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Abstract. NIST has recently selected CRYSTALS-Kyber as a new pub-
lic key encryption and key establishment algorithm to be standardized.
This makes it important to evaluate the resistance of CRYSTALS-Kyber
implementations to side-channel attacks. Software implementations of
CRYSTALS-Kyber have already been thoroughly analysed. The discov-
ered vulnerabilities helped improve the subsequently released versions
and promoted stronger countermeasures against side-channel attacks. In
this paper, we present the first attack on a protected hardware imple-
mentation of CRYSTALS-Kyber. We demonstrate a practical message
(shared key) recovery attack on the first-order masked FPGA implemen-
tation of Kyber-512 by Kamucheka et al. (2022) using power analysis
based on the Hamming distance leakage model. The presented attack
exploits a vulnerability located in the masked message decoding proce-
dure which is called during the decryption step of the decapsulation.
The message recovery is performed using a profiled deep learning-based
method which extracts the message directly, without extracting each
share explicitly. By repeating the same decapsulation process multiple
times, it is possible to increase the success rate of full shared key recovery
to 99%.

Keywords: Public key cryptography · post-quantum cryptography· CRYSTALS-
Kyber · LWE/LWR-based KEM · side-channel attack · deep learning

1 Introduction

CRYSTALS-Kyber is a key encapsulation mechanism (KEM) that is IND-CCA2-
secure (indistinguishable under an adaptive chosen ciphertext attack) in the clas-
sical and quantum random oracle models [4]. The security of CRYSTALS-Kyber
relies on the hardness of the module learning with errors (M-LWE) problem that
comes from introducing unknown noise into linear equations.

In July 2022, the National Institute of Standards and Technology (NIST)
has selected CRYSTALS-Kyber as a new public key encryption (PKE) and key
establishment algorithm to be standardized [30]. Shortly after, the National Se-
curity Agency (NSA) has included CRYSTALS-Kyber in the suite of crypto-
graphic algorithms recommended for national security systems [2]. This makes



it important to evaluate the resistance of CRYSTALS-Kyber to side-channel at-
tacks on its implementations executed on physical devices. Pioneered by Paul
Kocher [25, 26], side-channel attacks are considered a main security threat to
cryptographic implementations at present. Physical devices tend to leak in-
formation through physically measurable, non-primary channels such as tim-
ing [26], power consumption [25], or electromagnetic (EM) radiation [3]. There
is currently no physical device that is side-channel leakage-free. To combat side-
channel attacks, countermeasures such as masking [12,18,34], shuffling [40], ran-
domized clock [27], random delays insertion [13], constant-weight encoding [29],
code polymorphism [7], etc. are used to protect cryptographic implementations.

However, in the past few years it has been shown that even protected software
implementations of CRYSTALS-Kyber and other post-quantum PKE/KEM al-
gorithms can be broken using advanced side-channel analysis methods based
on deep learning. The shared and secret keys have been recovered from the
first-order masked implementations [36, 39], higher-order masked implementa-
tions [15], and first-order masked and shuffled software implementations of CRYS-
TALS-Kyber [6]. The discovered vulnerabilities promoted stronger defense mech-
anisms against side-channel attacks, e.g. [5, 19,38] and helped streng- then sub-
sequent implementations of CRYSTALS-Kyber [9, 14].

Contributions: In this paper, we present the first attack on a protected hard-
ware implementation of CRYSTALS-Kyber. To the best of our knowledge, only
unprotected hardware implementations have been analysed until now [22,23,35,
39]. Hardware implementations are typically more difficult to break than soft-
ware ones because they carry out computations in parallel and their underlying
process technology usually uses a smaller size of the transistor’s elements. Smaller
transistors consume less power, making power analysis more challenging. How-
ever, side-channel attacks of hardware implementation may potentially exploit
glitches which occur if the processing of shares is not well-synchronized [37].

We demonstrate a practical message recovery attack on the first-order masked
FPGA implementation of Kyber-512 by Kamucheka et al. [24] using profiled
power analysis based on the Hamming distance leakage model. The presented
attack exploits a vulnerability in the implementation which is located in the
masked message decoding procedure which is called during the decryption step
of the decapsulation algorithm. The message recovery is performed using the
profiled deep learning-based method of Ngo et al. [33] which extracts the masked
secret directly, without extracting each share explicitly. By repeating the same
decapsulation multiple times, it is possible to increase the success rate of full
shared key recovery to 99%. As observed in [15], side-channel attacks of masked
implementations benefit from the fact that errors in repeated measurements are
more independent due to fresh random masks which are re-generated for each
execution.

In CRYSTALS-Kyber, a successful message recovery implies the shared key
recovery, as the shared key is derived from the message using hash functions.
Furthermore, by recovering messages contained in a set of chosen ciphertexts
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constructed using known methods, e.g. [6, 36], one can extract the long-term
secret key of CRYSTALS-Kyber.

The rest of this paper is organized as follows. Section 2 reviews previous
work on side-channel analysis of CRYSTALS-Kyber implementations. Section 3
gives background necessary for understanding the paper. Section 4 describes
assumptions on the adversary model, key establishment protocol, and attack
scenario. Sections 5 and 6 present the target implementation and equipment
used for trace acquisition, respectively. Sections 7 describes the neural network
training strategy. Section 8 summarizes experimental results. Section 9 suggests
potential countermeasures. Section 10 concludes the paper.

