addition and Subtraction. For the operation
of modular addition or subtraction on k and s, if all the bits of s are synco-
pated bits, then, compared with k, the syncopation property of the output is
unchanged except that it brings the conditions on restricted bits and converts
the restricted bits to syncopation bits. As depicted in Fig. 4a, the sum of top
augend and bottom addend has a similar syncopation property with the bottom
addend, where all the bits of top augend are syncopated bits. Here a condition

15



on restricted bits k[15] = s[15] is introduced by modular addition and x[15] is
converted to a syncopation bit. This property is useful in our attacks.

Usually, a syncopated segment is obtained by imposing conditions QR on
restricted bits, which is called as profitable syncopated segment. Hereinafter,
assuming that there is a set of profitable syncopated segments of internal state
with carries, denoted by X = {(x[t+w− 1 : t], Carry[t+w])}, and let C be the
set of conditions related to X , that is, C = {QR(k[t− 1 : t− u], s[t− 1 : t− u])}.

Propagation for Rotation and XOR. For the rotation operation, the prop-
agation of syncopation property is equivalent in terms of rotation, that is, the
bit-wise pattern of syncopation property after rotation is equivalent to rotation
of the one before rotation. The propagation of syncopation property on the XOR
operation has the following property: the set of the syncopations is the union of
input syncopations and the set of the syncopated segments is the intersection of
input syncopated segments.

By analysis of the propagation of syncopation property on basic operations,
we can get a general property for ARX structures in PNB-based approximation.

Proposition 2. Let f(k, s) be a function consisting of ARX operations, where
the secret key k consists of two parts, the PNBs k0 and non-PNBs k1. Let g be
a restriction of f with k0 to be a fixed value. Let the PNBs k0 be syncopation
bits, the other bits of (k, s) be syncopated bits, and kR be restricted bits. If kR

satisfies the syncopation property propagating from (k, s) to f(k, s), that is, the
restricted equations introduced by modular operations are satisfied, then any syn-
copated segment in the output of f is independent with k0 and thus equals the
corresponding segment in the output of g.

Instead of finding a linear mask in the partitioning technique, the goal of syn-
copation technique is to find a PNB set consisting of as many as possible PNBs
(to say syncopation bits), as well as maximize the overall length of syncopated
segments of internal state in the ARX function for a fixed size of PNB set.

The first question is how to determine the syncopated segments in the PNB-
based attack. Next, we present an algorithm to determine the profitable synco-
pated segments of internal state which are obtained by imposing conditions on
the restricted segments.

A Tool for determining syncopated segments and restricted segments.
First we find all the possible positions of secret key on which the syncopation
technique can be applied, including the syncopated segments and restricted seg-
ments of secret key. Then according to the specific structure of target cipher, the
profitable syncopated segments of internal state and corresponding conditions
are determined by the syncopated segments and restricted segments of secret
key. Algorithm 1 summarizes the procedure, and note that the cases of u = 1
or u = 2 are usually used in our attacks. Note that, for a state S, SR is a part
of So by their definitions, but for convenience by ko hereinafter we mean the
syncopated bits of the secret key k that exclude the restricted bits kR.

16



Algorithm 1 Determining syncopated segments given a set of PNBs
Input: A set of PNBs.
Output: The syncopated segments with conditions on u-bit restricted segments.
1: for 0 ≤ i ≤ 7 do
2: for 0 ≤ j < 31− u do
3: if ki[j] is a PNB and ki[j + u : j + 1] are all non-PNBs then
4: kR ← kR ∪ {ki[j + u : j + 1]}
5: end if
6: end for
7: ko ← ko ∪ ko

i , where ko
i = {ki[j2 : j1] | ki[j2 : j1] are all non-PNBs with ki[j1 −

1] (if j1 − 1 ≥ 0) and ki[j2 + 1] (if j2 + 1 ≤ 31) being both PNBs.}
8: end for
9: Update ko by excluding kR from ko.

10: According to ko and kR, find the profitable syncopated segments X and conditions
C on restricted segments with analyzing the specific structure of cipher. ▷ Refer to
Sections 6.1, 6.2 and 6.3 for details.

11: Return X and C.

Example of Algorithm 1. As shown in Fig. 4a, the bits {k[31 : 27], k[14 : 6]} are
PNBs and the bits {k[26 : 15], k[5 : 0]} are non-PNBs. After running Step 2–9 of
Algorithm 1 with u = 1, we get the syncopated segments ko = {k[26 : 16], k[5 :
0]} and restricted segments kR = {k[15]}. The structure in Fig. 4a illustrates
Step 10 of Algorithm 1 for x = s⊞ k where s is public and known. According to
the propagation for modular addition, the set of profitable syncopated segments
of internal state is X = {(x[26 : 16], Carry[27])} and its condition is C = {k[15] =
s[15]}.

4.2 Refined PNB-based Attack with Syncopation

First, we present a new and efficient method to find good set of PNBs with greedy
algorithm. Then, a refined procedure of key-recovery attack is summarized, along
with the analysis of complexities.

New efficient method to construct PNB set. In our method, we experimen-
tally estimate the backward correlation of f = g as described in Proposition 1,
i.e. the correlation ϵa in (7) instead of εa in (4). This trick allows us to save lots
of computations as explained before and makes our method very efficient. With
the tool of determining syncopated segments, we take the syncopation technique
into account, which results in a new criteria of identifying PNBs. The result-
ing key bits by new criteria are called the conditional PNBs (CPNBs for short).
Specifically, we first generalize the definition of neutrality measure to conditional
neutrality measure, and present a greedy algorithm to find good set of CPNBs.

Definition 3 (Conditional neutrality measure). The conditional neutrality
measure of the key bit k[i] with respect to the function f(k, v, t, Z) and condition
Ci(k, v, t, Z) is defined as γ′

i, and Pr {f(k, v, t, Z) = f(k ⊕ ei, v, t, Z ) | Ci(k, v, t,
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Algorithm 2 A greedy algorithm for searching a conditional PNB set
Input: The size n of CPNB set and CPNBshortlist.
Output: The CPNB set, its correlation, syncopated segments and conditions.
1: Initialize a set CPNB0 = ∅.
2: for i ∈ {0, 1, · · · , n− 1} do
3: for j ∈ CPNBshortlist and j /∈ CPNBi do
4: CPNBtemp ← CPNBi ∪ {j}. ▷ The bit positions of k0 in the key k.
5: Update Xi,j and Ci,j by performing Algorithm 1 with CPNBtemp as input.
6: Under the conditions Ci,j , estimate backward correlation ϵ

′(i,j)
a in (7) with

assigning k0 by setting key bits of CPNBi to zero and flipping key bit j.
7: end for
8: Choose index ji with maximal correlation, and CPNBi+1 ← CPNBi ∪ {ji}.
9: end for

10: Determine Xn and Cn of CPNBn by Algorithm 1.
11: Under the conditions Cn, estimate backward correlation ϵ′a in (7) with assigning k0

by setting key bits of CPNBn to zero.
12: Return CPNBn, ϵ′a, Xn and Cn.

Z)} = 1
2 (1 + γ′

i) i.e. the probability (over all k and (v, t)) that complementing
the key bit k[i] does not change the output of f(k, v, t, Z) |Ci(k,v,t,Z). Here ei is
the unit vector where the i-th bit is one and other bits are all zeros.

In practice, the condition Ci(k, v, t, Z) for CPNB k[i] is obtained by Algorithm 1
with treating only k[i] as a PNB and other key bits as non-PNBs. As in the
traditional way, one could construct a set of CPNBs by setting a threshold γ
for conditional neutrality measure, i.e. CPNB = {i | |γ′

i| ≥ γ}. However, there
may raise the incompatibility among CPNBs. Suppose that the key bits k[i] and
k[j] are separately derived as CPNBs, but they should not be CPNBs at the
same time if the condition Ci(k, v, t, Z) for k[i] being a CPNB depends on k[j].
Therefore, we treat all the CPNBs as a whole when constructing a set of CPNBs.

In general, the procedure of finding a good set of CPNBs is divided into
two steps. First, in the preprocessing step, those key bits are excluded whose
conditional neutrality measure is less than a threshold γcNeutr, which will not
become good CPNBs. As a result, we get a preliminary shortlisting of CPNBs,
denoted by CPNBshortlist whose elements are the key bits with conditional
neutrality measure greater than γcNeutr. Note that the value of γcNeutr is set
to quite lower than the ones in the conventional method, e.g. γcNeutr = 2−5.0.
In the second step, a greedy algorithm is launched to find a good set of CPNBs
from CPNBshortlist, which is described in detail below.

Greedy algorithm with new criteria. Once the size of CPNB set is specified, we
construct the set of CPNBs by selecting PNB one by one. In the i-th iteration, the
index of key bit with the maximal conditional correlation in backward direction,
i.e. minimizing the time complexity, is selected and added into the CPNB set.
To be accurate, we declare a temporary CPNB set CPNBtemp to include a new
key bit j, and update the set of profitable syncopated segments Xi,j and the
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conditions Ci,j by performing Algorithm 1 with CPNBtemp as input. Then under
the conditions Ci,j , the correlation ϵ

′(i,j)
a in (7) is estimated with assigning k0 by

flipping the new bit j and setting the other bits in CPNBtemp to zeros. This
iteration is repeated until enough CPNBs are identified. The detailed procedure
is presented in Algorithm 2, where ϵ′a is the conditional backward correlation in
a single initialization, that is, Pr[f = g | Cn] = 1

2 (1 + ϵ′a).
When there are large numbers of equations in conditions C of syncopated

segments X , it takes a lot of time overhead to satisfy them, and we will not be
able to explore further the impact of conditions on the backward approximation.
However, according to the propagation of modular addition and subtraction
(Lemma 1 and 2), we know that under the conditions C of X , the values of
syncopated segments X are independent on PNBs and can be determinedly
computed. In practice, we then estimate theoretically the backward correlation at
Step 6 and 11 of Algorithm 2 on the premise that the values of X = {(x[t+w−1 :
t], Carry[t+w])} are known, that is, estimating the correlation between g1 and
f1 with fixing the values of X in g0 to the ones in f0. Moreover, our experiments
show that the theoretically estimated correlation is very close to the actual one,
and we can always use the theoretical value instead of the actual one. It is worth
noting that the use of theoretical evaluation of conditional backward correlation
makes our method to find good set of CPNBs very efficient.

New key-recovery attack with syncopation technique. In a chosen-IV
attack, an attacker can get the keystream blocks by xoring the plaintexts and
ciphertexts. Therefore, the accessible in-and-out data consists of public values
(e.g., constants and IV) and keystream block Z, which are collectively denoted by
M for simplicity. Assume that a set of n CPNBs is generated by our new method,
along with the set of syncopated segments X and corresponding conditions C.
Once obtaining a pair of accessible in-and-out data (M,M ′), according to its
values of the restricted bits SR, the attacker classifies it into the corresponding
subset. In the online phase, since the non-PNBs of secret key are guessed, the
values of key bits in kR are known due to the bits of kR are syncopated bits (that
is, non-PNBs). The pairs are then filtered under the conditions C. Suppose that
N pairs are given, about N∗ = qN pairs will be remaining for subsequent statistic
testing, where q = (

∏
(1− 1

2u )
θu)2 according to the premises of Lemma 1 and 2

and θu is the number of syncopated segments with an u-bit restricted segment.
The detailed procedure of key-recovery attack is summarized as Algorithm 3.

Analysis of complexities. The total time complexity of Algorithm 3 is T =
T0 + T1, where the complexity T0 of Step 1 is N , and the complexity T1 of Step
2–8 can be estimated as done in [1]. Therefore,

T = N + 2mN∗ + 2κ−α + 2n,

where N = 1
qN

∗, N∗ ≈ (
√
α log 4+3

√
1−(εaεd)

2

εaεd
)2, q = (

∏
(1 − 1

2u )
θu)2, θu is

the number of syncopated segments with an u-bit restricted segment, εd is the
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Algorithm 3 Recovery of the full secret key
Input: N pairs {(M,M ′)} of accessible data with IV satisfying ID, set of n CPNBs

denoted by k0 and corresponding conditions C.
Output: The full secret key.
1: Classify N pairs into subsets according to the values of SR. ▷ Pre-processing data

where no key bits are involved.
2: for all k̂1 ∈ {0, 1}m do ▷ Identify the key k = (k1, k0), |k1| = m and |k0| = n.
3: Set k̂ = (k̂1, 0n), according to the values of kR, choose the subsets of {(M,M ′)}

whose values of SR satisfying equations in conditions C, with about N∗ = qN pairs.
4: Compute the correlation at OD with the filtered N∗ pairs.
5: if the optimal decision rule legitimates k̂1 as a (possibly) correct one then
6: Perform an additional exhaustive search over the remaining n-bit subkey

k0. Once that the right key is found, output it.
7: end if
8: end for

forward correlation, εa = ϵ′2a is the conditional backward correlation utilizing the
syncopation technique, and κ is the size of secret key and κ = 256 for ChaCha.
The data complexity is of N . The memory complexity is mainly consumed in
Step 1 of at most N , and if we only keep these subsets used later, it takes memory
of 2|kR|N∗. For concrete attacks, we refer to Sect. 6 for details.

5 Theoretical Analysis of Differential Equations

In this section, we describe our improvements on forward differential, which
are obtained by an in-depth analysis of the equations controlling differential
propagation in ARX structure. More precisely, a concise and effective way is
found to satisfy the given differential, resulting in a reduced complexity in key-
recovery attacks. Besides, a more comprehensive theoretical explanation of strong
keys is presented, which covers all the remaining six (out of eight) cases lacked
in previous analysis.

According to the experiments of [2], for about 70% of the keys, called weak
keys, there exists at least one IV satisfying the differential characteristic ∆in →
∆m in the first round, which is the differential characteristic of quarterround
function described in Section 3.2. On the flip side, their experiments imply the
existence of strong keys for which we can not find such IV. Recently, Dey et
al. [12] provided a theoretical explanation about the differential characteristic
mainly for two (out of eight) special cases, especially pointing out the case in
which 12.5% of all keys becomes strong keys. But, for the other six cases, there
is no theoretical explanation now. In the direction of finding a right pair, Dey et
al. [14] proposed to achieve the right pairs by constructing a list consisting of at
least one favorable IV for these exploitable keys. However, this treatment views
the differential propagation as a black box, which results in a lot of data and
storage overhead. In the following, it is shown that we fill in the missing parts
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of the previous work and overcome the shortcomings of existing method to some
extent based on the deeper analysis of differential equations of ARX structure.

For the differential characteristic ∆in → ∆m in the first round which is
described in Section 3.2, there are totally five differential equations to satisfy:

c[22] = Carry(c,d′)[22], (8)
a′[2] = Carry(a′,b′)[2], (9)
c′[10] = Carry(c′,d′′)[10], (10)
c′[30] = Carry(c′,d′′)[30], (11)
d′′[22] = Carry(c′,d′′)[22], (12)

where Carry(x,y)[i] denotes the i-th bit of carry vector Carry(x,y) of modular
addition between x and y, i.e. x ⊞ y = x ⊕ y ⊕ Carry(x,y). As shown in Fig. 1,
Eqs. (8) and (9) guarantee that the difference is not propagated to next bits in
the second and third addition modular of quarterround function respectively,
Eqs. (10), (11) and (12) guarantee that the difference is not propagated to next
bits in the fourth addition of quarterround function.

In the initialization of ChaCha, a fixed constant is loaded into branch a,
an unknown secret key is loaded into branches b and c. Therefore, we can not
control branches a, b and c. Only branch d can be varied to satisfy the differential
equations given the secret key. First, it is observed that at least one bit of
d is almost linearly involved in Eqs. (10), (11) and (12). Therefore, we can
always flip the linear bits to satisfy corresponding equations. We summarized
this observation in the following.

Observation of last three differential equations.
– Eq. (10): d[26] = Carry(c′,d′′)[10]⊕ Carry(c,d′)[10]⊕ c[10]⊕ a′[26].
– Eq. (11): d[14] = Carry(c′,d′′)[30]⊕ Carry(c,d′)[30]⊕ c[30]⊕ a′[14].
– Eq. (12): d[30]⊕d[18] = Carry(c′,d′′)[22]⊕Carry(a′,b′) [14]⊕Carry(c,d′)[2]⊕

a′[30]⊕ a′[14]⊕ b[2]⊕ c[2]⊕ a′[18].

Thus, based on the above observation, the last three equations are satisfied by
flipping d[26], d[14] and d[30], which is verified by experiments given later.

As for the first two differential equations, no obvious linear bits of b are
involved in equations. Therefore, we could not simply flip some bits of d to
satisfy the two equations. It is noted that the two equations can not always be
satisfied, and specially, Dey et al. [12] discussed two special cases where Eq. (9)
is always established and must not be established, i.e. a′[2 : 0] ∈ {000, 100}. For
details about their results, please refer to Theorems 5 and 6 in [12]. Next, we give
a more in-depth analysis of Eqs. (8) and (9) by considering them together, which
results in a theoretical interpretation for other six complex cases. The analysis
stems from an observation of interaction between the first two equations which
control differential propagation of two consecutive modular addition.

Observation of the first two differential equations. Considering an inter-
nal variable c′[21 : 20], we further analyze the interaction between con-
straints of Eqs. (8) and (9). Since the relation b′ = (b ⊕ c′) ≪ 12, we
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can obtain the range of c′[21 : 20] from the constraints of b′[1 : 0] de-
rived by the assumption that Eq. (9) holds. Precisely, assume that Eq.
(9) holds, we have that c′[21 : 20] ∈ C

′b[21:20]
a′[2:0] ≜ {b′[1 : 0] ⊕ b[21 : 20] |

a′[2] = b(a′[1 : 0] + b′[1 : 0])/22c}. Due to the fact that Carry(c,d′)[22] =0, if c′[21 : 20] > c[21 : 20],
1, if c′[21 : 20] < c[21 : 20],
Carry(c,d′)[20], if c′[21 : 20] = c[21 : 20],

Eq. (8) also restricts the range

of c′[21 : 20], i.e. if c[22] = 1 then c′[21 : 20] ≤ c[21 : 20]; otherwise c[22] = 0
then c′[21 : 20] ≥ c[21 : 20]. Therefore, the two constraints of Eq. (8) and
(9) may contradict.

Taking the two equations into account together, it is first identified that the cases
Eqs. (8) and (9) can not hold at the same time. For this, a function sign(·, ·) :
{α | α ∈ Z} × Z→ {1,−1, 0} is defined as

sign(S, β) =

 1 if ∀α ∈ S, α > β,
−1 if ∀α ∈ S, α < β,
0 otherwise,

where sign(·) 6= 0 implies a contradiction between Eqs. (8) and (9). Otherwise,
a heuristically optimal setting of d is given such that as few bits of b and c as
possible are involved in. Formally, we write in a form of lemma below.