2 Previous Work

This section describes previous work on unprotected and protected hardware
implementations of CRYSTALS-Kyber and the related side-channel attacks on
unprotected hardware implementation. To the best of our knowledge, only un-
protected hardware implementations of CRYSTALS-Kyber have been analysed
until now.

2.1 Hardware implementations of CRYSTALS-Kyber

Huang et al. [20] developed an unprotected FPGA implementation that con-
sumes 88,901 look-up tables (LUTs) and takes 68,815 clock cycles to execute the
decapsulation algorithm of Kyber-512. This is 10 times fewer clock cycles than
the ARM Cortex-M4 implementation of CRYSTALS-Kyber presented in [10].

Xing et al. [43] created an even smaller and faster unprotected FPGA im-
plementation of CRYSTALS-Kyber, intended for resource-constrained devices.
With suitably designed pipelines and highly-optimized architecture, the imple-
mentation of [43] executes the decapsulation algorihtm of any version of Kyber
within 14,000 clock cycles using only 7,500 LUTs.

Kamucheka et al. [24] presented a first-order masked FPGA implementation
of Kyber-512 built on the top of the implementation of Huang et al. [20]. The
masking method adds 70% of area and 100% of clock cycle counts on the top of
the unprotected implementation. A less secure version of Kyber-512, protected
by hiding, with 60% area overhead and 80% clock cycle count overhead is also
described in [24].

Jati et al. [21] developed a hardware implementation of CRYSTALS-Kyber
protected from side-channel analysis using random delay insertion and address
and instruction shuffling. The countermeasures add 5% area overhead at the
expense of performance overhead.

2.2 Side-channel attacks on CRYSTALS-Kyber implementations

In [23] a power analysis of a hardware implementation of Kyber-512 from [20]
in Xilinx Virtex-7 FPGA is presented. Some leakage points are discovered using
a t-test.
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In [35], a side-channel attack of Kyber-512 implemented in a Xilinx Artix
7 FPGA based on correlation near-field EM analysis is presented. The attack
targets polynomial multiplication during the decryption step of the decapsula-
tion algorithm. To recover the secret key, the attack requires 166,620 traces and
knowledge of the register reference values.

In [22], a profiled side-channel attack on a Xilinx Artix-7 FPGA implemen-
tation of Kyber-768 from [43] is presented. The attack can recover messages
of Kyber-768 from 5,120 traces using deep learning-based power analysis and
enumeration of up to 264.

In [28], side-channel attacks on two implementations of the decryption algo-
rithm of Kyber-768 in Spartan-6 FPGAs (standalone), the one of Xing et al. [43]
and an implementation designed by the authors, based on correlation analysis
are presented. The attacks can recover the secret key from 27 power traces, or
from 60 EM traces.

3 Background

In this section, we describe notation used in the paper and give background on
CRYSTALS-Kyber algorithm [4], masking countermeasure against side-channel
attacks, and Welch’s t-test.

3.1 Notation

Let Zq be the ring of integers modulo a prime q and Rq be the quotient ring
Zq[X]/(Xn + 1). We use regular font letters to denote elements of Rq, bold
lower-case letters to represent vectors with coefficients in Rq, and bold upper-
case letters to represent matrices. The transpose of a vector v (or matrix A) is
denoted by vT (or AT ). The ith entry of a vector v is denoted by v[i].

The term x ← D(S; r) is used for sampling x from a probability distribution
D over a set S using seed r. The uniform distribution is denoted by U . The
centered binomial distribution with parameter µ is denoted by Bµ.

3.2 CRYSTALS-Kyber algorithm specification

CRYSTALS-Kyber [4] consists of a CCA-secure KEM scheme,
KYBER.CCAKEM which is buit on the top of a chosen plaintext attack (CPA)-
secure PKE scheme, KYBER.CPAPKE using a tweaked version of the Fujisaki-
Okamoto (FO) transform [16], see Figs. 1 and 2.

CRYSTALS-Kyber uses vectors of ring elements in Rk
q , where k is the rank of

the module defining the security level. There are three versions of CRYSTALS-
Kyber, Kyber-512, Kyber-768 and Kyber-1024, for k = 2, 3 and 4, respectively,
see Table 1 for parameters. In this paper, we focus on Kyber-512 because this
version is realized in the target implementation of [24].

CRYSTALS-Kyber employs the number-theoretic transform (NTT) to per-
form multiplications in Rq efficiently. The details of NTT are not included in
Fig. 1 and Fig. 2 in order to simplify the pseudocode.
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KYBER.CPAPKE.KeyGen()

1: (ρ, σ)← U({0, 1}256)
2: A← U(Rk×k

q ; ρ)
3: s, e← βη1(R

k×1
q ;σ)

4: t = Encode12(As+ e)
5: s = Encode12(s)
6: return (pk = (t, ρ), sk = s)

KYBER.CPAPKE.Dec(s, c)

1: u = Decompressq(Decodedu(c1), du)
2: v = Decompressq(Decodedv (c2), dv)
3: s = Decode12(s)
4: m = Encode1(Compressq(v − sTu, 1))
5: return m

KYBER.CPAPKE.Enc(pk = (t, ρ),m, r)

1: t = Decode12(t)
2: A← U(Rk×k

q ; ρ)
3: r← βη1(R

k×1
q ; r)

4: e1 ← βη2(R
k×1
q ; r); e2 ← βη2(R

1×1
q ; r)

5: u = AT r+ e1

6: v = tT r+ e2 + Decompressq(m, 1)
7: c1 = Encodedu(Compressq(u, du)
8: c2 = Encodedv (Compressq(v, dv)
9: return c = (c1, c2)

Fig. 1: Description of KYBER.CPAPKE algorithms from [4] (simplified).