Lemma 3. Given two words a′[2 : 0] ∈ {0, 1}3 and b[21 : 20] ∈ {0, 1}2, let
C

′b[21:20]
a′[2:0] ≜ {b′[1 : 0]⊕ b[21 : 20] | a′[2] = b(a′[1 : 0] + b′[1 : 0])/22c}.

– For a′[2 : 0] = 000 and ∀ b[21 : 20] ∈ {0, 1}2, a′[2 : 0] ∈ {111, 001} and
b[21 : 20] ∈ {01, 10}, no matter what value of c[22 : 20], Eqs. (8) and (9) can
hold simultaneously, specially with the following setting.
If c[21 : 20] = min(C

′b[21:20]
a′[2:0] ) and c[22] = 1, or c[21 : 20] = max(C

′b[21:20]
a′[2:0] )

and c[22] = 0,d[5 : 4] = a′[5 : 4]⊕ (3× c[22])
d[3− i] = a′[3− i]⊕ c[19− i]⊕ 1, i ∈ {0, 1, · · · , t− 1}
d[3− t] = a′[3− t]⊕ c[19− t]

(13)

where t ∈ {0, 1, · · · , 19} is the minimum integer such that c[19 − t] = c[22].
Otherwise, {

d[5 : 4] = a′[5 : 4]⊕ (2× c[22] + 1− c[19])
d[3] = a′[3]⊕ c[19]

(14)

– For a′[2 : 0] = 100, Eq (9) must not be satisfied.
– For a′[2 : 0] ∈ {101, 110, 010, 011} and ∀ b[21 : 20] ∈ {0, 1}2, a′[2 : 0] ∈
{111, 001} and b[21 : 20] ∈ {00, 11},
• When c[21 : 20] /∈ C

′b[21:20]
a′[2:0] , if c[22] = 1

2 (1 + sign(C
′b[21:20]
a′[2:0] , c[21 : 20]))

then Eqs. (8) and (9) can not hold simultaneously; otherwise, then Eqs.
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(8) and (9) can hold simultaneously, specially with the following setting,

{
d[5 : 4] = a′[5 : 4]⊕

(
min(C

′b[21:20]
a′[2:0] )− c[21 : 20] + c[22]× 4− c[19]

)
d[3] = a′[3]⊕ c[19]

(15)
• When c[21 : 20] ∈ C

′b[21:20]
a′[2:0] , Eqs. (8) and (9) can hold simultaneously,

specially with the following setting. If c[21 : 20] = min(C
′b[21:20]
a′[2:0] ) and

c[22] = 1, or c[21 : 20] = max(C
′b[21:20]
a′[2:0] ) and c[22] = 0, the setting is

same to Eqs. (13); otherwise, the setting is same to Eqs. (14).
For completeness, the proof of Lemma 3 is given in Supplementary Material B.1.
In an attack, it is necessary to know how many unknown bits of secret key need to
guess and how many public bits are consumed to satisfy the first two equations.
For this purpose, the following corollary is directly derived by the above lemma.

Corollary 1. For a′[2 : 0] ∈ F3
2 and a′[2 : 0] 6= 100, with the setting of Lemma 3,

– In Eq. (13), there are at most 22 bits of d i.e. d[5 : 0] and d[31 : 16], and at
most 32 bits of b and 23 bits of c i.e. c[22 : 0] are needed to guess. Note that
this setting is used only when c[21 : 20] = min(C

′b[21:20]
a′[2:0] ) and c[22] = 1, or

c[21 : 20] = max(C
′b[21:20]
a′[2:0] ) and c[22] = 0, which are 25% of all cases.

If t ≤ 3, with probability 15
16 , at most 6 bits of d i.e. d[5 : 0] are restricted,

and at most 8 bits of b i.e. a′[5 : 0] and b[21 : 20] and 7 bits of c i.e. c[22 : 16]
are needed to guess.

– In Eqs. (14) and (15), there are 3 bits of d i.e. d[5 : 3], and at most 8 bits
of b i.e. a′[5 : 0] and b[21 : 20] and 4 bits of c i.e. c[22 : 19] needed to guess.

5.1 Reducing Complexities
Based on our observations of the five differential equations, we propose to use
a concise and efficient way to generate a right pair for the given differential
∆in → ∆m in the first round. Given a weak key, from Corollary 1, we know that
with probability greater than 15

16 one can use at most six IV bits {0 : 5} to satisfy
the first two equations. And we can flip three IV bits {14, 26, 30} to satisfy the
last three equations based on the aforementioned observation. Inspired by the
analysis of five differential equations, a proposition is presented as follows.
Proposition 3. Let kID ∈ F64

2 , if kID is a weak key that there exists at least
one v ∈ F32

2 satisfying the given differential, then with probability greater than
15
16 = 93.75%, one can find v in a subspace SVnfree

⊆ F32
2 with 29 IVs such that

((kID, v), (kID, v′)) forms a right pair, where the subspace SVnfree
= {(a31, a30, · · ·

, a0) | ai = 0 for i /∈ Vnfree} and the index subset Vnfree = {0 : 5, 14, 26, 30}.
We performed experiments to verify the proposition. As a result, for 66.4% keys
among all the keys we find one v in the subspace in Proposition 3 that satisfies
the given differential, which confirms Proposition 3, i.e., ≥ 70%× 15

16 = 65.6%.
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5.2 Theoretical Interpretation of Strong Key

According to Lemma 3, we derive a lower bound for the percentage of strong
keys kID ∈ F64

2 that there is no IV v ∈ F32
2 satisfying the given differential

∆in → ∆m in the first round for each case of a′[2 : 0].

Theorem 1. Among all the keys, there are at least 29.6875% strong keys kID ∈
F64
2 that there is no IV v ∈ F32

2 satisfying the given differential, for different
a′[2 : 0] we have

τ =


0 if a′[2 : 0] = 000, 1 if a′[2 : 0] = 100,
0.0625 if a′[2 : 0] = 001, 0.375 if a′[2 : 0] = 101,
0.25 if a′[2 : 0] = 010, 0.25 if a′[2 : 0] = 110,
0.375 if a′[2 : 0] = 011, 0.0625 if a′[2 : 0] = 111.

where τ denotes the percentage of strong keys derived by Lemma 3.

For completeness, we give the proofs of Theorem 1 in Supplementary Mate-
rial B.2, along with two specific examples of strong keys. With analyzing six out
of eight more complex cases, our theoretical derivation of strong keys is basically
consistent with the experimental result 30%.

6 Applications: ChaCha7/7.5⊕/6

In this section, we present several key-recovery attacks on ChaCha7, 7.5⊕ and
ChaCha6 utilizing the new proposed techniques in Sections 4 and 5. In the
attacks, we use the forward differential characteristic in Table 3.

6.1 Attacks against ChaCha7

First the inverse structure of ChaCha7 is analyzed, which is used to determine
all the syncopated segments of internal state in Algorithm 1. The last round of
ChaCha7 is illustrated in Fig. 5. For the inversion of last quarterround function,
since the following relationships,

x
(7)
7 = z

(7)
7 ⊟ k3

x
(7)
11 = z

(7)
11 ⊟ k7

y
(6)
11 = (z

(7)
11 ⊟ x

(7)
15. . . .)⊟ k7

x
(6)
11 = (z

(7)
11 ⊟ x

(7)
15. . . . ⊟ y

(6)
15. . . .)⊟ k7

,


x
(7)
3. . . . = z

(7)
3 ⊟ c3

x
(7)
15. . . . = z

(7)
15 ⊟ v2

y
(6)
15. . . . = (x

(7)
15. . . . ≫ 8)⊕ x

(7)
3. . . .

the syncopation technique can be applied on words x(7)
7 , x

(7)
11 , y

(6)
11 , and x

(6)
11 with

using the property of modular subtraction (Lemma 2), where the words under-
lined by x. are known since they can be derived from constants, IV and keystream
blocks. The analysis is similar for the other three quarterround functions, and
we mark all the words by red in Fig. 5 which the syncopation technique can
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Fig. 5. Last round of ChaCha7.

be applied on. Given a (C)PNB set, Algorithm 1 is performed, and for the
words marked by red in Fig. 5, the syncopated segments of internal state and
corresponding conditions on restricted bits are determined according to the syn-
copated segments and restricted segments of secret key. The attacks with better
parameters are obtained for ChaCha7 by setting u = 1, i.e., only using the
syncopated segments with a one-bit restricted segment.

The set of CPNBs. In the first step, we obtain a preliminary shortlisting of
151 possible CPNBs by setting a threshold 2−5 for the conditional neutrality
measure, which is given in Supplementary Material C.1. Then Algorithm 2 is
executed with input of the preliminary shortlisting, and the size of CPNB set
is exhaustively searched. As a result, two sets with 74 CPNBs and 89 CPNBs
are selected by minimizing time complexity under the requirement that data
complexity does not exceed the amount of available IV. The set of 74 CPNBs is
{2, 3, 4, 5, 47, 48, 49, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 90, 91, 102, 103, 104, 105, 106, 107, 108, 109, 110, 123, 124, 125, 126, 127,
155, 156, 157, 158, 159, 168, 169, 191, 192, 193, 194, 199, 200, 207, 208, 211, 212, 219,
220, 221, 222, 223, 224, 225, 226, 244, 245, 246, 247, 255}. In Fig. 6, the 74 gray lines
represent 74 CPNBs, i.e. syncopation bits according to their indexes of secret
key, and the blue and red lines represent the non-CPNBs where the synco-
pated segments ko and restricted segments kR of secret key are denoted by
areas of blue and red lines respectively. The profitable syncopated segments
for the 74 CPNBs are summarized in Table 4 along with 27 conditions, where
we ignore the carry bits after syncopated segments. The set of 89 CPNBs is
{2, 3, 4, 5, 6, 14, 15, 26, 47, 48, 49, 51, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 90, 91, 95, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 115,
123, 124, 125, 126, 127, 135, 136, 147, 155, 156, 157, 158, 159, 168, 169, 170, 191, 192,
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Table 4. Syncopated segments of 74 CPNBs, where "-" denotes w = 0.

syncopated segment ← condition (i, j1, j2)

T0: x(7)
4 [j2 : j1]← k0[i] ̸= z

(7)
4 [i] (6, 7, 31)

T0: x(7)
5 [j2 : j1]← k1[i] ̸= z

(7)
5 [i] (18, 19, 31)

T0: x(7)
6 [j2 : j1]← k2[i] ̸= z

(7)
6 [i] {(12, -, -), (24, 25, 25), (28, 29, 31)}

T0: x(7)
7 [j2 : j1]← k3[i] ̸= z

(7)
7 [i] (15, 16, 26)

T0: x(7)
9 [j2 : j1]← k5[i] ̸= z

(7)
9 [i]

T1: y(6)
9 [j2 : j1]← k5[i] ̸= (z

(7)
9 ⊟ x

(7)
13 )[i] (10, 11, 30)

T2: x(6)
9 [j2 : j1]← k5[i] ̸= (z

(7)
9 ⊟ x

(7)
13 ⊟ y

(6)
13 )[i]

T0: x(7)
10 [j2 : j1]← k6[i] ̸= z

(7)
10 [i] {(3, 4, 6), (9, 10, 14),

T1: y(6)
10 [j2 : j1]← k6[i] ̸= (z

(7)
10 ⊟ x

(7)
14 )[i] (17, 18, 18), (21, 22, 26)}

T2: x(6)
10 [j2 : j1]← k6[i] ̸= (z

(7)
10 ⊟ x

(7)
14 ⊟ y

(6)
14 )[i]

T0: x(7)
11 [j2 : j1]← k7[i] ̸= z

(7)
11 [i]

T1: y(6)
11 [j2 : j1]← k7[i] ̸= (z

(7)
11 ⊟ x

(7)
15 )[i] {(3, 4, 19), (24, 25, 30)}

T2: x(6)
11 [j2 : j1]← k7[i] ̸= (z

(7)
11 ⊟ x

(7)
15 ⊟ y

(6)
15 )[i]

193, 194, 195, 199, 200, 207, 208, 211, 212, 219, 220, 221, 222, 223, 224, 225, 226, 227,
232, 244, 245, 246, 247, 255}. The profitable syncopated segments of the 89 CPNBs
are given in Table 5 along with 40 conditions.

k0 k1 k2 k3

k4 k5 k6 k7

Fig. 6. The classification of all key bits for 74 CPNBs, where gray line represents
CPNBs, and blue and red lines represent non-PNBs, from left to right for ki[31 : 0].

From Table 4, we remove 13 inessential conditions whose coordinates in table
are {(T0, 8), (T0, 11), (T1, 8), (T1, 9), (T1, 10), (T1, 11), (T1, 12), (T2, 6), (T2, 8),
(T2, 9), (T2, 10), (T2, 11), (T2, 12)}, where (Ti, j) locates a condition with type
Ti and top-to-bottom order j in right column of table, 0 ≤ i ≤ 2 and 0 ≤ j ≤ 12.
For example, coordinate (T0, 8) locates the syncopated segment and its condition
x
(7)
10 [14 : 10]← k6[9] 6= z

(7)
10 [9]. In the experiment of 210 random keys and 216.3 IVs

for each key, the conditional correlation is theoretically estimated as ϵ′a = 0.2365.
We have conducted a verification experiment for this theoretical calculation,
in which 26 random keys are used with 232.6 IVs for each key. The result of
experiment shows that the conditional correlation is ϵ′a = 0.2369, which is very
close to the theoretical one and justifies theoretical calculation of conditional
correlation. Therefore, the conditional backward correlation is εa = 2−4.2, and
with n = 74, θ1 = 14 and α = 48, the time and data complexities are T = 2213.9

and N = 259.9 respectively.

26



Table 5. Syncopated segments of 89 CPNBs, where "-" denotes w = 0.

syncopated segment ← condition (i, j1, j2)

T0: x(7)
4 [j2 : j1]← k0[i] ̸= z

(7)
4 [i] {(7, 8, 13), (16, 17, 25), (27, 28, 31)}

T0: x(7)
5 [j2 : j1]← k1[i] ̸= z

(7)
5 [i] {(18, -, -), (20, 21, 31)}

T0: x(7)
6 [j2 : j1]← k2[i] ̸= z

(7)
6 [i] {(12, -, -), (24, 25, 25), (28, 29, 30)}

T0: x(7)
7 [j2 : j1]← k3[i] ̸= z

(7)
7 [i] {(16, 17, 18), (20, 21, 26)}

T0: x(7)
8 [j2 : j1]← k4[9] ̸= z

(7)
8 [9]

T1: y(6)
8 [j2 : j1]← k4[9] ̸= (z

(7)
8 ⊟ x

(7)
12 )[9] {(9, 10, 18), (20, 21, 26)}

T2: x(6)
8 [j2 : j1]← k4[9] ̸= (z

(7)
8 ⊟ x

(7)
12 ⊟ y

(6)
12 )[9]

T0: x(7)
9 [j2 : j1]← k5[i] ̸= z

(7)
9 [i]

T1: y(6)
9 [j2 : j1]← k5[i] ̸= (z

(7)
9 ⊟ x

(7)
13 )[i] (11, 12, 30)

T2: x(6)
9 [j2 : j1]← k5[i] ̸= (z

(7)
9 ⊟ x

(7)
13 ⊟ y

(6)
13 )[i]

T0: x(7)
10 [j2 : j1]← k6[i] ̸= z

(7)
10 [i] {(4, 5, 6), (10, 11, 14),

T1: y(6)
10 [j2 : j1]← k6[i] ̸= (z

(7)
10 ⊟ x

(7)
14 )[i] (17, 18, 18), (21, 22, 26)}

T2: x(6)
10 [j2 : j1]← k6[i] ̸= (z

(7)
10 ⊟ x

(7)
14 ⊟ y

(6)
14 )[i]

T0: x(7)
11 [j2 : j1]← k7[i] ̸= z

(7)
11 [i]

T1: y(6)
11 [j2 : j1]← k7[i] ̸= (z

(7)
11 ⊟ x

(7)
15 )[i] {(4, 5, 7), (9, 10, 19), (24, 25, 30)}

T2: x(6)
11 [j2 : j1]← k7[i] ̸= (z

(7)
11 ⊟ x

(7)
15 ⊟ y

(6)
15 )[i]

Analysis of complexities. The analysis in Section 5 is used to satisfy the dif-
ferential in the first round for the forward distinguisher in Table 3. According
to Corollary 1, we should know fifteen key bits {32 : 37, 52, 53, 176 : 182} to
satisfy the first two differential equations, and they are not involved in the set
of 74 CPNBs. Therefore, we can freely satisfy the first two differential equations
by setting at most six IV bits {0 : 5} as done in Lemma 3. The overall attack
process is as follows: in Step 1 of Algorithm 3 one prepares 26 structures of data
with N pairs in each structure by traversing six IV bits {0 : 5}, and in Step 3
of Algorithm 3 one first selects the structure which satisfies the first two differ-
ential equations according to the value of guessed key, and then as specified in
Algorithm 3 chooses the subsets satisfying 28 equations in conditions and then
performs the statistic testing. To satisfy the last three differential equations, this
process needs to be performed 23 times. The N pairs should be generated by
varying the other three branches at which no input difference is imposed, i.e.
N ≤ 296, without affecting the propagation of differential in the first round. As
a result, the total time complexity is 2213.9+3 = 2216.9, and data complexity is
259.9+9 = 268.9. As for the memory complexity is of 26+|kR|N∗ = 248.9 since we
only store the subsets used later in each structure with ignoring the subsets that
must not satisfy 28 equations in conditions.

Similarly, we remove 13 inessential conditions from the 40 conditions of 89
CPNBs, and their coordinates in Table 5 are {(T0, 14), (T0, 17), (T1, 14), (T1, 15),
(T1, 16), (T1, 18), (T1, 19), (T2, 11), (T2, 12), (T2, 15), (T2, 16), (T2, 18), (T2, 19)},
where (Ti, j) locates a condition with type Ti and top-to-bottom order j in right
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column of table, 0 ≤ i ≤ 2 and 0 ≤ j ≤ 19. By the experiment with 210 random
keys and 220.3 IVs for each key, the conditional correlation ϵ′a is theoretically esti-
mated as 2−4.14. Therefore, the conditional backward correlation is εa = 2−8.28,
and with n = 89, θ1 = 27 and α = 54, we obtain another attack with less time
complexity of 2207.3+3 = 2210.3 and data complexity of 294.3+9 = 2103.3.

6.2 Attacks against ChaCha7.5⊕

To get closer to ChaCha8, ChaCha7.5⊕ is defined as a round-reduced version
without the last bit-wise XOR and left rotation in last round function compared
with ChaCha7.5.