Inputs and outputs to all API functions of CRYSTALS-Kyber are byte ar-
rays. Functions performing the conversion of byte arrays to individual elements
and vice versa are called Decodel and Encodel, respectively. The Decodel function
decodes an array of 32l bytes into a polynomial with n coefficients in the range
{0, 1, · · · , 2l−1}. The Encodel function is the inverse of Decodel. It first encodes
each polynomial coefficient individually and then concatenates the output byte
arrays.

The Compressq(x, d) and Decompressq(x, d) functions, for x ∈ Zq and d <
⌈log2(q)⌉, are defined by:

Compressq(x, d) = ⌈(2d/q) · x⌋mod+2d,

Decompressq(x, d) = ⌈(q/2d) · x⌋.

where the term ⌊a⌉ stands for rounding of a to the closest integer with ties being
rounded up.

If Compressg or Decompressq is applied to x ∈ Rq or x ∈ Rk
q , the function is

applied to each coefficient individually. The compression enables the removal of
some low-order bits of the ciphertext without affecting the correctness probabil-
ity of decryption significantly.

5



KYBER.CCAKEM.KeyGen()

1: z ← U({0, 1}256)
2: (pk, s) = KYBER.CPAPKE.KeyGen()
3: sk = (s, pk,H(pk), z)
4: return (pk, sk)

KYBER.CCAKEM.Encaps(pk)

1: m← U({0, 1}256)
2: m = H(m)
3: (K̂, r) = G(m,H(pk))
4: c = KYBER.CPAPKE.Enc(pk,m, r)
5: K = KDF(K̂,H(c))
6: return (c,K)

KYBER.CCAKEM.Decaps(sk = (s, pk,H(pk), z),c)
1: m′ = KYBER.CPAPKE.Dec(s, c)
2: (K̂′, r′) = G(m′,H(pk))
3: c′ = KYBER.CPAPKE.Enc(pk,m′, r′)
4: if c = c′ then
5: return K = KDF(K̂,H(c))
6: else
7: return K = KDF(z,H(c))
8: end if

Fig. 2: Description of KYBER.CCAKEM algorithms from [4] (simplified).

Table 1: Parameters of different versions of CRYSTALS-Kyber.
Version n k q η1 η2 (du, dv)

Kyber-512 256 2 3329 3 2 (10, 4)

Kyber-768 256 3 3329 2 2 (10, 4)

Kyber-1024 256 4 3329 2 2 (11, 5)

The functions G and H are realized by the SHA3-512 and SHA3-256 hash
functions, respectively. The KDF is a key derivation function implemented by
SHAKE-256.

3.3 Masking

Masking is a popular countermeasure against power and EM side-channel anal-
ysis [12]. In a ω-order masking, a sensitive variable x is partitioned into ω + 1
shares: x1, x2, . . . , xω+1 such that x = x1 ◦ x2 ◦ . . . ◦ xω+1. The type of the oper-
ation “◦” depends on the masking method, for instance, in arithmetic masking
“◦” is the arithmetic addition, while in Boolean masking it is the XOR.

By performing operations separately on shares, the computations do not in-
volve x directly, thereby preventing leakage of side-channel information about
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x in theory. The shares are randomized at each execution. Typically, the ran-
domization is performed by assigning random masks x1, x2, . . . , xω to ω shares
and deriving the last share as x− (x1 +x2 + . . .+xω) for arithmetic masking or
x⊕ x1 ⊕ x2 ⊕ . . .⊕ xω for Boolean masking.

3.4 Welch’s t-test

Welch’s t-test [42] is commonly used in the Test Vector Leakage Assessment
(TVLA) [17] as a metric for evaluating side-channel leakage and as a tool for
feature extraction from side-channel measurements.

The Welch’s t-test determines if there is a noticeable difference in the means
of two sets, T0 and T1, by computing:

t =
µ0 − µ1√
σ2
0

|T0| +
σ2
1

|T1|

,

where µi and σi are the mean and the standard deviation of Ti and |Ti| is the
cardinality of Ti, for i ∈ {0, 1}. The two sets are considered to be noticeably
different if the absolute value of t-test result is greater than 4.5.

4 Assumptions

In this section we describe assumptions on the adversary model, key establish-
ment protocol, and attack scenario.

4.1 Adversary model

We make the following assumptions regarding the goals and capabilities of the
adversary.

The adversary is a clever outsider who has expertise in deep learning-based
side-channel analysis and the necessary equipment and tools. The goal of the
adversary is to recover the shared key K from side-channel information acquired
from the device which runs the CRYSTALS-Kyber’s decapsulation algorithm,
referred to as the device under attack (DUA) in the sequel.

We assume that the adversary has a physical access to the DUA to measure
its power consumption and is capable to query the DUA with ciphertexts of
his/her choice.

4.2 Key establishment protocol

We assume that the protocol illustrated in Fig. 3 is used to establish a shared
key between two parties communicating over a public channel.