Since the analysis of ChaCha7.5⊕ is similar to the one of ChaCha7, we only
focus on different points and present the main parameters of attacks against
ChaCha7.5⊕ in the following. The last round of ChaCha7.5⊕ is illustrated in
Fig. 7 where the notation 1⊕ means no last XOR and left rotation in one round
function. For the inversion of last quarterround function in the 7-th round, since
the relationship x

(7)
3 = (x

(7.5⊕)
3. . . . . . . ⊟ z

(7.5⊕)
4 ) ⊞ k0 and x

(7.5⊕)
3. . . . . . . = z

(7.5⊕)
3 ⊟ c3, the

syncopation technique can be applied on x
(7)
3 with using the property of modular

addition (Lemma 1). In Fig. 7, we mark all the words on which the syncopation
technique can be applied with using the property of modular addition (Lemma 1)
by green and subtraction (Lemma 2) by red. Similarly, we set u = 1 and use the
syncopated segments with a one-bit restricted segment in Algorithm 1.
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Fig. 7. Last 1⊕ round of ChaCha7.5⊕.
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The set of CPNBs. A preliminary shortlisting of 119 possible CPNBs is obtained
by setting 2−5 as a threshold for the conditional neutrality measure, which is
given in Supplementary Material C.2. Then Algorithm 2 is executed with the
preliminary shortlisting, and a set of 54 CPNBs is selected to launch the key-
recovery attack. The 54 CPNBs are {74, 75, 83, 90, 91, 92, 95, 108, 109, 110, 111, 115,
123, 124, 125, 126, 127, 155, 156, 157, 158, 159, 168, 169, 170, 191, 192, 193, 194, 195,
199, 200, 204, 207, 208, 211, 212, 213, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227,
232, 244, 245, 246, 247, 255}, and its syncopated segments and 30 conditions are
given in Supplementary Material C.2.

Analysis of complexities. Two inessential conditions are removed from the 30
conditions of 54 CPNBs. By the experiment with 210 random keys and 220.3 IVs
for each key, the conditional correlation ϵ′a is theoretically estimated as 2−4.3.
Therefore, the conditional backward correlation is εa = 2−8.6, and with n = 54,
θ1 = 28 and α = 19, an attack is obtained with time complexity of 2241.9+3 =
2244.9 and data complexity of 295.9+9 = 2104.9.

Another attack on ChaCha7.5⊕. There is another alternative way to find the
right pairs in the first round with help of a pre-computed list, as proposed in [14].
The attacker pre-computes all the needed right pairs offline, and keep them in a
list. In order to find a favorable IV in the pre-computed list for every exploitable
key which is defined in Section 3.2, we should ensure that all the CPNBs of
ID column, denoted by CPNBID, satisfy CPNBID ⊆ Knmem, i.e. Kmem ⊆
Non-CPNBID. Next, we list the main results of the way of pre-computing
a list to find right pairs. A set of 49 CPNBs is selected, that is CPNB =
{74, 75, 83, 90, 91, 95, 108, 109, 110, 111, 115, 123, 124, 125, 126, 127, 155, 156, 157,
158, 159, 168, 169, 170, 191, 192, 193, 194, 199, 204, 207, 208, 211, 212, 216, 219, 220,
221, 222, 223, 224, 225, 226, 232, 244, 245, 246, 247, 255}. There are four CPNBs in
the ID column, i.e. CPNBID = {168, 169, 170, 191}. A greedy algorithm is used
to construct Knmem such that Knmem includes as many key bits as possible, es-
pecially for the key bits in CPNBID, while the probability of exploitable keys is
high. A subset of size 20 is obtained, i.e. Knmem = {168, 191, 169, 171, 183, 172, 173,
184, 174, 175, 185, 163, 176, 40, 41, 164, 59, 177, 186, 160}. Among of them three bits
are from CPNBID, and one key bit should be excluded from the CPNB set
for a high probability of exploitable keys, i.e. Kexclude = {170}. As a result,
there are about pexp = 55.4% exploitable keys among all keys with respect
to the subspace SKnmem

. Since the dimension of SKmem
is 64 − 20 = 44, we

should construct a pre-computed list of approximately pexp × 244 ≈ 243.1 pos-
sible exploitable keys and their favorable IVs. The final set of 48 CPNBs is
CPNBfinal = CPNB \ Kexclude, and its syncopated segments and 30 condi-
tions are given in Supplementary Material C.2.

Analysis of complexities. The conditional backward correlation of final set of
48 CPNBs is theoretically estimated as εa = 2−6.1. Therefore, with n = 48,
θ1 = 30 and α = 17, the corresponding data and time complexities of attack are
294.8+31 = 2125.8 and 2242.9 respectively.
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6.3 Attack against ChaCha6

Here, we give a new analysis of ChaCha6 under the refined framework. Since the
analysis of ChaCha6 is similar to the one of ChaCha7, next we only show the
main results of the attack, and for details please refer to Supplementary Mate-
rial C.3. A partial key-recovery attack is presented in [2], where 36 key bits can
be restored. For a better comparison, only the significant key bits are recovered
in our attack as depicted in Step 1–5 of Algorithm 3. As estimated in [2], the at-
tack should be repeated for 25 times to find a right pair in the first round. There
are two main parameters which affect the complexities of attack, the number
m of significant key bits, and the backward correlation εa. Given the main pa-
rameters, we determine N∗ = (

√
(m+5) log 4+3

√
1−(εaεd)

2

εaεd
)2, the data complexity

N = 25 × 1
q × 2N∗, and time complexity T = 25 × 1

q × 2N∗ + 25 × 2N∗ × 2m 4,
where q = (( 12 )

θ1( 34 )
θ2)2, θ1 and θ2 are the numbers of syncopated segments with

one-bit and two-bit restricted segments respectively. By performing Algorithm 2
with a greedy criteria of minimizing the time complexity, we obtain an attack of
ChaCha6 which has 211 CPNBs with 27 syncopated segments with conditions
(θ1 = 18, θ2 = 9). Our experiment has verified the conditional backward cor-
relation of 211 CPNBs, that is |εa| = 0.81. Therefore, with m = 45, θ1 = 18
and θ2 = 9, our attack on ChaCha6 takes time and data complexities of 275.7

and 273.7 respectively, which is faster and recovers nine more key bits, i.e. 45
key bits, than previous one [2]. The specific significant key bits and correspond-
ing CPNB’s syncopated segments and conditions are given in Supplementary
Material C.3.

7 Conclusion

In this paper, we present PNB-based differential cryptanalysis of ChaCha with
syncopation. Specifically, we propose the syncopation technique, and refine the
key-recovery attack based on PNB method with this new technique. The attacks
on ChaCha6 and ChaCha7 are improved using the new technique in the PNB-
based cryptanalysis. Furthermore, ChaCha7.5⊕ is defined for getting closer to
ChaCha8, and several attacks are presented on ChaCha7.5⊕. As far as we know,
this is the first attack on ChaCha7.5⊕ which is much more efficient than brute
force. In a nutshell, we move a small but important step forward towards the
analysis of ChaCha8. It is interesting and worth to consider how to apply the
new techniques on the other ARX ciphers, such as Salsa and Chaskey.
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like to thank Chengan Hou for his careful proofreading of this manuscript.
4 The complexity was doubled in the analysis of [2], we multiply it by a factor of two

here for a fair comparison.
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Supplementary Material

A Proofs for Syncopation

In the section, the complete proofs for Lemma 1 and 2 are given, along with
their corollaries.

A.1 Proof of Property for Modular Addition

Here, a complete proof for Lemma 1 is presented.

Proof. By considering modular addition x = s⊞ k, the following holds

x[t+ w − 1 : t] = (s[t+ w − 1 : t] + k[t+ w − 1 : t] + Carry[t]) mod 2w,
Carry[t+ w] = b(s[t+ w − 1 : t] + k[t+ w − 1 : t] + Carry[t]) /2wc,

where Carry[i] is i-th bit of carry vector, i.e. Carry[i] ≜ (s⊞ k)[i]⊕ s[i]⊕ k[i].
That is

x[t+w− 1 : t] = s[t+w− 1 : t] + k[t+w− 1 : t] +Carry[t]−Carry[t+w] · 2w,

and

Carry[t+ w] =

{
0 if s[t+ w − 1 : t] + k[t+ w − 1 : t] + Carry[t] < 2w,
1 if s[t+ w − 1 : t] + k[t+ w − 1 : t] + Carry[t] ≥ 2w.

With representing x = s⊞ k in a bit level, we have

x[t] = s[t]⊕ k[t]⊕ Carry[t],

where Carry[t] = MAJ(Carry[t−1], s[t−1], k[t−1]), and the majority function
MAJ(a, b, c) = ab⊕ ac⊕ bc.

If k[t − 1] = s[t − 1], then we have Carry[t] = s[t − 1]. As for the case
k[t−1] 6= s[t−1], we have Carry[t] = Carry[t−1]. Moreover, if k[t−2] = s[t−2],
then we have Carry[t] = Carry[t − 1] = s[t − 2]. By analogy, we have that
Carry[t] = s[t− ι] where ι is such that k[t− 1 : t− ι+ 1]⊕ s[t− 1 : t− ι+ 1] =
1⃗ and k[t− ι]⊕ s[t− ι] = 0. ut

Then we show the corollary of Lemma 1 when w = 1 and u = 2, which actually
covers the previous result in [21].

Corollary 2 ([21]). Let t ≥ 1, and let x, k, s ∈ Fn
2 and x = s⊞ k. Then,

x[t] = s[t] + k[t] + Carry[t]− Carry[t+ 1] · 2,

Carry[t+ 1] =

{
0 if s[t] + k[t] + Carry[t] < 2,
1 if s[t] + k[t] + Carry[t] ≥ 2,



that is
x[t] = s[t]⊕ k[t]⊕ Carry[t],

where

Carry[t] =

{
s[t− 1] if k[t− 1] = s[t− 1],
s[t− 2] if k[t− 1] 6= s[t− 1] and k[t− 2] = y[t− 2].

A.2 Proof of Property for Modular Subtraction

In the following, we give a complete proof for Lemma 2.

Proof. By considering modular addition s = x⊞ k, the following holds

s[t+ w − 1 : t] = (x[t+ w − 1 : t] + k[t+ w − 1 : t] + Carry[t]) mod 2w,
Carry[t+ w] = b(x[t+ w − 1 : t] + k[t+ w − 1 : t] + Carry[t]) /2wc

where Carry[i] is i-th bit of carry vector, i.e. Carry[i] ≜ (x⊞ k)[i]⊕ x[i]⊕ k[i].
That is

x[t+w− 1 : t] + k[t+w− 1 : t] +Carry[t] = Carry[t+w] · 2w + s[t+w− 1 : t],

then we have

x[t+w− 1 : t] = Carry[t+w] · 2w + s[t+w− 1 : t]− k[t+w− 1 : t]−Carry[t].

Since 0 ≤ x[t+ w − 1 : t] < 2w, by contradiction, we can easily conclude that

Carry[t+ w] =

0 if s[t+ w − 1 : t] > k[t+ w − 1 : t],
Carry[t] if s[t+ w − 1 : t] = k[i+ w − 1 : i],
1 if s[t+ w − 1 : t] < k[t+ w − 1 : t].

With representing s = x⊞ k in a bit level, we have

s[t] = x[t]⊕ k[t]⊕ Carry[t]

where Carry[t] = MAJ(Carry[t−1], x[t−1], k[t−1]), and the majority function
MAJ(a, b, c) = ab⊕ ac⊕ bc.

Since s[t− 1] = x[t− 1]⊕k[t− 1]⊕Carry[t− 1], if k[t− 1] 6= s[t− 1], then we
have x[t−1] 6= Carry[t−1], and Carry[t] = k[t−1] = s[t−1]⊕1. As for the case
k[t− 1] = s[t− 1], we have x[t− 1] = Carry[t− 1], and Carry[t] = Carry[t− 1].
Moreover, if k[t−2] 6= s[t−2], then we have x[t−2] 6= Carry[t−2], and Carry[t] =
Carry[t− 1] = k[t− 2] = s[t− 2]⊕ 1. By analogy, we have Carry[t] = s[t− ι]⊕ 1
where ι is such that k[t−1 : t−ι+1]⊕s[t−1 : t−ι+1] = 0⃗ and k[t−ι]⊕s[t−ι] = 1.

ut

The corollary of Lemma 2 when w = 1 and u = 2 is presented in the following,
which actually covers the result of Lemma 2 in [2].
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Corollary 3 ([2]). Let t ≥ 1, and let x, k, s ∈ Fn
2 and s = x⊞ k. Then,

x[t] = Carry[t+ 1] · 2 + s[t]− k[t]− Carry[t],

Carry[t+ 1] =

0 if s[t] > k[t],
Carry[t] if s[t] = k[t],
1 if s[t] < k[t],

that is
x[t] = s[t]⊕ k[t]⊕ Carry[t],

where

Carry[t] =

{
s[t− 1]⊕ 1 if k[t− 1] 6= s[t− 1],
s[t− 2]⊕ 1 if k[t− 1] = s[t− 1] and k[t− 2] 6= s[t− 2].

B Proofs for Theoretical Analysis of Differential
Equations

In this section, we give the proofs of Lemma 3 and Theorem 1, along with two
examples of strong keys.

B.1 Proof of Lemma 3

Here, we give the proof of Lemma 3 as the following.

Proof. For modular addition of c and d′, the following holds

c[21 : 20] + d′[21 : 20] + Carry(c,d′)[20] = c′[21 : 20] + Carry(c,d′)[22]× 4.

Taking Eq. (8) and( 9) into the above formula, we have that

c[21 : 20] + d′[21 : 20] + Carry(c,d′)[20] = c′[21 : 20] + c[22]× 4,

for c′[21 : 20] ∈ C
′b[21:20]
a′[2:0]

(16)

where C
′b[21:20]
a′[2:0] ≜ {b′[1 : 0] ⊕ b[21 : 20] | a′[2] = b(a′[1 : 0] + b′[1 : 0])/22c}.

Therefore, our goal is to find a value of σ = d′[21 : 20] + Carry(c,d′)[20] satisfy
Eq. (16), which can be controlled by varying branch d.

First, assume that the value of sign(C ′b[21:20]
a′[2:0] , c[21 : 20]) is not equal to zero

for some c[21 : 20], if Eq. (9) is satisfied, then we have the assertion about the
value of Carry(c,d′)[22], i.e. Carry(c,d′)[22] =

1
2 (1 − sign(C

′b[21:20]
a′[2:0] , c[21 : 20])),

where sign(·, ·) : {α | α ∈ Z} × Z→ {1,−1, 0} is defined as

sign(S, β) =

 1 if ∀α ∈ S, α > β,
−1 if ∀α ∈ S, α < β,
0 otherwise.
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However Eq. (9) requires that Carry(c,d′)[22] = c[22]. Therefore, when c[22] =
1
2 (1 + sign(C

′b[21:20]
a′[2:0] , c[21 : 20])), Eq. (8) and (9) can not hold simultaneously.

Next, it is discussed that for different cases, whether the above situation
happens, and if not, how we set d to satisfy Eq. (16), i.e. satisfying Eqs. (8) and
(9) simultaneously.

– For a′[2 : 0] = 000 and ∀ b[21 : 20] ∈ {0, 1}2, a′[2 : 0] ∈ {111, 001} and
b[21 : 20] ∈ {01, 10}, the value of sign(C ′b[21:20]

a′[2:0] , c[21 : 20]) is equal to zero
for any values of c[21 : 20].
If c[22] = 1, then Eq. (8) requires c′[21 : 20] ≤ c[21 : 20], and if c[21 :

20] = min(C
′b[21:20]
a′[2:0] ), then with considering Eq. (9) together, we have that

c′[21 : 20] is only equal to c[21 : 20]. Putting c′[21 : 20] = c[21 : 20] into Eq.
(16), we have d′[21 : 20] + Carry(c,d′)[20] = c[22] × 4, that is d′[21 : 20] =
c[22]× 4− c[22] and Carry(c,d′)[20] = c[22]. With expanding Carry(c,d′)[20],
we have Carry(c,d′)[20] = c[19 − t], if d′[19 − i] = c[19 − i] ⊕ 1 for 0 ≤
i ≤ t − 1 and d′[19 − t] = c[19 − t], where 0 ≤ t ≤ 19. In order to involve
as less bits of b and c as possible, we always choose the minimum integer
t such that c[19 − t] = c[22] where 0 ≤ t ≤ 19. Considering the relation
d′ = (d ⊞ a′) ≪ 16, Eqs. (8) and (9) are satisfied simultaneously with the
setting of Eqs. (13). Similarly, the setting also applies in the case where
c[22] = 0 and c[21 : 20] = max(C

′b[21:20]
a′[2:0] ).

Otherwise, if c[22] = 1, then we choose c′[21 : 20] = c[21 : 20]−1 < c[21 : 20];
if c[22] = 0, then we choose c′[21 : 20] = c[21 : 20] + 1 > c[21 : 20]. Putting
this setting of c′[21 : 20] into Eq. (16), we have d′[21 : 20]+Carry(c,d′)[20] =
2× c[22]+1. Note that there is no restriction for the value of Carry(c,d′)[20]
any more with this setting of c′[21 : 20]. Then with setting d′[19] = c[19],
and we have Carry(c,d′)[20] = c[19]. As a result, Eqs. (8) and (9) are satisfied
simultaneously with the setting of Eqs. (14).

– For a′[2 : 0] = 100, it is easily derived that Eq (9) must not be satisfied.
– For a′[2 : 0] ∈ {101, 110, 010, 011} and ∀ b[21 : 20] ∈ {0, 1}2, a′[2 : 0] ∈
{111, 001} and b[21 : 20] ∈ {00, 11},
• When c[21 : 20] /∈ C

′b[21:20]
a′[2:0] , we have that sign(C

′b[21:20]
a′[2:0] , c[21 : 20]) is

not equal to zero, and if c[22] = 1
2 (1 + sign(C

′b[21:20]
a′[2:0] , c[21 : 20])), then

Eqs. (8) and (9) can not hold simultaneously; otherwise, we can choose
c′[21 : 20] into any value of C ′b[21:20]

a′[2:0] , especially min(C
′b[21:20]
a′[2:0] ), and Eqs.

(8) and (9) can hold simultaneously with the setting of Eqs. (15).
• When c[21 : 20] ∈ C

′b[21:20]
a′[2:0] , we can discuss like done in the first item.

Eqs. (8) and (9) can hold simultaneously, specially with the following
setting. If c[21 : 20] = min(C

′b[21:20]
a′[2:0] ) and c[22] = 1, or c[21 : 20] =

max(C
′b[21:20]
a′[2:0] ) and c[22] = 0, setting is same to Eqs. (13); otherwise,

setting is same to Eqs. (14).
ut
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B.2 Proof of Theorem 1

The proof of Theorem 1 is presented along with two examples of strong keys.