To initiate a new key establishment session, Party 1 uses the key genera-
tion algorithm KYBER.CCAKEM.KeyGen() to create a fresh key pair (pk, sk)
and sends pk to the Party 2. The Party 2 applies the encapsulation algorithm
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Fig. 3: A shared key establishment protocol.

KYBER.CCA- KEM.Encaps() to compute a ciphertext c encapsulating a shared
key K and sends c to the Party 1. Finally, the Party 1 uses the decapsulation
algorithm KYBER.CCAKEM.Decaps() to compute K from c.

We also assume that the decapsulation device of Party 1 accepts more than
one query to decapsulate a ciphertext using the same secret key sk until a new
key establishment session is initiated.

4.3 Attack scenario

At the profiling stage, the attacker first collects from the DUA a set of power
traces captured during the execution of the decapsulation algorithm for cipher-
texts encrypting messages known to the attacker. The attacker can generate such
ciphertexts for any set of messages using the public key pk of the Party 1. Then,
the attacker uses the collected traces to train a neural network N which models
the leakage of the DUA.

At the attack stage, the adversary eavesdrops on the communication channel
between the Party 1 and Party 2 to obtain the ciphertext c which encapsulates
the shared key K. The adversary also measures the power consumption of the
DUA during the execution of the decapsulation algorithm with c as input and
records the resulting power trace T . The model N trained at the profiling stage
is then used to extract the message m encrypted in c from the trace T .

Once m is recovered, the pre-key K̄ is derived as (K̄, r) = G(m,
H(pk)) and then the shared key K is computed as K = KDF(K̄,H(c)) (see lines
3 and 5 of KYBER.CCAKEM.Encaps() in Fig.2).
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1 module State_Polytomsg__masked_decode #(

2 parameter COEFF_SZ = 16,

3 ...

4 ) (

5 input clk ,

6 input rst_n ,

7 input ce ,

8 input wire [COEFF_SZ -1:0] c1 ,

9 input wire [COEFF_SZ -1:0] c2 ,

10 input wire [COEFF_SZ -1:0] PRNG_data ,

11 output reg data_valid ,

12 output reg m1,

13 output reg m2

14 );

15 ...

16 always @(posedge clk) begin

17 data_valid <= w_P3_ready;

18 m1 <= MSB(w_P3_y1);

19 m2 <= MSB(w_P3_y2);

20 end

21 ...

Algorithm 1.1: A snippet of Verilog code implementing message decoding in [24]

5 Target implementation

The presented attack is mounted on the first-order masked FPGA implemen-
tation of Kyber-512 by Kamucheka et al. [24]. The attack targets the message
decoding operation at the decryption step of the decapsulation algorithm. In this
section, we describe the implementation details of the message decoding module
of [24].

The message decoding function of CRYSTALS-Kyber converts a polyno-
mial f with n coefficients, f [j], into an array of n/8 bytes representing a mes-
sage m with n bits, m[j] (see Encode1(Compressq(v − s · u, 1)) at line 4 of
KYBER.CPAPKE.Dec() in Fig. 1). If the value of f [j] is closer to q/2 than to
0, then f [j] is decoded to m[j] = 1. Otherwise, f [j] is decoded to m[j] = 0.

In the implementation by Kamucheka et al. [24], the message decoding is
realized by a module called State Polytomsg() in which each polynomial co-
efficient is converted individually. Pipelining is applied to accelerate computa-
tions; it reduces the number of clock cycles required for message decoding from
6656 to 274. Algorithm 1.1 shows a snippet in the Verilog implementation of a
submodule of State Polytomsg() called State Polytomsg masked decode(),
which is related to the computations of message bits. At each clock cycle,
State Polytomsg masked decode() takes two arithmetic shares, c1 and c2,
representing a polynomial coefficient f [j] = (c1 + c2) mod q and computes
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Fig. 4: Equipment for trace acquisition.

two Boolean shares, m1 and m2, representing the decoded message bit m[j] =
m1⊕m2, where ⊕ is the Boolean XOR, and + is the arithmetic addition.

6 Equipment

For trace acquisition, we use a ChipWhisperer-Lite board and two CW305 Artix
FPGA target boards shown in Fig. 4. The target board CW305 contains an
Artix-7 XC7A100T FPGA.

The ChipWhisperer-Lite captures power traces of the target device syn-
chronously, with a maximum sampling rate of 105 MS/sec and a buffer size
of 24,400 samples [1]. In our experiments, we capture four data points per clock
cycle.

In the implementation of Kyber-512 by Kamucheka et al. [24], the decapsula-
tion algorithm occupies 152,860 LUTs and 489.5 block random access memories
(BRAMs), which exceeds the capacity of the Artix XC7A100T FPGA. Unfor-
tunately, we do not have a larger FPGA in our possession1. To perform the
experiments, we removed all modules which are not executed in parallel with

1 The cost of an FPGA which can fit the implementation [24] is over 5,000 US$.
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State Polytomsg(). As simulation results presented in the Appendix show, this
does not affect the total power consumption of the FPGA during the execution
of State Polytomsg().

7 Neural network training strategy

As in the attack on a masked software implementation of CRYSTALS-Kyber
presented in [15], we train a single universal neural network model on cut-and-
joined and standardized traces. However, an essential difference from the method
of [15] is that we create labels using the Hamming distance leakage model as
opposed to the Hamming weight one. We are not aware of any side-channel
attack on a PQC algorithm implementation using such a labeling strategy. We
show that an attack based on the Hamming weight leakage model would not be
effective on the implementation of [24].

7.1 Architecture

We use the neural networks architecture shown in Table 2. It is similar to
the architecture used in the attacks on protected software implementations of
CRYSTALS-Kyber, e.g. [6, 15], except for the input size and layer’s width.

7.2 Training parameters

The MLPs are trained using a batch size of 1024 for a maximum of 300 epochs
using early stopping with patience 20. We use Nadam optimizer with a learning
rate of 0.01 and a numerical stability constant epsilon = 1e-08. Categorical cross-
entropy is utilized as a loss function to evaluate the network classification error.
70% of the training set is used for training and 30% is left for validation. Only
the model with the highest validation accuracy is saved.

7.3 Locating points of interest

To locate the points of interest, we train neural networks for individual message
bits on full traces and examine the weights of the input Batch Normalization
layer after training. Large weights reveal the points where the two Boolean shares
corresponding to the bit are processed.

Fig. 5(a) shows a power trace representing the execution of the module State
Polytomsg() in the implementation of [24]. This trace is obtained by averaging
1,000 traces captured for ciphertexts encrypted messages selected at random.

Fig. 5(b) shows the weights of gamma parameter of input Batch Normal-
ization layers of eight neural networks Ni, trained on 10,000 full traces with
HD(m[i − 1],m[i]) as a label, for i ∈ {199, 207, 215 . . . , 255} (last bits of last
eight bytes in the message, for demonstration). In the zoom-in segment shown in
Fig. 5(c), one can clearly see regular high peaks on distance 32 points from each
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Table 2: MLP architecture: The input size is 1,500 for training on full traces
and 32 for training on cut-and-joined traces.

Layer type Output shape

Batch Normalization 1 input size
Dense 1 32

Batch Normalization 2 32
ReLU 1 32
Dense 2 16

Batch Normalization 3 16
ReLU 2 16
Dense 3 8

Batch Normalization 4 8
ReLU 3 8
Dense 4 2
Softmax 2

other. These peaks correspond to the processing of individual bits of Boolean
shares m1 and m2 in State Polytomsg masked decode() module.

We also trained neural networks on 10,000 full traces with the Hamming
weight of message bit m[i], HW (m[i]), as a label. Fig. 5(d) shows the weights
of of neural networks Ni in this case, for i ∈ {199, 207, 215 . . . , 255}. We can
see that there are no distinct peaks. Thus, the Hamming distance-based labels
are more suitable than the Hamming weight-based labels in an attack on the
implementation of [24].

7.4 Trace pre-processing

We cut each trace acquired from the DUA into 255 segments corresponding to the
processing of the bit i of Boolean sharesm1 andm2 by State Polytomsg masked

decode(), for all i ∈ {1, . . . , 255}, and label the segments by the corresponding
Hamming distances HD(m[i − 1],m[i]), where m = m1 ⊕ m2 is the message.
The training set T is composed as a union of such segments from all traces.

Such a cut-and-join [33] technique allows us to train a single universal neural
network model which is capable of predicting the Hamming distance between any
two adjacent message bits. It also allows us to increase the size of the training
set by a factor of 255 without having to acquire 255 times more traces from the
DUA.

We also apply standardization to traces in T . Each trace T = (t1, . . . , t|T |) ∈
T , is standardized to T ′ = (t′1, . . . , t

′
|T |) such that:

t′j =
tj − µj

σj
,

where and µj and σj are the mean and the standard deviation of the elements
of T at the jth data point, j ∈ {1, . . . , |T |}.
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Fig. 5: (a) An average power trace representing the execution of
State Polytomsg() module in the implementation [24]; (b) weights
of input Batch Normalization layer of eight neural networks Ni,
i ∈ {199, 207, 215 . . . , 255}, trained on 10,000 full traces with HD(m[i−1],m[i])
as a label; (c) a zoomed-in view of (b); (d) weights of Ni trained with HW (m[i])
as a label.
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8 Experiment results

In this section, we present the results of message recovery attack on the first-
order masked FPGA implementation of Kyber-512 [11] by Kamucheka et al. [24].

The neural network models are trained and tested on a PC with an Intel
Core i7-8750H CPU running an 2.2GHz and 16GB RAM.

8.1 Message recovery

At the profiling stage, we collect from the DUA 1,000 power traces to train neural
networks. The traces are captured during the execution of the decapsulation al-
gorithm KYBER.CCAKEM.Decaps() with input ciphertexts encrypting messages
selected at random. Then, the trace set is expanded to 255,000 traces using
the cut-and-join technique and labeled by the corresponding Hamming distance
HD(m[i − 1],m[i]), for i ∈ {1, . . . , 255}. Finally, we use the resulting labeled
dataset to train a universal MLP model, N , with the architecture listed in Ta-
ble 2 which can predict the Hamming distance between any the two adjacent
message bits.

At the attack stage, we capture from the DUA test traces during the ex-
ecution of KYBER.CCAKEM.Decaps() for input ciphertexts c encrypting 1,000
different messages m selected at random. For each message to be recovered,
m′, we use N to recover the Hamming distances HD(m′[i],m′[i + 1]) for each
i ∈ {1, . . . , 255}. Then, we enumerate two possible values of m′[0] and re-
construct m′ for each case using the recovered Hamming distances. Finally,
we verify which value of m′[0] is the correct guess by encrypting m′ using the
public key of the DUA, pk, and comparing to the resulting ciphertext c′ =
KYBER.CPAPKE.Enc(pk,m′, r′) to the ciphertext c = KYBER.CPAPKE.Enc(pk,m, r)
which is given as input when the trace is captured.