Proof. According to Lemma 3, for c′[2 : 0] ∈ {101, 110, 010, 011} and ∀ b[21 :
20] ∈ {0, 1}2, c′[2 : 0] ∈ {111, 001} and b[21 : 20] ∈ {00, 11}, if c[21 : 20] ∈
{0, 1}2 \ C ′b[21:20]

a′[2:0] where C
′b[21:20]
a′[2:0] ≜ {b′[1 : 0] ⊕ b[21 : 20] | a′[2] = b(a′[1 :

0] + b′[1 : 0])/22c}, then there always exists a value of c[22] such that a key

become the strong key. Therefore, we have τ = 1
2 ×

4−|C′b[21:20]
a′[2:0] |
4 , where τ denote

the percentage of strong keys derived by Lemma 3. More precisely, we have

τ =

0.0625 if a′[2 : 0] = 001, 0.375 if a′[2 : 0] = 101,
0.25 if a′[2 : 0] = 010, 0.25 if a′[2 : 0] = 110,
0.375 if a′[2 : 0] = 011, 0.0625 if a′[2 : 0] = 111.

Besides, Eq. (9) must not be satisfied when a′[2 : 0] = 100. Totally, there are
at least 29.6875% strong keys for all possibilities of a′[2 : 0]. ut

Examples of strong keys. Here we show two specific examples derived by Lemma 3.

– For the case of key such that a′[2 : 0] = 110, b[21 : 20] = 00, when Eq. (9)
holds, we have that c′[21 : 20] ∈ {10, 11}. If c[21 : 20] ∈ {00, 01}, then
Carry(c,d′)[22] = 0. If c[22] = 1, Eq. (8) must not be satisfied and the
corresponding key become a strong key.

– For the case of key such that a′[2 : 0] = 010, b[21 : 20] = 00, when Eq. (9)
holds, we have that c′[21 : 20] ∈ {00, 01}. If c[21 : 20] ∈ {10, 11}, then
Carry(c,d′)[22] = 1. If c[22] = 0, Eq. (8) must not be satisfied and the
corresponding key become a strong key.

C Applications of Syncopation Technique

C.1 Application on ChaCha7

Preliminary shortlisting of 151 possible CPNBs. For ChaCha7, we list
the preliminary shortlisting of 151 possible CPNBs whose conditional neutrality
measure is greater than 2−5, {2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 19, 22, 26, 27, 31, 33,
35, 39, 40, 41, 43, 47, 48, 49, 51, 52, 53, 59, 60, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105,
106, 107, 108, 109, 110, 111, 112, 115, 116, 117, 119, 120, 123, 124, 125, 126, 127, 128,
131, 132, 135, 136, 137, 140, 143, 147, 148, 152, 155, 156, 157, 158, 159, 160, 161, 162,
164, 165, 168, 169, 170, 174, 180, 181, 186, 188, 191, 192, 193, 194, 195, 196, 199, 200,
201, 202, 204, 205, 207, 208, 211, 212, 213, 214, 216, 219, 220, 221, 222, 223, 224, 225,
226, 227, 228, 232, 233, 237, 240, 244, 245, 246, 247, 249, 250, 252, 255}.
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C.2 Applications on ChaCha7.5⊕

Preliminary shortlisting of 119 possible CPNBs. For ChaCha7.5⊕, we list
the preliminary shortlisting of 119 possible CPNBs whose conditional neutrality
measure is greater than 2−5, {2, 4, 22, 31, 40, 48, 49, 51, 59, 60, 64, 66, 67, 68, 72, 74,
75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 90, 91, 92, 93, 95, 96, 99, 104, 105, 106, 108, 109,
110, 111, 112, 115, 116, 117, 120, 123, 124, 125, 126, 127, 128, 131, 135, 136, 137, 140,
143, 147, 148, 152, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 168, 169, 170, 174,
180, 181, 186, 188, 191, 192, 193, 194, 195, 196, 199, 200, 201, 202, 204, 205, 207, 208,
211, 212, 213, 214, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 232, 233, 237,
240, 244, 245, 246, 247, 249, 250, 252, 255}.

Syncopated segments of 54 CPNBs. The profitable syncopated segments
for the 54 CPNBs are summarized in Table 6 with 30 conditions, where the two
removed conditions are marked by red in both columns of table.

Table 6. Syncopated segments of 54 CPNBs.

syncopated segment ← condition (i, j1, j2)

x
(7.5⊕)
6 [j2 : j1]← k2[i] ̸= z

(7.5⊕)
6 [i] {(12, 13, 18), (20, 21, 25), (29, 30, 30)}

x
(7)
1 [j2 : j1]← k2[i] = (x

(7.5⊕)
1 ⊟ z

(7.5⊕)
6 )[i]

x
(7.5⊕)
7 [j2 : j1]← k3[i] ̸= z

(7.5⊕)
7 [i] {(16, 17, 18), (20, 21, 26)}

x
(7)
2 [j2 : j1]← k3[i] = (x

(7.5⊕)
2 ⊟ z

(7.5⊕)
7 )[i]

x
(7)
9 [j2 : j1]← k5[i] ̸= (z

(7.5⊕)
9 ⊟ x

(7.5⊕)
14 )[i] (11, 12, 30)

x
(6.5)
9 [j2 : j1]← k5[i] ≠ (z

(7.5⊕)
9 ⊟ x

(7.5⊕)
14 ⊟ x

(7)
13 )[i]

x
(7)
10 [j2 : j1]← k6[i] ̸= (z

(7.5⊕)
10 ⊟ x

(7.5⊕)
15 )[i] {(4, 5, 6), (9, 10, 11), (13, 14, 14),

x
(6.5)
10 [j2 : j1]← k6[i] ̸= (z

(7.5⊕)
10 ⊟ x

(7.5⊕)
15 ⊟ x

(7)
14 )[i] (17, 18, 18), (22, 23, 23), (25, 26, 26)}

x
(7)
11 [j2 : j1]← k7[i] ̸= (z

(7.5⊕)
11 ⊟ x

(7.5⊕)
12 )[i] {(4, 5, 7), (9, 10, 19), (24, 25, 30)}

x
(6.5)
11 [j2 : j1]← k7[i] ̸= (z

(7.5⊕)
11 ⊟ x

(7.5⊕)
12 ⊟ x

(7)
15 )[i]

Syncopated segments of 48 CPNBs in another attack. The profitable
syncopated segments for the 48 CPNBs are summarized in Table 7 with 30
conditions.

C.3 Application on ChaCha6

First the inverse structure of ChaCha6 is analyzed, which is used to determine
all the syncopated segments of internal state in Algorithm 1. The last round of
ChaCha6 is illustrated in Fig. 8. At the end of this section, we list the significant
key bits, corresponding CPNB’s syncopated segments and conditions.
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Table 7. Syncopated segments of 48 CPNBs.

syncopated segment ← condition (i, j1, j2)

x
(7.5⊕)
6 [j2 : j1]← k2[i] ̸= z

(7.5⊕)
6 [i] {(12, 13, 18), (20, 21, 25), (28, 29, 30)}

x
(7)
1 [j2 : j1]← k2[i] = (x

(7.5⊕)
1 ⊟ z

(7.5⊕)
6 )[i]

x
(7.5⊕)
7 [j2 : j1]← k3[i] ̸= z

(7.5⊕)
7 [i] {(16, 17, 18), (20, 21, 26)}

x
(7)
2 [j2 : j1]← k3[i] = (x

(7.5⊕)
2 ⊟ z

(7.5⊕)
7 )[i]

x
(7)
9 [j2 : j1]← k5[i] ̸= (z

(7.5⊕)
9 ⊟ x

(7.5⊕)
14 )[i] (10, 11, 30)

x
(6.5)
9 [j2 : j1]← k5[i] ≠ (z

(7.5⊕)
9 ⊟ x

(7.5⊕)
14 ⊟ x

(7)
13 )[i]

x
(7)
10 [j2 : j1]← k6[i] ̸= (z

(7.5⊕)
10 ⊟ x

(7.5⊕)
15 )[i] {(3, 4, 6), (8, 9, 11), (13, 14, 14),

x
(6.5)
10 [j2 : j1]← k6[i] ≠ (z

(7.5⊕)
10 ⊟ x

(7.5⊕)
15 ⊟ x

(7)
14 )[i] (17, 18, 18), (21, 22, 23), (25, 26, 26)}

x
(7)
11 [j2 : j1]← k7[i] ̸= (z

(7.5⊕)
11 ⊟ x

(7.5⊕)
12 )[i] {(3, 4, 7), (9, 10, 19), (24, 25, 30)}

x
(6.5)
11 [j2 : j1]← k7[i] ̸= (z

(7.5⊕)
11 ⊟ x

(7.5⊕)
12 ⊟ x

(7)
15 )[i]

For the inversion of the first quarterround function, since the following re-
lationships,



x
(6)
5 = z

(6)
5 ⊟ k1

x
(6)
10 = z

(6)
10 ⊟ k6

y
(5)
10 = (z

(6)
10 ⊟ x

(6)
15. . . .)⊟ k6

x
(5)
10 = (z

(6)
10 ⊟ x

(6)
15. . . . ⊟ y

(5)
15. . . .)⊟ k6

,


x
(6)
0. . . . = z

(6)
0 ⊟ c0

x
(6)
15. . . . = z

(6)
15 ⊟ n2

y
(5)
15. . . . = (x

(6)
15. . . . ≫ 8)⊕ x

(6)
0. . . .