Table 3 shows the empirical probability to recover the Hamming distance
HD(m[i−1],m[i]) from a single trace for each i ∈ {1, . . . , 255}. We can see that
this probability is too low, pHD = 0.61479 on average. This gives us a negligible
average probability of full message recovery, pmessage = (pHD)255 = 1.3×10−54.

It may be worth noting that bits of the last byte in Table 3 have a higher
pHD on average. This is becuase the Poly tomsg() module uses piplining for
accelerating its operation. Thus, all message bits except the ones at the end of
the pipeline are processed in parallel with several other bits. Note that the bits of
each byte are processed in the order 7, 6, . . . , 0, e.g. bit 0 of byte 31 is processed
last.

To improve the success rate, we repeat the attack using test traces captured
with multiple repetitions of the same decapsulation and applying majority voting
to the model’s predictions. Tables 4 shows the results for up to 400 repetitions
(the number of repetitions should be odd for majority voting). Table 5 also
gives more detailed results for the probability to recover the Hamming distance
HD(m[i− 1],m[i]) from 299 trace for each i ∈ {1, . . . , 255}.

We can see that, for 299 repetitions, the message recovery probability is
97.7%. For 399 repetitions, it is possible to recover messages with the probabil-
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Table 3: Empirical probability (mean over 1K tests) to recoverHD(m[i−1],m[i])
of a message bit i = 8a+ b from a single trace, for i ∈ {1, . . . , 255}.

Byte,
a

Bit position in a byte, b
Avg.

0 1 2 3 4 5 6 7

0 / 0.644 0.615 0.614 0.604 0.610 0.633 0.597 0.61671
1 0.613 0.631 0.624 0.621 0.616 0.630 0.622 0.606 0.62038
2 0.589 0.611 0.587 0.600 0.601 0.596 0.622 0.625 0.60388
3 0.627 0.605 0.622 0.614 0.607 0.624 0.622 0.610 0.61638
4 0.613 0.599 0.615 0.615 0.621 0.628 0.630 0.620 0.61763
5 0.613 0.634 0.606 0.604 0.602 0.632 0.635 0.642 0.62100
6 0.598 0.600 0.599 0.610 0.619 0.629 0.601 0.602 0.60725
7 0.624 0.618 0.613 0.603 0.615 0.617 0.622 0.605 0.61463
8 0.599 0.604 0.618 0.597 0.611 0.594 0.607 0.607 0.60463
9 0.656 0.581 0.613 0.604 0.634 0.604 0.635 0.602 0.61613
10 0.587 0.587 0.618 0.645 0.613 0.609 0.620 0.619 0.61225
11 0.609 0.620 0.616 0.640 0.600 0.609 0.604 0.587 0.61063
12 0.618 0.643 0.615 0.595 0.605 0.614 0.601 0.596 0.61088
13 0.609 0.594 0.607 0.631 0.609 0.610 0.631 0.628 0.61488
14 0.619 0.623 0.580 0.605 0.625 0.602 0.614 0.613 0.61013
15 0.589 0.595 0.610 0.591 0.621 0.606 0.612 0.606 0.60375
16 0.600 0.631 0.626 0.629 0.621 0.593 0.620 0.616 0.61700
17 0.621 0.615 0.593 0.643 0.616 0.604 0.596 0.606 0.61175
18 0.622 0.605 0.619 0.609 0.613 0.620 0.601 0.618 0.61338
19 0.594 0.617 0.606 0.587 0.622 0.619 0.612 0.630 0.61088
20 0.624 0.620 0.609 0.620 0.626 0.597 0.611 0.603 0.61375
21 0.589 0.638 0.625 0.609 0.605 0.629 0.637 0.605 0.61713
22 0.612 0.636 0.599 0.594 0.613 0.609 0.620 0.592 0.60938
23 0.633 0.631 0.586 0.640 0.617 0.592 0.596 0.616 0.61388
24 0.599 0.590 0.618 0.594 0.624 0.625 0.611 0.604 0.60813
25 0.576 0.597 0.609 0.623 0.615 0.590 0.599 0.626 0.60438
26 0.596 0.603 0.619 0.609 0.603 0.606 0.631 0.580 0.60588
27 0.600 0.624 0.611 0.607 0.620 0.605 0.595 0.602 0.60800
28 0.606 0.593 0.630 0.621 0.616 0.596 0.617 0.625 0.61300
29 0.621 0.596 0.608 0.630 0.617 0.611 0.631 0.613 0.61588
30 0.609 0.588 0.642 0.637 0.638 0.615 0.637 0.616 0.62275
31 0.613 0.681 0.694 0.675 0.630 0.618 0.591 0.611 0.63913

Avg. 0.60897 0.61419 0.61413 0.61613 0.61559 0.61072 0.61613 0.61025 0.61479

Table 4: Empirical probability (mean over 1K tests) to recover a full message
from N traces representing decapsulation of the same ciphertext.

N
1 9 99 199 299 399

pHD 0.61479 0.75866 0.98555 0.99872 0.99991 0.99999
pmessage 1.3 · 10−54 2.5 · 10−31 0.02444 0.72137 0.97731 0.99745

ity of 99.7%. Such a significant increase over the single-trace case is likely due to
the independence of errors in the repeated measurements, since random masks
are updated at each execution. A similar phenomenon has also been observed in
the attacks on software implementations of CRYSTALS-Kyber, e.g. [15]. In con-
trast, in the attacks on an unprotected implementations of CRYSTALS-Kyber,
multiple repetitions do not increase the success probability so significantly.
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Table 5: Empirical probability (mean over 1K tests) to recoverHD(m[i−1],m[i])
of a message bit i = 8a + b from 299 traces representing decapsulation of the
same ciphertext, for i ∈ {1, . . . , 255}.

Byte,
a

Bit position in a byte, b
Avg.

0 1 2 3 4 5 6 7

0 / 1 1 0.999 1 0.998 1 1 0.99957
1 1 1 1 1 0.999 1 1 1 0.99988
2 1 0.999 1 1 0.999 1 1 0.999 0.99963
3 1 1 1 1 1 1 1 1 1.00000
4 1 1 1 1 1 0.999 1 0.999 0.99975
5 1 1 1 1 1 1 1 1 1.00000
6 1 1 1 1 1 1 1 1 1.00000
7 1 1 1 1 1 1 1 1 1.00000
8 0.999 1 1 1 1 1 1 1 0.99988
9 1 1 1 1 1 1 1 1 1.00000
10 1 1 1 1 1 1 1 1 1.00000
11 1 1 1 1 1 1 1 1 1.00000
12 1 1 1 1 1 1 1 1 1.00000
13 1 1 1 1 1 1 1 1 1.00000
14 1 1 0.999 1 0.999 1 1 1 0.99975
15 1 1 1 1 1 1 1 1 1.00000
16 1 1 1 1 0.999 1 1 0.999 0.99975
17 1 1 1 1 1 0.999 1 1 0.99988
18 1 1 1 1 0.998 1 1 1 0.99975
19 1 1 1 1 1 1 1 1 1.00000
20 1 1 1 1 1 1 1 1 1.00000
21 1 1 1 1 1 1 1 1 1.00000
22 1 1 1 1 1 1 1 1 1.00000
23 0.999 1 1 1 1 1 0.999 1 0.99975
24 1 1 1 1 1 1 1 1 1.00000
25 1 1 0.999 1 1 1 1 1 0.99988
26 1 1 1 1 0.999 1 1 1 0.99988
27 1 1 1 1 1 1 1 1 1.00000
28 1 1 1 1 0.999 1 1 1 0.99988
29 1 1 1 0.999 1 0.999 1 1 0.99975
30 1 1 1 1 1 1 1 1 1.00000
31 1 1 1 1 1 1 1 1 1.00000

Avg. 0.99994 0.99997 0.99994 0.99994 0.99975 0.99984 0.99997 0.99991 0.99991

8.2 Minimizing training set size

If the DUA is used for profiling, the attacker may be interested to train neu-
ral networks on a training set containing as few traces as possible, in order to
minimize the access time to the DUA. In this section, we investigate how many
traces are required to obtain a model with a high message recovery probability.

We re-train neural networks with the architecture listed in Table 2 using up
to 5,000 traces in the initial set, before expansion by cut-end-join. Table 6 shows
the average empirical probabilities pHD and full message recovery for the case
when the same decapsulation is repeated 299 times and the final prediction is
obtained by the majority voting2. From Table 6 we can see that with 100 initial
traces captured for the DUA one can train a model which predicts messages with
nearly 80% average probability.

2 We also evaluated the case when model’s predictions are combined by multiplication,
but the results were worse.
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Table 6: Empirical probability (mean over 1K tests) to recover a full message
from 299 traces representing decapsulation of the same ciphertext using MLPs
trained on datasets of different sizes.

# Traces before cut-and-join
50 100 200 500 1000 2000 5000

pHD 0.99242 0.99909 0.99972 0.99986 0.99991 0.99992 0.99993
pmessage 0.14367 0.79282 0.93108 0.96493 0.97731 0.97981 0.98231

Fig. 6: The probability of recovering HD(m[0],m[1]) as a function of the number
of repetitions N for different training set sizes.

Fig. 6 shows how the probability of recovering HD(m[0],m[1]) grows as a
function of the number of repetitions N for different training set sizes. The
dashed curve represents the estimated probability computed as:

P =

(N+1)/2∑
i=0

(
N
i

)
pN−i(1− p)i,

for single-trace recovery probability p = 0.62. It defines an upper bound for the
empirical probabilities.
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Table 7: Empirical probability (mean over 1K tests) to recover a full message
from N traces representing decapsulation of the same ciphertext for the case
when a different device is used for profiling.

N
1 9 99 199 299 399

pHD 0.59329 0.71349 0.96306 0.99402 0.99877 0.99979
pmessage 1.5 · 10−58 4.1 · 10−38 6.8 · 10−5 0.21665 0.73063 0.94785

8.3 Profiling on a different device

If the access time to the DUA too short to capture both profiling and attack
traces, the attaker may attempt to do profiling on a different device. In this sec-
tion, we evaluate how intra-device variability affects the probability of message
recovery.

Following the same steps as in Section 8.1, we re-train a neural network with
the architecture listed in Table 2 using 1,000 traces captured from a different
FPGA device. Then, we test the resulting model using traces captured from the
DUA with multiple repetitions of the same decapsulation and applying majority
voting to the predictions. Table 7 shows the results for up to 400 repetitions.