,

the syncopation technique can be applied on words x
(6)
5 , x

(6)
10 , y

(5)
10 , and x

(5)
10

with using the property of modular subtraction (Lemma 2). The analysis is
similar for the other three quarterround functions, and we mark all these words
by red in Fig. 8 which the syncopation technique can be applied on. Given a
(C)PNB set, Algorithm 1 is performed, and for the words marked by red in
Fig. 8, the syncopated segments of internal state and corresponding conditions
on restricted bits are determined according to the syncopated segments and
restricted segments of secret key. The parameter u = 2 and u = 1 are used, that
is, first determining the syncopated segments with a two-bit restricted segment,
and then ones with a one-bit restricted segment.

The significant key bits and syncopated segments. Here we list the 45
significant key bits i.e. non-CPNBs, which are used in the attack on ChaCha6,
{6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 50, 68, 69, 70, 75, 76, 77, 78, 89, 102, 108, 114, 133,
139, 153, 192, 193, 194, 195, 196, 197, 198, 203, 224, 225, 226, 227, 228, 229, 230, 231,
241, 242, 253, 254}. The profitable syncopated segments for corresponding 211
CPNBs are summarized in Table 8 along with 27 conditions (θ1 = 18, θ2 = 9).
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x
(5)
0 x

(5)
5 x

(5)
10 x

(5)
15

≪ 16

≪ 12

≪ 8

≪ 7

x
(6)
0 x

(6)
5 x

(6)
10 x

(6)
15

y
(5)
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Fig. 8. Last round of ChaCha6.

Table 8. Syncopated segments of 211 CPNBs, where "-" denotes w = 0.

syncopated segment ← condition (i, j1, j2)

x
(6)
4 [j2 : j1]← k0[i] ̸= z

(6)
4 [i] (6, -, -)

x
(6)
5 [j2 : j1]← k1[i : i− 1]⊕ z

(6)
5 [i : i− 1] ̸= 00 (6, 7, 13)

x
(6)
5 [j2 : j1]← k1[i] ̸= z

(6)
5 [i] (18, -, -)

x
(6)
6 [j2 : j1]← k2[i : i− 1]⊕ z

(6)
6 [i : i− 1] ̸= 00 {(5, 6, 6), (12, 13, 14)}

x
(6)
6 [j2 : j1]← k2[i] ̸= z

(6)
6 [i] (25, -, -)

x
(6)
7 [j2 : j1]← k3[i] ̸= z

(6)
7 [i] {(6, -, -), (12, -, -), (18, -, -)}

x
(6)
8 [j2 : j1]← k4[i] ̸= z

(6)
8 [i]

y
(5)
8 [j2 : j1]← k4[i] ̸= (z

(6)
8 ⊟ x

(6)
13 )[i] {(5, -, -), (11, -, -), (25, -, -)}

x
(5)
8 [j2 : j1]← k4[i] ̸= (z

(6)
8 ⊟ x

(6)
13 ⊟ y

(5)
13 )[i]

x
(6)
10 [j2 : j1]← k6[i] ̸= z

(6)
10 [i]

y
(5)
10 [j2 : j1]← k6[i] ̸= (z

(6)
10 ⊟ x

(6)
15 )[i] (11, -, -)

x
(5)
10 [j2 : j1]← k6[i] ̸= (z

(6)
10 ⊟ x

(6)
15 ⊟ y

(5)
15 )[i]

x
(6)
11 [j2 : j1]← k7[i : i− 1]⊕ z

(6)
11 [i : i− 1] ̸= 00

y
(5)
11 [j2 : j1]← k7[i : i− 1]⊕ (z

(6)
11 ⊟ x

(6)
12 )[i : i− 1] ̸= 00 {(18, -, -), (30, -, -)}

x
(5)
11 [j2 : j1]← k7[i : i− 1]⊕ (z

(6)
11 ⊟ x

(6)
12 ⊟ y

(5)
12 )[i : i− 1] ̸= 00

41



C.4 Experiments of Practical Attacks

To demonstrate the syncopation technique, two practical key-recovery attack
have been implemented on 5 rounds and 6 rounds of ChaCha with 64 unknown
key bits. Specifically, in order to make the process of key recovery practical, it
is assumed that under the condition that 192 out of 256 key bits have been
obtained and known, the attack is performed to recover some of the remaining
64 bits of secret key.

Next, we summarize the main results of experiments on 5-round and 6-round
ChaCha with 64 unknown key bits.

Environment of experiments. We have implemented the procedure of new
(partial) key-recovery attack with the syncopation technique through C++ pro-
gramming, that is, Step 1 to 5 of Algorithm 3. All the experiments are conducted
on Linux version 6.2.9-arch1-1 with Intel Core i9-13900KF and RAM of 128 GB.

Attack on 5-round ChaCha For 5-round ChaCha, the attack uses a for-
ward differential with 2.5 rounds, and approximates 2.5 rounds in backward
direction with PNBs of 64 unknown key bits. More precisely, the median cor-
relation of forward differential is |εd| = 0.838 with input difference at ∆x

(0)
13 [6]

and output difference at ∆x
(2.5)
2 [0]. The last round of 5-round ChaCha is il-

lustrated in Fig. 9, where ki (i ≥ 2) are assumed to be known in backward
approximation, and 56 PNBs of k0 and k1 are found. Accordingly, the 8 non-
PNBs are {k0[i], i ∈ {6, 9, 10, 11, 12, 13, 18}} and k1[6]. With the syncopation
(sync. for short) technique, the conditional backward correlation is experimen-
tally estimated as |εa| = 0.752 under the condition that the θ1 = 4 constraints
k0[i] 6= z

(5)
4 [i], i ∈ {6, 9, 18} and k1[6] 6= z

(5)
5 [6] are satisfied. However, without

the syncopation technique, the median correlation of backward approximation is
experimentally estimated as |εa| = 2−7.6 by fixing 56 PNBs into zeros. Therefore,
the backward correlation is significantly amplified by utilizing the syncopation
technique.

To recover 8 non-PNBs of 64-bit secret key with the syncopation technique,
we only need to implement Step 1 to 5 of Algorithm 3. According to the com-
plexity analysis, the time complexity of key-recovery attack is T = N +28×N∗,
data complexity is N = 22×4×N∗ and memory complexity is M = 24×N∗. The
Neyman-Pearson decision theory gives the results about estimating the number
of samples N∗ required to get the bounds on probabilities of false alarm pfa and

non-detection pnd. It can be shown that N∗ ≈
(√

α log 4+3
√

1−(εaεd)
2

εaεd

)2

samples

suffices to achieve pnd = 1.3 × 10−3 and pfa = 2−α. With α = 8, the time
complexity is T = 215.4, data complexity is N = 214.4 and memory complexity
is M = 210.4. As pointed out in [1], with using median correlation in the above
equation, we have a success probability of at least 1

2 (1−pnd) ≈ 1
2 for the attack.
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Fig. 9. Last round of 5-round ChaCha.

Result of experiments of 5-round ChaCha. It takes about 22 seconds to run the
C++ program 10000 times. As a result, for 10000 randomly generated key, 7071
of them are successfully recovered 8 guessed key bits with the syncopation tech-
niques, and thus the success probability is about 70.7%. The attacks on 5-round
ChaCha are summarized in Table 9.

Table 9. Summary of attacks on 5-round ChaCha with 64 unknown key bits.

Attack method Analysis |εa| T N #Random keys Success probability

With sync. Theoretical - 215.4 214.4 - ≥ 0.5
Experimental 0.752 2.2× 2−3 s 214.4 10000 7071

10000
≈ 70.7%

Without sync. Theoretical - 229.1 221.1 - ≥ 0.5
Experimental 2−7.6 22.5 s 221.1 100 16

100
≈ 16%

Attack on 6-round ChaCha With regard to 6-round ChaCha, the attack is
similar to the one of 5-round ChaCha, except that a forward differential with 3.5
rounds is used, and thus backward approximation consists of 2.5 rounds from
the 6-th to 3.5-th round. Specifically, the forward differential takes ∆x

(0)
13 [6] as

the input difference and observes the output difference at ∆x
(3.5)
2 [0]. As shown

in [2], the correlation of the forward characteristic is evaluated as 2−8.3 under
that condition that the output difference after the first round has the minimum
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Hamming weight 10, which takes about 25 iteration to achieve a right pair for
the differential.

The 8 non-PNBs are k0[6] and {k1[i], i ∈ {6, 9, 10, 11, 12, 13, 18}}. The con-
ditional backward correlation is experimentally estimated as |εa| = 0.759 under
the condition that the θ1 = 4 constraints k0[6] 6= z

(6)
4 [6] and k1[i] 6= z

(6)
5 [i], i ∈

{6, 9, 18}. According to the complexity analysis, the time complexity of key-
recovery attack is T = 25× (N +28×N∗), data complexity is N = 25+2×4×N∗

and memory complexity is M = 24×N∗, and with α = 13, T = 237.1, N = 236.1

and M = 227.1.

Result of experiments of 6-round ChaCha. It takes about 1.6 hours to run once
the C++ program with RAM about 24 GB for the key-recovery attack of 6-
round ChaCha. As a result, for 16 randomly generated key, 10 of them are suc-
cessfully recovered 8 guessed key bits with the syncopation techniques, and thus
the success probability among all keys is about 62.5%. In another experiment
with 32 randomly generated key, there are 21 weak keys among which 15 keys
are successfully recovered 8 guessed key bits with the syncopation techniques,
and thus the success probability of key-recovery attack in Algorithm 3 is about
15
21 ≈ 71.4%.
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