As expected, the average empirical probabilities of message recovery are
smaller than the ones in Table 4, where profiling is performed on traces from the
DUA. For the case of 399 repetitions, the probability in Table 7 is 94.8% instead
of 99.7% in Table 4. To minimize the negative effect of intra-device variabil-
ity, one can use multiple devices for profiling [8, 41], or fine-tuning by iterative
re-training [32].

8.4 A posteriori leakage analysis with known masks

To further understand why the Hamming distance leakage model performs better
than the Hamming weight one in the implementation [24], we carry out leakage
analysis with known masks. Note that traces for such kind of analysis can only
be captured from a device fully controlled by an attacker, since the Verilog code
of the implementation has to be modified.

First we perform a t-test with known masks. Fig. 7 shows the results for the
Boolean shares, m1 and m2, computed by State Polytomsg masked decode()

for a set T of 1,000 traces with known masks. The t-test scores for all 256 bits
of both shares are plotted.

We analyse both the Hamming distance and the Hamming weight leakage
models. For the Hamming weight case, for the Boolean share m1, the set T is
partitioned into two sets T0 and T1 as:

T0 = {T ∈ T | HW (m1[i]) = 0}
T1 = {T ∈ T | HW (m1[i]) = 1},
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Fig. 7: T-test results for the Boolean shares m1 and m2 computed by the module
State Polytomsg: (a) for the Hamming weight of all bits of both shares; (b) for
the Hamming distance between all adjacent bits of both shares; (c) a zoomed-in
view of (b). The red lines mark the ±4.5 t-test threshold.

where m1[i] is the ith bit of m1, for all i ∈ {0, 1, . . . , 255}. For the the Boolean
share m2, T is partitioned similarly.
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(a) (b)

(c) (d)

Fig. 8: Distributions of power consumption during the computation of a single
bit of Boolean shares m1 and m2 by State Polytomsg masked decode(): (a,
b) for the Hamming weights HW (m1[1]) and HW (m2[1]), respectively; (c, d) for
the Hamming distances HD(m1[0],m1[1]) and HD(m2[0],m2[1]), respectively.

For the Hamming distance case, for the Boolean share m1, T is partitioned
as:

T0 = {T ∈ T | HD(m1[i− 1],m1[i]) = 0}
T1 = {T ∈ T | HD(m1[i− 1],m1[i]) = 1},

For the the Boolean share m2, T is partitioned similarly.

By comparing Fig. 8(a) and (b), we can conclude that leakage in the Ham-
ming distance model is considerable stronger that in the Hamming weight one.
From the zoomed-in view in Fig. 8(c), we can also see that the bits of both shares
m1 and m2 are processed in parallel.

Next, we analyse distributions of power consumption during the processing of
a single bit of Boolean sharesm1 andm2 by State Polytomsg masked decode().
Fig. 8 shows the distributions for each share separately, derived for a set 1,000
traces. We use the second bit as an example, so the Hamming weights for the
shares m1 and m2 are computed as HW (m1[1]) and HW (m2[1]), respectively,
and the Hamming distances are computed as HD(m1[0],
m1[1]) and HD(m2[0], m2[1]), respectively. In both cases, the distributions are
derived for the trace point with the maximum absolute t-test score. We can see
that, in the Hamming weight case, the overlapping between the distributions is
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nearly complete. Therefore, is is easier for neural networks to classify the input
data in the Hamming distance case.

9 Countermeasures

The presented attack would fail if it were not possible to repeat the decapsulation
process many times. This can be achieved by restricting the number of times the
same ciphertext can be decapsulated using the same secret key. Note that, in
order to tolerate random communication faults, it may be necessary to allow a
few repetitions.

The presented attack would be more difficult if multiple polynomial coeffi-
cients were converted into their corresponding message bits in parallel during
the message decoding, instead of individually converting each coefficient as im-
plemented in the current State Polytomsg() module.

Alternatively, stronger countermeasures against power analysis attacks can
be employed, e.g. the duplication with clock randomization method proposed
in [31]. The protected implementation consists of two identical cryptographic
cores: a primary and a dummy. Both cores receive the same input data, however
they are controlled by two different randomized clocks and use two different
secret and public key pairs for their respective operations. Compared to masking,
such a method offers advantages of universal coverage, immunity to glitches, zero
clock cycle overhead, and stronger resistance to repetition attacks.

10 Conclusion

We demonstrated a practical message recovery attack on the masked FPGA
implementation of Kyber-512 by Kamucheka et al. [24] by profiled deep learning-
based power analysis using the Hamming distance leakage model. We revealed a
low-level vulnerability in the message decoding procedure of this implementation
that makes the full shared key recovery possible with the success rate of 99%.
We also recommended several approaches to strengthen the resistance of the
implementation to power analysis.
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1 Appendix: Timing simulation of decapsulation
algorithm

Fig. 9 shows a timing simulation of the decapsulation algorithm in the implemen-
tation of Kyber-512 by Kamucheka et al. [24]. The enable and Function Done

signals for each submodule are shown in the figure, indicating the start and end
points of the execution of these modules. It is clear that no other module is
running in parallel with State Polytomsg().

Fig. 9: A timing simulation using Xilinx Vivado Design Suite. The module called
Poly2msg(P7) corresponds to State Polytomsg().
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